da allegare (in pdf) al PROOF dell’articolo:

Link sito dell’editore:
https://www.sciencedirect.com/science/article/pii/S0029801817303955?via%3Dihub

Link codice DOI: http://dx.doi.org/10.1016/j.oceaneng.2017.07.025

Citazione bibliografica dell’articolo:

Daniela De Palma, Filippo Arrichiello, Gianfranco Parlangeli, Giovanni Indiveri,
Underwater localization using single beacon measurements: Observability analysis
for a double integrator system, Ocean Engineering, Volume 142, 2017, Pages 650-
665,




Underwater localization using single beacon measurements: Observability
analysis for a double integrator system

Daniela De Palma®*, Filippo Arrichiello”, Gianfranco Parlangeli®, Giovanni Indiveri®

# Dipartimento di Ingegneria dell'Innovazione, Universita del Salento (ISME Node), Via Monteroni, 73100 Lecce, Italy
b Dipartimento di Ingegneria Elettrica e dell'Informazione, Universita degli Studi di Cassino e del Lazio Meridionale (ISME Node), Via G. Di Biasio 43, 03043

Cassino, FR, Italy

Keywords:

Autonomous Underwater Vehicles
Underwater localization

Range-based localization observability

ABSTRACT

This paper addresses the observability analysis for the single beacon localization problem of an Autonomous
Underwater Vehicle (AUV) modeled as a double integrator where its input is the acceleration in an inertial
reference frame and its output (measurement) is its range to a stationary beacon. The nonlinear map between
range and position makes the range-based observability problem inherently nonlinear. The observability
analysis here proposed addresses two complementary issues: the local weak observability for the nonlinear
system, and the global observability for a linear time varying representation of the system derived through a
state augmentation method. The proposed methods for observability analysis are discussed in different case
studies (e.g. 2D/3D, absence/presence of current, and presence of additional sensors like a Doppler Velocity
Logger or a depth gauge). Two different state observers, i.e., an Extended Kalman Filter for the nonlinear
system, and a Kalman Filter for the system with augmented state are designed: their performances are analyzed

through numerical simulations while validating the derived observability properties.

1. Introduction

The problem of localization of Autonomous Underwater Vehicles
(AUVs) during underwater navigation has been widely investigated in
recent years. Indeed, during underwater navigation, AUVs cannot rely
on Global Navigation Satellite Systems (GNSSs) due to the attenuation
of electromagnetic radiation in the water domain and, in the absence of
specific positioning systems, they can exclusively relay on dead-reckon-
ing techniques. As the latter approaches integrate noisy and biased
measurements from Inertial Measurement Units (IMUs) and velocity
sensors, they suffer from numerical drift that makes them usable only for
relatively short periods. In these cases, the AUVs are often required to
surface in order to acquire a positioning fix from the GNSS.

Commercially available underwater positioning solutions are
mainly based on acoustic devices that, through the measurement of
the time of flight of acoustic signals, allow to measure the ranges from
source to receiving nodes. For example, in Long Base Line (LBL)
acoustic localization systems the AUV measures the ranges to a set of
transponders placed in fixed and known positions in the sea, and it
estimates its position via trilateration algorithms (see e.g. Scherbatyuk,
1995). In Short Base Line (SBL) systems, three or more transducers
mounted on a surface vessel request replies from a transponder
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installed on-board the AUV and, as in the LBL case, the AUV position
is estimated via trilateration. In Ultra-short Base Line (USBL) systems,
instead, a set of transducers is assembled in a single device installed on
board a support ship, and the AUV position is estimated on the base of
the phase shifting of the signals arriving at the transducers.

More recently, research efforts focused on positioning systems
based on the use of range measurements to a single node with the
aim of developing simple, cheap and easy to operate solutions. Such
approaches, known in the literature as single beacon localization,
single range localization or range-only localization, are based on the
fusion of range measurements to the single source with information
from AUV's onboard sensors as Inertial Measurement Unit (IMU),
Doppler Velocity Logger (DVL) and depth sensors (see for example,
Larsen, 2000; Gadre and Stilwell, 2005; Jouffroy and Reger, 2006;
Bahr et al., 2009; Webster et al., 2012; Viegas et al., 2012; Crasta et al.,
2014, 2015; Bayat et al., 2016). Similar approaches can be considered
in the case of multi-vehicle localization where opportunistic range
measurements arising from time of flight data associated to acoustic
communications devices may be available and can be used for relative
localization (see for example, Fallon et al., 2010; Arrichiello et al.,
2012; Parlangeli and Indiveri, 2014, 2015; De Palma et al., 2015).

Despite their potential advantages, single beacon localization
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approaches suffer from observability issues that may affect if, or how
well, the system state can be estimated based on the available
information (i.e. system model, input and output). Thus, an observa-
bility analysis is required to design a state observer and to define under
which assumptions the observer may provide proper results. The
nonlinear output map between range and position makes the range-
based observability problem inherently nonlinear. As a consequence,
the observability analysis needs to be addressed in the framework of
nonlinear systems, e.g. evaluating the local weak observability proper-
ties of the system. This can be done by resorting to the tools of
differential algebraic geometry. A major contribution in this area is
provided in Hermann and Krener (1977) where the fundamental
definitions, ideas and results about local weak observability for non-
linear systems are derived; in particular, the local weak observability
properties of a system state can be inferred from the observability rank
condition in Hermann and Krener (1977) that yields a sufficient
condition for it. In Arrichiello et al. (2013), the local weak observability
properties for the range-based localization problem of an AUV modeled
as a single integrator is addressed, and a metric to analyze how the
performance in localization depends on the types of motion imparted
to the AUVs is presented.

In order to allow the use of tools for linear systems to analyze the
global observability properties, some approaches proposed in the
literature rely on state augmentation methods. For example, the works
in Batista et al. (2011b), Parlangeli et al. (2012), Indiveri and
Parlangeli (2013), Indiveri et al. (2016) show that it is possible to
represent the system as a linear time varying (LTV) system with
augmented state; in this case, the observability of the LTV system with
augmented state can be inferred from the analysis of the observability
Gramian.

The observability analysis here presented addresses two comple-
mentary issues: the local weak observability for the nonlinear system,
and the global observability for the LTV system with augmented state.
Indeed, trajectories that are not globally observable may result locally
weakly observable and viceversa, i.e. trajectories that are globally
observable are not guaranteed to be locally weakly observable. While
addressing the specific issue of range-based observability as outlined
above, the paper will also aim at discussing, in more general terms, the
relation and dependencies between global and local weak observability
for finite dimensional state space systems. With reference to the
specific AUV problem at hand, the proposed methods for observability
analysis are discussed in different case studies (e.g. 2D/3D, absence/
presence of current, presence of additional sensors like Doppler
Velocity Logger or depth sensors). Two different state observers, i.e.,
an Extended Kalman Filter for the nonlinear system and a Kalman
Filter for the system with augmented state are designed, and their
performances are illustrated throughout numerical simulations and
compared referring to the derived observability properties. This work
extends our preliminary paper Arrichiello et al. (2015) by providing a
more in-depth and formalized analysis of the system observability in
the two different cases, and an extended number of case studies and
comparison via numerical simulations.

