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Numerical and experimental investigation of bump foil mechanical behaviour

Jon S. Larsena,b, Alejandro C. Varelaa, Ilmar F. Santosa

aDepartment of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
bSiemens A/S - Aeration Competence Centre, 3000 Helsingør, Denmark

Abstract

Corrugated foils are utilized in air foil bearings to introduce compliance and damping thus accurate mathematical
predictions are important. A corrugated foil behaviour is investigated experimentally as well as theoretically. The
experimental investigation is performed by compressing the foil, between two parallel surfaces, both statically and
dynamically to obtain hysteresis curves. The theoretical analysis is based on a two dimensional quasi static FE
model, including geometrical non-linearities and Coulomb friction in the contact points and neglects the foil mass. A
method for implementing the friction is suggested. Hysteresis curves obtained via the FE model are compared to the
experimental results obtained. Good agreement is observed in the low frequency range and discrepancies for higher
frequencies are thoroughly discussed.

Keywords:
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1. Introduction

The static and dynamic characteristics of compliant
foil bearings are determined by the behaviour of the
fluid film and a flexible element underneath the bear-
ing surface altering its compliance. Several configura-
tions are possible to obtain compliance, being the usage
of corrugated bump foils one of the most widely used.
The addition of these compliant elements into the de-
sign enables to introduce additional damping to the one
generated in the fluid film. The increase of the energy
dissipation is obtained due to the sliding friction forces,
generated as the bearing surface deforms and induces
displacements in the foil layers. However, the mech-
anism for obtaining the additional damping character-
istics exhibits highly non-linear behaviour, which intro-
duces significant complexities considering the obtention
of an acceptable level of predictability for this bearing
design.

The challenges related to the technology have gener-
ated a significant number of publications, dealing with
the theoretical modelling and experimental testing of
bump foil bearings. The presentation given here tries to
follow a chronological progression, and focuses on the
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ones that have influenced the development of the work
presented in this article. Namely, the isolated static and
dynamic characterization of the corrugated foil structure
by neglecting the fluid film effects.

Ku and Heshmat [1, 2, 3] presented an analytical
mathematical bump foil model based on the work of
Walowit [4]. The model considered a circular bearing
and took into account the effect of the pad location.
The model provided predictions for stiffness, hystere-
sis and equivalent viscous damping. Non-linear stiff-
ness behavior was attributed to the geometrical effects
of having a circular journal loading the foils. They pre-
dicted that the dynamic coefficients were anisotropic
and highly non-linear and that the stiffness and damp-
ing was dependant on the pad angle. Bump stiffness un-
der different load distributions along the bump strip was
also investigated [1] and the theoretical prediction fol-
lowed the trend of earlier experimental data, regarding
the higher stiffness of the bumps located at the fixed end
compared to those closer to the free end. Lower friction
coefficients was found to make bumps softer, whereas
an increment in friction increased the stiffness and could
result in pinned bump ends for the bumps close to the
fixed end.

Experimental results of hysteresis curves for bump
strips deformed between two straight surfaces was pre-
sented in [5]. One of the surfaces featured a pivot to
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enable tilting motion, in order to obtain different load
distributions over the foils. The effect of pivot location
and different surface coatings was investigated and the
bump deflections were recorded using an optical track-
ing system. ’Local’ stiffness and damping were identi-
fied and found to be dependant on amplitude and load.

Peng and Carpino [6] were among the first ones to
couple the bump structure with the fluid film in a mathe-
matical model. Coulomb friction forces and bump flex-
ibility were included by means of an equivalent con-
tinuous friction force and a spring constant. Stiffness
and damping coefficients were calculated using the cou-
pled model. No isolated validation of the foil structural
model was included in this work.

Ku and Heshmat [7, 8] performed a experimental in-
vestigation of the dynamic behaviour of a compliant
foil bearing and compared the results to the mathe-
matical model presented in [1, 2, 3]. Agreement be-
tween the theoretical and experimental results was rea-
sonably good. The results showed that the cross cou-
pling stiffness and damping are negligible and that the
direct terms decrease with increasing dynamic ampli-
tude. An increase of the excitation frequency was found
to decrease the equivalent viscous damping and to in-
crease the stiffness.

Similar experiments were performed by Rubio and
San Andres [9, 10]. These authors compared the ex-
perimental results to the ones obtained using a simpli-
fied mathematical model, in which the bump foil contri-
bution was represented by simple elastic springs. The
stiffness of these springs was calculated by the ana-
lytical expression of Iordanoff [11]. Furthermore, the
equivalent damping was determined experimentally, for
a given bump geometry, by assuming a one DOF system
to which the experimental data was fitted [12, 13]. This
method is based on the assumption of harmonic oscil-
lations which can be hard to obtain in an experimental
set-up. Temperature effects was also investigated [12]
and found to be negligible. The dry friction coefficient
was found to be nearly constant with the excitation fre-
quency but dependent on the load amplitudes. The ob-
tained friction coefficient values varied between 0.05 to
0.2.

