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Abstract. We consider the singular semiclassical initial value problem for
the phase space Schrödinger equation. We approximate semiclassical quantum
evolution in phase space by analyzing initial states as superpositions of Gaussian
wave packets and applying individually semiclassical anisotropic Gaussian wave
packet dynamics, which is based on the the nearby orbit approximation;
we accordingly construct a semiclassical approximation of the phase space
propagator, the semiclassical wave packet propagator. By the semiclassical
propagator we construct asymptotic solutions of the phase space Schrödinger
equation, noting the connection of this construction to the initial value

repsresentations.

1. Introduction

Phase space formulations of quantum mechanics are used to describe microprocesses
strongly influenced by their external environment, by representing mixed quantum
states in terms of phase space quasiprobability distributions, which are used to express
expectation values or classical energy densities and fluxes as phase space averages [55].
Despite the increase in complexity of these formulations compared to the Schrödinger
representation (nonuniqueness of phase space quasidensities, doubling of variables and
nonlocality of evolution equations), they prove worth studying even outside the context
of the theory of open quantum systems, for a series of reasons.

The phase space is the conceptually natural setting of quantum mechanics, more
so in the setting of its explicit correspondence to classical mechanics, the semiclassical

regime. All inherent invariance properties of classical mechanics which become
naturally manifest in phase space are reflections of approximate quantum mechanical
symmetries, explicit in its phase space representations. Also, the problem of caustics
(singularities void of physical content caused by projecting the dynamics to the
configuration space) is resolved since they are not encountered as persistent obstacles
toward global solutions in phase space formulations as they do in semiclassical
considerations in configuration space. Finally, a unified approach to the two main
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Asymptotic Solutions of the Phase Space Schrödinger Equation 2

classes of semiclassical states, WKBM (Wentzel-Kramers-Brillouin-Maslov) states and
coherent states, becomes plaussible in phase space (e.g., [26]).

The wave packet representation is a phase space representation intimately related
to deformation quantization [55], proposed in the works of Torres Vega and Frederick
[53], and also Harriman [21], Chruscinski and Moldawski [7], de Gosson [19] and
Nazaikinskii [42], to mention a few; in its core there is the correspondence of pure
classical states, i.e., single phase space points, to isotropic Gaussian wave packets,

G(q,p)(x; ~) = (π~)−d/4e
i
~
p·(x−q)e−

1
2~

(x−q)2 , (q, p) ∈ R
2d ,

localized at that phase space point on the Heisenberg scale, O(
√

~), so that 〈x̂〉 = q
and 〈p̂x〉 = p. In this representation, the phase space wave function, Ψ(q, p), is defined
as the coefficient of the isotropic Gaussian wave packet superposition of the wave
function, at a given phase space point,

ψ(x) =
( 1

2π~

)d/2
∫

Ψ(q, p)G(q,p)(x; ~) dqdp .

This coherent state resolution, the wave packet transform, also known as the Fourier-
Bros-Iagolnitzer transform [2, 3, 10, 42], is closely related to the Bargmann transform.
The dynamics of the phase space wave function satisfies the nonlocal phase space

Schrödinger equation. While the apparent drawback of this representation is that it
cannot account for microscopic systems in strong interaction with their environment,
it is a simpler representation than the Wigner formalism, which is quadratic in the
wave function.

In the wave packet representation, the phase space Schrödinger spectral problem
is well understood, e.g., the works of Luef and de Gosson [17], who have derived
the eigenvalue equation departing from Moyal’s spectral equation. However,
understanding the corresponding initial value problem is at the stage of infancy. The
deeper understanding of the initial value problem, its asymptotic investigation toward
a direct theory of semiclassical dynamics in phase space is a challenging and invaluable
contribution to phase space quantum mechanics, unifying approaches taken from the
field of Fourier integral operators [24, 43] to the theory of the Maslov canonical
operator [35], etc. Important contributions in this directions have been made by
Oshmyan et al and Nazaikinksii et al [42, 41].

A fundamentel semiclassical approximation of quantum dynamics is the Gaussian

approximation; the idea of approximating quantum evolution with the dynamics
of an individual Gaussian wave packet translated along an orbit is traced back to
the foundational work of Schrödinger [51]. Isotropic Gaussian wave packets provide
natural semiclassical approximations of quantum states for free motion, as they are
localized in phase space on the Heisenberg scale O(

√
~), ‘occupying’ a Planck cell

centered at (q, p), and exhibiting oscillations at the de Broglie wavelength O(~) (for a
general account on coherent states, see [8]).

Heller et al [25] argued for the use of both single isotropic and anisotropic Gaussian
wave packets as approximations to the propagation of initially Gaussian wave packets,
based on the nearby orbit approximation, while in [26], Huber, Heller and Littlejohn
showed that isotropic Gaussian wave packet dynamics can stand as a generalization of
complex phase WKBM semiclassical propagation. In [20], Hagedorn showed that the
an initially Gaussian state retains its Gaussian form within a certain timescale under
quantum dynamics.
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These ideas have been implemented in the solution of the more general problem of
establishing an asymptotic solution of the Schrödinger equation or the wave equation
along a given curve, modulated by a Gaussian profile, known as Gaussian beams.
Gaussian beams find applications in a range of physical problems, in optics, accoustics,
etc (see, e.g., [27, 46]). In the case of anisotropic Gaussian wave packets, the ansatz

GZ(q,p)(x; ~) = (π~)−d/4(det Z2)
1/4eiφe

i
~
p·(x−q)e

i
2~

(x−q)·Z(x−q) , (q, p) ∈ R
2d ,

for some real phase φ, the anisotropy quadratic form, which satisfies Z2 := ImZ ≻ 0,
is shown to obey the dynamics of the initially nearby orbit approximation. These
dynamics are equivalent to a matrix Riccati initial value problem for the anisotropy
matrix Z, common to all Gaussian beam asymptotic solutions [28, 27, 46, 34]. In
[32], Littlejohn generalized the works of Heller et al. on the thawed, or anisotropic,
Gaussian dynamics for generic initially localized states, by constructing a nonlinear
quantum propagator, as an explicit composition of Weyl and metaplectic operators.
Closely related to Heller’s and Littlejohn’s works, Maslov and Shvedov [36, 37, 38]
suggested the dynamics of anisotropic Gaussian wave packets, giving an alternative
representation of the dynamics of the anisotropy quadratic form, called by some
authors the Maslov-Shvedov complex germ, as a one parameter flow in the Siegel upper
half space, related to the Weil representation of the metaplectic group therein.

The Gaussian approximation, however, breaks down as localization is lost in an
irreversible spreading at a certain timescale, an effect suppressed only for quadratic
potentials. Added to the above, the fact that for quadratic potentials the evolution of
coherent superpositions of phase space eigenfunctions result in expressions reminiscent
of the evolution of single Gaussian wave packets, hints the method of approximating
the evolution of a quantum state by a superposition of semiclassically propagated

Gaussian wave packets. The starting point of this approximation is the resolution
of the identity in quantum state space in the overcomplete basis of coherent states, in
particular isotropic Gaussian wave packets;

U t =
( 1

2π~

)d
∫

U tG(q,p)〈G(q,p), ·〉L2(Rd) dqdp .

One makes an explicit ansatz for the propagation of a single wave packet under the
Schrödinger propagator [41, 48], U tG(q,p). The totality of approximating for the single
Gaussian dynamics amount to the initial value representations of quantum dynamics.
The first work in this direction was that of Herman and Kluk [22], who argued on
the validity of approximating semiclassical evolution by analyzing wave functions
by a multitude of nonspreading isotropic Gaussian wave packets, their shape held
rigid, modulated by some overall amplitude and phase factor, begining from the
van Vleck-Gutzwiller approximation of the propagator. More recently, Rousse and
Robert [50, 49] setting off from a ‘head down’ direction, assumed a semiclassical time
evolution for generic initial data of the Schrödinger equation, in terms of a Fourier
integral operator identified with the Herman-Kluk propagator, in order to justify this
approximation on the basis of rigorous estimates for the asymptotic solutions.

In this paper we turn attention to semiclassical asymptotic solutions of the initial
value problem of the phase space Schrödinger equation, rather than giving phase
space representations of solutions of the Schrödinger equation. Having defined the
phase space quantum flow and phase space Schrödinger propagator, we construct a
semiclassical propagator, based on the anisotropic Gaussian approximation, which
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is closely related to the nearby orbit approximation. As the anisotropic Gaussian
approximation is made for the totality of orbits, all of which are taken into
account in the wave packet resolution of the phase space wave function, the
semiclassical propagator admits generic semiclassical initial data, not just localized
ones. Remarking on the underlying metaplectic structure of the semiclassical phase
space propagator, we construct asymptotic solutions of the phase space Schrödinger
for phase space WKBM initial data, as a half density semiclassically localized on the
complex almost analytic extension of the Lagrangian manifold of the solution of the
corresponding Hamilton-Jacobi equation.

We consider Hamiltonian systems and their quantization in configuration space
R
d, with Cartesian coordinates x = (x1, . . . , xd). As a trivial vector bundle, the

phase space Rd ⊕ Rd
∼= R2d, has the structure of a linear symplectic space with

canonical coordinates (q, p) = (q1, . . . , qd, p1, . . . , pd) and complex pseudocoordinates§
(z, z̄) = (q − ip, q + ip), where z ∈ Cd. For the action of the Hamiltonian flow
gt : R2d → R2d, we use the notation (qt, pt) = (q(t; q, p), p(t; q, p)) := gt(q, p) for
the terminal point of the orbit γt(q, p) eminating from (q, p). As the flow is taken
to be generated by an autonomous Hamiltonian, generic apart from smoothness
assumptions, including chaotic Hamiltonians, we assume short time semiclassical

propagation, t = o
(

log ~

)

, within the Ehrenfest time (e.g., see [9]).

2. The Phase Space Schrödinger Equation

2.1. The Wave Packet Transform

The wave packet representation is an equivalent representation of quantum mechanics
set in phase space, as the position representation is set in configuration space [53]. By
the Stone-von Neumann theorem [44], the two representations are related by means of a
linear, unitary map, the wave packet transform‖ [53, 42, 41], which maps configuration
space wave functions ψ(x) to phase space wave functions Ψ(q, p),

W : L2(Rd,C; dx) → L2(R2d,C; dqdp) . (1)

It is given explicitly by the integral transform [53, 42, 41]

Ψ(q, p) = Wψ(q, p) =
( 1

2π~

)d/2
∫

Ḡ(q,p)(x; ~)ψ(x) dx . (2)

The kernel of the transform is the isotropic Gaussian wave packet with base point
(q, p) ∈ R2d, complex conjugated,

G(q,p)(x; ~) = (π~)−d/4e
i
~

(

p·(x−q)+ i
2 (x−q)2

)

. (3)

The wave packet transform is an isometry, in the sense that if ψ ∈ L2(Rd) is
normalized to unity, then

∫

|Wψ(q, p)|2 dqdp =

∫

|ψ(x)|2 dx = 1 , (4)

§ The transformation (q, p) 7→ (z, z̄) would be a symplectic pseudocoordinate transformation for the

normalization (z, z̄) = ( q−ip
√

2
,

q+ip
√

2
), so that |

∂(z,z̄)
∂(q,p)

| = 1.

‖ All linear representations of the Schrödinger position realization of quantum mechanics in L2(Rd)
into a phase space realization in L2(R2d), are equivalent modulo phase [44]. This can be verified by
the uniqueness, up to phase, of the kernel of the wave packet transform [2, 3].
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while ‖G(q,p)‖L2(Rd) = 1.
As a linear map between Hilbert spaces, the wave packet transform is not ‘onto’;

its image is a subspace of L2(R2d), the Fock-Bargmann space (see (A.17) of the
appendix),

F2 := im (W) ⊂ L2(R2d) , (5)

characterized by the Fock-Bargmann constraint [53, 21, 7, 41, 42]
(

~
∂

∂q
− i~

∂

∂p
− ip

)

Ψ = 0 , (6)

or
( ∂

∂q
− i

∂

∂p

)(

ep
2/2~Ψ

)

= 0 , (7)

implying that not all square integrable phase space functions constitute phase space

wave functions [2, 53, 42, 41]. The Fock-Bargmann space F2 possesses special
analyticity properties; it is essentially the space of Gaussian weighted square integrable
analytic functions (see subsection (A.2) of the appendix).

The wave packet transform microlocalizes quantum states in phase space; the
real part of the phase of the kernel contributes to semiclassical localization in the
momenta, while the imaginary part to semiclassical localization in the positions.

For Ψ ∈ F2, the inverse wave packet transform is defined as [42, 41]

ψ(x) = W−1Ψ(x) =
( 1

2π~

)d/2
∫

G(q,p)(x; ~)Ψ(q, p) dqdp . (8)

2.2. The Phase Space Schrödinger Equation

We consider the semiclassical Schrödinger initial value problem corresponding to a
mechanical system described by the Hamiltonian function H ,

i~
∂ψ

∂t
= Ĥψ = H

(

2
x,−i~

1

∂x

)

ψ , 0 < t 6 T

ψ(·, 0) = ψ~

0 ∈ L2(Rd) , (9)

the Feynman indices stating the order of action of the symbol noncommuting operator
arguments. The dependence of the initial data on ~ ∈ ]0, 1] is assumed essentially
singular at ~ = 0. For the standard form, H(q, p) = p2 + V (q), the above problem
takes the standard Schrödinger form, for which operational ordering is unambiguous

i~
∂ψ

∂t
= −~

2∆xψ + V ψ , 0 < t 6 T

ψ(·, 0) = ψ~

0 ∈ L2(Rd) , (10)

where −∆x = −∑j ∂
2
xj

is the positive Laplacian in Rd.
We consider semiclassical time evolution in the above problem for short times,

which is quantified as T = o
(

log ~

)

, i.e., within the Ehrenfest time scale. This is

assumed in order to ensure the validity of the semiclassical approximation in the case
the underlying Hamiltonian flow is chaotic [9].