The rest of the paper is organized as follows: Section 2 addresses
the system modeling and the range-based observability problem;
Section 3 presents a brief review of the key concepts of the observability
analysis for nonlinear systems and LTV systems. Section 4 presents the
observability analysis referring to local weak observability properties
for the nonlinear system and Gramian based observability properties
for the LTV system with augmented state. Section 5 addresses the
observability properties in different case studies. Section 6 illustrates
the effect of additional sensors on the observability properties, while
Section 7 reports the results of numerical evaluations using different
state observers, i.e. Extended Kalman Filter for the nonlinear system
and a Kalman Filter for the system with augmented state. Finally,
Section 8 summarizes the conclusions and briefly outlines future
works.

2. Problem formulation

With reference to the dynamic model of AUVs, the actuated inputs
are forces and torques basically proportional to the vehicles accelera-
tion. As a result, a second order kinematic model is a more realistic
approximation of the actual system rather than a first order kinematic
model (Hinson et al., 2013). In light of the above consideration, the
AUV is modeled as a double integrator where its input is the
acceleration in an inertial reference frame and the measured output
is proportional to the square of the distance between the AUV and a
stationary beacon. Without loss of generality, the beacon is assumed to
be located at the origin of the inertial frame. In absence of ocean
current, the resulting kinematic vehicle model is given by
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where p € R" denotes the vehicle position, v € R" the vehicle
absolute velocity, u € R" its acceleration (i.e. the input) and y denotes
a measurement proportional to the squared range to the beacon. The
dimension n will be either 2 or 3 in the planar and full 3D cases
respectively. The resulting state-space model can be expressed as
follows:
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where x = (p’ vT)T € R is the system state, h(-) is a nonlinear output
function of the state, [, is an identity matrix of dimension (n x n) and
0,x, 1s a matrix of dimension (n X n) with zero elements.

The state estimation problem for the nonlinear system under
investigation is strongly dependent on the input of the system. This
motivates the analysis of the state estimation problem for different
kinds of trajectories of practical interest.

Problem Statement: Given the linear state equation in (4) and the
nonlinear scalar output equation in (5), determine the conditions that
allow to estimate the state x = (p' v’y , with particular attention to
different classes of motions of practical interest, like straight lines,
circular or lawn-mowing trajectories. Moreover, design possible state
estimators.

3. Observability analysis tools

The observability of the system (4)-(5) can be analyzed resorting to
different tools. Given the non linearity of the system (4)—(5), the local
weak observability properties will be inferred through the tools of
differential algebraic geometry described in Hermann and Krener
(1977). On the other hand, resorting to a state augmentation method
as in Indiveri et al. (2016), the nonlinear system (4)-(5) can be
represented in an LTV form making it possible to study observability
through the use of well known linear systems' theory methods.

3.1. Observability of nonlinear systems

With reference to a generic nonlinear system
x(r) = f(x(@), u(), x(tp) =%, (6)
y() = h(x(1)) @

where x € RY, u € R%, y € R" and t denote the state, input, output
vectors and time respectively, the following definitions are introduced
according to the standard system theory (Hermann and Krener, 1977).



Definition 3.1. Given the system defined by Egs. (6)—(7) and the time
interval [z, #;], two initial conditions xo, x; are indistinguishable in
[to, t;] if for all admissible inputs u the output evolutions of the system
are identical.For every x,, let I(x,) denote the set of all initial
conditions that are indistinguishable from x; in [z, ;).

Definition 3.2. The system (6)—(7) is said to be observable at x, in
[t, 1] if I(xp) = {x,}, and it is said to be observable (in all the states) if
I(x) = {x} for every state x of the state space.As widely highlighted in
Hermann and Krener (1977), note that the observability property is a
global concept in the sense that it refers to the injectivity of the output
evolution operator with respect to the initial conditions; it might be
necessary to travel a considerable distance or for a long time for two
states to be distinguishable. Therefore, the local weak observability
property is introduced; intuitively, a system is locally weakly
observable if one can instantaneously distinguish each state from its
neighbours.

Definition 3.3. The system (6)-(7) is said to be locally weakly
observable at x, if there exists an open neighborhoud U of x, such that
for every open neighborhoud V of x, contained in U, I(x,) = {x,}, and
it is said to be locally weakly observable if it is so at every state x of the
state space.

For linear systems, these properties are equivalent. The advantage
of local weak observability is that it lends itself to a simple algebraic
test. In particular, the local weak observability properties of a system
can be inferred from the observability rank condition in Hermann and
Krener (1977) (Theorem 3.1, page 733) that yields a sufficient
condition for it.

Before enunciating the latter condition, recall the definition of Lie
derivatives of the scalar output, hj, for the system in Eqgs. (6)—(7) as:

0
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with V denoting the gradient operator and L7h; being the set of the a-
order Lie derivatives for any j € {1, ..., M}.

Theorem 3.4. Considering the system (6)-(7), if there exists an
input, u, such that the matrix
VLh
1
0:=| VLrHi

VLih ©)

computed at x, has rank N for some index k € N, then the system (6)—
(7) is locally weakly observable at x,.It is worth remarking that the
latter is a sufficient condition, thus, in case it is not satisfied, one
cannot infer that the system is not locally weakly observable.

3.2. Observability of linear time varying systems

With reference to a generic LTV system

X() = A(Ox(t) + B(u(r), x(1)) =%, (10

¥(@) = C()x@) a1

where x € RY, u € R%, y € RY and t are the state, input, output
vectors and time respectively, and A(t), B(t), C(t) are matrices with
appropriate dimensions, the following definitions are introduced
according to the standard linear systems theory (see e.g. Kalman,
1960; Rugh, 1996).

Definition 3.5. An initial state xo of the LTV system (10)-(11) is
observable on [t, t] if it is uniquely determined by the corresponding
output y(t) for ¢ € [, t;]. If this is true for every initial state x,, the
system is completely observable on [1,, t;]; if this is true for every to, the
system is completely observable.

Definition 3.6. The observability Gramian associated with the pair
(A(»), C(1)) denoted as G(t,, t,), is given by
i
Gltgy 1) = f T 7(t, 1)CT(OCO)D, ty)d,
fo

where @(1, t;) is the transition matrix associated with A(t).

