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Nodal Count Asymptotics for Separable Geometries

Panos D. Karageorge1,2‡
1Department of Mathematics and Applied Mathematics, University of Crete -
Voutes Campus, 700 13 Heraklion, Greece.
2Archimedes Center for Analysis, Modeling & Computation, University of Crete
- Voutes Campus, 700 13 Heraklion, Greece.

Abstract. Following earlier works of Blum, Gnutzmann and Smilansky [18],
Gnutzmann, Karageorge and Smilansky [30, 31] and Lois and Gnutzmann [32],
we generalize nodal count asymptotics for arbitrary dimensionality; in particular,
we express the cummulative nodal count as a semiclassical trace formula over the
lengths of periodic geodesics of separable compact d-manifolds or domains in Rd

(billiards). We give the explicit mechanical dependence of the leading asymptotic
term.

1. Introduction

It is a well known fact that there is a profound relationship between the lengths of the
periodic geodesics and the eigenvalues of the Laplace-Beltrami operator (or simply the
Laplacian) on compact Riemannian manifolds. In physics terminology, this becomes
a duality between classical periodic orbits and quantum energy levels of a particle
constrained to move freely on the manifold, reflecting the correspondence between
quantum and mechanical motion.

This relationship is expressed in a transparent way by the semiclassical spectral
trace formula: a semiclassical expression of the Laplacian spectral density in terms of
the lengths of the periodic geodesics, as well as other geometric parameters such as
the volume of the manifold or the area of its boundary. In general, one can relate the
spectral density of a Schrödinger operator involving some potential, to the periodic
orbits of the underlying Hamiltonian dynamics. The eigenvalue-orbit duality has been
thoroughly studied for a wide range of settings, and the geometric and dynamical
content of the spectrum has been explicitly identified.

In the effort to extract geometric information and dynamical characteristics of
the underlying Hamiltonian flow, research has turned to Laplacian eigenfunction
morphology as well. Smilansky et al [18, 46] have proposed a programme of
studying nodal patterns of real eigenfunctions, revealing the deep geometric and
dynamical content of another analytic object related to the Laplacian, its nodal count,
constituting it rightfully as an important object of study in quantum chaos and inverse
spectral theory.

The nodal set of an appropriately smooth function f : Rd → R, denoted
Zf = {x : f(x) = 0}, partitions space into nodal domains, which are open, disjoint,
maximally connected domains on which it retains a constant sign. The number of
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nodal domains of f , whenever it is finite, is denoted ν(f), and is called its nodal
count.

For the Laplacian spectral problem on a compact Riemannian manifold (M, g),
or Dirichlet domain M ⊂ Rd,

−∆gϕ = Eϕ , (1)

where Dirichlet boundary conditions apply if ∂M 6= ∅, the nodal sequence, νk, is the
sequence formed by associating to each real eigenfunction its nodal count, having
chosen a specific spectral ordering σ(−∆g) = {E1, E2, . . .} and an eigenfunction
ordering accordingly {ϕ1, ϕ2, . . .},

νk := ν(ϕk) . (2)

We consider the semiclassical asymptotics of the nodal sequence, which is the high
energy regime Ek ≫ 1 (equivalently k ≫ 1), the classical limit being the limit k → ∞.

There has been recent progress in this direction, as Aronovitch and Smilansky
have shown that one can express the number of intersections of the nodal line with
the boundary of a 2-dimensional quantum billiard, both for integrable and ergodic
billiards [4].

In analogy to spectral statistics [12], nodal domain statistics were introduced by
Blum, Gnutzmann and Smilansky [18]. The normalized nodal sequence, defined νk/k,
by Courant’s theorem [27] is bounded by 1, νk 6 k. Blum et al proposed the study
of the value distribution of the sequence νk/k in the unit interval [0, 1], for a certain
set of eigenfunctions corresponding to a growing spectral window, [Ek, . . . , Ek′ ]. It
was found that there exists a limiting distribution in the classical limit, k → ∞, and
that its features depend crucially on the qualitative type of Hamiltonian dynamics it
supports.

If the Hamiltonian flow is separable, thus integrable, the limit distribution displays
certain features which are universal, common to all systems of this particular type. If
it is ergodic, Berry [14] has shown that the limit distribution is well reproduced by
employing a boundary adapted random wave model for the eigenfunctions. Bogomolny
and Schmit computed the nodal distribution by using ideas from percolation theory
[19], while results from the random wave model and percolation theory were compared
by Foltin, Gnutzmann and Smilansky in [28]. Investigations on nodal domain statistics
for ergodic toral maps with connections to percolation theory, involving the theory of
stochastic Loewner evolution, have been made by Keating, Marklof and Williams [38],
while connections between the nodal structure of ergodic eigenfunctions for billiards
and stochastic Lowener evolution were made by Bogomolny, Dubertrand and Schmit
in [20]. Nodal statistics have been recently generalized by Lois and Gnutzmann for
domains and manifolds in d > 2 dimensions, both separable and ergodic [32].

Global or local properties of nodal patterns for generic integrable systems,
or generally generic Hamiltonian systems (neither integrable nor ergodic), remain
essentially terra incognita. There are very few results in this direction, such as an
algorithm for counting the nodal domains for the right isosceles triangular billiard
by Aronovitch, Band, Fajman and Gnutzmann [5], or the numerical investigations
on nodal domain statistics on pseudo-integrable billiards by Sieber, Paulson and
Smilansky [45].

There have been continual indications of the geometric importance of the nodal
sequence, hence Smilansky and collaborators have put forward the conjecture that the
nodal sequence can resolve isospectrality [6, 29, 8]. To be more specific, the relevant
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question here is whether the nodal sequence can distinguish between non-isometric,
yet, isospectral systems.

Besides Riemannian manifolds, quantum graphs have been employed, as simple
and prototype models for quantum chaos [40], to address problems such as the
resolution of isospectrality. In [10] Berkolaiko gave a sharp lower bound for the nodal
sequence, for a large class of quantum graphs. In [6], Band, Shapira and Smilansky
exposed an explicit group theoretic algorithm for the construction of non-isometric,
yet, isospectral, quantum graphs and it was proven that their nodal counts differ.
A general introduction on nodal domains on quantum (metric) and combinatoric
(discrete) graphs is given in Band, Oren and Smilansky [7].

Other studies along this line for manifolds [29], have shown that isospectral tori
indeed have different nodal sequences. The above are yet another support of the
hypothesis that the geometric information is stored in the nodal and spectral sequences
in different ways. One can thus resolve ‘drums’ which ‘sound’ the same, by counting
their nodal domains.

The first work which addressed the geometric problem of nodal inversion via nodal
domain statistics, and revealed the geometric content of the nodal sequence, was by
Smilansky and Sankaranarayanan [46], where it was shown that the aspect ratio of
a planar rectangular domain can be determined by nodal domain statistics for the
Dirichlet Laplacian. Following this work, Karageorge and Smilansky [37] showed that
the value distribution of the normalized nodal sequence contains enough information
to determine the metric of the underlying manifold, for a class of convex surfaces of
revolution.

To the author’s knowledge, the first work on nodal inversion, was that of Hald and
McLaughlin [33]. The authors showed that given a Dirichlet Schrödinger operator on a
rectangular planar domain, whose aspect ratio satisfies a certain diophantine property,
the potential is determined modulo additive constant by a subset of the nodal line of
the eigenfunctions. However, this work focuses on local properties of the nodal set,
rather than global ones, such as the nodal count.

Number theoretical arguments pertaining to arithmetic properties of the nodal
sequence, were used by Klawonn in [39] to show that the nodal sequence of the Dirichlet
Laplacian determines, up to scaling, various classes of two-dimensional manifolds, such
as rectangles, flat Klein bottles and flat tori in two and three dimensions.

