Accepted Manuscript

On the Role of Lyrics in the Music-Exercise Performance Relationship

Xavier Sanchez, Samantha L. Moss, Craig Twist, Costas I. Karageorghis

Response of the second second

PII: S1469-0292(13)00115-5

DOI: 10.1016/j.psychsport.2013.10.007

Reference: PSYSPO 830

To appear in: Psychology of Sport & Exercise

Received Date: 7 January 2013

Revised Date: 24 August 2013

Accepted Date: 10 October 2013

Please cite this article as: Sanchez, X., Moss, S.L., Twist, C., Karageorghis, C.I., On the Role of Lyrics in the Music-Exercise Performance Relationship, *Psychology of Sport & Exercise* (2013), doi: 10.1016/j.psychsport.2013.10.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Running head: ROLE OF LYRICS IN EXERCISE

On the Role of Lyrics in the Music-Exercise Performance Relationship

Xavier Sanchez*

University of Groningen (NL)

Samantha L. Moss

University of Chester (UK)

Craig Twist

University of Chester (UK)

Costas I. Karageorghis

Brunel University (UK)

Date of first submission: 4 January 2013

Date of submission of Revision 1: 29 April 2013

Date of submission of Revision 2: 24 August 2013

*Corresponding author: Xavier Sanchez, Department of Psychology, Grote Kruisstraat 2/1, Groningen, 9712 TS, The Netherlands. Tel: +31 (0)50 363 7904; Fax: +31 (0)50 363 4581; E-mail: <u>x.sanchez@rug.nl</u>

1	Running head: ROLE OF LYRICS IN EXERCISE
2	
3	
4	
5	On the Role of Lyrics in the Music-Exercise Performance Relationship
6	
7	
8	
9	Date of first submission: 4 January 2013
10	Date of submission of Revision 1: 29 April 2013
11	Date of submission of Revision 2: 24 August 2013
	CERTER MAR

12	Abstract
13	Objectives. To examine the role of lyrics on a range of psychological, psychophysical, and
14	physiological variables during submaximal cycling ergometry.
15	Design. Within-subject counterbalanced design.
16	Method. Twenty five participants performed three 6-min cycling trials at a power output
17	corresponding to 75% of their maximum heart rate under conditions of music with lyrics,
18	same music without lyrics, and a no-music control. Cycling cadence, heart rate, and perceived
19	exertion were recorded at 2-min intervals during each trial. Positive and negative affect was
20	assessed before and after each trial.
21	Results. Participants cycled at a higher cadence towards the end of the cycling trials under
22	music with lyrics. Main effects were found for perceived exertion and heart rate, both of
23	which increased from min 2 through to min 6, and for affect: positive affect increased and
24	negative affect decreased from pre- to post-trials.
25	Conclusions. Participants pedalled faster in both music conditions (with and without lyrics)
26	while perceived exertion and heart rate did not differ. The inclusion of lyrics influenced
27	cycling cadence only at min 6 and had no effect on the remaining dependent variables
28	throughout the duration of the cycling trials. The impact of lyrical content in the music-
29	exercise performance relationship warrants further attention in order for us to better
30	understand its role.
31	

Keywords: affect, asynchronous music, cycle cadence, emotional contagion, ergogenic aid,
 lyrical component

On the Role of Lyrics 3

35 On the Role of Lyrics in the Music-Exercise Performance Relationship 36 Music is used to accompany all types of activities (e.g., driving, cooking, cleaning, 37 writing, relaxing, exercising), whether this is to distract, energize, or provide a rhythmic cue 38 for the listener (Sloboda, Lamont, & Greasley, 2009). In exercise and sport settings, the use of 39 music has become extremely widespread (see Karageorghis & Priest, 2012a, 2012b, for a 40 review); it is used as a means to enhance performance and evoke a range of physiological and 41 psychological responses (Brownley, McMurray, & Hackney, 1995; Laukka & Quick, 2011; 42 Razon, Basevitch, Land, Thompson, & Tenenbaum, 2009). In particular, music has been 43 shown to enhance positive affect, which bears strong influence on an individual's intention to 44 exercise and adhere to an exercise programme (Ekkekakis, Parfitt, & Petruzzello, 2011). 45 Numerous studies have supported the use of *motivational music* to induce positive feelings 46 during exercise (e.g., Crust, 2008; Hutchinson, Sherman, Davis, Cawthon, Reeder, & 47 Tenenbaum, 2011). Typically, motivational music has a high tempo (> 120 bpm), catchy 48 melodies, inspiring lyrics, an association with physical endeavour, and a bright, uplifting 49 harmonic structure (Karageorghis, Terry, & Lane, 1999). 50 The benefits of music use in the exercise domain have been attributed to a *rhythm* 51 response or entrainment to music rhythm that has been associated with greater neuromuscular 52 efficiency (e.g., Bacon, Myers, & Karageorghis, 2012), and the limited processing capacity of 53 the central nervous system (e.g., Razon et al., 2009). Music competes with bodily cues in 54 efferent neural pathways and thus blocks unpleasant cues replacing them with more positive 55 ones (cf. Rejeski, 1985; Tenenbaum, 2001). Music in exercise has also been linked with a 56 phenomenon known as *emotional contagion*, which refers to the process by which an 57 exerciser "catches" (feels) emotion in response to music (see Juslin, 2009, for a review). The 58 notion of emotional contagion (musically-induced/evoked emotions) has received support

34

59	from research in neuroscience (e.g., Koelsch, 2010; Koelsch, Fritz, von Cramon, Müller, &
60	Friederici, 2006), which shows that listeners can understand the intended expression (e.g.,
61	happiness or sadness) of the melody or lyrical content of music by perceiving the "motion" of
62	the signal (Molnar-Szakacs & Overy, 2006).
63	Long-duration, repetitive exercise tasks such as rowing, running, and cycling,
64	performed by recreationally active participants (not elite athletes) appear to be positively
65	influenced by both asynchronous (background) and synchronous music (see Terry &
66	Karageorghis, 2011, for a review). Additional benefits of music have been explained with
67	reference to the dissociation effect (Rejeski, 1985), wherein music delays the onset of fatigue
68	and allows individuals to increase work output/duration before internal negative sensations
69	are perceived (Boutcher & Trenske, 1990). That is, perceptions of effort and fatigue diminish
70	with the presence of music, thus participants are able to produce greater work output (e.g.,
71	Elliott, Carr, & Savage, 2004).
72	The aforementioned benefits are load-dependent to a degree, given that music does not
73	appear to moderate perceptions of effort at high exercise intensities (> 75% maximal heart
74	rate reserve [HRRmax]; e.g., Karageorghis, Mouzourides, Priest, Sasso, Morrish, & Walley,
75	2009). Nonetheless, in direct contrast with the posits of extant theory (e.g., Rejeski, 1985;
76	Tenenbaum, 2001), music does appear to moderate affect even at very high intensities (> 85%
77	HRRmax; e.g., Hutchinson et al., 2011; Terry, Karageorghis, Mecozzi Saha, & D'Auria,
78	2012). The combination of exercise with well-selected music can have a bearing on how
79	people feel during as well as immediately after exercise (see Karageorghis & Jones, in press;
80	Karageorghis, Jones, & Stuart, 2008). Indeed, the mood-enhancing properties of exercise per
81	se have been particularly well documented (see e.g., Berger & Motl, 2000). Moreover,

pre-exercise mood (e.g., Carels, Coit, Young, & Berger, 2007; Gauvin, Rejeski, & Norris,
1996).