The observability Gramian is a useful observability analysis tool for
linear time varying systems, indeed the following theorem (Rugh,
1996, Theorem 9.8, page 148) and definition (Kalman, 1960) hold.

Theorem 3.7. The LTV system (10)-(11) is observable on [1,, t;] if
and only if G(t, t;) is invertible.

Definition 3.8. The LTV system (10)-(11) is uniformly completely
observable if there exist positive constants §, ¢, and a, such that

al <G, t+6) <ayl (12)
for all 7 > 1,.

4. Observability analysis for the range-based localization
problem and filter design

4.1. Local weak observability
The analysis of local weak observability of the nonlinear system

(4)-(5) can be approached as described in Section 3.1. The observa-
bility matrix O in (9) for the system under investigation takes the form:

pT len

v
0 = a2 )

Oy, 3U

len len
H H (13)

Local weak observability condition: From Theorem 3.4 for nonlinear
systems, it follows that if there exists an u such that the matrix O in
(13) computed in x; has full column rank, then the system (4)-(5) is
locally weakly observable at x;. It is worth noting that the local weak
observability condition of a state is verified if there exists an input that
verifies the observability matrix rank condition, however the latter
condition must not be verified for all the possible inputs. This means
that, even if the system may result locally weakly observable at a given
state x;, there may exist inputs for which 7(x)) # {x,}. Indeed, in other
studies as Bayat et al. (2016) the observability concept is redefined with
respect to a reduced class of inputs rather than for all inputs that are
physically admissible. Our aim is thus to identify, on the base of the
rank of the matrix O, if some inputs, in a given state, ensure
Itx) = {x}.

Moreover, with a slight abuse of notation, in the following the states
generated by inputs granting full column rank of the observability
matrix (13) at all times are denoted as “locally weakly observable
along the trajectory”.

In the following, the performance of an Extended Kalman Filter
(EKF) is evaluated as a possible state observer in relation with the local
weak observability properties of specific trajectories of the system. It is
worth noting that both the previously defined observability properties
and the EKF convergence properties hold locally; thus, even when the
system is locally weakly observable along an assigned trajectory, if the
initial state estimate of the EKF is not sufficiently close to the true
initial state, there is no guarantee that the estimation error converges
to zero.



4.2. Global observability

The observability analysis of system (4)—(5) can also be studied as
in Indiveri et al. (2016) where the range-based observability problem of
a first order kinematic model is addressed. In Indiveri et al. (2016), a
state augmentation method is used to re-elaborate the nonlinear
system equations so that the observability problem can be approached
with the tools used for LTV systems. To the purpose, consider the
integral of Egs. (1)-(2)

Po + volt—to) + [ [ ue)dradr,
Py + Volt—1p) + d(z, 1p) (14)

p(@)

having defined the displacement d(z, #,) € R" as

d(t, )= f ' f " u(ey)drydr,
1 Jig

(15)

and
Py=P()l - (16)
Eq. (14) can be put in the form

[p()—-d(t, )] [p()-d(, 15))=
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implying
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Note that the left hand side of (18) is made of all known terms and
it can be used as a new output map

Slp@IP=3lIpgl + 3lid(z, 1)l
Y-y, + 514 )P, 19)
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moreover, the right hand side of (18) can be expressed as an LTV term
in the new state variable z € R?"*?

2=, v, pgvo Il % IFV, (20)
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Given the definition of z in (20) and the model (1-2), its dynamic
equation is linear time invariant (LTI):

z=Az + Bu (22)
namely
p On)(n Inxn 0nxl 0nxl P Onxn
v 0, 0 0 0 1
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The range-based localization problem of estimating the position p
and the velocity v from a measurement proportional to ||p|? in Egs.
(4)-(5) is hence reduced to a state estimation problem on a LTI state
equation (22)—(23) with an LTV output map (21), namely

z=Az+Bu
y=Cc@z. (24)

Therefore, the global observability properties of the original non-
linear system (4)—(5) can be inferred using Gramian based tools for
LTV systems applied to the augmented system (24). Note that the
output map C(t) in (21) is a function of the input term u(z), hence the
observability properties will depend on the acceleration input u(z). Let

us consider the observability Gramian of the system (24) defined as

4
G, 1,) = .[ eAT(t—lo)CT(T)C(T)eA(t—lo)dT 25)
0

Given the structure of the matrix A in (23), note that A> = On+2)x(2n42)
and the exponential matrix e*“~"’ is simply
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such that
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where the dependence of d from (z, ;) has been omitted for the sake of
notation compactness.

Global observability condition: From the standard results for LTV
systems (Theorem 3.7) it follows that the system (24) is observable on
the time interval [z, ¢] if and only if the acceleration input u(r)
guarantees that, for some ¢, € [1,, t], the observability Gramian
G(t, 1,) in Egs. (25) and (27) has full rank. This is a necessary and
sufficient condition for the observability of the LTV system (24).
Finally, the observability of the LTV model in (24) is a sufficient, but
not necessary, condition to grant the observability of the original model
in (4)-(5). For further details about this observability condition the
reader is referred to Indiveri et al. (2016).

If this condition is satisfied, the nonlinear system is globally
observable and a standard Kalman filter can be designed on the LTV
system for global state estimation. Uniform complete observability of
the LTV system is required to ensure that the Kalman filter is
asymptotically stable. It is worth highlighting that if the input u of
the LTV system is bounded, then it can be proven that the observability
implies the uniform complete observability of the system (Batista et al.,
2011a; Silverman and Anderson, 1968; Jazwinski, 2007).

With reference to the Gramian in (25) and (27), note that its entries
have different time scaling behaviors. By example, in the last column of
(27) there is a dependency on the fourth power of time as opposed to
the first column where there is only a dependency on the second power
of time. This can lead to numerical ill conditioning issues over longer
time intervals affecting the numerical assessment of the rank of G(, #,)
in (25). Nevertheless, this is not a problem in practice as G(t, ;) can
always be decomposed as a sum

N-1
G(t, 1) = Z Gt pt) @ 1S4 <, <. <ty

i=0
where each term in the sum is a positive (semi) definite symmetric
matrix. If any term of the sum should be positive definite, then the
whole sum would be positive definite, i.e. full rank. It follows that in
order to verify the full rankness of G(s, 1,) one can evaluate the full
rankness of the terms in the sum: being these terms computed on an
arbitrarily small time interval, their condition number cannot diverge
due to the difference between ¢, and t;.

