
Comparison of Syntax Tree Visualization: Toward Malay Language
(BM) Syntax Tree

Yusnita binti Muhamad Noor and Zulikha binti Jamaludin*

School of Computing College of Arts and SciencesUniversiti Utara Malaysia
06010 Sintok, Kedah, Malaysia

Abstract. This study will analyze natural language syntax tree visualizations to compare visualization
methods in order to choose the optimum solution for visualizing a BM syntax tree. Currently no syntax tree
visualization for BM has been introduced, and no visualization is yet available in the form of computer
software or a prototype. Methods that can be dealt with in creating a BM syntax tree include: tokenizing, a
performing search and comparison, matching with the associated rules, and composing. Ten systems were
analyzed, and the Link Grammar system was found to be the most viable. The Link Grammar system does
not have a hierarchical structure that reflects the language syntax as compared to the SSTC (Structured
String-Tree Correspondence) application which does. However, the SSTC shows the tree structure in a
hierarchical manner, but it does not have a suitable method to follow in visualizing the BM sentence syntax
tree.

Keywords: Syntax tree, BM syntax tree, syntax tree visualization, BM sentence parser.

1. Introduction
Increasingly, computerization systems have been generated for information visualization, and some have

been adapted to the field of linguistics, including word visualization applications named as SmartINFO and
WordNet. While many researchers have focused on language study, less attention has been given to study of
sentence structure or grammar visualization. One method that has been introduced to describe the structure
of the sentence is in the form of a diagram and is better known as a syntax tree visualization. An example of
this visualization is that which the SynView application performs.

The lack of emphasis researchers have given to processing the Malay language (BM) has been described
in [9], [10] and [13] in articles about computational linguistics and natural language in Malaysia. This paper
seeks to solve this problem, analyzing 10 different syntax trees visualization for English (BI) which might
serve as a basis to develop equivalent syntax tree visualizations for Malay language (BM). However, to date,
no BM syntax tree visualization has been introduced. A BM syntax tree visualization application would be
an important contribution both to computational linguistics and to IT and would help create more IT-based
applications improving Malaysia’s technology advancement.

Several studies have carried out in designing of syntax trees visualizations for various purposes. Among
them is a visualization made for BI for machine translation utilization. This visualization is known as the
SSTC (Structured String-Tree Correspondence) syntax tree [1] and was developed to generate a syntax tree
for machine translation usage that researchers utilized only in machine translation. Comparisons of syntax
tree visualization systems are described in the next section. Every system involved was analyzed as a
possible guide in developing syntax tree visualization for BM. The third section elaborates on rules and
procedures in developing a BM syntax tree visualization; the summary is described in section four.

* Yusnita binti Muhamad Noor. Tel.: + (0192816740); fax: (-). E-mail address: s92715@student.uum.edu.my
 Zulikha binti Jamaludin. Tel.: + (04-9284061); fax: (04-9284054/9284753). E-mail address: zulie@uum.edu.my

2012 International Conference on Information and Knowledge Management (ICIKM 2012)
IPCSIT vol.45 (2012) © (2012) IACSIT Press, Singapore

133

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/19785315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Comparison of Syntax Tree Visualization
There are two types of syntax tree; these are known as an Abstract syntax tree (AST) and a Concrete

syntax tree (CST). AST is used for programming, and CST is used to analyze language structure [7]. From
these two types, it is classified into two methods, namely the method of node-and-link which have tree nodes
and arrows, and space-filling method that displays information structure in the form of visual presentation
with a reliance environment [6] and [8]. Because this paper focuses on language structure, CST applications
that used node-and-link method in presenting the language are analyzed.

Among the tools involved in visualizing sentence structure is SynView, which was developed by a group
of students at the Ruhr University, Germany in 2009. VAST was developed in 2008, Linguistic Tree
Contructor (LTC) in 2005, phpSyntaxTree in 2003, Lehner's prologue tree drawing in 1994, Link Grammar,
TreeBuilder in 1991, syntax tree editor, RSyntax tree in 2009/2010, and SSTC in 1998. A comparison of
these systems is shown in Table 1 below.

Table 1: Comparison of Syntax Tree Visualization

System Year Description Input type
 Weakness Analysis on viability

RSyntax
tree

2009/2
010

RSyntax is based on the
method used by
phpSyntaxtree

Bracket
symbol

Difficult for users who do not
understand the format of writing

input as in bracket symbol (Prolog
symbol).

Unsuitable as a reference because of
the input type and because no work

has been published.

SynView 2009
SynView was developed

using C++ and PERL
[3].

Bracket
symbol in
notepad

Requires LaTeX software and
external analyzer.

Unsuitable as a reference because it
requires different software to write

input and analyze the sentence.
Also because no work has been

published.

VAST 2008

VAST analyzes a
sentence using a bottom-

up approach.

VAST uses global +
detail and zoom
techniques [2].

Input in XML
file

Syntax analyzer and visualization
are separated.