An NDOF discrete bump formulation model includ-
ing the effect of Coulomb friction was presented by Le
Lez and Arghir [14, 15]. The foil structural model was
composed of simple spring elements with elementary
stiffness given by analytical expressions. The results
were compared to a detailed finite element (FE) model
based on a commercial software as well as experimental
data [14] with good agreement. Furthermore, the calcu-
lated stiffness was compared to the simple foil flexibil-

ity given by Walowit [4] and implemented in the simple
elastic foundation model by Heshmat [16, 17]. The up-
dated results were found to be significantly stiffer than
the reference ones, due to the inclusion of the dry fric-
tion effect.

Lee et al. [18] presented a mathematical model in-
corporating both the fluid film pressure field described
by Reynolds equation and the structural dynamics of the
foil structure. The solution was based on FEM analysis,
and it was performed using a time domain integration
routine. An algorithm to deal with the stick slip phe-
nomenon related to friction forces was incorporated as
well. A parametric study was performed, and hystere-
sis loops were presented for the bearings running un-
der steady state conditions. The dissipated energy for
the individual bumps were calculated at a given unbal-
ance. The study indicated that optimum values of bump
stiffness and friction coefficients exist with regard to
minimizing the resonance vibration response of a rotor
mounted on foil bearings.

Zywica [19, 20] simulated the top foil structure us-
ing commercial FE programs and compared to results
previously published in [10]. This structural model was
applied in a complex model [21] taking into account the
fluid film pressure by solving the Reynolds equation.
The study was of purely theoretical nature.

Considering the literature background given here, this
article is focused on the global, quasi-static and dy-
namic, behaviour of a bump foil strip and the local be-
haviour in its individual sliding contact points. This is
achieved through mathematical modelling and experi-
mental observations. The study focuses on a bump foil
strip, pressed between two parallel surfaces. This orig-
inal approach enables a direct comparison between ex-
perimental and theoretical results. The structural math-
ematical model is based on the finite element method
(FEM) and the virtual work principle, applied to the
studied foil geometry. Hence, the entire bump foil strip
is modelled explicitly, using non-linear large deforma-
tion theory. The Coulomb friction forces are modelled
using an original approach, based on equivalent non-
linear springs located in the contact points between the
bump foils and the mating surfaces, acting in the direc-
tion of the bump longitudinal displacement. The model
is set up so that the correct direction of the friction force
at each contact point is directly obtained, eliminating
the need for updating the forcing term. It was imple-
mented in a dedicated computer program and the theo-
retical results, concerning the quasi-static behaviour of
the bump foils, are compared against results both from
the literature, but mainly against the experimental data
obtained in a test rig designed and built for this purpose.
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2. Theoretical Model

A theoretical model of the foil structure has been de-
veloped and implemented. It takes into account large
bump foil deflections and Coulomb sliding friction. The
model is based on a non-linear FE procedure following
the iterative Newton-Raphson (NR) approach derived in
Appendix A. The foil structure is discretized following
the virtual work principle (VWP) and a bilinear quadri-
lateral (Q4) iso-parametric plain strain element and the
Green-Lagrange strain measure for large displacements
are implemented.

The mathematical model is quantified in terms of the
residual vector {R} and the tangent matrix [Kt] which,
combined with the NR approach, solves for the dis-
placement vector {D}. With the exception of the fric-
tion elements, the derivation of these quantities are thor-
oughly described in the literature [22, 23] and for the
sake of briefness omitted here.

2.1. Modelling Friction

The reaction force between two contacting bodies can
be decomposed in two forces; the normal force Fn and
the friction force Fμ. If Coulomb friction law is as-
sumed and the static and dynamic friction coefficients
are equal, the friction force Fμ can be written as:

Fμ =

⎧⎪⎪⎨⎪⎪⎩
Fnμ, if ẋr < 0
−Fnμ, if ẋr > 0

(1)

and
−Fnμ ≤ Fμ ≤ Fnμ, if ẋr = 0 (2)

where ẋr is the relative sliding velocity in the contact
point and μ is the coefficient of friction. Consequently,
the friction force Fμ is a function of the sliding velocity
ẋ and is continuous but non-linear. It could be included
in the FE model as a nodal load, illustrated in Fig. 1a, in
which case, the magnitude and sign of the force would
be unknown unless an iterative procedure with checks
for sliding direction i.e. sign of ẋr and updates of the
nodal reaction force Fn were introduced.

An alternative method is to add a spring in the point
of contact as illustrated in Fig. 1b. The first thing to note
when considering this method is, that the problem of de-
termining the sign of the force Fμ is eliminated since the
reaction force of the spring k will automatically be in the
opposite direction of the motion ẋr. The magnitude of
the reaction force would not be constant if the spring k
is linear though. Then it would increase linearly with
the movement of the contact point, which is obviously

a) b)

Fμ

x x

k

Figure 1: (a) Modelling friction with a nodal load Fμ. (b) Modelling
friction by use of a non-linear spring k(ε)

wrong. However, by choosing the stiffness k to be non-
linear and softening, the reaction force versus deflec-
tion can be made constant and fulfilling (1). Choosing
a proper stiffness function for k, can even eliminate the
problem of determining the magnitude of the friction
force Fμ when there is no motion ẋr = 0. This corre-
sponds to (2).

