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1. Introduction

The casting process is one of the oldest manufacturing processes. It is believed that the process was used by the Egyptians
to make gold jewelry some 5000 years age. Even though the process has a long history, its application is still relevant and it is
being used today in many industries such as aerospace and automotive sectors to produce complex shape components. Di-
rect squeeze casting is a combination of casting and forging processes. It is currently being employed to produce high per-
forrnance and complex shape components such as steering, brake and suspension parts. It is also used for a family of
rotational parts that have a complex cross section, but are essentially axisymmetric in form. These applications are due to
the fact that the components produced from the squeeze forming process have several superior properties such as refined
grain structure, improved mechanical strength and almost complete elimination of all shrinkage and gaseous porosity. These
features are the outcome of the prolonged high contact pressure and intimate contact between the molten alloy and the me-
tal die surfaces {1].

The major advantages claimed for the squeeze forming process over casting and forging can be listed as follows [ 2-4]:

(1) The ability to produce parts with complex profile and thin sections beyond the capability of conventional casting and
forging techniques.

(2) Substantial improvement in material yield because of the elimination of gating and feeding systems,

{3) Significant reduction in pressure requirements, in comparisen with cenventional forging, while at the same time
increasing the degree of complexity that can be obtained in the parts.
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In the squeeze forming process, there are a number of process control parameters and these can be grouped under
pressure cycle and cooling rate controls. For the latter, the die and coolant system design play a key role in achieving a
defect free product. However, further complexity is introduced since these control groups interact. For example, it is evi-
dent from [5), that the pressure applied in the squeeze forming process has a direct effect on heat flux by influencing
the heat transfer coefficient at the die—cast interface. This is due to the fact that any air gap evolution at the die-casting
interface is controlled through pressure application. Similarly the position of cooling channels and the heat removal rates
will have a significant impact on the temperature field within the die and hence the solidification of the squeeze formed
part.

Design-simulate—evaluate-redesign is the standard procedure that is implemented in traditional optimisation that is car-
ried out with the assistance of computational tools. It is executed until an acceptable design is achieved within the time scale
that is available. This process is not only time consurning, it is also unlikely that a true optimum has been achieved. If this
sequence can be fully automated, significant benefit will be derived. Numerical optimisation techniques were first explored
in structural design in the early 80s {6]. During this period, a framework to undertake the process evolved and became estab-
lished. It was, however, in the mid 90s when researchers started exploiting this framework in casting process simulation {7]
and recently it is being explored for other applications, such as injection moulding and extrusion [8-10].

Optimisation studies have explored the application of a number of strategies. These include principally gradient methods
and genetic algorithms. The former require the calculation of gradients that Jink design parameters with system respense
and combined with optimisation routines, they are used to find the best design according to a specified objective function
and design variable constraints. Although they require gradient calculation, they are less computationally demanding, but
are restricted in their search field. Genetic algorithms, also recognised as free-derivative methods, find the actual optimum
. based on a stochastic approach. They require more computational effort due to the use of a broader search field to find this
solution. '

The application of optimisation techniques to thermo-mechanical forming processes is particularly challenging due to the
coupled and highly non-linear mechanisms that are present. However, optimisation of such processes is very desirable to
facilitate high quality part manufacture and efficient process operation. For a prescribed part geometry, such optimisation
will need to account for process setting changes as well as tooling design, i.e. shape. The current project will focus on the
squeeze forming process.

As mentioned previously, optimisation depends on establishing design sensitivity expressed in terms of derivatives. In
previous studies on process simulation, these have been estimated via difference equations and analytical equations have
been developed in structural analysis. These have been shown to be advantageous and give accurate values of design sen-
sitivity. Their application in process simulation has received little attention to date.

Some worlt in structural analysis has led to the concept of a design element. The design element represents a region of the
structure and design sensitivity may be based on the design element, rather than the discretised element values that may be
associated with the solution of the governing equations. Potentially this has advantages through reduction of computational
effort in sensitivity calculation. It also offers the potential to undertake shape sensitivity analysis, for example a coolant
channel may be treated as a design element and this may be positioned to achieve contral over cooling behaviour. Again
the application of this technique to simulation in highly nonlinear processes has received limited attention. Overall, little
attention has been given to the use of a Design Element Concept that may prove to be attractive in reducing the effort that
is required in computing sensitivity information.

To illustrate, structural optimisation was the first area in which the application of the optimisation technique was imple-
mented. Typically, in a structural problem, the purpose of optimisation is to minimise for example, the weight of a structure
or to maximise its stiffpess. For example, Sienz and Hinton [11] described a retiable and robust teol for structural shape opti-
misation problem where the objective was minimisation of the volume of the connecting rad. This tool formed part of the
integrated systern 1SO-P (2D) which stands for integrated structural optimisation package.

The combined influence of pressure and fill temperature also has a direct impact on the cooling rate within the squeeze

cast part. In fact, cooling rate control plays a dominant role in achieving good mechanical property in the cast components. In
connection with squeeze forming, Hwu et al. [12} discovered that high cooling rates improved the mechanical perform ance
of the parts. In cornmon with all rapid solidification technologies, it was found that the fast cooling rates reduced the grain
size of the matrix which in turn raised the strength of the part. Kim et al. [13] found that the micro-structures of billets cast
at pressures of 25, 50 and 75 MPa, respectively were more refined and dense than those of non-pressurised casts, because of
a greater cooling rate. Maleki et al. [14] discovered that hardness of the samples {alloy LM13) steadily increases from 97 HB
for the sample solidified under atmospheric pressure to about 110 HB at an external pressure of 171 MPa and becomes con-
stant at higher applied pressures, Ideally, the cooling rate within the cast component should be identical throughout since
this will be reflected in uniformity of mechanical properties,

Recently, a few works have explored the modelling of the complex physical phenomena associated with the squeeze
forming process [15,16] to examine the contact behaviour between the die and cast part. These works primarily foctised
on a three dimensional thermo-mechanical analysis of the tool set and component. The starting point for this analysis
was a full die, there was no consideration of fluid flow or displacement of the molten metal. In the former, Postek et al.
[15] predicted the air gap in the squeeze forming processes from which the air gap had a direct influence on the interfacial
heat transfer coefficient at the die—cast interface. It was found that squeeze formed parts solidify faster when compared with
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the typical die cast part. This was concluded to be due to the small or close gap between the die and part which directly
affected the interfacial heat transfer coefficient.

The coupling of optimisation techniques with process simulation is desirable and timely since computing power to
undertake such analysis is becoming available and there is a growing industrial interest in this type of simulation. This is
evident from the amount of research that has been carried out invelving application of numerical optimisation in manufac-
turing processes such as extrusian, forging and metal forming processes.

