
Parallel mining of time–faded heavy hitters

Massimo Cafaroa,∗, Marco Pulimenoa, Italo Epicocoa

aUniversity of Salento, Lecce, Italy

Abstract

We present PFDCMSS, a novel message–passing based parallel algorithm for mining time–faded heavy hitters. The
algorithm is a parallel version of the recently published FDCMSS sequential algorithm. We formally prove its correct-
ness by showing that the underlying data structure, a sketch augmented with a Space Saving stream summary holding
exactly two counters, is mergeable. Whilst mergeability of traditional sketches derives immediately from theory, we
show that merging our augmented sketch is non trivial. Nonetheless, the resulting parallel algorithm is fast and simple
to implement. To the best of our knowledge, PFDCMSS is the first parallel algorithm solving the problem of min-
ing time–faded heavy hitters on message–passing parallel architectures. Extensive experimental results confirm that
PFDCMSS retains the extreme accuracy and error bound provided by FDCMSS whilst providing excellent parallel
scalability.

Keywords: message–passing, heavy hitters, time fading model, sketches.

1. Introduction

In this paper we deal with the problem of mining in parallel time–faded heavy hitters (also called frequent items),
and we present PFDCMSS, a novel message–passing based parallel algorithm which is a parallel version of the
recently published FDCMSS sequential algorithm [4].

Mining of heavy hitters in a data stream has been thoroughly studied, and the problem is regarded as one of the
most important in the streaming algorithms literature. Depending on the particular application, the problem is reported
in the literature as hot list analysis [19], market basket analysis [2] and iceberg query [17], [1].

Even though there are many possible applications, we recall here some of the most important contexts to which
the problem has been successfully applied: network traffic analysis [14], [16], [27], analysis of web logs [7], Compu-
tational and theoretical Linguistics [18].

All of the algorithms for detecting heavy hitters can be classified as being either counter or sketch based, the
difference being that counter–based algorithms rely on a set of counters which are used to keep track of stream items,
whilst sketch–based algorithms monitor the data stream by using a sketch data structure, often a bi-dimensional array
data structure containing a counter in each cell. Stream items are mapped by hash functions to corresponding cells in
the sketch. The former algorithms (counter–based) are deterministic, whilst the latter (sketch–based) are probabilistic.

Regarding counter–based algorithms, the first sequential algorithm has been designed by Misra and Gries [26].
Their algorithm was rediscovered, independently, about twenty years later by Demaine et al. [14] (this algorithm
is known in the literature as the Frequent algorithm) and Karp et al. [22]. Among the developed counters–based
algorithms we recall here Sticky Sampling and Lossy Counting [24], and Space Saving [25]. Sketch–based solutions
include CountSketch [7], Group Test [12], Count-Min [11] and hCount [21].

Relevant parallel algorithms include [6], [3] and [5] which are message-passing based parallel versions of the
Frequent and Space Saving algorithms. Shared-memory algorithms have been designed as well, including a parallel
version of Frequent [31], a parallel version of Lossy Counting [30], and parallel versions of Space Saving [28] [13].

∗Corresponding author
Email addresses: massimo.cafaro@unisalento.it (Massimo Cafaro), marco.pulimeno@unisalento.it (Marco Pulimeno),

italo.epicoco@unisalento.it (Italo Epicoco)

Preprint submitted to Elsevier November 7, 2018

ar
X

iv
:1

70
1.

03
00

4v
1

 [
cs

.D
S]

 1
1

Ja
n

20
17

Recent shared-memory parallel algorithms for heavy hitters were recently proposed in [29]. Finally, accelerator based
algorithms exploiting a GPU (Graphics Processing Unit) include [20] and [15]. Regarding related work, i.e., parallel
algorithms specifically designed to solve the problem of mining time–faded heavy hitters, we are not aware of any
other algorithm: to the best of our knowledge, ours is the first parallel algorithm solving the problem on message–
passing parallel architectures.

In this paper, we are concerned with the problem of detecting in parallel heavy hitters in a stream with the addi-
tional constraint that recent items must be weighted more than former items. The underlying assumption is that, in
some applications, recent data is certainly more useful and valuable than older, stale data. Therefore, each item in the
stream has an associated timestamp that will be used to determine its weight. In practice, instead of estimating items’
frequencies, we are required to estimate items’ decayed frequencies.

This paper is organized as follows. We recall in Section 2 preliminary definitions and concepts that will be used
in the rest of the manuscript. We present in Section 3 our PFDCMSS algorithm and formally prove in Section 4
its correctness. Next, we provide extensive experimental results in Section 5, showing that PFDCMSS retains the
extreme accuracy and error bound provided by the sequential FDCMSS whilst providing excellent parallel scalability.
Finally, we draw our conclusions in Section 6.

2. Preliminary definitions

In this Section we introduce preliminary definitions and the notation used throughout the paper. We deal with
an input data stream σ consisting of a sequence of n items drawn from a universe U; without loss of generality, let
m be the number of distinct items in σ i.e., let U = {1, 2, . . . ,m}, which we will also denote as [m]. Let fi be the
frequency of the item i ∈ U (i.e., its number of occurrences in σ), and denote the frequency vector by f = (f1, . . . , fm).
Moreover, let 0 < φ < 1 be a support threshold, 0 < ε < 1 a tolerance such that ε < φ and denote the 1-norm of f
(which represents the total number of occurrences of all of the stream items) by ||f||1.

In this paper, we are concerned with the problem of detecting in parallel frequent items in a stream with the
additional constraint that recent items must be weighted more than former items. The underlying assumption is
that, in some applications, recent data is certainly more useful and valuable than older, stale data. Therefore, each
item in the stream has an associated timestamp that will be used to determine its weight. In practice, instead of
estimating frequencies, we are required to estimate decayed frequencies. Two different models have been proposed
in the literature: the sliding window and the time fading model. PFDCMSS works in the latter model. Furthermore,
even though the basic ideas underlining the algorithm are also appropriate for an online distributed setting, here we
are assuming that the entire dataset is available for offline processing.

The time fading model [23] [9] [8] does not use a window sliding over time; freshness of more recent items is
instead emphasized by fading the frequency count of older items. This is achieved by computing the item’s decayed
frequency through the use of a decay function that assign greater weight to more recent occurrences of an item than
to older ones: the older an occurrences is, the lower its decayed weight.