85 Numerous studies in the exercise domain indicate that people routinely use music to 86 regulate emotions and affect for activities that vary in their physical intensity demand (e.g., 87 Brownley et al., 1995; Priest & Karageorghis, 2008). The neurophysiological concomitants of 88 such benefits are as yet unknown; nonetheless, an important determinant of such affective 89 qualities of music is the lyrical component, or words used in a song (Crust, 2008; Crust & 90 Clough, 2006; Stratton & Zalanowski, 1994). While other constituents of music such as 91 tempo (bpm) and loudness (dB) have garnered considerable attention from researchers 92 (Brownley et al.; Edworthy & Waring, 2006; Karageorghis & Jones, in press), there is a 93 dearth of research into the possible influence of lyrics, despite numerous qualitative and 94 anecdotal accounts of their potential influence (e.g., Bishop, Karageorghis, & Loizou, 2007; 95 Karageorghis et al., 2013; Priest & Karageorghis). Therefore, systematic investigation of the 96 role of lyrics in the sport and exercise performance-relationship is warranted given both the 97 widespread use of music in applied and research settings as well as the fact that lyrical music 98 is often used in preference to instrumental music (Priest & Karageorghis, 2008). 99 The lyrical content of music is known to influence people's behaviour (see North & 100 Hargreaves, 2008 for a review). For example, Jacob, Guéguen, and Boulbry (2010) found that 101 listening to prosocial song lyrics during the eating (lunch and dinner) period in a restaurant 102 increased patrons' tipping behaviours, in terms of both the proportion of customers leaving a 103 tip and the amount of money they gave per tip. Greitemeyer (2009) showed that exposure to 104 songs with prosocial lyrics fostered prosocial tendencies by increasing prosocial thoughts, 105 affect, and behaviour in different situations (e.g., empathy towards others in need, donations 106 to non-profit organizations, etc.).

107	Findings from the study of the effects of music with and without lyrics on mood and
108	emotions are equivocal. Stratton and Zalanowski (1994) found that the lyrics of a song had
109	greater capacity to alter mood than music without lyrics. More recently, Omar-Ali and
110	Peynircioğlu (2006) asked participants to rate the intensity of four emotions (happy, sad,
111	calm, and angry) in instrumental music or in music with lyrics. The authors found that melody
112	had a stronger influence on emotion than lyrics. Nonetheless, in lyrical music, the lyrics
113	"carry" the melody which adds a level of complexity in assessing the influence of lyrics and
114	melody as singular phenomena.
115	Within the context of sport and exercise performance, lyrics may well relate to the task
116	demands of repetitive activity (e.g., the potentially powerful influence of general affirmations
117	[e.g., "Search for the hero inside yourself"]), task-specific verbal cues [e.g., "Keep on
118	running"], and positive self-statements [e.g., "I am the one and only"]). In particular, lyrical
119	content has been suggested to be the musical constituent that is most likely to promote a
120	dissociation effect and thus reduce perceptions of effort (see Crust & Clough, 2006). Lyrics
121	have also been suggested to play a role in inducing optimal mood and emotional states
122	(Bishop et al., 2007; Crust, 2008; Laukka & Quick, 2011; Terry & Karageorghis, 2011).
123	The purpose of the present study was to examine the role of lyrics with reference to a
124	range of psychological, psychophysical, and psychophysiological variables during
125	submaximal cycle ergometry. It was hypothesized that, at the same individualized workload,
126	cycling cadence would be significantly higher in the two music conditions (music with lyrics
127	[ML] and music with no lyrics [NL]) when compared to a no-music control (NM), with the
128	ML condition eliciting the largest increase in cycle cadence (H_1) ; as is common in the
129	exercise science literature (e.g., Karageorghis et al., 2009) heart rate was used as a proxy for
130	physiological stress and was expected to increase equally across the three conditions
131	throughout the cycling task (H_2) ; perceived exertion (the feeling of how heavy and strenuous

132	a physical task is; Borg, 1998, p. 8), was expected to be lower in the two music conditions				
133	when compared to NM (H_3); lastly, positive affect would increase and negative affect would				
134	decrease from pre- to post-test trials, in all three conditions (H_4) , with distinct trends observed				
135	for positive affect (ML $>$ NL $>$ NM) and negative affect (NM $>$ NL $>$ ML).				
136	Methodology				
137	Ethical approval was gained from the ethics committee of the UK university at which				
138	the research was conducted and participants provided written informed consent. The research				
139	consisted of two phases: music selection (Stage 1) and the experimental protocol (Stage 2).				
140	Stage 1: Music Selection				
141	Participants. Forty-nine undergraduate students ($M_{age} = 19.9$ years, $SD = 1.2$ years)				
142	from a sport and exercise science undergraduate course at a university in northern England,				
143	UK volunteered to participate in the selection of motivational musical tracks for use in the				
144	experimental phase of the study. In keeping with the methodological guidelines of				
145	Karageorghis and Terry (1997), these participants were of a similar socio-cultural background				
146	and age profile to participants in Stage 2.				
147	Measures. The Brunel Music Rating Inventory-2 (BMRI-2; Karageorghis, Priest, Terry,				
148	Chatzisarantis, & Lane, 2006) was employed to select the tracks that would be used in Stage				
149	2. This questionnaire was designed to measure the motivational qualities of music for use in				
150	an exercise environment. It is a single-factor, six-item instrument presented on a 7-point				
151	Likert-scale anchored by 1 (strongly agree) and 7 (strongly disagree). For the purposes of the				
152	study, participants were informed that the word "motivate" meant music that would "make				
153	you want to exercise harder and/or longer in a cycling performance task". The mean Cronbach				
154	alpha coefficient for the single factor reported by the authors was .89 (Karageorghis et al.,				
155	2006). Cronbach alpha coefficients in our study were .95 for both the rating of songs with				
156	lyrics and for the rating of those without.				