4.3. Remark: presence of unknown ocean current

The described approach can be extended to the case where the
vehicle is subject to a constant and unknown ocean current. The
resulting kinematic vehicle model is given by

pP=v+yv (28)

v, =0 (29)



v=u (30)
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where v € R" denotes the vehicle velocity with respect to the fluid and
v; €R" the ocean current assumed constant in the inertial frame.
Interestingly, with the variable transformation v = v + v;, the system
(28)—(31) becomes

v=u (33)
=lipp
y=7 1P (34)

that, clearly, resembles the system in (1)—(2). This allows to gather that
the system in presence of ocean current (28)—(31) is not observable;
indeed, the observable states are the position p and the cumulative
velocity ¥ only, while the vehicle velocity with respect to the fluid v and the
ocean current v cannot be distinguished the one from the other. This
result is confirmed by the global observability analysis. The details of these
analysis are omitted for the sake of brevity. In short, the observability
Gramian associated to the LTV representation of the nonlinear system
(28)-(31) (obtained through the state augmentation method) is rank
deficient and leads to a violation of the observability condition. It can also
be noted that the matrix O in (9) derived for the system under
investigation is rank deficient for all x € R*" and for any choice of the
input u, therefore observability rank condition is not satisfied.

5. Case studies
5.1. 2D model

Let us consider the 2D version (n = 2) of the system (4)—(5). The
matrix O for the analysis of the local weak observability has the
following form:

pyOO
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with p = (g, p), v = (v, v and u = (u,, «,J denoting the coordinates
of the position, velocity and input of the vehicle along the x, y inertial
axes, respectively. In such a case, the state vector x has dimension
2n = 4, hence the local weak observability condition at a generic state
x, is satisfied if there exists an input u such that the matrix O has rank
4. Note that the observability of the system at x; does not imply that
every input makes the state distinguishable from close states. Our
analysis is focused on inputs that generate classes of motion of practical
interest, like straight line, circular or lawn-mowing trajectories. It is
worth noting that a null input, i.e. u = (4, »,J = (0, 0f will cause a
rank deficiency; hence a null acceleration (constant velocity) will not
allow to infer the local weak observability properties from the
observability rank condition.

Let us analyze the local weak observability condition along straight
line trajectories described by the equation B=mp +4, where m
denotes the slope and g denotes the y intercept. The determinant of the
observability matrix along such a class of motion is

u, #0

d =-3u3*#0 )
et(0) 3u;q” # é{q:ﬁ(] (36)

As a result, if the input signal and the y intercept are not null, the
matrix O is full rank. This allows to gather that straight line trajectories
performed at non uniform velocity and not passing through the origin
where the beacon is located are locally weakly observable. Whereas, the
observability matrix along radial trajectories (g = 0), i.e. a line passing

through the beacon, has rank 2; hence, the local weak observability

properties can not be inferred from the observability rank condition.
A similar analysis can be undertaken for circular trajectories

centered on the beacon, i.e. described by the following equations

(Px) B (p cos(wl))

2) "\ psin(wr) (37
where p denotes the radius of the circumference and @ the angular
velocity along the circumference. It can be shown, by direct calculation,

that the determinant of the matrix O in any state along circular
trajectories is not null:

det@Q)=6w*p*#0 VieR, w#0, p#0

therefore the matrix O has full rank and the local weak observability
condition is satisfied. This should not surprise, in fact, as shown in
Arrichiello et al. (2013) and Hinson et al. (2013), with reference to the
first order kinematic model, the circular trajectory is optimal from an
observability point of view. If the trajectory results locally weakly
observable, an observer can be designed to estimate the state (position
and velocity) of the vehicle and the estimated state will converge to the
true one as long as the initial state estimate is sufficiently close to the
true one. Given the non linearity of the output equation, a possible
observer is an Extended Kalman Filter.

As opposed to the use of the local weak observability condition that
captures the instantaneous motion, the global observability analysis
derived from the observability Gramian in (25)—(27) takes into account
the whole trajectory. The equations of the observability Gramian allow
to conclude that if d(z, ¢;) = 0, the rank observability condition is not
satisfied. This occurs, for example, when the input u is null (i.e.
trajectory with constant velocity). Further results can be derived
through numerical simulations as reported in the following section.
In particular it can be verified, by direct calculation, that straight line
motions do not satisfy the full rank condition for G(t, 1), so global
observability properties can not be inferred. Whereas circular trajec-
tories ensure the full rank of the observability Gramian. Interestingly,
by concatenation of circular and straight line motions in a lawn-
mowing trajectory, it is possible to achieve an observable system.
Indeed, the LTV system theory ensures that if a system is observable in
the interval [z, #,], it is also observable in the interval [z, ¢] with z > z,.

5.2. 3D model
Let us consider the 3D version (n = 3) of the system (4)-(5). The

matrix O for the analysis of the local weak observability has the
following form:

R RPRO OO
0= o W% AR P
W, uy o, 2v 2y 2y
0 0 O 3u, 3u, 3u (38)

with p=(p, p, pz)T, V=, vz)T and u = (u,, u,, uz)T denoting the
coordinates of the position, velocity and input of the vehicle along
the x, y, z inertial axes, respectively. In such a case, the state vector x
has dimension 2n = 6, so for the local weak observability condition the
rank of O should be equal to 6. It is worth highlighting that since the
matrix O in (38) has only 4 rows different from zero, the local weak
observability condition can never be satisfied. It is important to note
that the loss of the observability rank condition at one point does not
necessarily imply local unobservability. With reference to the global
observability analysis, let us consider the 3D version of the observa-
bility Gramian in (25)-(27). Like for the 2D model, trajectories with
constant velocity (u=0) does not satisfy the global observability
condition. In general, planar trajectories with u, = O (hence not
sufficiently rich on the z axis) does not satisfy the observability
condition. In such a case, the z component of the displacement



Table 1

Observability along different trajectories for the range only localization according to the
local weak observability (LWO) condition and global observability (O) condition for the
proper LTV system with augmented state.

Motion LWO O
2D Straight (radial) NO NO
Straight (not radial) YES NO
Circular YES YES
Circular + Straight (radial) YES YES
Circular + Straight (not radial) YES YES
3D Straight (radial and not radial) NO NO
Circular NO NO
Circular in (x, y) and suff. exciting along z axis NO YES
Circular in (x, y) and suff. exciting along z axis + Straight NO YES
2D/3D with ocean currents NO NO

d(z, 1) is zero leading to a loss of the observability rank condition.
Indeed, in order to satisfy the observability condition, the trajectories
should be sufficiently exciting over all axes x, y and z. The results of the
observability analysis are summarized in Table 1.

6. Effects of additional sensors

The observability analyses described so far are related to the
presence of the sole range measurements. If other measurements are
available, such as depth or velocity measurements from a depth sensor
or Doppler Velocity Logger (DVL) respectively, the observability
properties can be improved.

In presence of a depth sensor, the vertical components of motion can
be measured directly; therefore the 3D localization problem will reduce to
the 2D localization problem previously discussed preserving the observa-
bility properties.

