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Abstract 

Invasive plant pathogens have impacted forest and woodland systems globally and can negatively 

impact biodiversity. The soil-borne plant pathogen Phytophthora cinnamomi is listed as one of the 

world’s worst invasive species and alters plant community composition and habitat structure. Few 

studies have examined how these Phytophthora-induced habitat changes affect faunal communities. 



We examined bird communities in Banksia woodland with, and without, Phytophthora dieback in a 

biodiversity hotspot, southwestern Australia. Seven sites along dieback fronts, with paired 1-ha plots 

in diseased and healthy vegetation, were surveyed monthly for birds over seven months. Vegetation 

assessments showed that diseased sites had reduced plant species richness, litter, shrub, tree and 

canopy cover, high bare ground and significantly lower flowering scores, than healthy sites. Bird 

community composition differed significantly between diseased and healthy sites, although total bird 

abundance, total species richness and foraging guilds, did not. Average species richness of birds per 

survey and the abundance of brown honeyeaters, western spinebills and silvereyes was lower in 

diseased than healthy sites. The tawny-crowned honeyeater had higher abundances in diseased sites. 

Similarity matrices of habitat structure, flowering scores and bird assemblages were congruent, 

indicating that habitat structural differences were influencing bird community composition. Our 

results suggest that this pathogen is potentially a serious threat to avian biodiversity and especially for 

nectarivores, and populations in fragmented landscapes. Since elimination of the pathogen is not 

currently possible, management should focus on methods of preventing its spread until techniques to 

eliminate the pathogen are developed. 
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1. Introduction 

Invasive species have the ability to rapidly transform community composition and ecosystem-level 

processes (Vitousek et al., 1997). Invasive plant pathogens have impacted many forest and woodland 

communities at regional scales, resulting in major alterations to ecosystem structure, plant community 

diversity, plant productivity and vegetation structure and floristics (Castello et al., 1995; Mack et al., 

2000). Some of the structural and floristic changes wrought by invasive plant pathogens include the 

loss of keystone or nectar-producing species, loss of canopy or overstorey cover and decreases in litter 

cover (Hansen, 2008; Smith et al., 2009; Tomback and Achuff, 2010). These structural and floristic 

changes are likely to influence faunal communities (Barringer et al., 2012; McKinney et al., 2009), 



but the indirect effects of invasive plant pathogens on faunal communities remains poorly studied and 

poorly understood. Given the large scale over which invasive plant pathogens can infest areas (e.g. 

Lovett et al., 2006; Meentemeyer et al., 2004), such pathogens present a potential threat to many 

faunal communities, and hence global biodiversity, and there is an urgent need to evaluate, and better 

understand the indirect effects of invasive plant pathogens on faunal communities (Lovett et al., 2006; 

Monahan and Koenig, 2006). 

Ecosystem structure and function can be permanently changed when keystone species are damaged, 

or removed by pathogens (Barringer et al., 2012; Lovett et al., 2006). The catastrophic ecological 

impacts on forests in North America, of the introduced chestnut blight fungus, Cryphonectria 

parasitica, are a well-known example (Rizzo et al., 2002). American chestnut trees, Castanea dentata, 

in eastern forests were all but eliminated following the swift extension of the pathogen in the early 

1900s (Grunwald, 2012). More recently, the plant pathogen Phytophthora ramorum is responsible for 

causing the sudden oak death epidemic and decimating oak forests in the western United States 

(Grunwald, 2012; Rizzo et al., 2005). There is evidence that this pathogen has strong indirect impacts 

on vertebrate communities with models predicting negative impacts to the populations of several oak-

dependent bird species (Monahan and Koenig, 2006). 

A forest pathogen that is of great conservation threat to native and agricultural systems worldwide 

is Phytophthora cinnamomi, a soilborne water mould (Class Oomycetes) that is listed as one of the 

world’s 100 worst invasive alien species (Lowe et al., 2000; Hansen, 2008). The epidemic 

of P. cinnamomi ‘dieback’ (the process of an area becoming infested with P. cinnamomi) is a major 

concern in southern Europe (Brasier, 1996; Vettraino et al., 2002), USA (Mircetich et al., 1977), 

Mexico (Tainter et al., 2000), New Zealand (Podger and Newhook, 1971), South Africa (van 

Broembsen and Kruger, 1985) and Australia, where it is listed as a key threatening process (Cahill et 

al., 2008). The presence of P. cinnamomi dieback in a community is often highly visible with old 

diseased areas typically displaying reduced biomass and reduced structural complexity as a result of 

the death and subsequent disappearance of susceptible plant taxa (Shearer et al., 2007). 