The phase space representation of the Heisenberg quantized Hamiltonian, Ĥ , is
(see [53, 42, 41] and (A.38) of the appendix)

Ȟ = W ◦ Ĥ ◦W−1 = W ◦H
(

2
x,−i~

1

∂x

)

◦W−1 = H
( 2
q +i~∂p,−i~

1

∂q

)

. (11)
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Therefore, the wave packet transform of the initial value problem (9), the initial
value problem for the phase space Schrödinger equation reads

i~
∂Ψ

∂t
= ȞΨ = H

( 2
q +i~∂p,−i~

1

∂q

)

Ψ , 0 < t 6 T

Ψ(·, 0) = Ψ~

0 := Wψ~

0 ∈ F2 , (12)

for the phase space wave function Ψ = Wψ. For for the standard form

i~
∂Ψ

∂t
= −~

2∆qΨ + V
(

q + i~
∂

∂p

)

Ψ , 0 < t 6 T

Ψ(·, 0) = Ψ~

0 := Wψ~

0 ∈ F
2 , (13)

with −∆q = −∑j ∂
2
qj

the positive position Laplacian in the phase space.
The wave packet transform retains the essential singularity of the equation itself as

well as of the initial data, as will be shown in section (5) for WKBM states as prototype
semiclassical states. This renders the phase space image of the initial problem, in
complete analogy, semiclassically singular.

A qualitative difference from the Schrödinger equation in the case of the standard
Hamiltonian form arises from the potential term; for nonpolynomial potentials, this
term is a pseudodifferential operator, which introduces nonlocality as well as transport
effects in phase space dynamics, both common features in phase space evolution
equations, such as for the von Neumann equation.

In the case the potential is real analytic, this pseudodifferential operator term is
defined by the Taylor series

V (q + i~∂p)Ψ
~(q, p) =

∑

α∈Zd

(i~)|α|

α!
∂αq V (q)∂αp Ψ~(q, p) , (14)

while in general, we have the representation

V
(

q + i~
∂

∂p

)

Ψ~(q, p) =
( 1

2π~

)d
∫

e
i
~
η·(ξ−p)V (q + η)Ψ~(q, ξ) dηdξ . (15)

2.3. Dynamics of the Phase Space Wave Function

The solution of the Schrödinger initial value problem (9), with generic initial data
ψ~

0 ∈ L2(Rd), is given by the action of the Schrödinger time evolution operator
(quantum flow) on the initial data,

ψ~(x, t) = U tψ~

0 (x) = e−
i
~
tĤψ~

0 (x) =

∫

K(x, y, t; ~)ψ~

0 (y) dy , (16)

K being the Schrödinger propagator, the Schwartz kernel of U t.
By beginning with the completeness relation of the isotropic Gaussian wave

packets, a resolution of the identity in L2(Rd) [48],
( 1

2π~

)d
∫

Ḡ(q,p)(x; ~)G(q,p)(y; ~) dqdp = δ(x − y) , (17)

we acquire a phase space resolution of the Schrödinger propagator

K(x, y, t; ~) =
( 1

2π~

)d
∫

U tG(q,p)(x; ~)Ḡ(q,p)(y; ~) dqdp . (18)
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By applying the wave packet transform (2) on the representation formula (16), we
derive the phase space quantum flow, U t, which yields the phase space wave function

Ψ~(q, p, t) = U tΨ~

0(q, p) = e−
i
~
tȞΨ~

0(q, p) =

∫

K(q, p, η, ξ, t; ~)Ψ~

0(η, ξ) dηdξ , (19)

K being the phase space Schrödinger propagator, the Schwartz kernel of U t. The phase
space Schrödinger propagator K is expressed in terms of the Schrödinger propagator,
K, by

K(q, p, η, ξ, t; ~) =
( 1

2π~

)d
∫∫

Ḡ(q,p)(x; ~)G(η,ξ)(y; ~)K(x, y, t; ~) dxdy

=
( 1

2π~

)d
∫

Ḡ(q,p)(x; ~)U tG(η,ξ)(x; ~) dx . (20)

It can be easily checked that (19) solves the problem (12), for generic initial data
Ψ~

0 ∈ F2.
The above representation,

K(q, p, η, ξ, t; ~) =
( 1

2π~

)d/2

W ◦ U tG(η,ξ)(q, p; ~) , (21)

serves as a starting point for Gaussian approximations for phase space quantum
dynamics; as we shall see subsequently, these ammount to making a specific
approximation for the dynamics of the single Gaussian wave packet, U tG(q,p)(x; ~);
the phase space propagator is, then, proportional to the wave packet transform of the
evolved Gaussian wave packet.

It follows that like time evolution in configuration space, time evolution in phase
space is also generated by a unitary group

U t = W ◦ U t ◦W−1 = e−
i
~
tȞ on F

2 , (22)

constituting the phase space propagator U t a unitary quantum flow, in the sense that,
on F2,

U t ∗ = U−t , U t ◦ U t′ = U t+t′ , U0 = IdF2 , t, t′ ∈ R , (23)

so that phase space dynamics induced by U t retain the Gaussian ‘twisted’ analyticity
of the initial data (see relations (A.19) and (A.24) of the appendix).

As only those Ψ ∈ F2 correspond to Schrödinger wave functions on configuration
space, only ‘twisted’ analytic phase space functions correspond to pure quantum states,
while all other choices of L2 phase space functions correspond to mixed quantum states.

In terms of the phase space kernel, unitarity becomes manifest by the following
∫

K(q, p, u, v, t; ~)K(u, v, η, ξ, t′; ~) dudv = K(q, p, η, ξ, t+ t′; ~) , (24)

and K̄(η, ξ, q, p,−t; ~) = K(q, p, η, ξ, t; ~).
The Schrödinger propagator K is a weak solution of the Schrödinger equation,

i~
∂K

∂t
(x, y, t; ~) − ĤxK(x, y, t; ~) = i~δ(t)δ(x − y) . (25)

Taking the wave packet transform of the above, we have the analogous equation for
the phase space propagator

i~
∂K
∂t

(q, p, η, ξ, t; ~) − Ȟ(q,p)K(q, p, η, ξ, t; ~) = i~δ(t)〈G(q,p), G(η,ξ)〉L2(Rd) . (26)
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Due to the Gaussian integration in (20), the kernel K has stronger smoothness
properties than K. Firstly, it has well defined values across the hyperplane
{

(q, p, η, ξ) : (q, p) = (η, ξ)
}

, while for t→ 0+ it does not converge weakly to a Dirac

distribution, but rather is a Dirac mollifier on the Heisenberg scale (see (A.34)-(A.36)
of the appendix),

lim
t→0+

K(q, p, η, ξ, t; ~) =
( 1

2π~

)d
∫

Ḡ(q,p)(x; ~)G(η,ξ)(x; ~) dx , (27)

which we define as K(q, p, η, ξ, 0; ~).
As an operator acting in L2(R2d), the initial phase space propagator is the kernel

of the projector (see (A.30), (A.31) of the appendix) onto the subspace F2,

PF2 = W ◦W∗ : L2(R2d) → F2 , (28)

meaning that if Ψ~
0 ∈ F2, then

U0Ψ~

0(q, p) =

∫

K(q, p, η, ξ, 0; ~)Ψ~

0(η, ξ) dηdξ = PF2Ψ~

0(q, p) = Ψ~

0(q, p) , (29)

so that for t = 0 the representation of the solution Ψ~(q, p, t) reconstructs the initial
data, Ψ0,

Ψ~(q, p, 0) =
( 1

2π~

)d
∫∫

Ḡ(q,p)(x; ~)G(η,ξ)(x; ~)Ψ~

0(η, ξ) dxdηdξ

=
( 1

2π~

)3d/2
∫

dy ψ~

0 (y)

∫∫

Ḡ(q,p)(x; ~)G(η,ξ)(x; ~)Ḡ(η,ξ)(y; ~) dxdηdξ

=
( 1

2π~

)d/2
∫

Ḡ(q,p)(x; ~)ψ~

0 (x) dx = Ψ~

0(q, p) , (30)

by utilizing the completeness property.
This reproducing property of the initial propagator is a result of the underlying

analytic structure of the Fock-Bargmann space F2, something which is elaborated on
in the appendix (subsection (A.2) of the appendix).

3. Anisotropic Wave Packet Dynamics

In this section we deal with the propagation of Gaussian wave packets in configuration
space and their phase space image under the wave packet transform. In particular,
we consider the anisotropic Gaussian wave packet, following the independent works of
Heller, Huber, Littlejohn (isotropic case) [25, 26] and Littlejohn [32], Maslov, Shvedov
[36, 37] (anisotropic case) and more recently Robert [48], Nazaikinskii, Schulze, Sternin
[48, 41], and Stoyanovsky [52]. An excellent account of the subject, masterfully
touching upon its dynamical and algebraic aspects, is given by Littlejohn [32].

As we shall see, the semiclassical dynamics of anisotropic Gaussian wave packets
in configuration space realizes a representation of the metaplectic group on the Siegel
upper half space, and is equivalent to the variational system of the Hamiltonian flow
in the frame of the nearby orbit method (see, e.g., [52]).

3.1. Anisotropic Wave Packet Dynamics in Configuration Space

An attempt for the semiclassical description of the dynamics in the position
representation has come under the name of initial value representations, involving
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superpositions of initial semiclassical states in wave packets, G(q,p)(x; ~), propagating
them in a certain approximation along the Hamiltonian orbits γt(q, p) eminating from
(q, p) (see introduction), and then superposing the evolved wave packets back together,
with respect to all initial phase space points (q, p).

Here we consider the anisotropic Gaussian wave packet approximation, in order
to construct a semiclassical propagator for the phase space Schrödinger equation.
The leading term in the semiclassical propagation of a single normalized isotropic
Gaussian wave packet, amounts to the anisotropic Gaussian approximation, namely
U tG(q,p)(x; ~) retaining its Gaussian form, yet acquiring an anisotropic phase. In
particular, in this approximation, the initial state

G(q,p)(x; ~) = (π~)−d/4e
i
~

(

p·(x−q)+ i
2 (x−q)2

)

, (31)

is evolved semiclassically to the anisotropic Gaussian wave packet moving along the
ray x = qt, and semiclassically concentrated on that point on the Heisenberg scale
[41, 52]. In particular, we consider the following ansatz

GZ(q,p)(x, t; ~) = u(q, p, t; ~)e
i
~

(

A(q,p,t)+pt·(x−qt)+
1
2 (x−qt)·Z(q,p,t)(x−qt)

)

, (32)

where A is a real valued phase, and the matrix Z = Z1 + iZ2 is symmetric and
has positive definite imaginary part, ZT = Z and Z2 ≻ 0, to be determined by the
dynamics.

By substituting the ansatz (32) in the Schrödinger equation, and demanding that
it be an asymptotic solution, in the sense that for a certain time scale and uniformly
in x,

(

i~
∂

∂t
− Ĥ

)

GZ(q,p)(x, t; ~) = O(~) , (33)

we arrive at a system of characteristic differential equations along the orbit γt(q, p)
[32, 48, 41, 52], analogous to the WKBM system; the zeroth order equation in

√
~ is

∂A

∂t
(q, p, t) = L(q, p, t) , (34)

along with the initial condition A(q, p, 0) = 0, where L is the phase space Lagrangian
of the flow. These give the phase space action along the orbit γt(q, p),

A(q, p, t) =

∫ t

0

pτ · q̇τ dτ −H(q, p)t . (35)

The following properties of the phase space action shall become of use in what follows,

∂A

∂q
= −p+ pt ·

∂qt
∂q

,
∂A

∂p
= pt ·

∂qt
∂p

, (36)

where appropriate matrix multiplication and contraction is implied.
The first order equation in

√
~ yields Hamilton’s equations for (qt, pt), which are

automatically statisfied along the orbit γt(q, p). The second order equation gives the
amplitude u and the anisotropy form Z. The amplitude is

u(q, p, t; ~) = (π~)−d/4
(

det ImZ(q, p, t)
)1/4

eiφ(q,p,t)

= (π~)−d/4 exp
(

− 1

2

∫ t

0

trH ′′
ppZ(q, p, τ) dτ

)

, (37)
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offering an additional phase, or index to be accurate,

φ(q, p, t) = −1

2

∫ t

0

trH ′′
ppZ2(q, p, τ) dτ . (38)

The dynamics of the anisotropy form, sometimes called the Maslov-Shvedov

complex germ, the matrix Riccati equation [26, 11, 48, 41, 52], essentially controling
the direction, the shape and the spreading of the propagated state,

Ż + ZH ′′
ppZ +H ′′

pqZ + ZH ′′
qp +H ′′

qq = 0 , (39)

with the initial condition Z(0) = iI.
The time dependence of the anisotropy form is implicit in the flow (q, p) 7→ (qt, pt),

as the matrix Riccati dynamics is taken along the orbit γt(q, p); the anisotropy form Z
depends on time only through (qt, pt), except for the class of quadratic Hamiltonians
which yield give solutions Z(t) independent of the initial point (q, p). We thus make
the notational convention for the functional dependence Z(q, p, t) := Z(qt, pt), always
for nonquadratic potentials.