157	Procedures. Participants were randomly assigned to one of two groups that were tasked
158	with assessing the motivational qualities of eight tracks containing lyrics ($n = 27$; 15 males
159	and 12 females; $M_{age} = 20.1$ years, $SD = 1.3$ years) or the same tracks without lyrics ($n = 22$;
160	13 males and 9 females; M_{age} = 19.7, SD = 1.0 years). The decision to use two independent
161	groups was taken to prevent any intra-individual comparison of the two versions of each
162	track, which were identical with the exception of the presence/absence of lyrics. Testing time
163	and room conditions were the same for both groups. Initially, all participants listened to the
164	same piece of calming instrumental music for 2 min as a baseline (62 bpm; Woodland
165	Wonder from the album Instrumental Sounds of Nature). They then listened to the given
166	music track for 90 s and rated that track using the BMRI-2; a process that was repeated for
167	each of the eight tracks. Music was delivered through a compact disc player (Bush Digital
168	Portable). Volume (loudness) was standardized for all music tracks at 70 dBA, which is
169	deemed safe from an audiological perspective (Lindgren & Axelsson, 1988).
170	Data Analysis. The purpose of the analyses employed in Stage 1 was to identify two
171	tracks (i.e., a sufficiently long accompaniment for the 6-min cycling test) for use in Stage 2
172	with significantly ($p < .05$) higher BMRI-2 scores for the versions with lyrics. Data screening
173	and diagnostic tests (normal distribution of data and homogeneity of variance) to ensure data
174	were suitable for parametric analysis were performed (Tabachnick & Fidell, 2007, pp. 60-
175	116). A separate mixed-model 2 (Group [lyrics/no lyrics]) x 8 (Track) ANOVA and follow-up
176	analyses were computed to find the two pairs of tracks required for the experimental phase.
177	Mauchly's test was used to check the sphericity assumption and where this assumption was
178	violated, the corresponding F ratio was subjected to Greenhouse-Geisser adjustment. Partial
179	eta squared (η_p^2) effect sizes were computed and, in accordance with Cohen (1988, pp. 184-
180	185), η_p^2 of .0103, .0609 and above .14 indicate a small, medium and large effect,
181	respectively.

182 **Results.** Data screening of the BMRI-2 results revealed that there was one case that 183 exhibited multiple univariate outliers and this was deleted prior to further analysis. Overall, 184 the BMRI-2 data did not meet the normality assumption owing to substantial positive 185 standard skewness (standard skew. > 3.29) and positive standard kurtosis (standard kurt. >186 3.29) in five cells of the analysis; therefore, a logarithmic transformation—suitable for this 187 type of nonnormality— was applied to normalize these data (see Tabachnick & Fidell, pp. 188 86–91). 189 A mixed-model ANOVA on the transformed BMRI-2 scores showed a significant Group x Track interaction, F(4.89, 224.79) = 6.62, p < .001, $\eta_p^2 = .13$, and a main effect for 190 the selected tracks, F(4.89, 224.79) = 8.38, p < .001, $\eta_p^2 = .15$. Tracks with lyrics (M = 1.14, 191 192 SE = .02) were not, overall, rated as significantly (p = .526) more motivational than tracks 193 without lyrics (M = 1.12, SE = .02). However, for the tracks for which the version with lyrics 194 was rated as more motivational than the version without, follow-up analyses using standard 195 errors indicated significant (p < .05) differences between the two versions of Uninvited (ML: 196 M = 1.34, SE = .04 and NL: M = 1.07, SE = .04 [transformed data]) and the two versions of 197 *Firestarter* (ML: *M* = 1.20, *SE* = .05 and NL: *M* = 1.04, *SE* = .05 [transformed data]). 198 Accordingly, these two tracks were selected for use in Stage 2 (see Table 1 for details of all 199 eight tracks). 200 **Stage 2: Experimental Investigation**

Participants. Given the dearth of studies examining the role of lyrics in the musicexercise performance relationship, we used our preliminary data to conduct a power analysis and thus establish an appropriate sample size. A power calculation (Faul, Erdfelder, Buchner, & Lang, 2009) based on a large effect size ($\eta_p^2 = .28$) indicated that 23 participants would be required. As a protection against experimental dropout and multivariate outliers, a total of 25 undergraduate students (11 women and 14 men; $M_{age} = 20.8$ years, SD = 1.3 years) from a

207	sport and exercise science course at a university in northern England, UK were recruited to
208	take part in Stage 2. These participants were different than those used in Stage 1.
209	Instruments and Procedures. All participants reported a liking for mainstream dance
210	music and were physically active in accordance with the American College of Sports
211	Medicine and the American Heart Association criteria; these entail partaking in 150 min (30
212	min for 5 days per week) of moderate exercise, or 60 min (20 min for 3 days per week) of
213	vigorous-intensity exercise (Haskell et al., 2007). Participants were asked to refrain from
214	consuming caffeine-based products and exercising for 24 hr prior to testing.
215	Graded exercise test (GXT). To establish the workload for each participant during the
216	experimental and control conditions, they first performed a continuous and incremental
217	graded exercise test on a cycle ergometer (Corival). This session also facilitated participants'
218	familiarization with the cycling procedures and associated measurements of exercise
219	intensity. With the ergometer in hyperbolic mode, participants performed a 5-min warm-up at
220	80 W after which the power output was increased by 40 W every 3 min until the point of
221	voluntary exhaustion. Cessation of the test was determined primarily by a heart rate (HR)
222	within \pm 10 bpm of age-predicted maximum, volitional exhaustion or an inability to maintain
223	pedal/cycling cadence above 60 revolutions per minute (RPM; Eston, Faulkner, Gibson,
224	Noakes, & Parfitt, 2007). During the last 30 s of each increment of the GXT, we recorded HR
225	using a heart rate monitor (FS1) and ratings of perceived exertion (RPE) using Borg's (1982)
226	6-20 scale. Past research has shown the appropriateness of these measures for assessing effort
227	and perceived exertion during physical work (see e.g., Hardy & Rejeski, 1989).
228	Prior to commencing the test, participants were instructed in how to respond to the RPE
229	scale (Borg, 1998, pp. 43-52). Linear regression was subsequently used to calculate the
230	power output for each participant, which corresponded to 75% of their maximum heart rate
231	(HR _{max}) attained during the GXT. The calculated power output was then used as the