Definition 1. Let w(ti, t) be a decayed function which computes the decayed weight at time t for the occurrence of
item i arrived at time ti. A decayed function must satisfy the following properties:

1. w(ti, t) = 1 when ti = t and 0 ≤ w(ti, t) ≤ 1 for all t > ti;
2. w is a monotone non-increasing function as time t increases, i.e., t′ ≥ t =⇒ w(ti, t′) ≤ w(ti, t).

Related work has mostly exploited backward decay functions, in which the weight of an item is a function of its
age, a, where the age at time t > ti is simply a = t − ti. In this case, w(ti, t) is given by w(ti, t) =

h(t−ti)
h(t−t) =

h(t−ti)
h(0) , where

h is a positive monotone non-increasing function.
The term backward decay stems from the aim of measuring from the current time back to the item’s timestamp. Prior
algorithms and applications have been using backward exponential decay functions such as h(a) = e−λa, with λ > 0
as decaying factor.

In our algorithm, we use instead a forward decay function, defined as follows (see [10] for a detailed description of
the forward decay approach). Under forward decay, the weight of an item is computed on the amount of time between
the arrival of an item and a fixed point L, called the landmark time, which, by convention, is some time earlier than

2

the timestamps of all of the items. The idea is to look forward in time from the landmark to see an item, instead of
looking backward from the current time.

Definition 2. Given a positive monotone non-decreasing function g, and a landmark time L, the forward decayed
weight of an item i with arrival time ti > L measured at time t ≥ ti is given by w(ti, t) =

g(ti−L)
g(t−L) .

The denominator is used to normalize the decayed weight so that w(ti, t) is always less than or equal to 1 as
requested by Definition 1.

Definition 3. The decayed frequency of an item v in the input stream σ, computed at time t, is given by the sum of
the decayed weights of all the occurrences of v in σ: fv(t) =

∑
vi=v w(ti, t).

Definition 4. The decayed count at time t, C(t), of a stream σ of n items is the sum of the decayed weights of all the
items occurring in the stream: C(t) =

∑n
i=1 w(ti, t).

The Approximate Time–Faded Heavy Hitters (ATFHH) problem is formally stated as follows.

Problem 1. Approximate Time–Faded Heavy Hitters. Given a stream σ of items with an associated timestamp, a
threshold 0 < φ < 1 and a tolerance 0 < ε < 1 such that ε < φ, and letting g be a decaying function used to determine
the decayed frequencies and t be the query time, return the set of items F, so that:

• F contains all of the items v with decayed frequency at time t fv(t) > φC(t) (decayed frequent items);

• F does not contain any item v such that fv(t) ≤ (φ − ε)C(t).

In the following, when clear from the context, the query time shall be considered an implicit parameter, so we
write fv and C instead of fv(t) and C(t). The algorithm presented makes use of a Count–Min sketch data structure
augmented by a Space Saving summary associated to each sketch cell. In the following, we recall the main properties
of the Count–Min and the Space Saving algorithms in the case of non decaying frequencies, but the same properties
also hold in a time-fading context.

Count–Min is based on a sketch whose dimensions are derived by the input parameters ε, the error, and δ, the
probability of failure. In particular, for Count–Min d = dln 1/δe is the number of rows in the sketch and w = de/εe
is the number of columns. Every cell in the sketch is a counter, which is updated by hash functions. By using this
data structure, the algorithm solves with probability greater than or equal to 1 - δ the frequency estimation problem
for arbitrary items. The algorithm may also be extended to solve the approximate frequent items problem as well,
by using an additional heap data structure which is updated each time a cell is updated. Since in Count-Min the
frequencies stored in the cells overestimate the true frequencies, a point query for an arbitrary item simply inspects all
of the d cells in which the item is mapped to by the corresponding hash functions and returns the minimum of those
d counters.

Space Saving is a counter-based algorithms solving the heavy hitters problem. It makes use of a stream summary
data structure composed by a given number of counters k � n, n being the length of the stream. Each counter monitors
an item in the stream and tracks its frequency. A substitution strategy is used when the algorithm processes an item
not already monitored and all of the counters are occupied.

Let σ be the input stream and denote by S the summary data structure of k counters used by the Space Saving
algorithm. Moreover, denote by |S| the sum of the counters in S, by fv the exact frequency of an item v and by f̂v its
estimated frequency, let f̂ min be the minimum frequency in S. If there exist at least one counter not monitoring any
item, f̂ min is zero.

Finally, denote by f = (f1, . . . , fm) the frequency vector. The following relations hold (as shown in [25]):

|S| = ||f||1, (1)

f̂v − f̂ min ≤ fv ≤ f̂v, v ∈ S, (2)

fv ≤ f̂ min, v < S, (3)

3

f̂ min ≤

⌊
||f||1

k

⌋
. (4)

Therefore, it holds that

f̂v − fv ≤ f̂ min ≤

⌊
||f||1

k

⌋
, v ∈ U. (5)

3. The algorithm

In this section, we start by recalling our sequential algorithm FDCMSS [4]. The key data structure is an augmented
Count–Min sketch D, whose dimensions d (rows) and w (columns) are derived by the input parameters ε, the error,
and δ, the probability of failure. Whilst every cell in an ordinary CM sketch contains a counter used for frequency
estimation, in our case a cell holds a Space Saving stream summary with exactly two counters. The idea behind the
augmented sketch is to monitor the time–faded items that the sketch hash functions map to the corresponding cells
by an instance of Space Saving with two counters, so that for a given cell we are able to determine a majority item
candidate with regard to the sub-stream of items falling in that cell.

Indeed, by using a data structure S with two counters in each cell, and letting Ci, j denote the total decayed count
of the items falling in the cell D[i][j], the majority item is, if it exists, the item whose decayed frequency is greater
than Ci, j

2 . The corresponding majority item candidate in the cell is the item monitored by the Space Saving counter
whose estimated decayed frequency is maximum. We have proved that, with high probability, if a time-faded item is
frequent, then, in at least one of the sketch cells where it is mapped, it is a majority item with regard to the sub-stream
of items falling in the same cell. Therefore, our algorithm will detect it.

Theorem 1. If an item i is frequent, then it appears as a majority item candidate in at least one of the d cells in which
it falls, with probability greater than or equal to 1 − (1

2φw)d.

Regarding the error bound of our algorithm, let fi be the exact decayed frequency of item i in the stream σ and
f̂i be the estimated decayed frequency of item i returned by FDCMSS. Let C be the total decayed count of all of the
items in the stream. We have proved the following error bound.

