

POLYTECHNIC OF ŠIBENIK

DEPARTMENT OF MANAGEMENT

SPECIALIST STUDY OF MANAGEMENT

Ivan Bumbak

SOFTWARE DEVELOPMENT METHODOLOGIES ON

ANDROID APPLICATION USING EXAMPLE

Graduate thesis

Šibenik, 2018.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VUS Repository

https://core.ac.uk/display/197831094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

POLYTECHNIC OF ŠIBENIK

DEPARTMENT OF MANAGEMENT

SPECIALIST STUDY OF MANAGEMENT

SOFTWARE DEVELOPMENT METHODOLOGIES ON

ANDROID APPLICATION USING EXAMPLE

Graduate thesis

Course: Software engineering

Mentor: PhD Frane Urem, college professor

Student: Ivan Bumbak

Student ID number: 0023096262

Šibenik, September 2018.

TEMELJNA DOKUMENTACIJSKA KARTICA

Veleučilište u Šibeniku Diplomski rad

Odjel Menadžmenta

Diplomski specijalistički stručni studij Menadžment

Razvojne metode programa na Android platformi koristeći primjer

Ivan Bumbak

bumbak.ivan@gmail.com

Postoji mnogo razvojnih metoda programskih rješenja koje se mogu koristiti za razvoj istih na

bilo kojoj platformi. Koja metoda će se koristiti ovisi o zahtjevnosti samog projekta, koliko

ljudi radi na projektu, te u kojem vremenskom roku projekt mora biti isporučen. U svrhu ovog

diplomskog rada razvijena je Android aplikacija putem tradicionalne metode, iako su danas sve

više i više popularne takozvane agile metode. Agile, ili agilan, znači biti brz i sposoban reagirati

na vrijeme te prilagoditi se svim promjenama u bilo kojem trenutku razvoja projekta. U radu su

objašnjenje najpopularnije agile metode te su prikazane prednosti korištenja agile metoda u

odnosu na tradicionalnu metodu.

(37 stranica / 37 slika / 0 tablica / 14 literaturnih navoda / jezik izvornika: engleski)

Rad je pohranjen u: Knjižnici Veleučilišta u Šibeniku

Ključne riječi: metode, agile, razvoj, aplikacija

Mentor: dr.sc. Frane Urem, prof. v.š.

Rad je prihvaćen za obranu: 7. rujna, 2018

BASIC DOCUMENTATION CARD

Polytechnic of Šibenik Graduate thesis

Department of Management

Specialist study of Management

SOFTWARE DEVELOPMENT METHODOLOGIES ON ANDROID

APPLICATION USING EXAMPLE

Ivan Bumbak

bumbak.ivan@gmail.com

There are many software development methodologies which can be used for developing any

kind of software, on any platform. Which method will be used depends on how much project is

big, how many people work on it and in what time needs to be finished and delivered. For the

purpose of this thesis Android application was developed using traditional methodology.

However, nowadays agile methodologies are more and more popular. Agile means, quickly and

adaptable to any kind of changes at any point in development time. Thesis also describes the

most famous agile methodologies and their advantages compared to traditional development

methodology.

(37 pages / 37 figures / 0 tables / 14 references / original in English language)

Paper deposited in: Library of Polytechnic in Šibenik

Keywords: software, development, methodology, agile, android

Supervisor: PhD Frane Urem, college professor

Paper accepted: September 7, 2018

Table of Contents

1. Introduction ... 1

2. Story of Android .. 2

2.1. Founding Android ... 2

2.2. Android Logo .. 3

3. Versions of Android OS .. 4

3.1. Android 1.5, Cupcake ... 4

3.2. Android 1.6, Donut ... 5

3.3. Android 2.0-2.1, Eclair .. 6

3.4. Android 2.2, Froyo .. 6

3.5. Android 2.3, Gingerbread ... 7

3.6. Android 3.0, Honeycomb .. 7

3.7. Android 4.0, Ice Cream Sandwich... 8

3.8. Android 4.1-4.3, Jelly Bean ... 8

3.9. Android 4.4, KitKat ... 9

3.10. Android 5.0, Lollipop .. 10

3.11. Android 6.0, Marshmallow ... 11

3.12. Android 7.0, Nougat ... 11

3.13. Android 8.0, Oreo ... 12

4. Development of “eVUŠ” Android Application ... 13

4.1. Waterfall Methodology .. 13

4.1.1. Requirements ... 14

4.1.2. Analysis .. 15

4.1.3. Design .. 16

4.1.4. Coding .. 16

4.1.5. Testing ... 18

4.1.6. Operations ... 21

4.2. Advantages of Waterfall Methodology .. 22

4.3. Disadvantages of Waterfall Methodology .. 23

5. Agile Methodologies vs. Waterfall Methodology .. 25

5.1. Agile methodologies ... 25

5.1.1. Scrum ... 26

5.1.2. Lean Development and Kanban ... 27

5.1.3. Extreme Programming .. 28

5.1.4. Crystal Methods ... 30

5.1.5. Dynamic Systems Development Method ... 31

5.1.6. Feature-Driven Development .. 32

5.2. Advantages of Agile Methodologies Compared to Waterfall Model ... 34

5.2.1. Poor quality and poor visibility using waterfall model .. 34

5.2.2. Cannot handle change ... 35

5.2.3. Continuous activities.. 35

5.2.4. Requirements can change ... 36

6. Conclusion ... 37

References ... 38

Appendix: Illustrations .. 39

1

1. Introduction

Android applications are becoming increasingly more used in our daily life and almost in every

aspect of our lives. People use Android applications for navigation, shopping, tracking daily

activity, daily water supply, communication etc. Except from their common use, we can connect

our mobile phones on our house appliances and use them for controlling heat, lights, food

supply and more. Using Android applications is very easy but making them can be very hard

and tricky. It takes time to make application perfect, and programmers are not the only ones

involved in making them. Users are one of the main parts of its idea, usage and existence.

Without users, programmers cannot know what they want, and if programmers do not know

what users seek, they cannot make any application.

This graduate thesis is going to describe what an Android application is, when it was introduced,

what the main programming languages for developing Android applications are and what

methodologies are in use today for application development. Also, there will be provided an

example of building and testing Android applications. The application, used as an example, was

developed in Google’s software, Android Studio 3.0 by the author of this graduate thesis.

Application “eVUŠ” calculates student scholarship based on a difference between enrolled

ECTS1 and failed ECTS points. There are also some filters like choosing your study or enrolling

year because of changed price through years. After selecting graduating year and type of study,

a student clicks on the ‘’calculate’’ button and application will show how much of scholarship

he or she has to pay in Croatian kuna and total of gained ECTS points. Application is made

only for the students of Polytechnic of Šibenik and for the purpose of this graduate thesis.

