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a b s t r a c t

In this work we study a Hebbian neural network, where neurons are arranged according to a hierarchical
architecture such that their couplings scale with their reciprocal distance. As a full statistical mechanics
solution is not yet available, after a streamlined introduction to the state of the art via that route,
the problem is consistently approached through signal-to-noise technique and extensive numerical
simulations. Focusing on the low-storage regime, where the amount of stored patterns grows at most
logarithmical with the system size, we prove that these non-mean-field Hopfield-like networks display
a richer phase diagram than their classical counterparts. In particular, these networks are able to
perform serial processing (i.e. retrieve one pattern at a time through a complete rearrangement of the
whole ensemble of neurons) as well as parallel processing (i.e. retrieve several patterns simultaneously,
delegating the management of different patterns to diverse communities that build network). The tune
between the two regimes is given by the rate of the coupling decay and by the level of noise affecting the
system.

The price to pay for those remarkable capabilities lies in a network’s capacity smaller than the mean
field counterpart, thus yielding a new budget principle: the wider themultitasking capabilities, the lower
the network load and vice versa. This may have important implications in our understanding of biological
complexity.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical mechanics constitutes a powerful technique for the
understanding of neural networks (Amit, 1992; Coolen, Kuhn, &
Sollich, 2005; Sollich, Tantari, Annibale, & Barra, 2014), however
overcoming themean-field approximation is extremely hard (even
beyond neural networks). Basically, the mean-field approximation
lies in assuming that each spin/neuron Si in a network dialogs with
all the other spin/neurons with the same strength.1 For instance,

∗ Corresponding author.
E-mail address: flavia.tavani@sbai.uniroma1.it (F. Tavani).

1 Notice that this situation corresponds to a system embedded in a fully-
connected (i.e. complete graph) topology. However, situations where we introduce
some degree of dilution (e.g. Erdös–Rényi graph), yet preserving the homogeneity
of the structure and an extensive coordination number, can be looked and treated
as mean field models.

http://dx.doi.org/10.1016/j.neunet.2015.02.010
0893-6080/© 2015 Elsevier Ltd. All rights reserved.
if we consider a ferromagnetic model, once introduced N spins
Si = ±1, i ∈ (1, . . . ,N), we have the two extreme scenarios of a
nearest-neighbor model like the Ising lattice, whose Hamiltonian
can be written as

HIsing = −


⟨i,j⟩

JSiSj, (1)

where, crucially, the sum runs over all the couples ⟨i, j⟩ of adjacent
sites, and the mean-field Curie–Weiss model, whose Hamiltonian
can be written as

HCurie–Weiss = −

N,N
i<j

JSiSj, (2)

where the sum runs over all the N(N −1)/2 spin couples irrespec-
tive of any notion of distance; this is equivalent to think of spins
interacting through nearest neighbor prescriptions but as they
were embedded in an N-dimensional space. Clearly, solving the
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statistical mechanics of the latter model is much simpler with re-
spect to the former. The main route toward finite-dimensional
descriptions has been paved by physicists in the study of con-
densed matter.2 Indeed, incredible efforts have been spent from
the 1970s in working out the renormalization-group (Wilson,
1971a), namely a technique which allows inferring the properties
of three-dimensional ferromagnets starting from mean-field de-
scriptions, but a straight solution of the Ising model in dimensions
3 is still out of the current mathematical reach.3

Actually, in the last decade some steps forward toward more
realistic systems have been achieved merging statistical mechan-
ics (Ellis, 1985; Gallavotti & Miracle-Sole’, 1967; Mezard, Parisi, &
Virasoro, 1987) and graph theory (Albert & Barabasi, 2002; Bol-
lobas, 1998; Watts & Strogatz, 1998). In particular, mathemat-
ical methodologies were developed to deal with spin systems
embedded in random graphs, where the ideal, full homogeneity
among spins is lost (Agliari, Annibale, Barra, Coolen, & Tantari,
2013a, 2013b). Thus, networks of neurons arranged according to
Erdös–Rényi (Barra & Agliari, 2008), small-world (Agliari & Barra,
2011), or scale-free (Perez-Castillo et al., 2004) topologieswere ad-
dressed, yet finite-dimensional networks were still out of debate.

Focusing on neural networks, it should be noted that, beyond
the difficulty of treating non-trivial topologies for neuron archi-
tecture, one has also to cope with the complexity of their coupling
pattern, meant to encode the Hebbian learning rule. The emerg-
ing statistical mechanics is much trickier than that for ferromag-
nets; indeed neural networks can behave either as ferromagnets
or as spin-glasses, according to the parameter settings: their phase
space is split into several disconnected pure states, each coding for
a particular stored pattern, so to interpret the thermalization of
the system within a particular energy valley as the spontaneous
retrieval of the stored pattern associated to that valley. However
in the high-storage limit, where the amount of patterns scales lin-
early with the number of neurons, neural networks approach pure
spin-glasses (losing retrieval capabilities at the blackout catastro-
phe Amit, 1992) and, as a simple Central Limit argument shows
(Barra, Genovese, Guerra, & Tantari, 2012), when the amount of
patterns diverge faster that the amount of neurons they become
purely spin glasses. For the sake of exhaustiveness we also stress
that, even in the retrieval region, neural networks are exactly linear
combinations of two-party spin glasses (Barra, Contucci, Mingione,
& Tantari, 2015; Barra, Genovese, & Guerra, 2010, 2012; Barra,
Genovese, Guerra, Tantari et al., 2012; Barra, Genovese, Guerra, &
Tantari, 2014): due to the combination of such difficulties, neural
networks on a finite dimensional topology have not been exten-
sively investigated so far.

However, very recently, a non-mean-field model, where a
topological distance among spins can be defined and couplings
can be accordingly rescaled, turned out to be, to some extent,
treatable also for complex systems such as spin-glasses (Castellana
& Parisi, 2011; Monthus & Garel, 2014). More precisely, spins are
arranged according to a hierarchical architecture as shown in Fig. 1:
each pair of nearest-neighbor spins form a ‘‘dimer’’ connectedwith
the strongest coupling, then spins belonging to nearest ‘‘dimers’’
interact each other with a weaker coupling and so on recursively
(Mukamel, 2008). In particular, the Sherrington–Kirkpatrickmodel
for spin-glasses defined on the hierarchical topology has been
investigated in Castellana, Decelle, Franz, Mezard, and Parisi

2 In that context the long-range interactions are unacceptable because the
involved couplings are of electromagnetic nature, hence displaying power-law
decay with the distance.
3 It is worth mentioning that the Wilson–Kadanoff renormalization equations

(Wilson, 1971b, 1972, 1974) turn out to be exact in models with power law
interactions as those built on the hierarchical lattice that we are going to consider.
Fig. 1. Schematic representation of the hierarchical topology, that underlies the
system under study: green spots represent nodes where spins/neurons live, while
different colors and thickness for the links mimic different intensities in their
mutual interactions: the brighter and thinner the link, the smaller the related
coupling. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(2010): despite a full analytic formulation of its solution still lacks,
renormalization techniques, (Castellana & Parisi, 2011; Monthus
& Garel, 2013), rigorous bounds on its free-energies (Castellana,
Barra, & Guerra, 2014) and extensive numerics (Metz, Leuzzi,
& Parisi, 2014; Metz, Leuzzi, Parisi, & Sacksteder, 2013) can
be achieved nowadays and they give extremely sharp hints on
the behavior of systems at large size defined on these peculiar
topologies.

Remarkably, as we are going to show, when implementing the
Hebb prescription for learning on these hierarchical networks,
an impressive phase diagram, much richer than the mean-field
counterpart, emerges. More precisely, neurons turn out to be able
to orchestrate both serial processing (namely sharp and extensive
retrieval of a pattern of information), as well as parallel processing
(namely retrieval of different patterns simultaneously).

The remaining of the paper is structured as follows: in the next
subsections we provide a streamlined description of mean-field
serial and parallel processors, and we introduce the hierarchical
scenario. Then, we split in three sections our findings according
to the methods exploited for investigation: statistical mechanics,
signal-to-noise technique and extensive numerical simulations. All
these approaches consistently converge to the scenario outlined
above. Seeking for clarity and completeness, each technique is
first applied to a ferromagnetic hierarchical mode (which can be
thought of as a trivial one-pattern neural network and acts as a
test-case) and then for a low-storage hierarchical Hopfield model.

1.1. Mean-field processing: serial and parallel processors.

Probably the most famous model for neural networks is the
Hopfield model presented in his seminal paper dated 1982 (Hop-
field & Tank, 1987), counting nowadays more than twenty-
thousand citations (Scholar). This is a mean-field model, where
neurons are schematically represented as dichotomic Ising spins
(state +1 represents firing while state −1 stands for quiescence)
interacting via a (symmetric rearrangement of) the Hebbian rule
for learning as masterfully shown by the extensive statistical–
mechanical analysis that Amit, Gutfreund and Sompolinsky
performed on the model (Amit, 1992; Amit, Gutfreund, & Som-
polinsky, 1985).

