



Abstract—Modern automobiles have many built-in sensors

and electronic control units responsible for increasing safety,

optimizing performance and improving occupant comfort.

Along with this well-established uses of computing devices inside

automobiles, there are two main research directions in further

computerization of automobiles. One direction is aimed at

creating vehicles that communicate with road infrastructure and

other vehicles in ad hoc manner forming vehicular ad hoc

network (VANET). The other research direction is expected to

produce self-driving automobiles that can drive safely on the

safe road together with regular automobiles. The research

presented in this paper is focused on making regular

automobiles connected to the Internet and thus becoming a part

of the Internet of Things (IoT), with some motivating

applications under consideration. In this paper a developed

general architecture that enables automobiles to communicate

with user applications by the help of an axillary computational

infrastructure is presented and elaborated. A prototype based

on the proposed architecture has been developed by putting

embedded system inside an automobile. The developed system is

supported by a suitable software and infrastructure that have

also been developed as a part of the research. Driving tests with

the prototype on real roads confirmed that proposed approach is

feasible.

Index Terms—Automobile, embedded system, Internet of

Things, distributed system.

I. INTRODUCTION

Inside modern automobiles there are many embedded

systems known as electronic control units (ECUs). They are

responsible for controlling and monitoring various elements

and subsystems of the automobile. Even low-end models

often use more than 10 different microcontrollers, while

mid-range automobile might have around 50 microcontrollers

and high-end automobiles often have more than 100. Many of

these ECUs need data from sensors that are connected to other

ECUs.

A communication between ECUs is achieved by using

Controller Area Network (CAN) that is present in almost any

modern automobile [1]. Although CAN buses use a form of

random media access control mechanism, they can guarantee

that the messages will be delivered within specified time [2].

Along with CAN, some additional automotive

communication busses like FlexRay, Local Interconnect

Manuscript received October 15, 2016; revised December 30, 2016.

Hrvoje Milković is with the Kraken Systems, Ulica hrvatskih branitelja 3,

10090 Zagreb, Croatia (e-mail: hmilkovi@gmail.com).

Nikola Ivković is with the Department of Computing and Technology on

the Faculty of Organization and Informatics, University of Zagreb, 42000

Varaždin, Croatia (e-mail: nikola.ivkovic@foi.hr).

Mario Konecki is with the Department of Theoretical and Applied

Foundations of Information Sciences on the Faculty of Organization and

Informatics, University of Zagreb, 42000 Varaždin, Croatia (e-mail:

mario.konecki@foi.hr).

Network (LIN) and Media Oriented Systems Transport

(MOST) are implemented, filling differed engineering and

economical demounts. FlexRay [3] allows higher speed

communication for safe-critical applications and uses

deterministic TDMA to fulfill real-time requirements. LIN

bus [4] is used for connecting simple sensors and actuators,

and MOST [5] is intended for infotainment applications with

audio and video data.

The communication of external system with buses and

ECUs inside an automobile is possible through On-Board

Diagnostics II (OBD-II). On-Board Diagnostics II [6], [7] is

standard and communication protocol required by law

legislative in many countries including EU, USA, etc. By

using the connector provided by ODB-II it is possible to

connect not only external computer for diagnostic purposes

inside automobile repair shop but also a custom-build

embedded system.

With the advance of the Internet of Things (IoT) many

hardware components became readily available and with

affordable prices. Mobile network access is widely available

and improvements with new 5G technology are expected [8],

[9]. Therefore it is promising to upgrade standard

automobiles so they can become the part of the Internet of

Things. By using the mobile link between the automobile and

the rest of the Internet the automobiles can communicate with

remote servers, desktop workstations, laptops, smartphones,

and even with other automobiles.

There are many motivating examples of applications that

can be used in such situations.

It is possible to collect various statistical data from sensors

and ECUs build in the automobile, often referred as telemetry,

to improve monitoring, planning and managing of a single

automobile or of an entire fleet of automobiles. Based on

acquired data it is posable to observe and analyze average fuel

consumption, driving style, dynamics of automobile

movements through a geographical area, etc.

Remotely checking if doors or windows are left open would

be practical for forgetful drivers. Automatic emergency call in

the case of an accident could save human lives. Recordings of

automobile positions and behavior could help in resolving

traffic accidents.