Theorem 2. ∀u ∈ [m], f̂u estimates the exact decayed count fu of u at query time with error less than εC and
probability greater than 1 − δ.

The proofs of aforementioned theorems can be found in [4].
The algorithm’s initialization requires as input parameters ε, the error; δ, the probability of failure; and φ, the

support threshold. The initialization returns a sketch D. The procedure starts deriving d = dln 1/δe, the number of
rows in the sketch and w = d e

2ε e, the number of columns in the sketch. Then, for each of the d ∗ w cells available in
the sketch D we allocate a data structure S with two Space Saving counters c1 and c2. Given a counter c j, j = 1, 2, we
denote by c j.i and c j. f respectively the counter’s item and its estimated decayed frequency. Finally, we set the support
threshold to φ, select d pairwise independent hash functions h1, . . . , hd : [m] → [w], mapping m distinct items into w
cells, and initialize the count variable, representing the total decayed count of all of the items in the stream, to zero.

Updating the sketch upon arrival of a stream item i with timestamp ti, shown in pseudo-code as Algorithm 1,
requires computing x, which is the non normalized forward decayed weight of the item, and incrementing count by x.
Then, we update the d cells in which the item is mapped to by the corresponding hash functions h j(x), j = 1, . . . , d by
using the Space Saving item update procedure.

Let S denote the Space Saving stream summary data structure with two counters corresponding to the cell to be
updated. Updating S upon arrival of an item works as follows. When processing an item which is already monitored
by a counter, its estimated frequency is incremented by the non normalized weight x. When processing an item which
is not already monitored by one of the available counters, there are two possibilities. If a counter is available, it will
be in charge of monitoring the item, and its estimated frequency is set to the non normalized weight x. Otherwise, if
all of the counters are already occupied (their frequencies are different from zero), the counter storing the item with
minimum frequency is incremented by the non normalized weight x. Then, the monitored item is evicted from the

4

Algorithm 1 Process
Require: i, an item; ti, timestamp of item i; D, sketch data structure
Ensure: update of sketch related to item i; update the local total decayed count.

1: procedure process(i, ti,D)
2: x← g(t − ti) . compute the non normalized decayed weight of item i
3: lCount ← lCount + x . update local total decayed count
4: for j = 1 to d do
5: S ← D[j][h j(i)]
6: SpaceSavingUpdate(S, i, x) . update the sketch
7: end for
8: end procedure

counter and replaced by the new item. This happens since an item which is not monitored can not have a frequency
greater than the minimal frequency.

PFDCMSS, the parallel version of our sequential algorithm, works as follows. We assume the offline setting in
which the stream items have been stored as a static dataset along with the corresponding timestamps. It is worth noting
here immediately that our algorithm works in the streaming (online) setting as well. Indeed, in the former case (offline
setting) we partition the input dataset and timestamps using a simple 1D block-based domain decomposition among
the available p processes and then process in parallel the sub-streams assigned to the processes using Algorithm 1. In
the latter case (online setting), we have instead p distributed sites, each handling a different stream σi, i = 1, . . . , p
processed again using Algorithm 1.

In the parallel version, once the sub-streams have been processed, one of the processes is in charge of determining
the time–faded heavy hitters. In order to do so, all of the processes engage in a parallel reduction in which their
sketches are merged into a global sketch which preserves all of the information stored in the local sketches. This
sketch is then queried and the time–faded heavy hitters are returned.

In the distributed setting, one of the sites may act as a centralized coordinator or there can be another different
site taking this responsibility. The coordinator broadcasts, when required, a ”query” message to the p sites, which
then temporarily stop processing their sub-streams, and engage in the sketch merge procedure. We can imagine the
distributed sites as being multi-threaded processes, in which one thread executes Algorithm 1, temporarily stops when
a query message is received from the coordinator, creates a copy of its local sketch and then resume stream processing
whilst another thread engages in the distributed sketch merging procedure using the sketch copy.

In order to retrieve the time–faded heavy hitters, a query can be posed when needed. The query, shown in pseudo-
code as Algorithm 2, starts by determining the global decayed count for the whole stream σ. This requires a parallel
reduction in which the local decayed counts are summed. It is worth noting here that the global decayed count is still
non normalized; the normalization occurs dividing by g(t − L), where t is the query time and L denotes the landmark
time. Then, we build, through a user’s defined parallel reduction, a global sketch G which is obtained by merging
the local sketches. To do so, each process invokes a parallel reduction by using the MergeSketch operator shown in
pseudo-code as Algorithm 3.

The sketches are reduced as follows: for every corresponding cell in two sketches to be merged, the hosted Space
Saving summaries are merged following the steps described in [5], i.e., building a temporary summary SC consisting
of all of the items monitored by both S1 and S2. To each item in SC is assigned a decayed frequency computed as
follows: if an item is present in both S1 and S2, its frequency is the sum of the its corresponding frequencies in each
summary; if the item is present only in one of either S1 or S2, its frequency is incremented by the minimum frequency
of the other summary. At last, in order to derive the merged summary, we take only the 2 items in SC with the greatest
frequencies and discard the others.

It is worth noting here that the sum of the counters in the stream summary data structure S related to a given
cell D[i][j] is equal to the value that the Count–Min sketch–based algorithm would store in the counter variable
corresponding to that cell, i.e., the 1-norm of the frequency vector corresponding to the sub–stream falling in the cell
through the pairwise independent hash functions. Thus, an augmented sketch is equivalent, from this perspective, to
a Count–Min sketch and this property is preserved by the merge procedure. From now on we will call this property

5

Algorithm 2 Query
Require: t, query time; D, process’ sketch
Ensure: set of frequent items

1: procedure query(t)
2: gCount ← ParallelReduction(lCount,Sum)
3: gCount ← gCount

g(t−L)
4: G ← ParallelReduction(D,MergeSketch)
5: F = ∅

6: for each Si j ∈ G do
7: let c1 and c2 be the counters in Si j

8: cm ← argmax(c1, c2) . cm the counter with maximum decayed count
9: if cm. f

g(t−L) > φ ∗ gCount then
10: p← PointEstimate(cm.i, t)
11: if p > φ ∗ gCount then
12: F ← F ∪ {(cm.i, p)}
13: end if
14: end if
15: end for
16: return F
17: end procedure

1-norm equivalence.
However, merging Count–Min sketches simply requires adding the corresponding cells’ counters. Indeed, via

linearity, the sum of sketches is equal to the sketch of the sums. Instead, in our case, we need an ad hoc procedure
in order to correctly merge the two Space Saving stream summaries hosted by the corresponding cells so that 1-norm
equivalence property is preserved. Nonetheless, the augmented sketch which results from our parallel merge reduction
is 1-norm equivalent to the Count–Min sketch obtained by summing the Count–Min sketches corresponding to our
augmented sketches which are the input of the parallel merge reduction.

