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Nomenclature

A state-space system matrix

A aerodynamic influence coefficient matrix (downwash)

AU aerodynamic influence coefficient matrix (velocity)

b semi-chord, m

∆b panel span, m

C constant sparse matrix / state-space output matrix

C tangent damping matrix

c chord, m

∆c panel chord, m

d gust ordinate, m

Ex mixed constraint matrix (states)

Eu mixed constraint matrix (inputs)

F terminal constraint matrix

H control horizon

K number of panels

Kζ number of grid points

KLQR linear quadratic regulator gain matrix

K tangent stiffness / MPC control law

k discrete time step index / reduced frequency

l number of outputs

m number of inputs

M number of chordwise panels

M mass matrix

N number of spanwise panels

NS number of nodes in structural model

n number of states / normal vector

P state cost weighting matrix

Q input cost weighting matrix / generalized nodal forces

R terminal cost weighting matrix / beam nodal displacement, m

T full- to reduced-state transformation

t time, s

∆t discrete time step, s

U External fluid velocities, m·s−1

Udesign design gust velocity, m·s−1

Ug vertical gust velocity, m·s−1

U∞ free-stream velocity magnitude, m·s−1

u system inputs

u control trajectory
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v velocity of body-fixed frame, m·s−1

w downwash at collocation points, m·s−1

x system states

x state trajectory

y system outputs

β rigid-body degrees-of-freedom / flap angle, rad

Γ circulation, m2·s−1

η structural degrees of freedom

Θ Euler angles, rad

ζ aerodynamic grid coordinates

ρ∞ free-stream air density, kg·m−3

χ quaternions

ω angular velocity vector of body-fixed frame, rad·s−1

ωβ angular velocity of flap, rad·s−1

1 vector of ones

Subscript

(•)0 reference condition

(•)g pertaining to the gust

Superscript

F fluid degrees-of-freedom

R rigid-body degrees-of-freedom

S structural degrees-of-freedom

(•)ref reference control trajectory

(•̇) time derivative

(•̂) pertaining to the reduced-order system

(•̄) linearized quantity

(•)? pertaining to the wake
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I. Introduction

The desire for reduced fuel-burn due to commercial and environmental pressures, and

the desire for extreme range and endurance capabilities of unmanned platforms, is forcing a

paradigm shift in the design of next-generation aircraft. A common trend in these platforms

is their ever-increasing structural flexibility, caused by low-weight, high-aspect-ratio designs,

which has introduced significant complexity in the modeling process. Perhaps the foremost

consequence of this is that vibration characteristics of very flexible aircraft (VFA) are of

such low frequency that they interact with the classical flight dynamics response in a way

that can only be described by a unified aeroelastic analysis incorporating rigid-body, elastic,

and aerodynamics models simultaneously.1,2 In addition to this, the aeroelastic trim config-

urations of VFA are far more sensitive to payload configuration3 than that of conventional,

stiff aircraft. Crucially, from a control perspective, the relatively-large static and dynamic

deformations of VFA introduce state-dependent (and therefore temporal) variations of the

aircraft dynamics. Thus, the assumption of a linear, time-invariant (LTI) system descrip-

tion, which is commonly found in the literature of flexible aircraft dynamics,2,4 may not be

appropriate when attempting to formulate suitable control strategies. Indeed, this point was

strongly articulated in the report following the Helios mishap.5

Model predictive control (MPC) is a nonlinear control strategy, developed originally for

the process industries, that is capable of handling multiple-input multiple-output (MIMO)

systems naturally; enforcing constraints on linear functions of system inputs, input rates,

and states; accounting for unmodeled plant dynamics and nonlinearities; and, dealing with

uncertainties in the system input and/or output in a robust way.6,7 It therefore offers an

attractive solution to the challenging control problems inherent in flexible aircraft design

and operation.