A sensitivity analysis is central to any optimisation process. During the last decade, there have been many works on the
application of design sensitivity analysis in cornection with structural and manufacturing processes including metal forming
processes. The latter present significant challenge due to the fact that metal forming processes require complex analysis
since the nonlinearities that are present have to be taken into account. This includes for example friction, contact evalution
at the tool-part interface and also material deformation hehaviour. An example simulation development for a complex three
dimensional part is presented in [17] that includes consideration of all key process parameters. These simulations required
long processing times (several hours) to complete a single case study run. Such complexity and process time requirement is
amplified when considering the calculation of sensitivity analysis itself which plays a vital role in gradient-based optimisa-
tion especially to ensure the accuracy of the sensitivity gradients. [t is evident from the literature review that gradients may
be derived in two basic ways, either, and most commonly as finite difference type expressions or as analytical expressions
where the latter represent a reduced computing demand. These will be discussed within this section,

The analytical sensitivity analysis of a linear structural system has been explored in [18,19]. In [18], the parameter and
shape sensitivities of [inear structural analysis were covered in detail with a few numerical examples provided as bench-
marks based on a cantilever truss, beam, plate and fillet. For the latter, procedures for structural analytical design sensitivity
analysis of deformable solids with the finite element program POLSAP were described. The effectiveness of an Adjoint Var-
fable Method (AVM) and a Direct Differentiation Methad (DDM) depending on the number of design variables and con-
straints was discussed.

In connection with forming processes, Antunez and Kleiber [20] studied the sensitivity analysis of metal forming involv-
ing frictional contact under steady state conditions. The interest in such a model arose from the analysis of rolling processes
and a two dimensional approach to cutting problems, where the contact zone was determined. They calculated sensitivities
using the DDM. In comparison it was found that this gave a close result with the one performed using a Central Finite Dif-
ference Method (CFDM). The CFDM calculates the sensitivities numerically, where the equation is solved twice before and
after perturbation. Thus, it suffers from two drawbacks, involving the accuracy of the calculated sensitivities due to the
choice of the magnitude of perturbation and also it takes a longer time to calculate sensitivities because the finite element
analysis has to be run twice at each iteration of the optimisation process. In contrast, DDM has absolute accuracy because of
the analytical differentiation. Besides, the calculated sensitivities using DDM are faster than Finite Difference Method (FDM)
because the sensitivities derived from DDM are obtained by solving the finite element equation only once at each iteration of
the optimisation process. Antunez [21] has also extended his sensitivity analysis work to metal forming process thatincludes
thermo-mechanical coupled analysis. Again, he used the DDM ta perform the sensitivity gradients calculation. He considered
the static yield stress and the heat transfer coefficient at the interface as the design variables and studied the sensitivity of
temperature with respect to these design variables. In his work, all the results obtained by DDM were checked and com pared
with the FDM in which he found that the results showed close agreement.

Kim and Huh [22] applied design sensitivity analysis to the sheet metal forming processes. A design sensitivity analysis
scheme was proposed for an elasto-plastic finite element analysis with explicit time integration using the DDM to perform
the sensitivity calculation. The DDM was used to deal with the large deformation. The result obtained using the DDM was
compared with the result obtained from EDM in the drawing of a cylindrical cup and a ‘U-shaped’ bend. The results showed
close agreement, thus demenstrating the accuracy of the calculated analytical DDIM.

Smith et al. demonstrated the application of sensitivity analysis to the optimal design of polymer extrusion [2324]. For
the former, the work focused on sensitivity analysis for nonlinear steady-state systems. In this work, the sensitivities were
derived using both the DDM and the AVM. In this work it was found that the two sensitivity analysis methods yielded iden-
tical expressions. The design variables were die thickness and prescribed inlet pressure. These were optimised to minimise
pressure drop and to generate an uniform velocity across the die exit. It was summarised that sensitivities derived fromm the
FDM for this nonlinear problem were both inaccurate and inefficient.

The design element is a concept where the sensitivities are calculated based on predefined zones, possibly identified by a
die designer. These sensitivities are used by supplying them to the optimisation routines to achieve the optimal solution. It is
potentially useful in a way that since a die is constructed from a number of steel blocks, this allows some pre-selection of the
zones of steel blacks based on the zones defined for the design elements in a die. The Design Element Concept was clearly
defined in 1989 where the key nodes of the design elements can be treated as design variables for shape optimisation prob-
lems. Arora [25] defined two levels of discretisation, the first level corresponded to the finite element model for analysis, and
the second level corresponded to the design element model for optimisation. He applied the Design Element Concept to the
fillet shape design problem, where his objective was to minimise the volume of the piece and he successfully achieved a
reduction of 8.5% from the initial volume. However, little actention has been given to the use of the Design Element Concept
in optimisation. The Design Element was first applied to the optimisation of plate and shell structures [26]. Botkin [26] used
this scheme to define the domain of a plate with two holes under tensile load. In his work, he introduced the concept of a
plate or shell shape design element. He used the Design Elements to change the plate shape by adjusting the boundaries of
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the element. This work featured the use of four design elements to capture the Fllet plate, there have been fewer studies that
use a number of design elements to map a part geometry.

Based on the previous works, no attention has been given to the parameter Design Element Concept, especially on the
decision of how the design elements may be mapped on to the domain under consideration. Further, the shape Design Ele-
ment Concept has not been applied in squeeze casting process simulations and thus this new application will be discussed in
the subsequent sections.

2. Research methodology

Simulation of all forming pracesses is particularly demanding since they are inherently complex and non linear. The cool-
ing and solidification cycle in the casting process can be described by the transient energy equation which in the absence of
convection may be written [27],

YV k(TVT] +Q = pc(THT, (1)
where k is the conductivity, T is the unknown temperature field, Q is the heat generation, p is the density, ¢ is the specific
heat and T is the derivative of temperature with respect to time.

In Eq. (1}, the conductivity and heat capacity are temperature dependent.

Boundary conditions are required in time and space, thus initial, Ditichlet and Neumann boundary conditions for this sys-
tem are described as follows [28] within a cylindrical framework. This has been chosen to address the axisymmetric part
family where further simplification follows from elimination of any angular variations. The technique can be extended in

principle to other coordinate frameworks.
Initial boundary condition

T(r,6,z,0) = To(r,#,z) inQ

where r, 8 and z are the coordinares axis, Ty is the prescribed temperature distribution in £ and @ is the domain.
Dirichtet boundary Condition

T=T({r0z1t onlt

where r, § and z are the coordinates axis, t is the time and Iy is the houndary curve where the essential boundary condition is

applied.
Neumann boundary condition
ar
= _kﬁ on I,

where g is the heat outflow in the direction n normal to the boundary I, k is the conductivity, 2Lis the partial derivative of
temperature in normal direction and I'y is the boundary curve where the natural boundary condition is applied.