Once the global sketch is obtained, the query procedure initializes F, an empty set, and then it inspects each of
the d ∗ w cells in the sketch D. For a given cell, we determine cm, the counter in the data structure S with maximum
decayed count. We normalize the decayed count stored in cm dividing by g(t−L), and then compare this quantity with
the threshold given by φ ∗ gCount (gCount being the normalized global decayed count). If the normalized decayed
frequency is greater, we pose a point query for the item cm.i, shown in pseudo-code as Algorithm 4. If p, the returned
value, is greater than the threshold φ ∗ gCount, then we insert in F the pair (cm.i, p).

The point query for an item j returns its estimated decayed frequency. After initializing the answer variable to
infinity, we inspect each of the d cells in which the item is mapped to by the corresponding hash functions, to determine
the minimum decayed frequency of the item. In each cell, if the item is stored by one of the Space Saving counters,
we set answer to the minimum between answer and the corresponding counter’s decayed frequency. Otherwise (none
of the two counters monitors the item j), we set answer to the minimum between answer and the minimum decayed
frequency stored in the counters. Since the frequencies stored in all of the counters of the sketch are not normalized,
we return the normalized frequency answer dividing by g(t − L).

At the end of the query procedure the set F is returned.

4. Correctness

Here, we prove that our algorithm correctly merges two FDCMSS sketches. The merge procedure preserves all of
the properties of the sketch, including the fact that, considering the sum of the Space Saving counters in each sketch
cell, an FDCMSS sketch is 1-norm equivalent to the classical Count–Min sketch.

It is worth noting here that we would obtain a correct result by using the merge procedure presented in [5] to
combine the Space Saving summaries stored in the corresponding sketch cells, but we also want to impose 1-norm

6

Algorithm 3 MergeSketch
Require: D1,D2: sketches to be merged.
Ensure: G, the merged sketch

1: procedure MergeSketch(D1,D2)
2: for each S1

i j ∈ D1,S
2
i j ∈ D2 do

3: m1 ← min(c1
1. f , c

1
2. f) . m1, the minimum of counters’ frequency in S1

i j

4: m2 ← min(c2
1. f , c

2
2. f) . m2, the minimum of counters’ frequency in S2

i j
5: for each cs1 ∈ S1 do
6: cs2 ← Find(S2, cs1 .i)
7: if cs2 then
8: csc . f ← cs1 . f + cs2 . f
9: Delete(S2, cs2)

10: else
11: csc . f ← cs1 . f + m2
12: end if
13: csc .i← cs1 .i
14: Insert(SC , csc)
15: end for
16: for each cs2 ∈ S2 do
17: csc .i← cs2 .i
18: csc . f ← cs2 . f + m1
19: Insert(SC , csc)
20: end for
21: Purge(SC) . SC now contains 2 counters with the greatest frequencies
22: G[i][j]← SC

23: end for
24: return G
25: end procedure

Algorithm 4 PointEstimate
Require: j, an item; t, query time
Ensure: estimation of item j decayed count;

1: procedure pointestimate(j, t)
2: answer ← ∞
3: for i = 1 to d do
4: S ← G[i][hi(j)] . let c1 and c2 be the counters in S
5: if j == c1.i then
6: answer ← min(answer, c1. f)
7: else if j == c2.i then
8: answer ← min(answer, c2. f)
9: else

10: m← min(c1. f , c2. f)
11: answer ← min(answer,m)
12: end if
13: end for
14: return answer

g(t−L)
15: end procedure

7

equivalence, i.e., the additional condition that the sum of counters’ values in each merged cell always reflects the total
decayed count of the items which fell in the corresponding cells.

Indeed, in [5] we showed how to merge Space Saving stream summaries in parallel. However, we have proved
that our merge procedure satisfies the Space Saving properties described by eq. 2-5, and the following relaxed version
of eq. 1:

|S| ≤ ||f||1, (6)

As shown in Theorem 3, which is the main result of this section, it turns out that k = 2 counters (i.e., majority
item mining) is a special case: when the Space Saving summaries to be merged hold two counters, than the property
in eq. 1 holds for the merged summary in its original form, that is |S| = ||f||1, without modifying the merge procedure
designed in [5].

Theorem 3. The parallel merge algorithm provides an augmented sketch that preserves all of the properties of a
FDCMSS sketch.

Proof. The correctness of the parallel FDCMSS sketch merge algorithm derives from the correctness of the Space
Saving merge procedure, already shown in [5]. It remains to show that, when looking to the sum of the Space Saving
counters associated to each cell, the merged augmented sketch is still 1-norm equivalent to a Count–Min sketch, that
is, the sum of the counters values is equal to the decayed count of all the items fallen in that cell.

Let us recall the merge algorithm for Space Saving summaries introduced in [5]. We will use the multiset notation,
thus let us rewrite the properties of a Space Saving summary stated in equations 1-4, this time with reference to
multisets. Indeed, we model the input stream as a multiset (also called a bag), which essentially is a set where the
duplication of elements is allowed. We shall use a calligraphic capital letter to denote a multiset, and the corresponding
capital Greek letter to denote its underlying set. In particular, we extend the traditional notion of multiset as follows.
Instead of considering an indicator function which returns the multiplicity of an item, we use a function providing the
decayed frequency of that item. Therefore, summing over all of the items we obtain the total decayed count in place
of the cardinality of the multiset.

Definition 5. A decayed multiset N = (N, fN) is a pair where N is some set, called the underlying set of elements,
and fN : N → R is a function which provides the decayed frequency for each x ∈ N according to Definition 3.

