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Abstract

We introduce a mixed discontinuous/continuous finite element pair for ocean mod-
elling, with continuous quadratic layer thickness and discontinuous velocity. We in-
vestigate the finite element pair applied to the linear shallow-water equations on an
f -plane. The element pair has the property that all geostrophically balanced states
which strongly satisfy the boundary conditions have discrete divergence equal to
exactly zero and hence are exactly steady states of the discretised equations. This
means that the finite element pair has excellent geostrophic balance properties. We
also show that the element pair applied to the non-rotating linear shallow-water
equations does not have any spurious small eigenvalues. We illustrate these proper-
ties using numerical tests and provide convergence calculations which show that the
numerical solutions have errors which decay quadratically with element edge length
for both velocity and layer thickness.

1 Introduction

A number of finite element pairs have been proposed for the rotating shallow-
water equations, including the P1NC − P1 and P1 − iso P2 − P1 elements
(investigated and compared to several other element pairs in (Le Roux et al.,
1998)), the RT0 elements (introduced in Raviart and Thomas (1977) and
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proposed for the shallow-water equations in Walters and Casulli (1998)) and
equal-order elements with stabilisation (also proposed in Walters and Casulli
(1998)); all of these elements have been shown to perform well when inte-
grating the rotating shallow-water equations. In this paper we investigate the
numerical properties of the P1DG-P2 finite element pair applied to the linear
shallow-water equations on an f -plane in order to investigate the suitability
of the element for shallow-water ocean modelling. The finite element pair con-
sists of discontinuous linear elements for velocity and continuous quadratic
elements for layer thickness. Even though the layer thickness has shape func-
tions which are one order higher than velocity, there are still more degrees of
freedom in the space of discontinuous linear functions than the space of con-
tinuous quadratic functions (except in meshes with very few elements), which
is a necessary (but not sufficient) condition for the absence of spurious pres-
sure modes (modes with high spatial frequency but small eigenvalues in the
wave operator which can pollute the numerical solution with noise). In Cotter
et al. (to appear), it was shown that in one dimension, this choice leads to a
discretisation of the wave equation without rotation which does not have any
spurious modes. It was also shown that the dispersion relation is very accurate
for the first half of the discrete spectrum. A number of numerical tests were
carried out on two- and three-dimensional unstructured meshes which showed
that there were no spurious eigenvalues present. In fact, as we show in this
paper, the discretised Laplacian obtained by combining the first-order discrete
divergence and gradient operators is the same as the usual Galerkin finite el-
ement discretised Laplacian obtained by multiplying the Laplacian by a test
function and integrating by parts. Consequentially, the discretised equations
without rotation do not have any spurious eigenvalues, also the element pair
applied to the incompressible Navier-Stokes equations leads to an LBB-stable
discretisation without spurious pressure modes. For a general discussion of
LBB stability, see Gresho and Sani (2000); Karniadakis and Sherwin (2005).
Karniadakis and Sherwin (2005) also contains an exposition of the discontinu-
ous Galerkin method. For applications of the discontinuous Galerkin method
to waves equations see Ainsworth et al. (2006), and for some applications of
the discontinuous Galerkin method to the rotating shallow-water equations
see Ambati and Bokhove (2007); Levin et al. (2006); Bernard et al. (2007);
Giraldo (2006).

In this paper we concentrate on the interaction of the geostrophic modes
with the inertia-gravity waves which is crucial to the good representation of
large-scale dynamics. We find that not only does the finite element pair allow
for accurate representation of geostrophically-balanced states, these states are
completely uncoupled from the inertia-gravity waves: the states are exactly
steady as in the unapproximated partial-differential equations. In section 2
we introduce the element pair applied to the linear shallow water equations,
show that the element pair has a discrete Laplacian without spurious eigen-
values, and show that the element pair has exactly steady geostrophic states.
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In section 3 we verify these results with numerical tests. We also show nu-
merical calculations using Kelvin waves which are geostrophically balanced
in one direction; these waves are a good test of preservation of balance. The
results do not show any radiating inertia-gravity waves. We provide conver-
gence test results using the Kelvin wave exact solution which confirm that
the errors spatial discretisation converges quadratically for both velocity and
layer thickness, indicating that the element pair is stable. Finally we give a
summary and outlook in section 4.