Remote troubleshooting on road could solve some failures

that might otherwise require arrival of the technician on site or

transportation of the automobile to a mechanical shop.

Applications for infotainment like automatic

synchronization of favorite songs between an automobile and

other devices are also possible.

There are some examples of previous works were

researchers have used OBD-II for reading automobiles data or

they have created applications for which automobile data

where simulated. Teng et al. have implemented an Android

application that directly connects to OBD-II and graphically

A Real-World Implementation of IoT Automobiles

Hrvoje Milković, Nikola Ivković, and Mario Konecki

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

222doi: 10.18178/ijfcc.2016.5.6.475

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Faculty of Organization and Informatics - Digital Repository

https://core.ac.uk/display/197830035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

displays automobile data as a virtual instrument [10]. Jhou et.

al. used a simulator to test an application for sending data

from automobile to a computer cloud by using 3.5G wireless

communication [11]. Ćurguz et al. used a simulator that

generates driving events and implemented an Android

application that sends an e-mail message to the parents of a

young driver in the case that speed limit is violated on a

section of the road [12].

There is a considerable ongoing research of Vehicle to

Vehicle (V2V) communication where vehicles on road

communicate with each other in an ad hoc manner forming

what is known as Vehicular Ad Hoc Network (VANET). This

approach requires development of specific physical and data

link layer protocols that can allow automobiles that are

passing by each other for a very short period of time (e.g.

driving in opposite direction on the highway) to exchange

messages in the environment where moving obstacles are

usual appearance [13], [14]. This kind of communication is

mainly applicable in urban and densely inhabited areas with

enough automobiles to form VANET. Security and especially

trust are particularly challenging for VANETs [15].

Research in the area of self-driving and computer-assisted

automobiles has produced some competition within the

industry. Companies like Tesla, Google, and Uber are

experimenting with prototypes that have different approaches

and capabilities [16].

The research presented in this paper is focused on plain old

automobiles that are currently in use on roads and on how to

update them with simple and affordable embedded systems in

order for them to become connected to the Internet. In this

paper design requirements for such applications are analyzed

based on motivating examples presented in this section. A

general architecture that can suitably facilitate these

applications is also proposed. Finally, before conclusions, a

real-world prototype that implements a subset of possible

applications is presented.

II. APPLICATION REQUIREMENTS

Vehicles are dynamic things that move through space and

thus have variable Internet connectivity, ranging from

possibly high throughput and excellent signal quality to slow

or low quality links towards area without Internet connectivity.

Proposed applications have to adapt to all of these conditions

to perform in a best possible way.

Inside of automobile the embedded system collects data of

interest and transfers them to the user applications that are

normally running at remote locations.

Every second automobile as a “thing” on the Internet

generates a large amount of data from internal sources and

external sensors. Because of a limited memory capacity of

embedded system inside the automobile, and also because of

reliability, availability and safety reasons data have to be

transferred to external storage.

For some applications it would be sufficient to record only

aggregate statistical data, but for others like analyzing events

in the case of traffic accidents the complete data should be

stored. Some applications, like optimization of dynamic

pickup and delivery by a fleet of vehicles, require

communication with real-time properties.

While communication with the Internet is unavailable it is

possible to save a smaller amount of data on the automobile

embedded system and send it to an external storage when the

connectivity is restored.

Establishing direct communication between the user

application and the embedded system in the manner of

Peer-to-Peer (P2P) paradigm would require dealing with

various challenges. Both user application and embedded

system would normally have private IP addresses, hidden

behind Network Address Translation (NAT) mechanism, and

publicly available addresses that are dynamically allocated by

Internet Service Providers (ISPs). This makes initial

communication establishing hard to accomplish without

axillary meeting server [17]. Another problem with P2P

approach would be availability. User applications are not

always turned on or connected to the Internet and embedded

systems have variable Internet connectivity with gaps without

connectivity. Also, the embedded systems and sometimes

devices for user applications have limited processing and

memory capabilities.

Because of issues regarding P2P organization, the

proposed distributed systems have to be composed of at least

three principle parts: automobile embedded system, auxiliary

Background Computational Infrastructure (BCI) and user

application. The simplified system architecture is depicted in

Fig. 1.

Many automobiles, i.e. embedded systems can share

common BCI, and on the other side, many different user

applications can use the same BCI.