 



Although many studies have examined the effects of P. cinnamomion vegetation, relatively few have 

examined its effects on fauna populations and communities (Cahill et al., 2008). The significant 

alterations to habitat and floristics associated with P. cinnamomi dieback have been predicted to 

substantially affect fauna through changes to important resources, such as food and nesting sites 

(Garkaklis et al., 2004; Wilson et al., 1994). Studies in southern Australia have tended to support 

these predictions, with declines in species richness and abundance of faunal communities recorded in 

areas with P. cinnamomi dieback (Armstrong and Nichols, 2000; Laidlaw and Wilson, 2006; Nichols 

and Bamford, 1985; Nichols and Burrows, 1985; Wilson et al., 1994), primarily due to changes in 

habitat structure. The negative effects of P. cinnamomi-induced floristic changes on faunal 

communities are likely to be significant given the wide range of plant species that are susceptible 

to P. cinnamomi (Garkaklis et al., 2004). Despite this, few studies have examined 

whether P. cinnamomi-induced changes to habitat affect faunal communities (but see Laidlaw and 

Wilson, 2006). 

To address the questions of whether P. cinnamomi-induced changes to both habitat structure and 

floristics affect faunal communities, we examined the response of the bird community 

in Banksia woodlands to P. cinnamomi dieback. Banksia woodlands are low open woodlands with 

high species richness, confined to coastal and sub-coastal southern Australia, where the canopy is 

dominated by Banksia species and the understory contains many other proteaceous species (Bishop et 

al., 2010). These woodlands also support a diverse nectarivorous bird community (Newland and 

Wooller, 1985; Ramsey, 1989) that is predicted to be particularly susceptible to P. cinnamomi dieback 

(Cahill et al., 2008) because most major nectar-producing proteaceous plants are highly susceptible 

to P. cinnamomi (Shearer et al., 2007). We surveyed the bird community, and habitat structure, 

floristics and flowering to examine how P. cinnamomi dieback affected the bird community by asking 

the following questions: (1) Are there differences in bird community composition, the abundance of 

foraging guilds or individual species between Banksia woodlands with and 

without P. cinnamomi dieback? (2) Are any differences in the bird community related to alterations in 



habitat structure from P. cinnamomi dieback? and (3) Are any differences in the bird community 

related to dieback-induced changes in floristics and flowering? 

 

2. Methods 

2.1. Study area and site selection 

Our study area was located north of Perth in south-western Australia (Fig. 1), in one of the global 

biodiversity hotspots (Myers et al., 2000). Vegetation in the study area is 

predominantly Banksia woodland comprised of a Banksia overstorey, interspersed with scattered 

stands of Corymbia calophylla, Eucalyptus spp. and Allocasuarina spp. and a diverse understorey, 

primarily species of Proteaceae, Myrtaceae and Fabaceae (Mitchell et al., 2003). The study area 

experiences a Mediterranean climate, with hot, dry summers and cool, wet winters and annual rainfall 

averaging 656 mm (Bureau of Meteorology, weather station #009053). Our study area has been 

infested with P. cinnamomi since the 1940s (Hill et al., 1994; Wilson et al., 2012) and, currently 

>20,000 ha has been identified as infected by P. cinnamomi (Wilson et al., 2009). 

We identified seven sites containing a mixture of diseased (P. cinnamomi detected) and healthy (P. 

cinnamomi not detected) Banksia woodlands, with clearly defined disease fronts (Fig. 2) using GIS-

based spatial mapping combined with ground-truthing. At each site, we established paired 1-ha plots 

(100 × 100 m), one each in diseased and healthy Banksia woodland (Fig. 1). All sites were located on 

the same soil and vegetation types (prior to P. cinnamomi invasion) with dominant canopy species 

of B. attenuata and B. menziesii with occasional scattered C. calophylla, B. ilicifolia and a dense 

understorey. 

2.2. Plant taxa and habitat structure estimates 

Fourteen floristic quadrats (10 × 10 m) were established at the seven paired sites, with one quadrat in 

each 1-ha plot. Within each quadrat, we recorded plant taxa richness by identifying all vascular plant 

taxa in spring 2008. Specimens were collected and dried in plant presses prior to identification by 



botanists, with nomenclature verified using the Western Australian Herbarium’s plant database MAX. 

The proportion of bare-ground, litter cover and small shrub <1 m, shrub (1–2 m) and tree cover 

(<2 m) in each quadrat was visually estimated to the nearest 5% by visually projecting the area of 

cover within the quadrat for each variable according to procedures outlined in Keighery (1994), a 

guide that was specifically designed to assess bushland plants in southwestern Australian habitats. 