1 ECTS – European credit transfer system – points based on learning achievements in Bologna Process

2

2. Story of Android

We have been using Android for a long time now. However, it has been around 10 years since

the Android OS2 was introduced to consumers. Thanks to Google, Android is an open source

OS3 which allowed it to become highly popular with third-party phone makers, e.g. HTC,

Huawei, Samsung, etc. Today, Android OS has become the most popular OS in the world. It

defeated many competitors like Symbian, BlackBerry and Windows Phone, but still its greatest

and most serious competitor is Apple’s OS.

2.1. Founding Android

The company, Android Inc, was founded in Palo Alto, California on October 2003 by four

founders: Rich Miner, Nick Sears, Chris White and Andy Rubin. One of its founders, A. Rubin,

in 2013 revealed that Android OS was originally meant to improve the operating systems of

digital cameras4. The company made pitches in 2004, and showed how Android, installed on

camera, would wirelessly connect to a PC which would be connected to Android Datacenter,

where camera owners can store their photos on a cloud server. However, in that time, market

for stand-alone digital cameras was declining and few months later after their pitch the company

shifted using the same OS towards mobile phones.

Next big step in Android’s history was made when Google decided to acquire the original

company in 2005. Android’s founding member continued to develop the OS, but together with

Google, they decided to use Linux as base software. This meant that Android can be offered to

third-party mobile phone manufactures for free.

Until now, they have launched 15 different versions of Android, and are currently developing

the 16th. Every version had different name, except the first two versions, and Android used

names of sweets for their versions of OS. Also, as every other programming software with

graphical user interface (GUI), Android uses APIs5. API is a set of routines, protocols, and tools

for building software applications.6

2 Operating system – system software that manages computer hardware and software resources and provides

common services for computer programs
3 Open source OS – type of software with its source code made available with a license in which copyright

holder provides the rights to study, change, and distribute the software to anyone and for any purpose
4 https://www.pcworld.com/article/2034723/android-founder-we-aimed-to-make-a-camera-os.html
5 API – Application program interface
6 https://www.webopedia.com/TERM/A/API.html

https://www.pcworld.com/article/2034723/android-founder-we-aimed-to-make-a-camera-os.html
https://www.webopedia.com/TERM/A/API.html

3

2.2. Android Logo

The logo, as we know it today, looks like a combination of a robot and a green bug, was

designed and created by Irina Blok while she was working for Google in 2007. The only

directive she had was to make it look like a robot. The inspiration came from non-other than

the signs of the universal man and woman that often appears on restroom doors in restaurants,

café bars, etc.

Designing team agreed that the logo, like the software, should be open-sourced. This means

that everybody can take initial logo and make its own design, without being sued for copyright.

Since then, Android logo has been dressed up as many characters and given many different

features like skins, skateboards, etc. Illustration 1 shows different Android logo skins through

years since its original creation. Also, every version of Android OS has its own logo which

associates the given name for each version of OS. Except that, in front of Google Visitor Centre

building, California, there are placed statues for each version of Android OS.

Illustration 1. Android logo

Source: https://www.nytimes.com/2013/10/13/magazine/who-made-that-android-logo.html

https://www.nytimes.com/2013/10/13/magazine/who-made-that-android-logo.html

4

3. Versions of Android OS

There are 8 different major versions released, and currently Google is working on its 9th version

of software. Its name has not been revealed yet, and it is known as Android P, or Android 9.0.

As was mentioned before, every version has its own code name. Code names were used from

Android 1.5 until today. The first two versions did not have code name, but version 1.1 was

internally known as ‘’Petit Four7’’. There is no specific reason why Google developers choose

to use candy and dessert names for Android code name. However, after Android 4.4 was

released, Google offered official statement about code names, saying, ‘’ Since these devices

make our lives so sweet, each Android version is named after a dessert.’’8

First two versions of Android, beta version of Android 1.0, were released on November 5, 2007.

This version already had today’s globally known Google’s business plan trademarks. It

integrated other company’s products and services, e.g. Google Maps, YouTube and HTML

browser and Android Market. In February 2009, there was a minor update to Android 1.1.

3.1. Android 1.5, Cupcake

Cupcake was the first official public code name for Android OS. Cupcake was released in April

2009. It contained a few new features and improvements compared to its previous version.

Cupcake had ability to upload videos to YouTube, back than hard to imagine, support for third-

party keyboards and automatic display rotation to the right position. The first versions of

Samsung Galaxy phone, and HTC Hero were the first phones which had installed Cupcake out

of the box. Illustration 2 shows the original logo of Android Cupcake version and its statue

placed in front of the company.

7 Petit four – small bite-sized confectionery or savoury appetizer
8 https://www.androidauthority.com/history-android-os-name-789433/

5

Illustration 2. Android 1.5, Cupcake

Source: https://www.androidauthority.com/history-android-os-name-789433/

3.2. Android 1.6, Donut

Donut was launched only five months after launching its previous version, Cupcake. New

features included support for carriers that used CDMA-based network, which allowed Android

phones to be sold and used by all carriers around the world. Other features were introduction

of Quick Search Box, quick toggling between camera and gallery, and Power Control widget

for managing Wi-Fi, Bluetooth, GPS, etc. The first phone with Donut version was unpopular

Dell Streak phone, which had huge 5-inch screen. Just for comparison, nowadays 5-inch display

phones are considered to be average sized for a smartphone. Illustrations 3 shows original logo

for Android Donut and its statue in front of the company.

Illustration 3. Android 1.6, Donut

Source: https://www.androidauthority.com/history-android-os-name-789433/

https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/

6

3.3. Android 2.0-2.1, Eclair

Android 2.0, or code name, Eclair was launched in October 2009. In this version, Google

introduced text-to-speech support for the first time, live wallpapers, multiple account support

and Google Maps navigation. The first phone which came with preinstalled Eclair was Motorola

Droid, and it was the first phone based on Android that was sold by Verizon Wireless. In that

time, Lucasfilm used ‘’Droid’’ term as reference to robots in the movie franchise Star Wars,

which also was trademarked. Because of that, Motorola had to get permission and pay some

money to Lucasfilm to use Droid as the name for their phone. Motorola used Droid brand for

many phones until 2016. Next illustration shows its original logo and its statue.

Illustration 4. Android 2.0-2.1, Eclair

Source: https://www.androidauthority.com/history-android-os-name-789433/

3.4. Android 2.2, Froyo

Android 2.2, Froyo was launched in May 2010. Froyo is short for frozen yogurt. Phones with

this version of software had several new features, like Wi-Fi mobile hotspot functions, push

notifications via Android Cloud to Device Messaging service, etc. The first smartphone which

was able to receive Froyo update was Google’s Nexus brand phones, the Nexus One.

Illustration 5. Android 2.2, Froyo

Source: https://www.androidauthority.com/history-android-os-name-789433/

https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/

7

3.5. Android 2.3, Gingerbread

Android 2.3, with code name Gingerbread was released in September 2010 and it is currently

the oldest version of the Android OS that is still listed on monthly platform version update page.

