

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Compiler Feedback using Continuous Dynamic Compilation during Development

Jensen, Nicklas Bo; Karlsson, Sven ; Probst, Christian W.

Published in:
Proceedings - Workshop on Dynamic Compilation Everywhere

Publication date:
2014

Link back to DTU Orbit

Citation (APA):
Jensen, N. B., Karlsson, S., & Probst, C. W. (2014). Compiler Feedback using Continuous Dynamic Compilation
during Development. In Proceedings - Workshop on Dynamic Compilation Everywhere

http://orbit.dtu.dk/en/publications/compiler-feedback-using-continuous-dynamic-compilation-during-development(8eff0507-19b4-4391-abac-c1546ff98774).html

A

Compiler Feedback using Continuous Dynamic Compilation during
Development

Nicklas Bo Jensen, Technical University of Denmark
Sven Karlsson, Technical University of Denmark
Christian W. Probst, Technical University of Denmark

Optimizing compilers are vital for performance. However, compilers ability to optimize aggressively is
limited in some cases. To address this limitation, we have developed a compiler guiding the programmer
in making small source code changes, potentially making the source code more amenable to optimization.
This tool can help programmers understand what the optimizing compiler has done and suggest automatic
source code changes in cases where the compiler refrains from optimizing. We have integrated our tool
into an integrated development environment, interactively giving feedback as part of the programmers
development flow.

We have evaluated our preliminary implementation and show it can guide to a 12% improvement in
performance. Furthermore the tool can be used as an interactive optimization adviser improving the perfor-
mance of the code generated by a production compiler. Here it can lead to a 153% improvement in perfor-
mance, indicating the feasibility of the tool as a performance adviser for a production compiler.

General Terms: Compiler design; compiler driven feedback; automatic refactoring; automatic vectorization
and parallelization

ACM Reference Format:
DCE 2014 V, N, Article A (January 2014), 12 pages.

1. INTRODUCTION
Arguably we all rely on optimizing compilers for performance. When they optimize
well, they can often generate code which outperform hand optimized code. However,
optimizing compilers are complex and hard for programmers to understand. Program-
mers are often not aware how their programs are optimized and how they should be
written to allow the compiler to optimize well. We have created a compiler, that guides
programmers in modifying their programs, potentially making them more amenable
to optimization.

Optimizing compilers and integrated development environments both perform anal-
ysis of code, regrettably usually with no code sharing between these. Therefore we
have embedded a small optimizing compiler into an IDE. The compiler is part of the
programmers development flow continuously giving feedback to the programmer as it
is integrated with the IDE.

We open up the black box the compiler is today, exposing valuable information to
the programmer using compiler driven feedback. In contrast, other related tools can
also report on optimization issues encountered during compilation. The programmer
then has to understand why a given optimization was not performed. Our tool is in-
tegrated into the IDE, dynamically giving quick feedback to the programmer during
development. The integration improves the automatic refactoring we provide.

The benefit of the feedback is twofold; the feedback lets programmers know how
their code how been optimized, and a reason if the compiler refrains from optimiz-
ing. Compilers often refrains from optimizing, especially due to limitations of program
analysis. Programmers can unintentionally prevent optimization by unfortunate cod-
ing choices. If the programmer is aware of the problems, they can be mitigated by
modifying the source code, often without affecting other software engineering princi-
ples.

An early implementation of the introduced compiler have been evaluated on 12 ker-
nel benchmarks and we show that the feedback can lead to speedups of up to 153%.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

A:2

In short, we make the following contributions:

— We show that the traditional compiler structure can be redesigned by reusing exist-
ing IDE technology in the compiler.

— We show that we can provide better automatic refactoring by integrating the IDE
and the compiler.

— We have evaluated the tool and show that compiler driven feedback can lead to per-
formance speedups. For example the suggested automatic refactorings can improve
performance with up to 153% when used with a production compiler.

The paper is laid out as follows. We will discuss related work next in Sect. 2. The tool
is presented in Sect. 3 and 4. Experimental results are analyzed in Sect. 5. We discuss
future work in Sect. 6 and conclude the paper in Sect. 7.