The decayed count of N is expressed by

|N| :=
∑
x∈N

fN (x), (7)

whilst the cardinality of the underlying set N is

|N | := Card(N) =
∑
x∈N

1. (8)

From now on, when referring to either the exact or estimated frequency of an item, we shall mean the item’s
exact or estimated decayed frequency. Recall that our Space Saving stream summary data structure uses exactly
k = 2 counters, and let N = (N, fN) be the input decayed multiset, S = (Σ, f̂S) the decayed multiset of all of the
monitored items and their respective counters at the end of the sequential Space Saving algorithm’s execution, i.e.,
the algorithm’s summary data structure. Let |S| be the sum of the frequencies stored in the counters, fN (e) the exact
frequency of an item e, f̂S(e) its estimated frequency and f̂S

min
the minimum frequency in S, where f̂S

min
= 0 when

|Σ| < 2. Indeed, even though a summary data structure has exactly 2 counters, it may monitor less than 2 items, since
an item is actually monitored if and only if its counter’s frequency is different from zero. The following relations hold,
for each item e ∈ N:

|S| = |N| , (9)

f̂S(e) − f̂S
min
≤ fN (e) ≤ f̂S(e), e ∈ Σ, (10)

8

fN (e) ≤ f̂S
min
, e < Σ, (11)

f̂S
min
≤

⌊
|N|

2

⌋
. (12)

Now, let S1 = (Σ1, f̂S1) and S2 = (Σ2, f̂S2) be two summaries related respectively to the input sub-arrays N1 =

(N1, fN1) and N2 = (N2, fN2), with N = N1] N2 = (N, fN). Let SM = (ΣM , f̂SM) be the final merged summary.
Theorem 3 in [5] states that if eqs. (10) - (12) hold for S1 and S2 and, if it is verified a relaxed version of eq. (9),

i.e., it holds that

|Si| ≤ |Ni| , i = 1, 2 (13)

then these properties continue to be true also for SM (it is worth noting here that eq. (13) also holds for summaries
produced by the sequential Space Saving algorithm). The authors show that this is enough to guarantee the correctness
of the merge operation, but, in general |SM | ≤ |N|.

In order to obtain SM , we start combining S1 and S2 to obtain SC , and then, if |ΣC | > 2, we take the two counters
with the greatest frequency values in SC in order to build SM , otherwise we return SM = SC .

We can express the combine operation as shown by the following equation:

f̂SC (e) =

f̂S1 (e) + f̂S2 (e), e ∈ Σ1 ∩ Σ2,

f̂S1 (e) + f̂ min
S2

, e ∈ Σ1 \ Σ2,

f̂S2 (e) + f̂ min
S1

, e ∈ Σ2 \ Σ1,

(14)

In the special case of stream summaries holding exactly k = 2 counters, it holds that for i = 1, 2, |Σi| ≤ 2, and |ΣC | ≤ 4.
Now, suppose that |Si| = |Ni|, (this is true when Si is produced by the sequential Space Saving) and let δ = f̂ min

S1
+ f̂ min
S2

and x = |ΣC | − 2. Furthermore, suppose that the entries in SC are sorted in ascending order with regard to the counters
frequencies.
As proved in [5], it holds that:

|SC | = |S1| + |S2| + xδ = |N1| + |N2| + xδ (15)

|SM | = |N1| + |N2| + xδ −
x∑

i=1

f̂SC (ei), (16)

where the sum is extended over the first x entries.
We have to show that the difference xδ −

∑x
i=1 f̂SC (ei) is always equal to zero when k = 2, so that |SM | = |N|.

When x ≤ 0, xδ = 0. In that case, SM = SC and |SC | = |N|.
When x > 0, the first x counters of SC have values equal to δ. To see this, consider the two cases x = 1 and x = 2.
When x = 2, that is, the two summaries to be merged contain different items and |ΣC | = 4, this is easily seen by

simple computations: in fact, δ is the minimum value a counter in SC can assume, and there are at least two counters
with this value in SC , obtained combining the two counters with minimum value in S1 and S2. As a consequence
these counters are the first two, and xδ −

∑x
i=1 f̂SC (ei) = 0.

When x = 1, one of the following cases arises:

1. one of the summaries (without loss of generality, let us suppose it is S1) contains two counters, the other
summary (S2) contains only one counter and no item is in common between the summaries. In this case, δ is
equal to the minimum counter in S1 since f̂ min

S2
= 0, but it is also the minimum counter in SC , hence it holds

that δ − f̂SC (e1) = 0

9

2. both summaries contain two counters and they have exactly an item in common. In this case we further have to
distinguish three cases:

(a) the item in common has the minimum frequency in both the summaries. The combined frequency of this
item will be equal to δ which is the sum of the minimum frequencies of two summaries. Its combined
frequency is also the minimum in SC , hence it holds that δ − f̂SC (e1) = 0;

(b) the item in common has the maximum frequency in both the summaries. Its combined frequency is also
the maximum value in SC , and SC contains two distinct items with combined frequency equal to δ which
is also the minimum in SC , hence δ − f̂SC (e1) = 0;

(c) the item in common appears with minimum frequency in one summary (without loss of generality, let us
suppose in S1) and with maximum frequency in the other summary (S2). The combined frequency of the
item which appears with minimum frequency in S2 is equal to δ which again is the minimum frequency
of the counters in SC , hence δ − f̂SC (e1) = 0.

Taking into account that in all of the cases when x = 1 theSC contains at least one item whose combined frequency
is equal to δ, it holds that xδ −

∑x
i=1 f̂SC (ei) = 0.

We have shown that all of the properties of a Space Saving summary of two counters are preserved by the merge
procedure introduced in [5]. It suffices to guarantee that all of the properties stated for an FDCMSS sketch continue
to hold after the parallel merge procedure depicted in the algorithm presented. In particular, it holds the property 1,
which guarantees that a merged FDCMSS sketch continues to be 1-norm equivalent to a Count–Min sketch.

5. Experimental results

In this section, we report experimental results on synthetic datasets. Here, we thoroughly test our algorithm using
an exponential decay function. All of the experiments have been carried out on the Galileo cluster machine kindly
provided by CINECA in Italy. This machine is a linux CentOS 7.0 NeXtScale cluster with 516 compute nodes; each
node is equipped with 2 2.40 GHz octa-core Intel Xeon CPUs E5-2630 v3, 128 GB RAM and 2 16 GB Intel Xeon
Phi 7120P accelerators (available on 384 nodes only). High-Performance networking among the nodes is provided by
Intel QDR (40Gb/s) Infiniband. All of the codes were compiled using the Intel C++ compiler v17.0.0.

Let f be the true frequency of an item and f̂ the corresponding frequency reported by an algorithm, then the

Relative Error is defined as ∆ f =
| f− f̂ |

f , and the Average Relative Error is derived by averaging the Relative Errors
over all of the measured frequencies.