Recently, an MPC scheme for gust load alleviation was formulated using a linear, aeroe-

lastic, reduced-order model (ROM) of a commercial airliner.8 The proposed solution also

included preview information of the future gust environment, provided by light detection and

ranging sensors (LIDAR). When the controller was applied to the linear, full-order model it

showed superior performance to that of a linear reference controller. A similar comparison

was made by Haghighat et al.,9 who showed that MPC with a prediction enhancement based

on output disturbance feedback was more effective than a linear quadratic regulator (LQR)

when applied to a linearized flexible aircraft model. The robustness of the MPC scheme was

emphasized by successfully applying the same controller to a plant whose control effectiveness

was reduced by 50%.

For very flexible vehicles, the system dynamics need to include nonlinear effects due to

large geometry changes. Attempts to design active gust alleviation mechanisms on such plat-
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forms have so far been restricted to the use of linear controllers obtained from linearization

of vehicle dynamics around a reference condition. Cook et al.10 and Dillsaver et al.11 applied

H∞ and LQG controllers, respectively, to full aircraft models and investigated the response

to gust and continuous disturbances. They have highlighted the difficulty of achieving robust

control with linear control schemes on very flexible vehicles subject to large disturbances. In

particular, the offline tuning of parameters used to ensure bounds on the plant states and

inputs is not robust in the presence of significant plant nonlinearity or larger than expected

exogenous disturbances. Since constraints are included in the online optimization problem

posed during MPC, and since the controller may react in a nonlinear fashion when in prox-

imity to these constraints, it is likely that predictive control will be superior to optimal linear

control in challenging situations.

In this work reduced-order models of VFA dynamics are obtained from linearization of

the full-order, nonlinear equations of motion that are used as a high-fidelity simulation of

the plant dynamics. The reduced-order models are then used to synthesize model predictive

controllers and equivalent linear quadratic regulators (LQRs) for application to the nonlinear

plant. Nonlinear, linear and reduced-order modeling of the dynamics of flexible aircraft is

therefore set out in Sec. II, followed by the control methodologies in Sec. III. Comparisons

of nonlinear and linearized models, and models obtained from systematic model reduction,

are shown in Sec. IV.B in which suitable reduced models for predictive control synthesis are

identified. Discussion of closed-loop and controller performance on the nonlinear plant are

then presented in Sec. IV.C.

II. Flexible Aircraft Flight Dynamics Modeling

The nonlinear, multidisciplinary analysis presented in this work is implemented in a

Python-based framework called Simulation of High-Aspect-Ratio Planes in Python (SHARPy).

In SHARPy, full flexible aircraft flight dynamics analysis is achieved by coupling a nonlinear,

flexible-body dynamics, composite beam model with a geometrically-nonlinear implementa-

tion of the unsteady vortex-lattice method (UVLM). The nonlinear model, which will be

referred to as the plant, is described in Sec. II.A and II.B. A linearization of this coupled

model, and the re-casting of its underlying equations into state-space form, is the first step

towards obtaining LTI systems useful for control synthesis, and is presented in Sec. II.C. For

the purposes of MPC, where faster than real-time prediction of plant dynamics is required,

it is necessary to reduce the size of the linear model; the model reduction process is therefore

described in the final subsection (Sec. II.D).
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A. Nonlinear Flexible-Body Dynamics

A geometrically-exact composite beam finite-element model based on the formulations by

Hodges12 and Géradin & Cardona13 is used which is capable of capturing the dynamics of

flexible, unconstrained structures subject to large geometrically-nonlinear deformations and

nonlinear rigid-body motions. A moving body-fixed reference system, denoted the a-frame,

is used to describe elastic deformations as well as the rigid-body motion of the structure.

The discretized equations of motion (EoM) of a moving flexible body subject to external

forces are14

M (η)

η̈β̇
+Qgyr (η, η̇, β) +Qstiff (η) = Qext (η, η̇, β, χ) , (1)

where the structural degrees of freedom are denoted η ∈ R6(NS−1), where NS is the number

of nodes in the structural finite-element model. These degrees-of-freedom are the nodal

displacements, R, and orientations of local nodal reference frames, denoted as B-frames,

parameterized using the Cartesian Rotation Vector (CRV).13 The rigid-body states, β ∈ R6,

include the translational and angular velocities of the origin of the body-fixed reference

frame, denoted v and ω respectively, as shown in Figure 1. The system dynamics are coupled

through the tangent mass matrix, M(η), and the discrete gyroscopic and external forces,