More formally, once introduced N neurons/spins Si, i ∈

(1, . . . ,N), and p quenched patterns ξµ, with µ ∈ (1, . . . , p),
whose entries are drawn once for all from the uniform distribution

P(ξ
µ

i ) =
1
2
δ(ξ

µ

i − 1) +
1
2
δ(ξ

µ

i + 1), (3)

the Hopfield model is then captured by the following Hamiltonian
HHopfield(S|ξ):

HHopfield(S|ξ) = −
1
N

N
i<j


p

µ=1

ξ
µ

i ξ
µ

j


SiSj. (4)
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Before proceeding with the description of the Hopfield model,
it is very instructive to make a step beside and revisit the
ferromagnetic system described by the Curie–Weiss Hamiltonian
(Eq. (2)). The order parameter for the latter is given by the
magnetization m(S) defined as

m(S) =
1
N

N
i=1

Si, (5)

which, indeed, candistinguish between aparamagnetic/disordered
phase (m = 0) and a ferromagnetic phase characterized by sponta-
neous magnetization (m ≠ 0). Moreover, we can write Eq. (2) also
in terms ofm as

HCurie–Weiss(S) = −
1
N

N,N
i<j

SiSj ∼ −
N
2
m2, (6)

where a sub-leading term


i(Si)
2/(2N) = 1/2 has been neglected

and we set J = 1.
Restricting ourselves to the zero noise limit (for simplicity as

entropy maximization can be discarded), following the minimum
energy principle we see that the system tends to rearrange in such
a way that |m| → 1, corresponding to the configurations S =

(+1, +1, . . . ,+1) or S = (−1, −1, . . . ,−1). If we read such a
state as a neural configuration we would have a pathological state
corresponding to all spins firing or quiescent. This point can be
easily overcome (Mattis transformation) by replacing Si → ξ 1

i Si,
where the set {ξ 1

} may be drawn e.g., according to (3). In this way
the Hamiltonian (2) can be rewritten as

HMattis(S|ξ) = −

N,N
i<j

ξ 1
i ξ 1

j SiSj = −
N
2
m2

1, (7)

where m1 is the Mattis magnetization defined as

m1 =
1
N

N
i=1

ξ 1
i Si. (8)

Reasoning exactly as before, in the low noise limit, the system
relaxes to the state with |m1| → 1, corresponding to a spin
configuration S parallel (or anti-parallel) to the pattern ξ1. The
relaxation to such a minimum (which now is also the most likely
and has only, on average, one half of the neurons firing) is seen as
the retrievalof the (unique) storedpattern encodedby the string ξ 1.

Now, enhancing the network capability, in such a way that the
stored patterns are p > 1, requires to abandon the ferromagnetic
context as the system must be able to develop several free energy
minima, each corresponding to the retrieval of a different pattern.
This passage is formally straightforward: one simply introduces
a sum over the patterns labeled as µ = 1, . . . , p in the Mattis
Hamiltonian, thus obtaining the Hopfield Hamiltonian (4).

When p is large, that is comparable with the system size (thus
in the so-called high-storage regime where p scales as N, p = αN
with α ∈ R+, and as N → ∞), for α > αc ∼ 0.14, retrieval
properties are lost (and, for p → ∞ quicker than N the Heb-
bian coupling approaches a standard Gaussian N [0, 1]), hence the
model collapses to the Sherrington–Kirkpatrick model for spin-
glasses (Amit, 1992; Barra, Genovese, Guerra, Tantari et al., 2012).
In this regime neural capabilities are lost due the presence of too
much disorder that splits the phase space into an amount of min-
ima that scales exponentially with the system size (Mezard et al.,
1987). In the present paper we will work away from this black out
limit focusing on the low storage scenario, where p is either finite
or growing much slower than N (e.g. logarithmical), in such a way
that limN→∞(p/N) → 0.

As mentioned above, as long as the noise is low enough, the
system can relax in a (free) energy minimum: for the Hopfield
model described by (4) there exist overall 2p absolute minima
corresponding to the configurations Si = ξ

µ

i for all i = 1, . . . ,N;
each minima encodes for the retrieval of a different pattern and
the factor 2 accounts for symmetry Si → −Si. The relaxation to
the minimum corresponding to the, say, k-th pattern is evidenced
by mk ≠ 0 and mi = 0, ∀i ≠ k (the latter holding on the
average as patterns ξ ’s are orthogonal—in the infinite size limit).
The particular minimum selected depends on the external field (if
present) and on the initial state of the system.

We stress that, since each pattern is built of byN bits of informa-
tion ξ

µ

i = ±1, its retrieval involves the coordination of the whole
network and the system can only retrieve patterns singularly, that
is, one pattern at a time. For this reason this kind of processing is
referred to as serial.

This feature can be overcome and the neural network made
able to perform parallel retrieval, thus giving rise to the so called
multitasking associative network (Agliari, Barra, Galluzzi, Guerra, &
Moauro, 2012), by allowing for blank entries in the Hebbian kernel,
that is, pattern entries are extracted once for all from

P(ξ
µ

i ) =


1 − a
2

δ(ξ
µ

i − 1) +
1 − a
2

δ(ξ
µ

i + 1)


+ aδ(ξµ

i ), (9)

where a ∈ [0, 1] tunes the amount of null-entries in the bit-strings.
Let us try to infer the effects of (9) on the retrieval process

by focusing for simplicity on a simple case with N = 8 and
two toy-patterns ξ 1

= (+1, +1, +1, +1, 0, 0, 0, 0) and ξ 2
=

(0, 0, 0, 0, −1, −1, −1, −1), andwith the external field (the stim-
uli) pointing to the first minimum. In suitable regions of phase
space (where the network retrieves), the system will try to align
with the first pattern, such that the first four neurons will be
all firing. The remaining neurons do not receive any information
from the pattern ξ 1, nevertheless, as the Hopfield Hamiltonian is
a quadratic form in the Mattis magnetizations, (free)-energy min-
imization is better achieved if the remaining neurons align with
the second pattern (instead of random reshuffling), such that the
final state will be S = (+1, +1, +1, +1, −1, −1, −1, −1), and
we say that the system has spontaneously perfectly retrieved the
two patterns. An analogous behavior emerges for arbitrary p pat-
terns: the system tends to relax to a state where the Mattis mag-
netizations related to a subset of patterns are strictly non zero. The
performance of this network crucially depends on how a is tuned
as analyzed in detail in Agliari et al. (2013a, 2013b), Agliari, Barra,
De Antoni, and Galluzzi (2013) and Agliari et al. (2013) for the low-
storage and the high-storage regimes, respectively.

1.2. The neural network on a hierarchical topology

We now start our investigation of a neural network embedded
in the hierarchical topology depicted in Fig. 1. As mentioned, two
main difficultiesmust be faced: the complexity of the emergent en-
ergy landscape (essentially due to frustration in the coupling pat-
tern) and the non-mean-field nature of the model (essentially due
to the inhomogeneity of the network architecture). It is therefore
safer to proceed by steps discussing first the hierarchical ferromag-
net (hence retaining only the second difficulty), known as Dyson
hierarchical model (DHM). Then, via the Mattis transformation we
reach a Mattis hierarchical model (MHN) and finally we extend to
the Hopfield hierarchical model (HHM).

The Dyson hierarchical model (Dyson, 1969) is a system made
of N binary (Ising) spins Si = ±1, i = 1, . . . ,N in mutual
interaction and built recursively in such a way that the system at
the (k+1)-th iteration contains N = 2k+1 spins and is obtained by
taking two replicas of the system at the k-th iteration (each made
of 2k spins) and connecting all possible couples with overall


N
2


couplings equal to−J/2σ(k+1), J andσ being real scalars tuning the
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interaction strength: the former acts uniformly over the network,
the latter triggers the decay with the ‘‘distance’’ among spins. The
resulting Hamiltonian can be written recursively as

HDyson
k+1 (S|J, σ ) = HDyson

k (S1|J, σ ) + HDyson
k (S2|J, σ )

−
J

22σ(k+1)

2k+1
i<j

SiSj, (10)

where S1 = {Si}2
k

i=1 and S2 = {Sj}2
k+1

i=2k+1
, while HDyson

0 ≡ 0.
Before proceeding it is worth stressing that the parameters J

and σ are bounded as J > 0 and σ ∈ ( 1
2 , 1): the former trivially

arises from the ferromagnetic nature of the model which makes
neighboring spin to ‘‘imitate’’ each other, while the latter can be
understood by noticing that for σ > 1 the interaction energy goes
to zero in the N → ∞ limit,4 while for σ < 1