With regards to first order kinematic models of AUV, the observability
problem considering both range and depth measurements has been
addressed for example in Gadre and Stilwell (2004) and Arrichiello
et al. (2013). In Gadre and Stilwell (2004), due to the presence of depth
sensors, the authors study the observability for underwater vehicles
evolving in 2D. The nonlinear system is linearized about nominal
trajectories and standard LTV observability tools are used to analyze the
observability properties of the resulting linear model. This leads to local
observability conditions. In Arrichiello et al. (2013), the local weak
observability properties are addressed, and a metric to analyze how the
performance in localization depends on the types of motion imparted to
the AUVs is presented. The main contribution with respect to this existing
literature is relative to the study of the observability for a double
integrator system considering both the local weak observability properties
and the global ones.

The observability of range based navigation for first order kinematic
models of AUV considering range, depth and velocity measurements has
been addressed in Larsen (2000), Jouffroy and Reger (2006), Fallon et al.
(2010), Arrichiello et al. (2012), Webster et al. (2012). Larsen (2000)
developed an approach called Synthetic LBL, which used measurements
from a single acoustic transponder to constrain the error growth of a high
performance Inertial Navigation System (INS). In Jouffroy and Reger
(2006) the authors propose an algebraic estimator for the estimation of an
underwater vehicle using a single acoustic transponder. Fallon et al.
(2010) describes the experimental implementation of cooperative locali-
zation of multiple AUVs, using a single surface vehicle to aid the
navigation of submerged vehicles by providing georeferenced range
measurements. A study of the local weak observability of the system is
presented and the performance of three estimators have been compared:
Particle Filtering (PF), Nonlinear Least Squares optimizer (NLS), and
EKF. In Arrichiello et al. (2012) the authors characterizes the localization
performance of an Autonomous Underwater Vehicle that takes advantage

of relative measurements of range to drifters or surface vessels present in
the area. An EKF is performed for an AUV localization. Webster et al.
(2012) reports simulation and deep-water sea trials evaluating single
beacon navigation based on range measurements between the vehicle and
a ship. The single beacon navigation is implemented with a centralized
EKF which has access to both ship and vehicle sensor data.

With respect to these works, in this section the local weak and global
observability analysis in the 3D case for a double integrator system
considering only range and DVL readings (without using depth measure-
ments) is addressed. In presence of a DVL the output equation of the
model in (3) becomes

y,] [ipr]

y = =12 N

[yz v (39)
and the observability matrix O for the analysis of the local weak
observability takes the form in (40).

pT len
vT ér
a2V
0= glxn (::uT
Ixn I1xn
Onxn lllX'l
Onxn OIIXII
L i (40)

On the other side, with reference to the global observability
analysis, the output equation of the augmented LTV system (24) can
be rewritten as:

y= [y] _ d'@, 10) 0, (1—1p) %(: — 1) e =Cx,
Y. Ouxn  Juxa O, Ouxt (a1)

nxn nxn nxl

and the observability Gramian becomes:

G(t, to) = /:e"T(""l))CT(T)C(T)eA(r—IO)dT

i

ad (-dd (a0
3
| G-t)dd @—1)°dd + L, (r—tp)'d 08 p
= T.
fatpd  ad @
(z - t9)%d" (z—tyd (r—1gP  (r-1o)
2 2 2 4 42)

The local weak and global observability properties of the range-based
localization problem in presence of DVL measurements will be deeper
investigated in the following. Particular emphasis will be dedicated to
those classes of trajectories that do not satisfy the observability conditions
with range-only measurements.

6.1. 2D model in presence of Doppler Velocity Logger

The local weak observability matrix O for the 2D version of the model
(4-39) is given by

pp 0 0
% % B B
0 =% Y 2v, 2vy
0 0 3u, 3u,
00 1 O
00 0 1 (43)

A first observability analysis is focused on radial trajectories (i.e.
linear ones passing through the beacon position). With respect to the
case with range only measurements, the presence of DVL allows to



Table 2

Observability along different trajectories with range and DVL measurements according to the local weak observability (LWO) condition and global observability (O) condition for the

proper LTV system with augmented state.

range range + DVL
Motion LWO [¢] LWO [¢]
2D Straight (radial) NO NO NO NO
Straight (not radial) YES NO YES NO
Circular YES YES YES YES
Circular + Straight (radial) NO YES NO YES
Circular + Straight (not radial) YES YES YES YES
3D Straight (radial and not radial) NO NO NO NO
Circular (in the plane of the beacon) NO NO NO NO
Circular (out of the plane of the beacon) NO NO YES NO
Circular in (x, y) and suff. excit. along z axis NO YES YES YES
Circular in (x, y) and suff. excit. along z axis + Straight NO YES NO YES

Table 3

Observability with range and DVL measurements in presence of ocean currents according to the local weak observability (LWO) condition and global observability (O) condition for the

proper LTV system with augmented state.

range + DVL (bottom lock)

range + DVL (water profiling)

Motion LWO o LWO 0
2D Straight and circular NO NO YES NO
3D Straight and circular NO NO NO NO
increase the rank of the observability matrix from 2 to 3, but it is not [ P oY+ by(p, — x0) e 0 0 1
yet enough to ensure the local weak observability condition. Also direct 0 by 0 by
calculations of the observability Gramian in (42) for straight trajec- ) ?Vx % , p N+ b_»(:a; - xq) 20+ b:(l'xb—x())
tories (both radial and not radial) show that its rank increases from 4 to bf b‘ b * ) *
5. Hence it is still rank deficiency preventing the observability of the o _ | % bl bl 2, 2, v 2%
LTV augmented system. . .
e e 0 0 0 u, 37, 30w,
0 0 0 1 0 0
. 0 0 0 0 1 0
6.2. 3D model in presence of DVL o 0 0 0 0 1 |
The local weak observability matrix O for the 3D version of the 45)

model (4-39) is given by

[ B p 0 0 O]
%% % B B P
U, uy w2y 2y 2y
9=10 0 0 3u, 3u, 3u
0001 0 0
0000 1 0
000 0 0 1] (44)

Contrary to the scenario with range only measurements where the local
weak observability condition can never be satisfied due to the very
structure of the observability matrix, in such a case the matrix O has 7
non null rows. Hence, the local weak observability condition can be
satisfied if its rank is equal to 2n = 6. Nevertheless inputs generating
straight line trajectories do not allow to satisfy the local weak
observability condition. Indeed, the matrix O along straight line
trajectories in R’ passing through a generic point (x,, Yy Zo) and parallel
to a generic vector (b, b,, ) # 0 has the following form:

The rank of matrix O in (45) is 4 along radial trajectories and 5 along
not radial straight trajectories, i.e. it is rank deficient (rank (O) # 2n) in
both cases. With regards to the observability Gramian in (42), direct
calculations for straight trajectories (both radial and not radial) show
that its rank increases from 6 to 7 (from 4 to 6 for radial ones). Again,
the Gramian observability condition is not satisfied.