Qgyr and Qext, respectively. Elastic forces, Qstiff, are in general a nonlinear function of the

elastic deformations, η. The structural and rigid-body components (denoted by superscripts

S and R, respectively) of the gyroscopic, elastic and external forces can be identified as

Qgyr =

QS
gyr

QR
gyr

 , Qstiff =

QS
stiff

0

 , and Qext =

QS
ext

QR
ext

 (2)

respectively. A more detailed description of the various terms in Eqs. (1) and (2) can be

found in previous work by the authors.14 At last, the orientation of the body-fixed reference

frame with respect to an inertial frame is parameterized using quaternions, denoted by χ,

by solving an extra set of attitude EoM.15,16 Together with the Eq. (1) this completes

the geometrically nonlinear description of the aircraft structural dynamics and nonlinear

rigid-body motion.

B. Nonlinear, Three-Dimensional, Unsteady Aerodynamics

Assuming coincident spanwise discretizations, an aerodynamic lattice, ζ, is constructed that

represents the aircraft lifting surfaces. From this discretization, the 3-D, time-domain,

geometrically-nonlinear, unsteady aerodynamic loading is obtained using the unsteady vortex-

lattice method. In the UVLM, quadrilateral vortex ring elements are used to discretize both
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Figure 1. HALE aircraft represented by lifting-surfaces and beams. The frames of reference used
to build the FAFD model are shown.

lifting surfaces and their wakes. Each surface (bound) vortex ring has an associated scalar

circulation strength, Γij, and a collocation point at which the non-penetration boundary

condition is satisfied. Figure 2 depicts the vortex lattice geometry, ζ, where each collocation

point is marked with a cross, and M and N are the number of chordwise and spanwise

panels, respectively.

n

i = 1
i = 2

i = M

j = 1

j = 2

j = 3

j = N

Δc

ΔbΔc 3Δc
4 4

Γi,j

 Γi,j - Γi-1,j

 Γi,j - Γi,j+1

 Γi,j - Γi,j-1

 Γi,j - Γi+1,j

Figure 2. Body surface overlaid with vortex lattice geometry. Four vortex segments are shown on
the right, which have circulation strengths equal to the difference in adjacent vortex ring strengths.

The Kutta condition and Joukowski hypothesis17 are approximatley satisfied by shedding

wake vortex rings from the trailing-edge of each surface every time step. A commonly used

first-order, explicit, time-stepping scheme is employed.18–20 This results in a time-varying,
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discrete-time system of equations of the form

A(ζ)Γk+1 +A?(ζ, ζ?)Γ?k+1 + wk+1 = 0, (3)

Γ?k+1 = CΓΓk + C?
ΓΓ?k, (4)

ζ?k+1 − Cζζk+1 = C?
ζ ζ

?
k + ∆t (AUΓk +A?UΓ?k) + ∆tU?

k , (5)

where Eq.(3) enforces the non-penetration boundary condition on the aircraft geometry, and

Eqs. (4) & (5) propagate the wake circulation strength and wake geometry, respectively,

through time. Note that the ( )? superscript denotes a state belonging to the aircraft wake,

and the subscripts ( )k and ( )k+1 refer to discrete time steps. Γ ∈ RK is the vector of bound

vortex ring strengths, where K = MN . Similarly, Γ? ∈ RK?
is the vector of wake circulation

strengths where K? = M?N and M? is the number of chordwise panels in the wake. The

downwash at the collocation points, w ∈ RK , is given by w = W
[
−ζ̇ + U

]
, where U ∈ R3Kζ

are fluid velocities at the surface grid points which may include free-stream velocities and

gusts. The matrix W (ζk+1) interpolates from grid corner-points to collocation points and

projects the resulting velocities along the corresponding panel normal vector. The final

system state of interest is the wake lattice geometry, ζ? ∈ R3K?
ζ , where K?