Gingerbread version refreshed user interface and added support for NFC9 functions, but only

for devices which had the required hardware, NFC chip. The first phone which added both

Gingerbread and NFC hardware was the Nexus S, developed by cooperation of Google and

Samsung. Except NFC function, Gingerbread brought groundwork for selfie, because of

support for multiple cameras and video chat support within Google Talk. Illustration 6 shows

Gingerbread logo and its statue.

Illustration 6. Android 2.3, Gingerbread

Source: https://www.androidauthority.com/history-android-os-name-789433/

3.6. Android 3.0, Honeycomb

Android 3.0, called Honeycomb, was introduced in February 2011 along with first Motorola

Xoom tablet. This version of Android OS was little bit oddball compared to other versions. It

was released for installation only on tablets and other mobile devices with larger displays than

current smartphones. It brought redesigned user interface, specifically for large screens, and

notification bar which was placed on the bottom of a tablet’s display. Its idea was to offer

specific features that could not be handled by the smaller displays. Honeycomb was also

replayed for their competitor’s Apple iPad, but Honeycomb ended up as unnecessary version.

Illustration 7 shows Honeycomb original logo and its statue in front of the company.

9 NFC – near field communication

https://www.androidauthority.com/history-android-os-name-789433/

8

Illustration 7. Android 3.0, Honeycomb

Source: https://www.androidauthority.com/history-android-os-name-789433/

3.7. Android 4.0, Ice Cream Sandwich

Android 4.0, publicly known as Ice Cream Sandwich was released in October 2011, 8 months

after its previous version. It was feature combination of Gingerbread and Honeycomb versions.

Ice Cream Sandwich introduced face detection for unlocking the phone. Except this feature, it

contained wipe gestures for dismissing notifications and browser tabs and ability to monitor

data usage of mobile network or Wi-Fi. As of today, there is 0.4%10 of all Android devices still

running on Android 4.0 version. Illustration 8 shows original Ice Cream Sandwich logo and its

statue.

Illustration 8. Android 4.0, Ice Cream Sandwich

Source: https://www.androidauthority.com/history-android-os-name-789433/

3.8. Android 4.1-4.3, Jelly Bean

Era of Android Jelly Bean started in June 2012. It had two updated version with the same name,

Android 4.2 released in October 2012, and year after first Jelly Bean version, Android 4.3 in

10 February 5th, 2018 - https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-

with-android-os/

https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

9

July 2013. In this version Google updated notification panel adding more content and action

buttons, which are today unimaginable. Its 4.2 version included full support of the Android

version of Google’s Chrome web browser. First device which came with pre-installed Android

4.1, Jelly Bean version was Google Nexus 7 tablet. All versions of Jelly Bean are still very

much active on Android devices. As for now, there is about 5%11 of all Android devices which

use Jelly Bean versions. Illustration 9 shows original Android Jelly Bean logo and its statue.

Illustration 9. Android 4.1-4.3, Jelly Bean

Source: https://www.androidauthority.com/history-android-os-name-789433/

3.9. Android 4.4, KitKat

Android 4.4, or Android KitKat, is the first version of Android OS that uses a name of some

candy trademark. It was officially launched in September 2013. Its first name was not as we

know it today. Google, at their conference ‘’Google I/O conference’’, that year said that

codename for Android 4.4 would be Key Lime Pie. However, Google’s director of Android

global partnership J. Lagerling thought ‘’Key Lime Pie’’ would not be familiar name enough,

so he called Nestle and they agreed to use its candy bar trademark for the code name of new

Android version. Nestle also released their famous candy bar shaped like Android robot mascot.

This version did not have so many new features, but it was optimized to run on smartphones

which had only 512 MB of RAM. Google’s smartphone Nexus 5 was the first smartphone with

pre-installed KitKat version. It has been 5 years from its release and there is still 12%12 of all

Android devices which runs on Android KitKat.

11 12 February 5th, 2018 - https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-

devices-with-android-os/

https://www.androidauthority.com/history-android-os-name-789433/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

10

Illustration 10. Android 4.4, KitKat

Source: https://www.androidauthority.com/history-android-os-name-789433/

3.10. Android 5.0, Lollipop

Android 5.0, commonly known as Android Lollipop was launched in the fall of 2014 and it

brought a major overall look difference of the OS. Lollipop was the first version that used

Google’s new Material Design language, which made liberal use of shadow effects, simulate a

paper-like look of the Android user interface, revamped navigation bar, rich notifications for

the lock screen, etc. Android 5.1 update made a few more under the hood changes: support of

dual-SIM, HD Voice calls, and Device Protection to keep thieves locked out of your phone

even after a factory reset. The first devices which came with pre-installed Lollipop were

Google’s Nexus 6 smartphone and its Nexus 9 tablet. Statistics from February 2018 show that

there is 24.6%13 of all Android devices which runs on Android Lollipop and makes it the third

most used version at the moment. Illustration 11 shows original logo and Android Lollipop

statue.

Illustration 11. Android 5.0, Lollipop

Source: https://www.androidauthority.com/history-android-os-name-789433/

13 https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

11

3.11. Android 6.0, Marshmallow

Android 6.0, code named Marshmallow is 6th major version of Android OS. It was released in

the fall of 2015. It introduced features such as vertically scrolling app drawer, Google Now on

Tap, support of fingerprint unlocking, USB Type-C support, introduction of Android Pay, etc.

The first devices which came with pre-installed Marshmallow were Google’s Nexus 6P and

Nexus 5X smartphones, along with Google’s Pixel C tablet.

Android Marshmallow takes 2nd place on the list of most installed Android OS version. On

February 5th, 2018 there was 28.1%14 of all Android devices which were running on this version

of Android. It is most popular version together with Android 7.0 or commonly known as

Android Nougat. Illustration 12 shows Android Marshmallow original logo and its statue in

front of the company.

Illustration 12. Android 6.0, Marshmallow

Source: https://www.androidauthority.com/history-android-os-name-789433/

3.12. Android 7.0, Nougat

Android 7.0, known as Android Nougat is currently the most popular version of Android OS.

Also, the most of today’s Android devices run on Android 7.0 version, despite the Android 8.0

Oreo. There is 28.5%15 of all Android devices which use this version. Android Nougat was

introduced 2 years ago, in the fall of 2016. This version included better multi-tasking functions,

split-screen mode for bigger displays, quick switching between apps and many other features.

Google’s Pixel, Pixel XL and LG V20 were the first phones which came with pre-installed

14 15 https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

https://www.androidauthority.com/history-android-os-name-789433/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

12

Android Nougat. Illustration 13 shows official logo of Android Nougat and its statue which is

placed in front of the company building.