In the case of phase transformation, the enthalpy method was applied [27]. The essence of the application of the enthalpy
method is the involvement of a new variable, enthalpy, denoted by H, such that, pc = dH/dT, Eq. (1) is transformed to the fol-
lowing form

aH .
V- kKDVTI+Q = a—f;T. (2)
The definition of the enthalpy for a metal alloy is given as follows [26]:
Ts T, T
H(T) = f pes(TAT + pl + / pe(T)aT + f pa(MdT (T = Ty, (3)
Tr T T
T T dL
H(T :f pcs(T)dT+f (p (Ef) +pcf(T)) al (T,<T =T, 4
Ty Ts
T
HT) = [ pa(dT (T<T), (5)
T

where subscripts I and s refer to liquid and solid respectively, p is the density (constant), I is the latent heat. Cris the sp ecific
heat in the freezing region and T, is a reference temperature lower that T, generally 25 °C.

Fnthalpy may be computed in a number of ways, however, die to its improved accuracy in tracking the phas: chaange
inside the metal alloy, the following averaging formula [27) was used for the estimation of the enthalpy variable
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By employing the weighted residual method and the standard Galerkin technique [28], Eq. (2) is transformed to yield the
following linear system of equations {27],

CO{T} + I(D){T} = F, 7)

wherre K and C are the conductivity and heat capacity matrices. F is the thermal loading vector. For an axi-symmetric frame-
worl, C, K and F are defined as follows:

N =3 / PENENE D2 (8)
e Jik
ON: ON; N, ON, S

km=-y [ RGE G ‘E@?}"mgfmm“”‘”’ ©
F= / Neh.To,dT — / N°gdr, 10
Z The E Mg q ( )

dQ = 2ardrdz, (1)
dr = 2mr(dr® + d2)2. (12)

For the conductivity matrix, the first term is due to the diffusive part whereas the second is due to convection, either to
the surroundings or to the coolant channels.
A finite difference approximation was used for the temporal discretisation [27]

{CH-HX -Cﬂ ~ (1 — Ko | (Ta) + (Frper) (1

AF +Od(n+oc} (Tn+1) = [ AL

and a Crank Nicolson scheme [27] where o =0.5 was used for the time marching scheme. The Crank Nicolson scheme was
chosen due to its balance between accuracy and stability as oppoesed to other schemes such as Forward Euler and Backward
Euler schemes.

2.1. Imterfacial heat transfer between two parts in contact

Modelling of the heat transfer phenomenon between the die and casting plays an impartant role in obtaining accurate
simulation of the cooling behaviour in a casting component. This is particularly relevant for the squeeze forming process
in which control of thermal response through application of a pressure cycle is critical to process success. Heat rransfer
can also take place between the blocks that make up the die itself. Interfacial heat transfer may be handled in a number
of ways within a numerical scheme, for example in a finite element formulation thin elements may be introduced at this
interface, where they act as a layer between casting and die. It is also possible to use a coincident node approach that rep-
resents an interfacial element of zero thickness. In this work, the heat transfer at the die-casting interface is modelled using
a convection heat transfer type mechanism [29). This has been done to deal with the situation where nodes in the die and
casting are not constrained fo be coincident, hence simplifying the finite element meshing and remeshing require ments
making it suited to the design element approach.

One of the attractive features in implementing this model is that there is no need to introduce additional elements. The
interface surfaces interact naturally with each aother. In two dimensions, any two parts in contact with each other, for exam-
ple a casting and its die, are separated by an interface boundary line. This is illustrated in Fig. 1.

The interface boundary can be divided into a number of segments and these segments can capture different interface con-
ditions. Common to all segments is that one part of the interface represents the casting surface and the other is the die. Dur-
ing analysis, strategically each boundary segment in the die, the corresponding boundary segment in the casting acts as a
reference condition and vice versa. In detail, at the interface boundary, the reference temperature in the die is obtained
by taking the averaged closest two nodal temperatures at the casting interface. This approximates the die reference e mper-
ature at the interface. The same implementation is applied for the reference temperature in the casting by considering the
averaged closest two nodal tempertatures at the die interface,
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Fig. 1. Schematic of interface model.

22 Sensitiﬁi[y analysis

Gradient-based optimisation is one of the most popular strategies in tackling optimisation in engineering design prob-
lems. The calculation of sensitivity gradients is a core requirement for optimisation. Such calculations can be computation-
ally demanding and any strategy that will reduce this demand is attractive. This has led to exploration of a Design Element
Concept. The application of the Design Element Concept including the parameter and shape sensitivities will be discussed in
the following sections.

In standard design sensitivity analysis, sensitivity gradients are calculated for each discretised element in the dornain.
However, the Design Element Concept allows the design sensitivity gradients to be calculated based on zones of design ele-
ments, thus reducing the design sensitivity loop calculation that significantly decreases the demands for the aptimisation
process.

2.3. Analytical methods
Where they may be applied, analytical methods have an advantage over Finite Difference Methods (FDM) due to their

accuracy and efficiency in performing the gradient calculations. This is further amplified for nonlinear problems where
the FE analyses are expensive. The optimisation of nonlinear problems has been explored in metal forming processes, poly-

mer extrusion and casting processes. There are two types of analytical methods; namely the Direct Differentiation Me thod
(DDM) and the Adjoint Variable Method {AVIM). Generally, the DDM is used if the number of Design Constraints (DC} is great-
er than the Nurnber of Design Variables (NDV). In the DDM, the derivatives of the response with respect to design variables
are solved as many times as there are design variables. Thus, the DDM is used if NDV < DC. In the AVM, the adjoint equation
is solved as many times as there are design constraints. Therefore, it is efficient to find the design sensitivity gradients using
the AVM if DC £ NDV.

2.3.1. Direct Differentiation Method {DDM)
The DDM can be illustrated through consideration of the general matrix equation that includes a vector containing design
variables,

Kby =F, , (14)

where b is the design variable vector, q is the displacement vector, F is the global force vector and K is the global stiffness
matrix. The goal is to find the sensitivity of a function y(g(b),q,. o(b), o, b) with respect to the design variables b,

Vi subject to K(h)yg=F, (15)
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where V¢ is defined as

oy ¥ B

9. is the displacement constraint and o, is the von Mises stress constraint. Assurning that the K matrix is nat singular, both
sides of the equilibrium equation are differentiated with respect to b. The following expression for Vg can be derived:
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Fig. 2. The division of zones in the die for 3 design elements.
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Fig. 5. The division of zones in the die for 14 design elements.