The wave packet character of GZ is guaranteed, as by beginning at Z(0) = iI, Z
remains symmetric with positive definite imaginary part for all times. We stress that
the Riccati equation guarantees unitarity of the semiclassical flow G(q,p) 7→ GZ(q,p),

in the sense that ‖GZ(q,p)(· , t)‖L2(Rd) = 1, for all times t > 0. As by assumption

GZ ∈ L2(Rd), we must have Z(t)T = Z(t) and Z2(t) ≻ 0, the Riccati equation must
define a flow in the Siegel upper half space

Hd =
{

Z ∈ C
d×d : ZT = Z , ImZ ≻ 0

}

, (40)

which is a d(d + 1)-dimensional manifold generalizing the complex upper half plane
H =: H1 = {z ∈ C : Im z > 0} [6, 52].

The anisotropic Gaussian wave packet is a semiclassical solution of the
Schrödinger equation for short times, t ≪ log ~, within the Ehrenfest time scale,
with initial data

GZ(q,p)(x, 0; ~) = G(q,p)(x; ~) . (41)

The short time scale is required so that there is no sufficient spreading, sustaining
localization on the Heisenberg scale is not lost. By semiclassical solution relation (33)
is meant, while there exists some C(q, p, T ) > 0 such that [48]

‖U tG(q,p) −GZ(q,p)(·, t)‖L2(Rd) 6 C(q, p, T )t ~1/2 (42)

and

sup
0<t6T

‖U tG(q,p) −GZ(q,p)(·, t)‖L2(Rd) 6 C(q, p, T )~3/2 . (43)

3.2. The Nearby Orbit Approximation and the Matrix Riccati Equation

As noted in [26], in anisotropic Gaussian wave packet dynamics the spatio-temporal
variation in its localization is dictated by a certain matrix Riccati dynamics, which
in turn is related to the separation dynamics of initially nearby Hamiltonian orbits.
These dynamics are essentially common to all Gaussian narrow beam dynamics, i.e.,
dynamics for asymptotic solutions concentrated with a Gaussian profile about the
characteristics [27].
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The Riccati equation of the anisotropy form is equivalent to the linear variational
system governing the stability of the Hamiltonian flow [26, 48, 41, 52]. The
Hamiltonian flow is given by the system

dqt
dt

=
∂H

∂p
(qt, pt)

dpt
dt

= −∂H
∂q

(qt, pt) , (44)

with initial data (q, p)
The stability of initially nearby orbits is given by the linearization of the dynamics

about a reference orbit, rather than a fixed phase space point. We note that the
deviation coordinates from a given propagated point gt(q0, p0), say gt(q0, p0)+ (qt, pt)
are canonical coordinate (retaining the same notation for the original coordinates
and the ‘deviation’ coordinates), so that the nonautonomous linearized flow for the
deviation, is itself Hamiltonian

d

dt

(

qt
pt

)

= JH ′′(gt(q0, p0))

(

qt
pt

)

, (45)

where J =

(

0 I
−I 0

)

is the 2d× 2d unit symplectic matrix.

The corresponding linear flow is given by a matrix symplectic transformation

gt0 = etJH
′′

= exp t

(

H ′′
pq H ′′

pp

−H ′′
qp −H ′′

qq

)

∈ Sp(2d,R) , (46)

evaluated along the orbit γt(q, p). The variational system, which relates the sensitivity
of the system with respect to nearby initial points, is obtained by varying Hamilton’s
equations by the initial points (q, p),

d

dt

∂

∂z

(

qt
pt

)

= JH ′′(gt(q, p))
∂

∂z

(

qt
pt

)

, (47)

where z = q − ip is the pseudocomplexified phase space pseudocoordinate (see
introduction).

Following, e.g. [41], we write the above as

d

dt

(

X
Y

)

=

(

H ′′
pq H ′′

pp

−H ′′
qp −H ′′

qq

)(

X
Y

)

, (48)

where

X = 2
∂qt
∂z

=
∂qt
∂q

+ i
∂qt
∂p

Y = 2
∂pt
∂z

=
∂pt
∂q

+ i
∂pt
∂p

. (49)

The variational system has a unique global solution, bounded away from zero for
finite time t [42]. The initial values are (suppressing the phase space dependence),
X(0) = I and Y (0) = iI. With respect to the variational system, the anisotropy form
Z is given by

Z(t) = Y (t)X(t)−1 . (50)

The initial condition GZ(q,p)(x, 0; ~) = G(q,p)(x; ~) determines the initial value Z(0) =

iI, which is compatible with Z(0) = Y (0)X(0)−1 = iI, so that there is an arbitrariness
in the initial values of matrices X and Y separately.
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The dynamical representation of Z is, then,

Z = Y X−1 =
(

∂qpt + i∂ppt

)(

∂qqt + i∂pqt

)−1

=
∂pt
∂z

(

∂qt
∂z

)−1

. (51)

For Hamiltonians of the standard form, H(q, p) = p2 + V (q), the variational
system becomes

d

dt

(

X
Y

)

=

(

0 −V ′′(qt)
2I 0

)(

X
Y

)

, (52)

and the matrix Riccati equation

Ż + 2Z2 = −V ′′(qt) . (53)

For bounded motion (compact energy shell) and smooth potential, we have the
following large time asymptotics,

Ż2 → 0 , Z1Z2 + Z2Z1 → 0 ,

Żqt ∼
1

2
V ′(qt) , (54)

in matrix norm. Finally, the amplitude becomes

u(q, p, t; ~) = (π~)−d/4
(

detZ2(q, p, t)
)1/4

eiφ(q,p,t)

= (π~)−d/4 exp
(

−
∫ t

0

trZ(q, p, τ) dτ
)

. (55)

3.3. The Metaplectic Structure of the Anisotropic Gaussian Approximation

The dynamics of the anisotropy form as defined by the anisotropic Gaussian wave
packet approximation, is underlied by a rich algebraic and geometric structure. The
semiclassical evolution of GZ is a representation of a one-parameter flow of Z in Hd,
the Weil representation of the metaplectic group Mp(2d,R) acting on Hd, intimately
related to the nearby orbit approximation, as described above [32, 52].

As we described above, the nearby orbit method effectively approximates the
Hamitlonian flow by the linear flow generated by the quadratic Hamiltonian

H0(q, p, t) =
1

2

(

q
p

)T

H ′′(gt(q0, p0))

(

q
p

)

, (56)

fixed on a reference point gt(q0, p0). Under the quantized linearized flow induced by the
above quadratic Hamiltonian, one may construct an exact solution of the Schrödinger
equation with initial data

GZκ (x; ~) = (π~)−d/4
(

det ImZ
)1/4

e
i
~

(

κ·x+ 1
2x·Zx

)

. (57)

If the linear flow, gt0, is given by

gt0 =

(

A B
C D

)

∈ Sp(2d,R) , (58)

then the exact solution is [52],
(

det (CZ +D)
)−1/2

e−
i

2~
κ·(CZ+D)−1Cκ Gf(Z)

[(CZ+D)T ]−1κ
, (59)

where f(Z) = (AZ +B)(CZ +D)−1, with det(CZ +D) 6= 0.
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This defines the action of the symplectic group on the set of Gaussian wave
packets, which simultaneously guarantees that the generalized Möbius automorphism
on Hd

Z 7→ f(Z) = (AZ +B)(CZ +D)−1 , det (CZ +D) 6= 0 , (60)

is a group action of σ ∈ Sp(2d,R) on Hd.
Thus, the class of anisotropic Gaussian wave packets,

GZκ (x; ~) = (π~)−d/4
(

det ImZ
)1/4

e
i
~

(

κ·x+ 1
2x·Zx

)

, (61)

which are obviously square integrable,

GZκ ∈ L2(Rd) ⇐⇒ Z@ ≻ 0 and κ ∈ R
d , (62)

transform into one another under the action of the symplectic group [52]

GZκ 7→M(σ)GZκ =
(

det (CZ +D)
)−1/2

e−
i
2~
κ·(CZ+D)−1Cκ Gf(Z)

[(CZ+D)T ]−1κ
. (63)

Although closely related to the symplectic group, the group action (63) is not
the representation of Sp(2d,R) on L2(Rd) Gaussian wave packets, due to the double
valuedness induced by the square root of the determinant factor [32, 52].

In order to achieve a single valued representation, one must consider the

metaplectic group, which is the double covering group of the symplectic group, taking
into account exactly this ambiguity. By representing a member of the symplectic

group σ =

(

A B
C D

)

∈ Sp(2d,R) for appropriate A,B,C and D ∈ Cd×d so that

σJσT = J , we define the metaplectic group as

Mp(2d,R) =
{

(σ, ι) : σ ∈ Sp(2d,R) , ι = ±1
}

, (64)

the choice of the index ι being a choice of either branch of the square root of the

determinant
(

det (CZ +D)
)1/2

in the complex plane, for Z ∈ Hd.

(σ1, ι1) · (σ2, ι2) := Mι1(σ1)Mι2(σ2) = Mι1ι2(σ1σ2) . (65)

The representation of Mp(2d,R) on L2(Rd) is called the Weil representation. Its
action on Gaussian wave packets acquires the above simple form; in general, given
that the block B, say, is nonsingular, the corresponding general metaplectic action on
L2(Rd) is given by [32]

M±(σ)ψ(x) =

∫ ±1

(2πi~)d/2
√

| det B|
e

i
2~

(

y·B−1Ay−2y·B−1x+x·DB−1x

)

ψ~(y) dy , (66)

assuming, without loss of generality that det B 6= 0.
The above uncovers the following interconnection: semiclassical anisotropic

Gaussian wave packet dynamics is equivalent to a particular matrix Riccati dynamics
of the anisotropy quadratic form, which is identified with a one-parameter flow
of Mp(2d,R) in Hd, which in turn, is equivalent to the stability dynamics of the
Hamiltonian flow.

By establishing an approximate solution for the propagation of wave packets, we
can use the linearity of the Schrödinger propagation and the wave packet transform to
construct approximate solutions of the Schrödinger equation, and in turn, of the phase
space Schrödinger equation, with any initial data. The idea is trivial, intuitevely;
approximate the evolution of a general initial wave function by evolving the wave
packets into which it is analyzed, and superpose them back together to obtain the
asymptotic solution.
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3.4. Anisotropic Wave Packet Dynamics in Phase Space

Starting from (21), we note that a basic step toward the construction of a semiclassical
wave packet propagator based on the anisotropic wave packet dynamics,

U tG(q,p)(x; ~) ∼ GZ(q,p)(x, t; ~) , (67)

is the transformation of wave packets into the phase space under W . In particular,
one must guarantee that the anisotropic wave packet dynamics retains, under W , its
Gaussian form.

The wave packet transform of the anisotropic Gaussian wave packet reads

WGZ(η,ξ)(q, p, t; ~) =
( 1

2π~

)d/2
∫

Ḡ(q,p)(x; ~)GZ(η,ξ)(x, t; ~) dx

= (π~)−d/2
(

detZ2(η, ξ, t)
)1/4

√

∣

∣

∣
det W (η, ξ, t)

∣

∣

∣
eiλ(η,ξ,t)

× exp
i

~

(

A(η, ξ, t) − p · (ηt − q) +
i

2
(ηt − q)2 − 1

2
(z − ζt) ·W (η, ξ, t)(z − ζt)

)

, (68)

where z = q − ip, ζ = η − iξ, and

W (η, ξ, t) := i∂ζηt(∂ζζt)
−1 = −

(

Z(η, ξ, t) + iI
)−1

. (69)

The overall phase is

λ(η, ξ, t) := φ(η, ξ, t) +
1

2
Arg detW (η, ξ, t) − πd

4

= −1

2

∫ t

0

trH ′′
ξξZ2(η, ξ, τ) dτ +

1

2
Arg detW (η, ξ, t) − πd

4
, (70)

by (37). The choice of the principal branch of the square root of the term
(

detW
)1/2

is necessary in order to ensure agreement with the initial data WGZ(η,ξ)(q, p, 0; ~) =

WG(η,ξ)(q, p; ~), as λ(η, ξ, 0) = 0, which in turn ensures agreement with generic initial
data in for the action of the semiclassical quantum flow.

This choice of phase actually has a nontrivial algebraic content; the double
valuedness of the square root of the determinant reflects the double valuedness of
the covering mapping Sp(2d,R) → Mp(2d,R), and thus choice of branch is actualy a
choice of a specific metaplectic transformation.

In order to verify the invariance of Gaussian form under W , as noted by Folland
[14], i.e., that wave packets in configuration space are mapped into wave packets in
phase space, one must bring the above in the form of a Gaussian with a Siegel quadratic
form in (q, p), rather than in z = q − ip.

