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Abstract

The present paper deals with the pattern formation properties of a specific morpho-electro-
chemical reaction-diffusion model on a sphere. The physico-chemical background to this
study is the morphological control of material electrodeposited onto spherical particles. The
particular experimental case of interest refers to the optimisation of novel metal-air flow
batteries and addresses the electrodeposition of zinc onto inert spherical supports. Morpho-
logical control in this step of the high-energy battery operation is crucial to the energetic
efficiency of the recharge process and to the durability of the whole energy-storage device.
To rationalise this technological challenge within a mathematical modelling perspective, we
consider the reaction-diffusion system for metal electrodeposition introduced in [Bozzini et
al., J. Solid State Electr.17, 467–479 (2013)] and extend its study to spherical domains. Con-
ditions are derived for the occurrence of the Turing instability phenomenon and the steady
patterns emerging at the onset of Turing instability are investigated. The reaction-diffusion
system on spherical domains is solved numerically by means of the Lumped Surface Finite
Element Method (LSFEM) in space combined with the IMEX Euler method in time. The
effect on pattern formation of variations in the domain size is investigated both qualitatively,
by means of systematic numerical simulations, and quantitatively by introducing suitable
indicators that allow to assign each pattern to a given morphological class. An experimental
validation of the obtained results is finally presented for the case of zinc electrodeposition
from alkaline zincate solutions onto copper spheres.
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1. Introduction and research motivation

Safe, reliable and durable electrochemical energy storage devices, such as batteries and metal-
based fuel cells, are key to the real-scale deployment of renewable energy sources. Moreover,
high-energy batteries are enabling components of a multiplicity of emerging technologies
such as home- and grid-storage, electric aircraft, fully electrical vehicles and telemedicine.
Efficient electrochemical energy storage in batteries and regeneration of metallic fuel for
fuel cells with metallic anodes critically rely on recharging capabilities. Unfortunately, such
recharging and regeneration processes - that imply bulk phase formation by electrochemical
reactions, or ‘electrodeposition’ - are currently severely limited by growth instabilities. Such
instabilities lead to progressive energy losses as a function of discharge-charge cycles, device
lifetime limitation as well as, in some technologies such as lithium-based ones, to severe safety
hazards. More specifically, the improvement of these devices demands to face the notable
challenge represented by the development of metal growth processes that prevent irregular
material distribution in general and the formation of outgrowth features, such as dendrites,
in particular. Over the last 40 years, this problem has been attacked with a variety of
experimental and theoretical approaches but - notwithstanding the recently revived interest
in metal-air technologies, that is currently producing a systematically increasing corpus of
high-level literature - no definitive solution has been found.

The focus of this paper is on mathematical modelling and it is worth briefly recalling here
- without any claim of completeness - some of the most representative approaches to the
modelling of electrochemical dendrite formation that have been described in the literature,
apart from our reaction-diffusion based that has been detailed in [9, 10, 42] and that hence-
forth we shall refer to as the ”DIB model”. Early work based on phenomenological kinetics
proposed that dendrite growth was controlled by electrokinetic activation [24], but this view
was later corrected by considering the interplay between activation and diffusion control [56]
and references therein). This simple, but physically transparent framework allows to re-
place the description of mass-transport in terms of diffusion formalism with more insightful
models, such as the joint density functional method, that has recently inspired physically
novel approaches to the suppression of dendritic growth [44]. Moreover, instabilities related
to nanocluster aggregation have been recently modelled on the basis on classical nucleation
theories, combining diffusive mass transport and simple geometrical assumptions [23].

Among approaches based on a statistical description of phase formation, the diffusion-limited
aggregation model was used to simulate the zinc electrodeposition process in 1D [18] and a
kinetic Montecarlo approach has been proposed, assigning position-dependent van der Waals
and electrochemical energies to individually depositing zinc atoms [45]. On the differential
modelling side, instead electrodeposition instabilities were investigated by extending the
Mullins-Sekerka instabilities theory to the electrochemical case, considering the buildup of
electrochemical potential gradients [40]. This approach has been expanded to a reaction-
diffusion model for two chemicals, [17]. More recently, phase-field theories, that add a vari-
able describing the electrode-electrolyte interface as a diffuse quantity, have been proposed
for the modelling of Zinc (Zn) dendrite formation [19, 71].