2 the interaction
energy is no longer linearly-additive implying instability.5 More-
over, this model is intrinsically non-mean-field because a notion
of metrics, or distance, has been implicitly introduced: two nodes
are said to be at distance d if they get first connected at the dth
iteration. In general, calling dij the distance between the spins i, j,
(thus dij = 1, . . . , k+1), we can associate to each couple a distant-
dependent coupling Jij and rewrite (10) in a more familiar form as

HDyson
k+1 (S|J, σ ) = −


i<j

JijSiSj, (11)

where

Jij =

k+1
l=dij

J
22σ l

= J
4σ−dijσ − 4−kσ−σ

4σ − 1
. (12)

Once extracted quenched values for the pattern entries (ξ
µ

i )µ=1
from the distribution

P(ξ
µ

i ) =
1
2
δ(ξ

µ

i − 1) +
1
2
δ(ξ

µ

i + 1), (13)

the next step is to replace Si with ξ 1Si. This results in the following
hierarchical Mattis model

HMattis
k+1 (S|J, σ ) = −


i<j

Jijξ 1
i ξ 1

j SiSj. (14)

Finally, summing over p patterns, we obtain the Hopfield
hierarchical model (HHM) that reads as (for J = 1)

HHopfield
k+1 (S|ξ, σ ) = HHopfield

k (S1|ξ, σ ) + HHopfield
k (S2|ξ, σ )

−
1
2

1
22σ(k+1)

p
µ=1

2k+1
i,j=1

ξ
µ

i ξ
µ

j SiSj, (15)

with HHopfield
0 ≡ 0 and σ still within the previous bounds, i.e. σ ∈

( 1
2 , 1). As anticipated, here we restrict the analysis to low storage

limit only: recalling N = 2k+1, we can fix p finite at first so to
move straightforwardly from the DHM to the HHM (as the notion
of distance is preserved) and, posing

Jij =
4σ−dijσ − 4−kσ−σ

4σ − 1

p
µ=1

ξ
µ

i ξ
µ

j , (16)

4 The sum
2k+1

i<j brings a contribution scaling like 22(k+1)
∼ N2 , while the

pre-factor scales as 2−2σ(k+1)
∼ N−2σ , thus, when σ > 1 the internal energy

(the expectation of the Hamiltonian normalized over the system size) is overall
vanishing in the infinite size limit k → ∞.
5 The sum

2k+1

i<j brings a contribution scaling like 22(k+1)
∼ N2 , while the pre-

factor scales as 2−2σ(k+1)
∼ N−2σ , thus, when σ < 1

2 the intensive energy is overall
divergent in the limit k → ∞.
we can write equivalently the Hamiltonian (15) in the more
compact form

HHopfield
k+1 (S|ξ, σ ) = −

2k+1
i<j

JijSiSj. (17)

Thus in the HHM the Hebbian prescription is coupled with (or
‘‘weighted by’’ Agliari, Barra, Del Ferraro, Guerra, & Tantari,
in press, Pastur, Shcherbina, & Tirozzi, 1994) a function of the
neuron’s distance.

In the following, in order to analyze in depth the system
performance and the properties of hierarchical retrieval, we tackle
the problem from different perspectives, each developed in a
dedicated section. In particular, the next section is devoted to
the statistical–mechanical route, for which we report only results
(as the methodologies underlying such achievements are still
extremely technical and have been presented to the pertinent
Community Agliari et al., 2015a, 2015b). As through this path a
full analytical solution still lacks, further investigations must be
addressed: indeed in Section 3 we largely exploit outcomes from
signal-to-noise studies, while numerical simulations are presented
in Section 4.

2. Insights from statistical mechanics

Here we summarize findings that can be achieved by suitably
extending interpolation techniques (Guerra, 2003; Guerra &
Toninelli, 2002) beyond the mean-field paradigm: it is important
to stress once more that, as this strand gives only (not-mean-field)
bounds on the free energy (and not the full solution), the self-
consistencies that result are not the true self-consistencies of the
model, thus motivating the next sections.

2.1. Pure/ferromagnetic and parallel/mixed free energies in the Dyson
model

As the Hamiltonian Hk+1(S|J, σ ) is given (see Eq. (10)) and
the noise level β−1

= T (where T stands for noise for historical
reasons) introduced, it is possible to define the partition function
Zk+1(β, J, σ ) at finite volume k + 1 as

Zk+1(β, J, σ ) =


{S}

exp [−βHk+1(S|J, σ )] , (18)

and the related free energy fk+1(β, J, σ ), namely the intensive
logarithm of the partition function, as

fk+1(β, J, σ ) =
1

2k+1
log


{S}

exp

−βHk+1(S⃗) + h
2k+1
i=1

Si

 , (19)

where the sum runs over all possible 22k+1
spin configurations and

h tunes a possible homogeneous external field. Note that the usual
free energy f̃ is related to f by f̃ (β) = −βf (β), hence we will find
the equilibrium states checking the maxima of f (β) and not the
minima.

We are interested in an explicit expression of the infinite
volume limit of the intensive free energy, defined as

f (β, J, σ ) = lim
k→∞

fk+1(β, J, σ ), (20)

in terms of suitably introducedmagnetizationsm, that act as order
parameters for the theory. To this task we introduce the global
magnetizationm, defined as the limitm = limk→∞ mk+1 where

mk+1 =
1

2k+1

2k+1
i=1

Si, (21)
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and, recursively and with a little abuse of notation, level by level
(over k levels) the k magnetizations m⃗a, . . . , m⃗k, as the same k →

∞ limit of the following quantities (we write explicitly only the
two uppermagnetizations related to the twomain clusters left and
right—see Fig. 1):

m1
k =

1
2k

2k
i=1

Si, m2
k =

1
2k

2k+1
i=2k+1

Si, (22)

and so on. The averages are denoted by the brackets ⟨·⟩ such that,
e.g. for the observablemk+1(β, J, σ ), we can write

⟨mk+1(β, J, σ )⟩ =


σ

mk+1e−βHk+1(S⃗|J,σ )

Zk+1(β, J, σ )
, (23)

and clearly ⟨m(β, J, σ )⟩ = limk→∞⟨mk+1(β, J, σ )⟩.
Starting with the pure ferromagnetic case, which mirrors here

the serial retrieval of a single pattern in the Hopfield counterpart,
its free energy can be bounded as (see also Castellana et al., 2014)

f (h, β, J, σ ) ≥ sup
m


log 2 + log cosh


h + βmJ(C2σ−1 − C2σ )


−

βJ
2

(C2σ−1 − C2σ )m2

, (24)

where

C2σ =
1

22σ − 1
, (25)

C2σ−1 =
1

22σ+1 − 1
. (26)

Now, let us suppose that, instead of a global ordering, the system
can be effectively split into two parts (the two largest communities
called left and right in Fig. 1), with two different magnetizations
mleft = m1 and mright = m2; we also assume mleft = −mright .
Through the interpolative route we approach a bound for the
free energy related to such a mixed state. We stress the fact that
the upper link, connecting the two communities with opposite
magnetization, remains and it gives a contribute m in the system
as (see also Agliari et al., 2015a)

fk+1 ≥
1
2
log cosh


h + βJ


m(2(k+1)(1−2σ))

+m1


k

l=1

2l(1−2σ)
−

k+1
l=1

2−2lσ



+
1
2
log cosh


h + βJ


m(2(k+1)(1−2σ))

+m2


k

l=1

2l(1−2σ)
−

k+1
l=1

2−2lσ



−
βJ
2


k

l=1

2l(1−2σ)
−

k+1
l=1

2−2lσ



×


m2

1 + m2
2

2


− 2(k+1)(1−2σ)m2


+ log 2. (27)

Notice that, thanks to the symmetry Si → −Si, the state considered
mirrors the parallel retrieval of two patterns in the Hopfield
counterpart. Identifying m1 = m2 = m we recover the previous
bound as expected, and, quite remarkably, in the infinite size limit
the two free energies assume the same values, thus serial and
parallel retrieval are both equally accomplished by the network.
Fig. 2. Main plots: numerical solutions of the non-mean-field self-consistent
equations for the parallel state (left panel) and for the pure state (right panel) of
the Dyson model (see Eq. (28)) obtained for different values of σ (as explained by
the legend) and plotted versus a rescaled noise. Note that by rescaling the noise the
dependence on σ is lost and all curves are collapsed. Insets: comparison between
the numerical solutions of the non-mean-field self-consistent equations (dashed
line) and of the mean-field self-consistent equations (solid line) as a function of the
noise and for fixed σ = 1 (see Eq. (28)). Notice that we have qualitatively the same
behavior but with different critical noise level separating the retrieval region from
the paramagnetic (where the noise is too high) one.

Optimizing the bound (27) we obtain
m1,2 = tanh(h + βJm1,2(C2σ−1 − C2σ )), (28)
representing two disentangled self-consistent equations whose
behavior is depicted in Fig. 2. Note that Eq. (28) also expresses
the self-consistent equation for the pure state (using m1,2 = m),
obtained by optimizing the bound (24).