The auxiliary mapping Z 7→W = f(Z) = −(Z+iI)−1, which will serve in defining
the phase space anisotropy form as will be shown, is an action of the metaplectic group
on Hd, and its image is a submanifold of the open Siegel upper half disk D

+
d ,

f(Hd) ⊂ D
+
d =

{

W ∈ Hd : I −W ∗W ≻ 0
}

, (71)

and is actually identified with the open ball in the matrix norm topology,

f(Hd) = B1/2

( i

2
I
)

=
{

W ∈ Hd : ‖W − i

2
I‖Cd×d <

1

2

}

. (72)
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The closed ball is the image of the compactified Siegel half space, H̄d, extending it by
the real symmetric matrices (the boundary) and the point at infinity. Thus, we have
the parametrization of the boundary by the matrix unitary group U(d),

∂f(H̄d) =
{

W (U) =
i

2
I + U : U ∈ U(d)

}

. (73)

In the light of this geometric restriction, the above is brought in a more
transparent form by expressing the phase of WGZ in (68) as a real quadratic form
over phase space,

WGZ(η,ξ)(q, p; ~) = (π~)−d/2
(

detQ2(η, ξ, t)
)1/4

eiλ(η,ξ,t)

× exp
i

~

(

A(η, ξ, t) − p · (ηt − q) +
1

2

(

q − ηt
p− ξt

)T

Q(η, ξ, t)

(

q − ηt
p− ξt

)

)

. (74)

The matrix of the quadratic form is

Q =

(

iI −W iW
iW W

)

∈ C
2d×2d , (75)

the matrix W as defined in (69).
This makes explicit the phase space Gaussian wave packet character of

WGZ(η,ξ)(q, p), under the condition that the phase space anisotropy form guarantees
square integrability, i.e., Q2 ≻ 0. By noting, additionally, by the Plancherel relation
‖WGZ(η,ξ)‖F2 = ‖GZ(η,ξ)‖L2(Rd) = 1, that

(

detZ2

)1/4
√

∣

∣

∣
detW

∣

∣

∣
=
(

detQ2

)1/4

, (76)

where Q2 = ImQ, the Gaussian form of WGZ becomes more apparent.
Consider the mapping of the anisotropy form in phase space,

h : Hd → C
2d×2d|W 7→ Q , (77)

as above. Since h is continuous, and since QT = Q, all that is required in order
to show that imh = H2d is to show that there are no points on the boundary

Q(U) ∈ ∂h
(

f(H̄d)
)

= h
(

∂f(H̄d)
)

, such that Q2(U) = 0, where the manifold

∂h
(

f(H̄d)
)

is parameterized by the equation

Q = h
( i

2
I + U

)

, U ∈ U(d) . (78)

This is indeed true, as the matrix

Q2(U) =

(

1
2I − U2 U1

U1
1
2I + U2

)

, (79)

where U = U1 + iU2 ∈ U(d), is always nonzero. Thus, we see that the image of f(Hd)
is mapped into a true subdomain of H2d under h, and so the dynamics of Q retains
its Siegel character. Thus, WGZ(η,ξ)(q, p, t; ~) is a true phase space wave packet with
anisotropy form Q.

This makes transparent the following geometric picture: the representation

of the metaplectic group Mp(2d,R) into L2(Rd) is in 1-1 correspondence with the

representation of the metaplectic group Mp(4d,R) into Fock-Bargmann space, F2, by

the wave packet transform. In other words, the wave packet transformation of wave
packets are true phase space wave packets themselves.
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The fact that a Gaussian wave packet retains its form in phase space is reinforced
by the fact that its Wigner transform, is in turn a real Gaussian wave packet, bearing
in mind that the modulus square of the phase space wave function is the convolution
of the Wigner function (see section (A.4) of the appendix) with a localized Gaussian
[32]

WG(η,ξ)
(q, p; ~) = (π~)−d/2 exp−1

~

(

q − ηt
p− ξt

)T

R(η, ξ, t)

(

q − ηt
p− ξt

)

, (80)

where R ∈ R2d×2d defines a symmetric and positive definite quadratic form, related
to Q.

As in the case of the anisotropic Gaussian wave packet in configuration space,
GZ , the amplitude of its phase space image, WGZ , is controlled essentially by the

quadratic term, which vanishes on the set
{

(q, p, η, ξ) : (q, p) = gt(η, ξ)
}

, so that

it becomes semiclassically concentrated there, exponentially small at a fixed distance
away.

4. Semiclassical Propagator for the Phase Space Schrödinger Equation

4.1. Construction of the Semiclassical Propagator

We now construct a semiclassical propagator for the phase space Schrödinger equation,
the semiclassical wave packet propagator, and a semiclassical flow, U twp = W ◦ U twp ◦
W−1, which is based on the anisotropic Gaussian wave packet approximation.

By the inverse wave packet transform (8) we have

ψ~

0 (x) = W−1Ψ~

0(x) =
( 1

2π~

)d/2
∫

G(q,p)(x; ~)Ψ~

0(q, p) dqdp , (81)

and combining with (16), we get

ψ~(x, t) =
( 1

2π~

)d/2
∫∫

K(x, y, t; ~)G(q,p)(y; ~)Ψ~

0(q, p) dydqdp . (82)

As GZ(q,p) is a semiclassical solution of the initial value problem (9) with initial data

ψ~
0 (x) = G(q,p)(x; ~), we have the approximation

U tG(q,p)(x; ~) =

∫

K(x, y, t; ~)G(q,p)(y; ~) dy ∼ GZ(q,p)(x, t; ~) . (83)

This, which is essentially the thawed Gaussian approximation, is the central
approximation we make to construct the semiclassical phase space propagator.

The last two equations yield the approximate solution

ψ~(x, t) ∼
( 1

2π~

)d/2
∫

GZ(q,p)(x, t; ~)Ψ~

0(q, p) dqdp =:

∫

Kwp(x, y, t; ~)ψ~

0 (y) dy . (84)

The kernel Kwp is expressed as

Kwp(x, y, t; ~) :=
( 1

2π~

)d
∫

Ḡ(q,p)(y; ~)GZ(q,p)(x, t; ~) dqdp , (85)

the kernel of the semiclassical flow U twp.
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We are interested in a semiclassical approximation for the phase space propagator.
By substituting the approximate propagatorKwp into the representation formulae (19)
and (20), we obtain

U tΨ~

0(q, p) ∼ U twpΨ~

0(q, p) =:

∫

Kwp(q, p, η, ξ, t; ~)Ψ~

0(η, ξ) dηdξ

=
( 1

2π~

)d
∫∫

Ḡ(q,p)(x; ~)GZ(η,ξ)(x, t; ~)Ψ~

0(η, ξ) dxdηdξ . (86)

We term this the semiclassical wave packet approximation for the propagator of the
phase space Schrödinger equation.

The kernel of the semiclassical quantum flow U twp is

Kwp(q, p, η, ξ, t; ~) :=
( 1

2π~

)d
∫

Ḡ(q,p)(x; ~)GZ(η,ξ)(x, t; ~) dx , (87)

and is proportional to WGZ ,

Kwp(q, p, η, ξ, t; ~) =
( 1

2π~

)d/2

WGZ(η,ξ)(q, p, t; ~) , (88)

so that from (68) we finally deduce

Kwp(q, p, η, ξ, t; ~) = 2−d/2(π~)−d
(

detQ2(η, ξ, t)
)1/4

eiλ(η,ξ,t)

× exp
i

~

(

A(η, ξ, t) − p · (ηt − q) +
1

2

(

q − ηt
p− ξt

)T

Q(η, ξ, t)

(

q − ηt
p− ξt

)

)

. (89)

The semiclassical propagator Kwp is of the form of an approximate transition
amplitude between a quantum state microlocalized at the phase space point (q, p) and
another moving with a time decay along the orbit γt(η, ξ), semiclassically localized on

the manifold
{

(q, p, η, ξ) : (q, p) = gt(η, ξ)
}

.

By construction, the semiclassical propagator is a flow, in the group sense, over
the set of wave packets (in configuration space),

U twp ◦ U t
′

wpG(q,p)(x; ~) = U twpG
Z
(q,p)(x, t

′; ~) = GZ(q,p)(x, t+ t′; ~) , (90)

for t, t′ ∈ R, which can be generalized to an arbitrary state by the overcompleteness
of coherent states.

Thus, we have that the approximate dynamics in phase space enduced by the
operator U twp, besides satisfying the Fock-Bargmann constraints, is a unitary quantum
flow in F2,

U t ∗wp = U−t
wp , U twp ◦ U t

′

= U t+t′wp , U0
wp = IdF2 , t, t′ ∈ R . (91)

In terms of the semiclassical wave packet phase space propagator, we have
∫

Kwp(q, p, u, v, t; ~)Kwp(u, v, η, ξ, t′; ~) dudv = Kwp(q, p, η, ξ, t+ t′; ~) , (92)

and

K̄wp(η, ξ, q, p,−t; ~) = Kwp(q, p, η, ξ, t; ~) . (93)

At t = 0, the semiclassical wave packet phase space propagator shares the
reproducing property of the exact propagator,

lim
t→0+

Kwp(q, p, η, ξ, t; ~) =
( 1

2π~

)d
∫

Ḡ(q,p)(x; ~)GZ(η,ξ)(x, 0; ~) dx

=
( 1

2π~

)d
∫

Ḡ(q,p)(x; ~)G(η,ξ)(x; ~) dx = K(q, p, η, ξ, 0; ~) . (94)
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4.2. The Nearby Orbit Approximation and Initial Value Representations

In [32], Littlejohn constructed a semiclassical propagator based on the nearby orbit
approximation, as an explicit action of Weyl and metaplectic operators, generalizing
the nearby orbit approximation for the dynamics of Liouville densities, in the quantum
mechanical framework.

This construction, however, does not fall in the category of initial value
representations. The Littlejohn propagator utilizes a single reference orbit, with
starting point the phase space point on which the initial data ψ~

0 is assumed to be
centered at and localized, without necessarily being Gaussian. Although reminescent
of single semiclassical Gaussian wave packet propagation, it loses unitarity and
linearity as the base point (q, p) depends implicitly on ψ~

0 .
The semiclassical Littlejohn flow in the nearby orbit approximation reads

U tnboψ
~(x) := e

i
~
θ(z,t)Tzt

◦M(σt) ◦ T ∗
z ψ

~(x) , (95)

where Tz := e
i
~

(

p·x̂−q·p̂x

)

is the Weyl operator (see subsection (A.1) of the appendix),
and zt = qt − ipt defines the reference orbit with initial point z = q − ip. The
ambiguity of sign of the metaplectic operator is resolved by the requirement that
U0
nbo = IdL2(Rd), so that M(σ) := M+(σ), while the symplectic transformation

σt =

(

At Bt
Ct Dt

)

∈ Sp(d,R), is the solution of the initial value problem

dσt
dt

= J ′′H(gt(q, p))σt

σ0 = I , (96)

and the additional phase is θ(z, t) = A(q, p, t) − 1
2 (qt · pt − q · p).

The propagator fixes the initial state from (q, p) to the origin, symplectically
‘rotates’ it in phase space by the action of M(σt), and shifts it along the reference
orbit modulating by adding the action phase, modulating with the extra action phase.
Explicitly, we have

U tnboψ
~

0 (x) =
( 1

2π~

)d/2 e
i
~

(

A(q,p,t)+ 1
2 (y−q)·B−1

t At(y−q)
)

√

| det Bt|

×
∫

exp
i

~

(

− (y − q) ·B−1
t (x − qt) +

1

2
(x− qt) ·DtB

−1
t (x− qt)

)

ψ~

0 (y) dy . (97)

Although the method of constructing the semiclassical propagator Kwp in the
previous subsection relies on the nearby orbit scheme as well, there is a number of
differences to the Littlejohn semiclassical propagator.

The Littlejohn semiclassical propagator is simpler computationally, as it involves a
single orbit eminating from the center of a microlocalized initial state. Subsequently,
it does not grasp the quantum dynamics for nonmicrolocalized initial data; in the
anisotropic wave packet approximation elaborated on previously, one can consider
initial Gaussians for all possible initial phase space points, and thus all possible
reference orbits in phase space. This renders the use of semiclassical wave packet
propagator valid even in the case of nonmicrolocalized initial data, such as WKBM
states, concentrated on a certain Lagrangian manifold. The other differences have to
do with the linearity and unitarity properties.
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A different approach, on the lines of which we constructed the semiclassical
wave packet propagator, is that of initial value representations for solutions of the
Schrödinger equation. By beginning with the completeness relation of the isotropic
Gaussian states in phase space (17),

K(x, y, t; ~) =
( 1

2π~

)d
∫

U tG(q,p)(x; ~)Ḡ(q,p)(y; ~) dqdp , (98)

where K is the Schrödinger propagator, the following approximate phase space
resolutions are usually made in this context,

K(x, y, t; ~) ∼
( 1

2π~

)d
∫

GZ(q,p)(x; ~)Ḡ(q,p)(y; ~) dqdp

K(x, y, t; ~) ∼
( 1

2π~

)d
∫

e
i
~
S(q,p,t)G(q,p)(x; ~)Ḡ(q,p)(y; ~) dqdp

K(x, y, t; ~) ∼
( 1

2π~

)d
∫

e
i
~
S(q,p,t)a(q, p, t; ~)G(q,p)(x; ~)Ḡ(q,p)(y; ~) dqdp . (99)

The above, are respectively the thawed Gaussian approximation, the frozen Gaussian

approximation, and the Herman-Kluk approximation [22, 49, 50].

4.3. Relation to the van Vleck-Gutzwiller Propagator

We derive asymptotics for the Schrödinger representation of the semiclassical wave
packet propagator by means of the complex stationary phase method (see subsection
(B.3) of the appendix).

As was previously noted,

Kwp(x, y, t; ~) :=
( 1

2π~

)d
∫

Ḡ(q,p)(y; ~)GZ(q,p)(x, t; ~) dqdp . (100)

Bringing the above in the standard oscillating integral form, we have

Kwp(x, y, t; ~) =

∫

χ(q, p, t; ~)e
i
~
Φ(q,p,x,y,t) dqdp , (101)

where the phase and amplitude read

Φ(q, p, x, y, t) = A(q, p, t) + p · (q − y) +
i

2
(q − y)2

+pt · (x− qt) +
1

2
(x− qt) · Z(x− qt) , (102)

and

χ(q, p, t; ~) = 2−d(π~)−3d/2
(

detZ2(q, p, t)
)1/4

eiφ . (103)

The leading order contribution comes from the real critical manifold,

CR

Φ =
{

(q, p) : ImΦ(q, p, x, y, t) = 0 , ∇(q,p)Φ(q, p, x, y, t) = 0
}

, (104)

which is given by the equations

∂Φ

∂q
(q, p, x, y, t) = 0 ,

∂Φ

∂p
(q, p, x, y, t) = 0 , (105)

and
1

2
(q − y)2 +

1

2
(x − qt) · Z2(x− qt) = 0 . (106)
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As the matrix Z2 is positive definite, the later is possible only if y = q and
x = qt. Subsequently, the former stationary equations are, implying appropriate
matrix muliplication,

p+ ∂qA− pt · ∂qqt = 0 and ∂pA− pt · ∂pqt = 0 , (107)

which by the properties of the phase space action (36) are automatically satisfied.
Thus, the real critical manifold becomes

CR

Φ =
{

(q, p) : (qt, q) = (x, y)
}

, (108)

which corresponds to orbits, which, projected onto configuration space, yield rays
beginning at y and terminating at x. As there are more than one such possibilities,
the critical set comprises of a countable set of rays.