Interestingly, in case of circular motions the presence of DVL
measurements can be enough to ensure the local weak observability.
Let us consider the circular motion described by the following
equations

P, p cos (wt)
Pl =| p sin (w1)
P q, (46)

where p denotes the radius of the circumference in (x, y) plane, w the
angular velocity along the circumference, and g, a constant depth along
the z axis. It can be shown, by direct calculation, that if q,#0, the local
weak observability matrix O along the considered trajectory is full
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Fig. 1. Straight line motion in 2D: (a) trajectory, (b) norm of estimation errors, (c) position covariances and (d) velocity covariances.

column rank. This allows to overcome the rank deficiency issue in 3D
case when only range measurements are available. Note that, if the
circular motion is in the same plane of the beacon (i.e. g, = 0), then the
local weak observability condition is not satisfied. Of course, any 3D
circular trajectory is not globally observable due to the presence of
parallel circular trajectories with equal velocity and range from the
beacon (with g, = — ¢,). This is also confirmed by the rank deficiency
of the corresponding observability Gramian.

On the other hand, three-dimensional trajectories sufficiently
exciting along each axis, already observable with range only measure-
ments, continue to preserve their global observability in presence of a
DVL. An example is the trajectory consisting in a circular motion in the
(x, y) plane and a sinusoidal motion along the z axis.

The concatenation of three-dimensional trajectories sufficiently
exciting and straight motions results in globally observable trajectories.

The results of this observability analysis are summarized in Table 2.

6.3. Remark: presence of unknown ocean current

The effect of the presence of DVL measurements can be extended to
the case where the vehicle is subject to a constant, and unknown ocean
current. In the literature, the presence of unknown ocean current in

first order AUV kinematic models has been addressed, by example, in
Scherbatyuk (1995), Gadre and Stilwell (2005), Batista et al. (2011b,
2011a), Viegas et al. (2012), Crasta et al. (2014), Crasta et al. (2015),
Bayat et al. (2016).

In particular, papers Viegas et al. (2012) and Crasta et al. (2014,
2015) focus on the analysis of single beacon observability with range
measurements only. Viegas et al. (2012) proposes cooperative naviga-
tion solutions for an intervention AUV working in tandem with an
Autonomous Surface Craft (ASC). A sufficient condition for observa-
bility and a method for designing state observers with globally
asymptotically stable error dynamics are presented. In Crasta et al.
(2014, 2015) the authors introduce weaker definitions of observability
that are akin to those proposed by Hermann and Krener (1977), but
reflect the fact that they consider specific kinds of maneuvers in 3D.
They study the observability properties of a 3D kinematic model of an
AUV undergoing trimming trajectories; moreover, they give a complete
characterization of the sets of states that are indistinguishable from a
given initial state.

The work in Bayat et al. (2016) addresses the problem of range-
based simultaneous AUV/multibeacon localization in the presence of
ocean currents considering the presence of a depth sensor. Conditions
are derived under which it is possible to reconstruct the initial
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Fig. 2. Circular motion in 2D: (a) trajectory, (b) norm of estimation errors, (c) position covariances and (d) velocity covariances.

condition of the system under study. A multiple-model observer is
proposed for simultaneous AUV and beacon localization.

In Batista et al. (2011b) necessary and sufficient conditions for the
observability of the nonlinear system are derived considering the
presence of velocity measurements; moreover, the nonlinear system
is represented as an LTV system that is appropriate for state estimation
of the nonlinear range based system.

The works in Scherbatyuk (1995), Gadre and Stilwell (2005) and
Batista et al. (2011a) address the single beacon observability analysis
considering both depth and velocity measurements. In Scherbatyuk
(1995) a localization algorithm based on a least squares root method is
presented. In Gadre and Stilwell (2005), unknown constant ocean
currents are included into the state vector and the observability of the
resulting model is studied using the same procedure in Gadre and Stilwell
(2004): the results are local in nature. Batista et al. (2011a) focuses on the
observability of linear motion quantities (position, linear velocity, linear
acceleration, and accelerometer bias). They present necessary and
sufficient conditions for the observability of these variables in 3D.

In the section below, the local weak and global observability
analysis in 3D case for a double integrator system in presence of ocean
currents considering only range and DVL readings (without using

depth measurements) is addressed.
The state equations of the kinematic vehicle model are given by Egs.
(28)-(30) and can be represented in the state space as follows:
n IIIXII IIIX'I
n OII xXn nxn + IIIXII u!

0,

nxn Onxn Onxn

0

OIIX nxn
X = 0Il)(

U 47)
where x = (p', v, v)J) € R” is the system state. The output equations
depend on the specific acquisition through the DVL. Indeed, depending
on the vehicle altitude and on the DVL range, a DVL unit can either
measure the vehicle velocity with respect to the sea bottom (v + v/) or
with respect to the water column (v). The former will be referred to as
DVL in bottom tracking mode (or DVL bottom lock), the latter as DVL in
water profiling mode. By combining the DVL measurements and the
range measurements, the output equation takes the form in (48) or (49)
for DVL in bottom tracking mode or in water profiling mode, respectively.

1T
y= [;’1] = [ 2PP ] (DVL in bottom tracking mode),
b v+ \/; (48)
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Consequently, the local weak observability matrix takes the form of
0, or O,, in (50), respectively.
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Interestingly, in the 2D case the matrix O, in (50) (bottom tracking
mode) is rank deficient along both classes of trajectories, straight and
circular. On the other hand, with the DVL in water profiling mode the
matrix 0,, in (50) has full column rank along both classes of trajectories
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Fig. 5. Circular motion in 3D with a straight motion along the z axis: (a) trajectory, (b) norm of estimation errors, (c) position covariances and (d) velocity covariances.

granting local weak observability. This allows to estimate the complete
state of the system, i.e. the position and velocity of the vehicle, and the
velocity of the ocean current. With reference to the 3D case, it is worth
highlighting that the observability matrices O, and O, have only 7 not
null rows, implying that the local weak observability condition (rank
(0) =3 n=9) is never satisfied. Of course, integrating the measure-
ments with a depth sensor, the 3D observability analysis will reduce to
the 2D case, preserving the local weak observability when the DVL is in
water profiling mode. This remark suggests that, if possible, it is
convenient to use the DVL in water profiling mode rather than in
bottom tracking mode.

The global observability analysis can be performed on the LTV
representation of the nonlinear system (47)-(48) or (47)-(49) (ob-
tained through the state augmentation method). In such a case the
observability Gramian for the considered classes of motions (2D and
3D) associated to both DVL configurations is rank deficient and leads
to a violation of the observability condition.

The results of this observability analysis are summarized in Table 3.