Automobiles that share common BCI might be part of one

vehicle fleet or originate from different fleets and individual

owners.

Although most applications require data flow from

automobile embedded system over BCI to user application,

some applications, like synchronizing songs or fixing

malfunctioning automobile remotely, require the opposite

direction of data too.

Automatic emergency call in the case of an automobile

accident, detected by crash sensors, would notify BCI, giving

available data about the position, timing, etc. Simultaneously,

automobile embedded system and BCI would try to reach an

emergency center. Both attempts are aimed at improving

robustness of the system regarding that the Internet

communication might break and automobile embedded

system might fail any time after the crash is detected.

Fig. 1. Principle parts of the system architecture.

The safety of proposed system requires special approach,

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

223

particularly in the case of data incoming to automobile

embedded system. Also the architecture has to be highly

modular enabling only applications that are selected for the

particular vehicle.

To accommodate various application cases and to meet

high safety and privacy requirements the overall architecture

has to be flexible and modular, allowing end users to use only

parts of the system they find necessary or desirable.

III. SYSTEM ARCHITECTURE

The principle parts of system architecture, presented in the

previous section and depicted in Fig. 1, internally consist of

different modules to accomplish different subtasks whose

detailed architecture are depicted in Fig. 2 and Fig. 3.

A. The Automobile Embedded System

The regular automobile can be transformed into a “thing”

that is a part of the Internet of Things by incorporating

automobile embedded system. The embedded system is a

single board computer or a system build from one or many

microcontrollers that is able to communicate with automobile

internal sensors, ECUs and busses (most notably the CAN

bus). This communication is possible through OBD-II

interface. The embedded system typically only reads data

from the automobile, but it is also possible to control the

automobile by sending messages. Since controlling

automobile is a sensitive operation, if this possibility is

allowed by the embedded system then exceptional security

treatment is obligatory. The internal structure of the

automobile embedded system is shown in Fig. 2.

Vehicle to embedded system communication module needs

to interpret messages received by the automobile, filter them

and prepare them in a suitable form before giving them to the

mobile communication subsystem. This module also needs to

send messages or exchange whole conversation of messages

with the vehicle if the automobile controlling is enabled.

To upgrade automobile capabilities it is possible to attach

additional external sensors to the embedded system if the

suitable sensor is not part of internal automobile equipment.

Fig. 2. Automobile embedded system.

For example, global positioning system (GPS) sensor is of

vital importance for enabling automobile tracking or locating

and it is useful for dynamic routes planning. The crash sensors

are needed, together with GPS sensor, for automatic

emergency calls, and can be useful in forensic analysis of

traffic accidents. Each external sensor requires software

module that can take data from the sensor using sensor

specific protocols and prepare data into a form suitable for the

rest of the system. These data are sent through mobile

communication subsystem to external storage located in BCI.

The mobile communication subsystem is responsible for

establishing communication between the automobile

embedded system and BCI. This module requires scheduling

mechanisms with priorities and policies how to handle data.

Depending on the available data rate and quality of

communication channel this subsystem needs to decide which

messages to send, which one to queue, and which one to

discard.

Messages that are queued because of the poor

communication channel can be sent later when

communication conditions improve or need to be discarded

when queuing capacity is overfilled or data become outdated.

In the case of a single board computer with relatively large

memory it is possible to temporary store data for quite long

time without network connectivity. Then it is of vital

importance to decide in which order these history data and

fresh data from automobile will be scheduled for sending. For

safety and reliability reasons mobile communication

subsystem is composed of outgoing data module and

incoming data module. The direction of data refers to the flow

of application data, while both modules can exchange control

messages like acknowledgements in both directions.

B. Background Computational Infrastructure

The purpose of the background computational

infrastructure is to facilitate information exchange between

automobile embedded system and user application, to

increase reliability and robustness, to provide storage for a

large amount of data, and to assist in simple realization of user

application on versatile computational devices. The internal

structure of BCI is shown in Fig. 3.

The communication module inside background

computational infrastructure is responsible for

communicating with the automobile embedded system and

preparing data to be stored in the time series database. The

communication module also needs priority scheduling and

traffic policy.

Fig. 3. Background Computational Infrastructure (BCI).