Canopy cover was estimated using Lemnon spherical densiometers at the centre of each quadrat. 

Paired sites were matched for time since last fire (determined from Department of Environment and 

Conservation databases), which varied from 2 to 13 years since last fire, except for one pair (13 vs 

19 years since last fire). 

2.3. Flowering score estimates 

During each survey month (described below), flowering activity of dominant plant species (B. 

attenuata, B. menziesii and B. ilicifolia) and the combined understory, was recorded on an ordinal 

scale: (1) No flowering; (2) <5% flowering; (3) 5–25% flowering; (4) 25–50% flowering; (5) 50–75% 

flowering; and (6) 75–100% flowering. Scores were based on the overall proportion of individual 

plants flowering in each 1-ha plot and averaged across all survey months for analysis. 

2.4. Bird survey methods 

We surveyed for birds in each of seven months (April to August, October and November 2008) using 

an area search, which involved actively searching each 1-ha for ten minutes and recording all birds 

seen or heard on that plot. We included flying birds utilising the habitat (e.g. swallows) but excluded 

birds that were only flying through the plot. As diseased and healthy plots were adjacent to one 

another, we were careful to record only birds seen or heard on the 1-ha plot being surveyed and 

exclude birds on the adjacent plot. All surveys were conducted within five hours of sunrise and the 

order in which sites were surveyed was randomised between months. We averaged abundances across 

all seven surveys to derive the dependent variables overall bird abundance and abundance of 

individual species. We also calculated average bird species richness per survey and total bird species 

richness across all seven surveys. Area searches provide reliable estimates of relative abundance 



across sites of differing vegetation densities (Craig and Roberts, 2001) which, as Banksia woodlands 

are an open habitat where birds are detected relatively easily, precluded the need to correct for 

detectability. 

2.5. Analysis 

2.5.1. Floristics and habitat structure 

To examine plant taxa richness between diseased and healthy Banksia woodland sites, we used a 

paired t-test. The composition of plant taxa (using presence/absence data) was compared between 

diseased and healthy sites using Blocked Multiple Response Permutation Procedure (MRBP; Mielke, 

1984). MRBP is a slight variation of Multiple Response Permutation Procedure (MRPP; Mielke et al., 

1976) that allows for a blocking variable. MRBP is a multivariate permutation that tests whether there 

are differences between two or more a priori classified groups using an A statistic (the chance-

corrected within group agreement) and an associated P-value (McCune et al., 2002). It is analogous to 

multivariate parametric tests and the procedure utilizes a permutation distribution and is more robust 

to violations of parametric assumptions that are common in multivariate ecological datasets (Mielke et 

al., 1976; McCune et al., 2002). We examined plant taxa richness between diseased and 

healthy Banksia woodland sites using a paired t-test. Rare plant taxa (present at <3 sites) were 

excluded from analyses. 

We compared habitat structure (plant taxa richness and the six cover estimates) of diseased and 

healthy sites using a MRBP on the relativised data. We visually represented site similarities using 

non-metric multidimensional scaling (NMDS) (Kruskal, 1964), based on a Bray–Curtis similarity 

matrix; displaying the first two axes and any habitat structure variables correlated (r2 > 0.30) with 

them. We used paired t-tests to compare differences in habitat structure variables between diseased 

and healthy sites. Cover estimates were arcsine square-root transformed (Zar, 1999), though we 

display untransformed means to ease interpretation. We compared average flowering scores between 

diseased and healthy sites using Wilcoxon matched-pair signed-rank tests. 

 



2.5.2. Bird communities, foraging guilds and individual bird species 

Bird community composition, based on average abundances of each species, was compared between 

diseased and healthy sites, using MRBP as described for plant taxa composition (again, rare bird taxa 

were excluded). We also visually represented site similarities in bird community composition using 

NMDS based on a Bray-curtis similarity matrix and displayed the first two axes and any bird species 

correlated (r2 > 0.30) with them. We compared community metrics (overall bird abundance, average 

species richness and total species richness) between diseased and healthy Banksia woodland sites 

using paired t-tests. Bird species were assigned to one of four foraging guilds (carnivore, 

granivore/frugivore, insectivore and nectarivore) based on published information (Higgins, 1999; 

Higgins and Davies, 1996; Higgins et al., 2005, 2001; Marchant and Higgins, 1993). The mean 

abundance of each guild, and each of the eight most common species (>15 bird observations from ⩾6 

sites), were also compared between diseased and healthy sites using paired t-tests. Guild and 

individual species abundances were square-root transformed prior to analyses to improve 

homoscedascity, although we present untransformed abundances. 