ζ = (M?+1)(N+1)

is the number of aerodynamic grid points in the wake. A more detailed description of the

matrices in (3) - (5) can be found in previous work by the first two authors.21

The circulation distribution on the deformed aircraft is then post-processed to obtain the

aerodynamic loading which is then mapped back onto the structural nodes. Thus the flexible-

body dynamics and aerodynamics models are coupled to form a nonlinear aeroelastic model

of the dynamics of flexible aircraft. In the presence of geometrically nonlinear deformations

and complex kinematics care must be taken when post-processing the aircraft states to obtain

the aerodynamic loading. In particular, the vector form of Joukowski’s theorem must be used

to yield induced drag results that properly account for leading-edge suction effects.22

C. Linearized Flexible Aircraft Dynamics

The structural dynamics are linearized around a point referred to as (η0, η̇0, β0,Θ0) and small

changes from this state will be represented with over-bars, that is, (η̄, ¯̇η, β̄, Θ̄). The linearized

(incremental) form of Eq. (1) around this point is14

M(η0)

 ¯̈η
¯̇β

+ C(η0, η̇0, β0)

 ¯̇η

β̄

+K(η0, η̇0, β0)

η̄0
 = Q̄ext

(
η̄, ¯̇η, β̄, Θ̄

)
, (6)

where the constant tangent damping and stiffness matrices C and K, respectively, are ob-

tained through direct linearization of the discretized forces in Eq. (1). Note that Euler

8 of 25



angles, Θ, are preferred in the linear analysis to describe variations of the a-frame orienta-

tion.10 Projection of these linear EoM on the vibration modes of the unconstrained aircraft

can further simplify the structural representation of the vehicle dynamics. In this work

however, this linear, second-order set of ODEs is discretized in time using the Newmark-β

scheme,23 and cast in discrete-time state-space form. Following this the model is coupled with

a linearized UVLM aerodynamics model to form a monolithic LTI state-space description of

VFA dynamics which can in general be around a nonlinear reference condition.

The linearized form of the aerodynamics model is constructed using the model developed

by Murua et al.24 based on the description by Hall.25 To obtain the state-space form of the

UVLM, the governing equations are linearized on a frozen aerodynamic geometry around the

aircraft trim condition, which may include large wing deformations and a non-planar wake.

Therefore, the system of Eqs. (3)-(5) is reduced to

A(ζ0)Γ̄k+1 +A(ζ0, ζ
?
0 )?Γ̄?k+1 + w̄k+1 = 0, (7)

Γ̄?k+1 = CΓΓ̄k + C?
ΓΓ̄?k, (8)

where the over-bars represent increments on the states about which the aircraft is linearized.

The aerodynamic equations above are coupled with the linear structural Eqs. (6) and cast

in the discrete-time state-space form

x(k + 1) = Ax(k) +Bu(k) +Bgug(k),

y(k) = Cx(k),
(9)

where u are the actuator inputs and subscript-g terms correspond to gust inputs. The state

vector that completely determines the linear system is

x := (xF ; xS; xR) , (10)

where

xF := (Γ̄; Γ̄?; ¯̇Γ), (11)

xS := (η̄; ¯̇η) , (12)

xR :=
(
β̄; Θ̄

)
. (13)

Note that the over-bars present in Eqs. (6)-(8) have been omitted for clarity. However, the

linear states x are incremental and must be superimposed on the reference states. Also note

that the time-rate-of-change of the vortex ring strengths, Γ̇ ∈ RK , are included in the state

vector as it is required for the computation of unsteady aerodynamic loads.24 Depending
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on the finite-element discretization of the structural and aerodynamic models the number of

states in Eq. (9) may be large, typically O(104) for converged discretizations. This set of

coupled linear EoMs now form the basis for stability analyses, model reduction, and control

syntheses.

D. Reduced-Order Models

Starting from the relatively-large linear model of Eq. (9) a reduced-order model is obtained

for use in predictive control schemes or offline synthesis of optimal linear controllers. In

either case it is useful to have a low-order representation of the system dynamics, however

it is necessary for MPC in which faster-than-real-time optimization of the system dynamics

must be achieved. To find a low-order representation, a new basis for the linear system of Eq.