2. RELATED WORK
Compiler driven feedback is not a new idea and is used in related systems for im-
proving interactive feedback in integrated development environments [Ng et al. 2012],
commentary about applied compiler optimizations [Oracle 2013; Du et al. 2012] and
optimization advice [Larsen et al. 2012; 2011c; Larsen et al. 2011b; Jensen et al. 2012;
Intel 2013; Du et al. 2012].

IDE Support. IDEs help the programmer with interactive feedback on syntax er-
rors, type errors and code completion. Furthermore, they often provided a rich set of
automatic refactorings for otherwise tedious coding tasks. These features require an
understanding of the program and many IDEs have implemented technology which is
also found in compilers. There is an opportunity for reusing code from compilers in the
IDE, providing IDE support. One example of this is the Microsoft Roslyn compiler [Ng
et al. 2012]. It tackles the issue of serving intelligent integrated development environ-
ments with data for auto-completion information, refactorings and jumping around in
source code such as finding definitions. This is all information where compilers could
open up and through APIs to their internal data structures make these services avail-
able in IDEs.

Optimization Commentary. The Oracle Solaris Studio [Oracle 2013] has a unique
feature called Compiler Commentary. It annotates the source code with details on
which optimizations were applied. Some comments are easy to understand, such as
duplicate expressions or a loop being fissioned. Other comments only makes sense to
experienced developers or compiler engineers. Furthermore, the tool cannot give ad-
vice on source code changes enabling further optimization. Our tool reports applied
optimizations directly in the IDE, making it more user friendly.

Optimization Advisers. Programmers often prevent optimization with their coding
choices, but small source code modification which does often not affect software engi-
neering principles can help the compiler optimize further. Based on this realization
a series of tools have been implemented, guiding the programmer in how to modify
programs allowing the compiler to optimize more aggressively.

The Intel Performance Guide included in the Intel Composer XE [Intel 2013] can
guide the programmer in profiling for hotspots, suggest optimization flags and give
advice for source code modifications enabling auto-parallelization. It is a very user
friendly tool, however it only gives suggestions when it is confident, thus often not
showing any advice. Complementary IBM’s XL C/C++ and Fortran compilers can gen-
erate XML reports describing applied optimization, and in some cases suggest modifi-
cations to enable further optimization [Du et al. 2012]. Our tool provide feedback on a
broader range of issues and present the feedback directly in the IDE.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

A:3

Larsen et al. also describes their tool, consisting of a modified version of GCC, out-
putting information on why a given optimization was not applied and displays this
information in an IDE [Larsen et al. 2012; 2011c; Larsen et al. 2011b]. In this way
their tool reuse existing aggressive compiler optimizations for feedback and help the
programmer understand why a given optimization was not applied. In a paralleliza-
tion study, cases with super-linear speedups of parallel code parts were reported due
to positive side-effects of modifications [Larsen et al. 2012]. The tool have issues with
mapping internal GCC data structures to the real source code which is not always pos-
sible, and they generate many false positive comments due to GCC, requiring extensive
comment filtering which is still an open research problem [Larsen et al. 2011a].

3. COMPILER INFRASTRUCTURE
We have designed and implemented an optimizing compiler infrastructure to address
the issue of giving precise compiler feedback on the original source code. The compiler
is embedded inside the Eclipse IDE. The compiler reuses existing Eclipse technology
in the front-end by using the infrastructure already implemented for code analysis
and supporting the programmer during development. In this way, the implemented
compiler integrates into the normal Eclipse development flow, continuously giving
feedback to the programmer during development. Furthermore, internal Eclipse data
structures constructed for existing source knowledge tools can be reused. This de-
creases the load of executing our compiler during development in contrast to running
an entire production compiler.