From these recent results, a new category of problems has risen, inverse nodal
problems, which are incapsulated in the following question: given the nodal sequence
{νk}, or its statistical properties, what can one say about the geometry (modulo
dilations) or the dynamics on the underlying configuration space? Interest in the
novel inversion methods of inverse nodal problems has recently motivated application
of these results in other scientific disciplines, such as 3-dimensional shape analysis in
neuro-imaging [41].

In this paper, we restrict ourselves to the study of dynamics on manifolds, which
admit ‘regular’ wave motion, underlined by ‘regular’ classical dynamics; in particular
separable manifolds, i.e., manifolds or domains on which the Laplacian is separable in
the usual sense [35, 36].

Following Gnutzmann et al [30], we derive a semiclassical trace formula for the
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cummulative nodal sequence, ck = ν1 + . . .+ νk, of the form

ck ∼ κ∗k
2 + k

3
2− 3

2d

∑

γ∈N
d
0\{0}

gcd{γj}=1

∞
∑

µ=1

Aγ

sin
(

µ(k1/dSγ − π
2αM · γ) + π

4 bγ

)

µ
d+1
2

, (3)

γ signifying a primitive periodic orbit, µ the number of repetitions for a given orbit,
taking into account all possible topologies of orbits about a given invariant Liouville-
Arnol’d torus; Sγ is the action of the corresponding orbit, and αM and bγ are phases
determining other geometric and topological data of the flow, and Aγ some bounded
coefficients characterized by the orbit family. The leading power of the semiclassical
series is universal (mean growth of cummulative nodal count).

Specifically, from the leading, Weyl term, we extract the analogue of the Pleijel
bound, the cummulative Pleijel bound, κ∗, which we express in terms of purely
dynamical quantities. From the remainder oscillatory part, we show that the
cummulative nodal sequence generically determines the lengths of periodic geodesics
of the underlying classical flow, up to scaling.

We also make a connection to nodal domain statistics, by giving a representation
of the limiting normalized nodal count distribution, relating its features to the Pleijel
limit and to the Polterovich conjecture [44].

The limitation on the geometric information one can extract from the nodal
sequence versus the spectral sequence, is the fact that the former is invariant under
uniform scalings of M , while the later would scale with the square of the lengths; thus,
we expect to retrieve only scale-invariant quantities from the nodal sequence.

2. The General Setting

2.1. The Geometric and Dynamical Setting

The general framework of this article is the classical and quantum geodesic flow for a
certain class of compact, separable Riemannian manifolds M , with dimM = d > 2.
The rare class of separable systems within the class of Liouville-Arnol’d integrable
systems, furnish the only problems for which explicit calculations are possible, as there
exists an explicit expression for the nodal count in terms of the quantum numbers,
which give the number of nodes of each product function of the eigenfunctions along
the level sets of each coordinate.

The manifold M , or domain M ⊆ Rd as a special case, is parameterized by a
separable coordinate system x = (x1, . . . , xd), a notion explained in what follows; it
is equipped with a Riemannian metric tensor, whose covariant components are, in
terms of the coordinates (xj), (gij(x)). If there is a boundary, it is assumed piecewise
smooth, with a finite number of edges and vertices, and Dirichlet boundary conditions
apply.

The spectral problem of the Laplacian (quantum problem) is closely associated
to the geodesic flow on the manifold (mechanical problem), i.e., displacement along
the geodesics, a Hamiltonian flow induced by the free Hamiltonian,

H(x, p) = ‖p‖2
x :=

∑

ij

gij(x)pipj , (4)
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on the cosphere bundle, or the energy shell,

ΣE =
{

(x, p) ∈ T ′M : H(x, p) = E
}

, (5)

for some constant E > 0.
In the case that ∂M 6= ∅, we have a billiard system, and assume Fresnel boundary

conditions for the rays, i.e. equiangular reflections. In the context of this dynamical
setting on M , we have the additional requirements:
1) M is convex; this condition is needed to guarantee that the phase space admits a
global action-angle coordinate system [2]. This will allow us to use a globally valid
Hamiltonian in terms of action coordinates.
2) The energy shell in the action representation is Gauss-positively curved. This
technical point will be elaborated on in what follows. We refer to this requirement as
the twist condition (see, e.g., [15]).

Some examples of separable manifolds complying with the above requirements
are the ball and cube endowed with the naturally induced Euclidean metrics, while
others without boundary include Liouville tori, surfaces of revolution, Zoll surfaces,
etc.

The d independent integrals of the flow, which stem from the isometries of M , are
not uniquely chosen. In the quantum level, these symmetries give rise to eigenvalue
clustering and degeneracies. By the Liouville-Arnol’d theorem [26], smoothness and
independence with respect to the Poisson bracket of the d integrals of the motion
guarantees that the invariant manifold T ⊂ ΣE is diffeomorphic to a d-torus, T ∼= Td.

A special choice of canonical phase space coordinates are the action-angle
coordinates, (φ, I) [2]. Each choice of action coordinates I = (I1, . . . , Id) determines an
invariant Liouville-Arnol’d torus TI in phase space, while the angles φ ∈ Td = Rd/Zd

parameterize it; for general integrable flows, the actions read

Ij =
1

2π

∫

σj

p · dx :=
1

2π

∫

σj

∑

i

pi dx
i , (6)

which reduces to Ij = 1
2π

∫

σj
pj dx

j for separable flows; σj is the j-th irreducible 1-

cycle winding around the corresponding invariant Liouville-Arnol’d torus, for which
1
2π

∫

σi
dφj = δij .

We may isolate the Hamiltonian as a function of the d actions; h = H ◦ Φ−1, Φ
being a canonical transformation to an action-angle coordinate system in phase space
Φ : (x, p) 7→ (φ, I). The angles φ are ignorable, as the actions are integrals of the
motion, and so we write I 7→ h(I). The canonical frequencies of the orbits winding
around an invariant Liouville-Arnol’d torus TI corresponding to I are ω(I) = ∇Ih(I).
In the case that the components of ω are commensurate, the torus is resonant, and
the orbit is periodic.

The Hamiltonian in the action coordinates is homogeneous of degree 2 [25],
h(tI) = t2h(I) with t > 0, and thus, by Euler’s theorem, h assumes the polar form

h(I) = a(I)‖I‖2 = a(I)
(

I2
1 + . . .+ I2

d

)

. (7)

The function a is positive and homogeneous function of degree zero on a certain
sector of the sphere Sd−1 in action space Rd. This decomposition of the Hamiltonian
is unique, and so the profile function a(I) characterises the dynamics.
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As the Hamiltonian is homogeneous in the action coordinates, the dynamics for
any value of the energy E > 0 are equivalent up to a scaling of the action coordinates
I 7→

√
EI, so that one can simply consider the flow on the unit energy shell, ΦΣ1.

The unit energy shell is isomorphic to a sector of the sphere Sd−1, and is actually a
smooth, convex deformation of the sphere, by the twist hypothesis.

The importance of integrability on the quantum level lies in the existence of d
quantum commuting integrals, generators of the corresponding isometries, to which d
quantum numbers are associated, forming the quantum lattice, a subset of Zd.

Separability imposes a strong constraint on the geometric, and subsequently
dynamical properties of a Riemannian manifold M . A manifold M , or a domain
M ⊂ R

d is separable if it admits a coordinate system for which the metric constitutes
the Laplacian separable in the individual coordinates in the usual sense. This
immediately leads to separability of the Hamilton-Jacobi equation as well [35], i.e.,
that

∂S

∂t
+ ‖∇S‖2

x = 0 (8)

admits additive-separable solutions of the form S(x, t) = −Et +
∑

Wj(x
j), and the

separability of the Schrödinger equation, i.e., that (the Planck constant scaled to
unity)

i
∂ψ

∂t
= −∆gψ (9)

admits multiplicative-separable solutions of the form ψ(x, t) = c(t)
∏

uj(x
j) [35, 36].