Precision, a metric defined as the total number of true heavy hitters reported over the total number of candidate
items, quantifies the number of false positives reported by an algorithm in the output stream summary. Recall is
the total number of true heavy hitters reported over the number of true heavy hitters given by an exact algorithm.
In all of the results we obtained 100% recall, even on a tiny sketch of size 4 x 800 (recall may be less than 100%,
but this happens only when the sketch size is really minimal). For this reason, to avoid wasting space, we do not
show here recall plots. Rather, we present Precision, Absolute Error, Average Relative Error (ARE), Updates/ms and
runtime/performance plots since we are interested in understanding the error behavior and the algorithm’s scalability
when we use an increasing number of cores of execution. Table 1 reports the experiments carried out. For each differ-
ent metric under examination, we varied n, the stream size in billions of items, ρ, the skew of the zipfian distribution,
φ, the threshold and w, the number of sketch columns. All of the other parameters are fixed when varying one of the
previous ones, and we show, on top of each plot, the fixed parameters’ values.

Finally, we also present, for the metrics of interest, the results obtained by fixing the stream size and varying
the number of cores utilized from 1 to 512. We conclude this section with a comparison between strong and weak
scalability.

With the experiment 1 we aim at measuring the algorithm accuracy, the experiment 2 aims at measuring how the
parallelization affects the algorithm’s accuracy, finally experiment 3 is meant to measure the computational perfor-
mance of the parallel algorithm measuring both strong and weak scalability.

10

Table 1: Design of experiments. The input stream size n is expressed in billions, ρ denotes the skewness of the input
data distribution, φ is the support threshold, w represents the number of columns in the sketch data structure, p is the
number of cores and gs denotes the grain size, i.e. the number of elements (expressed in billions) in the input stream
for each core. The nf value stands for not fixed

Exp. Aim Varying n ρ φ w p gs

1 Algorithm accuracy

n = {1, 2, 4, 8} nf 1.1 0.01 1340 16 0.5
ρ = {1, 1.4, 1.8, 2.2} 8 nf 0.01 1340 16 0.5

φ = {0.001, 0.004, 0.008, 0.016} 8 1.1 nf 1340 16 0.5
w = {800, 1600, 3200, 6400} 8 1.1 0.01 nf 16 0.5

2 Parallel alg. accuracy p = {1, 16, 128, 256, 512} 8 1.1 0.01 1340 nf nf

3 Computational
performance

p = {1, 16, 128, 256, 512} 8 1.1 0.01 1340 nf nf
p = {1, 16, 128, 256, 512} nf 1.1 0.01 1340 nf 0.5

5.1. Algorithm accuracy

As shown by Figure 1, our parallel algorithm provides 100% Precision in all of the experiments carried out. Both
the Absolute and the Average Relative Error, depicted respectively in Figure 2 and 3, have extremely low values, in
particular with regard to their mean values. We observe that the Absolute Error is only slightly affected by the stream
size n, and it’s not affected at all by the threshold φ. The behaviour observed when varying ρ and w is expected. We
observe a decrement of the Absolute Error in both cases, since, when the skew is higher, the number of frequent items
in the corresponding zipfian distribution is lower and, when w is higher, increasing the sketch size provides better
accuracy and, correspondingly, less error. Regarding the Average Relative Error, we observe the same qualitative
behaviors in the experiments carried out.

Finally, the updates done per millisecond, shown in Figure 4, appear to be stable around 100,000 when varying
the stream size n and the threshold φ. There is a visible increment (from 100,000 to 120,000) when varying ρ and
a decrement (from 100,000 to 90,000) when varying w. These behaviors are expected for the same reasons we gave
when analyzing the error. Indeed, processing a stream in which the number of frequent items is lower is usually faster.
On the other hand, increasing the sketch size provides better accuracy, but more time is required to update the sketch.

5.2. Impact of the parallelization on the accuray

We now discuss the experimental scalability shown by our parallel algorithm. Figure 5 provides the results for
the metrics under examination when testing strong scalability. That is, we fix the problem size (i.e., the stream size
n) and increase the number of cores on which the algorithm is executed. As shown, Precision, Absolute and Average
Relative Error are not affected at all by a strong scaling of the application, with Precision always equal to 100% and
extremely low error values. Finally, the observed increment of the Updates/ms when varying the number of cores
utilized is expected, due to the frequency updates made in parallel. Ideally, the throughput of the algorithm, measured
as updates/ms, should increase with the same rate of increase of the number of MPI processes.

5.3. Computational perfomance

Figure 6 is related to the comparison we did to test weak scalability, which refers to the scalability of a parallel
application obtained when the problem size is increased along with the number of cores, so that we measure how
the running time changes with regard to the number of cores for a fixed problem size per core (whilst, for strong
scalability, we measure how the running time changes with regard to the number of cores for a fixed total problem
size).

As shown, the plot for strong scaling is a log-log plot of the running time versus the number of cores. The dashed
straight line with slope -1 indicates ideal scalability, whereas any upward curvature away from that line indicates
limited scalability. The plot reports a good strong scalability even on 512 cores; this is due to the high number of
items to be processed in the input stream which makes the computational time higher than the parallel overhead.

Regarding weak scalability, the corresponding plot provides an indication of loss of performance when scaling
from 1 to 16 cores while we have a very good scalability from 16 cores up to 512. This can be explained considering

11

the parallel architecture used for testing. One computing node is made of two octa-core Xeon processors, so that the
cores share the main memory banks and the third level cache memory. In the weak scalability experiment the problem
size increases linearly with the number of processes, hence also the total memory increases linearly; since from 1 to
16 cores we use only one computing node the memory contention between parallel processes increases. When varying
from 16 to 512 cores we use several different computing nodes ranging from 1 to 32; each node runs 16 processes
which compete for memory accesses as already discussed, hence the further slight loss of performance is due to the
communication overhead.

6. Conclusions

We have presented PFDCMSS, a novel message–passing based parallel algorithm for mining time–faded heavy
hitters, which, to the best of our knowledge, is the first parallel algorithm solving the problem on message–passing
parallel architectures. We have formally proved its correctness by showing that the underlying data structure, is non
trivially mergeable. However, the parallel algorithm is fast and simple to implement, and we have shown, through
extensive experimental results, that PFDCMSS retains the extreme accuracy and error bound provided by FDCMSS
whilst providing very good parallel scalability.