Finally, it is worth mentioning that Zn morphology has been correlated to, rather than
modelled with, the current density distribution. This quantity has been evaluated by multi-
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physics PDE modelling, incorporating ionic transport by diffusion, migration and convection,
phenomenological charge-transfer kinetics and Navier-Stokes equations [72]. Electrodeposi-
tion on spherical particles in a range of spouted- and fluidised-bed configurations has been
described, chiefly in the field of metal recovery from wastewater streams, e.g. [11] and refer-
ences therein. Research focus in the field is generally on the precise evaluation of the current
density distribution as a function of the operating conditions and, apart from special re-
search motivations [8], electrodeposit morphology is typically neglected owing to the limited
thicknesses of the coatings of practical interest in the relevant technologies. Nevertheless,
very recently, the technological importance of the recovery of Zn from discharge electrolytes
for off-line recharging and energy storage, e.g. [14, 60] and references therein, has attracted
research attention to the option of electrodepositing Zn onto electrochemically inert metallic
particles, such as e.g. Cu spheres. Since, in this specific case, high thicknesses (range of
hundred micron) are of interest and one would like to minimise metal loss by the formation
of loose dendrites, morphological control is of notable practical importance. This point is
particularly crucial, because the relevant growth process is based on alkaline zincate solu-
tions and it is well known that smooth zinc layers cannot be electrodeposited from these
electrolytes. Possible, but practically unsatisfactory approaches to the mitigation of these
instability problems are on the one hand the implementation of poorly controlled and expen-
sive pulse plating programs or, on the other hand, the use of chemically unstable, toxic and
costly additives, that impose demanding bath maintenance procedures. Moreover in Zinc-air
fuel cells (ZAFC) with hopper-type anodes, the optimisation of the shape and dimensions of
Zn particles is still an open question [20] and mathematical tools to rationalise this aspect
are highly desirable.

Unstable growth of Zn during electrodeposition from alkaline solutions onto flat electrodes
has been been the object of extensive studies and the research has been recently further fu-
elled by the practical importance of rechargeable Zn-based batteries. The literature features
some classical references, that have systematically set the phenomenological framework -
reviewed, among others, in [49, 56] - together with a steadily increasing number of recent
contributions that is pointing out a range of new aspects of this widely investigated process,
the details of which are beyond the scope of this paper [1, 23]. In particular, electrodeposited
Zn exhibits a wide class of morphologies that depend in a poorly understood way on the
growth rate. These can be broadly classified - in order of progressive degree of instability - as
‘compact’, layered, dendritic, spongy and mossy: only the first type is generally regarded as
desirable for battery anodes, while high-surface forms such as dendrites have been recently
considered of potential interest for catalytic applications [59].

The aim of this paper is thus to analyse the problem of unstable metal electrodeposition in
the framework of the DIB model extending it to the case of electrodeposition on spherical
cathodes. We have shown that the DIB model is able to capture many essential aspects of
electrochemical pattern formation and it is thus suitable to handle the case of Zn electrode-
position from zincate solutions in energy storage applications. More in general, our work fits
in the reaction-diffusion modelling framework that is particularly compelling with regard to
its ability to account for pattern formation in a variety of biological, chemical and physical
situations [50], many of which can be better tackled by adopting spherical domains. In fact,
a close-knit group of papers has been devoted to theoretically analyse and numerically solve
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reaction-diffusion models on the surface of a sphere, e.g. [16, 33, 36, 43, 46, 48, 58, 67, 69].
It is worth noting that, among these works, as we do in the present research, the following
ones explicitly refer to concrete applications: [69] considered the Turing model introduced
in [3] extending its study on a fixed sphere and showed that it was able to display spatial
structures reminiscent of the skeletal patterns in Radiolaria [66]; [16] investigated Turing
patterns on a growing sphere motivated by the formation of structures in tumor growth;
[43] showed that a specific Turing model studied on a portion of a spherical surface could
exhibit patterns similar to those on lady beetles’ hard wings; [33] presented a phenomeno-
logical reaction-diffusion model on the surface of a sphere and showed that it could represent
cerebral cortex fold formation and reproduce pathologies related to gyri formation.