Qualitatively, one can say that separable manifolds are those which admit a basis of
states of the quantum flow which form an orthogonal grid pattern.

The fact that integrability implies separability can be understood by starting
with the Laplacian; separability of the Schrödinger equation implies separability of
the Hamilton Jacobi equation, which, in turn, implies that the associated canonical
transformation associated to it is a transformation to action-angle coordinates, and
thus, the flow is Liouville-Arnol’d integrable.

2.2. The Laplacian Spectrum

We consider the Laplacian spectral problem

−∆gϕ = Eϕ

ϕ↾∂M = 0 , if ∂M 6= ∅ , (10)

seeking solutions in the Sobolev space W 2,2(M,R; dx).
In terms of the local coordinates on M , (xj), the Laplacian is defined as

−∆g := −
∑

ij

1
√

|g|
∂

∂xi

(

√

|g|gij(x)
∂(·)
∂xj

)

, (11)

acting on the twice differentiable functions on M . Here, |g| = det(gij(x)).
Due to compactness of M , we have ϕ ∈ L2(M,R; dx)\{0}, wherein the Laplacian

is self-adjoint. Thus, the spectrum σ(−∆g) is pure point and real, i.e. there are
only bound quantum states with allowed energies (eigenvalues) extending from zero
to infinity, as it is also non-negative [23].
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Since the spectrum is real, we may order it and label each eigenvalue by a counting
index, taking into account the degeneracies,

σ(−∆g) = {Ek}k∈N , with 0 6 E1 < E2 6 E3 6 . . .→ ∞ . (12)

One must assume a specific ordering convention among the degenerate states.
Even if the systematic degeneracies, due to symmetries of the system, grow fast
enough, the ordering convention has no effect in semiclassical considerations, while
accidental degeneracies are utterly unimportant in the semiclassical regime.

Examples of fast growth of systematic degeneracies is the sphere, where dE =
O(

√
E), while examples of slow degeneracy growth are flat tori (Pythagorean

sequences), dE = o(Eε), ε > 0, or irrational flat tori, dE = O(1) [34]. It has
been shown that the maximal growth of spectral degeneracies for such manifolds is
dE = O(E) [24].

Even for degenerate spectra, there is a natural choice, a unique (modulo ordering)
preferred real, separable ordered basis [27] in the degeneracy subspace EEk

⊂ L2(M),
corresponding to the eigenvalues

Ek = . . . = Ek+l−1 , (13)

where dim EEk
= dEk

= l. One must chose a specific ordering within these elements.
The subspace EEk

has a real, ordered basis {ϕ1
Ek
, . . . , ϕl

Ek
}, where

ϕs
Ek

(x) =
∏

j

uEk,j(x
j) , s = 1, . . . , l . (14)

We construct the nodal sequence according to this preferable basis, rendering
its definition non-ambiguous. For example, consider the problem of the Dirichlet
open unit disk in R2. The spectrum is doubly degenerate (leaving aside accidental
degeneracies) due to rotational symmetry. In each 2-dimensional degeneracy subspace,
the eigenfunctions are linear combinations (in polar coordinates)

ϕ(r, θ) =
(

c1e
imθ + c2e

−imθ
)

Jm(jmnr) , (15)

where m = 0, 1, 2, . . . , n = 1, 2, . . . , and c1,2 being normalization constants. The
natural preferred basis in each degeneracy subspace spanned by the two different
choices is given by

ϕ1(r, θ) = Jm(jmnr) cos(mθ) , ϕ2(r, θ) = Jm(jmnr) sin(mθ) , (16)

here not L2-normalized.
The explicit relation between geometry and spectrum lies in the spectral counting

function, a starting point of all semiclassical spectral considerations. The spectral
counting function is the counting measure of the spectrum [23]

N(E) := #{k ∈ N : Ek < E} , (17)

supported on [0,∞[ , related to the spectral density by N(E) =
∫ E

0 ρ(λ) dλ.
The leading semiclassical behavior of the spectral counting function is given by

the Weyl law, a celebrated result in spectral theory, marking the cornerstone of the
relation between analytic and geometric properties of Riemannian manifolds [23],

N(E) ∼ C∗E
d/2 , E → ∞ , (18)
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where the Weyl coefficient gives us the volume of M ,

C∗ =
∣

∣

∣

{

(x, p) : H(x, p) < 1
}∣

∣

∣
=

|Bd
1 |

(2π)d
|M | =

|M |
(4π)d/2Γ(d/2 + 1)

, (19)

Bd
1 being a unit d-ball, and | · | the Riemannian d-volume.

The Weyl decomposition of the spectral counting functions amounts to isolating
the remainder from the leading term,

N(E) = C∗E
d/2 +R(E) . (20)

The leading term is called the Weyl term, while the remainder is highly oscillatory,

with R(E) = O(E
d−1
2 ) [23].

The sharpness of the estimate of the remainder varies considerably, depending
on the type of the underlying Hamiltonian flow, integrable and ergodic as the two
extremes, and its oscillatory behavior is dominated by the geometric and topological
features of the periodic orbits of the Hamiltonian flow.

2.3. Quantum Numbers

Integrability allows us to use an alternative labeling of eigenfucntions, i.e., by
quantum numbers. Associated to each eigenfunction there is a quantum number
q = (q1, . . . , qd) ∈ Γ ⊆ Zd, in essence a multi-index, where Γ is the quantum lattice.

The quantum lattice, and thus the quantum numbers, are of course not unique;
they are defined modulo canonical transformation of the action angle variables which
preserves the actions as constants of the motion. However, one can always make a
canonical transformation make the actions range either along the whole real line or
the half line.

The range of each quantum number qj must be in agreement with the sign of
the corresponding action Ij ; this is what determines the quantum lattice Γ for the
particular choice of actions. In particular, Γ = D ∩ Zd, where D ⊂ Rd is a region of
the action space. For each periodic coordinate, it is clear that we have a rotational
degeneracy in the spectrum, so that the corresponding quantum number extends to
all integer values. Thus, the quantum lattice Γ will be of the form

Γ = Γ1 × . . .× Γd , (21)

where each Γj is Z+ for a nonperiodic coordinate, and Z for a periodic coordinate, as
λ will itself be of the form

D = D1 × . . .×Dd , (22)

with Dj = R+ for a nonperiodic coordinate and Dj = R for a periodic coordinate§.
In this representation, the eigenvalues and eigenfunctions are denoted E(q) and

ϕq respectively, and the semiclassical limit is simply the large quantum number
limit, q → ∞, identical to the large counting index limit k → ∞, according to the
Correspondence Principle.

§ Whether the lattice point 0 is included in Γj for a nonperiodic coordinate is of little concern, as
the relevant correction vanishes in the semiclassical regime (see Appendix A).
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2.4. Semiclassical Spectrum

We employ the Einstein-Brillouin-Keller-Maslov (EBKM) semiclassical approxima-
tion, or torus quantization [12], for the eigenvalues in the quantum number representa-
tion, according to which those invarinat Liouville-Arnol’d tori TI support semiclassical
eigenfunctions for which

I = q +
1

4
αM , (23)

for q ∈ Zd, and αM = (αM 1, . . . , αM d) the Maslov index, incorporating topological
data of the flow. Each αM j is the Maslov index for the corresponding degree of
freedom, i.e., the number of encounters with caustics of the cycle σj along which Ij is
defined [11].