Vig =K [ViF - V(Y oKea)]. (17)

where K. represents the discretised elements in the defined design elements. In the following examples, the die has been
divided into zones of 3, 7, 10, 14 and 28 design elements. This has been chosen to see the difference in the calculated sen-
sitivities for different sub-divisions of design elements in the die. Figs. 2-6 show the divisions of the zones in the die for 3,7,
10, 14 and 28 design elements. The design elements are clearty chosen to provide a thermal interface between the die and
part as control of this is required to ensure success of the process. The method for handling this interface has been set out
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Fig. 6. The division of zones in the die for 28 design elements.

earlier in the paper. Generally the design elements do not capture the thermal interface between blocks, however the
approach is capable of handling this through extension of the principles applied at the die to casting interface. Treatment
of structural contact between the die blocks has been excluded from this model. This simplification was chosen because
the aim of the study was to explore the Design Element Concept rather than address the full complexity of the process, pos-
sibly within a three dimensional framework, This could be a follow on project by incorparation into the scheme described in
[17].

The design element sensitivity gradient for each design element is merely the summation of the derivatives of the stiff-
ness matrices 5 Ky, for the discretised elements inside the particular design element. This follows the finite element method
procedure where the total stiffness matrix of the structure is the summation of the individual finite element stiffness matrix
in the domain,

The exact sensitivities of v (g(h), g, o{b), o, b) can be calculated by substituting Vg

Vol = Vi + Vi - Vg, {18}

where Vi is the gradient term for the explicit dependence of ¥ (q{b).gq. o(b),a,,b) on b.
For a von Mises stress constraint, the exact sensitivities of \v (g(h),q, o{b), 6., b} can be calculared by substituting V,q

vb'{’l:vzvrf‘f‘vav,/ -qu-qu’. (19)

23.2. Adjoint Variable Method (AVM)
For the AVM, firstly, an augmented functional is defined,

L{g,b,2)=v - (Kg - F), (20)

where 1is a Lagrange muitiplier vector and the additional condition is the equilibrium equation.
From the stationary condition,

oL

3 =0. (21}
Differentiating the augmented functional with respect to the design variable gives

db dy . d

@b * ap*a-b) 2
Since the state equation holds,

dL  dy 23)

db~db’
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Defining the sensitivity of the augmented functional with respect to the design variable vector leads to

dl ol ol dag
= — 24
b~ ab T 5q db (24)
By exploiting the stationary condition, the adjoint vector can be written as follows:
oy
Ki=—. 25
54 (25)
For the von Mises stress constraint, again, by exploiting the stationary condition, the adjoint vector can be written as follows:
Yy do
=_r. = 26
Ki=5_ 5 (26)
So, to obtain the sensitivities it is enough to find the partial design derivatives of the augmented functional, then
dy 8y {8F 6K
s s = _= 27
a5+ (ab 2b q)' @7

The sensitivity for each design element is merely the summation of the individual discretised element sensitivity inside that
particular design element. Again, this reflects the assembly of the global stiffness matrix as used in the finite element method.

2.4, Finite Difference Method (FDM)

The FDM is the simplest way to calculate sensitivity values due to the fact that, unlike the DDM and AVM, it does not
require a direct access to the finite element source code. However it suffers from a few drawbacks as discussed in previous
section, notably involving the accuracy of the calculated sensitivities and also it takes longer time to calculate sensitivities
due to the fact that the finite element equation has to he solved twice at each iteration of the optimisation process. However,
in order to benchmark the calculated sensitivities using the analytical methods, it is necessary to derive the sensitivities
using the FDM.

In this work, to facilitate comparison, the design sensitivities for displacements and stresses are computed using two
techniques, which are forward FDM and central FDM. For the forward FDM [30], the approximation of design sensitivities
for displacement is given as '

o H0+20)-dh) o)
where gi(b + Ab) is obtained by solving the following equation,

Kb+ Abyq{b + Ab) = F(B + Ab). (29)
For stress sensitivities, the approximation is given as

gz'j 0 (b+ A:;), a'(h) (30)
and ¢(b+ Ab) is obtained from,

o(b+ Ab) = D{b + Ab)B(b + Ab)q(b + Ab). (31)
For the central FDM, the design sensitivities of displacements and stresses are approximated as

8q—ql(b+Ab—q-th—Ab)

a_'ijmu\ + )ZAI;“ ) (32)

B_O'Eza"(bi—Abj —a"(b~Ab)= (33)

b; 2Ab
where g(b — Ab) and a(b — Ab) are obtained from,

K{b— Ab)q(b — Ab) = F(b — Ab), (34)

o(b — Ab) = D{b — Ab)B(b — Ab)gq(b — Ab). (35)

2.5. Parameter design sensitivity analysis

In parameter design sensitivity analysis, there are a number of design variables that may be considered as discussed ear-
lier in previous section. In this work, Young modulus was considered as the parameter design variable, chosen because i t has
a significant effect on the results as compared to other design variables. This is due to the direct dependency of the s tress
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field on the associated strain and modulus values. Exploring the impact of Young modulus is rather hypothetical, because
dies are usually fabricated from steel which dictates thermomechanical parameters within practical limits. However the
choice of materials, such as alloys that have thermal properties that facilitate rapid heat removal at strategic locations within
the die may be of interest (implying strong modulus gradients), Young modulus will be used in this work as a means of
investigating the sirmulation approach. This is also quite relevant in the design sensitivity analysis using the Design Element
Con.cept, since a die is typically fabricated based on a number of blocks (with the potential for using different materials) and
itis particularly useful in a way that the defined zones using the Design Element Concept can be considered as a direct map-
ping to a number of blocks that make up the die.

2.5.1. The stiffness matrix derivative for parameter sensitivity

The key factor in the calculation of sensitivities using the analytical methods is to formulate the derivative of the stiffness
matrix with respect to the design variable. For example, considering the Young modulus, E, the stiffness matrix derivative is
given by

& oD

iE ﬁBJDnrbﬂr- (36)

Frorn the equation above, it can be seen that only the D matrix is differentiated with respect to the Young modulus because it
only appears in this matrix.