(9) is found in which the states are ranked in terms of their contribution to the input-output

behavior of the system using balanced realization.26,27 The first n̂ balanced states are then

preserved and the rest truncated. Choosing n̂ is done by systematically reducing the order

of the model whilst ensuring the frequency- and time- domain behaviour remains close to

that of the full-order model. This standard balanced realization and truncation results in a

full-state to reduced-state transformation

x̂ = Tx, (14)

where x ∈ Rn are the full-order states, T ∈ Rn̂×n is the truncated balancing matrix, and

x̂ ∈ Rn̂ are the reduced-order states associated with a truncation of the balanced system.

The corresponding reduced-order state and output equations are

x̂(k + 1) = Âx̂(k) + B̂u(k) + B̂gug(k),

y(k) = Ĉx̂(k),
(15)

where u ∈ Rm and ug ∈ Rmg are the control inputs and gust inputs respectively. The

matrices Â, B̂, B̂g and Ĉ are of size n̂× n̂, n̂×m, n̂×mg, and l× n̂ respectively, where l is

the number of outputs.

III. Model Predictive Control Methodology

The model predictive control (MPC) scheme presented here results in a time-invariant im-

plicit control law, K(x̂, x̂ref,uref), where x̂ref =
{
x̂ref

0 , . . . , x̂ref
H−1

}
and uref =

{
uref

0 , . . . , uref
H−1

}
,

where the integer H ≥ 2 is the number of steps in the prediction horizon. This control law

is defined as the first control action in the series of actions found by online solution of the
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optimization problem

min
x̂i, ui

H−1∑
i=0

(∣∣∣∣∣∣x̂i − x̂ref
i

∣∣∣∣∣∣2
Q

+
∣∣∣∣∣∣ui − uref

i

∣∣∣∣∣∣2
R

)
+
∣∣∣∣∣∣x̂H − x̂ref

H

∣∣∣∣∣∣2
P

(16)

s.t.

x̂i+1 = Âx̂i + B̂ui (17)

x̂0 = x̂(k) (18)

Exxi + Euui ≤ 1 ∀ i = 0, ..., H − 1 (19)

FxH ≤ 1 (20)

where the matrices Q, R, and P are the state, input, and terminal cost weighting matrices,

respectively. Eq. (17) contains the dynamics of the system and is simply the reduced-order,

state-space description of Eq. (15) with gust inputs removed. The initial reduced-state

is measured at the current discrete time step, Eq. (18), under the assumption that full-

state feedback is available from the nonlinear plant and that the full- to reduced-order

transformation of Eq. (14) is valid. In the case where the plant is nonlinear, which is to

be expected, or in the case of unknown disturbances to the plant input and output, offset-

free tracking is facilitated by comparing the measured plant state with the current state as

predicted at the previous time-step. The resulting error is assumed to be constant along the

prediction horizon and the reference trajectory is augmented to reflect this.7

Mixed constraints are specified with matrices Ex and Eu, which are typically sparse.

Constraints specified on the inputs alone are hard limited, while input rate constraints are

softened and can be formulated using Eq. (19) by introducing an auxiliary state7 for each

input rate that is to be constrained. In addition, the terminal state, x̂H , is constrained to

lie within the polyhedron defined by the matrix F and the vector of ones, 1, by Eq. (20).

Currently, the MPC optimization problem of Eqs. (16) - (20) is cast in the form of a

general quadratic programming (QP) problem using the open-source package µAO-MPC.28

In their Python-based implementation the Hessian matrix, gradient vector, and constraint

equations associated with the optimization of Eqs. (16) - (20) are calculated by considering

the problem in condensed form. In addition to this, µAO-MPC automatically generates

library-free C-code to solve the condensed problem. The result is an extremely fast, low-

memory implementation (the original intended application was for microcontrollers). An

Augmented-Lagrangian approach using a fixed number of iterations is used to solve the

optimization in (nearly) deterministic time, and although the result may be sub-optimal it

is still likely to give good controller performance.28

In addition to predictive control, equivalent linear quadratic regulators (LQRs) are syn-

thesized using the same Q and R matrices as in Eq. (16). The optimization problem in LQR
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control is simply an infinite-horizon unconstrained version of Eq. (16), i.e

min
x̂i, ui

∞∑
i=0

(∣∣∣∣∣∣x̂i − x̂ref
i

∣∣∣∣∣∣2
Q

+
∣∣∣∣∣∣ui − uref

i

∣∣∣∣∣∣2
R

)
(21)

s.t.