On the Role of Lyrics 11

232 exercising workload during the experimental and control trials. This workload was selected 233 on the basis of previous training studies that have used heart rate as a method by which to 234 control exercise intensity (e.g., Kaikkonen, Yrjämä, Siljander, Byman, Laukkanen, 2000), and 235 because the psychophysical effects of music are attenuated beyond this intensity (see Rejeski, 236 1985; Tenenbaum, 2001). 237 *Experimental exercise trials.* The experimental conditions, which were administered 238 on different days separated by at least a day's rest and presented in counterbalanced order, 239 comprised music with lyrics (ML), the same piece without lyrics (i.e., an instrumental piece; 240 NL) and a no-music control (NM). Each condition consisted of a 3-min warm-up at 50 W 241 followed by a 6-min exercise bout at the pre-established workload for each participant. The 242 cycle ergometer was set in order that workload remained constant throughout each 6-min trial, 243 independent of the cycling cadence selected by the participant. Measures of RPM, HR, and 244 RPE were monitored and recorded every 2 min during each trial, with RPM obscured from 245 the participant's view to discourage engagement in any goal-setting strategies during testing. 246 Music was delivered through in-ear phones (iPod) connected to a compact disc player (same 247 as above). Volume (loudness) was standardized for all testing procedures at 70 dBA. the two 248 songs selected in Stage 1, that is *Uninvited* by Freemasons (lyrics available from 249 http://www.metrolyrics.com/uninvited-lyrics-freemasons.html) and Firestarter by The 250 Prodigy (lyrics available from http://www.metrolyrics.com/firestarter-lyrics-prodigy.html), 251 were edited in order to be played from the beginning for 3 min each, thus matching the test 252 duration. During the NM condition, a blank compact disc was played. All conditions were 253 performed at the same location, at the same time of day (± 2 hr), and were completed within 254 10 days of the GXT. The first experimental exercise trial was separated by at least 48 hr from 255 the end of the GXT to allow participants full recovery.

On the Role of Lyrics 12

256	Participants were also instructed to complete the International Positive and Negative				
257	Affect Schedule Short Form (I-PANAS-SF; Thompson, 2007) prior to and immediately after				
258	each trial. This questionnaire has 10 items presented on a 5-point Likert scale anchored by 1				
259	(never) and 5 (always). Sample items include "inspired" (positive affect; PA) and "upset"				
260	(negative affect; NA). Participants were instructed to answer each item using a "how do you				
261	feel right now?" response set. The Cronbach alpha coefficients reported by the author are .78				
262	for the PA subscale and .76 for the NA subscale. Cronbach alpha coefficients in the present				
263	study ranged from .71 to .92 for PA and NA pre- and post-trial in each condition.				
264	Data Analysis. Similar data screening and diagnostic tests were used to those detailed				
265	in Stage 1. A two-factor 3 (Music Condition) x 2 (Time) repeated measures (RM) ANOVA				
266	was computed for RPM and MANOVAs using the same model were computed for PA and				
267	NA, and RPE and HR. One-way RM MANOVA was computed to assess mean RPE and HR				
268	data. Pairwise comparisons with Bonferroni adjustments were used where necessary.				
269	Results. One univariate outlier was identified and reduced by modifying the raw score				
270	towards the mean, to a unit below the next less extreme raw score (Tabachnick & Fidell,				
271	2007, p. 77). The data were normally distributed (standard skew./kurt. \leq 2.58) with the				
272	exception of the negative and positive affect data which showed moderate positive skewness				
273	in four cells of the analysis. Given the moderate nature of this violation, a square root				
274	transformation was sufficient to normalize the affect data (see Tabachnick & Fidell, pp. 86-				
275	91).				
276	Interaction Effects				

277 The two-factor RM ANOVA for RPM revealed a significant Condition x Time 278 interaction, F(4, 96) = 3.89, p = .006, $\eta_p^2 = .14$, with a large effect size. Follow-up tests 279 indicated that at min 6, RPM was significantly (p = .010) higher in the ML (M = 100.60, SE =280 4.63) condition when compared to NL (M = 96.20, SE = 4.70), but that there were no such

- 281 differences at min 2 and 4 (see Figure 1). The same interaction in a RM MANOVA was nonsignificant for PA and NA, Hotteling's Trace = .13, F(4, 92) = 1.51, p = .194, $\eta_p^2 = .06$. In 282 283 a separate RM MANOVA, the same interaction was nonsignificant for RPE and HR, Pillai's Trace = .119, F(8, 192) = 1.52, p = .152, $\eta_p^2 = .06$. 284 285 **Main Effects** There was a condition main effect for RPM, F(2, 48) = 18.49, p < .001, $\eta_p^2 = .43$, 286 287 associated with a large effect size, with pairwise comparisons indicating that the highest RPM was recorded in the two music conditions (p < .001). There was also a time main effect for 288 RPM, F(1.15, 27.70) = 31.66, p < .001, $\eta_p^2 = .57$, again associated with a large effect size, 289 290 with pairwise comparisons indicating that RPM increased in a linear manner throughout the 291 duration of the 6-min exercise bout (p < .01; see Figure 1). 292 There was no condition main effect for PA and NA, Hotteling's Trace = .01, F(4, 92) =.14, p = .966, $\eta_p^2 = .01$, although there was a main effect for time, Hotteling's Trace = 4.03, 293 $F(2, 23) = 46.32, p < .001, \eta_p^2 = .80$, associated with a large effect size. Stepdown F tests 294 indicated differences for PA, F(1, 24) = 68.53, p < .001, $\eta_p^2 = .74$, and NA, F(1, 24) = 28.93, 295 p < .001, $\eta_p^2 = .55$, with pairwise comparisons revealing that PA increased from pre- to post-296 297 task while NA decreased (p < .001; see Table 2). 298 There was no condition main effect for RPE and HR, Pillai's Trace = .15, F(4, 96) =1.98, p = .104, $\eta_p^2 = .08$, although there was a main effect for time, Pillai's Trace = .74, F(4, 299 96) = 14.11, p < .001, $\eta_p^2 = .37$, associated with a large effect size. Stepdown F tests indicated 300 differences for RPE, F(1.13, 27.12) = 39.41, p < .001, $\eta_p^2 = .62$, and HR, F(1.15, 27.62) =301 56.78, p < .001, $\eta_p^2 = .70$, with pairwise comparisons revealing that both RPE and HR 302 303 increased in a linear manner throughout the duration of the task (p < .001; see Table 3).
 - 304