2.1.1. Non-linear Spring Element
The objective is to derive a non-linear spring ele-

ment to be used in the implicit incremental NR scheme,
which will mimic the behaviour of a friction force. The
schematics and nomenclature of the spring are illus-
trated in Fig. 2.

The VWP for a general elastic body may be stated as
[23, 22]:

∫
V
{δε}T {σ}dV =

∫
A
{δu}T {F}dA +

∫
V
{δu}T {Φ}dV

+
∑

i

{δu}Ti {p}i.
(3)

Assuming body forces negligible and writing the inter-
nal work as a summation over the elements and assum-
ing the external forces are only applied in nodes (i.e.

deformed

undeformed

x, u

y, v
Δx = xj − xi ujui

i j

i j

Figure 2: Deformed and undeformed one dimensional spring
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{Φ} = {0} and {F} = {0}) and given by the global force
vector {P}, the VWP can be reduced to

∑
e

∫
Ve

δεσdV = {δD}T {P} (4)

where displacements are described by the element nodal
displacement vector {d} or the global displacement vec-
tor {D}. Assuming the stress and strains are constant in
each spring element, the integral on the left hand side of
(4) can be evaluated as

∑
e

δεNeLe
0 = {δD}T {P} (5)

where the element forces are defined as Ne = εLe
0ke in

which ke(ε) is a general non-linear stiffness dependent
on the strain and Le

0 is the initial length of the element e.
The strain variations for each element are related to the
displacement variations by

δε = {B̄}T {δd} (6)

where {B̄} is the strain-displacement vector. The strain-
displacement vector can now be found by use of the
Cauchy strain assumption ε = ΔL/L0. If the vertical
and horizontal displacements of the two nodes, i and j,
(Fig. 2) are described by the vector

{d} =
{
ui vi u j v j

}T
(7)

then the strain in the spring element can be written as

ε =
L1 − L0

L0
=

(x j − u j) − (xi − ui) − (x j − xi)
(x j − xi)

=
Δu
Δx

(8)
where Δu = u j − ui. By use of (7) and (8), the strain can
now be written as

ε = {d}T 1
L0
{−1 0 1 0}T = {d}T {B0} (9)

where the strain displacement vector {B0} is indepen-
dent of the displacements and hence it is given the zero
subscript. The variation in strain (6) then becomes
δε = {δd}T {B0}, which inserted into (5) gives

∑
e

{δd}T {B0}NeLe
0 = {δD}T {P}. (10)

The VWP should hold for any virtual displacements
which means that (10) reduces to

∑
e

{B0}NeLe
0 = {P} (11)

which can be put on residual form as

{R} = {Rint} − {Rext} =
∑

e

{B0}NeLe
0 − {P} = {0} (12)

and from the definition of the tangent stiffness matrix
we have

[Kt] =
∂{R}
∂{D} =

∑
e

{B0}∂N
e

∂ε

dε
∂{D}Le

0

=
∑

e

{B0}{B0}T Le
0
∂Ne

∂ε

(13)

where ∂Ne/∂ε = Le
0ke(ε). Finally, the tangent stiffness

matrix becomes

[Kt] =
∑

e

{B0}{B0}T Le
0

2ke(ε). (14)

2.1.2. Choosing a Spring Stiffness Function
From the definition of the strain-displacement vector

(9), it is seen that the length of the spring Le
0 cancels out

from the tangent matrix (14). Therefore, it is convenient
to redefine the non-linear element stiffness ke to be de-
pendent on the displacement rather than the strain such
that the length Le

0 is eliminated in the element definition.
A suitable element stiffness function is:

ke(Δu) =
Fnμ

|Δu| + εs
(15)

where εs is introduced to avoid zero division and to ob-
tain a smoothing element force curve. The element stiff-
ness and force curves are illustrated in Fig. 3.

Examining the element force curve Ne(Δu) in Fig. 3,
it is clear that the stiffness function (15) is a good choice
as it produces a force curve very similar to that of a

−1−0.5 0 0.5 1
0

5

10

15

20

Δu

S
ti
ff
n
es
s,

k
e

−1−0.5 0 0.5 1
−1

−0.5
0

0.5

1

Δu

F
ri
ct
io
n
fo
rc
e,

N
e

Figure 3: Element stiffness and force curves for Fnμ = 1 and εs =

0.05
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friction force. The optimal value of εs depends on the
amount of movement in the sliding contact. For small
movements εs should be chosen small. Choosing too
small values, the convergence of the incremental solver
will be affected negatively and choosing too large values
will affect the accuracy of the solution. A good choice
(according to Fig. 3) is: εs ≈ Δumax/100.

The theory presented will enable the modelling of
sliding friction for several contact points in an FE
model. Independent of the sliding direction in each
point, the resulting friction force will have the correct
sign. However, this is under the assumption that the
sliding does not change direction for Δu � 0. To assure
the correct sign of the friction force a ’shift’ is intro-
duced such that

ke(Δu − Δus) =
Fnμ

|Δu − Δus| + εs
(16)

where Δus is set to Δu in the event of changing sliding
direction.