In the case of infotainment data, e.g. sending multimedia

files with a song to the embedded system, the communication

module needs to take into consideration available throughput

and negotiate communication parameters with the mobile

communication subsystem that reside inside automobile

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

224

embedded system.

Data coming from sensors do not have complex relational

structure. These data are incoming fast and have simple fields,

with time of creation and automobile identification as always

present attributes.

Examples of automobile data include vehicle geolocation,

vehicle speed, engine rotational speed, diagnostic trouble

codes, etc. Storing only aggregate data is not possible since

some application cases require complete data. To enable

scalability, time series database component of BCI is

generally implemented with multiple servers and load

balancer that allow a simple view of multiple machines and

storages as logically one database.

Data related to general information about automobiles,

their owners, user application profiles and settings, data for

planning, and aggregate statistical history data are saved in

the relational database.

Considering that data from many sensors of many

automobiles that are running for a long time could generate an

enormous amount of data, although possibly abundant storage

capacity of time series database must be guarded against

exaction. Data Management Module (DMM) is responsible

for removing old data from time series when appropriate.

Before deleting data DMM processes these data and produces

aggregated statistical data that are saved in the relational

database.

The set of application engines inside BCI is intended to

implement particular application cases (where they act as

server side of application) together with user application that

is running on the end user device (as a client side). These

application engines make use of data from time series

database, relation database and services of the module for

communication with automobiles.

Using web application paradigm enables simple devices to

use application. Web application choice removes the need for

separate application development for different platforms.

This also makes easier for end users to start using application

since web browsers are present on most devices of interest

and there is no need for installing a standalone client

application. For some application cases, like

locking/unlocking doors and turning lights on/off, standalone

user application with only essential elements might be better

alternative than web application. In that case the application

engine inside BCI is a server that interacts with the user

application.

C. Safety, Security and Privacy Aspects

Whenever automobile controlling, tracking and monitoring

is in action it is vitally important to maintain safety, security,

and privacy.

By introducing embedded system inside an automobile it is

of vital importance to guard against an adversary that might

interfere with the automobile, but also against unintended

errors and program bugs.

Modularity of automobile embedded system makes easier

to control security and safety. The embedded system in the

particular automobile uses only modules that are necessary.

For example, if controlling automobile is not used then

incoming communication module is not present in the system.

If such module is in use, then only one transport protocol port

is enabled and all other communication protocols and ports

are disabled by default.

Because of modularity and isolation, malfunction of one

module, e.g. an external sensor for GPS, does not cause entire

automobile embedded system to malfunction.

Messages that come from outside cannot be forwarded to

the rest of the automobile embedded system. For controlling

automobile only a predefined set of commands are issued by

incoming communication module to the vehicle to embedded

system communication module. For the most critical parts of

the automobile embedded system prescribed safety properties

can be verified by using formal method techniques.

Communication between the automobile embedded system

and BCI have to be encrypted and both sides have to be

authenticated. The mean to achieve this is transport layer

security (TLS) with certificates for both sides. To preserve

privacy in a case of security breach forward secrecy

mechanizes should be chosen. Communication between BCI

and users application needs similar measures to preserve

security and privacy.

The users of data stored in BCI can require privacy so that

owners and administrators of BCI and the other users cannot

see their content. This is achievable by using symmetrical

encryption to protect data. The administrators of BCI

infrastructure need to ensure availability, robustness and

security by the standard set of technical precautions and

measures.

IV. PROTOTYPE IMPLEMENTATION

For the purpose of testing we have built a prototype with

few years old vehicle Ford Fiesta 1.4 TDCI (50 kW) model

JD3. The embedded system is based on a single board

computer Beaglebone Black, extended with external modules.

For the BCI, the servers running Linux operating system have

been used. The user applications have been built in a form of

web applications allowing the user to track the vehicle

movement on the map in real time and to analyze telemetric

data sampled in real test drives.

Further details regarding implementation of the prototype

are presented in following subsections of this paper.

A. The Implementation of the Embedded System

The tested Ford Fiesta has available OBD-II interface that

uses CAN protocol with 11bit message identifiers and data

rate of 500 kb/s. The automobile embedded system used in the

Ford Fiesta is a single board computer Beaglebone Black with

1 GHz, 2000 MIPS ARM processor, 512 MB DD3L 6606 Hz,

of RAM, 4GB on-board flash memory and 65 GPIO. As an

operating system Ubuntu for embedded systems with a

customized kernel has been installed.