Discussion

305	The present study examined the role of the musical constituent of lyrics with reference
306	to a range of psychological, psychophysical, and physiological variables during submaximal
307	cycle ergometry. Two main findings emerged: First, musical accompaniment per se resulted
308	in a higher cycling cadence and this was manifest without any corresponding increase in
309	perceived effort or heart rate. The condition with lyrics elicited a higher cadence (RPM) than
310	the condition without <i>only</i> at min 6, therefore H_1 , stating that RPM would be significantly
311	higher in the two music conditions, is partially supported. Second, the inclusion of lyrics had
312	no bearing on the remaining psychological (affect), psychophysical (RPE), and physiological
313	(HR) variables. Therefore H_2 , stating that HR was expected to increase equally across the
314	three conditions throughout the task, is accepted, while H_3 , stating that RPE would be lower
315	in the two music conditions, and H_4 , stating that positive affect would increase and negative
316	affect decrease from pre- to post-test in all three conditions (with distinct trends to be
317	observed for positive affect $[ML > NL > NM]$ and negative affect $[NM > NL > ML]$), are not
318	supported by the present data. Main effects for time were found for RPE and HR, both of
319	which increased from min 2 through to min 6 of the task, and for affect: positive affect
320	increased and negative affect decreased from pre- to post-trial.
321	The present findings reveal that both music with lyrics and music without elicited
322	significantly ($p = .006$) greater mean cycling cadence (RPM) throughout the cycling test than
323	the no-music control condition. This adds to an emerging literature that supports the potential
324	of music to aid physical performance (e.g., Crust & Clough, 2006; Karageorghis et al., 2013;
325	Terry et al., 2012). In addition, the findings support those of previous studies that used similar
326	protocols, and reported no changes in physiological indices (e.g., blood lactate concentration)
327	with a concomitant increase in RPM (e.g., Lim, Atkinson, Karageorghis, & Eubank, 2009).
328	An increase in cycling cadence without a corresponding increase in heart rate could be
329	attributed to participants' entrainment to the rhythmical qualities of music, which is likely to

On the Role of Lyrics 15

engender more efficient movement patterns (Terry et al., 2012). Recent research by Bacon et
al. (2012) has found that participants required 7% less oxygen when cycling in time to the
beat of the music when compared to an asynchronous music condition at a slightly slower
tempo. Similarly, in the first study to examine the effects of synchronous music with elite
athletes (triathletes), Terry et al. (2012) found that oxygen consumption during treadmill
running was 1.0-2.7% lower with music (whether motivational or neutral), when compared
against a no-music control.

337 The matching of a music playlist to the requirements of a given activity has been 338 identified as an important factor when investigating the effects of music on performance 339 (Atkinson, Wilson, & Eubank, 2004; Karageorghis et al., 1999). In line with past research 340 (e.g., Elliott, Carr & Savage, 2004), participants in our study may have derived benefit from 341 the rhythmical qualities of the music (tempo ≥ 128 bpm) in terms of maintaining a regular 342 movement pattern. Nonetheless, contrary to expectations, exercising with music with lyrics 343 did not result in higher cycling cadence when compared to exercising with music that had no 344 lyrics. This study is the first to experimentally examine the impact of lyrics in the music-345 physical performance relationship; hence, a direct comparison with previous findings is 346 somewhat challenging. Previous research does indicate, however, that music differing in its 347 motivational qualities elicits significant differences during exercise (Elliott et al.; 348 Karageorghis et al., 2006, 2009). Also, fatigue may inhibit participants from processing 349 lyrical content in a similar way to that at rest (cf. Tenenbaum, 2001). Despite the fact that past 350 empirical research has not addressed this issue directly, it seems entirely plausible that such 351 syntactical content would be challenging to process at high exercise intensities owing to the 352 automatic attentional switching that apparently takes place beyond the anaerobic threshold 353 (Rejeski, 1985).

354	In the present study, the higher cycling cadence reported in the two music conditions
355	was not accompanied by concomitant increases in perceived exertion; this supports the
356	findings of similar studies (e.g., Lim et al., 2009). The primary reason for a lower perceived
357	exertion despite the higher work-rate relates to the dissociation promoted by music listening,
358	which limits the fatigue-related sensations transmitted via the efferent nervous system
359	(Hutchinson et al., 2011; Rejeski, 1985). Given that most research in this area has focused on
360	protocols of longer durations than our 6-min submaximal test (e.g., Boutcher & Trenske,
361	1990; Karageorghis et al., 2009), further research examining a longer bout of exercise
362	accompanied by an entire music programme with and without lyrics is recommended.
363	As expected, the present findings showed an increase in positive affect and a decrease in
364	negative affect post-exercise, for all conditions. This is in line with past research that supports
365	the beneficial role of exercise with reference to a range of psychological state variables (e.g.,
366	Carels et al., 2007). However, contrary to expectations, neither the presence of instrumental
367	music nor the presence of music with lyrics influenced participants' affective states when
368	compared to a no-music control. This does not concur with past findings, which have shown
369	an enhancement in affect associated with music conditions when compared to no-music
370	controls (e.g., Boutcher & Trenske, 1990; Karageorghis et al., 2009; Terry et al., 2012). It has
371	also been suggested that individuals can be emotionally aroused by the lyrical content of
372	music and the manner of its vocal delivery (see North & Hargreaves, 2008; Priest &
373	Karageorghis, 2008). Such emotional responses to music could implicate a mirror neuron
374	mechanism (Molnar-Szakacs & Overy, 2006), which is so called because it is activated both
375	when the individual acts and observes the same action performed by another. Mirror neurons
376	have been proposed as a mechanism that allows "an individual to understand the meaning
377	and intention of a communicative signal by evoking a representation of that signal in the
378	perceiver's own brain." (Molnar-Szakacs & Overy, p. 235). This mechanism may also relate

On the Role of Lyrics 17

379 to the earlier described notion of emotional contagion wherein the listener "catches" the 380 emotion that a composer or artist seeks to convey through music (Juslin, 2009). Accordingly, 381 there is a necessity for neurophysiological investigation of the influence of lyrics and vocal 382 delivery within exercise and sport settings. Such research might cast light on the mechanisms 383 and neural circuits that underlie how these aspects of music influence affective and 384 performance-related outcomes (e.g., exercise endurance). 385 **Limitations and Recommendations** 386 Music selection in the present study was conducted at rest whereas experimental testing

387 required participants to perform a submaximal exercise task. In the field of sport and exercise 388 sciences, it is common for music selected to be conducted while participants are at rest. The 389 approach in our domain mirrors that in mainstream psychology wherein studies of the 390 influence of lyrics have generally been conducted with participants in a restful state (e.g., in a 391 restaurant setting; see Jacob et al., 2010). Nevertheless, given the specifics of the sport and 392 exercise domain, researchers in this field might consider conducting music selection under 393 conditions that mirror the modalities and intensities of the activity that will be used in 394 subsequent experimental trials (e.g., cycling at a high intensity or running at a moderate 395 intensity). Currently, the BMRI and its derivatives require respondents to rate a given piece of 396 music with an exercise task in mind, rather than while actually performing that task. 397 The tracks used in Stage 2 of the study were preselected in Stage 1 according to their 398 motivational properties for exercise by participants of a similar socio-cultural background and 399 age profile to participants who took part in Stage 2 (cf. Karageorghis & Terry, 1997). Past 400 research has shown that it may be beneficial to include self-selected pieces in the study of the 401 music-performance relationship (e.g., Razon et al., 2009; Terry et al., 2012). Although a wide 402 range of music has been used in past research to examine its effect on performance, such 403 music has generally not been selected with explicit reference to its lyrical content. From an