2.2. Serial versus parallel retrieval in Hopfield hierarchical model

Guided by the ferromagnetic model just described, we now
turn to the hierarchical Hopfield model (HHM) and start its
analysis from a statistical–mechanical perspective, namely we
infer the behavior of a system described by the following recursive
Hamiltonian
HHHM

k+1 (S|ξ, σ ) = HHHM
k (S1|ξ, σ ) + HHHM

k (S2|ξ, σ )

−
1
2

1
22σ(k+1)

p
µ=1

2k+1
i,j

ξ
µ

i ξ
µ

j σiσj. (29)

To this task, we introduce suitably p Mattis magnetizations (or
Mattis overlaps), over the whole system, as

mµ
=

1
2k+1

2k+1
i=1

ξ
µ

i Si, µ ∈ [1, p]. (30)

Even in this context, the definition above can account for the state
of inner clusters by the sumover the (pertinent) spins. For instance,
focusing on the two larger communities we have the 2p Mattis
magnetizations

mµ

left =
1
2k

2k
i=1

ξ
µ

i Si, mµ

right =
1
2k

2k+1
i=2k+1

ξ
µ

i Si, (31)

with µ ∈ [1, p]. Again, we will not enter in the mathematical
details concerning non-mean-field bounds for the model free
energy (as they can be found in Agliari et al., 2015a), while we
streamline directly the physical results.

Still mirroring the previous section, we are interested in
obtaining a bound limiting the free energy of the HHM, the latter
being defined as the k → ∞ limit of fk+1, whose expression reads
fk+1(β, {hµ}, σ )

=
1

2k+1
log


{S}

exp

−βHk+1(S⃗) +

p
µ=1

hµ
2k+1
i=1

Si

 , (32)

where we accounted also for p external stimuli hµ.
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The non-mean field bound for serial processing free energy
reads as

f (β, {hµ
}, p) ≥ sup

m


log 2 +


log cosh

 p
µ=1


hµ

+ βmµ

× (C2σ−1 − C2σ )

ξµ


ξ

−
β

2

p
µ=1

⟨(mµ)2⟩ξ (C2σ−1 − C2σ )


, (33)

with optimal order parameters fulfilling

⟨mµ
⟩ξ =


ξµ tanh


β

p
ν=1

[hν
+ (C2σ−1 − C2σ )mν ] ξ ν


ξ

,

and whose critical noise is βNMF
c = C2σ−1 − C2σ , where the index

NMF stresses that the estimate was obtained through a non mean
field bound of the free energy.

Of coursewe can assume again that the two different families of
Mattismagnetizations ({mµ

1,2}
p
µ=1) (those playing for the two inner

blocks of spins left and right lying under the k+ 1-th level) behave
independently as the higher links connecting them go to zero
quickly for k → ∞ and we can start the interpolative machine:
following this way we generalize the serial processing analysis
to a two-pattern parallel retrieval analysis, which results in the
following bound for the related free energy:

f (β, {hµ}, p) ≥ sup
{mµ

1,2}


log 2 +

1
2


log cosh

 p
µ=1


hµ

+ βmµ

1

×

 k
l=1

2l(1−2σ)
−

k
l=1

2l(−2σ)


+ βmµ2(k+1)(1−2σ)

ξµ


ξ

+
1
2


log cosh

 p
µ=1


hµ

+ βmµ

2

 k
l=1

2l(1−2σ)

−

k
l=1

2l(−2σ)


+ βmµ2(k+1)(1−2σ)

ξµ


ξ

−
β

2

 k
l=1

2l(1−2σ)
−

k
l=1

2l(−2σ)


·

p
µ=1

⟨(mµ

1 )2⟩ξ + ⟨(mµ

2 )2⟩2ξ

2

−
β

2
2(k+1)(1−2σ)

p
µ=1

⟨(mµ)2⟩ξ


.

Here we do not investigate further the parallel retrieval of larger
ensembles of patterns, as the way to proceed is identical to the
outlined one, but we simply notice that, if we want the system to
handle M patterns, hence we assume it effectively splits M times
into sub-clusters until the k+1−M level, then the procedure keeps
on working as long as

lim
k→∞

k+1
l=k+1−M

2l(1−2σ)

p
µ=1

mµ

l = 0. (34)

Since the magnetizations are bounded, in the worst case we have
k+1

l=k+1−M

2l(1−2σ)

p
µ=1

mµ

l ≤ p
k+1

l=k+1−M

2l(1−2σ)

≤ p
∞

l=k+1−M

2l(1−2σ)
∝ 2(1−2σ)(k+1−M)p. (35)
If we want the system to handle up to p patterns, we need p
different blocks of spins and thenM = log(p).

3. Insights from signal-to-noise techniques

Results from statistical mechanics gave stringent hints on the
network’s behavior, however they act as bounds only.

This requires further inspection via other techniques: the first
route we exploit is signal-to-noise. Through the latter, beyond
generally confirming the predictions obtained via the first path, we
obtain sharper statements regarding the evolution of the Mattis
order parameters. These two approaches are complementary:
while statisticalmechanics describes the systemwithN → ∞ and
β < ∞, with the signal-to-noise technique we inspect the regime
N < ∞ and β → ∞.

3.1. A glance at the fields in the Dyson network

Plan of this section is to look at the dynamically stable con-
figurations of the neurons, that is to say, we investigate the con-
figurations (global and local minima) that imply each neuron Si
to be aligned with its corresponding field hi[S], i.e. Si hi[S] >
0, ∀i. This approach basically corresponds to a negligible-noise sta-
tistical–mechanical analysis but it is mathematically much more
tractable.

We can rearrange the Dyson Hamiltonian in a useful form for
such an investigation as follows:

HDyson
k+1 ({S1 . . . S2k+1})

= −
J
2

k+1
µ=1

2k+1
i=1

Si


k+1
l=µ


1

22σ

l
 

{j}:dij=µ

Sj, (36)

thus, highlighting the field hi insisting on the spin Si we can write

HDyson
k+1 [{S1 . . . S2k+1}] = −

2k+1
i=1

Sihi[S], (37)

hi[S] = J
k+1
µ=1


k+1
l=µ


1

22σ

l
 

{j}:dij=µ

Sj. (38)

While Glauber dynamics will be discussed in Section 4
(dedicated to numerics), we just notice here that the microscopic
law governing the evolution of the system can be defined as a
stochastic alignment to local field hi[S].

Si(t + δt) = sign {tanh [βhi [S (t))] + ηi(t)} ,

where the stochasticity lies in the independent random numbers
ηi(t), uniformly distributed over the interval [−1, 1] and tuned by
β . The latter continues to rule the noise level even dynamically
as it amplifies, or suppresses, the smoothness of the hyperbolic
tangent; in particular, in the noiseless limit β → ∞ we get

Si(t + δt) = sign [hi (S(t))] . (39)

This is crucial for checking the stability of a state as, if Sihi[S] >
0 ∀ i ∈ [1,N], the configuration {S} is dynamically stable (at least
for β → ∞, as in the presence of noise there is a β-dependent
probability to fluctuate away).

We keep the previous ensemble of non-independent order
parametersmn

i defined in detail as

mn
i [S] =

1
2n

2n×i
j=2n×i−(2n−1)

Sj with i = 1, 2, . . . , 2k+1−n and

n = 0, 1, 2, . . . , k + 1, (40)
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namely

m0
i = Si with i = 1, 2, . . . , 2k+1,

m1
i =

1
2

2i
j=2i−1

Sj with i = 1, 2, . . . , 2k
→ m1

1 =
1
2

2
j=1

Sj,

m2
i =

1
22

22 i
j=22 i−(22−1)

Sj with i = 1, 2, . . . , 2k−1
→ m2

1 =
1
4

4
j=1

Sj,

. . .

mk+1
1 =

1
2k+1

2k+1
j=1

Sj.

From Eq. (38), we get the following fundamental expression for
the fields

hi[S] =

J
k+1
µ=1


k+1
l=µ

1
22σ

l
 2µ−1mµ−1

f (µ,i), (41)

where we used the relation mµ−1
f (µ,i) =


{j}:dij=µ

Sj. Thus the order

parametersmµ−1
f (µ,i) represent the magnetizations assumed by spins

that lie at distance µ from Si. Note that the function f (µ, i) can be
estimated through the floor function ⌊·⌋ (e.g., ⌊3.14⌋ = 3) as

f (µ, i) =

 i + (2µ−1
− 1)

2µ−1


+ (−1)


⌊
i+(2µ−1

−1)
2µ−1 ⌋+1


.