Communication between the automobile and the embedded

system has been established by OBD-II interpreter ELM327

that is implemented in the form of OBD-II to USB adapter.

Mobile modem in a form of external 3G dongle Huawei

e3131 was attached to Beaglebone Black to allow data

exchange with BCI.

Since selected automobile does not have internal GPS

sensor, an external GPS module with -165 dBm sensitivity, 10

Hz updates and 66 channels was connected to Beaglebone

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

225

Black. The GPS module uses NMEA 0183 protocol.

External sensor module and vehicle to embedded system

communication module has been implemented with Python

programming language because of its suitability for

prototyping. Each model was written as a standalone program

in according to proposed architecture plans, thus if one

module fails the other can continue to work.

GPS sensor module uses underlying GPSD daemon service

that watches GPS sensor on POSIX level via UART port so

Python script can just pull off the data from it. Messages of the

vehicle to embedded system communication module

ELM327 must be parsed, which requires dealing with

implementation peculiarities. E.g. for requesting data about

frequency on engine rotation RPM (Rotation per Minute) the

AT command 01 0C is sent. As the response to this message

another message like 41 0C 1A F8 would be received, where

last two bytes is RPM scaled by 4.

To deal with connectivity losses a bash script was

implemented to automatically reconnect automobile

embedded system with BCI.

The communication with BCI was implemented by

Message Queuing Telemetry Transport (MQTT) protocol,

invented by IBM company and later standardized by ISO/IEC

[18].

MQTT is a lightweight messaging protocol for small

sensors and mobile devices, optimized for high-latency or

unreliable networks. MQTT supports publisher-subscriber

messaging pattern and therefore promotes scalability. MQTT

does not force any message format and in proposed

implementation JSON was used. Furthermore, it implements

client and broker side caching that is needed to handle

disconnections from the Internet when the vehicle moves

through tunnels or otherwise becomes unreachable.

B. The Implementation of BCI

To solve scalability issues, VerneMQ implementation of

MQTT broker was selected which supports clustering, traffic

control, authorization, and authentication.

As a scalable implementation of time series database a third

party database InfluxDB was installed in BCI. InfluxDB

supports messages with format of time, value and multiple

tags thus all messages needed to be prepared in that format.

For the implementation of JSON parser, Node.js was selected

as appropriate because it has highly optimized JSON parser

with good performance, originating from underneath C and

C++ implementations of their internals.

As an application engine inside BCI a web application was

implemented with Python web application framework Django.

It uses relation database PostreSQL to store and retrieve

general data about users and their vehicles information. To

present vehicle telemetry data, Django application also reads

from InfluxDB computing statistics at database level

regarding the engine data and to render vehicle GPS data to

client devices on the map. In this way proposed prototype of

the user application can show the history of the vehicle

movement. To demonstrate the real-time capabilities of the

system, web sockets to MQTT has been employed, which is

natively supported by VerneMQ. Web socket transmits

published GPS data in 500 ms intervals of real-time vehicle

geological location and that data is rendered on the map as

real-time tracking

C. Security Measures

In our prototype logging has been used in order to analyze

the system behavior and to identify potential problems. The

logging was used on each side of the system at process level

with Linux daemon tool named Supervisor. Supervisor has its

own system log and permits configuring for each process

parameters like automatic restarts, log location, log file, etc.

In order to select necessary security measures for the

prototype Threat risk modeling technique has been used. For

both, BCI and automotive embedded system various security

measures have been employed. Publicly reachable ports of

BCI are made available through load balancer HAproxy. In

order to increase process separation Linux Containers (LXC)

technology was used. LXC container has its own firewall and

is communicating with HAproxy via VPN connection that is

implemented by OpenVPN with certificate level

authentication.

The automobile embedded system was specially

configured to disable all non-used ports. The public IP

addresses were dynamically allocated and the private IP

addresses were hidden behind NAT, thus minimalizing the

chance of an unauthorized access from the Internet.