2.5.3. Habitat associations between bird assemblages and abundance 

To determine if correlation existed between the bird community composition and habitat structure 

matrices were correlated, we used a Mantel test (Mantel, 1967), which is a non-parametric method of 

assessing the relationship between two similarity matrices (McCune et al., 2002). We employed the 

Mantel test using a Monte Carlo randomisation option and obtained standardised Mantel statistics (rm) 

and associated P-values. We used Pearson’s correlation coefficients (r) to examine relationships 

between habitat structure variables and plant taxa richness and square-root transformed abundances of 

the eight most common bird species. Relationships between flowering scores (B. attenuata, B. 

menziesii, B. ilicifolia and understory) and square-root transformed abundances of commonly 

occurring bird species were explored using Spearman’s rank correlation coefficient (rs). Multivariate 

analyses were conducted using PC-Ord (McCune and Mefford, 1999) and univariate analyses and 

correlations were performed in R3.2.1 (R Core Team, 2013). All values are presented as mean ± SE. 



3. Results 

3.1. Floristics and habitat structure 

We identified 150 plant taxa in floristic quadrats. Plant community composition differed significantly 

between diseased and healthy sites (A = 0.09, P = 0.004), as did the habitat structure 

(A = 0.32, P = 0.005). Diseased sites had more bare ground and less litter, small shrub, tree and 

canopy cover than healthy sites (Fig. 3c; Table 1). Plant taxa richness was lower in diseased 

(44.29 ± 2.31, range 40–57) compared to healthy (58.43 ± 2.23 range 52–70) sites (Table 1). 

3.2. Flowering scores 

Flowering scores were lower in diseased, compared to healthy sites, for both B. menziesii (0.60 ± 0.40 

vs 1.27 ± 0.09: P < 0.05) and B. attenuata (0 ± 0 vs 0.30 ± 0.05: P < 0.05). There was no significant 

difference in B. ilicifolia flowering scores between diseased and healthy sites (P > 0.05), but there was 

significantly less understorey flowering in diseased, compared to healthy, sites (0.41 ± 0.07 vs 

0.91 ± 0.12: P < 0.05). 

3.3. Bird assemblage composition 

We detected 520 birds of 36 species (see Table A1 for complete list) across all surveys, with the eight 

most common species being white-cheeked honeyeater (n = 72), brown honeyeater (n = 59), splendid 

fairy wren (n = 51), western spinebill (n = 45), yellow-rumped thornbill (n = 35), western wattlebird 

(n = 32), silvereye (n = 22) and tawny-crowned honeyeater (n = 17) (see Table 2 for scientific 

nomenclature). The MBRP on the 24 species detected in ⩾3 sites, indicated bird community 

composition differed significantly between diseased and healthy sites (A = 0.087, P = 0.010) with 

clear separation of sites based on disease status (Fig. 3b). Tawny-crowned honeyeaters, yellow-

rumped thornbills and white-winged fairy-wrens (Malurus leucopterus) were associated with diseased 

sites with brown honeyeaters, western spinebills, silvereyes and Australian ravens associating with 

healthy sites (Fig. 3d). Average bird species richness was lower in diseased (2.14 ± 0.25) compared to 

healthy, sites (3.27 ± 0.42; t6 = −2.63, P = 0.039), however, disease status did not influence total bird 



species richness (diseased: 10.57 ± 1.00, healthy: 12.71 ± 1.34; t6 = −1.43, P = 0.200) or overall bird 

abundance (diseased: 4.41 ± 0.65, healthy: 6.20 ± 0.91; t6 = −2.07, P = 0.080). 

3.4. Foraging guilds and individual species 

Abundance of the four foraging guilds did not differ significantly between diseased and healthy sites, 

although there was a trend towards more nectarivores in healthy sites (Table 2; P = 0.080). Four of the 

eight most common species differed significantly in abundance between diseased and healthy sites 

with more brown honeyeaters, western spinebills and silvereyes in healthy sites and more tawny-

crowned honeyeaters in diseased sites (Table 2). 

3.5. Habitat associations between bird assemblage and abundance 

There was a positive association between bird community composition and habitat structure of sites 

(rm = 0.251, P = 0.011), indicating habitat structure influenced bird community composition (Fig. 3). 