The compiler is constructed as a series of passes where most consume a single inter-
mediary representation. The architecture and flow through the compiler is presented
in figure 1. The infrastructure is organized as a series of modules with clear inter-
faces between them. The C front-end is constructed using Eclipse language tooling.
The front-end takes the Eclipse representation of the source code and generates the
internal representation inside the compiler for optimization. The optimizer consumes
the internal intermediary representation, IR, and produces IR. The optimizer inter-
faces with the feedback-visualization Eclipse plugin by generating data on applied
optimization and when an optimization was not applied. Last the code generator con-
sumes the IR and emits assembly code compatible with GCC [Foundation b] calling
convention, which can be assembled and linker by GNU Binutils [Foundation a].

Only the C language is supported and the C front-end uses the Eclipse CDT C/C++
language tooling [CDT 2013]. The idea behind the compiler infrastructure is not re-
stricted to C and there exists Eclipse language tooling for many other languages.

The intermediary representation used for feedback and optimizations is based on
Static Single Assignment, SSA, form [Cytron et al. 1991]. It has the special property
that variables are only assigned at most once. This form is argued to improve many
types of optimization and is found in many optimizing compilers. The IR is on three
address form and consists of blocks with sequential instructions and special blocks for
control flow.

3.1. Optimizer
The compiler is intended to be executed during the development, constraining the type
of optimizations that can be executed fast enough without disturbing the responsive-
ness of the IDE. However, arguably the more optimization passes we implement the
better feedback we can provide. We have implemented a series of scalar optimiza-
tions on the SSA form: Copy propagation [Skeppstedt 2012], constant folding, sparse
conditional constant propagation [Wegman and Zadeck 1991], arithmetic simplifica-
tions, partial redundancy elimination [Kennedy et al. 1999], global value number-
ing [Torczon and Cooper 2011], operator strength reduction [Skeppstedt 2012], loop

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

A:4

C frontend
(CDT AST)

IR
+ metadata Optimizations

x86_64 code
generator

● Applied optimizations.
● Advice for source code changes

enabling further optimization.

Eclipse

Feedback
visualization

plugin

Fig. 1: Compilation framework architecture.

interchange and inlining. All optimization are performed in the order suggested by
Muchnick [Muchnick 1997].

3.2. Backend
The backend of a compiler is very important for its performance. The implemented
backend is simple and does not generate optimal code. The backend target the x86 64
instruction set. It does instruction selection using the greedy maximal munch algo-
rithm [Appel 1997] and instruction scheduling using a simple list scheduling imple-
mentation [Skeppstedt 2012]. The register allocator is based on the simple Linear Scan
working on SSA form [Wimmer and Franz 2010]. It allocates registers for one linear
block at a time, linearly assigning register by choosing a register not used in the period
where the register is alive. The allocator only looks a single block at a time, thus the
allocation is not optimal globally. Furthermore, no low level optimization is performed
during code generation. For simplicity all the features of the x86 64 instruction set is
not used.

4. FEEDBACK INFRASTRUCTURE
To display feedback to the programmer and suggest automatic refactorings, we extend
and use the infrastructure in Eclipse. This includes markers, yellow sticky notes in
Eclipse used to present tasks, problems or general information about a source code
construct [Glozic and McAffer 2001]. Eclipse contains views used for navigating or
displaying a hierarchy of information. We have implemented a view, giving an overview
of all the feedback presented to the programmer. This allows the programmer to get
an overview of all the feedback given by the compiler.

An example of the kind of feedback we provide to the programmer is seen in figure 2.
Here we inform the programmer that a function was not inlined and suggest an au-

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

A:5

Fig. 2: Simple marker suggesting adding the C99 inline keyword to potentially enable
inlining of the smvp function. Executing the suggested automatic refactoring gives a
22.6% improvement with GCC 4.8.1.

tomatic refactoring. This simple refactoring lead to a 22.6% improvement using GCC
4.8.1.

All optimizations in the compiler generate data on applied optimizations and data on
missed optimizations. These show to the programmer how the compiler has optimized.
Furthermore, the compiler gives details on why a given optimization was not applied
and suggest an automatic refactoring. The modifications can be applied automatically,
simply by accepting the compilers suggestion.

The tool can currently provide automatic refactorings for:

— Removing dead code
— Applying the inline keyword to functions
— Permuting the loop order
— Applying the restrict C99 keyword to pointers, even if matrix notation is used.