2.1.3. Assumptions and Limitations
The solution is quasi-static meaning that all fre-

quency dependencies are discarded. The friction model
is a Coulomb model and coefficients of friction are as-
sumed constant and static and dynamic friction is equal.

3. Theoretical Results - Validation

In the following, bump foil strips with varying num-
ber of bumps are analysed using the numerical method,
outlined in the previous section, and compared to ana-
lytical results. The geometry and nomenclature of the
bump foils are illustrated in Fig. 4 and Tab. 1. For foil
strips consisting of more than one bump, all bumps are
given the same deflections.

Walowit and Anno [4] gave an analytical expression
for the dimensionless deflection w̃0, of the center posi-
tion of a single bump, when subjected to a vertical load
W. They assumed the bump ends free to rotate and move
horizontally but restrained in vertical direction. This an-
alytical expression is compared to results obtained from
an equivalent FE model as illustrated in Fig. 5.

A mesh convergence study of the model showed, that
sufficient accuracy may be obtained by having 8 layers
of elements over the thickness and approximately 400
elements over the longitudinal direction.

The dimensionless deflection w̃0, calculated analyti-
cally and numerically, is illustrated in Fig. 6 for different
angular extends θ0 of the bump and for varying coeffi-
cients of friction μ. Good agreement between the an-
alytical and numerical results are observed for friction

tb

l0

S

h0

θ0

Figure 4: Bump foil geometry and nomenclature

Table 1: Geometry and material properties of the bump foil

Parameters Values
Bump foil thickness, tb 0.127 mm
Bump foil height, h0 0.9 mm
Bump foil pitch, S 7.00 mm
Bump half length, l0 3.30 mm
Bump foil width, wb 18 mm
Young’s modulus of bump foil, E 2.07 × 1011 Pa
Poisson’s ratio of bump foil, ν 0.3
Coefficient of friction, μ 0.20

coefficients up to μ ≈ 0.5. Discrepancies begin to occur
at μ > 0.5. However, the numerical analysis is not sub-
jected to the same limiting assumptions as the analytical
like e.g. longitudinal deflection correction [4].

Walowit and Anno [4] also derived an analytical
expression for the foil flexibility which is commonly
used together with ’the simple elastic foundation model’
[16, 17]. It is given as:

Q ≈ 2S
E

(
l0
tb

)3
(1 − ν2) (17)

and consequently, the stiffness per area is K = 1/Q.
Comparing this stiffness to the results of the numerical

W

Figure 5: Finite element model and applied boundary conditions for
numerical comparison to analytical results from Walowit and Anno
[4]
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Figure 6: Single bump dimensionless deflection; analytical results
(full lines) [4], numerical results (markers)

model of a single bump, as illustrated in Fig. 7, yields
good agreement for varying coefficient of friction.

For the case of more than one bump and with the
bump strip fixed in one end, the stiffness calculated nu-
merically is diverging significantly from the analytical
result [4]. This is illustrated in Fig. 8 and in accordance
with e.g. [1, 5, 15, 16, 17, 18]. The stiffness, predicted
by the numerical procedure, is unequal during loading
and unloading for μ � 0. Fig. 8 is based on the loading
process and the difference between loading and unload-
ing is clearly illustrated in Fig. 9, which displays a load
displacement diagram for μ = 0.1 and μ = 0.2. Here, a
strip with four bumps is simulated by giving all bumps a
gradual compression to approximately 25 μm with small
oscillations of 1.5 μm amplitude occurring at approxi-
mately 5, 10, 15, 20 μm during the loading process.
The particular bumpfoil geometry was designed for a
journal bearing having a clearance of 50 μm, meaning
that a compression of 25 μm would result in a bearing
eccentricity ratio of approximately 1.5, which is a com-
mon value. The stiffness, related to the small ’local’
hysteresis loops contained in the large ’global’ hystere-
sis loop, is referred to as the local stiffness. It is found
to be non-linear and significantly higher than the global.
This is in good agreement with previous experimental
studies performed by Ku and Heshmat [5].

The hysteresis loops cause the bump foil strip to
provide Coulomb damping proportional to its confined
area. The size of the confined area is dependent on
where at the global hysteresis curve the deflection os-
cillation is taking place (5, 10, 15 or 20 μm). If the
deflection is sufficiently large, the load versus displace-
ment will track the global hysteresis curve during the
unloading process. This situation is seen in Fig. 9a,

0 0.1 0.2 0.3
0

1

2

3

4

Friction coefficient, μ

S
ti
ff
n
es
s

[G
N
/
m

3
]

Walowit
FEM

Figure 7: Stiffness of a single bump numerically calculated as function
of varying coefficients of friction - comparison to analytical results of
Walowit and Anno [4]

μ = 0

μ = 0.1

μ = 0.2μ
=
0.3
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0

2

4

6
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Active bumbs, Nb

S
ti
ff
n
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s
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N
/
m

3
]

Figure 8: Stiffness calculated numerically - varying coefficients of
friction and number of bumps in the foil strip

for the oscillation around 5 μm. In this case, the con-
fined area grows significantly leading to more Coulomb
damping, and the stiffness becomes highly non-linear,
as it changes significantly at the points where the local
load-displacement coincide with the global hysteresis
loop. Tracking the global hysteresis curve corresponds
to the situation where all contact points are sliding.