This gives the semiclassical eigenvalue asymptotics, as the above is taken on an
energy shell for the eigenvalue TI ⊂ ΣE . Expressing the Hamiltonian in terms of the
action coordinates, we have explicit semiclassical eigenvalue asymptotics,

E(q) ∼ h(q +
1

4
αM ) , q → ∞ . (24)

By the quantum number representation, we may define the counting index, N ,
on the quantum lattice, enumerating the number of states occupying energies below
E(q). Explicitly,

N (q) = #
{

E ∈ σ(−∆g) ∈ Γ : E(q) < E
}

, (25)

where clearly, N (q) = N(E(q)). The Weyl law on the quantum lattice, reads

N (q) = C∗h(q +
1

4
αM )d/2 +O(‖q‖d−1) . (26)

3. The Nodal Count

Due to separability, there exists a real separable basis of eigenfunctions {ϕq}q∈Γ in
L2(M), such that the nodal set will display a simple, orthogonal, checkerboard pattern
on M . This enables us to express the nodal count, ν(q) := ν(ϕq) = νN (q), on the
quantum lattice

ν(q) = ν(d)(q) + ν(d−1)(q) + . . .+ ν(0)(q) , (27)

each of the ν(j)(q) being homogenous of degree j in the quantum numbers. Explicitly,
we propose the leading behavior to be

ν(d)(q) = 2β|q1 . . . qd| , (28)

where we propose the β to be the number of rotational symmetries of (M, g); thus, the
constant β, which equals the number of separable periodic coordinates parameterizing
M , is unique for a given M . Although one can generate a whole find a class
of coordinate systems which are equivalent up to certain simple transformations,
which constitute the corresponding metric of M separable, β is invariant under such
transformations.

A prototype nonseparable planar Dirichlet domain for which the nodal count is
not of the above form, is the right isosceles trianglular domain; as was shown by
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Aronovitch et al [5], the nodal count is associated with topological characteristics of
a graph constructed by joining self-intersection points of the nodal set, exhibiting a
highly nonalgebraic behavior.

To illustrate this point, one should take note that for the general form of the
eigenfucntion ϕ(x) =

∏

uj(x
j), it is clear that in the domain of the compact coordinate

(∼= S1), say xi, one can only have an even number of nodal points, and thus an even
product for the nodal count.

The Courant theorem [27, 43] states the nodal sequence of the Laplacian for
appropriately well behaved compact domains in Rd or compact d-manifolds alike, has
the following upper bound,

νk 6 k . (29)

From this we deduce that, ν1 = 1, i.e., the first eigenfunction must be everywhere non-
zero. However, since the set of eigenfunctions {ϕk} constitutes an orthonormal basis
of L2(M), ϕ1 must be orthogonal to all others, something which is possible only if it
is the sole eigenfunction with one nodal domain. Thus, for k > 2 the nodal sequence
has the trivial lower bound νk > 2.

3.1. The Pleijel Bound

The behavior of the nodal sequence is extremely complex. It is highly oscillatory, and
its exacct asymptotic behavior is difficult to probe. Even the question of whether the
sequence has a limit at infinity or whether it possesses a non-trivial lower bound are
still open.

The roughest nontrivial bound for the nodal sequence is the Courant bound. For
the simplest case, that of an open Dirichlet (or Neumann) interval, Sturm’s oscillation
theorem gives νk = k, which is modified for periodic boundary conditions as νk = 2k.
For the case d > 2, this is replaced by the Courant bound, according to which

νk 6 k , k ∈ N , (30)

which combined with the orthogonality ϕ1 ⊥ ϕk for k > 1, we have the additional
nontrivial lower bound νk > 2 for k > 2.

From the Courant bound for the nodal sequence, we incur the Courant bound for
the cummulative nodal sequence, ck := ν1 + ν2 + . . .+ νk,

k 6 ck 6
k(k + 1)

2
, (31)

or, by appropriately normalizing it to the unit interval (this scalling will be justified
subsequently)

1

k
6
ck
k2

6
k + 1

2k
6 1 . (32)

This bound is attained finitely many times by the sequence ck/k
2, as we directly see

the sharper bound

lim sup
k→∞

ck
k2

6
1

2
. (33)

The only known result of analytic nature, beyond the Courant bound, is the
Pleijel theorem. Pleijel [43] showed that for any planar, regular, bounded domain,
there exists a sharpening of the Courant bound which is saturated only finitely many
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times. The limit suppremum of the cummulative nodal sequence is bounded by the
Pleijel constant, ξP ,

lim sup
k→∞

νk

k
6 ξP =

4

j21
= 0.691 . . . < 1 , (34)

j1 being the first non-trivial zero of the Bessel function J0. This bound holds for
both Dirichlet and Neumann Laplacians. For example, for a square domain, with the
standard separable Dirichlet Laplacian basis, the Courant bound is met only by the
first, second and fourth eigenvalues, ν1 = 1, ν2 = 2, and ν4 = 4. This sharpening of
the Courant bound finds its probabilistic expression in nodal statistics, the study of
the statistical behavior of the nodal count, as will be exposed in section (5).

By following the same arguments used to sharpen the Courant bound to the
Pleijel bound, we have for d = 2

lim sup
k→∞

ck
k2

6
2

j21
= 0.345 . . . , (35)

i.e., the Pleijel bound for the cummulative nodal sequence is half of the Pleijel bound
for the nodal sequence.

The Pleijel theorem holds for general dimensionality, a generalization of the planar
case, as an implication of the Faber-Krahn inequality [43, 23]: for compact planar
domains in Rd with piecewise smooth boundary of the same volume, the closed ball
has the lowest first Dirichlet eigenvalue‖. So, any such domain M , and for the ball
Bd

R(0) of radius R such that |Bd
R(0)| = |M |, we have

E1(M) > E1(B
d
R(0)) =

j2d/2−1,1

R2
=

πj2d/2−1,1

Γ(d/2 + 1)2/d|M |2/d
, (36)

where jd/2−1,1 is the first positive root of the fractional order Bessel function Jd/2−1.
Let M be a domain as described above. Consider a nodal partition of M for the

eigenfunction ϕk with eigenvalue Ek, into νk nodal domains,

Ωk
1 , . . . ,Ω

k
νk
. (37)

The restriction on a nodal domain ϕk↾Ωk
s

is the ground state of the Dirichlet Laplacian

in that domain and thus E1(Ω
k
s) = Ek for s = 1, 2, . . . , νk.

From the Faber Krahn inequality [23],

|Ωk
s | >

πd/2jd
d/2−1,1

Γ(d/2 + 1)

1

E
d/2
k

⇒
∑

s6νk

|Ωk
s | >

∑

s6νk

πd/2jd
d/2−1,1

Γ(d/2 + 1)

1

E
d/2
k

⇒ |M | >
πd/2jd

d/2−1,1

Γ(d/2 + 1)

νk

E
d/2
k

. (38)

From the Weyl law, E
d/2
k ∼ C−1

∗ k, we finally have [23]

lim sup
k→∞

νk

k
6

2d Γ(d/2 + 1)2

jd
d/2−1,1

=: ξP . (39)

We call ξP the Pleijel bound, which is universal, depending only upon the
dimensionality. The Pleijel bound is nontrivial as it sharpens the Courant bound;

‖ The theorem applies for general Robin boundary conditions, ϕ + k
∂ϕ
∂ν

= 0 on ∂M .
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indeed, for large dimensionalities the first Bessel root grows linearly [1], jd/2−1,1 =

d/2 +O(d1/3), and so

ξP = πd e−(1−log 2)d+O(d1/3) ≪ 1 , (40)

while even for small d the Pleijel bound sharpens the Courant bound, ξP < 1.
A generalized Pleijel bound has been found to hold also for a general class of

d-manifolds, which includes the manifolds under consideration in this paper [23].
We generalize the Pleijel bound for the cummulative nodal sequence; starting off

from the Faber-Krahn inequality, we have

|M |Ed/2
k >

πd/2jd
d/2−1,1

Γ(d/2 + 1)
νk ⇒ ck 6

Γ(d/2 + 1)

πd/2jd
d/2+1,1

|M |
∑

l6k

E
d/2
l . (41)

Noting that, by the Weyl law

∑

l6k

E
d/2
l = C−1

∗
k2

2

(

1 + o(1)
)

, (42)

we have

lim sup
k→∞

ck
k2

6
1

2
ξP , (43)

half of the Pleijel bound for the nodal sequence.