On CR

Φ the phase itself reduces to the action, while the restriction of its Hessian
therein reads

Φ′′
(q,p) =

(

−∂qqt∂qpt + ∂qqtZ∂qqt + iI −∂qpt∂pqt + ∂qqtZ∂pqt
−∂qpt∂pqt + ∂qqtZ∂pqt −∂pqt∂ppt + ∂pqtZ∂pqt

)

, (109)

by virtue of the matrix Poisson relation,

∂qt
∂q

∂pt
∂p

− ∂pt
∂q

∂qt
∂p

= I . (110)

The determinant of the Hessian on the real critical manifold CR

Φ gives

detC2d×2dΦ′′
(q,p) = detCd×d

(

1

i
∂pqt · (∂zqt)−1

)

. (111)

Assuming short times, by the stationary phase lemma (in the weak sense),

Kwp(x, y, t; ~) ∼ 1

(2πi~)d/2

∑

γ∈Γt
y,x

aγ

√

| det ∂qt
p|e i

~
Aγ−πi

2 νγ , (112)

where π is the canonical projection down to configuration space, and

Γty,x :=
{

γ ∈ C2(R+; R2d) : πγ(0) = y , πγ(t) = x
}

(113)

is the set of orbits with conjugate points at y and x at times 0 and t respectively. The
phase νγ is the corresponding Maslov index of orbit γ,

νγ = ind(∂qt
p) :=

∑

λ∈σ(∂qtp)

Arg(λ) , (114)

i.e., the index of the monodromy matrix, the excess of its positive over negative
eigenvalues, while Aγ is the action of the orbit γ. The factor

aγ = 2d/2
√

det ∂zqte
− 1

2

R

t

0
trH′′

ppZ(q,p,τ) dτ , (115)

stands as a correction to the semiclassical van Vleck-Gutzwiller approximation of the
Schrödinger propagator. Indeed, for t→ 0+, we have

aγ = 1 +O(q,p)(t) . (116)

Additionally, in order to ensure that Kwp serves as an approximation to the
Schrödinger propagator, we must have that the amplitude a is nonsingular, even on
the caustics.

The exponential factor exp
(

− 1
2

∫ t

0
trH ′′

ppZ(q, p, τ) dτ
)

is always bounded due

to the global existence of solutions of the matrix Riccati equation [42]. As the flow



Asymptotic Solutions of the Phase Space Schrödinger Equation 21

gt constitutes a canonical transformation for all times, the determinant of ∂qt/∂z is
nonsingular, and thus aγ remains bounded both away from zero and infinity for all
times.

Thus, we have shown, that for small times, the semiclassical wave packet
propagator gives indeed the correct semiclassical asymptotics,

Kwp(x, y, t; ~) ∼ 1

(2πi~)d/2

∑

γ∈Γt
y,x

√

∣

∣

∣
det

∂p

∂qt

∣

∣

∣
e

i
~
Aγ−πi

2 νγ , (117)

the semiclassical van Vleck-Gutzwiller approximation of the propagator.

5. Asymptotic Solutions of the Phase Space Schrödinger Equation

We now turn to the issue of central interest, the asymptotic solutions for the
semiclassical initial value problem of the phase space Schrödinger equation. We
construct such asymptotic solutions by semiclassically evolving appropriate phase
space states under the semiclassical wave packet flow, U twp.

As we consider asymptotic solutions in the semiclassical approximation, it is
necessary to consider semiclassical initial data in phase space. To this end we consider
the phase space image, under W , of the WKBM state

ψ~

0 (x) = a(x)e
i
~
S(x) . (118)

The phase is real valued and smooth, S ∈ C∞(Rd,R), while the amplitude is real
valued and rapidly decrasing, a ∈ S(Rd,R), satisfying, additionally a normalization
condition

∫

a(x)2 dx = 1 . (119)

The phase space WKBM state is, for any N ∈ Z+ [41]

Ψ~

0(q, p) = Wψ~

0 (q, p) = a(q, p; ~)e
i
~
Σ(q,p)

= i−d/2(π~)−d/4e
i
~
Σ(q,p)

(

N−1
∑

k=0

~
kak(q, p) +O(~N )

)

, (120)

where

Σ(q, p) := S̃(x(q, p)) − p ·
(

x(q, p) − q
)

+
i

2

(

x(q, p) − q
)2

, (121)

and

a0(q, p) =
ã(x(q, p))

√

det−
(

S̃′′(x(q, p)) + iI
)

. (122)

The tilde stands for the almost analytic extension, and x(q, p) stands for the

almost analytic solution of the stationary equation ∂wS̃(w) − p+ i(w− q) = 0, where
w = x+ iy ∈ Cd is the complexification of x, (see subsection of the appendix (B.2)),
which reads,

x(q, p) = q +
(

S′′(q) + iI
)−1(

p− S′(q)
)

+O

(

(

p− S′(q)
)2
)

, (123)
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in a phase space neighborhood of the manifold ΛS , the Lagrangian manifold of the
initial phase S,

ΛS =
{

(q, p) : p = S′(q)
}

. (124)

The imaginary part of the phase Σ(q, p) is non-negative, Σ2 > 0 [41], becoming
zero only for (q, p) ∈ ΛS , the Lagrangian manifold of the initial phase S, so that
x|ΛS

(q, p) = q.
To leading order, the asymptotics of the wave packet transform of the initial data

are

Ψ~

0(q, p) ∼ (π~)−d/4
i−3d/2ã(x(q, p))

√

det
(

S̃′′(x(q, p)) + iI
)

e
i
~
Σ(q,p) , (125)

assuming the principal branch of the square root. Along the Lagrangian manifold,
(q, p) ∈ ΛS , we have

Ψ~

0(q, p) ∼ (π~)−d/4
i−3d/2a(q)

√

det
(

S′′(q) + iI
)

e
i
~
S(q) . (126)

Considering the above class of phase space states as initial data, we construct
the corresponding asymptotic solutions, Ψ~

wp, by the action of the semiclassical wave
packet propagator

Ψ~

wp(q, p, t) =

∫

Kwp(q, p, η, ξ, t; ~)Ψ~

0(η, ξ) dηdξ , (127)

which is asymptotic to the corresponding solution Ψ~(q, p, t), in the sense that
(

i~∂t − Ȟ
)

(Ψ~

wp − Ψ~) → 0 , (128)

weakly, algebraically in ~.
We examine the asymptotics of the integral representation of the asymptotic

solution, according to the asymptotic series for Ψ~
0 in (120), which we write in normal

form (see subsection (B.3) of the appendix),

Ψ~

wp(q, p, t) ∼
∫

χ(η, ξ, t; ~)e
i
~
Φ(q,p,η,ξ,t) dηdξ , (129)

where

χ(η, ξ, t; ~) = 2−d/2(π~)−5d/4
(

det Q2(η, ξ, t)
)1/4 i−3d/2ã(x(η, ξ)) eiλ(η,ξ,t)

√

det
(

S̃′′(x(η, ξ)) + iI
)

, (130)

and

Φ(q, p, η, ξ, t) = S̃(x(η, ξ)) − ξ ·
(

x(η, ξ) − η
)

+
i

2

(

x(η, ξ) − η
)2

+A(η, ξ, t)

−p · (ηt − q) +
1

2

(

q − ηt
p− ξt

)T

Q(η, ξ, t)

(

q − ηt
p− ξt

)

. (131)

The critical manifold of the phase Φ in complexified phase space, is

CΦ =
{

(z, ζ) : ∇(z,ζ)Φ̃(q, p, z, ζ, t) = 0
}

, (132)
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where z = η+ iu, ζ = ξ + iv ∈ C2d are complexifications of the phase space canonical
coordinates; the manifold CΦ is parameterized by the equations

η = z(q, p, t) , ξ = ζ(q, p, t) . (133)

The general expression of the asymptotic solution is given by the complex
stationary phase lemma (see subsection (B.3) of the appendix),

Ψ~

wp(q, p, t) ∼
(2π~

i

)d χ̃(q, p, z(q, p, t), ζ(q, p, t), t; ~)e
i
~
Φ̃(q,p,z(q,p,t),ζ(q,p,t),t)

√

det−Φ̃′′
(z,ζ)(q, p, z(q, p, t), ζ(q, p, t), t)

. (134)

As a phase space sumbmanifold, the nodal set of the imaginary part of the phase,

Φ2 (see subsection (B.2) of the appendix), ZΦ2 =
{

(q, p) : Φ2 = 0
}

is identified with

the Lagrangian manifold of the propagated phase,

ZΦ2 = gtΛS =: ΛtS . (135)

This is due to the fact that Σ2 > 0 [41], and the positive definitiveness of the imaginary
part of the phase space anisotropy form, Q2 ≻ 0. Thus, the real critical manifold
becomes

CR

Φ =
{

(η, ξ) : Φ2(q, p, η, ξ, t) = 0 , ∇(η,ξ)Φ(q, p, η, ξ, t) = 0
}

=
{

(η, ξ) : (η, ξ) = g−t(q, p) ∈ ΛS

}

, (136)

parameterized by the equations (η, ξ) = g−t(q, p), or

η = q(−t; q, S′(q)) , ξ = p(−t; q, S′(q)) . (137)

The asymptotic solution on the transported Lagrangian manifold ΛtS becomes

Ψ~

wp(q, p, t) ∼ (π~)−d/4
i−5d/2a(q−t)eiλ(q−t,p−t,t)e

i
~
Φ(q,p,q−t,p−t,t)

√

det
(

S′′(q−t) + iI
)

det Φ′′
(η,ξ)(q, p, q−t, p−t, t)

. (138)

One should note that in the leading order, the Hessian of the phase of the critical
manifold, i.e. its restriction on the real critical manifold, ammounts to the pullback
of the flow, Φ′′

(η,ξ)(q, p, η, ξ, t) ≡ Φ′′
(η,ξ)(q, p, g

t(η, ξ)), so that

Φ′′
(η,ξ)(q, p, q−t, p−t, t) = Φ′′

(η,ξ)(q, p, q, p, 0) , (139)

since the time dependence of the anisotropy form is implicit in the flow, Q(q, p, t) ≡
Q(gt(q, p)). We are lead to the result

detC2d×2dΦ′′
(η,ξ)(q, p, q−t, p−t, t) = detCd×d(−I) . (140)

Then, according to the selection of the branch of the square root in subsection (B.3)
of the appendix, we have

√

det Φ′′
(η,ξ)(q, p, q−t, p−t, t) = (−i)d . (141)

Finally, we deduce that along the Lagrangian manifold ΛtS the asymptotic solution
is

Ψ~

wp(q, p, t) ∼ (π~)−d/4
i−3d/2a(q−t)

√

det
(

S′′(q−t) + iI
)

exp
i

~

(

S(q−t) +A(q−t, p−t, t)
)

. (142)
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We note that the transported phase constrained on the real critical manifold,

S(q, t) = S(q−t) +A(q−t, p−t, t) , (143)

where q−t = q(−t; q, S′(q)), is the solution of the corresponding Hamilton-Jacobi

equation

∂S

∂t
+H

(

q,
∂S

∂q

)

= 0 , (144)

with initial data S(q, 0) = S(q), so that ΛtS = ΛS(·,t).
For reasons of convenience we have assumed above that the Lagrangian manifold

ΛtS is projectable, i.e., it can be diffeomorphically projected onto the base space. If
this is not so, one can carry out the above arguments by introducing appropriate local
coordinates, (qi1 , . . . , qim , pim+1 , . . . , pid), so that canonically conjugate coordinate
pairs are excluded, as was introduced by Maslov in his construction of the canonical
operator (e.g., [40]). This overcomes the problem of caustics due to folds of the
Lagrangian manifold ΛtS .

5.1. Classical Limit of the Asymptotic Solution

As the square modulus of the phase space wave function is a Husimi density (see
subsection (A.4) of the appendix), we expect that in the classical limit it will give a
singular measure, concentrated on the Lagrangian manifold ΛtS.

For the asymptotic solution, we have

∫

|Ψ~

wp(q, p, t)|2 dqdp ∼
∫

(π~)−d/2
2d
√

det Q̃2 |ã|2 e−
2
~
Im Φ̃

| det
(

(S′′ + iI) Φ̃′′
(z,ζ)

)

|
dqdp , (145)

which by the generalized stationary phase lemma [47], becomes to leading order
∫

|Ψ~

wp(q, p, t)|2 dqdp ∼
∫

Λt
S

a2

| det (S′′ + iI)| dν . (146)

The induced Riemannian metric tensor on the transported Lagrangian manifold
ΛtS reads

g =
∑

jl

(

δjl +
(

S′′(q, t)2
)

jl

)

dqjdql , (147)

so that the Riemannian measure on the manifold is dν =
√

|g|dq, where

√

|g| =

√

det
(

S′′2 + I
)

. (148)

Having noted that | det (S′′ + iI)|2 = det (S′′2 + I), we deduce that
∫

|Ψ~

wp(q, p, t)|2 dqdp ∼
∫

a(x)2 dx = ‖ψ~

0‖2
L2(Rd) = 1 , (149)

in complete analogy to the WKBM asymptotic solution of the Schrödinger equation.
The difference, of course, is the existence of the Jacobian factor related to the
solution of the transport equation (see, e.g., [33]); lifted to the phase space, it is
unity, the Jacobian of a symplectomorphism, modlulo the geometry of the transported
Lagrangian manifold ΛtS .
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6. Two Simple Illustrations

In order to put the semiclassical phase space propagator Kwp defined in (89), to the
test, we compare the asymptotic solutions it produces against solutions of the phase
space Schrödinger equation for two simple idealized physical situations. In the first
case we consider the propagation of a microparticle free of any external interactions,
and in the other case scattering of a microparticle by a constant electric field, both in
one dimension.