Finally, we notice that the largest value allowed for a field – away
from the boundary value σ = 1/2 – for large k approaches a
plateau (whose boundaries – in the (k, σ ) plane – are important for
finite-size-scaling during numerical analysis), hence we can easily
check the right field normalization

Q (σ , k + 1) =

k+1
µ=1

J(µ, k + 1, σ )2µ−1

= J
2−2(k+1)σ


22(k+2)σ

− 2k+2σ+2
+ 2k+2

+ 4σ
− 2


−3 × 4σ + 16σ + 2

, (42)

as Q (σ , k) represents the largest value allowed by a field.
Note that in the infinite size limit

lim
k→∞

Q (σ , k) = Q (σ ) = J
22σ

−3 × 4σ + 42σ + 2
, (43)

that is Q is always bounded whenever σ > 1
2 .

3.2. Metastabilities in the Dyson network: noiseless case

Wecannowproceed to the stability analysis explaining in detail
a few test cases that show how to proceed for any other case of
further interest:
[a] the global ferromagnetic state, i.e. Si = +1, i ∈ (1, . . . , 2k+1).
[b] the parallel/mixed state, i.e. the first half of spins up and the

second half down, thus Si = +1, i ∈ (1, . . . , 2k) and Si =

−1, i ∈ (2k
+ 1, . . . , 2k+1).

[c] the dimer, i.e. S1 = S2 = +1 while Si = −1 for all i ≠ (1, 2).
[d] the square, i.e. S1 = S2 = S3 = S4 = +1 while Si = −1 for all

i > 4.

Let us go through each case analysis separately:
• [a] The global ferromagnetic state Si = +1 ∀i ∈ [1, 2k+1

] ⇒

mn
i [S] = 1 ∀i, n has fields

⇒ hi[S]

= J
4−(k+1)σ


22(k+2)σ

− 2k+2+2σ
+ 2k+2

+ 4σ
− 2


−3 × 4σ + 16σ + 2

, (44)

⇒ hi[S] > 0 ∀k, σ ∈ (1/2, 1). (45)
Thus, the configuration Si = +1 ∀i ∈ [1, 2k+1
] is stable in the

noiseless limit ∀σ ∈ [
1
2 , 1]. In the limit k → ∞ we have

hi[S] = J
4σ

−3 × 4σ + 16σ + 2
.

To address network’s behavior in the presence of noise, fixing
J = 1 without loss of generality, we can look at the solution of
the following equation

tanh(βhi[S]) ≃ 1 ⇒ tanh


β
4σ

−3 × 4σ + 16σ + 2


≃ 1. (46)

This allows to find the curve βno errors
c (σ ) versus σ (shown in

Fig. 3). In fact, we know that, at the time t+δt , the system obeys
the dynamics

Si(t + δt) = sign(tanh(βhi(S)) + ηi),

where ηi is a random variable, whose value is uniformly
distributed in [−1, 1]. Imposing tanh(βhi) ≃ 1 we ask that
|hi| ≫ 1, so the sign of the right hand side member of the
equation is positive, thus the sign of Si at the time t + δt is
the same of the field hi at the time t . Then, fixed σ , for every
β > βno errors

c (σ ) the state Si = +1 ∀i ∈ [1, 2k+1
] is stable

without errors.
• [b] The parallel/mixed state Sj = +1 Si = −1 ∀j ∈ [1, 2k

] ∀i ∈

[2k
+ 1, 2k+1

] has fields

⇒ hj[S]

= J
4−(k+1)σ


22(k+2)σ

+ 2k+1+2σ
− 2k+1+4σ

+ 4σ
− 2


−3 × 4σ + 16σ + 2

= −hi[S] > 0 ∀ k + 1 ≥ 2, (47)

⇒ lim
k→∞

hj[S] = J
1

21−2σ + 4σ − 3
, (48)

thus the configuration Sj = +1 Si = −1 ∀j ∈ [1, 2k
] ∀i ∈

[2k
+ 1, 2k+1

] is stable in the noiseless limit ∀ k + 1 > 2, σ ∈

(1/2, 1). Using the same arguments of the previous case, fixing
J = 1 without loss of generality, to infer network’s behavior
in the presence of the noise we can look at the solution of the
following equation

tanh(βhi[S]) ≃ 1 ⇒ tanh


β
1

21−2σ + 4σ − 3


≃ 1. (49)

This allows to find the curve βno-errors
c (σ ) versus σ (see Fig. 3).

Then, fixed σ , for every β > βno-errors
c (σ ) the state Sj = 1 Si =

−1 ∀j ∈ [1, 2k
] ∀i ∈ [1 + 2k, 2k+1

] is stable without errors.
So we can see how, in the infinite size limit, the state with
all spins aligned Sj = +1 ∀j ∈ [1, 2k+1

] and the state with
half spins pointing upwards and half pointing downwards Sj =

+1 ∀j ∈ [1, 2k
] Si = −1 ∀i ∈ [1+ 2k, 2k+1

] are both robust. For
an arbitrary finite value of k it is possible to solve numerically
Eq. (49) to get an estimate for βno-errors

c (σ ) versus σ : in Fig. 3
βno-errors
c (σ ) is plotted for the state Sj = +1 Si = −1 ∀j ∈

[1, 2k
] ∀i ∈ [1 + 2k, 2k+1

] and the state Si = +1 ∀i ∈ [1, 2k+1
].

• [c] The dimer Sj = +1 Si = −1 ∀j ∈ [1, 2] ∀i ∈ [3, 2k+1
] has

fields

h1[S] = h2[S]

=
2−2σ(k+1)(22σ(k+2)

+ 2k+2+2σ
− 41+(k+1)σ

− 2k+2
− 3 × 4σ

+ 6)
(−3 × 4σ + 16σ + 2)

,

lim
k→∞

h1[S] = lim
k→∞

h2[S] = 2 ·
4σ

− 4
−3 × 4σ + 16σ + 2

< 0

∀σ ∈ (1/2, 1).

Therefore, the configuration Sj = +1 Si = −1 ∀j ∈ [1, 2] ∀i ∈

[3, 2k+1
], in the infinite size limit, is unstable ∀ σ ∈ (1/2, 1).
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Fig. 3. Phase diagram for the perfect retrieval accomplished by a pure state (Si = +1 ∀i = 1, . . . , 2k+1) and parallel state (Si = +1 ∀i = 1, . . . , 2k and Si = −1 ∀i =

2k
+ 1, . . . , 2k+1). The line separating different regions corresponds to numerical solution of βno errors

c [σ ] versus σ , obtained from (46) and (49) for different values of k (10,
15, 20, 100 respectively). In yellow, the area where both the pure and parallel states are perfectly retrieved, while in blue the area where none of them is retrieved. The red
line represents the area where only the pure state is stable: this region vanishes as k gets larger, hence confirming that the pure and the mixed state are both global minima.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
• [d] The square Sj = 1 Si = −1 ∀j ∈ [1, 4] ∀i ∈ [5, 2k+1
] has

fields

hj[S, k] = −
21−2(k+1)σ


−2k+1+2σ

+ 22kσ+1
+ 2k+1

+ 22σ+1
− 4


−3 × 4σ + 16σ + 2

−
−3 × 4−(k+1)σ

+ 21−2σ
+ 1

1 − 4σ
, (50)

hj[S, k + 1]

=


22(k+3)σ

− 2k+2+2σ
+ 2k+2+4σ

− 22(k+1)σ+3
+ 7 × 22σ+1

− 7 × 16σ


(−3 × 4σ + 16σ + 2)/(2−2(k+2)σ )

thus

lim
k→∞

hj[S] =
4−σ (16σ

− 8)
−3 × 4σ + 16σ + 2

=


> 0, if σ >

3
4

< 0, if σ <
3
4
.

Therefore, the configuration Sj = +1 Si = −1 ∀j ∈ [1, 4] ∀i ∈

[5, 2k+1
] in the limit (k → ∞) for T = 0 is stable ∀ σ ∈ ( 3

4 , 1).

It is worth noticing that beyond the extensive meta-stable
states (e.g. the parallel/mixed one) already suggested by the
statistical–mechanical route, stability analysis predicts that tightly
connected modules (e.g. octagon, hexadecagon, etc.) with spins
anti-aligned with respect to the bulk get dynamically stable in the
infinite size limit (see Fig. 4): thesemotifs in turn are able to process
small amount of information and an analysis of their capabilities
can be found in Agliari et al. (2013a, 2013b), and their robustness
is due to their intrinsic loopy structure.