3.2. The Polterovich Conjecture

While the Pleijel bound sharpens the Courant bound, yielding a sharper asymptotic
behavior for the nodal sequence, the Pleijel bound in turn seems not to be sharp.
As we shall elaborate on in section (5), probabilistic approaches to the asymptotic
behavior of the nodal sequence bare strong support that νk grows roughly slower than
ξP k. For example, for the case of the planar rectangular domain it has been found
that νk grows roughly as 2

πk, while for the planar disk as 1
2k [18].

Following this evidence, Polterovich in [44] conjectured that for any regular,
bounded domain with piecewise smooth boundary, with either Dirichlet or Neumann
boundary conditions, the limit supremum of the normalized nodal sequence is bounded
from above by

lim sup
k→∞

νk

k
6

2

π
= 0.636 . . . , (44)

which is well less than the Pleijel constant. This, in addition to Pleijel’s proof [43]
that for the rectangular domain 2

π is a lower bound for the limit supremum of the
normalized nodal sequence, would imply that 2

π is sharp for the rectangular domain,
a maximum for the limit supremum among all planar domains.

4. Semiclassical Asymptotics of the Nodal Count

In [30, 31], Gnutzmann et al suggested the study a variant of the cumulative nodal
count, ck =

∑

l6k νl, in order to recover a semiclassical nodal trace formula, for some
prototype separable surfaces, providing an explicit dependence of the nodal count by
scaled geometric parameters. This formulated starting from the Berry-Tabor spectral



Nodal Count Asymptotics for Separable Geometries 13

trace formula, and inverting a regularized spectral counting function in order to express
the energy in terms of the number of states.

As Gnutzmann et al [30] have shown, the cumulative nodal count has a quadratic
leading semiclassical behavior, say const.× k2, for some system-dependent coefficient.

The object of interest is the staircase function c(k), defined as

c(k) := c⌊k⌋ =
∑

l6⌊k⌋
νl , (45)

where ⌊·⌋ denotes the integer part. As the definition of the above is ambiguous in the
case of degeneracies, we modify the construction.

Having chosen an ordering of the preferred, separable basis in each degeneracy
subspace, we define the cummulative spectral nodal count,

c̃(E) =
∑

q∈Γ

ν(q)Θ(E − E(q)) , (46)

where E(q) is the eigenvalue corresponding to the quantum number q ∈ Γ. In order to
detour the explicit dependence of the spectrum, wanting to refer only to its ordering,
we use the (smoothed) spectral counting function

Nε(E) =
∑

k∈N

Θε(E − Ek) , (47)

where Θε = Θ ∗ ψε, ψε being a positive approximate unity, ψε(E) = 1
εψ
(

E
ε

)

and

ψ ∈ C∞
0 (R+,R), so that Θε is monotonically increasing. Thus, the equation

k = Nε(E) , (48)

has a unique solution for any k ∈ N, denoted E = λε(k). It is clear that Nε → N in
S′(R+,R), and λε(k) → Ek as ε→ 0+.

Thus, we define the cummulative nodal counting function as the limiting staircase
function in S′,

C(k) := lim
ε→0+

c̃
(

λε(k)
)

, (49)

a staircase function, a tempered distribuiton in R+. We express the above sum as a
sum over the quantum lattice Γ, utilizing the Poisson summation formula to estimate
its semiclassical asymptotics.

For nondegenerate spectra, we have C(k) = c(k+ 1
2 ), while for degenerate spectra,

at each index k of a degenerate eigenvalue Ek, the cummulative nodal counting
function increases by the sum of the nodal counts within the degeneracy class. We
will derive a trace formula for this modified cumulative nodal count (omitting the
characterization modified in the sequel).

We have, by equation (27)

c̃(E) =
∑

q∈Γ

Θ(E − E(q))ν(q) =
∑

q∈Γ

Θ(E − E(q))
(

ν(d)(q) + . . .+ ν(0)(q)
)

. (50)

The leading term in the sum is (28) c̃(E) ∼∑E(q)<E ν(d)(q) =
∑

E(q)<E 2β|q1 . . . qd|.
In particular (see Appendix A), by disregarding all terms below ν(d)(q), we have

c̃(E) =
∑

q∈Γ

2β|q1 . . . qd|Θ(E − E(q)) +O(E
d−1
2 ) . (51)
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By the Poisson summation formula [48], and by taking the EBKM approximation
for E(q), the above becomes

c̃(E) ∼
∑

Q∈Zd

∫

D

e2πiQ·I2β|I1 . . . Id|Θ
(

E − h(I +
1

4
αM )

)

dI . (52)

The Weyl term of the above immediately gives us

c̃Weyl(E) =

∫

D

2β |I1 . . . Id|Θ(E − h(I)) dI (53)

4.1. The Weyl Term

Following Berry and Tabor [11], we pass to the coordinate system I 7→ (λ, θ), on
D ∼= R+ × ΦΣ1.

The level set {λ = const.} is the energy shell ΦΣλ, where explicitly λ = h(I).
The angles, θ = (θ1, . . . , θd−1), parameterize the energy shell on a sperical sector
determined by the signs of the quantum numbers, ΦΣ1

∼= Sd−1 ∩D.
An alternative expression for the Weyl coefficient is achieved by utilizing this

coordinate system

C∗ =

∫

H(x,p)<E

dxdp =

∫

D

Θ(1 − h(I)) dI , (54)

Passing to the coordinates (λ, θ), we reach a simple explicit representation of the Weyl
coefficient as a functional of the amplitude a,

C∗(a) :=
1

d

∫

Sd−1∩D

dΩ(θ)

a(nθ)d/2
, (55)

where nθ = I/‖I‖, stressing that a is defined on the sphere.
Returning to c̃, passing to the new coordinate system, we can write the Weyl

term as

c̃Weyl(E) = 2β−1

∫ E

0

dλλd−1

∫

Sd−1∩D

|n1 . . . nd|
C2∗ a(nθ)d

dΩ(θ)

=

(

2β−1

d

∫

Sd−1∩D

|n1 . . . nd|dΩ(θ)

a(nθ)d

)

Ed . (56)

Finally, by the Weyl law and the definition (49), we have

CWeyl(k) = κ∗k
2 , (57)

where the coefficient κ∗ is expressed as a functional of a,

κ∗(a) :=
2β−1

dC∗(a)2

∫

Sd−1∩D

|n1 . . . nd|
ad

dΩ = d 2β−1

∫

Sd−1∩D
|n1...nd|

ad dΩ
(

∫

Sd−1∩D
dΩ

ad/2

)2 , (58)

where we have used the functional representation of the Weyl coefficient (55). We call
κ∗ the cummulative Pleijel constant, which defines the actual leading asymptotics of
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the cummulative nodal sequence. In this form, which makes the underlying dynamical
contribution explicit, is computable in closed form for simple separable systems.

Since the trace formula is represented as a quasi-asymptotic expansion, the
coefficient of the leading term is

κ∗ = lim
L→∞

∫

R+

C(Lk)

L2
f(k) dk = lim

L→∞

∫

R+

CWeyl(Lk)

L2
f(k) dk , (59)

for any Schwatz test function f of unit mass.