7. Numerical validation

Several numerical simulations have been performed to validate the
proposed observability analysis. With reference to the model in Egs. (4)-
(5), let's assume that it is discretized with a sampling time T; and
affected by zero mean, mutually independent, state and output dis-
turbances y and ¢ with covariances Q and R respectively. While the
discretization time step T’ needs to satisfy Shannon's Theorem sampling
constraint and is hence bound to be rather small, notice that some AUV
sensors provide rather low update rates. Indeed while T is reasonably
bound to be lower than 0.1 [s], the update period of an underwater
acoustic range device can be in the order of 1 [s] or even larger. Given
that the major objective of the paper is to evaluate the theoretical and
methodological aspects of the proposed approaches, rather than tech-
nological issues, two sets of simulation results are illustrated: case A and
case B. In the first (covering most of the situations discussed in the
paper), the range measurements are assumed to be acquired with the
same sampling time 7, = 0.01 [s] used for the evolution of the model: this
allows to validate the presented continuous time observability analysis
through the simplest possible discretization schema without jeopardiz-
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Fig. 6. Lawn mowing motion in 3D with a straight motion along the z axis: (a) trajectory, (b) norm of estimation errors, (c) position covariances and (d) velocity covariances.

ing the observability validation analysis. After illustrating this first set
(case A) of numerical validation results, a second simulation example
(case B) is reported where the range measurement is (more realistically)
acquired at 0.1 [Hz] while the other sensors and the discrete model
update frequency are kept at 100 [Hz].

Two different kinds of filters are implemented to estimate the AUV
position and velocity: an EKF based on the nonlinear system in (4)—(5)
and a KF based on the equivalent linear system in (24).

Within case A (i.e. with the range measurement acquired every T =
0.01 [s] being T the discretization sampling time), two sets of
numerical simulations are considered: the first one in a 2D case and
the second one in a 3D case. Common to all the simulations is the use
of the covariance for the range measurements R = (0.1 [m])?, the state
noises covariances associated with the two filters

(diag([10°T .y 10Tk, )Y,
(diag([107°T 4, 10T, 1076, 1076]))?

QEKF

Oxr

and the initial estimation error covariance for the two filters

diag([f x> 0.1 fyc, ),
diag([ x> 0.1 hix,o 1, 11)

Fexr =

Br =

with proper units (i.e. [m?] for position variables and [(m/s)?] for
velocity variables). Moreover, both filters are initialized with a same
initial position error greater than the accuracy of the range measure-
ments.

7.1. Case A: 2D model

The first numerical simulation is a 2D straight line motion parallel
to the x axis. The trajectory is reported in Fig. 1(a) where the EKF
estimate is depicted in red and the KF estimate in blue. The filters are
initialized with a position P, = (- 101,61) [m] and a velocity
% =(02,0) [m/s] as opposed to the real initial values
p, = ( — 100, 60) [m], v, = (0.1, O] [m/s]. The norm of the estimation
errors, the position and velocity covariances of the two filters are also
shown in Fig. 1(b)-(d). As expected, the original nonlinear system
along the states of this trajectory is locally weakly observable, so the
EKF properly initialized converges to the true state. On the other side,
the LTV system does not satisfy the observability condition, due to the
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Fig. 7. Circular motion in 3D out of the plane of the beacon with DVL measurements: (a) trajectory, (b) norm of estimation errors, (c) position covariances and (d) velocity covariances.

fact that the y component is not sufficiently excited. Indeed, in this case
the input along the y axis is null (u, = 0), so the y component of the
displacement d(z, 7;) in (15) is zero leading to a null row in the
observability Gramian in (25), (27). As a result, the covariance on p,
is very large, the filter does not converge to the true state and there is a
non zero estimation error.

With reference to radial trajectories (i.e. 2D straight line motion
passing through the origin where the beacon is located), in Section 5.1
it is shown that they do not satisfy the local weak observability
condition. Also the observability Gramian associated to the LTV system
is not full rank, so a possible KF will not converge to the true state.
Numerical examples with radial trajectories are not reported for the
sake of brevity.

The next numerical experiment is related to the 2D circular motion.
From the observability analysis presented, this class of motion is both
locally weakly and globally observable. The estimations related to such
a trajectory are illustrated in Fig. 2(a). The filters are initialized with a
position B, = (50, 0) [m] and a velocity %, = (0, 2.6] [m/s] as opposed to
the real initial values p, = (51, 2) [m], ¥, = (0, 2.6) [m/s]. The norm of
the estimation errors, the position and the velocity covariances
associated with the two filters are also shown in Fig. 2(b)-(d). As
expected, both filters converge to the real state.

Finally, a 2D lawn mowing trajectory is considered through the
concatenation of straight line trajectories with circular trajectories

(globally observable) as in Fig. 3. The filters are initialized with a
position f, = ( — 81, 61) [m] and a velocity ¥ = (0, 0) [m/s] as opposed
to the real initial values p, = ( — 80, 60) [m], v, = (0, 0) [m/s]. Note
that the states along the whole trajectory are locally weakly observable;
indeed, the EKF estimation error converges to zero. On the other hand,
in the first straight line motion, where the observability Gramian of the
LTV system with augmented state is rank deficient, the KF exhibits a
non zero estimation error. Such an error decreases only once the LTV
system is observable, i.e. during the circular motion. As illustrated in
Fig. 3(c), in this first part of trajectory the position covariance along the
y axis increases significantly since the y component is not excited.
When the LTV system becomes observable, there is a transient phase
where the filter starts to correct the estimate leading to a final
convergence. Interestingly, in the next straight line motions the filter
preserves its convergence, in fact, the observability condition is still
satisfied. This confirms that, referring to the LTV system with
augmented state, the concatenation of an unobservable trajectory (or
a trajectory not satisfying the observability condition) after an ob-
servable one, still results in an observable motion.

A further simulation for the same case has been performed starting
from a large initial estimation error, i.e. p, = ( — 81, 50) [m]. In such a
condition, the EKF does not converge to the true state, whereas the KF
estimate based on the LTV system with augmented state converges to
the true state even if initialized far from the real state. The resulting
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Fig. 8. Circular motion in 3D with exciting motion along the z axis with DVL measurements: (a) trajectory, (b) norm of estimation errors, (c) position covariances and (d) velocity

covariances.

trajectories estimated through the EKF and KF are reported in Fig. 4.