This can be seen in Fig. 10. Here a strip of four
bumps, as illustrated in Fig. 10a, is subjected to dis-
placement oscillations upon given a compression of
20 μm. The displacement oscillations are of amplitudes
1, 3, 5 μm and the corresponding hysteresis curve is
seen in Fig. 10b. In Fig. 10c, the friction forces ver-
sus the horizontal displacement for five selected contact
points are illustrated. These hysteresis loops visually il-
lustrates the amount of energy dissipation taking place
in each of the selected contact points. For the low ampli-
tude of 1 μm (green line), it is clear that the movement
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(a)
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Figure 9: Theoretical results of a bump strip, given a global com-
pression of approximately 25 μm with local oscillations of 1.5 μm
amplitude occurring at approximately 5, 10, 15, 20 μm during the
loading process. (a) Using a coefficient of friction μ = 0.1 (b) Using
a coefficient of friction μ = 0.2

in sliding points #1 through #5 is zero, meaning that en-
ergy is only dissipated in the contact points #6, #7, #8.
For the higher amplitudes of 3 μm and 5 μm, (red and
blue lines respectively) all the points are sliding when
the local load-displacement curves (Fig. 10b) tracks the
global curve.

It is important to highlight how a relatively small in-
crease in the load amplitude, from 15 N to 20 N, will in-
crease the energy dissipation by approximately 10 times
and at the same time, the energy dissipation only dou-
bles for an amplitude increase from 20 N to 25 N. This
is a consequence of the left most bumps being pinned
for the lowest load amplitudes, and it illustrates the im-
portance of the bump geometry and friction properties
in terms of maximizing the energy dissipation. For in-
stance, the dissipated energy would have been much
higher, for an amplitude of 15 N, if the coefficient of
friction had been lower, since this would have prevented
bumps from being pinned.

#1 #2#3 #4#5 #6#7 #8

(a)

14 16 18 20 22 24

20

40

60

80

Vertical displacement [μm]

W
[N

]

(b)

#3
#5

#6

#7
#8

10 20 30 40 50
0

1

2

Horizontal displacement [μm]

F
μ

[N
]

(c)

Figure 10: (a) Bump foil strip. Contact points including friction
marked with a red dot. The foil thickness is magnified for illustration
purpose. (b) Local hysteresis curves for different load amplitudes. (c)
Friction force versus horizontal deflection in selected contact points.

4. Experimental Results

In order to validate the implemented numerical model
of the bump foil, its results are compared to experimen-
tal results. In this section, the focus is set on the static
as well as the dynamic behaviour of the bump foil. The
data is obtained using an experimental test rig at the
Technical University of Denmark (DTU), designed and
constructed specifically for this purpose.
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4.1. Experimental Setup at DTU
The test rig used for characterizing the bump foil be-

haviour can be seen in Fig. 11. This test rig enables to
study the static and dynamic characteristics of the bump
foils.

Figure 11: Test setup for characterizing the static and dynamic prop-
erties of the bump foil

The core of the setup is composed by two steel blocks
(FE 510 D, ISO 630), labelled number 1 in Fig. 11. The
upper block features linear ball bearings that follow four
vertical guiding rods, see number 2 in Fig 11. Two bear-
ings are mating with each guiding rod. This arrange-
ment enables the upper block to move vertically mini-
mizing tilting motion, while the lower block is fixed to
the base. The tested foil strip is placed in between the
parallel mating surfaces of these blocks. One of the foil
strip ends is clamped, and the other one is free.

The arrangement enables to relate directly the verti-
cal displacement of the upper block with the deflections
of the bumps of the foil strip tested. The displacements
are measured using three displacement probes looking
at the upper surface of the moving block, see number
3 in Fig. 11. The sensors are located in a ’triangle’ ar-
rangement, to detect if any undesired tilting motion is
taking place during the experimental tests. The upper
block can be loaded statically or dynamically, in order
to induce deflections of the foil strip placed underneath.
Static load is applied by means of calibrated weights,

whereas dynamic load is obtained by using an electro-
magnetic shaker, a steel stinger with a diameter of 2 mm
and a piezoelectric load cell, see number 4 in Fig. 11.

4.2. Static Results
The test rig was used to obtain experimental results

regarding the relationship between applied static load
and resulting deflection of the bump foil. The geome-
try and material properties of the tested foil are listed in
Tab. 1 and the foil material is Inconel X750 hardened for
maximum yield stress. A foil specimen originally con-
sisting of 10 bumps was progressively shortened down
to 8, 6, 4 and 2 bumps. For each configuration, five full
load cycles (loading and unloading) were performed.
The standard deviation of the measured deflections was
calculated, in order to check the influence of random
errors over the results. The largest uncertainty interval
obtained is 8 microns and the lowest one is 2 microns.
The uncertainty intervals are not included in the figures
to avoid overcrowding.