The abundance of four of the eight common species was associated with at least one habitat structure 

variable (Table 3). Brown honeyeater abundance was positively associated with litter, shrub and tree 

cover, but negatively associated with bare ground (Table 3). Similarly, western spinebill abundance 

was positively associated with tree and canopy cover but negatively associated with bare ground 

(Table 3). Silvereye abundance was positively associated with litter cover while tawny-crowned 

honeyeater abundance was negatively associated with plant taxa richness and tree cover (Table 3). 

Silvereye abundance was positively associated with B. attenuata, B. menziesii and understory 

flowering scores while brown honeyeater abundance was positively associated with B. menziesii and 

understory flowering scores (Table 3). In contrast, tawny-crowned honeyeater abundance was 

negatively associated with both B. attenuata and B. menziesii flowering scores (Table 3). 

 

4. Discussion 

Our study indicates that plant pathogens can have significant indirect effects on faunal communities 

by altering habitat structure and, potentially, resource availability. Although bird community 



composition differed between sites, as did the abundance of some bird species, all of the commonly 

occurring species were present in diseased sites. The patches of Phytophthora-diseased habitat in our 

study were smaller than the home ranges of many bird species we detected, and occurred amongst a 

matrix of healthy Banksia woodland. The spatial scale of infestation from the pathogen and the degree 

of habitat specificity of fauna species may be critical determinants of the magnitude of impacts on 

biodiversity from this plant pathogen. 

4.1. Does P. cinnamomi dieback change bird community composition, abundance of foraging 

guilds or individual species? 

Although we recorded significantly fewer birds per survey in diseased sites, overall species richness 

was not reduced. Our finding contrasts with Armstrong and Nichols (2000) who recorded a net 

decrease in bird species richness in Phytophthora-diseased areas of jarrah (Eucalyptus marginata) 

forests. Similarly, the limited amount of research on the responses of other fauna 

to Phytophthora indicates that species richness is often reduced in diseased areas e.g. invertebrates 

(Nichols and Burrows, 1985); reptiles and frogs (Nichols and Bamford, 1985). 

Coupled with our findings, research indicates that P. cinnamomi infestations may significantly impact 

avian biodiversity and community composition. We found that the bird community composition 

differed between diseased and healthy Banksia woodland with brown honeyeaters, western spinebills 

and silvereyes more abundant in healthy sites and tawny-crowned honeyeaters more abundant in 

diseased sites. Armstrong and Nichols (2000) also found western spinebills to be at higher densities in 

healthy compared to diseased jarrah forest. Although the abundance of feeding guilds did not differ 

between diseased and healthy sites in our study, the altered abundances of the individual species are 

likely to be in response to modified food or habitat resources. Previous research has indicated that 

diseased sites may support higher densities of more generalist and omnivorous bird species, often 

associated with partially cleared or thinned habitat (Armstrong and Nichols, 2000) whereas the 

abundance of insectivorous bird species considered typical of healthy forest (Armstrong and Nichols, 

2000) may be reduced. 



There are few comparative global studies that have investigated the impacts of plant pathogens, such 

as P. cinnamomi, on fauna. Forest insects can mimic the canopy loss caused by invasive plant 

pathogens and may have similar impacts on fauna. Tingley et al. (2002) studied birds in eastern 

hemlock forests and recorded a distinct difference in community composition between areas subject to 

attack by hemlock woolly adelgid (Adelges tsugae) and pristine areas. Those species that disappeared 

from insect-infested areas were sensitive to the removal of the hemlock overstorey. 

Similarly, Rabenold et al. (1998) found that canopy and sub-canopy bird species declined in spruce-fir 

forest following balsam woolly adelgid (Adelges piceae) attacks. Research on other types of 

disturbance that similarly alter vegetation, such as fire, forest clearing and subsequent regrowth, 

consistently indicate modified bird communities in response to the disturbance agent (Borges and 

Stouffer, 1999; Easton and Martin, 1998; Valentine et al., 2012a). 

4.2. Are changes in the bird community related to changes in habitat structure from P. 

cinnamomi dieback? 

Our results indicate that changes in habitat structure caused by P. cinnamomi are mediating 

differences in bird community composition. Similarly, other authors have reported that the changes in 

habitat structure caused by P. cinnamomi, (such as reduced litter and log availability), influence small 

mammal abundance and community composition (Laidlaw and Wilson, 2006; Newell and Wilson, 

1993). In our study, the most profound difference in diseased Banksia woodland sites was the almost 

complete absence of the defining Banksia spp. overstorey. No studies involving disease-induced loss 

of overstory are available for comparison, but similar studies on forest insect attack have indicated the 

importance of canopy, with canopy-dependent species declining due to the loss of habitat (Matsuoka 

et al., 2001; Rabenold et al., 1998; Tingley et al., 2002). 