Illustration 13. Android 7.0, Nougat

Source: https://www.androidauthority.com/history-android-os-name-789433/

3.13. Android 8.0, Oreo

Android 8.0, code name, Oreo, is currently the newest version of Android OS. It was released

in August 2017. Android Oreo contains a number of major features including picture-in-picture

support for video, performance improvements, battery usage optimization and many others

features. This version is still very new and some smartphones which were introduced around

the same date will receive official update through May and June 2018. Android Oreo is the 2nd

version which uses candy bar trademark. As of April 16, 2018, there are 4.65% of all Android

devices which run on Oreo.16 Interesting fact is that 5% of all Android devices run on Android

4.1-4.3 versions, Jelly Bean version.17

Nowadays, Google is working on its 9th version of Android OS. Still, Android 9.0 is known

only as Android P, and it is still in development. Recently they published beta version, but it

would be out by the fall of 2018, as its new sweet code name. Illustration 14. shows Android

Oreo official logo and its statue.

Illustration 14. Android 8.0, Android Oreo

16 https://developer.android.com/about/dashboards/
17 This data was actual in May 2018

https://www.androidauthority.com/history-android-os-name-789433/
https://developer.android.com/about/dashboards/

13

Source: https://www.seroundtable.com/photos/google-android-oreo-statue-24336.html

4. Development of “eVUŠ” Android Application

There are many ways how to develop an application or software. Developers can take their time

and develop it as they want, or if they are working in teams or cooperating with potential users

they can use some of existing software development methodologies like traditional

methodologies or agile methodologies which are becoming a standard in developing any kind

of projects. Software development methodology in software engineering, including application

development for mobile devices, is conceptual framework which is used to plan, design,

structure and test or control developing processes. Application “eVUŠ” was developed by

waterfall methodology. “eVUŠ” is a very simple android application which calculates

enrolment student scholarship based on collected ECTS credits. Development lasted from July

2016 to October 2016.

4.1. Waterfall Methodology

Waterfall methodology is traditional development methodology introduced by Dr. Winston W.

Royce in a paper published in 1970. This model emphasizes that steps of software development

life cycle are the same as cascading steps down an incremental waterfall. In short, when one

phase is done, the next one can begin and not before. Nowadays, waterfall methodology has

waned in a favour of agile methodologies. However, logical nature of waterfall processes

cannot be denied, and it remains a common design process in the industry. It has 6 phases of

development: requirements, analyses, design, coding, testing, operations.

Illustration 15. Waterfall model

https://www.seroundtable.com/photos/google-android-oreo-statue-24336.html

14

Source: https://airbrake.io/blog/sdlc/waterfall-model

4.1.1. Requirements

Requirement is the first and initial phase of waterfall methodology. In this phase developers are

writing down and documenting potential requirements of the application which will serve as

the basis for all future development. It defines what application should do, not how it works.

Requirements are documented together with someone who ordered the application. “eVUŠ”

was ordered by Polytechnic of Šibenik. Together with them, developer has collected next

important requirements:

a) Application should calculate scholarship based on collected ECTS. This means that a

user must be able to enter how many of ECTS he or she has enrolled. Also, there must

be an indicator by which total amount price will be calculated. For example, difference

between enrolled credits and failed credits should give a total amount of collected

credits which later will be multiplied by price of 1 ECTS credit.

b) As the price of 1 ECTS is not same for all types of study, a potential user must have

option to choose proper type of study

c) There must be a constant amount of enrolment fees which needs to be calculated into

total amount of scholarship

d) Application needs to show to user the total amount of collected ECTS credits and total

amount of scholarship

e) There are different rules for paying scholarship: if a student has more than 55 ECTS

credits he or she will pay only enrolment fee. However, if he or she has collected less

than 30 ECTS credit he or she has to pay the whole amount of scholarship.

After all potential requirements are collected a developer can move on to the next phase.

https://airbrake.io/blog/sdlc/waterfall-model

15

4.1.2. Analysis

Analysis is the second phase in waterfall methodology. This phase should provide analysed

system in order to properly generate the models and business logic that will be used in

application. It should show step by step how application will work. So, steps for “eVUŠ” are

next:

1) User launches the application

2) User needs to choose between enrolment years. If users choose enrolment academic

year before 2014/2015 their price will be calculated with lower price per 1 ECTS, else

it will calculate with higher price.

3) After choosing enrolment year, user will choose type of study. If he or she chooses

traffic type of studies, he or she will have different price per 1 ECTS.

4) User enters enrolled ECTS credits.

5) User enters failed ECTS credits.

6) User selects ‘’calculate’’ button.

For easier understanding, next illustration shows flow-chart diagram with all steps mentioned

above.

Illustration 16. Flow-chart of “eVUŠ” Android application

Source: Author’s own work

16

4.1.3. Design

In this phase, developer covers technical design requirements, such as programming language,

data layers etc, but it does not define how its UI18 should look like. This phase outlines how

exactly the business logic covered in analysis will be technically implemented.

“eVUŠ” application was developed in Google’s software called “Android Studio 3.0” in Java

programming language. Applications UI was built using XML19 language. Using drawn flow-

chart “eVUŠ” should contain:

a) Some kind of a list from which user can choose between 4 different types of studies.

For example, list can be placed in dropdown box for easier selecting.

b) Text field which will store users enrolled ECTS credits.

c) Text field which will store users failed ECTS credits.

d) Button which will show calculated numbers

e) Places for displaying total ECTS credits, and total amount of scholarship that has to be

paid for enrolment in next academic year.

4.1.4. Coding

In this phase developers are writing actual source code of an application or software. It

implements all models, business logic, services and integrations that were specified in the all

prior stages. Next illustrations show some parts of code of “eVUŠ” application.

Illustration 17. Source code of “eVUŠ” application

18 UI – user interface in the industrial design field of human–computer interaction, is the space where
interactions between humans and machines occur
19 XML – extensible markup language – language that defines a set of rules for encoding documents in a format
that is both human-readable and machine-readable

17

Source: Author’s own work

Illustration 18. shows part of code written in Java programming langue. The code defines the

rules and logic of the application. Illustration 18. shows part of code which defines UI settings

written using XML markup language.

Illustration 18. UI source code of “eVUŠ” application

18

Source: Author’s own work

4.1.5. Testing

Testing is fifth out of six phases in waterfall methodology. During this phase developers release

beta versions20. Beta version is sent to a limited number of potential users. They will discover

and report issues within the application that need to be resolved. This phase will probably cause

necessary repeat of the previous coding phase. “eVUŠ” was sent to five different students on

five different Android devices, OnePlus2, OnePlusX, Vernee Apollo, Huawei P9, Samsung

Galaxy S6, including testing using Google Nexus 5 emulator as integrated part of Android

Studio software and debugger tools and log statements which are also part of the same software.

Illustration 19. shows part of debugger tool and log statements.