In both cases we have subquadratic polynomial potentials, V (q) =
∑

|α|62 cαq
α,

so they share the common characteristic of linearity of the Hamiltonian flow, and the
phase space uniformity of the anisotropy form; the matrix Riccati equation is common
for such systems, yielding the anisotropy form

Z(t) =
1

2t− i
, W (t) = −

(

Z(t) + i
)−1

=
i

2

1 + 2it

1 + it
, (150)

constant in the initial phase space points. The phase space anisotropy form reads

Q(t) =
1

2(1 + it)

(

i −(1 + 2it)
−(1 + 2it) i(1 + 2it)

)

, (151)

and

det Q2(t) =
1

4(1 + t2)
, (152)

while additionally, we have the phase

λ(t) = −1

2
arctan (2t) +

1

2
arctan

( t

1 + 2t2

)

. (153)

We expect the semiclassical solution to be the exact solution, something
characteristic for the class of quadratic potentials.

The quantum dynamics are given by the solution of the phase space initial value
problem

i~
∂Ψ

∂t
= −~

2 ∂
2Ψ

∂q2
+ V

(

q + i~
∂

∂p

)

Ψ , 0 < t 6 T

Ψ(·, 0) = Ψ~

0 = Wψ~

0 ∈ F
2 , (154)

which stems from the configuration space problem,

i~
∂ψ

∂t
= −~

2 ∂
2ψ

∂x2
+ V (x)ψ , 0 < t 6 T

ψ(·, 0) = ψ~

0 ∈ L2(Rd) . (155)

As initial data, for both cases, V (x) = 0 and V (x) = x, we set off by considering
appropriate semiclassical initial data for the Schrödinger equation, which allows for
explicit calculations. We take semiclassical initial data, a complex phase WKBM state

ψ~

0 (x) = π−1/4e−
1
2x

2

e
i
2~
x2

, (156)

so that the initial amplitude and phase are, respectively, a(x) = π−1/4e−x
2/2 and

S(x) = 1
2x

2, generating the Lagrangian manifold ΛS =
{

(q, p) : p = q
}

.

The phase space image of the initial data ψ~
0 under the wave packet transform is

Ψ~

0(q, p) := Wψ~

0 (q, p) = ~
−1/4

√

1

π

1

1 − i+ ~
e−p

2/2~ exp
1

2~

i− ~

1 − i+ ~
z2 , (157)

for z = q − ip.



Asymptotic Solutions of the Phase Space Schrödinger Equation 26

6.1. Free Motion

The Hamiltonian is

H(q, p) = p2 , (158)

which induces the flow gt(q, p) = (q + 2tp, p) , t > 0. The phase space action along
the flow is A(q, p, t) = p2t.

The solution is obtained by means of the free propagator [13],

ψ~(x, t) =
1

(4πi~t)1/2

∫

e
i

4~t
(x−y)2ψ~

0 (y) dy . (159)

For the particular initial data, we obtain,

ψ~(x, t) = π−1/4

√

1

1 + 2(1 + i~)t
exp

i

2~

( 1 + i~

1 + 2(1 + i~)t
x2
)

, (160)

which in phase space, becomes, by applying the wave packet transform,

Ψ~(q, p, t) = ~
−1/4

√

1

π

1

1 − i+ ~ + 2(1 + i~)t

× exp
i

2~

−2i(1 + i~)qp+ (1 + i~)q2 + i(1 + 2(1 + i~)t)p2

1 − i+ ~ + 2(1 + i~)t
. (161)

The semiclassical wave packet propagator is

Kwp(q, p, η, ξ, t; ~) =
e
− i

2

(

arctan (2t)+arctan

(

1+2t2

t

)

+ π
2

)

2π~(1 + t2)1/4
exp

i

~

(

ξ2t− p(η − q + 2ξt)

+
1

4(t− i)

[

(q − η)2 − 2i(q − η)ξ + (1 + 2it)p2

+(1 + 6it− 4t2)ξ + 2p(i− 2t)(q − η + iξ − 2tξ)
]

)

. (162)

The semiclassical solution by the semiclassical wave packet propagator, is given
by

Ψ~

wp(q, p, t) =

∫

Kwp(q, p, η, ξ, t; ~)Ψ~

0(η, ξ) dηdξ . (163)

For the particular choice of initial data above, the asymptotic solution constructed
by means of the semiclassical wave packet propagator, U twp,

Ψ~

wp(q, p, t) = ~
−1/4

√

1

π

1

1 − i+ ~ + 2(1 + i~)t

×
√

1 + it√
1 + t2

e
− i

2 (arctan (2t)−arctan

(

t2+1
t

)

)

× exp
i

2~

−2i(1 + i~)qp+ (1 + i~)q2 + i(1 + 2(1 + i~)t)p2

1 − i+ ~ + 2(1 + i~)t
. (164)

We unsurprisingly note that the asymptotic solution bore by the wave packet
propagator, is actually identified with the exact solution.
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The asymptotic solution, and thus the solution itself, is semiclassically
concentrated on the Lagrangian manifold as transported by Hamilton-Jacobi
dynamics. In particular, the Hamilton-Jacobi problem

∂S

∂t
+
(∂S

∂x

)2

= 0 , t ∈ R+

S(x, 0) = S(x) =
1

2
x2 , (165)

has the solution

S(x, t) =
1

2

x2

1 + 2t
, (166)

which induces the transported Lagrangian manifold

ΛtS =
{

(q, p) : p = ∂qS(q, t)
}

=
{

(q, p) : p =
q

1 + 2t

}

, (167)

i.e., initially the diagonal straight line ΛS =
{

(q, p) : p = q
}

, asymptotically tending

to the horizontal straight line p = 0.

6.2. Scattering by a Constant Electric Field

The Hamiltonian is

H(q, p) = p2 + q , (168)

which induces the flow gt(q, p) = (q + 2tp− t2, p− t), t > 0. The phase space action
along the flow is A(q, p, t) = (p2 − q)t− 2pt2 + 2

3 t
3.

The solution of the phase space problem is obtained by means of the Airy
propagator [12],

ψ~(x, t) =
e
− i

~

(

1
3 t

3+tx

)

2(2πi~)1/2

∫

e−
1

4i~t
(x−y+t2)ψ~

0 (y) dy . (169)

For the particular initial data, we obtain,

ψ~(x, t) = π−1/4

√

1

1 + 2(1 + i~)t

× exp
i

~

(

1

2

(t2 + x)2

1 + 2(1 + i~)t
− 1

3
t3 − tx

)

exp−1

2

(t2 + x)2

1 + 2(1 + i~)t
, (170)

which in phase space, becomes, by applying the wave packet transform,

Ψ~(q, p, t) = ~
−1/4

√

1

π

1

1 − i+ ~ + 2(1 + i~)t

× exp
i

~

1

1 + 2(1 + i~)t

(

i

2

[

i(1 + 2(1 + i~)t)(q − ip) + (1 + (1 + i~)t)t
]2

1 − i+ ~ + 2(1 + i~)t

+
i

2
(q2 − 2iqp)(1 + 2(1 + i~)t) − 1

3
t3
[

1 +
1

2
(1 + i~)t

]

)

. (171)
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The semiclassical wave packet propagator is

Kwp(q, p, η, ξ, t; ~) =
e
− i

2

(

arctan (2t)+arctan

(

1+2t2

t

)

+ π
2

)

2π~(1 + t2)1/4

× exp
i

~

(2

3
t3 + (p− 2ξ)t2 + (ξ2 − η − 2pξ)t+ p(q − η)

)

× exp
i

4~(1 + t2)

(

t(q − ηt)
2 − t(p− ξt)

2 − 2(1 + 2t2)(q − ηt)(p− ξt)

+i
[

(q − ηt)
2 + (1 + 2t)(p− ξt)

2 − 2t(q − ηt)(p− ξt)
]

)

. (172)

And so, the semiclassical solution by the semiclassical wave packet propagator, is
given by

Ψ~

wp(q, p, t) =

∫

Kwp(q, p, η, ξ, t; ~)Ψ~

0(η, ξ) dηdξ . (173)

For the particular choice of initial data above, we have,

Ψ~

wp(q, p, t) = ~
−1/4

√

1

π

1

1 − i+ ~ + 2(1 + i~)t

×
√

1 + it√
1 + t2

e
− i

2 (arctan (2t)−arctan

(

t2+1
t

)

)

× exp
i

2~

(

it2 +
2i

3
(i+ 1 + i~)t3 − 1

3
(1 + i~)t4

−2t
[

1 + (1 + i~)t
]

(q − ip) + (1 + i~)q2 +
[

1 + 2(1 + i~)
]

tp2 − 2i(1 + i~)qp

)

. (174)

As in the case of free motion, the asymptotic solution is identified with the exact
solution.

The asymptotic solution, and thus the solution itself, is semiclassically
concentrated on the Lagrangian manifold as transported by Hamilton-Jacobi
dynamics. In particular, the Hamilton-Jacobi problem

∂S

∂t
+
(∂S

∂x

)2

+ x = 0 , t ∈ R+

S(x, 0) = S(x) =
1

2
x2 , (175)

has the solution

S(x, t) =
1

2(1 + 2t)

(

x2 − 2t(1 + t)x− 1

3
(2 + t)t3

)

, (176)

which induces the transported Lagrangian manifold

ΛtS =
{

(q, p) : p = ∂qS(q, t)
}

=
{

(q, p) : p =
q − t(t+ 1)

1 + 2t

}

, (177)

i.e., initially the diagonal straight line ΛS =
{

(q, p) : p = q
}

, asymptotically tending

to the horizontal straight line p = − t
2 .
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7. Discussion

We have considered the singular initial value problem for the Schrödinger equation
in phase space and its semiclassical asymptotic solutions for WKBM phase space
initial data. We pass to the phase space representation by conjugating with the wave
packet transform. We introduce the phase space quantum flow, and the phase space
propagator, and give a well posed initial value problem in the phase space.

The asymptotic solutions are constructed via a semiclassical propagator for
the phase space Schrödinger equation, the wave packet propagator, based on the
anisotropic Gaussian approximation.

The wave packet propagator defines a linear, unitary quantum flow on the Fock-
Bargmann space, meaning that semiclassical quantum evolution preserves an initially
pure state as such.

It is underlied by a rigid algebraic structure, characteristic of the anisotropic
Gaussian approximation and the nearby orbit approximation on which it is
constructed. It closely resembles the wave packet quantization of a canonical
transformation [41, 42].

The wave packet propagator is seen in a weak limit to approach the Gutzwiller-
van Vleck propagator. It is also tested against complex phase WKBM initial data,
reproducing the exact solutions for the phase space initial value problem in the simple
situations of free motion and scattering off a constant electric field.

The asymptotic solution produced by the semiclassical wave packet propagator
yields a semiclassical Husimi function on the Lagrangian manifold ΛtS , where S is the
initial WKBM phase; alternatively, the Lagrangian manifold generated by the solution
of the Hamilton-Jacobi equation with initial data S(q).

The relation to the Maslov canonical operator can be seen by taking the inverse
wave packet transform of the asymptotic solution (142),

ψ~(x, t) ∼
( 1

2π~

)d/2
∫

G(q,p)(x; ~)Ψ~

wp(q, p, t) dqdp , (178)

becoming asymptotically an integral over ΛtS.
The authors would like to thank Sergey Dobrokhotov, Frederic Faure, Maurice

de Gosson, Robert Littlejohn, Vladimir Nazaikinskii, Vesselin Petkov and Roman
Schubert for fruitfull conversations and enlightening comments.

A. The Wave Packet Transform and Quantization

A.1. The Wave Packet Transform

The wave packet transform defines a bounded operator

W : L2(Rd,C; dx) → F2 , (A.1)

whose image space, the Fock-Bargmann space, is a subspace of L2(R2d,C; dqdp) [42].
It satisfies the Plancherel equality

∫

ψ̄ϕ dx =

∫

WψWϕdqdp , (A.2)

rendering it an isometric isomorphism, which guarantees the unitarity of the quantum
flow in phase space and the conservation of the phase space probability [42].