On the Role of Lyrics 18

404 applied practitioner perspective, the lyrical content of music can enhance affect as well as 405 provide positive affirmations or task-related verbal cues (e.g., Crust, 2008; Laukka & Quick, 406 2011; Priest & Karageorghis, 2008). Moreover, had the present protocol been of a longer 407 duration, symptoms of fatigue may have been more likely to impinge on attentional processes, 408 rendering the exercise to be more pleasurable in the presence of music (e.g., Elliott et al., 409 2004; Karageorghis et al., 2009). 410 In the present study, the experimental manipulation that we employed entailed using instrumental versions of tracks that were commonly heard with lyrics. Given that the 411 412 composers of these tracks had conceived them with the presence of lyrics, we do not know 413 how participants would respond to music that had been composed to be purely instrumental in 414 nature; such music uses the meshing of instrumental sounds to elicit an emotional response in 415 the listener. Past research that has examined music, emotions, and lyrics has shown that 416 interpretation of the lyrics (e.g., the truthfulness of the words, the message of the lyrics) 417 influences the overall emotional experience of music (see e.g., Juslin, 2009 for a review). 418 In addition, neither the meaning of the lyrics nor how participants interpreted them was 419 considered in the present study. The songwriters' intended meaning compared against the 420 typically diverse interpretation of listeners indicates that future researchers might consider 421 both the lyrical content of tracks and individual interpretations (Priest & Karageorghis, 2008). 422 Researchers should also account for the possibility of lyrics being heard via auditory imagery 423 during a no-lyrics condition; the selected songs in the present study were top 10 hits in the 424 UK charts and thus generally well known. Both of the aforementioned limitations could be 425 assuaged through the use of music that was previously unfamiliar to participants. 426 Conclusions 427 The present study supported the notion that carefully selected music can engender an 428 ergogenic effect in an exercise task. Participants' cycling cadence increased in a short-

On the Role of Lyrics 19

429 duration, individually fixed-load cycling bout when compared to performance in a no-music 430 control condition. The presence of lyrics bolstered the ergogenic effect of the music only in 431 the closing stages of the trial (min 6), although the tracks with lyrics were delineated as being 432 more motivating for exercise than the same tracks without lyrics. Sport and exercise 433 psychology researchers suggest that lyrics can play an important role in sport and exercise 434 settings through the affirmations or task-relevant cues they provide (e.g., Bishop et al., 2007; 435 Terry & Karageorghis, 2011). Thus, the lyrical content of music warrants further investigation 436 in order that we might better understand its role and harness its motivational and affective 437 properties.

438				
439	References			
440	Atkinson, G., Wilson, D., & Eubank, M. (2004). Effects of music on work-rate distribution			
441	during a cycling time trial. International Journal of Sports Medicine, 25, 611–615.			
442	doi:10.1055/s-2004-815715			
443	Bacon, C. J., Myers, T. R., & Karageorghis, C. I. (2012). Effect of music-movement			
444	synchrony on exercise oxygen consumption. The Journal of Sports Medicine and Physical			
445	Fitness, 52, 359–365.			
446	Berger, B. G., & Motl, R. W. (2000). Exercise and mood: A selective review and synthesis of			
447	research employing the profile of mood states. Journal of Applied Sport Psychology, 12,			
448	69–92. doi:10.1080/10413200008404214			
449	Bishop, D. T., Karageorghis, C. I., & Loizou, G. (2007). A grounded theory of young tennis			
450	players' use of music to manipulate emotional state. Journal of Sport & Exercise			
451	Psychology, 29, 584–607.			
452	Borg, G. (1982). Psychophysical bases of perceived exertion. Medicine in Science in Sports			
453	and Exercise, 14, 377–381.			
454	Borg, G. (1998). Borg's perceived exertion and pain scales. Champaign, IL: Human Kinetics.			
455	Brownley, K. A., McMurray, R. G., & Hockney, A. C. (1995). Effects of music on			
456	physiological and affective responses to graded treadmill exercise in trained and untrained			
457	runners. International Journal of Psychophysiology, 19, 193–201.			
458	doi:10.1016/0167-8760(95)00007-F			
459	Boutcher, S. H., & Trenske, M. (1990). The effects of sensory deprivation of music on			
460	perceived exertion and affect during exercise. Journal of Sport & Exercise Psychology,			
461	12, 167–176.			

- 462 Bush Digital Portable CD/MP3/USB Player PCD-6300USB [Apparatus and equipment].
- 463 (2006). Hertfordshire, UK.
- 464 Carels, R. A., Coit, C., Young, K., & Berger, B. (2007). Exercise makes you feel good, but
- 465 does feeling good make you exercise? An examination of obese dieters. *Journal of Sport*
- 466 *& Exercise Psychology*, 29, 706–722.
- 467 Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,
- 468 NJ: Lawrence Erlbaum.
- 469 Corival Cycle Ergometer [Apparatus and software]. (2008). Groningen, NL: Lode BV.
- 470 Crust, L. (2008). Perceived importance of components of asynchronous music circuit training.
- 471 *Journal of Sports Sciences*, 26, 1547-1555. doi:10.1080/02640410802315427
- 472 Crust, L., & Clough, P. J. (2006). The influence of rhythm and personality in the endurance
- 473 response to motivational asynchronous music. *Journal of Sports Sciences*, 24, 187–195.
- 474 doi:10.1080/02640410500131514
- 475 Edworthy, J., & Waring, H. (2006). The effects of music tempo and loudness level on
- 476 treadmill exercise. *Ergonomics*, 49, 1597–610. doi:10.1080/00140130600899104
- 477 Ekkekakis, P., Parfitt, G., & Petruzzello, S. J. (2011). The pleasure and displeasure people
- 478 feel when they exercise at different intensities: Decennial update and progress towards a
- tripartite rationale for exercise intensity prescription. *Sports Medicine*, *41*, 641–671.
- 480 doi:10.2165/11590680-00000000-00000
- 481 Elliott, D., Carr, S., & Savage, D. (2004). Effects of motivational music on work output and
- 482 affective responses during sub-maximal cycling of a standardized perceived intensity.
- 483 *Journal of Sport Behavior*, 27, 134–147.
- 484 Eston, R., Faulkner, J., Gibson, A., Noakes, T., & Parfitt, G. (2007). The effect of antecedent
- 485 fatiguing activity on the relationship between perceived exertion and physiological