Unsuitable as a reference because
VAST needs a different syntax

analyzer and visualization.

LTC 2005

LTC is a tool to sketch
the syntax tree, designed

by Ulrik-Petersen
Sandborg [14].

Bracket
symbol

Phrase structure must be
determined by the users and

users need to sketch their own
syntax tree after all the words are

uploaded.

LTC is a system for sketching the
graph of syntax tree, not for
analyzing or visualizing text.

TreeBuilde
r 2004

Technique drafting graph
that successive, free in

sketch, user can print out
or keep file as image.

Sentence Users are required to sketch the
syntax tree by input the sentence.

TreeBuilder is a system for
sketching the graph of syntax tree,

not for analyzing or visualizing text.

phpSyntax
Tree 2003

phpSyntaxTree is an
online application that
allows users to draw a

graphical syntax tree [4].

Bracket
symbol

Difficult for users who do not
understand the format of writing

input as in bracket symbol.

Unsuitable as a reference because of
the input need to be made in bracket

(Prolog symbol) and no work has
been published.

SSTC 1998

SSTC uses an example-
based approach. Build
several sub-tree and

combine all the sub-tree
in the final stage.

Sentence

Does not use any rules
Sentences are matched with the

database based on the examples of
phrases that have been prepared.

Unsuitable as a reference because
the resulting syntax tree is not

divided into phrase structure and no
rules are involved.

Table 1: Comparison of Syntax Tree Visualization (continued)

System Year Description Input type

Weakness Analysis on viability

 Analysis and visualizing the tree
structure are designed for machine
translation in which there are no
phrase structure visualization are
presented.

Lehner's
prolog tree
drawing

1994 Lehner’s requires users
to input a sentence in
Prolog format.

Prolog
(bracket)
symbol

Difficult for users who do not
understand the Prolog format.

Unsuitable as reference because
of the input need to be made in
bracket (Prolog symbol) and no
work has been published.

134

Link
grammar

1991 Link grammar is
context-free grammar
formality. Every word
in the lexicon is given a
specific definition that
describes how it can be
used in a sentence [12].

Sentence Link grammar is unable to analyze the
conjunction.

The syntax tree is not categorized into
subject and predicate.

Matching techniques that are
carried out namely:

1) Read every word
2) Performing search
3) Match with associated rules
4) Visualization

The method used in analyzing the
sentence is suitable to be referred
and it uses rules in analyzing
sentence.

Syntax tree
editor

- Software is designed to
help linguist in
designing syntax tree
[5].

Bracket
symbol

Users need to input phrase structure. This is system to sketch the
syntax tree but not to visualize it.

No publications carried out and input need must be in bracket / require different analyzer.

System to sketch the syntax tree

Table 1 above shows 10 different systems for visualizing syntax structure that researchers have

developed. All of the systems are produced for BI, and only the RSyntax system can be used for Japanese,
Chinese and Korean. The table also shows that eight of the systems do not have any implications for
developing BM syntax trees. Among the systems, five of them do not have any publication that can be
referred to. Three other systems were designed to help users to sketch a syntax tree by providing some menu
and items. Thus, only two systems exist that can be used as a reference; these are SSTC and Link Grammar.
However, SSTC analyzes sentence according to a method for sentence translation. In addition, dividing the
sentence into phrases and producing a different syntax tree would require a complicated sequence of
implementation and is produced specifically for machine translation. Thus, only Link Grammar system can
be considered a suitable tool that can be referred to for processing a BM sentence. The method used is nearly
identical to Rosmah’s method in [11] that produced a BM sentence's checker and tree diagram which divides
a sentence into subject and predicate. This method analyzes the sentence by 1) tokenizing, 2) performing
search, and 3) matching words with associated rules.

3. Procedures and Rules for BM Syntax Tree Visualization
The Link Grammar system will be referred to in developing a visualization tool for BM syntax tree. BM

syntax tree visualization divides the sentence into subject and predicate that will have parent (top) and child
(bottom) nodes namely in the hierarchical diagram. Thus, by referring to the Link Grammar system, the BM
syntax tree visualization will process the sentence by 1) tokenizing, 2) giving a certain word class to each
word, 2) performing a search and comparing, 3) matching it with the associated rules, and 4) visualization.

SSTC

Link Grammar

A (sentence), S (subject), P (predicate)

FN (noun phrase), FA (Adjective phrase)

Proposed BM syntax tree

Fig. 1: Example of syntax tree

135

Fig.1 shows examples of syntax tree design such as SSTC, Link grammar, and the proposed BM syntax
tree. The method used by Link Grammar will be referred to in developing the BM syntax tree visualization,
and the structure designed in placing the node and arrow will refer to the method used by SSTC. Fig. 1 also
shows that Link Grammar system matches each word with the associated word class but it does not divide
the visualization into subject and predicate that should be in a hierarchical structure. SSTC system did not
have a suitable method to follow, but the tree structure is arranged in a hierarchical design as that which will
be done in BM syntax tree.