2 The mixed element

In this section we describe our mixed element formulation applied to the linear
shallow-water equations on an f -plane.

2.1 Mixed continuous/discontinuous Galerkin discretisation

We start with the linearised shallow-water equation on an f -plane in non-
dimensional units

ut +
1

Ro
k × u +

1

Fr2∇h= 0, u = (u1, . . . , ud), (1)

ht +∇ · u= 0, (2)

where u is the velocity, h is the perturbation layer thickness, k is the unit

vector in the z-direction, Ro = U/fL is the Rossby number, Fr =
√
U/gH is

the Froude number, U is a velocity scale, L is a horizontal length scale, H is
the mean layer thickness, f is the Coriolis parameter and g is the acceleration
due to gravity. The boundary conditions are

u · n = 0 on ∂Ω (3)

where ∂Ω denotes the boundary of the domain Ω, and n is the normal to
∂Ω. To obtain the discontinuous/continuous Galerkin form of the equations
we multiply equation (1) by a discontinuous test function w and equation (2)
by a continuous test function φ and integrate over an element E to obtain

d

d t

∫
E
w · u dV +

1

Ro

∫
E
w · k × u dV =− 1

Fr2

∫
E
w · ∇h dV, (4)

d

d t

∫
E
φh dV =−

∫
E
φ∇ · u dV. (5)
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We then integrate equation (5) by parts, and make use of the boundary con-
ditions (3) to obtain

d

d t

∫
E
w · u dV +

1

Ro

∫
E
w · k × u dV =− 1

Fr2

∫
E
w · ∇h dV, (6)

d

d t

∫
E
φh dV =

∫
E
∇φ · u dV (7)

−
∫
∂E\∂Ω

n · ũφ dS, (8)

where ũ is the value of u on the element boundary ∂E, determined by the
particular choice of discontinuous Galerkin scheme which is chosen (the value
on the upwind face, for example), and where n is the outward-pointing unit
normal to the surface ∂E. Conservation requires that ũ takes the same value
on either side of each face. We sum these equations over all elements and the
surface terms cancel since φ is continuous. This gives the form of the equations
that we will discretise:

d

d t

∫
Ω
w · u dV +

1

Ro

∫
Ω
w · k × u dV =− 1

Fr2

∫
Ω
w · ∇h dV, (9)

d

d t

∫
Ω
φh dV =

∫
Ω
∇φ · u dV. (10)

Derivatives are only applied to the scalar functions h and φ and not the vector
functions u and w which we shall discretise with discontinuous elements. To
add nonlinear advection it is necessary to develop surface integrals on the
boundaries of the elements following the standard discontinuous Galerkin finite
element approach.

2.2 The P1DG-P2 element

In this subsection we develop the P1DG-P2 discretisation for the shallow-water
equations. We make the choice that u and w are approximated by discontinu-
ous linear finite element functions uδ and wδ, whilst φ and h are approximated
by continuous quadratic linear finite element functions hδ and φδ.

The Galerkin finite element approximation of equations (9,10) is then

d

d t

∫
Ω
wδ · uδ dV +

1

Ro

∫
Ω
wδ · k × uδ dV =− 1

Fr2

∫
Ω
wδ · ∇hδ dV,

d

d t

∫
Ω
φδhδ dV =

∫
Ω
∇φδ · uδ dV,

4



u node

h node

Fig. 1. Figure showing the distribution of nodes in the two-dimensional P1DG-P2
element. Each element contains three nodes for each of the two components u and
v of velocity, and six nodes for the layer thickness, but the latter nodes are shared
across element boundaries since the layer thickness space is continuous.

for all test functions φδ and wδ in the specified spaces.