- 486 activity during a constant load exercise task. *Psychophysiology*, 44, 779–786.
- 487 doi:10.1111/j.1469-8986.2007.00558.x
- 488 Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using
- 489 G*Power 3.1: Tests for correlation and regression analyses. *Behavior Research Methods*,
- *490 41*, 1149–1160.
- 491 FS1 Heart Rate Monitor [Apparatus and equipment]. (2006). Kempele, Finland: Polar Electro.
- 492 Gauvin, L., Rejeski, W. J., & Norris, J. L. (1996). A naturalistic study of the impact of acute
- 493 physical activity on feeling states and affect in women. *Health Psychology*, *15*, 391–397.
- 494 doi:10.1037/0278-6133.15.5.391
- 495 Greitemeyer, T. (2009a). Effects of songs with prosocial lyrics on prosocial thoughts, affect,
- 496 and behaviour. Journal of Experimental Social Psychology, 45, 186–190.
- 497 doi:10.1016/j.jesp.2008.08.003
- Hardy, C. J., & Rejeski, W. J. (1989). Not what but how one feels: the measurement of affect
 during exercise. *Journal of Sport & Exercise Psychology*, *11*, 304–317.
- 500 Haskell, W. L., Lee, I.-M., Pate, R. P., Powell, K. E., Blair, S. N., Franklin, B. A., ... Bauman,
- 501 A. (2007). Physical activity and public health: updated recommendation for adults from
- 502 the American College of Sports Medicine and the American Heart Association,
- 503 Circulation, 116, 1081–1093. doi:10.1161/CIRCULATIONAHA.107.185649
- 504 Hutchinson, J. C., Sherman, T., Davis, L., Cawthon, D., Reeder, N. B., & Tenenbaum, G.
- 505 (2011). The influence of asynchronous motivational music on a supramaximal exercise
- 506 bout. *International Journal of Sport Psychology*, *42*, 135–148.
- 507 iPod Earbuds [Apparatus and instruments]. (2006). Tokyo, Japan: Apple.
- 508 Jacob, C., Guéguen, N., & Boulbry, G. (2010). Effects of songs with prosocial lyrics on
- 509 tipping behaviour in a restaurant. International Journal of Hospitality Management, 29,
- 510 761–763. doi:10.1016/j.ijhm.2010.02.004

- 511 Juslin, P. N. (2001). Communicating emotion in music performance: a review and a
- 512 theoretical framework. In P. N. Juslin & J. A. Sloboda (Eds.), Music and emotion: theory
- and research (pp. 309–337). New York, NY: Oxford University Press.
- 514 Juslin, P. N. (2009). Emotional responses to music. In S. Hallam, I. Cross, & M. Thaut (Eds.),
- 515 The Oxford handbook of music psychology (pp. 131–140). New York, NY: Oxford
- 516 University Press.
- 517 Kaikkonen, H., Yrjämä, M., Siljander, E., Byman, P., & Laukkanen, R. (2000). The effect of
- 518 heart rate controlled low resistance circuit weight training and endurance training on
- 519 maximal aerobic power in sedentary adults. *Scandinavian Journal of Medicine and*
- 520 Science in Sport, 10, 211–215. doi:10.1034/j.1600-0838.2000.010004211.x
- 521 Karageorghis, C. I., Hutchinson, J. C., Jones, L., Farmer, H. L., Ayhan, M. S., Wilson, R. C.,
- 522 ... & Bailey, S. G. (2013). Psychological, psychophysical, and ergogenic effects of music
- 523 in swimming. *Psychology of Sport and Exercise*, *14*, 560–568.
- 524 doi:10.1016/j.psychsport.2013.01.009
- 525 Karageorghis, C. I., & Jones, L. (in press). On the stability and relevance of the exercise heart
- 526 rate-music tempo preference relationship. *Psychology of Sport and Exercise*.
- 527 Karageorghis, C. I., Jones, L., & Stuart, D. P. (2008). Psychological effects of music tempi
- 528 during exercise. International Journal of Sports Medicine, 29, 613–619. doi:10.1055/s-
- 529 2007-989266
- 530 Karageorghis, C. I., Mouzourides, D. A., Priest, D. L., Sasso, T. A., Morrish, D. J., &
- 531 Whalley, C. L. (2009). Psychophysical and ergogenic effects of synchronous music during
- treadmill walking. *Journal of Sport & Exercise Psychology*, *31*, 18–36.
- 533 Karageorghis, C. I., & Priest, D. L. (2012a). Music in the exercise domain: a review and
- 534 synthesis (Part I). *International Review of Sport and Exercise Psychology*, *5*, 44–66.
- 535 doi:10.1080/1750984X.2011.631026

- 536 Karageorghis, C. I., & Priest, D. L. (2012b). Music in the exercise domain: a review and
- 537 synthesis (Part II). International Review of Sport and Exercise Psychology, 5, 67–84.

538 doi:10.1080/1750984X.2011.631027

- 539 Karageorghis, C. I., Priest, D. L., Terry, P. C., Chatzisarantis, N. L. D., & Lane, A. M. (2006).
- 540 Redesign and initial validation of an instrument to assess the motivational qualities of
- 541 music in exercise: The Brunel Music Rating Inventory-2. *Journal of Sports Sciences*, 24,
- 542 899–909. doi:10.1080/02640410500298107
- 543 Karageorghis, C. I., & Terry, P. C. (1997). The psychophysical effects of music in sport and

544 exercise: A review. Journal of Sport Behavior, 20, 54–68.

- 545 Karageorghis, C. I., Terry, P. C., & Lane, A. M. (1999). Development and initial validation of
- an instrument to assess the motivational qualities of music and exercise in sport: The
- 547 Brunel Music Rating Inventory. *Journal of Sports Sciences*, 17, 713–724.
- 548 doi:10.1080/02640410500298107
- 549 Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. *Trends in Cognitive*
- 550 Sciences, 14, 131–137. doi:10.1016/j.tics.2010.01.002
- 551 Koelsch, S., Fritz, T., von Cramon, D.Y., Müller, K., & Friederici, A. D. (2006). Investigating
- emotion with music: An fMRI study. *Human Brain Mapping*, 27, 239–250.
- 553 doi:10.1002/hbm.20180
- Laukka, P., & Quick, L. (2011). Emotional and motivational uses of music in sports and
- 555 exercise: A questionnaire study among athletes. *Psychology of Music*, *41*, 198–215.
- 556 doi:10.1177/0305735611422507
- 557 Lim, H. B. T., Atkinson, G., Karageorghis, C. I., & Eubank, M. (2009). Effects of
- 558 differentiated music exposure during a 10-km cycling time trial. *International Journal of*
- 559 Sports Medicine, 30, 435–442. doi:10.1055/s-0028-1112140