3.3. Signal analysis for the Hopfield hierarchical model

Let us now consider the Hopfield hierarchical model (see Eq.
(29)). As we are interested in obtaining an explicit prescription
for the fields experienced by the neurons, we can rewrite its
Fig. 4. Stability and instability zones for various configurations in the plane (σ , k)
when β → 0, obtained by solving the inequality Sihi(σ , k, [S]) > 0. In particular
in the figure, the square represents the configuration Si = +1 ∀i ∈ [1, 4] and
Si = −1 ∀i ∈ [5, 2k+1

], the octagon the configuration Si = +1 ∀i ∈ [1, 8] and
Si = −1 ∀i ∈ [9, 2k+1

], and the hexadecagon the configurations Si = +1 ∀i ∈

[1, 16] and Si = −1 ∀i ∈ [17, 2k+1
]. In red we can see the region where all of them

are stable, in yellow the region where only the octagon and the hexadecagon are
stable, in green the regionwhere only the hexadecagon is stable, while in blue none
of these reticular animals is stable. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Hamiltonian in terms of neural distance dij as

Hk+1(S|ξ, σ ) =


i<j

SiSj
 k+1
l=dij


−1
22σ l

 p
µ=1

ξ
µ

i ξ
µ

j (51)

or, splitting over all the possible distances d, and grouping all the
neurons sharing the same distance from the ith neuron, as

Hk+1(S|ξ, σ ) = −

k+1
d=1

2k+1
i=1

Si
 k+1

l=d


1

22σ

l 
{j}:dij=d

Sj
p

µ=1

ξ
µ

i ξ
µ

j ,

such that, paying attention to the fields we can write

Hk+1(S|ξ, σ ) = −

2k+1
i=1

Sihi[S], (52)
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Fig. 5. The Hierarchical structure represented by embedding the system in a
tree like topology: the distance dij is the canonical distance on the tree and an
example of someorder parametersmn

i (dropping the labelµ indicating the patterns’
dependence) representing the magnetization of groups of spins up to a distance n.

hi[S] =

k+1
d=1

 k+1
l=d


1

22σ

l 
{j}:dij=d

Sj
p

µ=1

ξ
µ

i ξ
µ

j . (53)

Mirroring the analysis carried on for the Dyson model (see
Fig. 5), we introduce an ensemble of non-independent Mattis-like
order parameters as

mµ,n
i [S] =

1
2n

i×2n
j=i×2n−(2n−1)

Sjξ
µ

j with i = 1, 2, . . . , 2k+1−n,

n = 0, 1, 2, . . . , k + 1, (54)

where n runs over the k+1 possible distances among neurons and
i runs over all the blocks of 2n neurons that have n as maximum
distance, so that

mµ,0
i = Siξ

µ

i with i = 1, 2, . . . , 2k+1

mµ,1
i =

1
2

2i
j=2i−1

Sjξ
µ

j with i = 1, 2, . . . , 2k
→ mµ,1

1

=
1
2

2
j=1

Sjξ
µ

j

mµ,2
i =

1
22

22 i
j=22 i−(22−1)

Sjξ
µ

j with i = 1, 2, . . . , 2k−1
→ mµ,2

1

=
1
4

4
j=1

Sjξ
µ

j

. . .

mµ,k+1
1 =

1
2k+1

2k+1
j=1

Sjξ
µ

j .

As we saw for the Dyson case, this allows writing the fields as

hi[S] =

p
ν=1

ξ ν
i

k+1
d=1

 k+1
l=d


1

22σ

l
2d−1mν,d−1

f (d,i)

=

p
ν=1

ξ ν
i

k+1
d=1

J(d, k + 1, σ )2d−1mν,d−1
f (d,i) ,

where

J(d, k + 1, σ )2µ−1
=

4σ−dσ
− 4−kσ−σ

4σ − 1
2d−1. (55)

The microscopic evolution of the system is defined as a stochastic
alignment to local field hi[S]:

Si(t + δt) = sign{tanh[βhi[S(t)]] + ηi(t)}, (56)
where the stochasticity lies in the independent random numbers
ηi(t) uniformly drawn over the interval [−1, 1]. In the noiseless
limit β → ∞ we have

Si(t + δt) = sign[hi[S(t)]] (57)

and so if Sihi[S] > 0 ∀ i ∈ [1,N], the configuration [S] is dynami-
cally stable.

3.4. Signal to noise analysis for serial retrieval

Using Eqs. (52) and (54) and posing Si = ξ
µ

i in order to check
the robustness of the serial pure-state retrieval (of the test pattern
µ), we can write

ξ
µ

i hi[S] = ξ
µ

i

p
ν=1

ξ ν
i

k+1
d=1

J(d, k + 1, σ )

j:dij=d

ξ ν
j ξ

µ

j ,

=

k+1
d=1

J(d, k + 1, σ )2d−1
+ ξ

µ

i

p
ν≠µ

ξ ν
i

×

k+1
d=1

J(d, k + 1, σ )

j:dij=d

ξ ν
j ξ

µ

j . (58)

We can decompose the previous equation into two contributions,
a stochastic noisy term R(ξ) and a deterministic signal I as

ξ
µ

i hi[S] = I + R(ξ). (59)

The signal term I is positive because

I =

k+1
d=1

J(d, k + 1, σ )2d−1
≥ 0, (60)

while the noise R(ξ) has null average (the latter being denoted by
standard brackets), namely

R(ξ) = ξ
µ

i

p
ν≠µ

ξ ν
i

k+1
d=1

J(d, k + 1, σ )

j:dij=d

ξ ν
j ξ

µ

j , (61)

⟨R(ξ)⟩ξ = 0. (62)

Thus, in order to see the regions of the tunable parameters σ , k +

1 where the signal prevails over the noise and the network
accomplishes retrieval, we need to calculate the second moment
of the noise over the distribution of quenched variables ξ so to
compare the signal amplitudes of I and |


⟨R2(ξ)⟩ξ |:

⟨R2(ξ)⟩ξ =

 p
ν≠µ

ξ ν
i

k+1
d=1

J(d, k + 1, σ )

j:dij=d

ξ ν
j ξ

µ

j



×

 p
η≠µ

ξ
η

i

k+1
d=1

J(d, k + 1, σ )

j:dij=d

ξ
η

j ξ
µ

j


ξ
. (63)

Neglecting off-diagonal terms (as they have null average), we
get the following expressions for ⟨R2(ξ)⟩ξ :

⟨R2(ξ)⟩ξ =

 p
ν≠µ

(ξ ν
i )2
 k+1

d=1

J(d, k + 1, σ )

j:dij=d

ξ ν
j ξ

µ

j

2
ξ

=


p

ν≠µ

 k+1
d=1


4σ−dσ

− 4−(k+1)σ

4σ − 1

 
j:dij=d

ξ ν
j ξ

µ

j

2


ξ

, (64)

where we used (ξ ν
i )2 = 1 ∀i, ν. Once again, as the ξ ’s are symmet-

rically distributed, only even order terms give contributions, thus
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Fig. 6. Upper panel (serial retrieval): On the left we show the maximum value of storable patterns Pc as a function of k and of σ (as results from Eq. (72), (91)) for the
pure (upper panel)/parallel (lower panel) state in order to have signal’s amplitude greater than the noise (i.e. retrieval). Note the logarithmic scale for Pc highlighting its
wide range of variability. On the right there is the maximum value of the neural interaction decay rate σ ′(k) versus k allowed to the couplings if we want the retrieval to be
possible with a logarithmic storage (p = k) of patterns, in the β → ∞ limit.
we can safely neglect off-diagonal terms and write again

⟨R2(ξ)⟩ξ = (p − 1)
k+1
d=1

4σ−dσ
− 4−kσ−σ

4σ − 1

 
j:dij=d

ξ ν
j ξ

µ

j

2
ξ

,

= (p − 1)
k+1
d=1


4σ−dσ

− 4−kσ−σ

4σ − 1

2

×

 
j:dij=d,


k:dik=d

ξ ν
j ξ

µ

j ξ ν
k ξ

µ

k


ξ

. (65)

Therefore

⟨R2(ξ)⟩ξ = (p − 1)
k+1
d=1

J(d, σ , k + 1)22d−1. (66)

Exploiting the approximation ⟨|x|⟩ ∼ |


⟨x2⟩|, we can simplify the
previous expression into

⟨|R(ξ)|⟩ ∼


⟨R2(ξ)⟩ξ =

(p − 1)
k+1
d=1

J(d, σ , k + 1)22d−1, (67)

where we consider the positive branch of the serial retrieval only.
We are now ready to check the stability of the pure retrieval: as
long as

I >


⟨R2(ξ)⟩ξ ⇒ ξ

µ

i hi[S] = I + R(ξ) > 0, (68)

the pure state is stable. Hence we need to calculate explicitly
⟨R2(ξ)⟩ξ =


(p − 1)16−kσ

(4σ − 2) (4σ − 1)2 (16σ − 2)
·
√

Ψ1 + Ψ2,

where

Ψ1 = (4σ
− 2)42(k+1)σ

− 3 × 2k+2σ+1,

Ψ2 = 2k+6σ+1
− (16σ

− 2)22(k+1)σ+1
+ 2k+2

− 64σ

+22σ+1
+ 24σ+1

− 4.
The expression for the signal is much simpler, resulting in

I =
4−(k+1)σ


−2k+2σ+2

+ 4(k+2)σ
+ 2k+2

+ 4σ
− 2


−3 × 4σ + 16σ + 2

. (69)

Imposing I =


⟨R2(ξ)⟩ξ and solving for the variable p, we find the
critical load allowed by the network, namely the function Pc(σ , k),
whose behavior is shown in Fig. 6:

I =


⟨R2(ξ)⟩ξ ⇒ Pc(σ , k). (70)

Now, imposing the relation

Pc(σ , k) = k

and solving numerically with respect to σ , we can plot the
maximumvalue σmax(k) that the variable σ can reach such that the
storage P = k produces retrievable patterns, as shown in Fig. 6.