The results obtained with strips of two and four
bumps are compared to theoretical results and illustrated
in Fig. 12 and the results of a strip with six bumps is il-
lustrated in Fig. 13.
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Figure 12: Hysteresis loops for two and four bump strips; numerical
results using μ = 0.2 (full lines), experimental results (markers)

Good agreement between the experimental and the-
oretical results are found when using a coefficient of
friction μ = 0.2 for the simulations. This value corre-
sponds well with common values which is typical in the
range 0.1 < μ < 0.5 for steel against steel (0.5 in vac-
uum) and also with the results obtained by e.g [5, 12].
For strips with higher number of bumps, higher global
stiffness and larger discrepancies with theoretical results
are observed. The results obtained for a strip with 6
bumps, see Fig. 13, portray these trends. The discrep-
ancies can be attributed to geometrical imperfections of
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Figure 13: Hysteresis loops for a six bump strip; numerical results
using μ = 0.2 (full lines), experimental results (markers)

the foils, specifically different bump heights, that entail
that not all bumps are in contact with the mating surface
from the beginning of the loading cycle. This effect be-
comes more relevant for higher number of bumps. Sim-
ilar trends are observed when testing strips of 8 and 10
bumps.

4.3. Dynamic Results

The next set of experimental results deal with the
effect of applied load frequency over the hysteresis
curves. A static preload and a dynamic load are simul-
taneously applied on the foil strip. The preload was ad-
justed to 40 N and 90 N, in order to study the effect of
this parameter over the obtained results. Regarding the
dynamic load, a sine wave of fixed amplitude and fre-
quency was fed into the electromagnetic shaker in order
to induce the foil deflections.The amplitude of the dy-
namic load was tuned to obtain different displacement
amplitudes for the hysteresis cycles. Hence, results for
2 (blue), 4 (red), 8 (green), 12 (black) microns of dis-
placement amplitude are obtained.

The reported applied force over the foil specimen is
determined as the summation of the preload, the value
measured by the piezoelectric load cell associated with
the shaker stinger, plus the inertia force coming from
the upper steel block, quantified using a piezoelectric
accelerometer. The deflections are measured using the
displacement probes. The reported hysteresis curves are
obtained by averaging the loading cycles obtained over
a one minute long test. Repeatability was checked by re-
peating the test five times, with different foil specimens,
obtaining similar results. Variability of the results was
on the same order of magnitude than the one registered
for the static testing.

In order to check for the influence of the test rig ar-
rangement on the measured hysteresis curves, the foil
specimen was replaced with a coil spring. Assuming
that the damping contribution from this element is negli-
gible, the setup enabled to determine the baseline damp-
ing coming from the test rig. Up to 60 Hz of excitation
frequency, such effect was found to be negligible, com-
pared with the energy dissipation observed when the foil
specimen was tested.

The first set of results compare the static and dynamic
testing results obtained for a four bump foil strip, see
Fig. 14. The static results are obtained by loading the
foil using calibrated weights, whereas the dynamic ones
correspond to a preload of 40 N and a dynamic load-
ing frequency of 1 Hz. The amplitude of the dynamic
loading is tuned to obtain four different displacement
amplitudes. Although the results obtained with a load-
ing frequency of 1 Hz do not have relevance from the
practical point of view, they do enable to establish a di-
rect link between the static results shown in the previous
section and the dynamic ones presented here.

In Fig. 14, the local hysteresis curves follow an al-
most purely harmonic motion for small displacement
amplitude, and they are placed inside the global loop.
However, when the displacement amplitude surpasses a
threshold value, they start to track the global hystere-
sis curve. For that condition, two stages can be easily
recognized in both the loading and unloading path of
the cycle, characterized by two different slopes for the
curve. These results are qualitatively coincident with
the results from the quasistatic theoretical model shown
before in Fig. 10b, regarding the dependence of the hys-
teresis loop shape on the motion amplitude. According
to the theoretical model, the ‘high slope’ behaviour can
be explained by the fact that some bumps of the strip
are sticking, hence the stiffness is dominated by elas-
tic deformation of the bumps. When they start to slide,
the hysteresis path switches to a ’low slope’ behaviour,
where the stiffness is dominated by the friction forces.

Since the local hysteresis curves are amplitude de-
pendant, both the stiffness and damping properties are
strongly influenced by it. Even though for small mo-
tion amplitude it could be possible to assume that the
resulting foil displacement is harmonic, once the local
curve hits the global one a highly non-linear motion is
achieved. This behaviour could have significant effects
when calculating an equivalent linearised damping co-
efficient based on the energy dissipated during one lo-
cal hysteresis cycle, since such analysis is based on as-
suming pure harmonic motion for the load displacement
curve.