The wave function ψ is represented in phase space by analyzing it in the
overcomplete set of isotropic Gaussian wave packets, {G(q,p)}(q,p)∈R2d . Isotropic
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Gaussian wave packets constitute a nondenumerable, overcomplete basis in L2(Rd), in
the sense that any ψ ∈ L2(Rd) can be written uniquely as a superposition of coherent
states, which are, however, not orthogonal [42, 48, 41],

〈G(q,p), G(η,ξ)〉L2(Rd) = (π~)d/2e
i
~

(

p·q−η·ξ+ 1
2 (η+q)·(ξ−p)+ i

4 (q−η)2+ i
4 (p−ξ)2

)

. (A.3)

Rather, they are asymptotically orthogonal,

〈G(q,p), G(η,ξ)〉L2(Rd) = O(~∞) , (A.4)

for fixed (q, p) 6= (η, ξ), or, more specifically,
(

1

π~

)d/2

〈G(q,p), G(η,ξ)〉L2(Rd) ⇀∗ δ(q − η)δ(p− ξ) . (A.5)

While they fail to satisfy a completeness relation in L2(Rd), they satisfy a
completeness relation in phase space [42, 48],

(

1

2π~

)d ∫

Ḡ(q,p)(x; ~)G(q,p)(y; ~) dqdp = δ(x − y) . (A.6)

The main physical significance of coherent states is that they are the optimal
wave functions in minimizing the product of the position-momentum uncertainties,
naturally associating them with pure mechanical states, i.e., points in phase space. If
x̂ = mx is the multiplication operator by x and p̂x = −i~∂x, it is straightforward to
incur the uncertainty relations while in the state G(q,p),

∆x̂j = ∆p̂xj
=

√

~

2
, (A.7)

so that there is a saturation of the Heisenberg inequality, ∆x̂j ∆p̂xj
= ~

2 [41].
The phase space wave function, Ψ(q, p) = Wψ(q, p), allows a statistical

interpretation: is the probability amplitude of a microparticle being in the quantum

coherent state G(q,p)(x). It cannot be interpreted in an analogous way to Schrödinger
wavefunctions, i.e., the probability amplitude of a microparticle’s position and
momentum being (q, p), as the maximum resolution in phase space is the Planck
cell. This reflects the fact that in phase space quantum theory the pure state is not
related to a quantum state supported in a sense at that point, but a coherent state
microlocalized on that point on the Heisenberg scale. An equivalent way of defining
the wave packet transform is by the Weyl operator [32, 8],

Tz := e
i
~

(

p·x̂−q·p̂x

)

= e
i
~

(

p·x+i~q·∂x

)

, (A.8)

where z = q − ip. The Weyl operator is unitary, and has the following property

〈ψ, ẑψ〉L2(Rd) = z ⇒ 〈ψ, T ∗
ζ ◦ ẑ ◦ Tζψ〉L2(Rd) = z − ζ , (A.9)

for ζ = η − iξ, as well as the group structure,

Tz ◦ Tζ = Tz+ζ , T −1
z = T ∗

z = T−z , T0 = IdL2(Rd) . (A.10)

By the Baker-Cambell-Hausdorff formula, it is simplified to Tz = e−
i

2~
p·qe

i
~
p·xe−q·∂x .

The Wey operator generates the set of isotropic Gaussian wave packet by its
action on the vacuum Gaussian state, G0(x; ~) = (π~)−d/4e−x

2/2~,

TzG0(x) = G(q,p)(x; ~) . (A.11)
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Its action on general Gaussian wave packets is simply that of phase space translation,

TzGZκ (x; ~) = Tz(π~)−d/4e
i
~

(

κ·x+ 1
2x·Zx

)

= GZκ−p(x− q; ~) . (A.12)

By means of the Weyl operator, the wave packet transform can thus be expressed

Wψ(q, p) =

(

1

2π~

)d/2

tr
(

T ∗
z ψ〈G0, ·〉L2(Rd)

)

(q, p) . (A.13)

A.2. The Analytic Structure of the Wave Packet Transform

The following commutation relations of the wave packet transform with the conjugate
canonical dynamical variables x̂ and p̂x hold [53, 21, 42]:

W ◦ x̂ = (q + i~∂p) ◦W and W ◦ (−i~∂x) = (−i~∂q) ◦W . (A.14)

These relations define the wave packet image of the conjugate canonical pair, namely

q̌ = q + i~
∂

∂p
, p̌ = −i~ ∂

∂q
. (A.15)

Rearranging the above commutation relations, one readily incurs that any Ψ = Wψ ∈
F2 is constrained by the relation

ˇ̄zΨ = z̄Ψ , (A.16)

where z̄ = q + ip, and ˇ̄z = ž∗ is the annihilation operator, in terms of many body
quantum mechanics. Such a constraint on phase space wave functions comes as little
surprise, as the doubling of the dimensionality of the base space introduces a great
redundancy in the image space.

In terms of the above constraint, the Fock-Bargmann constraint [53, 7], the Fock-
Bargmann space F2, as a subspace of L2(R2d) can be written as

F2 =
⋂

j

ker
(

~∂qj
− i~∂pj

− ipj

)

=
⋂

j

ker
(

∂qj
− i∂pj

)(

ep
2/2~(·)

)

, (A.17)

making explicit its Gaussian ‘twisted’ analyticity property.
The Fock-Bargmann constraint defines an analyticity condition on the Fock-

Bargmann space and the projector onto F2, which is elucidated by considering the

complex Fock-Bargmann space¶, F2
C
, which comprizes of analytic functions on Cd,

embedded in complex Gaussian weighted L2 space, F2
C
⊂ L2(Cd,C; dµ), where

dµ(z, z̄) =
e−z̄·z

πd
dm(z, z̄) =

(2i

π

)d

e−z̄·z dz̄dz (A.18)

is the Gaussian, and dm the Lebesgue measures on Cd respectively. Here we
have microlocalized symplectic complex pseudocoordinates, on the Heisenberg scale,
meaning

z =
q − ip√

2~
, z̄ =

q + ip√
2~

, (A.19)

reserving the same notation z, z̄ for convenience. The above is made quite transparent
by the form (7) of the Fock-Bargmann constraint.

The isomorphism between the Fock-Bargmann spaces explicitly reads

χ : F2 → F2
C

∣

∣

∣
Ψ 7→ f = χΨ , (A.20)

¶ This is actually the Hilbert space of analytic functions discovered by Bargmann [2, 3]
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where [42]

χΨ(z) = g(z, z̄)Ψ ◦M−1(z, z̄) =: f(z)

χ−1f(q, p) =
f ◦M(q, p)

g ◦M(q, p)
= Ψ(q, p) , (A.21)

with M the linear symplectic phase space pseudocomplexification,

M =
1√
2~

(

I −iI
I iI

)

, (A.22)

the overall factor g being a Gaussian,

g(z, z̄) = (2π
√

~)−d/2e
1
4 (z−z̄)2− 1

2 z
2

. (A.23)

The above isomorphism maps the Fock-Bargmann constraint on phase space wave
functions to the Cauchy-Riemann analyticity conditions, ∂̄zf = 0, so that as a
subspace of L2(Cd), the complex Fock-Bargmann space is

F2
C =

⋂

j

ker ∂̄zj
. (A.24)

The twisted analyticity properties of phase space wave functions, and their
connection to the space of Gaussian weighted phase space analytic functions, stems
from the connection of the wave packet transform to the Bargmann transform [2, 3].
The wave packet transform is a ‘semiclassical microlocalization’ of the Bargmann
transform. Explicitly, the analytic function determined by the isomorphism χ is the
Bargmann transform of ψ localized on the Heisenberg scale,

f(z) = Bu(z) =
1

πd/4

∫

e−
1
2 (z2+x2)+

√
2z·xu(x) dx . (A.25)

The induced topological structures of the two spaces are given by the inner
products

〈Ψ,Ξ〉F2 :=

∫

Ψ̄ Ξ dqdp , ‖Ψ‖2
F2 := 〈Ψ,Ψ〉F2 (A.26)

and

〈f, g〉F2
C

:=

∫

f̄ g dµ(z, z̄) , ‖f‖2
F2

C

:= 〈f, f〉F2
C

. (A.27)

The adjoint operator of W is [42]

W∗ : L2(R2d) → L2(Rd)
∣

∣

∣
Ψ 7→ W∗Ψ , (A.28)

where

W∗Ψ(x) =

(

1

2π~

)d/2

lim
n

∫

G(q,p)(x; ~)Ψn(q, p) dqdp

=:

(

1

2π~

)d/2 ∫ ∗
G(q,p)(x; ~)Ψ(q, p) dqdp , (A.29)

where {Ψn} is a sequence of bounded, compactly supported phase space functions
with Ψn → Ψ strongly in L2(R2d). The adjoint enables us to introduce the orthogonal
projection PF2 : L2(R2d) → F2 [42],

PF2 := W ◦W∗ , (A.30)



Asymptotic Solutions of the Phase Space Schrödinger Equation 33

which plays a central role in the wave packet quantization formalism. Restricted on
F2, the adjoint W∗ is identified with the inverse W−1 [42],

W∗|F2 = W−1 and W ◦W∗|F2 = IdF2 . (A.31)

In particular, for Ψ ∈ F2

W−1Ψ~(x) =

(

1

2π~

)d/2 ∫ ∗
G(q,p)(x; ~)Ψ~(q, p) dqdp

=

(

1

2π~

)d/2 ∫

G(q,p)(x; ~)Ψ~(q, p) dqdp . (A.32)

There is a simple physical interpretation of the Fock-Bargmann decomposition of
the phase space Hilbert space,

L2(R2d) = F2 ⊕ (F2)⊥ , (A.33)

in phase space functions which are images of Schrödinger wave functions, and those
which are not. The L2 phase space functions outside F2 account for mixed quantum

states, which do not correspond to Schrödinger wave functions, while the elements of
F2 account for pure quantum states.

The Fock-Bargmann projector PF2 induces equivalence classes of mixed quantum
states [Ψ] ⊂ L2(R2d) equivalent to the corresponding pure state Ψ0 = PF2Ψ, modulo
scaling. The local properties of PF2 are a smoothing on the Heisenberg scale, smearing
away oscillations on that scale

PF2Ψ(q, p) =

(

1

2π~

)d ∫∫ ∗
e

i
~

(

p·(y−x)+ i
2

[

(x−q)2+(y−q)2
])

Ψ(η, ξ) dxdηdξ . (A.34)

For F2
C
, there is a smooth kernel analogue of the Dirac distribution customary in

nonanalytic Hilbert spaces. In particular, the kernel

BF2
C

(z, ζ̄) := ez·ζ̄ , (A.35)

the Bergmann reproducing kernel, has the reproducing property [2, 3]

f(z) =

∫

BF2
C

(z, ζ̄)f(ζ) dµ(ζ, ζ̄) . (A.36)

It is the integral kernel of the pseudocomlplexified Fock-Bargmann projector, f(z) =
PF2

C

f(z), where

PF2
C

= χ ◦ PF2 ◦ χ−1 . (A.37)

A.3. The Wave Packet Quantization

In this subsection we make note of the relation between the Heisenberg to the wave
packet quantization. We reserve the notations f 7→ OpH(f) and f 7→ Opwp(f) for the
two quantizations respectively.

The Heisenberg quantization of f is defined as

OpH(f) := F∗ ◦mf ◦ F = f
(

2
x,−i~

1

∂x

)

, (A.38)

where mf is the multiplication operator by f , and F is the semiclassical Fourier

transform, Ff(ξ) =
(

1
2π~

)d/2
∫

e−
i
~
x·ξf(x) dx. As a pseudodifferential operator, it

reads

OpH(f)ψ~(x) =
( 1

2π~

)d
∫

e
i
~
p·(x−q)f(x, p)ψ~(q) dqdp , (A.39)
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while for analytic f , we have the representation

OpH(f)ψ~(x) = f
(

2
x,−i~

1

∂x

)

ψ~(x) =
∑

α,β∈Zd
+

∂αx ∂
β
px
f(0)

α!β!
xα(−i~∂x)βψ~(x) . (A.40)

The wave packet quantization of f is defined according to the rule [42]

〈ψ~,Opwp(f)ψ~〉L2(Rd) = 〈Wψ~, fWψ~〉F2 . (A.41)

In particular, we have

Opwp(f) := W∗ ◦mf ◦W = f
(

2
x,−i~

1

∂x

)

+O(~∞) , (A.42)

a definition analogous to (A.38). The difference can be understood in noting the
rigidity in the order of integration in a Fourier inegral operator representation of the
later,

Opwp(f)ψ~(x) =
( 1

2π~

)d
∫∫ ∗

G(η,ξ)(x; ~)Ḡ(η,ξ)(y; ~)f(η, ξ)ψ~(y) dydηdξ , (A.43)

according to definition (A.29).
The operator Opwp(f) has the alternative form

Opwp(f) = W−1 ◦ PF2 ◦mf ◦W , (A.44)

where PF2 = W ◦W∗ is the projector onto the Fock-Bargmann space F2.
As they ought to, the above quantization rules share a common weak classical

limit. If Opwp(f) = g
(

2
x,−i~

1

∂x; ~
)

, then we have the semiclassical relation [42]

g(q, p; ~) ∼
∞
∑

k=0

~k

k!

(

1

4
∆(q,p) −

i

2
∂q · ∂p

)k

f(q, p) , (A.45)

differing, in general, even for polynomial symbols.
These operators can be expressed in the phase space representation, by means of

conjugations with the wave packet transform. One should, however, take care not to
confuse the wave packet quantization of some physical quantity f , which is an operator
on an appropriate subspace of L2(Rd), with the phase space representation of some
operator over L2(Rd), which is an operator over a subspace of L2(R2d). The former
characterization is concerned with a specific quantization scheme, while the later with
a specific representation of operators in a different quantum state space.

For any operator A : L2(Rd) → L2(Rd), we define its phase space representation
as

W ◦A ◦W−1 : F2 → F2 . (A.46)

For Heisenberg operators f̂ = OpH(f), we have

W ◦ f̂ ◦W−1 = W ◦ f
(

2
x,−i~

1

∂x

)

◦W−1 = f
( 2
q +i~∂p,−i~

1

∂q

)

, (A.47)

where we have used the relations (A.14). We use the notation

f̌ := W ◦ f̂ ◦W−1 . (A.48)

Analogously, the phase space representation of the wave packet quantization of f
reads

W ◦ Opwp(f) ◦W−1 = PF2 = f
( 2
q +i~∂p,−i~

1

∂q

)

+O(~∞) . (A.49)
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We note that the Heisenberg and wave packet quantizations of the cannonically
conjugate pair q and p are identical,

OpH(x) = Opwp(x) = x̂ = mx and OpH(px) = Opwp(px) = p̂x = −i~∂x , (A.50)

which leads to the phase space representation

W ◦ OpH(x) ◦W−1 = q̂ = q + i~∂p and W ◦ OpH(px) ◦W−1 = p̂ = −i~∂q .(A.51)

For a detailed account on the semiclassical wave packet quantization of
symplectomorphisms, the thrird essential ingredient of the physical theory next to
mixed states and physical quantities, see Nazaikinskii et al [41, 42].