20 Beta version - version of a piece of software that is made available for testing

19

Illustration 19. Debugger tool of “eVUŠ” application

Source: Author’s own work

Testing result showed that choosing proper type of study does not change the price of 1 ECTS

based on group of studies. Also, users notice that some of them do not have the same price per

1 ECTS as they enrolled few years earlier. That problem led to wrongly calculating the amount

of scholarship. Except that users were unhappy with UI. Changes that were necessary:

a) Option for choosing enrolment year. Before academic year 2014/2015 there was

different price, so for students who enrolled before that year scholarship is based on that

price. Students have to be able to choose the enrolment year. This change belongs to

requirement phase, which is the very first phase of waterfall method.

b) If application contains source code for selecting enrolment year and accordingly

updating cost of 1 ECTS there should be the option for selecting the right year. So the

best option would be radio buttons as users need to choose between two options:

enrolment before academic year 2014/2015 and enrolment after academic year

2014/2015. This change belongs to third stage which covers design of the application

and fourth stage in which developer writes code for all defined requirements.

c) Enrolment cost amount was wrong. Also, there is no need for displaying max enrolment

ECTS credits. Fields for entering points are not so clear. Text in that input fields are not

showing whole explanation.

d) Application does not have an explanation what a user should do with it.

e) UI should be a little bit modern. There is too much of blue colour. You cannot properly

see dropdown box for choosing type of study.

20

Every time users notice something a developer needs to go back to coding phase and fix the

problem. Test it using debugger tools, and then is sent again to potential users to check if

everything goes as it should. Next illustration shows the very first version of the application

whose important changes are explained above.

Illustration 20. The very first version of “eVUŠ” application before testing

Source: Author’s own work

After developer made changes what users and customer asked for the application was tested

again. Now, there was everything they asked for, so the result is displayed on illustration 21.

Illustration 21. Final version of “eVUŠ” application. Main screen and instructions screen

Source: Author’s own work

21

4.1.6. Operations

Operations are the last stage in waterfall methodology and at this point application is ready for

live environment. It entails not just the deployment, but also support and maintenance that may

be required. This phase is important to keep application up-to-date. Also, this phase actually

never ends. There is constant need of updating an application because of updating Android

software, faster phones, modern UI design, slow performance, etc. After Android application

is ready there are small procedures which need to be done for publishing it on Google Play

Store. After publishing there is constant feedback from users. It is very important for application

to be up to date because users will not use it if developers do not follow up trends. In “eVUŠ”

example, next update will be:

a) Adding new types of study as they are starting form academic year 2019/2020. This

change belongs mainly to operations, the very last stage, but also as the code has to be

changed a developer needs to go back to coding phase.

b) There will not be need for enrolment year choose option because there is no sense in

choosing different option if there are no students who were enrolled before academic

year 2014/2015. So higher price will be set as the only price of 1 ECTS. Next

illustrations show adding new type of study in dropdown box.

Illustration 22. Adding new type of study in dropdown box

Source: Author’s own work

22

Illustration 23. Adding new type of study in dropdown box

Source: Author’s own work

4.2. Advantages of Waterfall Methodology

It is true that waterfall model has seen a slow phasing out in recent years when we compare it

with agile methods, but it can still provide a number of benefits. Especially for larger projects

and organisations that require the stringent stages and deadlines.

1. It adapts to shifting teams – the model allows project as whole to maintain, detailed,

robust scope and design structure due to all planning and documentation stages. So it is

very good for large teams that may see members come and go through life cycle of

project. That way the whole concept and design is placed on the core documentation

and not on any individual member.

2. Model forces organization to be structured – while developing some project waterfall

model forces that project, even organisations to be extraordinary disciplined in its design

and structure. Larger projects are disciplined and very well structured by its nature; also

it includes detailed procedures to manage every aspect of the project, from design and

development to testing and implementation. Developing smaller projects in this way can

be very tiring and exhausting.

23

3. Possible early design changes – design changes can be very difficult, especially as

projects goes further and further in its developing process. Waterfall model allows these

changes because of documenting specification in the first stages together with

developing team and clients. So, these alterations can be immediately done and with

minimal effort, since there is no coding or implementation up to that point.

4. Suited for milestone focused development – as it mentioned before, waterfall model

is very good for very large projects, it is also well suited for organizations or teams that

work under a milestone and date focused paradigm. With clear and concrete stages,

everyone on the team can understand and prepare for and because of that it is relatively

simple to develop a proper timeline for the entire process.

4.3. Disadvantages of Waterfall Methodology

Some things in software development never change. When Dr. Royce introduced waterfall

model for the first time it was ground-breaking. However, almost five decades later, bunch of

cracks are starting to show up.

1. Nonadaptive constrains – the most demanding aspect of waterfall model is its inherent

lack of adaptability across all stages of life cycle. Test stage, which is stage five in the

process, can discover fundamental flaws in the design of the system. Except from

requiring a dramatic leap backward in the stages, it can lead to devastating realization

regarding the legitimacy of the entire system. For example, in “eVUŠ” application, in

testing phase it can reveal that the logic, or conditions like choosing types of study and

enrolment year are in some kind of conflict, and together they do not calculate nor

scholarship nor gained ECTS points properly.

2. It ignores mid-process potential user feedback – as this model has strict step-by-step

process, potential users of the software cannot give feedback until very late stages of

entire life cycle. So late feedback can be very insufficient, and it is often too late to

consider and make wanted changes. Project managers can enforce a process take step

back and make unforeseen requirements or make changes coming for user, but both of

that will be expensive and time-consuming for everyone on the project.

3. Testing period is delayed – most other modern methods are attempting to integrate

testing as a fundamental and always-present process throughout whole development

process, waterfall method avoids testing until late stages of the process. This not only

24

means that most bugs or other issues won’t be discovered until late into the process, but

it also encourages lackadaisical coding practices since testing is only an afterthought.21

Waterfall model has explicit software testing in its development, especially in implementation

phase, but that testing is often too late and it’s not enough for whole life cycle. However, this

model is still known as traditional model, and maybe it is suitable for projects like “eVUŠ”

Android application which is not so heavy, and it is not demanding. Still, when developing

some software, users` feedback, their thoughts, and their testing should be mandatory

throughout the whole life cycle of development, and whole developing team should take in

consideration users` thoughts, ideas and suggestions.

21 https://airbrake.io/blog/sdlc/waterfall-model

25

5. Agile Methodologies vs. Waterfall Methodology

There are many methodologies except Waterfall. Nowadays, developers are using more and

more agile methodologies which means that developers are working more and more with users

and customers through the whole life cycle of the project.

5.1. Agile methodologies

As an adjective agile means to move quickly and easily. It is the very same if we use it in

software development glossary. Using this kind of method a developer approaches to problem

incrementally instead developing and delivering all at once. Incrementally means that they

break project on small pieces, priories them, and continuously deliver them in short week cycles

which are called iterations.