12

● ● ● ●

1 2 4 8

0

20

40

60

80

100

Stream Size (billions)

P
re
c
is
io
n

ρ 1.1, ϕ 0.01, w 1340, d 4, cores 16

(a) varying n

● ● ● ●

1 1.4 1.8 2.2

0

20

40

60

80

100

ρ

P
re
c
is
io
n

n 2B, ϕ 0.01, w 1340, d 4, cores 16

(b) varying ρ

● ● ● ●

0.001 0.004 0.008 0.016

0

20

40

60

80

100

ϕ

P
re
c
is
io
n

n 2B, ρ 1.1, w 1340, d 4, cores 16

(c) varying φ

● ● ● ●

800 1600 3200 6400

0

20

40

60

80

100

Sketch Width

P
re
c
is
io
n

n=2B, ϕ=0.01, ρ=1.1, d=4, cores=16

(d) varying w

Figure 1: Precision

13

●

●

●

●

○

○

○
○

1 2 4 8

10
-8

10
-7

10
-6

10
-5

10
-4

0.001

0.010

Stream Size (billions)

A
b
s
o
lu
te
E
rr
o
r

● Max Error ○ Mean Error

ρ 1.1, ϕ 0.01, w 1340, d 4, cores 16

(a) varying n

●
●

●

●

○
○

○

○

1 1.4 1.8 2.2
1.×10

-330

1.×10
-230

1.×10
-130

1.×10
-30

ρ

A
b
s
o
lu
te
E
rr
o
r

● Max Error ○ Mean Error

n 2B, ϕ 0.01, w 1340, d 4, cores 16

(b) varying ρ

● ● ● ●

○ ○ ○ ○

0.001 0.004 0.008 0.016

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

ϕ

A
b
s
o
lu
te
E
rr
o
r

● Max Error ○ Mean Error

n 2B, ρ 1.1, w 1340, d 4, cores 16

(c) varying φ

●

●

●

●

○

○

○

○

800 1600 3200 6400

10
-19

10
-15

10
-11

10
-7

10
-3

Sketch Width

A
b
s
o
lu
te
E
rr
o
r

● Max Error ○ Mean Error

n=2B, ϕ=0.01, ρ=1.1, d=4, cores=16

(d) varying w

Figure 2: Absolute Error

14

●

●

●

●

○

○

○

○

1 2 4 8

10
-11

10
-9

10
-7

10
-5

Stream Size (billions)

R
e
la
ti
v
e
E
rr
o
r

● Max Error ○ Mean Error

ρ 1.1, ϕ 0.01, w 1340, d 4, cores 16

(a) varying n

●

● ● ●○ ○ ○ ○

1 1.4 1.8 2.2

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

ρ

R
e
la
ti
v
e
E
rr
o
r

● Max Error ○ Mean Error

n 2B, ϕ 0.01, w 1340, d 4, cores 16

(b) varying ρ

● ● ● ●

○ ○ ○ ○

0.001 0.004 0.008 0.016

1.×10
-9

5.×10
-9

1.×10
-8

5.×10
-8

1.×10
-7

5.×10
-7

ϕ

R
e
la
ti
v
e
E
rr
o
r

● Max Error ○ Mean Error

n 2B, ρ 1.1, w 1340, d 4, cores 16

(c) varying φ

●

● ● ●○ ○ ○ ○

800 1600 3200 6400

0.000

0.001

0.002

0.003

0.004

0.005

Sketch Width

R
e
la
ti
v
e
E
rr
o
r

● Max Error ○ Mean Error

n=2B, ϕ=0.01, ρ=1.1, d=4, cores=16

(d) varying w

Figure 3: Relative Error

15

● ● ● ●

1 2 4 8

0

20000

40000

60000

80000

100000

Stream Size (billions)

U
p
d
a
te
s
p
e
r
m
s

ρ 1.1, ϕ 0.01, w 1340, d 4, cores 16

(a) varying n

●

●

●
●

1 1.4 1.8 2.2

0

20000

40000

60000

80000

100000

120000

ρ

U
p
d
a
te
s
p
e
r
m
s

n 2B, ϕ 0.01, w 1340, d 4, cores 16

(b) varying ρ

● ● ●
●

0.001 0.004 0.008 0.016

0

20000

40000

60000

80000

100000

ϕ

U
p
d
a
te
s
p
e
r
m
s

n 2B, ρ 1.1, w 1340, d 4, cores 16

(c) varying φ

● ●

● ●

800 1600 3200 6400

0

20000

40000

60000

80000

100000

Sketch Width

U
p
d
a
te
s
p
e
r
m
s

n=2B, ϕ=0.01, ρ=1.1, d=4, cores=16

(d) varying w

Figure 4: Updates

16

● ● ● ● ●

1 16 128 256 512

0

20

40

60

80

100

Cores

P
re
c
is
io
n

n=8B, ϕ=0.01, ρ=1.1, w=1340, d=4

(a) Precision

●

●

●

●

●

1 16 128 256 512

0

500000

1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

3.0×10
6

Cores

U
p
d
a
te
s
p
e
r
m
s

n=8B, ϕ=0.01, ρ=1.1, w=1340, d=4

(b) Updates/ms

●

●

●
●

●

○

○

○
○

○

1 16 128 256 512

10
-8

10
-7

10
-6

10
-5

10
-4

0.001

0.010

Cores

A
b
s
o
lu
te
E
rr
o
r

● Max Error ○ Mean Error

n=8B, ϕ=0.01, ρ=1.1, w=1340, d=4

(c) Absolute Error

●

●

●

●

●

○

○

○

○

○

1 16 128 256 512

10
-13

10
-11

10
-9

10
-7

Cores

R
e
la
ti
v
e
E
rr
o
r

● Max Error ○ Mean Error

n=8B, ϕ=0.01, ρ=1.1, w=1340, d=4

(d) Relative Error

Figure 5: Scalability

17

●

●

●

●

●

●

●

●

●

●

1 16 128 256 512

5000

1×10
4

5×10
4

1×10
5

5×10
5

1×10
6

Cores

E
la
p
s
e
d
T
im
e
(m
s
)

● Measured ● Ideal

n=8B, ϕ=0.01, ρ=1.1, w=1340, d=4

(a) Strong Scalability

●

● ●
● ●

● ● ● ● ●

1 16 128 256 512

0

20000

40000

60000

80000

Cores

E
la
p
s
e
d
T
im
e
(m
s
)

● Measured ● Ideal

gs=0.5, ϕ=0.01, ρ=1.1, w=1340, d=4

(b) Weak Scalability

Figure 6: Parallel Scalability

18

References

[1] Kevin Beyer and Raghu Ramakrishnan, Bottom–up computation of sparse and iceberg cubes, Proceedings of the acm sigmod international
conference on management of data. acm, new york, 1999, pp. 359–370.