Communication level security is implemented in MQTT

protocol in a form of certificate authorization, authentication

and TLS encryption. MQTT is further secured on MQTT

broker as each vehicle has its own user account to authenticate

and each user has its own topic for which the user can publish

and subscribe to data. Each topic is identified by vehicles VIN

number. Presentation layer known as Django application is

secured with Nginx web server reverse proxy that uses TLS

version 1.2 certificate. Django application layer was secured

with cross origin tokens, basic authentication and automatic

IP banning the denial-of-service (DoS) attempts.

D. Scalability

Vertical scaling is trivial and not most cost effective so

system parts that all support horizontal scaling as cluster of

servers on every level of the system have been used.

Therefore, VerneMQ implements configuration how many

parallel connections can be opened in server node, and how

many messages can be published per client.

InfluxDB implements clustering and data sharding on

multiple hosts where PostgreSQL implements only

replication and sharding data.

All webservers have configured static content cache and

Django web application has its own database cache

implemented as Redis in-memory key value database.

To distribute requests from client in-Vehicle services and

end user client devices, a load balancer HAproxy was used.

V. PROTOTYPE TESTING

Before a real world testing of proposed prototype, the

modules of BCI were installed and necessary parameter setup

was performed. Required accounts in BCI were created. One

account is used for the mobile communication module of the

Ford Fiesta. The other account is used by the user who is

allowed to access the data regarding Ford Fiesta from

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

226

relational and time series databases. The data about the

automobile were filled in relational database.

Fig. 4. The automobile embedded system with attached GPS module and

mobile Internet module, connected to the automobile OBD-II interface.

The automobile embedded system was inserted in the Ford

Fiesta and connected to OBD-II. The photography of the

embedded system inside the test vehicle is shown in Fig. 4.

After powering up the automobile embedded system, Linux

boots up and the implemented scripts and programs

automatically start available modules.

Fig. 5. A sample of data from time series database.

In the first phase of testing the messages between OBD-II

port, vehicle to embedded system module, and MQTT broker

inside mobile communication subsystem were recorded. The

content and timing of messages were analyzed. An example of

message recording is shown in Fig. 6. It can be observed that

MQTT publish messages are following immediately after

OBD-II messages: Vehicle speed, Car RPM, and Car MAF

(Mass Air Flow) which indicates the mass of air that is

entering an internal combustion engine.

In the second phase of testing a filling of time series

database was performed. With the help of web application a

sample of data is presented in Fig. 5. These records were

obtained when automobile was in the neutral gear without

pressuring accelerator pedal and contain time when data

sample was created, RPM value, and vehicle identification

number (VIN).

The third phase of testing was performed by driving the

automobile on Croatian roads with the real-time monitoring

and afterword by historical data analysis by using the

implemented web applications. Fig. 7 shows the parameters

of driving that are remotely monitored by the developed user

application. The screenshot from the user application that

shows tracking of the vehicle in a test drive is shown in Fig. 8.

Fig. 6. Recorded messages between components inside the automobile

embedded system.

Fig. 7. Display of automobile movements on one test drive.

Fig. 8. Remote monitoring of statistical data about automobile on

a test drive inside web browser on the user device.

VI. CONCLUSION

The aim of conducted project was to research how to

upgrade regular automobiles and make them connected to the

Internet. In this paper different application scenarios have

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

227

been identified and based on requirement analyses proposed

general system architecture has been presented. The system

architecture consists of principle parts of the automobile

embedded system, the Background Computational

Infrastructure and the user applications. The modular

organization of architecture subsystems allows flexibility and

promotes security. For the testing purposes we have

developed the prototype and its functionality has been tested

in real-world applications. The results of tests confirmed that

proposed approach is feasible.

REFERENCES

[1] Road vehicles – Controller area network (CAN) – Part 1: Data link

layer and physical signaling, International Organization for

Standardization, ISO 11898-1:2003.

[2] N. Ivković, D. Kresic, K.-S. Hielscher, and R. German, “Verifying

worst case delays in controller area network,” Measurement,

Modelling, and Evaluation of Computing Systems and Dependability

and Fault Tolerance, pp. 91-105, March 19-21, 2012.

[3] FlexRay Communications System Protocol Specification, Ver. 2.1,

FLEXRAY Consortium, 2005.

[4] LIN Specification Package Revision 2.2A, LIN Consortium, December

31, 2010.

[5] MOST Media Oriented Systems Transport, Rev 2.4, MOST

Cooperation, 2005.