Clear-cutting, and other forestry activities that remove overstorey canopy vegetation typically have 

negative impacts on bird species richness and abundance. Hingston and Grove (2010) observed that 

the highest species richness of canopy-utilising bird species occurred in 150-year-old forest and that 

young forest with reduced canopy contained few of these species. The loss of overstorey vegetation 

may also affect understorey bird species that make use of forest overstorey trees (Talbott and Yahner, 



2003). In Australia, woodland bird species of conservation concern were more likely to occur in 

woodlands with good canopy cover and a low incidence of eucalypt dieback (Montague-Drake et al., 

2009). Thus, it is likely that the loss of canopy will have significant effects on the bird community 

of Phytophthora-affected Banskia woodlands. 

Changes in the habitat structure of vegetation in diseased areas is likely to contribute to the altered 

abundances of individual bird species, depending on habitat requirements. In our study, the tawny-

crowned honeyeater was the only species significantly associated with diseased sites and was 

negatively associated with tree cover. Tawny-crowned honeyeaters typically prefer proteaceous 

heathland habitats, with complex floristic composition, as opposed to the woodland or forest habitat 

that the brown honeyeater and western spinebill frequents (Higgins et al., 2001). The higher 

abundances of tawny-crowned honeyeaters in the diseased areas may have been influenced by the 

heath-like structure of the diseased sites. The higher amounts of canopy cover in the healthy sites are 

likely to be more suitable habitat for the brown honeyeaters and western spinebills. In addition, the 

western spinebill rarely occurs in disturbed habitats and is strongly associated with natural bushland 

areas in the Perth region (Davis et al., 2013). In contrast, the brown honeyeater is often recorded 

utilising disturbed areas and urban gardens more than native bushland (Davis et al., 2013). The lower 

abundance of this species in the diseased areas may reflect reduced foraging opportunities, through 

reduced Banksia flowering, in addition to structural changes. 

4.3. Are changes in the bird community related to dieback-induced changes in floristics and 

flowering? 

Nectar availability is a key driver of population dynamics in bird communities dominated by 

nectarivores such as in south-western Australia (McFarland, 1986; Newland and Wooller, 1985) and 

South Africa (Symes et al., 2008). Although previous studies have suggested a potential impact of P. 

cinnamomi on nectar availability (Cahill et al., 2008; Armstrong and Nichols, 2000), none have 

examined the flow-on consequence of this to birds; although the abundance of small mammals, such 

as the agile antechinus Antechinus agilis and the bush rat Rattus fuscipes have previously been 

correlated with floristic factors associated with non-diseased vegetation (Laidlaw and Wilson, 2006). 



Of the four bird species most indicative of healthy sites in our study, three species (brown honeyeater, 

western spinebill and silvereye) are fully or partially nectarivorous (Higgins et al., 2001) and occurred 

in higher abundances in healthy sites. The abundance of brown honeyeaters and silvereyes was also 

positively associated with flowering score. The diseased sites clearly showed that there was an almost 

complete loss of the dominant overstorey Banksia (a very important source of nectar for birds in these 

woodlands) and a reduction in the flowering of understory plants. Although we did not measure actual 

nectar content, it is a reasonable assumption that flower availability is strongly correlated to nectar 

availability (McFarland, 1986). Given the importance of Banksia species for nectarivorous birds in 

our study system (Newland and Wooller, 1985; Ramsey, 1989), and that seasonal flowering events 

can lead to densities of nectarivorous birds that are much higher than surrounding areas (Newland and 

Wooller, 1985), the ongoing loss of Banksia species due to P. cinnamomi is a major concern. 

4.4. Landscape context, interactions and limitations 

The disturbance to native habitats by P. cinnamomi is complex and requires consideration of its 

interactions with other disturbances, including fire. Fire is an important disturbance agent in numerous 

ecosystems, especially the Mediterranean-type environments in south-western Australia (Burrows and 

Abbott, 2003). Although fire management for multiple purposes (e.g. human safety, conservation) is 

challenging (Penman et al., 2011), prescribed burning is widely employed as a land management tool 

in these regions. Banksia woodlands are considered one of Australia’s most flammable ecosystems 

(Burrows and Abbott, 2003) and the time since last fire is a key component in structuring flora and 

faunal communities (Valentine et al., 2012b). Fire can reduce structural complexity and reduce 

canopy cover, vegetation cover and litter (Fisher et al., 2009; Valentine et al., 2012b). Fire is also 

known to alter resources available to birds and can result in lower abundances of insectivores and 

frugivores in more frequently burnt habitats (Valentine et al., 2012a). These changes from fire have 

complex and as yet, poorly understood, interactions with Phytophthora dieback since the response of 

individual plant species to fire and Phytophthora are also poorly understood. For example, fire has 

been shown to influence the survival and dispersal of P. cinnamomi on the south coast of Western 

Australia and to further reduce post-fire establishment of plant species (Moore, 2005). Further 



research on the complex interactions between these two forms of disturbance on fauna species, would 

be worthwhile. 