x̂i+1 = Âx̂i + B̂ui

x̂0 = x̂(k)

where H →∞ and the terminal cost and constraints, and mixed constraints, are no longer

present. Solution of this problem yields a constant optimal gain matrix, KLQR and cor-

responding control action uLQR(x̂) = −KLQR x̂. For comparison of relative closed-loop

performance, when input constraints are present in an MPC control law the corresponding

LQR controller is saturated.

IV. Numerical Studies and Discussion

In order to test the nonlinear, linearized and reduced-order modeling approaches de-

scribed above, and the synthesis and application of predictive controllers for gust load al-

leviation using these models, a cantilever wing test case is used based on the aeroelastic

wing model introduced by Goland.29,30 The relevant structural properties of the Goland

wing are presented in Table 1, alongside details of the reference flow conditions and control

system design. Because the wing centre-of-gravity is aft of its elastic axis the Goland wing

experiences flutter instability at a free-stream velocity of around 170 m·s−1.20,21 To avoid

complications associated with this instability the free-stream velocity is set as 140 m·s−1 for

this study. In addition, the wing is subjected to vertical “1 − cos” gusts – details of these

gusts, the open-loop response, and identification of a worst-case gust are presented in Sec.

IV.A. Identification of reduced-order models (ROMs) suitable for synthesis of predictive con-

trol schemes are then presented in Sec. IV.B. Finally, the capabilities of predictive and LQR

control schemes synthesized using these reduced-models are tested in nonlinear, closed-loop

simulations of the plant in Sec. IV.C.

A. Open-Loop Response

The Goland wing is subjected to the ”1− cos” family of gusts described in Federal Aviation

Regulation (FAR) §25.341, which are of the form

Ug =
Udesign

2

(
1− cos

(
2πd

Lg

))
, where 0 ≤ d ≤ Lg, (22)
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Chord 1.8288 m

Semi-span 6.096 m

Elastic axis 33% chord

Center of gravity 43% chord

Mass per unit length 35.71 kg/m

Moment of inertia 8.64 kg·m
Torsional stiffness 0.99× 106 N·m2

Bending stiffness 9.77× 106 N·m2

Free stream velocity 140 m·s−1

Angle-of-attack 0 deg

Air density 1.02 kg·m−3

Control surfaces 1 TE flap at tip

Flap size 25% chord, 20% span

Measurements root torsion and bending strains

Sampling interval, ∆t 1.633× 10−3 s

Model discretization M = 8, N = 20

Table 1. Goland wing properties,29 reference condition and control system details.

and Ug is the vertical gust velocity, Udesign is the design gust velocity, and d is the distance

into the gust which has length Lg. The largest design gust velocity in the requirements,

Udesign = 17.07 m·s−1, was chosen for open-loop tests at a range of gust lengths, the results

of which are shown in Figure 3.

Results of the linearized model, shown in Figure 3(a), show the root strains in torsion and

bending due to gusts with lengths in the range 10 - 80m. Results from a 10m gust are shown

because the high-frequency content of such disturbances excites the relatively stiff torsional

degrees-of-freedom of the Goland wing and produces the maximum torsional strain of all the

gust lengths investigated. The critical gust for maximum bending strain was found to be

approximately 20m, and will be referred to as the critical gust length. Gust lengths of 60m

and above produced a response that was effectively quasi-static, with minimal oscillatory

behaviour and lower peak strains than the critical case.

Results of the nonlinear model in Figure 3(b) show qualitatively similar open-loop strain

responses when compared to the linear model in Figure 3(a), and the critical gust length

predicted by the nonlinear simulations is also 20m. Oscillations in the nonlinear model

appear more highly-damped than in the linear case at this temporal discretization despite

both models having the same Newmark damping (0.5%); this is probably due to staggering

of aerodynamic and structural solutions in the nonlinear simulation. A final test of the

critical gust response at a fine spatial and temporal discretization (M = 16, N = 40,∆t =

8.164× 10−4 s) shows that the nonlinear and linear models are effectively converged (Figure
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4).