2.3 Properties of discretised Laplacian

The first property to note for the P1DG-P2 element pair is that the discretised
gradient in the P1DG velocity space qδ of a P2 function hδ obtained from

∫
Ω
wδ · qδ dV =

∫
Ω
wδ · ∇hδ dV

for all P1DG test functions wδ, satisfies

qδ = ∇hδ

at each point. To prove this, note that all continuous P2 functions h have
P1DG gradients. This means that we may choose wδ = qδ −∇hδ and hence

∫
Ω
|qδ −∇hδ|2 dV = 0.

Since qδ and ∇hδ are piecewise polynomials this means that they are identi-
cally equal.

The discretised Laplacian Lδ in the layer thickness space is obtained by ap-
plying the discretised divergence to the discretised gradient qδ:
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∫
Ω
φδLδhδ dV =−

∫
Ω
∇φδ · qδ dV +

∫
∂Ω
φ~n · qδ dS

=−
∫

Ω
∇φδ · ∇hδ dV +

∫
∂Ω
φ
∂h

∂n

δ

dS,

for any P2 test function φδ, which is the standard Galerkin finite element dis-
cretisation of the Laplace operator obtained by multiplying by a test function
and integrating by parts. The properties of this operator are well-known in
the finite element literature; in particular it has no spurious eigenvalues.

2.4 Exactly steady geostrophic modes

In the linear shallow-water equations with rotation, the geostrophic balanced
modes with

ut = 0 =⇒ u = ∇⊥ψ, (11)

are steady in time, where

ψ =
Ro

Fr2h, ∇⊥ψ = (−ψy, ψx)

This is because ht = 0 since ∇·u = 0 for these modes. In this section we show
that the balanced states in discretisations with the P1DG-P2 element pair are
also completely steady; this means that the P1DG-P2 element pair represents
balanced states very well and so is ideal for shallow-water ocean modelling.

The geostrophically balanced states in the finite element discretisation satisfy

d

d t

∫
Ω
wδ · uδ dV = 0, =⇒

∫
Ω
wδ · uδ dV =

∫
Ω
wδ · ∇⊥ψδ dV, (12)

for all P1DG test functions wδ.

The property described in the previous section can be trivially extended to
show that the finite element velocity uδ obtained from this equation for a given
ψδ satisfies equation (11) with u = uδ and ψ = ψδ. We can use this property
to show that any geostrophically balanced velocity field u obtained from a
streamfunction ψ which is constant on the boundary satisfies the discrete
divergence equation

−
∫

Ω
∇φδ · uδ dV = 0,

for all P2 test functions φδ. To prove this, note that
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−
∫

Ω
∇φδ · uδ dV =−

∫
Ω
∇φδ · ∇⊥ψδ dV (13)

=
∑
E

∫
E
φδ∇ · ∇⊥ψδ︸ ︷︷ ︸

=0

dV −
∑
E

∫
∂E
φδn · ∇⊥ψδ dS (14)

=−
∑
Γ

∫
Γ
φδ [[n · ∇⊥ψδ]]︸ ︷︷ ︸

=0

dV −
∫
∂Ω
φδ u · n︸ ︷︷ ︸

=0

dS = 0,(15)

where
∑
E indicates a sum over all elements E, ∂E is the boundary of element

E,
∑

Γ indicates a sum over all orientated internal element boundaries in the
mesh, and [[f ]] indicates the jump in a function f across a surface Γ. In
equation (14) the normal component of velocity vanishes exactly on ∂Ω as h
is constant on ∂Ω and the balanced velocity is obtained from the pointwise curl
of the streamfunction ψ. In (15) the jump in the normal component of ∇⊥ψ
vanishes because the tangential derivative of functions in P2 is continuous
across element boundaries. 1

The proof of this property is easily extended to the general PnDG-P(n+1)
element pair i.e., nth order discontinuous velocity and (n+1)-th order contin-
uous layer thickness. It is also easily extended to the three-dimensional case
in which u = ∇∧Ψ for any vector field Ψ which is constant on the boundary.