In order to check for loading frequency dependency
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Figure 14: Comparison of the static (dashed blue line) and dynamic
testing results, for different displacement amplitudes (2 (blue), 4 (red),
8 (green), 12 (black) microns). The applied load frequency is 1 Hz.
The preload is 40 N, and the foil strip contains 4 bumps.

of the observed local hysteresis curves, the results for a
strip containing 3 bumps were obtained. Two different
preloads are applied, and the loading frequency is set to
1 Hz, 10 Hz, 20 Hz, 40 Hz respectively. The loading
frequencies tested here are well below the first resonant
frequency of the setup, which is around 100 Hz. Al-
though the studied frequency range might seem quite
limited when compared to the broad frequency range
in which an industrial bump foil bearing operates, a
distinctive modification in the overall behavior of the
hysteresis loops is already observed within the studied
range. Furthermore, the maximum frequency for per-
foming the dynamic testing is limited by the natural fre-
quency of the setup and by the influence of the baseline
damping generated by the test rig itself, as discussed
previously.

The results obtained for a loading frequency of 1 Hz,
see Fig. 15, are coincident with the ones reported be-
fore for the 4 bumps strip, see Fig. 14. By increasing
the loading frequency, significant changes in the hys-
teresis behaviour are observed. This is especially true
at the larger displacement amplitudes, as it can be seen
in Fig. 16, 17, 18. A direct comparison between the re-
sults for 1 Hz and 40 Hz can be seen in Fig. 19. For
higher loading frequency, the area enclosed by the local
hysteresis curves tends to become smaller, and it seems
that they are not tracing the global static one any more.
Closer inspection reveals that the ’high slope’ behaviour
observed for the low frequency results tends to dimin-
ish or disappear for excitations with a higher frequency.
Following the reasoning established before, this could
be attributed to the fact that all the bumps exhibit slid-
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Figure 15: Results of the dynamic testing, for different displacement
amplitudes (2 (blue), 4 (red), 8 (green), 12 (black) microns). The
applied load frequency is 1 Hz. The preloads are 40 N and 90 N. The
foil strip contains 3 bumps.
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Figure 16: Results of the dynamic testing, for different displacement
amplitudes (2 (blue), 4 (red), 8 (green), 12 (black) microns). The
applied load frequency is 10 Hz. The preloads are 40 N and 90 N. The
foil strip contains 3 bumps.

ing motion, without switching to a sticking phase when
the direction of the displacement is inverted. The com-
parison depicted in Fig. 19 shows clearly this trend.

It can be observed that the end points for the load-
displacement curves for the low and high frequency test
are the same. The mathematical model showed that this
would not be the case if the friction coefficient was re-
duced as can be seen in Fig. 9a and Fig. 9b. This in-
dicates, that a reduction of the constant coefficient of
friction alone, can not explain the ’flattening’ of the hys-
teresis curves.

One could argue that the bumps inertia forces could
play a role in the observed behaviour, however the max-
imum acceleration measured in the vertical direction is
around 1.5-2.0 m/s2. Assuming the entire mass of the
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Figure 17: Results of the dynamic testing, for different displacement
amplitudes (2 (blue), 4 (red), 8 (green), 12 (black) microns). The
applied load frequency is 20 Hz. The preloads are 40 N and 90 N. The
foil strip contains 3 bumps.
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Figure 18: Results of the dynamic testing, for different displacement
amplitudes (2 (blue), 4 (red), 8 (green), 12 (black) microns). The
applied load frequency is 40 Hz. The preloads are 40 N and 90 N. The
foil strip contains 3 bumps.

foil specimen, which is 0.45 g, to be concentrated in one
sliding point and multiplying it with the horizontal ac-
celeration of this point would yield a very small force.
In fact a force with an order Fμ/1000, if comparing to
the numerical results illustrated in Fig. 10.

The apparent reduction of the bump sticking phase
for higher excitation frequencies could be attributed to
a momentary modification of the friction coefficient in
or around the transition between sliding and sticking.
An acceleration ẍr dependant friction coefficient was
described as early as 1943 by Sampson et al. [24]. They
showed that the dry friction coefficient would decrease
in the acceleration stage of the slip and remain low dur-
ing the deceleration. Later investigations by Sakamoto
[25] confirmed this phenomenon. The friction coeffi-
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Figure 19: Comparison of results for the dynamic testing: local hys-
teresis loop measured for loading frequency 1 Hz (blue) and 40 Hz
(red). The foil strip contains 3 bumps and the preload is 40 N.

cient was obtained experimentally to μ ≈ 0.4 in the be-
ginning of the slip and dropped significantly to μ ≈ 0.1
over the acceleration stage where after it remained con-
stant. Their experiments did not deal with the transi-
tion between the stick and slip phase. However, the
results may still serve to explain why the global hys-
teresis curve become narrower at increasing frequency
i.e. higher accelerations close to the transition between
stick and slip.

Other literature in the field of tribology addresses the
effect of vibration in the normal direction of two mat-
ing surfaces over the friction coefficient. Chowdhury
and Helali [26] performed an experiment regarding this
issue. A clear trend is observed, regarding the reduc-
tion of the friction coefficient with both the amplitude
and the frequency of the normal vibration, for different
tested materials. These authors relate the observed trend
to an eventual reduction of the effective contact area be-
tween the mating surfaces when vibrations are taking
place. This effect may also be relevant for the bump foil
strip, as the normal loads in the contact points is oscil-
lating.