In the infinite size limit we get

I −


⟨R2(ξ)⟩ =

22σ

−3 × 4σ + 16σ + 2

−

√
(p − 1)22σ

√
(4σ − 1) (16σ − 2)

, (71)

Pc(σ ) =
(4σ

− 1) (16σ
− 2)

(−3 × 4σ + 16σ + 2)2
+ 1. (72)

3.5. Signal to noise analysis for parallel retrieval

Fixing Si = ξ
µ

i ∀i ∈ [1, 2k
] and Si = ξ

γ

i ∀i ∈ [1 + 2k, 2k+1
] for

µ ≠ γ , namely selecting µ and γ as test patterns to retrieve, we
set the system in condition to handle contemporarily two patterns,
the former managed by the first half of the neurons, the latter by
the second half. The robustness of this state is addressed hereafter
following the same prescription outlined so far. Namely, being

Sihi[S] = Si
p

ν=1

ξ ν
i

k+1
d=1

J(d, k + 1, σ )

j:dij=d

ξ ν
j Sj, (73)
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if i ∈ [1, 2k
] we have

Sihi(S) = ξ
µ

i

p
ν=1

ξ ν
i

 k
d=1

J(d, k + 1, σ )

×


j:dij=d

ξ ν
j ξ

µ

j + J(k + 1, k + 1, σ )


j:dij=k+1

ξ ν
j ξ

γ

j


,

while if i ∈ [2k
+1, 2k+1

], the same equation still holds providedwe
replace µ with γ and γ with µ, hence hereafter we shall consider
only one of the two cases as they are symmetrical. Again, we can
decompose the above expression in the sum of a constant, positive
term – that plays as the signal – I > 0, and a stochastic term for
the noise R(ξ), namely we can write
Sihi[S] = I + R(ξ), (74)

I =

k
d=1


J(d, k + 1, σ )2d−1


,

R(ξ) = J(k + 1, k + 1, σ )


j:dij=k+1

ξ
µ

j ξ
γ

j + ξ
µ

i

p
ν≠µ

ξ ν
i

×
 k
d=1

J(d, k + 1, σ )

j:dij=d

ξ ν
j ξ

µ

j

+ J(k + 1, k + 1, σ )


j:dij=k+1

ξ ν
j ξ

γ

j


.

In order to get a manageable expression for the noise, it is
convenient to reshuffle R(ξ) distinguishing four terms such that
R(ξ) = a + b + c + d, (75)
where

a = J(k + 1, k + 1, σ )


j:dij=k+1

ξ
µ

j ξ
γ

j , (76)

b = ξ
µ

i

p
ν≠µ

ξ ν
i

k
d=1

J(d, k + 1, σ )

j:dij=d

ξ ν
j ξ

µ

j , (77)

c = ξ
µ

i

p
ν≠µ
ν≠γ

ξ ν
i J(k + 1, k + 1, σ )


j:dij=k+1

ξ ν
j ξ

γ

j , (78)

d = ξ
µ

i ξ
γ

i J(k + 1, k + 1, σ )2k. (79)

As µ ≠ γ , we have that ⟨R(ξ)⟩ξ = 0, while ⟨R2(ξ)⟩ξ turns out to
be
⟨R2(ξ)⟩ξ = ⟨a2 + b2 + c2 + d2 + 2(ab + ac + ad

+ bc + bd + cd)⟩ξ . (80)
Let us consider these terms separately: skipping lengthy, yet
straightforward calculations, we obtain the following expressions

⟨a2⟩ξ =


J2(k + 1, k + 1, σ )


j:dij=k+1


n:din=k+1

ξ
µ

j ξ
γ

j ξµ
n ξ γ

n


ξ

= J2(k + 1, k + 1, σ ) × 2k. (81)

⟨b2⟩ξ =


ξ

µ

i

p
ν≠µ

ξ ν
i

k
d=1

J(d, k + 1, σ )

j:dij=d

ξ ν
j ξ

µ

j

2


ξ

= (p − 1)
k

d=1

J2(d, k + 1, σ )2d−1. (82)

⟨c2⟩ξ =


ξ

µ

i

p
ν≠µ&ν≠γ

ξ ν
i J(k + 1, k + 1, σ )


j:dij=k+1

ξ ν
j ξ

γ

j

2


ξ

= (p − 2)J2(k + 1, k + 1, σ )2k. (83)
⟨d2⟩ξ =


ξ

µ

i ξ
γ

i J(k + 1, k + 1, σ )2k
2


ξ

= J2(k + 1, k + 1, σ )22k, (84)

and, since a and b and, analogously, b and c , are defined over
different blocks of spins, clearly

⟨2ab⟩ξ = 0, (85)

⟨2bc⟩ξ = 0, (86)

⟨2bd⟩ξ = 0. (87)

As a result, rearranging terms opportunely we finally obtain

⟨R2(ξ)⟩ξ

= 4−2kσ
4k (4σ

− 1)2 + 2k (4σ
− 1)2 + 2k(p − 2) (4σ

− 1)2


(4σ − 1)2

+ (2((−3 × 2k+2σ+1
+ 2k+6σ+1

+ 2k+2
+ 22σ+1

+ 24σ+1

− (4σ
− 2)42(k+1)σ

− (16σ
− 2)22(k+1)σ+1)

− 64σ )(p − 1))((4σ
− 2)(16σ

− 2))−1

,

while the signal term reads as

I =
2−2kσ−1


−2k+2σ

− 2k+4σ
+ 22(k+1)σ+1

+ 2k+1
+ 22σ+1

− 4


−3 × 4σ + 16σ + 2
. (88)

Imposing I =


⟨R2(ξ)⟩ξ , and solving with respect to the variable
p we can outline the function Pc(σ , k + 1) that returns the
maximum allowed load the network may afford accomplishing
parallel retrieval, that is shown in Fig. 6 andwhose propertieswere
checked by Monte Carlo simulation in Fig. 7:

I =


⟨R2(ξ)⟩ξ ⇒ Pc(σ , k + 1). (89)

3.6. Insights from numerical simulations

Aim of this section is to present results from extensive numer-
ical simulations to check the stability of parallel processing over
the finite-size effects that is not captured by statistical mechanics
or that can be hidden in the signal-to-noise analysis. Further this
allows checking that the asymptotic behavior (in the volume) of
the network is in agreement with previous findings.

All the simulations were carried out according to the following
algorithm.

1. Building the matrix coupling, pattern storage. Once extracted
randomly from a uniform prior over ±1 p patterns of length
k + 1, and defined the distance between two spins i and j as
dij we build the matrix J, for the HHM, as

Jij =
4σ−dijσ − 4−(k+1)σ

4σ − 1

p
µ=1

ξ
µ

i ξ
µ

j ,

for i = 1, . . . , 2k+1, j = 1, . . . , 2k+1, (90)

while for the DHMwe use the form:

Jij =
4σ−dijσ − 4−(k+1)σ

4σ − 1
,

for i = 1, . . . , 2k+1 and j = 1, . . . , 2k+1, (91)

where k + 1 is the number of levels of the hierarchical
construction of the network, and σ ∈ ( 1

2 , 1].
2. Initialize the network.

We used different initializations to test the stability of the
resulting stationary configuration:
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Fig. 7. Monte Carlo simulation of the Hierarchical Hopfield network at zero noise level. Left Panel: the averaged magnetization value of the retrieved pattern is plotted
versus the amount p of stored patterns for different values of σ . Accordingly to the analytic estimates, the decreasing of σ improves the quality of the retrieval. Right Panel:
comparing the standardHopfieldmodelwith theHierarchical one (N = 210), the averagedmagnetization value is plotted versus the amount p of stored patterns. As expected,
the Hierarchical Hopfield network is not able to manage an extensive number of stored patterns as the standard Hopfield model does.
Fig. 8. Starting from the state Si = +1 ∀i ∈ [1, 2k+1
] results of the simulations for DHM for σ = 0.99 and N = 2k+1, k + 1 = 8, 10, 12 are plotted. In the left panel, the

rescaled magnetic susceptibility 2k+1(⟨m2
⟩ − ⟨m⟩

2) is plotted versus β (one over the noise), showing the critical noise level of the paramagnetic–ferromagnetic transition
to be the point where the fluctuation of the order parameter has a peak. In the right panel the magnetization ⟨m⟩ = ⟨

1
N

N
i=1 Si⟩ is plotted versus β (one over the noise).
Fig. 9. Starting from the state Si = +1, Sj = −1 ∀i ∈ [1, 2k
] and ∀j ∈ [2k