Mapping the internal representation used by the optimizer to the source code is
important. Therefore, we have integrated with the IDE and keep Eclipse metadata in
the IR during compilation, relating the IR to the Eclipse internal datastructures.

5. RESULTS
5.1. Setup
We evaluate our implementation on a platform based on a dual core 1.9Ghz Intel Core
i7-3517U and a total of 6GB of DDR3 ram. The operating system is Linux with kernel
version 3.8.0.

Furthermore the performance is compared to GCC 4.8.1 with no optimizations -O0
and with the aggressive optimization level -O3.

The compiler have been evaluated on 12 kernel benchmarks. Three very simple ker-
nels and nine kernel benchmarks from the Spec2000 benchmark suite [Henning 2000]
and the Java Grande C benchmarks [Bull et al. 2001]. The benchmarks are of vary-
ing size, art and equake are the largest with 1042 lines of C code as measured using
SLOCCount [Wheeler 2013]. The kernel benchmarks are chosen to represent resource
demanding programs testing different elements of the system as they have high pro-
cessing, I/O or memory demands.

In addition, the power of the tool as an optimization adviser for a production com-
piler is evaluated. This have been evaluated on an edge detecting program from the
University of Toronto DSP Benchmark Suite. This benchmark have only been evalu-
ated using GCC due to a bug in the compiler.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

A:6

�

����� ����

�

���

���

���

��	

�

���

���

���

��	

�

�
�
�
�
��
�
��
��

�
�	

�

��������

������

���

Fig. 3: Execution time for generating feedback and GCC compilation time. Lower is
better.

5.2. Compilation Speed
The tool is embedded inside the Eclipse IDE and the tool integrates into the normal
software analysis flow of Eclipse CDT. This means that we can reuse existing Eclipse
data that is created in the IDE. Therefore our tool can give quick feedback on the
source code during development. To this end, the tool must be fast to be integrated
into the programmers flow.

The time used by our tool to generate feedback to the programmer for the bench-
marks is shown in figure 3. In the figure the compilation time using GCC is also
shown. When comparing the execution time of our tool and GCC it is clear that our
tool is faster and can be used to generate comments faster.

Evaluation whether the tool is fast enough to integrate into the programmers devel-
opment flow is harder, as it is a subjective opinion. It is fast enough to be used when
the programmer pauses in writing, but for larger programs it might have an annoying
delay while typing.

5.3. Compiler Performance
First we consider the performance of the compiler used as a static offline compiler,
similar to how GCC normally would be used. I.e. we do not consider the compiler feed-
back in this section, only the quality of the generated code. The compiler have been
evaluated using all 12 kernel benchmarks. The performance is reported first without
any optimizations and second with all the implemented optimizations.

The performance data is presented in figure 4, where the running time of each bench-
mark is reported using our compiler and GCC. GCC outperforms our compiler. Even for
the simple Fibonacci benchmark, GCC is 1.8 times faster. In the fibonacci benchmark
GCC performs many optimizations on the source code. It inlines the recursive calls and
use tail recursion optimization to turn the call into a loop. This decreases the amount
of recursion significantly. In contrast we can only do simple scalar optimizations on the
fibonacci kernel.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

A:7

�

��

���

����

�
�
�
�
��
�
��
��

�
�	

�

��������

��������	
�

������	
�

����������
�
���

����������
�
���

Fig. 4: Raw performance of our compiler and GCC 4.8.1. Lower is better.

Our compiler is designed to be lightweight and executed during development, for
giving quick feedback to the programmer. In contrast GCC use optimizations that are
significantly slower, but optimize more aggressively.

5.4. Feedback
The compiler can guide the programmer with automatic refactorings, potentially mak-
ing the code more amenable to optimization.

The feedback adviser can only handle a specific number of cases where the compiler
refrains from optimizing. Thereby, we cannot generally optimize all programs. Two
benchmarks, the simple fibonacci and GCD kernels, did not benefit from the feedback
advice. The other 10 kernels yielded small speedups. The speedup obtained, by using
the feedback advice for small source code changes is shown in figure 6. The baseline is
the optimized results from figure 4.