An important consideration in our study is that we examined patches of diseased woodland in an area 

of continuous woodland, where there are high rates of long-term disease infestation in some areas 

(Wilson et al., 2012) but from an avifaunal perspective the landscape remains well connected to 

surrounding areas of healthy woodland. It is likely that impacts on fauna will be greatly exacerbated 

in large landscape-level disease fronts or in fragmented landscapes. In Western Australia, some 

national parks are already over 60% diseased, equating to nearly 700 km2 of affected habitat (Shearer 

et al., 2007). In these situations, P. cinnamomi may create barriers to dispersal for some animal 

species due to changed habitat structure and lack of resources such as nectar. This could have 

cascading effects on biodiversity, by impacting on plant pollination, seed dispersal and other 

ecosystem services. 

Barringer et al. (2012) documented an example of this in the whitebark pine forests (Pinus albicaulis) 

of the USA. Whitebark pines infected by exotic disease and attacked by mountain pine beetles 

(Dendroctonus ponderosae) produced fewer cones and were then visited less by the Clarke’s 

nutcracker (Nucifraga columbiana) on which they depend for seed dispersal. Consequently forest 

disturbance had a cascading effect, causing a decline in food resources for the nutcracker, a loss of 

seed dispersal and ultimately a loss of population viability for the pine. The potential impacts of P. 

cinnamomi are clearly severe and extensive and are likely to increase with time unless broadscale 

measures to control or limit the spread of this forest disease are taken. 

Our study suggests that birds may be somewhat resilient to the short-medium term impacts 

of Phytophthora dieback in continuous landscapes, as long as the spatial extent of diseased areas 

remains small and embedded within extensive healthy areas. However, the ongoing modification of 

vegetation structure and floristics associated with P. cinnamomi infestation may have a significant 

long-term impact on the habitat utilised by the bird communities in Banksia woodlands. We provide 

evidence that P. cinnamomi drives changes in bird community composition through changes to both 

habitat structure and floristics. Given the broad range of plant species that are susceptible to dieback 



(Shearer et al., 2007) it is a difficult problem to manage. Management actions, such as hygiene, 

quarantine measures, track closures, and application of phosphite (a weak solution of phosphoric acid 

that gives susceptible plants resistance to P. cinnamomi) need to be implemented to reduce dieback 

extent and impacts. Although eradication of the pathogen remains unachievable at the moment, there 

is an urgent need to identify and protect those areas that remain free of P. cinnamomi infestation. 
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Fig. 1. Location of study sites in relation to Perth, Western Australia. 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 2. Photographs showing structural changes between diseased (a) and healthy 
(b) Banksia woodland. 

 

 

 

 

 

 

 

 

 



Fig. 3. NMDS ordination (Bray-Curtis distance measure) on (a) habitat structure (n = 8, three-
dimensional stress = 0.06, axis 1 r2 = 0.36 and axis 2 r2 = 0.31; A = 0.32, P = 0.005) and (b) bird 
community composition (n = 24 species; three-dimensional stress = 0.09, axis 1 r2 = 0.57 and axis 
2 r2 = 0.24; A = 0.087, P = 0.010) of Phytophthora-diseased and healthy Banksia woodland sites. 
Numbers next to each site indicate the number of years since last fire and the site pair (a–g in 
brackets). Correlations of the variables (r2 ⩾ 0.3) (c) habitat structure and (d) bird species used in each 
NMDS are also provided. Note: bfcs = black-faced cuckoo-shrike. 

 

 

 

 

 

 



Table 1. Paired t-test values of numbers of plant taxa and arc-sine transformed proportion of habitat 
structural cover estimates in diseased and healthy Banksia woodland. Mean number of plant taxa and 
untransformed habitat percentage cover estimates (% ± SE) for diseased and healthy sites are shown. 