2.5.2. The derivative of von Mises stress with respect to displacement vector

It can be seen from the derivations of the DDM and the AVM that the derivative of von Mises stress with respect to dis-
placement vector is present in both methods. Thus, this section focuses on this derivation. For an axi-symmeiric problem, the
von Mises stress is given by [31,32]:

O = \/o'$+cr§ + 6%+ 312, — 6,07 — 6,0; — 6,0, (37)

By using the chain rule of differentiation, the derivative of the von Mises stress with respect to the displacement vector is
given as:

ds, do, da, Oo, dey 0O, Ba, 0o, T,

Bq 6, 99 5o, 0q | d0; 54 | 0tz oq ' >
where

%:Zarg\;'g{dz’ (39)

%:2002_%—@’ (40)

%:26\;%' o

2.6, Displacement constraints

Displacemnent and von Mises stress constraints can be applied anywhere in the die. In this work, two displacement con-
straints have been selected and these have been applied near the casting where the ¥ and x-displacements have been set not
to exceed 1 x 10~* m applied at points F and G, respectively. These have been chosen to avoid high displacements atth e cast-
ing, which are typically the crucial areas in which the high von Mises stress are developed and as a consequence, failure ini-
tiation might occur. Fig. 7 shows the application points for the two displacement constraints in the die.

27 Shapé design element

The Design Element Concept is not only applicable to parameter sensitivity, it can also be applied to shape sensitivity. In
this section, a new and novel application of shape design element of coolant channels is demonstrated. Shape sensitivity can
to some extent be applied to part shape design, but often this is driven by end application considerations. In this work it may
be applied to process design through for example positioning of the cooling system within the die. This will be explared
within the case studies that will be considered in this project. However, in the following case studies, the coolant channel
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Fig. 8. The definition of X and Y coordinates of the centre of the coolant channels.

was not moved around, it was just the case of showing how the sensitivity of the chosen position will respond with re spect

to the application of the von Mises stress constraint.

2.7.1. Shape parameterisation of coolant channel

One of the important aspects in performing shape sensitivities for coolant channel geometry is the parameterisati on of
the coolant channel. To illustrate this, Fig. 3 shows the X and Y coordinates of the coolant channel centre. The shape sensi-
tivities with respect to the X and Y coordinates are calculated after parameterisation and the von Mises stress constraints
have been applied at points F and G as shown in Fig. 8. These have been chosen due to the high von Mises stress values

in these areas. The parameterisation of the coolant channels is as follows:
X=X-—-rcosa,
y=Y —rsing,
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where r is the radius of the coolant channel and o is the angle as shown in Fig. 8.

2.7.2. The stiffness matrix derivative for shape sensitivities

Again, in performing analytical design element shape sensitivity analysis, the success of the computation is largely depen-
dent on the calculated stiffness matrix derivative. Thus, for an axi-symmetric problem, the derivative of the stiffness matrix
with respect to the design varjable, associated with the Y-coordinate of the centre of the coolant channel, is given as:

r
g_;f = (85 DRBJ, + BTD }D +BDB ‘3]”) T - (43)
The derivative of the stiffness matrix with respect to the X-coordinate of the centre of the ceolant channel is of the form,
%ﬁ; ( DBJp s + BT D ]Dr,m, BTDB%th, B'DB]J, 6“’“’) TT. (44

3. PParameter design element sensitivities example

The design sensitivity analysis example of the axi-symmetric squeeze formed wheel is presented. The thermal stress anal-
ysis Tequires a temperature prescription within the die as an input and this was derived from a thermal analysis using the
procedure that has been described fully in previous section. In this instance, the initial temperature of the cast metal was
700 °C, The cast material is Aluminium LM25 whereas for the die, the material is steel H13. The die features two coolant
channels that are fixed in position and it has an initial temperature of 200 °C [33]. The heat transfer conditions in the coolant
system corresponds to a heat transfer coefficient and reference temperature of 1000 W/m? K (Appendix 11} and 100°C
respeclively and heat is removed from the external surfaces in accordance with a heat transfer coefficient to 25 wW/m2 K
{29,34] and an ambient temperature of 25 °C. Very good contact is assumed at the die and casting interface, hence an inter-
facial coefficient of 5000 W/m? K [34,35] was applied.

3.1. Transient thermo-mechanical problem

Fig. 9 shows the temperature field in the die at t = 50 s after the cast part has completely solidified. At t=50s, the tem-
perature field in the die was directly used for the calculation of thermal stresses for the structural evaluation. Figs. 10-12
show the x-displacement, y-displacement and von Mises stress in the die at t=50s. The range of x and y displacements
is 10™*m and 10° Pa for von Mises stress. The temperature distribution in the die leads to a complex stress pattern where
high von Mises stresses are developed near the coolant channels and also in the corner regions within the die.

T1
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Fig. 9. Temperature field in the die at =50 s.
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Fig. 12. Von Mises stress distribution in the die at t=50s.
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Fig. 13. Design element sensitivity of displacement with respect to Young modulus for the application of displacement constraint at point F for 3 design
elements.
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Fig. 14. Design element sensitivity of displacement with respect to Young modulus for the application of displacement canstraint at peint F for 7 design
elements, :

Fig. 15. Design element sensitivity of displacement with respect to Young modulus for the application of displacement constraint at point F far 10 cesign
elements.

3.2. Displacement design element sensitivities

The same points for the application of design constraints as in the previous section have been applied. In implementation,
there are a number of design efement subdivisions that may be used, for example, each block in the die may bea design
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Fig. 16. Design element sensitivity of displacement with respect to Young modulus for the application of disnlacement constraint at point F for 14 design
elements.

Fig. 17. Design element sensitivity of displacement with respect to Young medulus for the application of displacement constraint at paint F for 28 design
elements

element. This will lead to just a few design elemnents and these may be insufficient to capture stress or thermal gra dients
within the die with sufficient accuracy. Thus a number of design element subdivisions will be explored and the options
are presented in Figs. 2-G.

Figs. 13~17 show the design element sensitivity of displacement with respect to Young modulus for the application of the
displacement constraint at locations F for 3, 7, 10, 14 and 28 design elements respectively. Figs. 18-22 show the design
element sensitivity of displacement with respect to Young modulus for the application of the displacement constraint at
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Fig. 18. Design element sensitivity of displacement with respect to Young modulus for the application of displacement constraint at point G for 3 design
elements.

Fig. 19. Design element sensitivity of displacement with respect to Young modulus for the application of displacement constraint at point G for 7 design
elements.

locations G for 3, 7, 10, 14 and 28 design elements respectively. It can be seen that for the results obtained for both displace-
ment constraints, the division of design elements affected the sensitivity distribution in the die and convergence can be ob-
served as more design elements are employed.