For the LUFact and Euler benchmarks the tool suggest automatic refactorings for
applying the inline keyword to loop intensive functions and interchanging the order of
some loops. However, the compiler can not automatically analyze whether the transfor-
mation is safe due to limitations in the dependency analysis. Therefore, we suggest an
automatic refactoring and leaves the task of whether doing so is safe to the program-
mer as seen in figure 5. Performing the loop interchange refactoring yields a speedup
of 12% for LUFact and 8% for Euler.

For the Equake benchmark the feedback suggests adding the inline keyword a
function call to the smvp function. This both reduce the function call overhead, but
also makes some optimizations more effective. Inlining the smvp function call yields a
speedup of 7.6%.

5.5. Evaluate Feedback on Production Compilers
We also evaluate the feedback using a production compiler. One intended use of our tool
is to be used during development and the refactored source code is then subsequently
used with a production compiler.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

A:8

Fig. 5: Marker suggesting permuting the order of the loops, if the programmer deter-
mines doing so is safe.

���

����

���

����

�

����

���

����

�
�
�
�
�
�
�

�����	
��

Fig. 6: Speedup using the feedback advice on each benchmark.

The kernel benchmarks have been optimized by applying the suggested automatic
refactorings described in section 5.4 and then afterwards compiled with GCC 4.8.1
using the aggressive optimization level -O3.

The results are seen in figure 7. The baseline is the original source code, aggressively
optimized with -O3 using the same version of GCC.

Three of the kernels shows decent speedups, namely LUFact, Euler and Equake of
11%, 5% and 23% respectively. More inlining have widened the scope of GCC’s opti-

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

A:9

���

����

���

����

�

����

���

����

���

����

�
�
�
�
�
�
�

�����	
��

Fig. 7: Speedup using the feedback advice on each benchmark using GCC.

mizer, allowing it to optimize the compute intensive parts of the kernels more aggres-
sively. The manually interchanged loops also yield small speedups, but as the loops are
not part of the compute intensive part of the kernels the speedup is moderate.

5.5.1. Parallelization Adviser. Earlier research have shown the benefit of applying the
restrict keyword to C pointers, mitigating issues preventing optimization [Larsen
et al. 2011b]. The restrict keyword states that only the pointer itself, or a value
derived directly from the it, is used for all accesses to that object. This makes the pro-
grammers intent clearer to the compiler, mitigating many issues preventing optimiza-
tions. It can benefit automatic parallelization, vectorization and loop transformations.

For evaluating the feedback when performing automatic parallelization, we study an
edge detection application from the University of Toronto DSP Benchmark Suite. Our
compiler can provide optimization advice on the edge detection kernel as seen in fig-
ure 8. Applying the C99 restrict keyword is simple on pointers, but may require more
work on arrays. For example the array arguments are rewritten as: int (*restrict
input image)[N]. The suggested refactoring can be applied automatically by the tool.

The result have been evaluated on the system described in section 5 using GCC 4.8.1
and the compiler flags -O3 -ftree-parallelize -loops=#threads -fopenmp as seen in
figure 9. The reported time is excluding the I/O activity in the beginning and end of
the program. Three numbers are reported for the Intel i7 platform one and two threads
respectively; the sequential execution, the speedup of GCC’s automatic parallelization
and the speedup after performing the automatic refactoring.

The best speedup is achieved with two threads, where the modified version is 16%
faster than the automatically parallelized unmodified version.

We have also analyzed the edge detection application on a 2.66 GHz quad-core In-
tel Xeon X5550 system, with 24GB of ram running Linux kernel 2.6.32. The available
compiler on this system was GCC 4.7.2. The evaluation is shown in figure 9. All loops
were parallelized in the modified version, but most of the speedup comes from au-
tomatic vectorization. GCC chose to parallelize the inner loop and therefore the full
potential of the parallelization is not achieved. The best speedup was 2.62 with eight
threads compared to the sequential version.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

A:10

Fig. 8: Marker suggesting adding the restrict keyword to the three array arguments.