For example, the BM sentence “saya makan nasi” will be analyzed as below:

Step 1: tokenizing
 saya | makan | nasi

Step 2: word class
 saya = KN, makan=KK, nasi=KN

Step 3: Matching with rules
 Example of rules: A=S+P
 S=FN
 P=FN/FK/FA/FS

FN=(Bilangan) + (Penjodoh Bilangan) + (Gelaran) + Kata Nama+(Kata Nama) +

(Penentu) + Penerang

 S=FN (saya)

 P=[KK (makan), KN (nasi)] FK

Step 4: visualization

BM syntax rules have four different phrase structures including: FN (frasa nama), FK (frasa kerja), FA
(frasa adjektif), dan FS (frasa sendi nama). The sentence or Ayat (A) will be divided into Subject or S
(subjek) dan predicate or P (predikat). Every phrase will have a word class or combination of several word
classes like KN (kata nama), KK (kata kerja), KA (kata adjektif) and KS (kata sendi nama) as listed above.

4. Conclusion
 Ten tree systems focusing on the syntax tree for natural language as a basis in developing a BM syntax

tree visualization were analyzed. Comparisons were made between these 10 systems. The Link grammar
system has an implementation model that can be referred to because the beginnings of the process in
analyzing the sentence are same with the BM sentence checker that Rosmah produced [11] which shows the
sequence on how to analyze BM sentence. In addition, the input type in sentence also became selection
criteria as compared to the other systems which requires Prolog symbol as input.

 Models and algorithms for BM syntax trees visualization will be designed based on the analysis of BI
syntax tree as described in Section 2. In addition, the visualization can be done only if the input sentences

136

have a correct structure according to the rules the Dewan Bahasa dan Pustaka has issued. This means that
BM sentence's checker also needs to be designed.

5. References
[1] M. H. Al-Adhaileh and T. E. Kong. “A flexible example-based parser based on the SSTC,” in Proc. COLING '98

Proceedings of the 17th international conference on Computational linguistics, 1998, pp. 687-693.

[2] F. J. Almeida-Martinez et al..” Visualization of Syntax Trees for Language Processing Courses.” Journal of
Universal Computer Science, vol. 15(7), pp. 1546-1561. 2009.

[3] C. Behrenberg. (2009). SynView v0.3 user’s manual [Online]. Retrieved Dec 22, 2010, Available:
http://www.christian-behrenberg.de/files/SynView/SynView_source.rar,

[4] M. Eisenbach and A. Eisenbach. (2003). phpSyntaxTree-drawing syntax trees made easy [Online]. Retrieved Dec
20, 2010, Available: http://www.ironcreek.net/phpsyntaxtree/

[5] J. Epstein and E. O'Neill. (n.d). Syntax Tree Editor [Online]. Retrieved Dec 20, 2010, Available:
http://www.ductape.net/~eppie/tree/index.shtml

[6] B. Johnson and B. Shneiderman. “Tree-Maps: A Space-Filling Approach to the Visualization of Hierarchical
Information,” in Proc. of Visualization, 1991, pp. 284–291.

[7] J. Jones. (2003). Abstract Syntax Tree Implementation Idioms [Online], Retrieved Dec 18, 2010, Available:
http://hillside.net/plop/plop2003/Papers/jonesimplementingasts.pdf

[8] M. Luboschik and H. Schumann. “Explode to Explain – Illustrative Information Visualization,” in Proc. 11th
International Conference Information Visualization (IV'07), 2007, pp. 301-307.

[9] M. J. Ab Aziz. (2007). Pengkomputeran Linguistik Bahasa Malaysia [Online]. Retrieved Dec 28, 2010, Available:
http://www.ftsm.ukm.my/programming/prosiding-atur07/08-Juzaiddin.pdf

[10] N. Abu Bakar et al..(2006). Penggunaan komputer dalam pengajaran bahasa [Online]. Retrieved Dec 28, 2010,
Available: http://202.28.66.7/smuhammad/pdf/Penggunaan%20Komputer%20dlm%20pengajaran%20bahasa.pdf

[11] R. Abdul Latif, “Penyemak Sintaksis Ayat Bahasa Malaysia,” M.S. thesis, Universiti Kebangsaan Malaysia, Bangi,
Selangor, 1995.

[12] D. Sleator and D. Temperley. (1993). Parsing English with a link grammar [Online]. Retrieved Dec 29, 2010,
Available: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/link/pub/www/papers/ps/LG-IWPT93.pdf

[13] S. Ramli, “Reka bentuk dan implementasi suatu penghurai bahasa Melayu menggunakan sistem logik selari,”
M.S.thesis, Universiti Putra Malaysia, Selangor, 2002.

[14] U. Sandborg-Petersen. (n.d). Linguistic tree constructor [Online]. Retrieved Dec 20, 2010, Available:
http://ltc.sourceforge.net/

137