4.2. The Oscillatory Part

By the Poisson summation formula [48], the above becomes

c̃osc(E) ∼ 2βEd
∑

Q∈Zd\{0}
e−πiαM ·Q/2

∫

D

e2πi
√

EQ·I |I1 . . . Id|Θ
(

E − h(I)
)

dI . (60)

Here, Zd stands for the dual of the completion of the quantum lattice, and plays the
role of the topological lattice, as will be explained in what follows. The residual terms
omited are boundary terms of the Poisson formula, and are of smaller order.

By denoting I = I(λ, θ) in the energy coordinates, and by using the homogeneity
property, we have

c̃osc(E) ∼ 2β−1Ed
∑

Q∈Zd\{0}
e−πiαM ·Q/2

×
∫ 1

0

dλλd−1

∫

Sd−1∩D

e2πi
√

EλQ·I(1,θ) |n1 . . . nd|
a(nθ)d

dΩ(θ) (61)

where nθ = I/‖I‖ and nj = Ij/‖I‖.

4.3. The Semiclassical Nodal Trace Frormula

The oscillatory integral of the remainder and can be estimated in terms of the
stationary phase method [47]. In particular, for the integral in the series (61),
∫∫

Sd−1∩D×[0,1]

e2πi
√

EλQ·I(1,θ) |n1 . . . nd|
a(nθ)d

λd−1 dλdΩ(θ)

∼
∫ 1

0

(Eλ)
1
4− d

4
|n1 . . . nd|

a(nθ)d
√

|detΩQ · I ′′(1, θ)|

∣

∣

∣

∣

∣

θ=θ0

e2πi
√

EλQ·I(1,θ0)+ibQλd−1dλ

F =
2E

1
4− d

4 eibQ |n1 . . . nd|
a(nθ)d

√

|detΩQ · I ′′(1, θ)|

∣

∣

∣

∣

∣

θ=θ0

Γ(3d+1
2 ) − Γ(3d+1

2 ,−2πiQ · I(1, θ0))
(−2πiQ · I(1, θ0))

3d+1
2

. (62)

where bQ = π
4 sgn

(

Q · ∂2I
∂θi∂θj

(1, θ0)
)

, the function Γ(·, ·) is the upper incomplete

Gamma function¶, and detΩ denotes the scalar determinant relative to the uniform
measure Ω on the sphere,

detΩQ · I ′′(1, θ0) = ‖Q‖d−1 det

(

nQ · ∂2I

∂θi∂θj
(1, θ0)

)

(dΩ(θ0)

dθ

)2

,

¶ Γ(s, z) :=
R

∞

z
ts−1e−tdt.
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where dΩ(θ)
dθ is the and Radon-Nikodym derivative of the surface measure, and

nQ = Q/‖Q‖.
By the asymptotics of the incomplete Gamma function, we finally deduce the

asymptotics
∫∫

Sd−1∩D×[0,1]

e2πi
√

EλQ·I(1,θ) |n1 . . . nd|
a(nθ)d

λd−1 dλdΩ(θ)

∼ E
1
4− d

4 |n1 . . . nd|
a(nθ)d

√

|detΩQ · I ′′(1, θ)|

∣

∣

∣

∣

∣

θ=θ0

e2πi
√

EQ·I(1,θ0)+ibQ

πi
√
EQ · I(1, θ0)

. (63)

As in the Berry-Tabor construction, the critical points correspond to the relations

Q · ∂I
∂θj

(1, θ) = 0 . (64)

The frequency vector ω is always perpendicular to the energy shell

ω(I(θ)) · ∂I
∂θj

(1, θ) = 0 , (65)

as we have dh↾ΦΣ1 = 0. Thus, on the critical point, we have ω(I) ∝ Q, something
which, of course, implies that the frequencies ωj(I) corresponding to the Liouville-
Arnol’d torus TIQ are all commensurate, and the corresponding orbit, or rather a ray
of orbits, are periodic.

The above immediately verifies the characterization of the Poisson lattice as a
topological lattice: the topological lattice of a flow, which is simply the dual of the
quantum lattice, determines at each of its points Q the topology of a periodic orbit,
i.e., the winding numbers of the orbit around the given invariant Liouville-Arnol’d
torus along each independent direction.

To be more precise, the critical points correspond to rays of periodic orbits. The
lattice points Q and Q′, which belong to the same vector ray, i.e. are proportional,
belong to the same ray of periodic orbits. Points further from the origin of the lattice,
correspond to topologically more complicated families of closed orbits.

A further simplification arises by decomposing the rays of orbits into specific
primitive periodic orbits. Each lattice point is written uniquely as Q = µγ, where
the components of γ are relatively prime, and µ is the number of repetitions of the
primitive orbit γ. Note that the term 2πQ · IQ, is nothing but µSγ , where Sγ is
the action of the primitive orbit γ. Note that Sγ here is scaled, i.e., invariant under
dilations of M .

The function Q · I(1, θ) has at least one stationary point, due to compactness of
the energy shell ΦΣ1; on the other hand, given that ΦΣ1 is convex, it follows that the
function has exactly one stationary point. This guarantees that the nodal fluctuations
are significantly large in amplitude in the semiclassical limit, and not subalgebraically
small.

Proceeding with the calculation, the leading behavior of c̃osc(E) is

E
3(d−1)

4

∑

Q∈Zd\{0}

2β |n1 . . . nd|
a(nθ)d

√

| detΩ Q · I ′′(1, θ)|
e2πi

√
EQ·I(1,θ)+ibQ−πiαM ·Q/2

2πiQ · I(1, θ)

∣

∣

∣

∣

∣

θ=θ0

, (66)

evaluated at the stationary point θ = θ0. At the critical point, the phase 2πQ · I(1, θ)
becomes the action of the ray corresponding to the lattice point Q.
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Finally, by the Weyl law and the definition (49), the semiclassical nodal trace
formula is expressed as a Weyl term incorporating the cummulative Pleijel bound,
and the oscillatory part as a sum over the primitive topological lattice and repetitions
of primitive periodic orbits, by noting additionally that

∣

∣

∣
detΩQ · I ′′(1, θ0)

∣

∣

∣
= ‖µγ‖d−1

(dΩ(θ0)

dθ

)2

K(θ0), (67)

where K(θ0) is the Gaussian curvature at θ0 on the energy shell ΦΣ1, which is nonzero
by the twist condition,

C(k) ∼ κ∗k
2 + k

3
2− 3

2d

∑

γ∈N
d
0\{0}

gcd{γj}=1

∞
∑

µ=1

Aγ

sin
(

µ(k1/dSγ − π
2αM · γ) + π

4 bγ

)

µ
d+1
2

, (68)

the amplitudes being

Aγ =
2β+1|n1 . . . nd|

a(nθ)d dΩ(θ)
dθ

√

K(θ)‖γ‖ d+1
2 Sγ

∣

∣

∣

θ=θ0

, (69)

where bγ = bQ = bµγ is the signature of the Hessian of Q · I ′′(1, θ), i.e., the excess of
positive over negative eigenvalues of the matrix, and Iγ = I(1, θ0), the γ-dependence
being implicit in θ0. The power of the leading, Weyl part is universal, do not even
depend upon the dimensionality, while the scaling of the fluctuation does.