At the finite element level, all the calculated sensitivities using the analytical methods may be compared with the FDM
method to ensure the accuracy of the calculated sensitivities. In terms of validation of the approach in this work involving
the sensitivities for the Design Flement Concept, the same procedure has been implemented where all the calculated design
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" - 43034

Fig. 20. Design element sensitivity of displacement with respect te Young modulus for the application of displacement constramt at point G for 10 desiga
eleme nts,

Fig. 21. Design element sensitivity of displacement with respect to Young modulus for the application of displacement constraint at point G for 14 design
elements.

element sensitivities using analytical methods will be compared with the FDM method. This is now practical since the De-
sign Element Concept is a macro scale sensitivity of the FE sensitivities as discussed in the previous sections. The comparison
of the results between the two methods was carried out and it is effectively a validation loop, where the results showed close
agreement. The comparison was done for the patterns obtained from both, the AVM and the DDM solutions, where they were
compared with the pattern obtained from the FDM solutions.



R. Ahmad et al./ Applied Mathematical Modelling 36 (2012) 4760-4788 4779

Fig. 22. Design element sensitivity of displacement with respect to Young modulus for the application of displacement constraint at point G for 28 design
elements.
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Fig. 23. Design element sensitivity of von Mises stress with respect to Young modulus for the application of ven Mises stress constraint at paint F for 3
design elements.

3.3. Van Mises stress design element sensitivities

The same points for the application of von Mises stress constraints as defined in the previous section have been applied
where the von Mises stress has been set not to exceed 1 x 102 Pa. This has been chosen due to the high von Mises s tress
values in these areas. Figs. 23-27 show the design element sensitivity of von Mises stress with respect to Young modulus
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Fig. 24. Design element sensitivity of von Mises stress with respect to Young modulus for the application of von Mises stress constraint at point F for 7
design elements.
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Fig. 25. Design element sensitivity of van Mises stress with respect to Young medulus for the application of van Mises stress constraint at peint = for 10
design elements.

for the application of von Mises stress constraint at points F for 3, 7, 10, 14 and 28 design elements tespectively.
Figs. 28-32 show the design element sensitivity of von Mises stress with respect to Young modulus for the application of
von Mises stress constraint at points G for 3, 7, 10, 14 and 28 design elements respectively. Again, for von Mises stress
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Fig. 26. Design element sensitivity of von Mises stress with respect to Young modulus for the application of von Mises stress constraint at point F for 14
design elements.
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Fig. 27. Design element sensitivity of von Mises stress with respect to Young modulus for the application of von Mises stress constraint at point F for 28
design elements.

constraints, it can be seen that as more design elements are explored, convergence is obtained as shown by Figs. 23-27 and
28-32.

Clearly the Design Element for both displacement and von Mises stress have tremendously reduced the number cf design
variables. The reduction of the design variables from hundreds to only a few design elements has reduced the calcul ation
time in the optimisation process by a factor of more than ten times since the updating of new solution using the gradi-
ent-based optimisation is done accordingly for each design variable. This is due to the fact that the gradient-based
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Fig. 28. Design element sensitivity of von Mises stress with respect to Young modulus for the application of von Mises stress constraint at point G for 3
design elements.
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Fig. 29. Design element sensitivity of von Mises stress with respect to Young modulus for the application of von Mises stress constraint at point G for 7
design elements.

optimisation updates the new solution based on the Taylor series formulation, where the sensitivity with respect to each
design variable is needed in deriving to the optimal solution.

3.4 Analytical methods vs finite difference method

In this section, the calculated analytical design element sensitivity gradients are tabulated and then compared with the
results from a simple difference based calculation. In this section only a limited comparison is presented, because good
agreement was shown for all cases.



R. Ahmad et al fApplied Mathematical Modelling 36 (2012) 4760-4788 4783

Fig. 30. Design element sensitivity of von Mises siress with respect to Young modulus for the application of von Mises stress constraint at point G for 10
design elements.
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Fig. 31. Design element sensitivity of von Mises stress with respect to Young Modulus for the application of ven Mises stress constraint at point G for 14
design elements.

3.4.1. Design element sensitivities of displacement

Tables 1 and 2 show the design element sensitivities of displacement with respect to the Young modulus for the a ppli-
cation of displacement constraints at peints F and G respectively for 14 design elements. The results are tabulated up to three
decimal places due to the fairly close values that were cbtained from the FDM and the analytical methods.
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Fig. 32. Design element sensitivity of von Mises stress with respect to Young Modulus for the application of von Mises stress constraint at peint G for 28
design elements.

Tabhle 1
Comparison of the analytical methods and FDM design derivatives for the application of displacement constraint at point F for 14 design elements.
Design FDM (F) FDM (C} AVM and DDM
element g oy y 2.0% ¥ 0.2% % Error 2.0% % Error
Error Error
1 2371 % 107" 078 2439 x 1075 205 2389%x 1077 0.04 2369x 107" 088 2.390 x 10713
2 1.689 x 107'* 023 1710 x 107 142 1.687 x 107 0.08 1.698 x 107 0.71 1.686 x 10~
3 4049 « 100" 067 5029 x 107" 094 4982 x 107" 201 =107 4951 x107'* 062 4,982 x 107"
4 2177 x 107 017 2201 x 107 129 2173 x 107 0.02 2173x 107 092 2173 x 10~
5 1416 x 107" 028 1.433 x 107"* 092 1419x 107" 012 1.411 x 107* 059 1421 x 107"
6 1.867 x 107 079 1909 x 10°* 147 1.882 x 107" 0.03 1.886 x 107"%  0.21 1.882x 107"
7 -8.833x 107" 056 —8BGBx 10" D17 —8882x107Y 225x107° -—8889x 107" 007 —8R83Ix 10712
8 —0559x 107" 009 -9560x 1077 008 9568 x107"* 522x107 -9576x 107"% 007 —9.569 x 10712
9 —5200% 107" 05 -5171 %107 005 -5172x107"7 004 ~5171x 107" 005 —5174x 10713
10 —5.051 %107 098 -5097 x1072 011 5101 x10""° 001 —5703 x 10°"* .02 —5.102x 107
11 1.854 % 107" 031 1.856 x 10°'' 0,19 1.858 x 1071 0.07 1858 x 107" 0.05 1.859x 107"
12 ~1436x 107" 097 -1.442 x 107" 055 —1452x 107" 014 ~1451 = 107" 0.07 —1450% 107
13 1925 1077 047 1.935 x 1072 0.05 1934 x 1672 516%x 107>  1934x 107" 516x 107  1934x 1072
14 —1375% 10" 053 -1379x10""" 063 -1390x10"" 0.14 —1.388 x 107" 0.07 —1.388x 107!