� � � � � 	

������
�������

Sequential 1.52s 1.52s 0.90s 0.90s 0.90s 0.90s

Auto-par 1.61s 1.56s 0.90s 0.88s 0.87s 0.87s

Modified 1.40s 1.33s 0.35s 0.35s 0.34s 0.34s

�

��

�

��

�

��

!

"
#
$
$
%
&
#

'()*+,-./)0%/*1-$)%2

Fig. 9: Speedup and executing time of the edge-detection kernel on the (a) Intel i7 plat-
form and (b) Intel Xeon platform. In the modified version using the feedback sugges-
tions, all loops were parallelized. In the unmodified the outer loop were not parallized.

6. FUTURE WORK
One big challenge for feedback systems is when and what to display to the program-
mer. Feedback system can often generate many comments, but many are false posi-
tives and only a few will lead to a speedup. Therefore, one future direction is to filter
the feedback by automatically applying the suggested automatic refactorings and val-
idate whether the compilation benefited. The generated assembly can also be used to
statically approximate the running time and use this information for filtering.

Another related research problem is which compiler flags to use. Compiling with a
production compiler can be complicated, for example GCC 4.8.1 has over 250 optimiza-

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

A:11

± ² ³ ´

µ¶·¸¶¹º»¼½ ±.01s ±.01s ±.01s
¾¸º¿ÀÁ¼Â ±ÃÄ1s 0.95s 0.94s

Ê¿Ë»Ì»¶Ë ±.01s

1.01s

0.97s

0.49s 0.25s 0.13s

Ä

±

²

Ç

³

É

È

Å

´

�
�
�
�
�
�
�

 !"�#�$

Fig. 10: Speedup and execution time achieved with -O2 and disabled vectorizer on the
Intel Xeon Platform.

tion flags with many possible combinations. On the edge detection program, if we use
the -O2 optimization flag and disable the vectorizer, we can parallelize all loops giving
a speedup of up to 7.46 as shown in figure 10. From a programmers perspective this
combination of automatic refactorings and optimization flags is far from obvious.

Future work could take input from one or multiple production compilers, that can
produce feedback on its optimization. Here multiple combinations of optimization flags
could be used, by specifying known combinations that have been identified to be suc-
cessful. This work could be integrated into our tool by reusing the existing refatorings
and supplement the existing analysis. This will of course add extra compilation time,
therefore this slower option could be run on the programmers request.

7. CONCLUSIONS
Many applications rely on automatic compiler optimization for optimal performance.
Regrettably, programmers are often not aware of how their programs are optimized
and especially which small refactorings can lead further optimization by the compiler.
To address this issue we have developed our dynamic feedback compilation system,
which can give feedback to the programmer during development directly in the IDE.
Compared to other compiler driven feedback systems the advantage of the presented
tool is dynamically executing the embedded compiler, as part of the normal Eclipse
development feedback system and the IDE integration benefiting the automatic refac-
toring.

The implemented compiler have been evaluated on 12 C benchmarks, but compared
to GCC does not yield good performance. This is expected, as the tool is designed to
be fast and be executed continously as the programmer works. The optimization ad-
vise system have also been evaluated on the benchmarks. The feedback on inlining of
function calls and automatically changing the order of loops lead to simple source code
modifications, where 8 out of 12 benchmarks yield a speedup. The system can guide to
a 12% improvement over the compiler optimized version.

The tool can also be used as a feedback adviser for a production compiler. Here 9 out
of 12 of the benchmarks benefited from the feedback. On the Equake benchmark the
tool can guide to a 23% improvement. Given the little work required by the program-

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

A:12

mer to obtain the speedup, the compiler driven feedback is cost effective. Furthermore
it was also investigated on an edge detection program, how the feedback could improve
the automatic parallelization performance using a production compiler. Here the tool
could guide to a 153% performance improvement.

ACKNOWLEDGMENTS

This work has been partially funded by the ARTEMIS Joint Undertaking as part of the COPCAMS project
(http://copcams.eu) under Grant Agreement number 332913. The authors acknowledge the HIPEAC3 Euro-
pean Network of Excellence.