In the oscillatory term, we identify the actions of the periodic orbits, which equal
their period, or equivalently, the lengths of the corresponding periodic geodesics, which
are nothing but the projections of the periodic orbits from the phase space onto M ,
as incured by the conservation of the energy, 1

4‖v‖2
x = 1; the Riemannian length is

∫ Tγ

0 ‖ẋ(t)‖x(t) dt = 2Tγ = 2Sγ .
By appropriate smoothing, the length spectrum can be recovered computationally

as the support of the Fourier transform of properly normalized the nodal fluctuations,
k

3
2d− 3

2Cosc(k), with respect to k1/d,

Σ(ℓ) ∼
∑

γ∈N
d
0\{0}

gcd{γj}=1

∑

µ∈Z∗

2Aγ
e

iπ
4 (bγ+2µαM )

|µ| d−1
2

δ
(

ℓ− µ
Sγ

2π

)

, (70)

where the terms with opposite µ correspond to pairs of orbits which differ in
orientation.

5. Connection to Nodal Domain Statistics

Blum, Gnutzmann and Smilansky [18] introduced and studied the value distribution
of the normalized nodal sequence νk/k for ϕk in a certain set of states, for various
Hamiltonian systems, both separable and ergodic. The probability density reads,

Pkk′ (ξ) dξ =
1

k′ − k + 1

k′

∑

l=k

δ
(

ξ − νl

l

)

dξ , ξ ∈ [0, 1] , (71)
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the region of interest being k ≫ 1.
The distribution of nodal domains has been shown to depend heavily on the

qualitative type of the underlying classical motion; for the separable case, there exists
a limiting distribution in the classical limit, and a piecewise smooth density function
P ,

1

k′ − k + 1

k′

∑

l=k

f
(νl

l

)

→
∫ 1

0

f(ξ)P (ξ) dξ , (72)

for appropriate test functions on [0, 1].
The limiting distribution’s local features have been shown to be universal for

separable systems. In particular, there exists some 0 < ξ∗ < 1, such that P is
supported on the interval [0, ξ∗], with behavior at the boundary [46, 32],

P (ξ) ∼
(

1 − ξ/ξ∗
)

d−3
2

, ξ → ξ−∗ , (73)

and at the other end of the interval

lim
ξ→0+

P (ξ) = 1 . (74)

This feature of P , i.e., the fact that it vanishes identically for ξ > ξ∗, is a statistical
verification of the Pleijel theorem; the normalized nodal sequence asymptotically does
not take values in the whole interval [0, 1]. This formalism provides a computable
‘expectation’ of the supremum limit of the normalized nodal sequence, ξ∗, which seems
to be always a sharpening of the Pleijel bound ξP , as has been conjectured in d = 2
by Polterovich.

The density Pkk′ (ξ) in the semiclassical limit, has been shown to generically
determine the geometry (up to scaling) of the configuration, for a class of surfaces of
revolution [37].

Following analogous asymptotic calculations as above, we reach an expression for
the limiting distribution,

P (ξ) =
C∗(a)−1

d

∫

Sd−1∩D

δ
(

ξ − 2β |n1 . . . nd|
C∗(a)a(nθ)d/2

) dΩ(θ)

a(nθ)d/2
, (75)

a calculation made first by Lois et al [32]. The geometric interpretation of the critical
value ξ∗ is the maximal volume of the d-rectangles in D whose one corner is in the
energy shell Sd−1 ∩D.

For a given M , and thus a given Hamiltonian and quantum lattice, the critical
value ξ∗ is explicitly computable for many separable flows,

ξ∗ = max
θ∈Sd−1∩D

2β |n1 . . . nd|
C∗(a)a(nθ)d/2

. (76)

6. Simple Illustrations

Finally, we proceed to applications to some simple separable systems.
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6.1. The Rectangle

For the planar rectangular domain M = [0, l] × [0, l/
√
α],

√
α being the aspect ratio,

with standard Cartesian coordinates, the Hamiltonian is

H(x, p) = p2
1 + p2

2 . (77)

A straightforward calculation shows that I1 = l
πp1 and I2 = l

π
√

α
p2, and thus

h(I) =
π2

l2
(I2

1 + αI2
2 ) , (78)

which leads to the amplitude a(I) = π2

l2

(

cos2 θ + α sin2 θ
)

.

On the quantum level, the quantum lattice is Γ = N2, and β = 0. Unsurprisingly,
the cummulative Pleijel constant, κ∗, is independent of the aspect ratio α, and thus,
the same for all planar rectangles,

κ∗ =
2

π2
, (79)

complying with the invariance of the nodal sequence under dilations of M .
A similar calculation gives the exact same value for the rectangular flat 2-torus,

while for both systems we have ξ∗ = 2
π .

For the d-cube with β periodic conditions (the extremes being β = 0, the Dirichlet
cube, β = d the torus, with all the intermediates being Mobiüs strips)

a(nθ) =
22d−β

d π

Γ(d/2 + 1)2/d
(80)

attaining the common maximum value

κ∗ =
2d Γ(d/2 + 1)2

d!πd
. (81)

The critical value for the normalized nodal count distribution is

ξ∗ =
2d Γ(d/2 + 1)

dd/2πd/2
. (82)

6.2. The Disk

The calculations for the disk of radius R, in polar coordinates, gives

H(r, θ, pr, pθ) = p2
r +

1

r2
p2

θ . (83)

By calculating the action coordinates, we obtain

h(Ir , Iθ) =
I2
θ

R2
f−1

(

π
Ir
|Iθ|
)2

, (84)

where f(t) =
√
t2 − 1 − arcsec(t), t > 1, which leads to,

a(I) =
1

R2
sin2 θ f−1

(

π
cos θ

| sin θ|
)2

, (85)
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since D = R+ × R and β = 1. Finally, we obtain

κ∗ =
4

π2
− 1

4
, and ξ∗ =

1

2
. (86)

In both (one-dimensional) examples, we note that the assumption lim supk
ck

k2 6
2

π2 is satisfied, being saturated for the rectangle.

7. Conclusions - Discussion

We have used the Berry-Tabor method [11] to construct a semiclassical nodal trace
formula for a class of separable d-manifolds. We generalize the result of Gnutzmann
et al [30], in constructing a nodal trace formula in d dimensions. It is to be noted
that, while the growth of the cummulative nodal sequence is universal

ck = ν1 + . . .+ νk ≍ k2 , (87)

the amplitude of the nodal fluctuations growing as the dimensionality grows, as k
3
2− 3

2d .
The Wey term of the nodal trace formula provides us with a proportionality

constant, which is the quasi-limit of the distribution C(k)/k2, a lower bound for the
cummulative Pleijel limit

lim sup
k→∞

ck
k2

. (88)

We have given a dynamical argument for the Polterovich conjecture for case
of separable flows on d-dimensional manifolds or billiards. Specifically, among all
Dirichlet domains, as described in the introduction, the d-rectangle posseses the largest
cummulative Pleijel constant.

It seems reasonable to expect, as a generalization of the conjecture made by
Polterovich [44], that the Pleijel limit supremum is maximized for the case of the
rectangle in any dimensionality, not simply for separable flows. This is reinforced by
the evidence that among chaotic (ergodic) flows provide a slower growth, νk ≍ k1/2

[18], and certain integrable, nonseparable integrable flows, provide nodal counts of
maximal growth [5]; one could expect that a maximal growth of the nodal count gives
rise to a maximum Pleijel constant.

Appendix A. The Poisson Summation Formula [48]

Our convention for the Fourier transform is f̂(p) =
∫

Rd e
2πip·xf(x) dx. For real,

smooth, rapidly decaying functions, the Poisson formula for finite sums is

∑

a6n6b

f(n) =
∑

n∈Z

∫ b

a

e2πinxf(x) dx +
1

2

(

f(a) + f(b)
)

, (A.1)

with a < b integers, which derives from the formula
∫

R+
δ(x)f(x) dx = 1

2f(0).