5. Conclusion and Future Aspects

In this article, a theoretical and experimental study
has been carried out, aimed at investigating the be-
haviour of bump foils used in compliant gas bearings.
The investigation has focused on the static and dynamic
behaviour of a bump foil pressed between two rigid par-
allel surfaces. A quasi-static non-linear finite element
model of the complete foil geometry has been devel-
oped, including the effects of the foil flexibility and
the friction forces in the contact points. An original
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approach for modelling the friction forces was imple-
mented, based on the usage of non-linear spring ele-
ments. The results from the numerical model regarding
load-displacement behaviour have been compared with
theoretical and experimental results coming from the lit-
erature, as well as experimental data obtained from a
dedicated test rig.

The numerical model was compared to previously
published analytical results [4]. For the stiffness of a
single bump (free-free) good agreement between ana-
lytical and numerical results were observed at different
coefficients of friction. The analytically calculated stiff-
ness is commonly used in combination with the ’simple
elastic foundation model’. However, for a strip consist-
ing of several bumps (fixed-free), the numerical model
indicated that the analytical method significantly under-
estimates the stiffness, hence the ’simple elastic founda-
tion model’ is generally underestimating the contribu-
tion of the structural stiffness.

The hysteresis loops obtained numerically, corre-
sponded well with the experimentally obtained hystere-
sis loops for low load frequencies < 5 Hz and both stiff-
ness and damping was found to be highly non-linear.
The numerical model was able to reproduce both the
global load-displacement curves as well as the local
ones, considering smaller vertical displacements around
an equilibrium position. Two distinctive patterns of mo-
tion were observed for the local hysteresis loop based
on the theoretical and experimental results. If the ver-
tical displacement perturbations are small enough, then
the hysteresis loop tends to follow a sinusoidal motion,
where the dominant effect corresponds to the bumps
flexibility since most of the bumps are pinned due to
friction forces. If the displacement surpasses a thresh-
old value, then the local hysteresis loop tracks the global
one, exhibiting two distinctive slopes associated with
the dominance of the bumps elastic forces or the sliding
friction forces respectively. In this condition, the transi-
tion towards sliding friction behaviour greatly enhances
the energy dissipation properties of the foil, and the
resulting vertical displacements deviates significantly
from the purely harmonic motion.

The experimental determination of the local hystere-
sis curves for higher loading frequencies revealed that
both the stiffness and equivalent damping properties of
the bump are strongly load frequency dependant. At
higher frequencies, the experimental results deviates
significantly from the theoretical as the hysteresis loops
tend to ’flatten’ and the energy dissipated per load cy-
cle reduces significantly. This phenomenon tends to al-
ter the stiffness such that it becomes less non-linear but
still of the same approximate magnitude. For small load

amplitudes and high frequency, the motion of the bump
deflection is nearly harmonic, but for larger load ampli-
tudes the motion is still non-harmonic, even though less
distorted compared to the low frequency case.

The ’flattening’ of the hysteresis loops at high fre-
quency seems to be caused by the absence of the stick
phase i.e. the foil contacts are operating constantly in
the slip phase. The authors are under the impres-
sion, that inertia effects will be small and that the phe-
nomenon may as well be related to instantaneous varia-
tions in the coefficient of friction or other local contact
phenomena.

In order to improve the numerical model to a state of
accuracy desired in the design of foil bearings, the effect
of the load frequency needs to be taken into account.
In that regard, more research needs to be conducted
to properly understand the ’flattening’ phenomenon of
the hysteresis curves experimentally obtained and doc-
umented in this work. This future work can be divided
in the following steps:

• the effect of inertia forces needs to be investigated
by including mass in the numerical model and per-
form a time integration analysis.

• Previous published results [24, 25, 26] has proven
significant friction variations due to vibrations in
normal and perpendicular direction of the contact
points as well a significant dependency of sliding
acceleration. These and related effects needs to be
studied in more details.

Appendix A. Iterative solution based on the
Newton-Raphson
method

In the implicit incremental Newton-Raphson (NR)
scheme, the load is applied in n increments, for each of
which the displacement Dn is found iteratively by satis-
fying the non-linear equilibrium condition which can be
written in residual form as:

R(Dn) = Rint(Dn) − Pn. (A.1)

If Dn
i is an approximate solution to the exact solution

Dn, then a first order Taylor expansion gives an equilib-
rium equation for the next NR-step as

R(Dn
i+1) ≈ R(Dn

i ) +
dR(Dn

i )
dD

ΔDn
i = 0. (A.2)

If we now define the tangent as
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Kt ≡
dR(Dn

i )
dD

(A.3)

then the equilibrium equation (A.2) can be written as

KtΔDn
i = −R(Dn

i ) (A.4)

or inserting (A.1)

KtΔDn
i = −Rint(Dn

i ) + Pn. (A.5)

When the equilibrium equation (A.5) has been solved
the displacements are updated from

Dn
i+1 = Dn

i + ΔDn
i . (A.6)

The tangent is then updated with the new displace-
ment Dn

i = Dn
i+1 and the procedure is repeated until the

norm of the residual is sufficiently small. Here, the NR
method was derived for a scalar problem, but it is di-
rectly applicable to vector problems.
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