+ 1, 2k+1
] results of the simulations for DHM for σ = 0.99 and N = 2k+1 are plotted. In the

left panel, the rescaled magnetic susceptibility 2k+1
[(⟨m2

1⟩ − ⟨m1⟩
2) + (⟨m2

2⟩ − ⟨m2⟩
2)], i.e. the total fluctuation of the order parameters, is plotted versus β (i.e. one over

the noise) for k + 1 = 8, 10, 12. In the right panel, the magnetizations ⟨m1⟩ = ⟨
1
2k
2k

i=1 Si⟩ and ⟨m2⟩ = ⟨
1
2k
2k+1

i=1+2k Si⟩ are plotted versus β (i.e. one over the noise) for
k + 1 = 8, 10, 12. The figures show the existence of a dynamical phase transition, beyond the standard paramagnetic–ferromagnetic one, in which the mixed state is no
more stable and the system switches on the pure state. This region of instability tends to disappear with the growth of the system size.
– Pure retrieval: We initialize the network in an assumed fixed
point of the dynamics, namely Si = ξ

µ

i with i = 1, . . . , 2k+1

and µ = 1 for the HHM, while Si = +1 with i = 1, . . . , 2k+1

in the DHM case, and we check the equilibrium as reported in
Fig. 8.
– Parallel retrieval: Since we study the multitasking features
shownby this hierarchical network,we can also assign different
types of initial conditions with respect to the pure state, e.g.
(i) For the DHM, starting from the lowest energy level (after

the standard one Si = 1 ∀i) we chose Si = +1 for i =
1, . . . , 2k and Si = −1 for i = 2k
+ 1, . . . , 2k+1 (vice versa

is the same, and we check the equilibrium as reported in
Fig. 9);

(ii) For the HHM, looking for multitasking features, we set in
the case p = 2, we set Si = ξ 1

i for i = 1, . . . , 2k and
Si = ξ 2

i i = 2k
+ 1, . . . , 2k+1 (Fig. 12); in the case p = 4 we

set Si = ξ
µ

i ∀i ∈

1 +

(µ−1)N
4 ,

µN
4


and µ ∈ [1, 4] (Fig. 11).

In thisway,we have two or four communities (sharing the same
size) building the network with a different order parameter.
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Fig. 10. Starting from the state Si = +1 ∀i ∈ [1, 2k+1
] with σ = 0.99 for the DHM

and k + 1 = 8, 10, 12. Binder cumulant 1 −
⟨m4

⟩

3⟨m2⟩2
versus noise 1

β
for k + 1 = 8,

10, 12. Plotting the binder cumulant for different values of k+ 1 permits to find the
critical noise of this state (Binder, 1981).

3. Evolution: Glauber dynamics.
The evolution of the spins follows a standard random asyn-
chronous dynamics (Coolen et al., 2005) and the state of the
network is updated according to the field acting on the spins
at every step of iteration, that is,

Si(t + 1) = sign{tanh[βhi(S(t))] + η(t)}, for β = T−1

where η(t) is the noise introduced as a random uniform contri-
bution over the real interval [−1, 1] in every step.
For each noise the stationary mean values of the order parame-
ters have been measured mediating over O(103) different re-
alizations. For the HHM the average of the order parameters
is performed over the quenched variables. For DHM, to better
highlight the stability of the parallel configuration, Si = +1 for
i = 1, . . . , 2k, Si = −1 for i = 2k

+ 1, . . . , 2k+1, during half
of the relaxation period to equilibrium a small positive field is
applied to the system.

4. Results.
It is worth noting that – at difference with paradigmatic pro-
totypes for phase transitions (i.e. the celebrated Curie–Weiss
model), as we can see from Figs. 8, 9, 10 – in these models
we studied here the critical noise level approaches its asymp-
totic value (obtained by analytical arguments in the infinite size
limit) from above (i.e. from higher values of βs). This happens
because the intensities of couplings are increasing functions
(clearly upper limited) of the size of the system. As can be in-
ferred from Fig. 9 (where we present results regarding simu-
lations for the DHM at σ = 0.99, k + 1 = 8, 10, 12 [Si =

+1, Sj = −1 ∀i ∈ [1, 2k
] and ∀j ∈ [2k

+ 1, 2k+1
]]), the mixed

state is stable in the low noise region, as expected from theoret-
ical arguments, and the noise region inwhich this configuration
is not stable tends to disappear with the growth of the system
size. Also in the HHM case (Fig. 11, 12) the stability of parallel
configurations is verified (in the low noise region) for system’s
configurations shared by the two and four communities.

4. Conclusions and outlooks

Comprehension of biological complexity is one of the main
aim of this century’s research: the route to pave is long and scat-
tered over countless branches. Restricting to neural networks,
due to prohibitive constraints when dealing with their statisti-
cal–mechanical modeling beyond the mean field approximation
(where a notion of distance – or metrics – in the space where neu-
rons are embedded in, is lost), their theory has been largely devel-
oped without investigating the crucial degree of freedom of neural
distance. However, research is nowadays capable of investigations
toward more realistic and/or better performing models: indeed,
Fig. 11. Starting from the state Si = ξ 1
i , Sj = ξ 2

j , Sn = ξ 3
n , Sl = ξ 4

l ∀i ∈

[1, 2k−1
], ∀j ∈ [2k−1

+ 1, 2k
], ∀n ∈ [2k

+ 1, 3
2 2

k
], ∀l ∈ [

3
2 2

k
+ 1, 2k+1

] results
of the simulations for HHM for σ = 0.99 and N = 2k+1 are plotted. The Mattis
order parameters ⟨mµ

i ⟩ for i = µ ∈ {1, 4} are different from zero (proving that the
parallel retrieval state is stable) and are plotted versus noise. The others are below
the noise threshold.

Fig. 12. Starting from the state Si = ξ 1
i , Sj = ξ 2

j ∀i ∈ [1, 2k
], ∀j ∈ [2k

+ 1, 2k+1
]

results of the simulations for HHM for σ = 0.99 and N = 2k+1 are plotted.
The Mattis order parameters ⟨mµ

i ⟩ = ⟨
1

2k−2

i2k−2

j=1+(i−1)2k−2 Sjξ
µ

j ⟩ for i, µ ∈ [1, 2]
are plotted versus noise, from left we have k + 1 = 8, 10, 12. Again the Mattis
magnetizations m1

1 and m2
2 remain different from zero, proving the stability of the

parallel retrieval state in which different blocks of spins are aligned with different
patterns.

while the mean-field scenario, mainly split among Hopfield net-
work for retrieval and Boltzmann machines for learning, has been
so far – at least partially – understood (nor heuristically too far be-
yond the replica symmetric approximation neither completely, at
the rigorous level, within such a scheme), investigation of the non-
mean-field counterpart however is only at the embryonal develop-
ment.

In this work we tackled the problem of studying information
processing (retrieval only) on hierarchical topologies, where neu-
rons interact with a Hebbian strength (or simply ferromagneti-
cally in their simplest implementation, namely the Dyson model)
that decays with their reciprocal distance. While a full statisti-
cal–mechanical treatment is not yet achievable, stringent bounds
for its free energy – intrinsically of non-mean-field nature – are
however available and return a survey of network capabilities by
far richer than the corresponding mean-field counterpart (that is
the Hopfield model within the low storage regime). Indeed these
network are able to retrieve one pattern at a time accomplishing an
extensive reorganization of the whole neuronal state – mirroring
serial processing in standard Hopfield networks – but they are also
able to switch tomultitasking behavior handlingmultiple patterns
at once – without falling into spurious states – hence performing
as parallel processors (note that here serial/parallel capabilities are
not related to the activities of the neurons – that operate always
contemporarily – rather to the patterns the network is able to re-
trieve at once).

Remarkably, as far as the low storage regime is concerned, the
defragmentation of the whole network into effective cliques –
crucial for switching to parallel processing – returns a phase space
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that shares huge similarities with the multitasking associative
networks (Agliari et al., 2012; Sollich et al., 2014).

However, as stringent theorems that definitively confirm this
scenario are not yet fully available (we have bounds only),
to give robustness to the statistical mechanics predictions, we
performed the naive signal-to-noise analysis (Shiino& Fukai, 1992)
checkingwhether thosemultitasking states – candidate by the first
approach tomimic parallel retrieval – are indeed stable beyond the
pure state related to serial processing and remarkably we found
huge regions of the tunable parameters (strength of the interaction
decayσ andnoise levelβ)where those states are extremely robust.

For this richness of behaviors there is however a price to
pay: emergent multitasking features in these hierarchical, not-
mean-fieldmodels require a substantial drop in network’s capacity
(intuitively because the effective amount of hard links where
information may be stored is sensibly lower than in the standard
Hopfield networks) thus implying a new balance associative
networks beyond the mean-field scenario has to face.

While a satisfactory picture of the behavior of hierarchical
neural networks is still to be achieved, we hope that this workmay
act as one of the first steps toward that direction.
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