 

 
t6 Means (±SE) 

Diseased Healthy 

Plant taxa richness −10.89*** 44.29 ± 2.31 58.43 ± 2.23 

Canopy cover (%) −4.00** 5.24 ± 2.44 37.96 ± 8.40 

Tree cover (%) −4.37** 0.86 ± 0.70 37.14 ± 8.15 

Shrubs (1–2 m) (%) 0.66 11.00 ± 3.21 6.29 ± 2.38 

Small shrubs (<1 m) (%) −2.53* 13.57 ± 2.61 39.29 ± 9.16 

Litter cover (%) −6.68*** 10.29 ± 4.12 40.00 ± 6.64 

Bare ground (%) 3.48* 35.00 ± 6.07 18.57 ± 4.97 
 

 

Significant values are highlighted in bold. 

*P < 0.05. 

**P < 0.01. 

***P < 0.001. 

 

 

 

 

 

 

 

 



Table 2. Paired t-tests values of the square-root transformed abundances of commonly occurring 
species (>15 bird observations from ⩾6 sites) and foraging guilds in diseased and 
healthy Banksia woodland. Untransformed mean abundances (individuals survey−1 ± SE) for diseased 
and healthy sites are shown. 

 
 

t6 Means (±SE) 

Diseased Healthy 

Carnivore 0.24 0.33 ± 0.18 0.18 ± 0.07 

Granivore −1.02 0.20 ± 0.08 0.43 ± 0.21 

Insectivore −0.56 2.06 ± 0.36 2.37 ± 0.37 

Splendid fairy-wren, Malurus splendens 1.12 0.61 ± 0.14 0.43 ± 0.13 

Yellow-rumped thornbill, Acanthiza chrysorrhoa −0.86 0.29 ± 0.18 0.43 ± 0.21 

Silvereye, Zosterops lateralis −2.99* 0.08 ± 0.08 0.37 ± 0.13 

Nectarivore −2.10 1.82 ± 0.62 3.22 ± 0.73 

Brown honeyeater, Lichmera indistincta −3.73** 0.31 ± 0.14 0.90 ± 0.26 

White-cheeked honeyeater, Phylidonyris niger −0.16 0.71 ± 0.39 0.76 ± 0.40 

Western wattlebird, Anthochaera lunulata −1.60 0.16 ± 0.07 0.49 ± 0.29 

Tawny-crowned honeyeater, Gliciphila melanops 3.73** 0.31 ± 0.12 0.04 ± 0.02 

Western spinebill, Acanthorhynchus superciliosus −3.91** 0.18 ± 0.06 0.73 ± 0.19 

 

Significant values are highlighted in bold. 

*P < 0.05. 

**P < 0.01. 



Table 3. Results of the analyses on the correlations between the square-root transformed abundances 
of commonly occurring bird species and number of plant taxa, structural variables (Pearson’s 
correlation coefficients [r]) and flowering scores for B. attenuata, B. menziesii, B. ilicifolia and 
understorey vegetation. 

 

Bird 
species 

Plant taxaa Habitat cover (%)a Flowering scoreb 

Bare 
ground 

Litter Small 
shrubs 

Trees Canopy B. 
attenuata 

B. 
menziesii 

B. 
ilicifolia 

Understorey 

Splendid 
fairy-wren 

0.012 0.219 −0.008 0.038 −0.331 −0.419 −0.092 −0.062 −0.374 0.06 

Yellow-
rumped 
thornbill 

0.109 0.294 −0.208 0.101 0.038 0.073 0.144 0.106 −0.012 −0.220 

Silvereye 0.434 −0.186 0.653* 0.52 0.484 0.326 0.588* 0.706** −0.321 0.736** 

Brown 
honeyeater 

0.392 −0.655* 0.793*** 0.576* 0.615* 0.44 0.497 0.573* 0.137 0.873*** 

White-
cheeked 

honeyeater 

−0.147 −0.307 0.244 0.025 −0.142 −0.076 −0.077 0.156 0.36 0.132 

Western 
wattlebird 

0.073 −0.087 0.3 0.141 0.232 0.243 −0.034 0.287 0.412 −0.132 

Tawny-
crowned 

honeyeater 

−0.618* 0.033 −0.464 −0.344 −0.556* −0.437 −0.730** −0.639** 0.336 −0.469 

Western 
spinebill 

0.265 −0.775** 0.514 0.254 0.625* 0.695** 0.524 0.492 0.389 0.51 

 

Significant values are highlighted in bold. 

*P < 0.05. 

**P < 0.01. 

***P < 0.001. 

aAnalysed used Pearson’s correlation coefficient. 

bAnalysed using Spearman’s rank correlation coefficient. 
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