[2] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur, Dynamic itemset counting and implication rules for market basket data,
Sigmod ’97: Proceedings of the 1997 acm sigmod international conference on management of data, 1997, pp. 255–264.

[3] Massimo Cafaro and Marco Pulimeno, Merging frequent summaries, Proceedings of the 17th italian conference on theoretical computer
science (ictcs 2016), volume 1720, 2016, pp. 280–285.

[4] Massimo Cafaro, Marco Pulimeno, Italo Epicoco, and Giovanni Aloisio, Mining frequent items in the time fading model, Information Sciences
370–371 (2016), 221–238.

[5] Massimo Cafaro, Marco Pulimeno, and Piergiulio Tempesta, A parallel space saving algorithm for frequent items and the hurwitz zeta
distribution, Information Sciences 329 (2016), 1 –19.

[6] Massimo Cafaro and Piergiulio Tempesta, Finding frequent items in parallel, Concurr. Comput. : Pract. Exper. 23 (October 2011), no. 15,
1774–1788.

[7] Moses Charikar, Kevin Chen, and Martin Farach-Colton, Finding frequent items in data streams, Icalp ’02: Proceedings of the 29th interna-
tional colloquium on automata, languages and programming, 2002, pp. 693–703.

[8] Ling Chen and Qingling Mei, Mining frequent items in data stream using time fading model, Information Sciences 257 (2014), 54 –69.

[9] G. Cormode, F. Korn, and S. Tirthapura, Exponentially decayed aggregates on data streams, Data engineering, 2008. icde 2008. ieee 24th
international conference on, 2008April, pp. 1379–1381.

[10] G. Cormode, V. Shkapenyuk, D. Srivastava, and Bojian Xu, Forward decay: A practical time decay model for streaming systems, Data
engineering, 2009. icde ’09. ieee 25th international conference on, 2009March, pp. 138–149.

[11] Graham Cormode and S. Muthukrishnan, An improved data stream summary: the count-min sketch and its applications, J. Algorithms 55
(2005), no. 1, 58–75.

[12] , What’s hot and what’s not: Tracking most frequent items dynamically, ACM Trans. Database Syst. 30 (March 2005), no. 1, 249–278.

[13] Sudipto Das, Shyam Antony, Divyakant Agrawal, and Amr El Abbadi, Thread cooperation in multicore architectures for frequency counting
over multiple data streams, Proc. VLDB Endow. 2 (August 2009), no. 1, 217–228.

[14] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro, Frequency estimation of internet packet streams with limited space, Esa, 2002,
pp. 348–360.

[15] Ugo Erra and Bernardino Frola, Frequent items mining acceleration exploiting fast parallel sorting on the {GPU}, Procedia Computer Science
9 (2012), no. 0, 86 –95. Proceedings of the International Conference on Computational Science, {ICCS} 2012.

[16] Cristian Estan and George Varghese, New directions in traffic measurement and accounting, Imw ’01: Proceedings of the 1st acm sigcomm
workshop on internet measurement, 2001, pp. 75–80.

[17] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jeffrey D. Ullman, Computing iceberg queries efficiently,
Proceedings of the 24th international conference on very large data bases, vldb. morgan–kaufmann, san mateo, calif., 1998, pp. 299–310.

[18] Alexander Gelbukhl (ed.), Computational linguistics and intelligent text processing, 7th international conference, cicling 2006, Lecture Notes
in Computer Science, vol. 3878, Springer–Verlag, 2006.

[19] Phillip B. Gibbons and Yossi Matias, Synopsis data structures for massive data sets, Dimacs: Series in discrete mathematics and theoretical
computer science: Special issue on external memory algorithms and visualization, vol. a., 1999, pp. 39–70.

[20] Naga K. Govindaraju, Nikunj Raghuvanshi, and Dinesh Manocha, Fast and approximate stream mining of quantiles and frequencies using
graphics processors, Proceedings of the 2005 acm sigmod international conference on management of data, 2005, pp. 611–622.

[21] Cheqing Jin, Weining Qian, Chaofeng Sha, Jeffrey X. Yu, and Aoying Zhou, Dynamically maintaining frequent items over a data stream, In
proc. of cikm, 2003, pp. 287–294.

[22] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou, A simple algorithm for finding frequent elements in streams and bags, ACM
Trans. Database Syst. 28 (2003), no. 1, 51–55.

[23] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston, Finding (recently) frequent items in distributed data streams, Data engineering,
2005. icde 2005. proceedings. 21st international conference on, 2005April, pp. 767–778.

[24] Gurmeet Singh Manku and Rajeev Motwani, Approximate frequency counts over data streams, In vldb, 2002, pp. 346–357.

[25] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi, An integrated efficient solution for computing frequent and top-k elements in data
streams, ACM Trans. Database Syst. 31 (September 2006), no. 3, 1095–1133.

[26] Jayadev Misra and David Gries, Finding repeated elements, Sci. Comput. Program. 2 (1982), no. 2, 143–152.

[27] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker, Approximate fairness through differential dropping, SIGCOMM Comput.
Commun. Rev. 33 (2003), no. 2, 23–39.

[28] Pratanu Roy, Jens Teubner, and Gustavo Alonso, Efficient frequent item counting in multi-core hardware, Proceedings of the 18th acm sigkdd
international conference on knowledge discovery and data mining, 2012, pp. 1451–1459.

19

[29] Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu, Parallel streaming frequency-based aggregates, Proceedings of the 26th acm
symposium on parallelism in algorithms and architectures, 2014, pp. 236–245.

[30] Yu Zhang, Parallelizing the weighted lossy counting algorithm in high-speed network monitoring, Instrumentation, measurement, computer,
communication and control (imccc), second international conference on, 2012, pp. 757–761.

[31] Yu Zhang, Yue Sun, Jianzhong Zhang, Jingdong Xu, and Ying Wu, An efficient framework for parallel and continuous frequent item monitor-
ing, Concurrency and Computation: Practice and Experience 26 (2014), no. 18, 2856–2879.

20

	1 Introduction
	2 Preliminary definitions
	3 The algorithm
	4 Correctness
	5 Experimental results
	5.1 Algorithm accuracy
	5.2 Impact of the parallelization on the accuray
	5.3 Computational perfomance

	6 Conclusions