3.4.2. Design element sensitivities von Mises stress

Tables 3 and 4 show the design element sensitivities of von Mises stress with respect to the Young modulus for the appli-
cation of von Mises stress constraints at point F and G respectively for 14 design elements.

From this tabulation, it can be seen that the results showed close agreement. It reflects the results obtained for the com-
parison done for the full field solution from the AVM and the DDM, where again, the percentage errors obtained were also
small.

3.5. Shape Design Element Concept example

This section will highlight the influence of the tendency of the movermnent of the coolant channel having a radins of 0.02 m
in certain directions, for instance X and Y axis, with respect to the von Mises stress constraint at a particular point in the die.
The same initial and boundary conditions were applied as described previously. Tables 5 and 6 show the design element sen-
sitivities of von Mises stress with respect to Y and X coordinates for the lower coolant channel for the application of the von
Mises stress constraint at point F. It can be seen that the tendency to move the lower coolant channel in the X-direction has a
higher influence than the Y-direction with respect to the von Mises stress constraint at point F. Tables 7 and 8 show the
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Tahle 2
Comparison of the analytical methods and FDM design derivatives for the application of displacement constraint at point G for 14 design elements,
Design FDM (F) FDM {C) AVM and DDM
clement oy % 20% ¥ 02% % Error 2.0% % Error
Error Error
1 2246 % 107" 0.94 2238 x 107" 056 2225 x 10°1* 0,03 2240 % 107'* 067 2225 x 10712
2 1.112x 107" 063 1.090 x 107> 1.32 1,101 x 1072 036 1132 x 1072 063 1.105 x 107"
3 1934 x 10°'* 0,56 1.942 x 1072 1.03 1945 x 1072 1.03x10-3  1932x107"* 0.67 1.945 % 107"
4 1871 x 1072 129 1.835 x 107 065 1.843 x 107" 016 1.842 x 107?026 1.847 x 107"
5 ~1.887 x 107" 04 -1.868x10°"™ 114 —1.896x 10" D.08 -1.896 x 107" 0.08 —1.895 x 107"
G -2993x 10717 043 -2981x10° 083 —3.005x10°% D02 —2.997 x 107 0.07 -3,006 x 10712
7 1245 x 1072 138 1216 x 107 098 1230%x 1072 014 1216 x107"?  0.96 1.228 x 10712
8 7.941 x 107" 0.15 7.862 x 1073 1.14 7.943 x 107 0,12 7.902 x 107" (.64 7.953 x 107
9 6114 1077 082 6.069 x 107 0.41 6.102 x 107" 0,13 6.130 x 107'* 058 5.094 x 1073
10 3471 x 1077 084 3.435 x 107" 02 3445 % 107 0,08 3474 x107% 093 3.442 x 10712
11 6436 x 1077 0.68 6.358 x 1073 055 6404 x 107 017 6426 x 107"* 0,52 6393 x 1072
12 1.506 x 10712 1.27 1475 x 1072 0.79 1488 x 1072 0.1 1502 % 10712 0898 1487 x 10712
13 4635 x 107'*  0.07 4607 x 107" 0.68 4617 x 107% 046 4638 %107 215x 1077 4638 x 107"
14 —2613%x 10" 053 -2601x107"° 089 -2529x107"* 005 —2624x107"% 012 —2.627 x 10717
Table 3
Comparison of the analytical methods and FDM design derivatives for the application of von Mises stress constraint at peint F for 14 design elements.
Design element FDM (F) FDM (C) AVM and DDM
0.2% % Error  2.0% % Error  0.2% % Error  2.0% % Error
1 3292 x 107 031 3280 x 1074 0.8 3306 x 107" 0.00 3296 x 107" 0,39 3300x 107
2 ~1965 x 10°"* 067 -1572 x 107"  1.02 —~1.956 x 107"*  0.20 ~1.861 x 107  0.46 -1.952 x 1073
3 1834 x 1072 Q.65 1.845 x 1072 1.26 1.819 x 1072 016 1.812x 107 055 1.822 x 107"
4 —8846x 10712 048 —8818 x 1072 0.79 —8.909 x 10712 (.22 —8852x 1072 041 —8.889 x 10712
5 ~1734 x 107" 063 —1.731 x 107" 0.50 -1.750 x 107" 0.29 ~1.754 x 107" 052 —1.745 x 10711
6 —1225x 107" 0.56 -1218x 107" 1.05 —~1.232 x 107" 0.07 -1.226 x 10°*" 048 -1.232 x 1071
7 -2326x 107 068 —2320x 1072 094 -2338 <1072 (.17 —2356x 1072 059 2342 x 10712
8 ~1.916 x 1012 057 —1.909 x 107**  0.93 -1929x 1077 010 ~1.936 x 10712 047 -1.927 x 1072
9 —1577x 107" 057 -1.569 % 1072 1.07 ~1.583 x 107 0.19 -1.578 x 107 050 —1.586 x 10712
10 —1605x 1072 086 ~1610x 1072 055 -1612x 1071 043 —1.620x 107 0,06 -1619x 10712
11 5023 x 107" 063 5.032 x 107 082 5.001 x 1072 022 5015 x10°'* 048 4.991 x 10712
12 1662 x 107" 054 1683 x 1071 072 1675 < 107" 028 1.879 x 107" 0.47 1.671 x 107"
13 4466 % 1072 0.58 4490 x 1072 004 4434 x 10718 0.2 4.494 % 1072 0.02 4493 x 1071
14 4780 x 107" 0.27 4758 x 107 019 4769 % 10717 0.04 4.768 x 1072 0,02 4767 x 10712
Table 4
Comparisen of the analytical methods and FDM design derivatives for the application of von Mises stress constraint at point G for 14 design elements.
Design element FDM (F) FDM (C) AVM and BDM
02% % Ecror  2.0% % Error  0.2% % Error  2.0% % Error
1 —2459 x 1071 a2 —2.480 % 107"* 053 ~2.469x 1077 008 -2463 x 1072 016 —2467 x 10712
2 -1573x 107" 019 —1.565 x 1072 0.69 —1575 % 107" 0.06 —1570x 107?038 ~1576x 10712
3 ~4156 % 107" 0,72 —4211 x 1072 0.60 ~4187 x 1072 0.02 —4181 %107 012 —4186 x 10~
4 2197 x 107" 032 —2218x 10-% 059 —2.207 < 10" 009 —Z2T3x 1072 036 —Z205 X T
5 —4633 x 1072 030 -4670x 107?049 —4642 x 10712 0.11 —4636 <107 0.24 —4647 x 10712
6 —6396 % 1072 048 6462 x 1077 054 —6431 = 107" 0.06 —6.457 x 107'2 047 —6427 x 10712
7 —~1.251 x 107" 040 —1.255x107"* 072 -1.248 x 10712 (L6 ~1.242 % 1072 032 -1.246 x 10712
8 3465 x 10717 0.23 3471 x 107" 040 —3.456 x107"*  0.03 —3451 x 1079 017 —3457x 107"
9 —1.851x 107?048 -1.836 x 107 0.76 ~1.840x 1077 011 —1.849x 1077 038 ~1.842x 10713
10 -2032x10°™ D030 —2.038x 100 059 —2029 x 107" 015 —2021 1071 025 2,026 x 10~
11 -8080 x 107" 028 ~8.006 x 10713 0468 —B.055 x 1071  0.05 -8.035x10""% 029 —8059x 107"
12 -2810 % 1072 071 ~2.853x 1072 0.81 —2838 x 1077 028 -2.843x 107 0,50 —-2.830x 107"
13 —9200 x 10 096 —9283x 107" 0.06 ~9350 x 107" 065 —9288x 107" 0.1 —9289 x 10~
14 ~1643 <1072 1,02 _1664x 1073 012 1667 =10~  0.06 ~1.667 x 10°"  0.06 —~1.666 x 1071