Illustration 24. Agile methodologies scheme

Source: http://www.agilenutshell.com/

Developing by agile methodologies works like this:

a) Developer makes a list – together with a client makes a list of features a client wants in

their software. These features are called user stories22

b) Sizing things up – using agile estimation techniques developers size that stories

relatively to each other, and write down estimation time for developing all user stories

c) Setting priorities – there are always things to do than time for doing the same things. So

at this point, developers ask a client to priories the features

d) Developing – going through the list from top to bottom. As a developer goes, it receives

clients` feedback

22 http://www.agilenutshell.com/how_does_it_work

http://www.agilenutshell.com/

26

e) Updating as developing – as developer starts delivering the software these things can

happen:

a. Everything is good, and developer develops very fast and accurate. Or,

b. There is no much time left and too much to do

At this point developer has two choices:

a. Cut the scope and do less than it is asked

b. Ask for more time and more money

There are a bunch of agile methodologies, but the main are: scrum, Kanban, lean, extreme

programming (XP), crystal, dynamic systems development method (DSDM), feature-driven

development (FDD), etc.

Illustration 25. Agile methodologies

Source: https://www.versionone.com/agile-101/agile-methodologies/

5.1.1. Scrum

Scrum is a lightweight agile project management framework with broad applicability for

managing and controlling iterative and incremental projects of all types.23 It is designed for

teams of three to nine developers who break their work into actions, called sprints. These sprints

can be delivered within 30 days. Before developer team take these actions, they iterate with

product owner for easier identification and prioritization of system functionality stored in a

from called product backlog. In product backlog client and development team document

software features, bug fixes, requirements and whatever need to be done for successfully

working software. Because of its simplicity and proven productivity, scrum has increasing

23 https://www.versionone.com/agile-101/agile-methodologies/

https://www.versionone.com/agile-101/agile-methodologies/
https://www.versionone.com/agile-101/agile-methodologies/

27

popularity in the agile software development community. Illustration 26. shows the scrum

process.

Illustration 26. Scrum process

Source: http://www.learningfacilitated.com/2016/04/bringing-scrum-to-education/

5.1.2. Lean Development and Kanban

Lean software development (LSD) is translation of lean manufacturing principles. It was

adopted from Toyota. LSD focuses the team on delivering the value to a client. There are seven

principles which describe LSD method:

a) Eliminate waste – everything that does not add value to a client

b) Amplify learning – while developing both development team and clients are learning

more and more about development and the software by usage of short iteration cycles

c) Deciding as late as possible – in software development uncertainties are always present,

so better results should be achieved with option-based approach delaying decisions as

much as possible until they can be made based on facts

d) Deliver as fast as possible – technology grows very rapidly, so the sooner the complete

product is delivered, the sooner users` feedback can be received

e) Empower the team – in software development managers are thought to listen

developers, they do not see them just as resources, they let them do their work

encouraging them, catching errors without micro-managing them

f) Build integrity in – the client, software owner, needs to have an overall experience of

the system. They need to know how software is being advertised, delivered, deployed,

accessed, how intuitive its use is, its price and how well it solves problems. Developing

this way mistakes can be removed instantly

http://www.learningfacilitated.com/2016/04/bringing-scrum-to-education/

28

g) See the whole – nowadays, software is not just the sum of its part, but also the product

of software interactions between developers and clients. Big tasks should be

decomposed to smaller tasks because that way defects are easier found and eliminated

The Kanban methodology is used by organizations to manage the creation of products with an

emphasis on continual delivery while not overburdening the development team24. Kanban

method was design to help teams work together more effectively. It is based on three basic

principles:

a) Visualise what you do now

b) Limit the amount of work in progress

c) Enhance flow

5.1.3. Extreme Programming

Extreme programming (XP) has emerged as one of the most popular and controversial agile

methodologies.25 XP describes disciplined approach of delivering software, both quickly and

continuously. As every other agile methodology, XP promotes customer involvement, rapid

customer feedback, close teamwork and continuously testing. Software delivery cycle is usually

between 1 to 3 weeks. This methodology is based on four values:

a) Simplicity

b) Communication

c) Feedback

d) Courage

Developing by this method customer works very closely with development team so they can

together define more prioritizing requirements and they refer them as user stories. Estimating,

planning and delivering the highest priority user story is done by development team on iteration

by iteration basis. Next four illustrations show XP flow-charts. Illustration 27 shows complete

process for developing project, illustration 28 shows how iterations actually work within XP

methodology, illustration 29 shows main development of a project and lastly illustration 30

shows planning and feedback loops.

24 25 https://www.versionone.com/agile-101/agile-methodologies/

https://www.versionone.com/agile-101/agile-methodologies/

29

Illustration 27. Extreme programming flow-chart

Source: http://www.extremeprogramming.org/map/project.html

Illustration 28. Iteration flow-chart

Source: http://www.extremeprogramming.org/map/iteration.html

Illustration 29. Main development process

Source: http://www.extremeprogramming.org/map/development.html

Illustration 30. Planning and feedback loops

http://www.extremeprogramming.org/map/project.html
http://www.extremeprogramming.org/map/iteration.html
http://www.extremeprogramming.org/map/development.html

30

Source: http://www.extremeprogramming.org/map/loops.html

5.1.4. Crystal Methods

Crystal methods are whole family of software development methodologies as there are many

of them like crystal clear, crystal sapphire, crystal yellow, etc and it represents one of the most

lightweight and adaptable approaches to software development. Each crystal methodology is

different, and which of them should developers use depends on the complexity of the software,

team size, project priorities and similar things. For example, if a project may involve high risk

to human life the project team will use crystal sapphire methodology, and if there is not with

such risk the team will use crystal clear which is also the most selectable method for software

development. These methodologies focus on 6 primary aspects:

a) People

b) Interaction

c) Community

d) Communication

e) Skills

f) Talents

It is also described by 7 priorities that indicate higher possibility of success and it includes

frequent delivery, reflective improvement and easier access to expert users.

Illustration 31. Seven properties of crystal clear method

http://www.extremeprogramming.org/map/loops.html

31

Source: https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/

One of the biggest advantage of crystal methodologies is that they are adaptive. They do not

have prescribed tools nor techniques, without too much documentation, management or

reporting.