3 Numerical tests

In this section we illustrate and explore the properties of the P1DG-P2 element
applied to the linear rotating shallow-water equations.

3.1 Representation of geostrophic balance

Le Roux et al. (1998) tested a number of element pairs for their ability to
represent geostrophic balance. This was done by selecting a streamfunction
field, computing the balanced velocity field from equation (12), and plotting
streamlines. Element pairs were compared by the smoothness of the resulting
streamlines on structured and unstructured meshes. Here we just note that,
as described in the previous section, the balanced velocity for the P1DG-P2
element is obtained from the pointwise gradients of streamfunction and so
streamlines of the discretised balanced velocity field are simply contours of

1 The right-hand side of (13) can be shown to vanish for general functions from
the space H1 (which contains the P2 functions) by taking a convergent sequence of
smooth functions and passing to the limit. However, the extra property of continuous
tangential derivatives of Pn functions facilitates the simpler proof given here.
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Fig. 2. Left: Streamlines of balanced velocity obtained from a Gaussian stream-
function distribution using the P1DG-P2 discretisation. The streamlines are very
smooth showing that the discretisation does not introduce spurious oscillations.
This is because in this case the balanced velocity can be obtained by taking the
pointwise (strong) gradients of the streamfunction. Right: The mesh used for this
calculation. The mesh was deliberately distorted to illustrate that this property is
not dependent on mesh quality.

the discretised streamfunction field. This means that the balanced velocity
field is actually as accurate as possible for the P2 streamfunction field. Plots
of some resulting streamlines are given in figure 2; for comparison with other
element pairs see Le Roux et al. (1998).

3.2 Steady states

In Le Roux et al. (1998), another numerical test was performed in which
the linear rotating shallow-water equations were initialised in a geostrophic
state; streamlines were plotted after some time which showed that the P1 iso
P2−P0− 3 element pair (proposed in that paper) preserved the steady state to
excellent accuracy. In the case of the P1DG-P2 element, we have already shown
in the previous section that geostrophic states are exactly steady so it remains
to verify this numerically. Using the mesh shown in figure 2, we computed ran-
domly generated streamfunction fields with ψ = 0 on the boundary together
with their geostrophically balanced velocity fields obtained from equation (11),
and integrated the equations in time using the Crank-Nicholson method. We
observed that the layer thickness h and velocity u remained constant up to
machine precision, confirming that the geostrophic modes are completely un-
coupled from the inertia-gravity waves. For the time evolution of geostrophic
states using other element pairs, see Le Roux et al. (1998).
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Fig. 3. Plot showing the mesh used for Kelvin wave tests.

3.3 Kelvin waves

We tested the P1DG-P2 element using a Kelvin wave initial condition; the
Kelvin wave is a trapped coastal wave which is geostrophically balanced in
the direction normal to the coast which propagates at the fast gravity wave
speed 1/Fr for the case of a straight coastline. The aim of the test is to verify
that the Kelvin wave does not shed any spurious inertia-gravity waves. We
used the circular Kelvin wave initial condition given by

h(r, θ) = e(r−r0)/Ro cos θ,

uθ(r, θ) =
1

Fr
e(r−r0)/Ro cos θ,

ur = 0,

with Ro = 0.1 and Fr = 1. The Kelvin wave propagates around the circular
coast, maintaining geostrophic balance in the normal direction. The mesh
used for the discretisation is shown in figure 3. We integrated the equations
in time for 0 > t > 100 using the Crank-Nicholson method and a time step
size ∆t = 0.01. Figure 4 shows the layer thickness at various times: there are
no spurious gravity waves observed, which means that the P1DG-P2 element
pair is maintaining geostrophic balance in the normal direction as well as the
Kelvin wave structure.