[6] R. Cox, Introduction to On-board Diagnostics II (OBDII), 1st edition,

Cengage Learning, Cengage Learning US, 2005.

[7] A. Santini, OBD-II: Functions, Monitors and Diagnostic Techniques,

1st edition, Cengage Learning, 2010.

[8] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless

networks: A comprehensive survey,” IEEE Communications Surveys

& Tutorials, vol. 18, no. 3, pp. 1617-1655, 2016.

[9] X. Ge, H. Cheng, G. Mao, Y. Yang, and S. Tu, “Vehicular

communications for 5G cooperative small-cell networks,” IEEE

Transactions on Vehicular Technology, vol. 65, no. 10, pp. 7882-7894,

October, 2016.

[10] H.-F. Teng, M.-J. Wang, and C.-M. Lin, “An Implementation of

Android-Based Mobile Virtual Instrument for Telematics

Applications,” in Proc. the 2011 Second International Conference on

Innovations in Bio-inspired Computing and Applications (IBICA '11),

Shenzhan, Guangdong, December 16-18, 2011, pp. 306-308.

[11] J.-S. Jhou, S.-H. Chen, W.-D. Tsay, and M.-C. Lai, “The

implementation of OBD-II vehicle diagnosis system integrated with

cloud computation technology,” in Proc. the 2013 Second

International Conference on Robot, Vision and Signal Processing

(RVSP '13), Kitakyushu, Japan, December 10-12, 2013, pp. 9-12

[12] A. Ćurguz, T. Maruna, B. Kovaĉević, and M. Z. Bjelica, “Android

application as parental control service in car,” in Proc. the 2015 23rd

Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia,

November, 2015, pp. 934-937

[13] A. Ghosh, V. V. Paranthaman, G. Mapp, O. Gemikonakli, and J. Loo,

“Enabling seamless V2I communications: Toward developing

cooperative automotive applications in VANET systems,” IEEE

Communications Magazine, vol. 53, no. 12, pp. 80-86, December

2015.

[14] H. Wang et al., “VANET modeling and clustering design under

practical trafic, channel and mobility conditions,” IEEE Transactions

on Communications, vol. 63, no. 3, pp. 870-881, March, 2015.

[15] Q. Li, A. Malip, K. M. Martin, S.-L. Ng, and Z. Jie, “A

reputation-based announcement scheme for VANETs,” IEEE

Transactions on Vehicular Technology, vol. 61, no. 9, November,

2012.

[16] B. Paden, M. Ĉap, S. Z. Yong, D. Yersho, and E. Frazzoli, “A survey of

motion planning and control techniques for self-driving urban

vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1,

March, 2016

[17] N. Ivković, I. Magdalenić, and L. Milić, “An ad-hoc

smartphone-to-smartphone live multimedia streaming application with

real-time constraints,” Journal of Advances in Computer Networks,

vol. 4, no. 1, pp. 6-12, March, 2016.

[18] Information technology – Message Queuing Telemetry Transport

(MQTT), v3.1.1, ISO/IEC 20922, 2016.

Hrvoje Milković received the bachelor degree in

information systems at Faculty of Organization and

Informatics, University of Zagreb. He is a full-time

software engineer at company Kraken Systems and

first time part-time student at Faculty of Organization

and Informatics, University of Zagreb, study program

Databases and Knowledge Bases. His interests include

design and implementation of complex embedded and

backend systems.

Nikola Ivković received the MS degree in computer

engineering and the PhD degree in computer science

from the Faculty of Electrical Engineering and

Computing, University of Zagreb. He is a member of

the research and teaching staff at the Department of

Information Technologies and Computing at the

Faculty of Organization and Informatics, University of

Zagreb. His research interests include computer

networks, formal methods, computational intelligence and optimization,

operating systems, and parallel programming.

Mario Konecki is an assistant professor at the Faculty

of Organization and Informatics in Varaždin, Croatia.

During his former scientific work, he has published

over 60 scientific papers and has been actively

involved in 8 scientific projects. He is also active in

professional work in the field of programming, design

and education. His main scientific interests are:

intelligent systems, development of programming

languages, education in the area of programming, design of user interfaces

and web technologies. His main research projects are: “Determining the

possibility of including visually impaired in the activities of graphical user

interfaces design” and “New methods of teaching programming with an

emphasis on teaching visually impaired students”.

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

228