We thus generalize the Poisson summation formula for a simple boundary case in
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Rd; if Γ = D ∩ Zd, where D is the rectangle {x : xj > lj} with lj integers, then
∑

n∈Γ

f(n) =
∑

n∈Zd

∫

D

e2πin·xf(x) dx

+

d−1
∑

s=1

1

2d−s

∑

n1,...,ns∈Z

∫

Ds

e2πi(n1x1+...+nsxs)f(x1, . . . , xs, ls+1, . . . , ld) dx1 . . . dxs

+
1

2d
f(l1, . . . , ld) , (A.2)

where Ds = {x1 > l1, . . . , xs > ls} is a rectangle in Rs.
For generic lattices Γ′ = Zd ∩A, where the full measure convex domain of Rd lies

entirely in D, we substitue in the above the function f(x) = g(x)χA(x).
Now, consider the sum

∑

n∈LD∩Zd

f(n) , (A.3)

where D is convex, L ≫ 1, and the function f is smooth and homogeneous of degree
ℓ > 0. By applying the boundary form Poisson summation formula, we have

∑

n∈LD∩Zd

f(n) = L(1+ℓ)d
∑

n∈Zd

∫

D

e2πiLn·xf(x) dx+ o(L(ℓ+1)d) . (A.4)

Further, the ‘bulk’ term is

L(1+ℓ)d
∑

n∈Zd

∫

D

e2πiLn·xf(x) dx = L(1+ℓ)d

∫

D

f(x) dx + L(1+ℓ)d
∑

n6=0

χ̂D(Ln) , (A.5)

χ̂D being the Fourier transform of the characteristic function of D, for which we have
the estimate [25]

χ̂D(p) = O
(

(1 + ‖p‖)−d+1
2

)

, (A.6)

so that
∑

n6=0

χ̂D(Ln) = O
(

L− d+1
2

)

, (A.7)

which leads to
∑

n∈LD∩Zd

f(n) = L(1+ℓ)d

∫

D

f(x) dx +O
(

L(1+ℓ)d−d+1
2

)

. (A.8)

Appendix B. Quasi-Asymptotic Expansions [42]

A positive continuous function on the half line, S, is called slowly varying at infinity
if for L > 0 we have

lim
k→∞

S(Lk)/k = 1 . (B.1)

A tempered real distribution, F , on the positive axis, has the quasi-asymptotic
behavior at infinity with respect to kmS(k), S being a slowly varying function, with
limit the tempered distribution G if for any test function f

lim
L→∞

∫

R+

F (Lk)

LmS(L)
f(k) dk =

∫

R+

G(k)f(k) dk . (B.2)

We write F ∼ G at ∞, with respect to kmS(k), for an appropriate a ∈ R and some
slowly varying function S.
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Appendix C. Spherical Coordinates [23]

The spherical coordinate chart on Sd−1 is θ = (θ1, . . . , θd−1) ∈ [0, π]d−2 × [0, 2π[ :

x1 = cos θ1

x2 = sin θ1 cos θ2

. . .

xd−1 = sin θ1 sin θ2 . . . sin θd−2 cos θd−1

xd = sin θ1 sin θ2 . . . sin θd−2 sin θd−1 . (C.1)

The uniform measure on the sphere is

dΩ(θ) = sind−2 θ1 sind−3 θ2 . . . sin θd−2 dθ1 . . . dθd−1 , (C.2)

and so the Rd Lebesgue measure in spherical coordinates becomes dx = rd−1 drdΩ(θ),
and the Radon-Nikodym derivative is

dΩ(θ)

dθ
= sind−2 θ1 sind−3 θ2 . . . sin θd−2 . (C.3)

The Lebesgue measure in the energy coordinates for a given Hamiltonian h, with the
unique decomposition h(I) = a(I)‖I‖2, becomes

dx =
λd/2−1

2a(nθ)d/2
dλdΩ(θ) , (C.4)

where nθ = x/‖x‖.

Appendix D. Useful References

The d-volume of the unit ball is

|Bd
1 (0)| =

∫

‖x‖<1

dx =
πd/2

Γ(d/2 + 1)
, (D.1)

while the (d− 1)-area of the unit sphere is |Sd−1|d−1 = d|Bd| = dπd/2

Γ(d/2+1) .

The spectrum of the Dirichlet d-rectangle [0, l1] × . . . × [0, ld], and d-torus
(R/l1Z) × . . .× (R/ldZ) are, respectively,

{

π2q ·Kq : q ∈ N
d
}

, (D.2)

and
{

4π2q ·Kq : q ∈ Z
d
}

, (D.3)

where the quadratic form is given by the matrix K = diag
(

1
l21
, . . . , 1

l2d

)

.

The Rd Laplacian in spherical coordinates becomes

−∆ = − ∂2

∂r2
− d− 1

r

∂

∂r
− 1

r2
∆Sd−1 . (D.4)

The spectrum of the spherical Laplacian is

σ(−∆Sd−1) =
{

l(l + d− 2)
}

l∈N0

, (D.5)
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while the Dirichlet spectrum of the open ball Bd
R(0) is

σ(−∆Bd
R(0)) =

{j2b,m
R2

}

(m,l)∈N×N0

, (D.6)

where jb,m is the m-th positive root of the Bessel function Jb, the order here being
b = l+ d/2 − 1.

Finally, a useful integral
∫

‖x‖<1

|x1 . . . xd| dx =

∫ 1

0

drr2d−1

∫ 2π

0

| cos θd−1 sin θd−1| dθd−1

×
d−2
∏

j=1

∫ π

0

| cos θj | sin2(d−j)−1 θj dθj =
1

d!
. (D.7)
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[22] Brüning J., Klawonn D. and Puhle C. (2007) J. Phys. A 40 15143-15147.
[23] Chavel I. (1984) “Eigenvalues in Riemanninan Geometry”, Academic Press Inc.
[24] Cheng S. Y. (1976) Comment. Math. Helvet. 51, 43-55.
[25] Colin de Verdière Y. (1977) Invent. Math. 43 15-52.
[26] Colin de Verdière Y. (1980) Math. Z. 171 51-73.
[27] Courant R. (1923) Nach. Ges. Wiss. Göttingen Math. Phys. Kl., 81-84.
[28] Foltin G., Gnutzmann S. and Smilansky U. (2004) J. Phys. A 37 11363-11371.
[29] Gnutzmann S., Smilansky U. and Sondergaard N. (2005) J. Phys A. 38 8921-8933.
[30] Gnutzmann S., Karageorge P. D. and Smilansky U. (2006) Phys. Rev. Lett. 97 090201.
[31] Gnutzmann S., Karageorge P. D. and Smilansky U. (2006) Eur. J. ST. 145 217.
[32] Gnutzmann S. and Lois S. (2013) J. Phys. A: Math. Theor. 46 (4), 1-18.
[33] Hald O. H. and McLaughlin J. R. (1996) Memoirs of the AMS, 572 AMS.
[34] Hardy G. H. and Wright E. M. (2005) “An Introduction to the Theory of Numbers”, Oxford

Science Publications.



Nodal Count Asymptotics for Separable Geometries 24

[35] Havas P. (1975) J. Math. Phys. 16 1461.
[36] Kalnins E. G. and Miller W. Jr (1982) “Intrinsic Characterization of Variable Separation for

the Partial Differential Equations of Mechanics”.
[37] Karageorge P. D. and Smilansky U. (2008) J. Phys. A: Math. Theor. 41 205102.
[38] Keating J. P., Marklof J. and Williams I. G. (2006) Phys. Rev. Lett. 97 034101.
[39] Klawonn D. (2009) J. Phys. A: Math. Theor. 42 175209.
[40] Kottos T. and Smilansky U. (1997) Phys. Rev. Lett. 79, 4794-4797.
[41] Lai R., Shi Y., Dinov I., Chan T. F. and Toga A. W. (2009) IEEE Symposium on Biomedical

Imaging: from Nano to Macro.
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