design element sensitivities of von Mises stress with respect to Y and X coordinates of the lower coolant channel for the
application of ven Mises stress constraint at point G. However, from these results, the tendency to move the lower coolant
channel in the Y-direction has a higher influence than the X-direction with respect to the von Mises stress constraint ar

point G.
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Table 5

The design element sensitivities of von Mises stress with respect to Y coordinate of the [ower coolant channel for the

application of von Mises stress constraint at point F.

dSefde (1 x 107)

AVM and DDM 8.759
% Perturh dSefde (1 x 10~9) % Error
FDM () 02 8.759 8.52 x 10-*
FOM (C) 2 B765 .07
Table 6

The design element sensitivities of von Mises stress with respect to X coordinate of the lower coolant channel for the

application of von Mises stress constraint at point F.

dSefde (1% 107%)

AVM and DDM -1.332
% Perturb dSefde (1 x 107%) % Error
FDM (€) 02 -1331 0,02
FDM (C) 2 ~1.302 227
Table 7

The design element sensitivities of von Mises stress with respect ta Y coordinate of the lower coolant channel for the
application of von Mises stress constraint at paint G,

dSefde (1 x 107")

AVM and DDM 2670
% Perturb dSejde {1 x 10™") % Error
FDM (C) 0.2 —32.670 3.12 x 1074
FDM (C) 2 —2.669 0.02
Table 8

The design element sensitivities of von Mises stress with respect ta X coordinate of the lower coolant channel for the
application of von Mises stress constraint at point G,

dSefde (1 x 1072}

AVM and DDM —6.368
% Perturb dSefde (1 x 1072) % Error
FDM (C) 0.2 —6.368 297 % 1073
FDM (C} 2 -6.385 0.27
Table 9

The design element sensitivities of von Mises stress with respect to Y coordinate of the upper coolant channel for the
application of von Mises stress constraint at point F.

dSejde (1 x 167"}

AVM and DDM —5.799

% Perturb dSefde (1 x 10" 1) % Error
FDM (C) 0.2 -5.799 1.84 x 1072
FDM (C) 2 —5.809 0.17

Tables 9 and 10 show the design element sensitivities of von Mises stress with respect to Y and X coordinates of the upper
coolant channel for the application of von Mises stress constraint at point F. Tables 11 and 12 show the design elernent
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Table 10 :
The design element sensitivities of von Mises stress with respect to X coordinate of the upper coolant channel for the
application of von Mises stress constraint at point F.

dSefde (1 x 1072)

AYM and DDM -1.792
% Perturh dSejde (1 x 107%) % Error
FDM (C) 0.2 -1.792 53x 1071
FDM {C} 2 —1.791 0.05
Table 11

The design element sensitivities of von Mises stress with respect te Y coordinate of the upper coolant channel for the
application of von Mises stress constraint at point G.

dsefde {1 x 107")

AVM and DDM 1.020
% Perturb dsefde (1 x 107") % Error
FDM (€} 0.2 1.020 476 x 1077
FDM (C) 2 1.016 0.37
Table 12

The design element sensitivities of von Mises stress with respect to X coordinate of the upper coolant channel for the application
of von Mises stress constraint at point G.

dse/de (1 x 10°2)

AVM -2.859

% Perturb dSefde (1 x 1072) % Error
FDM (C) 02 —2.859 212 x 107?
FDM (C) 2 _2858 0.03

sensitivities of von Mises stress with respect to Y and X coordinates of the upper coolant channel for the application of von
Mises stress constraint at point G. It can be seen that the tendency to move the upper coolant channel in the Y-direction has a
higher influence than in X-direction with respect to both von Mises stress constraints at points F and G. Also, the percentage
errors were small thus proving the accuracy of the analytical method. In this example, only the DDM was used, This is be-
cause from the parameter sensitivity examples, it can be seen that clearly both methods yield the same results. In this sec-
tion, the full picture of the shape sensitivity cannot be shown because of the calculated sensitivities were only evaluated on a
certain number of elements in the die.

—Thus, based on the cooling systenm desigmsemsitivity, thedegree to-whichthe tendency to-move the coolant chanmeleither———
in X or Y-direction can be drawn with respect to the particular von Mises stress constraint in the die. Also, based on the above
examples, from the practical point of view, it can be seen that generally if the coolant channel is moved in direction vy, it will
have a more significant impact on von Mises stress when compared with a move in direction x.

4, Conclusions

The Design Element Concept with the aim of reducing effort in sensitivity calculation in the optimisation process has been
proposed. In this worls, the die has been divided into five divisions of design elements, where the zones of defined design
elements may correspondingly represent the number of blocks that make up the die. From the exampies provided, it can
be seen that as a number of divisions of design elements are increased, convergence of sensitivity is obtained for both dis-
placement and von Mises stress constraints. Also, the shape sensitivities procedure of the coolant channels has been de-
scribed, thus, enabling the coolant channels to be moved as an entity for each coolant channel for the shape optimisation
problem, For the shape sensitivity, based on the calculated sensitivity, the extent to which the tendency to move the coolant
channel either in X or Y-direction can be determined with respect to the particular von Mises stress constraint in the die.
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