REFERENCES
APPEL, A. W. 1997. Modern Compiler Implementation in C: Basic Techniques. Cambridge University Press,

New York, NY, USA.
BULL, J. M., SMITH, L. A., POTTAGE, L., AND FREEMAN, R. 2001. Benchmarking java against c and fortran

for scientific applications. In Proceedings of the 2001 joint ACM-ISCOPE conference on Java Grande.
CDT. 2013. Eclipse C/C++ Development Tooling. http://www.eclipse.org/cdt/. Accessed on 18/5/2013.
CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently com-

puting static single assignment form and the control dependence graph. ACM Trans. Program. Lang.
Syst..

DU, Y., VINAYAGAMOORTHY, K., YUEN, K., AND ZHANG, Y. 2012. Explore Optimization Opportunities with
XML Transformation Reports in IBM XL C/C++ and XL Fortran for AIX Compilers. IBM developer-
Works. Accessed on 17/5/2013.

FOUNDATION, F. S. GNU Binutils. http://www.gnu.org/s/binutils/. Accessed on 7/8/2013.
FOUNDATION, F. S. GNU Compiler Collection. http://gcc.gnu.org. Accessed on 7/8/2013.
GLOZIC, D. AND MCAFFER, J. 2001. Mark My Words. http://www.eclipse.org/articles/Article-Mark My

Words/mark-my-words.html. Accessed on 7/4/2013.
HENNING, J. L. 2000. Spec cpu2000: Measuring cpu performance in the new millennium. Computer 33, 7,

28–35.
INTEL. 2013. Intel Composer XE 2013. http://software.intel.com/en-us/intel-composer-xe. Accessed on

17/5/2013.
JENSEN, N., LARSEN, P., LADELSKY, R., ZAKS, A., AND KARLSSON, S. 2012. Guiding Programmers to

Higher Memory Performance.
KENNEDY, R., CHAN, S., LIU, S.-M., LO, R., TU, P., AND CHOW, F. 1999. Partial redundancy elimination

in ssa form. ACM Trans. Program. Lang. Syst..
LARSEN, P., KARLSSON, S., AND MADSEN, J. 2011a. Feedback Driven Annotation and Refactoring of Parallel

Programs. IMM-PHD-2011. Technical University of Denmark (DTU).
LARSEN, P., LADELSKY, R., KARLSSON, S., AND ZAKS, A. 2011b. Compiler Driven Code Comments and

Refactoring.
LARSEN, P., LADELSKY, R., LIDMAN, J., MCKEE, S., KARLSSON, S., AND ZAKS, A. 2011c. Automatic Loop

Parallelization via Compiler Guided Refactoring. IMM-Technical Report-2011. Technical University of
Denmark.

LARSEN, P., LADELSKY, R., LIDMAN, J., MCKEE, S., KARLSSON, S., AND ZAKS, A. 2012. Parallelizing More
Loops with Compiler Guided Refactoring.

MUCHNICK, S. S. 1997. Advanced compiler design and implementation. San Francisco, CA, USA.
NG, K., WARREN, M., GOLDE, P., AND HEJLSBERG, A. 2012. The Roslyn Project: Exposing the C# and VB

compilers code analysis. Whitepaper. Microsoft.
ORACLE. 2013. Oracle solaris studio. http://www.oracle.com/technetwork/server-

storage/solarisstudio/overview/index.html. Accessed on 17/5/2013.
SKEPPSTEDT, J. 2012. An Introduction to the Theory of Optimizing Compilers.
TORCZON, L. AND COOPER, K. 2011. Engineering A Compiler 2nd Ed. San Francisco, CA, USA.
WEGMAN, M. N. AND ZADECK, F. K. 1991. Constant propagation with conditional branches. ACM Trans.

Program. Lang. Syst. 13, 2, 181–210.
WHEELER, D. 2013. Sloccount.
WIMMER, C. AND FRANZ, M. 2010. Linear scan register allocation on ssa form. In Proceedings of the 8th

annual IEEE/ACM international symposium on Code generation and optimization.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2014.