To check convergence of the method we integrated a Kelvin wave in the rect-
angular domain Ω = {x : −15 < x < 15, 0 < y < 3} with initial condition

h = e−y/Roe−(x−5)2 , u = (e−y/Roe−(x−5)2 , 0).
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Fig. 4. Plots showing contours of layer thickness h at times t =0 (top left), 30
(top right), 60 (bottom left) and 90 (bottom right) for the circular Kelvin wave test
case. No spurious oscillations are observed, which verifies that the P1DG-P2 element
maintains geostrophic balance in the normal direction.

If this initial condition is used in the domain Ω∞ = {x : −∞ < x < ∞, 0 <
y <∞}, then the equation has the exact solution

h = e−y/Roe−(x+t/Fr2−5)2 , u = (e−y/Roe−(x+t/Fr2−5)2 , 0).

We integrated the system to time t = 10. For this time interval the solution
is almost zero for y > 1 and |x| > 6 and so the exact solution is a good
approximation. The timestep was chosen to have a wave Courant number
of less than 0.1 for all simulations so that the errors are dominated by the
spatial discretisation. We refined the mesh isotropically in space in the region
where the solution was non-zero during the calculation and computed the
L2 errors of the velocity and the layer thickness for various element edge
lengths in the refined region. Plots of the numerical errors are given in figure
5. A linear regression on these values showed that the velocity errors were
proportional to 2.19 and the layer thickness errors were proportional to 1.98.
These results suggest that the errors in velocity and layer thickness in the
spatial discretisation scale quadratically with the edge length, as would be
expected from approximation theory. They are also an indication that the
element pair is stable: if the element pair were unstable then there would be
spurious modes present which would lead to slower convergence than that
expected from approximation theory.
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Fig. 5. Convergence plots for tests with a Kelvin wave propagating along a flat coast
performed on unstructured isotropic triangular meshes, showing error ε against
element edge length ∆x. Left: L2 error in velocity plotted against element edge
length. Right: L2 error in velocity plotted against element edge length. Both plots
show that the errors scale with ∆x2 as ∆x→ 0.

4 Summary and Outlook

In this paper we introduced the P1DG-P2 element pair applied to the linear
shallow-water equations on an f -plane. We showed that the element pair has
the property that all geostrophically balanced states which strongly satisfy
the boundary conditions are exactly steady since their discrete divergence is
identically zero. This means that the element pair has excellent geostrophic
balance properties. We verified these properties by computing the evolution of
balanced states, and by simulating Kelvin wave solutions which are geostroph-
ically balanced in one direction. Finally we gave convergence test results which
show that the numerical solutions have errors which decay quadratically with
element edge length; this verifies the LBB-stability properties discussed in
Cotter et al. (to appear).

In future work we shall compare this element pair with other low-order ele-
ment pairs such as the P0DG − P1, P1NC − P1 and RT0 pairs. Whilst the
discontinuous velocity means that the P1DG-P2 pair has a large number of de-
grees of freedom per element, the remarkable accuracy of the first half of the
dispersion relation (noted in Cotter et al., to appear) suggests that the element
may be competitive, especially given its excellent treatment of geostrophic bal-
ance, and local conservation of momentum. The higher-order extensions such
as P2DG − P3 will also be examined. We shall investigate the performance of
the element once nonlinear advection has been introduced.

A key advantage of this element pair is that the extension to three dimen-
sions is also LBB-stable; the property that geostrophically balanced states are
exactly divergence-free also extends to the three dimensional case. We shall
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investigate the performance of this element pair in fully three-dimensional
unstructured mesh ocean modelling in the ICOM model (Pain et al., 2005).
We also expect that if the buoyancy is discretised using P1DG elements, then
the discretisation will also preserve hydrostatic balance very well; this will be
investigated in future work.
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