- 560 Lindgren, F., & Axelsson, A. (1988). The influence of physical exercise on susceptibility to
- 561 noise-induced temporary threshold shift. *Scandinavian Audiology*, *17*, 11–17.
- 562 Molnar-Szakacs & Overy (2006). Music and mirror neurons: from motion to 'e'motion.
- 563 Social Cognitive and Affective Neuroscience, 1, 235–241. doi:10.1093/scan/ns1029
- 564 North, A.C., & Hargreaves, D.J. (1996). Responses to music in aerobic exercise and yogic
- relaxation classes. British Journal of Psychology, 87, 535–547. doi:10.1111/j.2044-
- 566 8295.1996.tb02607.x
- 567 North, A. C. & Hargreaves, D. J. (2008). Music and taste. In A. C. North, & D. J. Hargreaves

568 (Eds.), The social and applied psychology of music (pp. 75–142). Oxford, UK: Oxford

- 569 University Press.
- 570 Omar-Ali, S., & Peynircioğlu, S. F. (2006). Songs and emotions: Are lyrics and melodies
- 571 equal partners? *Psychology of Music*, *34*, 511–534. doi:10.1177/0305735606067168
- 572 Priest, D. L., & Karageorghis, C. I. (2008). Characteristics and effects of motivational music
- 573 in sport and exercise. *European Physical Education Review*, 14, 351–371.
- 574 doi:10.1177/1356336X080095670
- 575 Razon, S., Basevitch, I., Land, W., Thompson, B., & Tenenbaum, G. (2009). Perception of
- 576 exertion and attention allocation as a function of visual and auditory conditions.
- 577 Psychology of Sport and Exercise, 10, 636–643. doi:10.1016/j.psychsport.2009.03.007
- 578 Rejeski, W. J. (1985). Perceived exertion: An active or passive process? Journal of Sport
- 579 *Psychology*, 7, 371–378.
- 580 Sloboda, J., Lamont, A., & Greasley, A. (2009). Choosing to hear music: Motivation, process,
- and effect. In S. Hallam, I. Cross, & M. Thaut (Eds.), *The Oxford handbook of music*
- 582 *psychology* (pp. 431–440). New York, NY: Oxford University Press.
- 583 Stratton, V. N., & Zalanowski, A. H. (1994). Affective impact of music vs. lyrics. Empirical
- 584 Studies of the Arts, 12, 173–184. doi:10.2190/35T0-U4DT-N09Q-LQHW

- 585 Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston, MA:
- 586 Allyn & Bacon.
- 587 Tenenbaum, G. (2001). A social-cognitive perspective of perceived exertion and exertion
- 588 tolerance. In R. N. Singer, H. A. Hausenblas, & C. Janelle (Eds.), Handbook of sport
- 589 *psychology* (pp. 810–822). New York, NY: Wiley.
- 590 Terry, P. C., & Karageorghis, C. I. (2011). Music in sport and exercise. In T. Morris & P. C.
- 591 Terry (Eds.), *The new sport and exercise psychology companion* (pp. 359–380).
- 592 Morgantown, WV: Fitness Information Technology.
- 593 Terry, P. C., Karageorghis, C. I., Mecozzi Saha, A., & D'Auria, S. (2012). Effects of
- 594 synchronous music on treadmill running among elite triathletes. Journal of Science and
- 595 *Medicine in Sport*, *15*, 52–57. doi:10.1016/j.jsams.2011.06.003
- 596 Thompson, E. (2007). Development and validation of an internationally reliable short-form of
- 597 the positive and negative affect scales (PANAS). Journal of Cross-Cultural Psychology,
- 598 *38*, 227–242. doi:10.1177/0022022106297301

Table 1

BMRI-2 Scores (Mean and Standard Deviation) for Tracks with Lyrics (ML; n = 26) and

Track No.	Song Title	Artist	Music Condition	BMRI-2
1	Now You're Gone	Basshunter	ML NL	12.31 (6.12) 11.41 (4.64)
2	It's Over Now	Big Ang ft. Siobham	ML NL	14.19 (7.83) 15.60 (5.95)
3	Yeah Yeah	Bodyrox	ML NL	15.42 (7.59) 19.09 (7.98)
4	Perfect (Exceeder)	Mason vs. Princess Superstar	ML NL	14.27 (6.60) 15.32 (5.75)
5	Uninvited	Freemasons	ML NL	23.15 (7.34) 13.45 (6.99)
6	I Like To Move It	Real 2 Real ft. The Mad Stuntman	ML NL	11.88 (5.44) 12.45 (7.76)
7	Crazy In Love	Beyoncé	ML NL	17.73 (7.60) 18.41 (7.29)
8	Firestarter	The Prodigy	ML NL	18.42 (10.53) 12.27 (6.09)

Tracks without Lyrics (NL; n = 22)

Note. The descriptive statistics recorded here are pre-transformation (see text for further details).

Table 2

Positive Affect (PA) and Negative Affect (NA) Values (Mean and Standard Deviation) before (pre-trial) and after (post-trial) Cycling under Conditions of Lyrics, No Lyrics and a Nomusic Control

	Music condition	Pre-trial	Post-trial
	Lyrics	15.48 (4.11)	19.24 (4.07)
PA	No lyrics	15.44 (3.97)	19.56 (3.56)
	No music	15.52 (3.08)	18.40 (4.01)
	Lyrics	7.44 (2.96)	6.40 (2.10)
NA	No lyrics	7.56 (2.77)	6.16 (1.62)
	No music	7.72 (3.33)	6.28 (2.21)

Table 3

Heart rate and RPE Responses (Means and Standard Deviations) at 2, 4, and 6 min while Cycling under Conditions of Lyrics, No Lyrics, and a No-music Control

Heart Rate (bpm)	2 min	4 min	6 min	Overall
Lyrics	136.84 (14.37)	141.64 (23.09)	154.52 (19.24)	140.20 (13.56)
No lyrics	139.00 (13.35)	148.84 (17.43)	154.40 (21.13)	145.40 (15.26)
No music	136.77 (12.49)	142.80 (14.63)	144.52 (32.49)	140.49 (14.03)
RPE	2 min	4 min	6 min	Overall
Lyrics	10.76 (1.98)	12.08 (1.89)	13.68 (2.11)	11.83 (1.66)
No lyrics	10.72 (1.70)	12.36 (1.68)	13.68 (2.10)	11.84 (1.49)
No music	11.16 (1.89)	12.52 (1.56)	13.96 (2.26)	12.16 (1.54)

Figure 1. Mean revolutions per minute (RPM) responses at each 2 min interval during the 6min cycling trial for ML (black bar), NL (white bar) and NM (striped bar) conditions. T-bars represent standard deviation. *Differs significantly (p = .006) from NM condition. * *ML differs significantly (p = .010) from NL.

Highlights

- Experimental assessment on the role of lyrics in exercise.
- Psychological, psychophysical, and physiological variables included.
- Musical accompaniment enhanced cycling cadence during submaximal cycle ergometry.
- The inclusion of lyrics enhanced cycling cadence towards the end of the task.
- Inclusion of lyrics had no effect on affect, perceived exertion, or heart rate.