5.1.5. Dynamic Systems Development Method

Dynamic Systems Development Method, or short DSDM, was published in 1995 by the DSDM

consortium26 and since then evolved and matured to provide a comprehensive foundation for

planning, managing, executing and scaling agile process. In this method requirements are

baselined early in the project, rework placed into the process itself and all changes must be

reversible. Requirements are prioritised using MoSCoW method, which stands for must have,

should have, could have and will not have. ‘’Os’’ are there for easier pronunciation27:

a) M – must have, represents requirements which are critical to current iterations for

success

b) S – should have, represents important, but not necessary for deliver in current iterations

c) C – could have, represents desirable, but not necessary, which could improve user

experience or customer satisfaction for small development cost

d) W – will not have, represents least critical, lowest payback items and not appropriate

requirements at the time

DSDM consist of eight principles28 that will directly create a mindset to deliver on time and

within budget:

26 DSDM consortium – association formed by vendors and experts in software engineering
27 https://www.forbes.com/sites/alastairdryburgh/2015/08/19/moscow-rules/#2036ab3a2910
28 https://agilekrc.com/resource/168/what-dsdm-and-8-principles

https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/

32

a) Focus on the business need

b) Deliver on time

c) Collaborate

d) Never compromise quality

e) Build incrementally from firm foundations

f) Develop iteratively

g) Communicate continuously and clearly

h) Demonstrate control

Illustration 32. DSDM Framework

Source: https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/

5.1.6. Feature-Driven Development

Feature-Driven Development (FDD) was built around software engineering best practice such

as domain object modelling, developing by feature and code ownership. It consists of five basic

activities:

a) Development of an overall model

b) Building of a feature list

c) Planning by feature

https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/

33

d) Designing by feature

e) Building by feature

Using this method, every project has its own unique model which will result in a feature list,

and the last three activities are short iterative processes whose feature doesn’t take longer than

two weeks to build. However, if those features take more than two weeks, they need to be

broken into smaller pieces. It begins with establishing an overall model shape and then

continues with a series of small useful, useful for the client, results. Next illustration shows five

basic principles of FDD software development methodology.

Illustration 33. Five principles of FDD

Source: https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/

FDD methodology design uses following eight practices:

a) Domain object modelling

b) Developing by feature

c) Component Ownership

d) Feature teams

e) Inspections

f) Configuration management

g) Regular builds

h) Visibility of progress and results

Developers who use FDD methodology claim that this method scales more straightforward than

other approaches and that is better suited to larger teams. Also, unlike other agile methodologies

https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/

34

it describes specific and very short phases of work, which are to be accomplished separately

per feature and those includes:

a) Domain walkthrough

b) Design and design inspection

c) Code and code inspection

d) Promote to build

5.2. Advantages of Agile Methodologies Compared to Waterfall Model

First of all, waterfall model was a very good way of software development, especially while

change costs were high. As waterfall model treats its phases very discretely and as change costs

are lower on a daily basis there are couple of things which define waterfall method a poor

choice.

5.2.1. Poor quality and poor visibility using waterfall model

As a project starts to run out of time and money developers are approaching to its last phase –

testing. This means that any projects, good or bad, are forced to cut testing developed software,

which also has impact on delivering the software. Developers cannot be sure what important

things are to change, if there are all asked requirements, if customers will be satisfied. The result

of getting out of time and money budget can lead from very bad software not in use to throwing

away the whole product because there is no right audience who will use it. Also, the working

software is not produced until the very end, so developers never really know where they are

exactly on project. The last 20% of project can take up to 80% of developing time.

Illustration 34. Poor quality and poor visibility

35

Source: http://www.agilenutshell.com/agile_vs_waterfall

5.2.2. Cannot handle change

Except poor quality and poor visibility, schedule is very risky because as a developer you never

know when or if you will finish on time. Technical risks and product risks are very common

just because developers cannot test their software until the last phase and they do not know if

they are building the right thing until is too late to make any changes.

Illustration 35. Cannot handle change

Source: http://www.agilenutshell.com/agile_vs_waterfall

5.2.3. Continuous activities

As waterfall model follows stage by stage, agile approach does not follow exactly from the first

stage to the very last one. In fact, stages are continuous, which means as long as there are

features to build or to deliver them, they will keep happening until project if perfectly

http://www.agilenutshell.com/agile_vs_waterfall
http://www.agilenutshell.com/agile_vs_waterfall

36

developed. Also, development is iterative. This means that developers are starting with

something very simple, and step by step, or like drawing line by line, are making something

marvellous.

Illustration 36. Iterative development

Source: http://www.agilenutshell.com/how_is_it_different

Planning is very adaptive using agile approach. In waterfall model, using one line, one plan,

until very end and then coming back to early phases where changes are necessary. In agile,

whenever change is required change happens thanks to all time communication with the final

client.

5.2.4. Requirements can change

As above was mentioned, using traditional, waterfall model changes can be very painful timely

and costly especially in late phases. Using agile methodologies, developers actually are making

changes all the time. Next illustration shows who costs of change grow in time unit.

Illustration 37. Cost change growth in time unit

http://www.agilenutshell.com/how_is_it_different

37

Source: http://www.agilenutshell.com/how_is_it_different

6. Conclusion

We can see that developing process differs from project to project. There is no right or wrong

choice between these methodologies. Every methodology takes a lot of time, money and most

importantly communication with developers, clients and potential users. Which methodology

developers should use depends on how big the project is, and how many people will work on

the project. The ideal methodology for developing ‘’eVUŠ’’ application was traditional

methodology, because it was a very simple application which calculates points based on user

input, it was not financially demanding, and one developer worked on the project. However, if

it is not clear which method you should use, think about how big the project is, consider it with

the client all the time, write down how much time each phase will take. Using one of the agile

methodologies would be the right choice most of the time, because you are always changing

http://www.agilenutshell.com/how_is_it_different

38

the plan and requirements while developing and there is always a part of delivered software for

testing while using waterfall model, you cannot be sure what is happening and if final software

will be the right one as it was asked for until the very end of project.

References

1. Android, https://www.android.com (visited: 11.05.2018.)

2. Android authority, The history of Android OS: its name, origin and more

https://www.androidauthority.com/history-android-os-name-789433 (visited: 11.05.2018.)

3. Who Made That Android Logo, The New York Times Magazine,

https://www.nytimes.com/2013/10/13/magazine/who-made-that-android-logo.html

(visited: 23.05.2018.)

4. Android History and Versions, https://infograph.venngage.com/p/127159/android-

versions (visited: 23.05.2018.)

https://www.android.com/
https://www.androidauthority.com/history-android-os-name-789433
https://www.nytimes.com/2013/10/13/magazine/who-made-that-android-logo.html
https://infograph.venngage.com/p/127159/android-versions
https://infograph.venngage.com/p/127159/android-versions

39

5. Android version market share distribution among smartphone owners as of in February

2018, The Statistics Portal https://www.statista.com/statistics/271774/share-of-android-

platforms-on-mobile-devices-with-android-os (visited: 30.05.2018.)

6. Software Development Methodologies, IT Knowledge Portal,

http://www.itinfo.am/eng/software-development-methodologies (visited: 18.07.2018.)

7. Waterfall Model: What Is It and When Should You Use It?, Airbrake blog (visited:

20.07.2018.)