B. Obtaining Reduced-Order Models

Model-order reduction of the linear system was performed using standard balanced realiza-

tion and truncation as described in Sec. II.D above. The flap deflection, β, was chosen as

the sole control input to the system, and the root bending and torsional strains were chosen

as the outputs. The quality of reduced models of various model orders was assessed by

comparing their relative time- and frequency-domain forced responses. Time-domain wing

responses to flap oscillations at 15 and 30 rad·s−1 are shown in Figure 5. Here the nonlin-

ear and full-order linear response is very similar in both the 15 rad·s−1, Figure 5(a), and 30

rad·s−1, Figure 5(b), cases. The reduced-order model with 10 states is shown to approximate

the forced response of the system well in both cases too, however when the model order is

reduced to 8 states discrepancies are observed in the magnitude and phase of the predicted

oscillations, as shown in Figures 5(a) and 5(b).

To further investigate the characteristics of the reduced models they were subjected to

frequency-domain forced response analysis. Bode plots of the response of a range of reduced

models are shown in Figure. 6 with the model order varied from 8 to 100 states. The

reduced frequency shown on the horizontal axes is defined as k = ωβc/2U∞, where ωβ is the

flap angular velocity and U∞ is the free-stream flow velocity. For reduced systems of size 10

to 100 the gain and phase plots are very similar up to a reduced frequency of approximately

1.5. The 8 state model shows departures in gain and phase from the higher-order models

even at low reduced frequencies which seems to corroborate the relatively poor time-domain

comparison in Figure 5. Despite these discrepancies, the 8 state model is still suitable for

control synthesis, as the results of the following section demonstrate.

C. Closed-Loop Response

In this section predictive and LQR control schemes formulated with an 8 state reduced

model, which provides a compromise between fidelity and performance, are applied to the

nonlinear plant simulation. Unless otherwise stated the closed-loop response of the plant

under MPC was obtained using H = 100 steps in the prediction horizon. The reference

conditions on both the states and control inputs is the origin, hence the control systems

are designed to provide state regulation. In addition input constraints are specified that

correspond to maximum flap deflections of ±10 deg.

The first control schemes applied here are based on unit weighting of the plant states

and inputs, i.e the matrices P , Q and R in Eqs. (16) and (21) are identity matrices. The

open- and closed-loop responses, using both MPC and LQR, to the critical gust are shown in
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Figure 7. Regulating the model states serves to reduce peak torsional strain with either MPC

or LQR by approximately 25% with a corresponding increase in maximum bending strain of

approximately 13%. The control action required to produce these results is shown in Figure

8. While the LQR controller is forced into saturation for two periods at the start of the gust

response, the MPC controller achieves comparable performance without reaching the input

constraints. This is possible because the MPC controller can anticipate future constraint

violations and provide an optimal control response that acknowledges the presence of these

constraints. In offline design of linear controllers tuning is typically used to ensure bounds

on states and inputs for some worst case scenario, however in MPC they are included in the

online optimization of Eqs. (16) - (20), thus providing superior closed-loop performance.

The second and third control schemes demonstrated in this work are MPC schemes based

on unit weighting of the system outputs, i.e bending and torsional strains, and unit weighting

of bending strain alone. In both cases the control inputs are also given unit weighting. The

results of Figure 9 demonstrate that the closed-loop performance of system can be effectively

tuned using this output weighting. If both outputs are weighted then a 2% reduction in peak

bending strain was observed alongside 8% reduction in peak torsional strain. If reduction of

peak bending is prioritized then a 10% reduction is realized using unit weighting on bending

strain alone, however there is a relatively large corresponding increase in torsional strain.