7.2. Case A: 3D model

The numerical validations in the 3D case refers to circular motions
and lawn mowing motions in the (x, y) plane as in the 2D case
combined with a straight motion along the z axis. Fig. 5(a) reports the
3D trajectories obtained from the following initial position and velocity
estimates p, = (50, 0, 5) [m], % = (0, 2.6, — 0.01) [m/s] as opposed to
the real initial state p, = (51, 1, 4) [m], v, = (0, 2.6, — 0.01)' [m/s]. The
norm of the estimation errors, the position and velocity covariances
associated with the EKF and KF filters are also shown in Fig. 5(b)—(d).
As noted, in the 3D case the local weak observability rank condition is
not satisfied. The numerical experiment highlights that the EKF
estimate does not converge to the true state even if initialized close
to the true state. Moreover, even though the covariances of the state are
not large, the position estimation error is significant. Contrary to the
EKEF, it is worth highlighting that the KF estimate is characterized by a
transient phase where the state covariances and the errors are large,
but once the LTV system satisfies the observability condition, they
rapidly decrease.

Finally, a 3D lawn mowing trajectory has been considered. The
results are similar to the previous case. The estimated trajectories, the
norm of the estimation errors and the position and velocity covariances
associated with the EKF and KF filters are shown in Fig. 6. The filters

are initialized with a position p, = ( - 81, 61, 6) [m] and a velocity
%=(2,0,0) [m/s] as opposed to the real initial values
p, = (- 80, 60, 5 [m] and v, = (2, 0, O) [m/s]. As noted in the previous
simulation, the EKF estimate does not converge to the true state even if
the state covariances are small. On the other hand, the KF based on the
LTV system with augmented state converges to the real state even if
after a transient phase. The state covariances that increase in the
transient, rapidly converge to zero once the system satisfies the
observability condition. It is worth noting that in all the described
simulations the position covariance along the z axis is greater than the
other axes, this is due to the fact that the trajectory along the z axis is
not so rich, even though it is rich enough to make the observability rank
condition satisfied.

A last validation has been performed considering the presence of
velocity measurements. Assuming to acquire the velocity through a
DVL unit, a covariance for the velocity measurements
Ry, = (107 diag([1, 1, 1]) [(m/s)*] has been considered. The effect of
DVL measurements have a significant impact on the local weak
observability of 3D motions. In particular, a 3D circular motion out
of the plane of the beacon has been simulated. Fig. 7 reports the 3D
trajectories obtained from the following initial position and velocity
estimates P, = (51, - 1, 3)' [m], § = (0, 2.6, ) [m/s] as opposed to the
real initial state p, = (50, 0, 5) [m], v, = (0, 2.6, O} [m/s]. The norm of
the estimation errors, the position and velocity covariances associated
with the EKF and KF filters are also shown in Fig. 7.
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Fig. 9. Circular motion in 3D with exciting motion along the z axis with DVL measurements: (a) trajectory, (b) norm of estimation errors, (c) position covariances and rank of Gramian

and (d) low-frequency range measurements.

As expected, the EKF estimate converges to the true state thanks to
the local weak observability granted by the integration of DVL
measurements. Whereas, the KF estimate does not converge to the
true state due to the global unobservability of such trajectory, as
highlighted in Section 6.2. Even in presence of DVL measurements, the
trajectory should be sufficiently exciting along each axis in order to be
globally observable. Thus, a circular motion in the (x, y) plane with an
exciting motion along the z axis has been simulated. Refer to the Fig. 8
for the 3D trajectory, the norm of the estimation errors, the position
and velocity covariances associated with the EKF and KF filters. In this
case both filters converge to the true state. Indeed, such a trajectory is
both locally weakly and globally observable.

7.3. Case B: low-frequency range measurements

In real world operations, the AUVs commonly get measurements of
the range to the beacons by measuring the time of flight of acoustic
signals. Thus, due to the limited bandwidth of the underwater acoustic
link, and due to the constraint for an AUV to access an acoustic
communication network on a time division base with possible other
nodes, it may result that the AUV is able to get range measurements at
a frequency much lower than that of the other sensors used for the
navigation, as INS or DVL. This section shows the results of a

numerical case study where the range measurements have been under
sampled.

In particular, Fig. 9 shows the results of the execution of a mission
analogous to that reported in Fig. 8 where, here, the range measure-
ments are acquired by the AUV with a frequency of 0.1 Hz. Thus, in
both the Kalman Filter for the system with augmented state and in the
Extended Kalman Filter for the non-linear system, the prediction step
and the correction step relative to all the other sensors except the
ranges were performed with a frequency of 100 Hz, while the correc-
tion with the range measurement was performed with a frequency of
0.1 Hz.

Fig. 9 shows: a) the real and the estimated 3D trajectory; b) the
position covariance associated with the EKF and KF filters and the rank
of the Gramian relative to the system with augmented state; c) the
norm of position and velocity errors; d) the range measurements. Even
in this case both filters converge to the true state , although at a lower
rate due to the limited update frequency of the range measurements.
From Fig. 9(b), it is also worth noting that the augmented system needs
a set of range acquisitions in order to get a full rank Gramian matrix.

8. Conclusions

A range-based observability analysis has been presented for a 2D



and 3D vehicle modeled as a double integrator: both local weak
observability and global observability properties have been discussed
resorting to the tools of differential algebraic geometry and LTV
systems theory. The results of the observability analysis have been
validated and confirmed through a set of numerical simulations. While
most of the illustrated simulations aim at validating the observability
results and refer to the nominal model where range and other
navigation sensors are acquired at the same sampling time used to
integrate the system model, the more realistic case where range is
acquired at a much lower frequency is also (successfully) validated
numerically. These simulation results suggest that the proposed
approach can be adopted in practice.

When the system is locally weakly observable along a trajectory an
EKF estimator can be designed: being its convergence properties only
local, the filter must be properly initialized to avoid the divergence of
the estimation error. Unfortunately local weak observability is never
satisfied in the 3D case. On the other side, when the system trajectories
are globally observable for the LTV system a KF estimator can be
adopted to estimate the state of the original nonlinear system: this
solution guarantees global convergence although numerical simula-
tions reveal that the estimate covariance matrix has larger norm with
respect to the EKF counterpart. This can be at least partially explained
by the fact that the LTV system has larger dimension with respect to the
linearized system used to implement the EKF.

Moreover, the study of the effect of additional sensors as a DVL or a
depth sensor on observability has also been addressed revealing that,
when possible, it is convenient to use the DVL unit in water profiling
mode. The analysis is completed with brief remarks on the state
estimation in presence of constant, and unknown ocean currents.
Indeed the velocity of the ocean current can be estimated through an
EKF filter only in case of 2D motions if measurements from range and
DVL in water profiling mode are available.

At last, note that the described approach can be extended to the
case of multi-vehicle navigation: in particular, relative localization can
be achieved when a vehicle has access to the range from another one
and they share knowledge of their inputs. Preliminary results relative
to this problem have been addressed for different first order kinematics
models in Parlangeli and Indiveri (2014, 2015), De Palma et al. (2015)
and Parlangeli et al. (2012).
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