8. Agile In a Nutshell, http://www.agilenutshell.com (visited: 06.08.2018.)

9. Agile Methodologies, VersionOne, https://www.versionone.com/agile-101/agile-

methodologies (visited: 09.08.2018.)

10. What is Scrum?, https://www.scrum.org/resources/what-is-scrum (visited: 09.08.2018.)

11. Bringing Scrum to Education, Learning Facilitated

http://www.learningfacilitated.com/2016/04/bringing-scrum-to-education (visited:

11.08.2018.)

12. XP, FDD, DSDM, and Crystal Methods of Agile Development, project-management.com,

https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/

(visited: 16.08.2018.)

13. MoSCoW Rules, Forbes,

https://www.forbes.com/sites/alastairdryburgh/2015/08/19/moscow-rules/#2036ab3a2910

(visited: 20.08.2018)

14. What is DSDM and the 8 principles, agilekrc.com,

https://agilekrc.com/resource/168/what-dsdm-and-8-principles (visited: 26.08.2018.)

Appendix: Illustrations

1. Illustration 1. Android logo, https://www.nytimes.com/2013/10/13/magazine/who-

made-that-android-logo.html, page 3

2. Illustration 2. Android 1.5, Cupcake, https://www.androidauthority.com/history-

android-os-name-789433/, page 5

3. Illustration 3. Android 1.6, Donut, https://www.androidauthority.com/history-android-

os-name-789433/, page 5

4. Illustration 4. Android 2.0-2.1, Éclair, https://www.androidauthority.com/history-

android-os-name-789433/, page 6

https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os
http://www.itinfo.am/eng/software-development-methodologies
http://www.agilenutshell.com/
https://www.versionone.com/agile-101/agile-methodologies
https://www.versionone.com/agile-101/agile-methodologies
https://www.scrum.org/resources/what-is-scrum
http://www.learningfacilitated.com/2016/04/bringing-scrum-to-education
https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/
https://www.forbes.com/sites/alastairdryburgh/2015/08/19/moscow-rules/#2036ab3a2910
https://agilekrc.com/resource/168/what-dsdm-and-8-principles
https://www.nytimes.com/2013/10/13/magazine/who-made-that-android-logo.html
https://www.nytimes.com/2013/10/13/magazine/who-made-that-android-logo.html
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/

40

5. Illustration 5. Android 2.2, Froyo, https://www.androidauthority.com/history-android-

os-name-789433/, page 6

6. Illustration 6. Android 2.3, Gingerbread, https://www.androidauthority.com/history-

android-os-name-789433/, page 7

7. Illustration 7. Android 3.0, Honeycomb, https://www.androidauthority.com/history-

android-os-name-789433/, page 8

8. Illustration 8. Android 4.0, Ice Cream Sandwich,

https://www.androidauthority.com/history-android-os-name-789433/, page 8

9. Illustration 9. Android 4.1-4.3, Jelly Bean, https://www.androidauthority.com/history-

android-os-name-789433/, page 9

10. Illustration 10. Android 4.4, KitKat, https://www.androidauthority.com/history-

android-os-name-789433/, page 10

11. Illustration 11. Android 5.0, Lollipop, https://www.androidauthority.com/history-

android-os-name-789433/, page 10

12. Illustration 12. Android 6.0, Marshmallow, https://www.androidauthority.com/history-

android-os-name-789433/, page 11

13. Illustration 13. Android 7.0, Nougat, https://www.androidauthority.com/history-

android-os-name-789433/, page 12

14. Illustration 14. Android 8.0, Oreo, https://www.androidauthority.com/history-android-

os-name-789433/, page 12

15. Illustration 15. Waterfall model, https://airbrake.io/blog/sdlc/waterfall-model, page 13

16. Illustration 16. Flow-chart of “eVUŠ” Android application, author’s work, page 15

17. Illustration 17. Source code of “eVUŠ” application, author’s work, page 16

18. Illustration 18. UI source code of “eVUŠ” application, author’s work page 17

19. Illustration 19. Debugger tool of “eVUŠ” application, author’s work page 18

20. Illustration 20. The very first version of “eVUŠ” application before testing, author’s

work, page 19

21. Illustration 21. Final version of “eVUŠ” application. Main screen and instructions

screen , author’s work, page 19

22. Illustration 22. Adding new type of study in dropdown box, author’s work, page 20

23. Illustration 23. Adding new type of study in dropdown box, author’s work, page 21

24. Illustration 24. Agile methodologies scheme, http://www.agilenutshell.com/, page 24

25. Illustration 25. Agile methodologies, https://www.versionone.com/agile-101/agile-

methodologies/, page 25

https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://www.androidauthority.com/history-android-os-name-789433/
https://airbrake.io/blog/sdlc/waterfall-model
http://www.agilenutshell.com/
https://www.versionone.com/agile-101/agile-methodologies/
https://www.versionone.com/agile-101/agile-methodologies/

41

26. Illustration 26. Scrum process, http://www.learningfacilitated.com/2016/04/bringing-

scrum-to-education/, page 26

27. Illustration 27. Extreme programming flow-chart,

http://www.extremeprogramming.org/map/project.html, page 28

28. Illustration 28. Iteration flow-chart,

http://www.extremeprogramming.org/map/iteration.html, page 28

29. Illustration 29. Main development process,

http://www.extremeprogramming.org/map/development.html, page 28

30. Illustration 30. Planning and feedback loops,

http://www.extremeprogramming.org/map/loops.html, page 28

31. Illustration 31. Seven properties of crystal clear method, https://project-

management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/, page 29

32. Illustration 32. DSDM Framework, https://project-management.com/xp-fdd-dsdm-

and-crystal-methods-of-agile-development/, page 31

33. Illustration 33. Five principles of FDD, https://project-management.com/xp-fdd-dsdm-

and-crystal-methods-of-agile-development/, page 32

34. Illustration 34. Poor quality and poor visibility,

http://www.agilenutshell.com/agile_vs_waterfall/, page 33

35. Illustration 35. Cannot handle change,

http://www.agilenutshell.com/agile_vs_waterfall, page 34

36. Illustration 36. Iterative development,

http://www.agilenutshell.com/how_is_it_different/, page 34

37. Illustration 37. Cost change growth in time unit,

http://www.agilenutshell.com/how_is_it_different, page 35

http://www.learningfacilitated.com/2016/04/bringing-scrum-to-education/
http://www.learningfacilitated.com/2016/04/bringing-scrum-to-education/
http://www.extremeprogramming.org/map/project.html
http://www.extremeprogramming.org/map/iteration.html
http://www.extremeprogramming.org/map/development.html
http://www.extremeprogramming.org/map/loops.html
https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/
https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/
https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/
https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/
https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/
https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/
http://www.agilenutshell.com/agile_vs_waterfall/
http://www.agilenutshell.com/agile_vs_waterfall
http://www.agilenutshell.com/how_is_it_different/
http://www.agilenutshell.com/how_is_it_different