Finally the timing characteristics of the aforementioned MPC schemes are explored. Since

the optimization of Eqs. (16) - (20) must be solved online, it should be guaranteed to

have a time-to-solve that is less than the sample time of the system. Figure 10 shows the

minimum, maximum and mean times taken to solve the MPC control problem using muAO-

MPC28 generated, single-thread C-code accessed through a Python interface on a 2.93GHz

Intel c© CoreTM i7 desktop CPU. A range of prediction horizons were investigated resulting

in varying closed-loop performance and an increase in time-to-solve as the prediction horizon

is increased. Using a horizon of 60 steps gives acceptable closed-loop performance with a

mean time-to-solve of 1.31 ms, although there were occasional maxima reaching up to 2.9

ms. These results are very much hardware dependent and superior performance would likely

be achieved using hardware designed specifically for the task. It is also worth noting that

the system used to compute the control response was running an operating system and the

nonlinear plant simulation at the same time, which probably contributed to some of the

maxima observed in controller time-to-solve. While the Goland wing is relatively stiff it can

be expected that the structural response of very flexible aircraft will be an order of magnitude

lower in frequency, which is advantageous for control system design and operation. However,

this comes at the cost of increased geometric nonlinearity in the plant due to larger dynamic

deformations. An extension of this work will aim to address such problems.
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V. Conclusions

Nonlinear, linearized, and reduced-order linear models obtained through balanced real-

ization and truncation have been generated to describe the dynamics of a flexible cantilever

wing. The forced response of nonlinear, linear and reduced-order models to excitations of a

trailing-edge flap was found to be in good agreement, with the only deviations in predicted

dynamics occurring when the size of the coupled aeroelastic model was reduced as low as 8

states. Despite these deviations the 8 state reduced model was successfully used to gener-

ate effective linear quadratic regulators and predictive controllers which were subsequently

applied to nonlinear simulations of the plant dynamics, thus providing a compromise be-

tween fidelity and performance. Model predictive control (MPC) was found to give superior

closed-loop response in the presence of input constraints compared to an equivalent linear

quadratic regulator implemented with input saturation. Timing characteristics of the MPC

scheme were investigated and it was found that good closed-loop performance was possible

with a corresponding time-to-solve of O(1) ms using desktop-based hardware and software.

Although the mean time-to-solve, 1.31 ms, was less than the system sample time of the

relatively stiff test case, 1.633 ms, there is almost certainly too small a margin left to ac-

commodate state-estimation and implementation latency in a real implementation, mostly

because of the relatively high frequency dynamics of the wing studied. However, since the

dynamics of flexible aircraft are typically an order of magnitude lower in frequency than this

example is expected that similarly effective control schemes will be practicable in such cases.
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28Zometa, P., Kögel, M., and Findeisen, R., “muAO-MPC: A Free Code Generation Tool for Embedded

Real-Time Linear Model Predictive Control,” Proc. American Control Conference (ACC), 2013 , Washington

D.C., USA, 2013, pp. 5340–5345.

17 of 25



29Goland, M., “The Flutter of a Uniform Cantilever Wing,” Journal of Applied Mechanics, Vol. 12,

No. 4, Dec. 1945, pp. A197 – A208.
30Goland, M. and Luke, Y. L., “The flutter of a uniform wing with tip weights,” Journal of Applied

Mechanics, Vol. 15, No. 1, March 1948, pp. 13 – 20.

18 of 25



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.04

−0.02

0

0.02

0.04

time [s]

st
ra

in
 [−

]

root strain (torsion)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.03

−0.02

−0.01

0

0.01

time [s]

st
ra

in
 [−

]

root strain (bending)

 

 

10m

20m

40m

60m

80m

(a) full-order linear model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.04

−0.02

0

0.02

0.04

time [s]

st
ra

in
 [−

]

root strain (torsion)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.03

−0.02

−0.01

0

0.01

0.02

time [s]

st
ra

in
 [−

]

root strain (bending)

 

 

10m

20m

40m

60m

80m

(b) nonlinear model

Figure 3. Open-loop gust response at a range of gust lengths.
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Figure 4. Comparison of linear and nonlinear models for the critical gust length, L = 20m.
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Figure 5. Time-domain forced response of nonlinear, full-order linear and reduced-order linear
models.
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Figure 7. Gust load alleviation using MPC and LQR with unit weighting on the reduced
states and inputs. Regulating the model states serves to reduce peak torsional strain with a
corresponding increase in bending.
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