A.4. Relation to the Wigner Transform

The wave packet quantization is of no use in the description of systems in strong
interaction with their external environment. In this case, a wave fucntion description is
not possible, and the quantum system is necessarily described by a statistical ensemble
of wave functions. The quantum state of motion is in this case a density operator, a
trace class rank one projection operator of the form [55],

ρ̂ =
∑

ψ∈E
m(ψ)Pψ , (A.52)

over some countable wave function ensemble, E ⊂ L2(Rd). Pψ is the orthogonal
projector onto the ray span{ψ}, and 0 6 m(ψ) 6 1 are probabilities constrained by
the normalization

∑

ψm(ψ) = 1, reflecting the potential possibilities of the system
being in a certain state ψ. The notation used ρ̂ does not imply that the density
operator is a quantization of some classical phase space density.

In the case of an isolated quantum system, the above reduces to

ρ̂ = ψ〈ψ, ·〉L2(Rd) . (A.53)

The phase space representation of the density operator is

ρ̌ = W ◦ ρ̂ ◦W−1 = Ψ〈Ψ, ·〉F2 . (A.54)

The Wigner function is

Wψ(q, p; ~) =

(

1

2π~

)d ∫

e
i
~
p·xψ~(q − x/2)ψ̄~(q + x/2) dx , (A.55)

the Weyl symbol of the density operator [55]. Unlike the wave packet transform, the
Wigner transform defines a bilinear integral transform of the wave function. It is also
real valued, unlike the complex valued phase space Schrödinger equation.

The dynamics of the density operator is defined by the Heisenberg equation

i~
dρ̂

dt
+ [ρ̂, Ĥ ] = 0 . (A.56)

By taking the Weyl symbol of the left hand side, we have the von Neumann equation,
or quantum Liouville equation. If the underlying classical system is generated by the
Hamiltonian H , then the time evolution law for the Wigner function reads [55]

i~
∂W

∂t
= H ⋆W −W ⋆H . (A.57)

Here we have introduced the noncommutative, nonassociative Moyal product [55],

f ⋆ g (q, p) :=
( 1

π~

)2d
∫∫

f(q + η, p+ ξ)g(q + u, p+ v)e
2i
~

(η·v−ξ·u) dηdξdudv . (A.58)
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The Moyal product induces the Moyal bracket,

{{f, g}} :=
1

i~

(

f ⋆ g − g ⋆ f
)

= {f, g} +O(~) , (A.59)

which is a noncommutative, nonassociative deformation of the Poisson bracket for
positive ~. In terms of the Moyal bracket, the von Neumann equation can be written
in a form which makes its characterization as the quantum Liouville equation more
apparent,

∂W

∂t
= {{H,W}} . (A.60)

There is a direct connection between the Wigner formalism and wave packet
quantization. The density function |Ψ|2 which defines a phase space probability
measure cannot be equated to the Wigner function, as it assumes negative values
as well, but rather to the corresponding Husimi density [55],

|Wψ(q, p)|2 = hψ(q, p; ~) := G ∗Wψ(q, p; ~) , (A.61)

the convolution of the Wigner function with a Gaussian, G, over the Heisenberg scale,
smearing away oscillations on that scale which sweep both positive and negative signs,
rendering it a true phase space densitIy.

The most striking advantage of the Wigner quantization, is that, in contrast to
the wave packet quantization, it allows one to consider mixed quantum states. In
other words, any phase space wave function in L2(R2d), along with mild smoothness
conditions, are admissible initial data for the von Neumann equation, whereas the
phase space Schrödinger equation admits only initial data in F2, corresponding to
pure quantum states, if one is to consider it not merely as a mathematical pseudo-
differential equation stripped of all physical content.

B. Asymptotics of Integrals of Rapidly Oscillating Functions

In the present we give an outline of the fundamental result on the asymptotic behavior
of highly oscillating integrals with complex phase function, of the form resulting from
the construction of WKBM wave functions. In particular, a version of the method of
stationary phase for complex phase functions.

B.1. Gaussian Integrals

For M ∈ Cn×n symmetric and ReM ≻ 0, and v ∈ Cn, we have the closed form
Gaussian integral

∫

e−
1
2x·Mx+v·x dx =

(2π)n/2√
det M

e
1
2 v·M

−1v , (B.1)

In the above, as well as throughtout this paper, we take
√
eit := eit/2 for real t,

the principal branch of the square root.

B.2. Almost Analytic Extensions

Let f ∈ S(Rn,C). We define its N -analytic extension, Nf : C
n → C as follows [40]

Nf(x+ iy) :=

N
∑

k=0

1

k

(

iy · ∂
∂x

)k

f(x) . (B.2)
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For arbitrary N ∈ Z+, we are led to the concept of the almost analytic extension,
f̃ := ∞f : O ⊂ Cn → C such that Rn ⊂ O, f̃ |Rn = f , satisfying the Cauchy-
Riemann conditions to all order (z here is not to be confused with the pseudocoordinate
introduced in appendix A),

∂̄z f̃(z) = O
(

‖Im z‖∞
)

, (B.3)

for z = x + iy nearly real. If f is real analytic, f̃ coincides with its unique analytic
continuation in O × R

m.
Following Malther [45], a representation of the almost analytic extension of f is

f̃(z) =
( 1

2π

)n/2
∫

ϕ(y · ξ)eiξ·zF (ξ) dξ , (B.4)

where ϕ ∈ C∞
0 (Rn, [0, 1]), supported inside the unit ball B1(0), becoming unity at a

small neighborhood of the origin, ϕ(0) = 1, and F if the Fourier transform of f , (using
the same notation as in the appendix for the semiclassical Fourier transform)

F (ξ) = Ff(ξ) =
( 1

2π

)n/2
∫

e−iξ·xf(x) dx . (B.5)

For the sake of convenience we do not use the notation f̃(z, z̄), which formally is
more proper, as it stresses the fact that the function f̃ is not analytic in z.

B.3. Complex Stationary Phase Lemma

In this subsection we follow the work of Sjöstrand and Melin [39]. Firstly, for a smooth
function f : R

n → R, we define the stratified manifolds

Cf :=
{

x :
∂f

∂x
(x) = 0

}

and Zf :=
{

x : f(x) = 0
}

, (B.6)

to be the critical set and nodal set of f , respectively.
We now consider the asymptotic behavior of oscillating integrals, which are of the

form

I~

a,f (w) :=

(

i

2π~

)n/2 ∫

a(x; ~)e
i
~
f(x,w) dx , (B.7)

for small positive ~ and (x,w) ∈ Rn × Rm. The following conditions are assumed:

1) the phase function is f = f1 + if2 ∈ C∞(Un×Vm,C), where Un and Vm are neigh-
borhoods of the origins of Rn and Rm respectively, with nonnegative imaginary part,
f2 > 0, equality being saturated at the origin (x,w) = 0; the origin is also a nondegen-
erate stationary point, ∂xf(0) = 0 with det f ′′

xx(0) 6= 0, which leads to Im f ′′
xx(x,w) ≻

0 in (Un × Vm). The critical manifold of f2, Cf2 :=
{

(x,w) : ∂xf2(x,w) = 0
}

, is

thus nondegenerate. Additionally, the nodal set Zf2 :=
{

(x,w) : f2(x,w) = 0
}

is

identified with the critical set Zf2 ≡ Cf2 .

2) The amplitude is a ∈ S0
1−δ(R

n×R+,C), where δ < 1
2 , supported in a neighborhood

of the origin within Un × Vm, admitting a regular semiclassical asymptotic expansion
in the interior of supp a( · ; ~),

a(x; ~) ∼
∞
∑

k=0

~
kak(x) , ~ → 0+ . (B.8)
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As f is smooth, it admits an almost analytic extension f̃ into the complex domain
O × Rm, where O ⊂ Cn containing the real subspace Rn, satisfying the Cauchy-
Riemann conditions to all orders,

∂̄z f̃(z, w) = O
(

‖Im z‖∞
)

, (B.9)

for z = x+ iy nearly real.
Let there be a real critical point, i.e., z = x0+i0 such that ∂z f̃(x0, w) = 0. By the

implicit function theorem, the critical manifold Cf̃ continues locally into the complex
domain O × Rm, parameterized by the almost analytic coordinate chart

z = z(w) , (B.10)

always in a small neighborhood of (x0, w0), with x0 = z(w0), say the ball Bδ(x0, w0)
for some 0 < δ < 1. The above is termed an almost solution of ∂xf(x,w) = 0.

The positivity of the imaginary part continued into the complex critical manifold
is guaranteed by Sjöstrand [39],

Im f̃(z, w) > c (Im z)2 , (B.11)

for (z, w) ∈ Cf̃ ∩ Bδ(x0, w0), and some c > 0. By notation, it should be clear that

Im f̃ does not stand for f̃2. Additionally, by the Gärding inequality, we have

‖∇(x,y)Im f̃(z, w)‖2
Cn 6 c Im f̃(z, w) , (B.12)

for some different c > 0.
By Sjöstrand ([39], p. 145), ∇(x,y)Im f̃ = 0 is equivalent to ∂z f̃ = 0. Thus, the

later inequailty implies that points belonging to the nodal set of the imaginary part
of f̃ , (z, w) ∈ ZIm f̃ , are necessarily critical points; thus, we have

ZIm f̃ ⊂ Cf̃ . (B.13)

However, by the bound for the imaginary part of f̃ , we have that any point (z, w) ∈
Cf̃ ∩Bδ(x0, w0) with Im z 6= 0, cannot belong to the nodal set ZIm f̃ , and thus, by the

connectedness of ZIm f̃ , all zeroes of Im f̃ are necessarily real critical points,

ZIm f̃ ≡ ZIm f ⊂ R
n × R

m . (B.14)

One must show that all real stationary points are necessarily zeroes of Im f̃ , i.e.,
that the real restriction Cf̃ ∩Rn×Rm is identified with ZIm f as manifolds in Rn×Rm.
This requirement is met by the class of WKBM states as defined in the previous sec-
tions.

Theorem (Sjöstrand and Melin [39]) Let a and f be amplitude and phase functions as

defined above. Then, there is a neighborhood Un and Vm of the origins of Rn and Rm

respectively, and differential operators Lk(w, ∂z) of order less than 2k, with smooth

coefficients in w ∈ Vm, such that
(

i

2π~

)n/2 ∫

a(x; ~)e
i
~
f(x,w) dx− ã0(z(w))

√

det−f̃ ′′
zz(z(w), w)

e
i
~
f̃(z(w),w)

∼
∞
∑

k=1

~
k
(

Lk(w, ∂z)ãk

)

(z(w)) , ~ → 0+ , (B.15)

in S
−n/2
0,1 (Vm× ]0, 1]). In the above, z = z(w) is the equation defining the almost

analytic manifold Cf̃ in a complex neighborhood of Un × Vm, f̃ and ã0 are the almost
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analytic extensions of f and a0 in the same complex neighborhood. The square root in

the left hand side is the principal branch.

In the above context, we call a point z0 a real stationary point if there is a w ∈ R
m

for which the following equations hold

∂xf(z0, w) = 0

Im f(z0, w) = 0 , (B.16)

which, of course, implies that z0 is itself real. We are lead to define the real critical

manifold of f as

CR

f :=
{

(x,w) : ∂xf(x,w) = 0 , Im f(x,w) = 0
}

. (B.17)

It is clear that for oscillating integrals of the above form, real stationary points
-if any- give a non exponentially decaying contribution in ~, while genuinely complex
ones will give exponentially small contributions in ~.

The solution of ∂xf(x,w) = 0, which determines the stationary manifold, is
x = z(w). For w close enough to the real stationary manifold, CR

f , we have
z(w) = x(w)+ε(w), where x(w) parameterizes the real manifold at the point projected
down by Re z(w), and εw (which is not purely imaginary) is linear in the distance

dw = dist
(

w, CR

f

)

, for w close enough to the manifold.

As, by definition, x(w) ∈ CR

f , near the real manifold, the phase reads

f(z(w), w) = f1(x(w), w) +
1

2
εw · f ′′

xx(x(w), w)εw +O(d3
w) . (B.18)

The real critical manifold approximation amounts to

Ia,f (w; ~) ∼ a0(x(w))
√

det−f ′′
xx(x(w), w)

e
i
~
f(x(w),w) , (B.19)

where x(w) is a parametrization of the real critical manifold CR

f . The above

approximation gives the same leading behavior for I~

a,f (w) as the above almost analytic
extension expansion. There is no need to employ the almost analytic extension of f ,
as f̃(x,w) = f(x,w) for real x. The branch of the root

√

det−f ′′
xx is chosen so that

Arg(det−f ′′
xx) =

∑n
k=0Argλk, where λk are the eigenvalues of the Hessian det−f ′′

xx,
with Argλk ∈ (−3π/2, π/2] .

The quadratic term contributes O

(

1
~
εw · f ′′

xx(x(w), w)εw

)

= O(1), as the

microscopic vicinity of CR

f is such that ‖εw‖Cn ≍ dw ≍
√

~. It is clear that in the
case there are no real critical points x(w) = 0, the imaginary part of the phase is
nonzero, and thus there is an overall exponentially decaying behavior. Explicitly, if
CR

f = ∅,

Ia,f (w; ~) = Ow

(

e−
1
~
Im f̃(z(w),w)

)

, ~ → 0+ , (B.20)

the integral is exponentially decaying everywhere in Rm.
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