In this paper: (i) we present the DIB model defined on a spherical domain (Section 2);
(ii) we derive conditions for the occurrence of the Turing instability phenomenon in terms
of the system parameters by using linear stability analysis (Section 3); (iii) we present
and discuss numerical methods for the integration of the DIB model on spherical domains
(Section 4); (iv) we investigate the steady patterns emerging at the onset of Turing instability
and show that, departing from the Turing bifurcation line, the system undergoes different
morphological transitions (Section 5); (v) we focus on the morphological classes of spots,
labyrinth and reversed spots and investigate by systematic numerical simulations how the
variation of the domain size can affect pattern formation on the sphere (Section 6); (vi) we
introduce and discuss quantitative indicators that allow to assign each pattern to a given
morphological class (Section 7 ); (vii) we present an experimental validation of the obtained
results by considering the electrodeposition of Zn from alkaline zincate solution onto Copper
(Cu) spheres (Section 8).

2. The DIB model

Let us consider the reaction-diffusion system (DIB model) proposed in [10],

Bη

Bt
“ ∆˚η ` ρ fpη, θq,

Bθ

Bt
“ d∆˚θ ` ρ gpη, θq, (1)

which describes the spatiotemporal dynamics of the morphology ηpx, tq and of the sur-
face chemistry θpx, tq on a two-dimensional domain Ω during the electrodeposition process.
ηpx, tq P R is dimensionless and expresses the displacement from the instantaneous aver-
age electrodeposit plane; the dimensionless variable θpx, tq, 0 ď θpx, tq ď 1, is the surface
coverage with the functionally crucial adsorbate; d “ Dθ{Dη is the ratio of the diffusion co-
efficients for the individual chemical and morphological processes, respectively. The strictly
positive parameter ρ can have the following interpretations: (i) ρ represents the relative
strength of the reaction terms with respect to the diffusion ones; (ii) increasing ρ can be
thought as equivalent to decreasing the diffusion coefficient d [50]; (iii) ρ is a scale factor
proportional to the area of the two-dimensional domain Ω.

The nonlinear source terms that account for generation (deposition) and loss (corrosion) of
the relevant material are given by

fpη, θq “ A1 p1´ θq η ´ A2η
3 ´B pθ ´ αq ,

gpη, θq “ C p1` k2 ηq p1´ θq r1´ γ p1´ θqs ´D1θ p1` γθq p1` k3ηq ,
(2)
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with D1 “
Cp1´ αqp1´ γ ` γαq

αp1` γαq
.

The source term f can be thought as fpη, θq “ flocpηq ´ fchempη, θq namely as a balance
between the localisation of the electrodeposition process and the effects of surface chemistry
on the electrodeposition rate. More precisely:
A1p1´ θqη accounts for the charge-transfer rate at sites free from adsorbates;
A2η

3 describes mass-transport limitations to the electrodeposition process and
´Bpθ ´ αq quantifies the effect of adsorbates on the electrodeposition rate.
The parameter 0 ă α ď 1 indicates that adsorbates can have both inhibiting and en-
hancing effects on the growth rate. The source term g can be regarded as gpη, θq “
C gadspη, θq ´ D gdespη, θq and features adsorption (parameter C) and desorption (param-
eter D) terms including both chemical (expanded to second order) and electrochemical (first
order) contributions. Full details about the derivation and the physico-chemical meaning of
the source terms can be found in [10].

In [10], we considered model (1)-(2) defined on the planar domain Ω “ r0, Lxsˆ r0, Lys, with
Lx, Ly characteristic lengths of the electrode. We also required (1)-(2) to be supplemented
by zero-flux boundary conditions and the following initial conditions:

ηpx, y, 0q “ η0px, yq, θpx, y, 0q “ θ0px, yq, px, yq P r0, Lxs ˆ r0, Lys .

In this planar case - where ∆˚ “ ∆ “ B2

B2x
` B2

B2y
is the classical Laplace operator- we showed

that model (1)-(2) can exhibit spiral wave behaviour in a region of the parameter space where
the system undergoes a Hopf bifurcation for the kinetics and that an interesting mechanism
of spirals break up can also occur [41]. In addition, spatial pattern formation was also found
and related to the Turing instability mechanism whereas the interplay between the Hopf and
Turing instabilities was recognised as responsible for the arising of a class of spatio-temporal
patterns in the neighborhood of the codimension-two Turing-Hopf bifurcation point [42].
However, factors such as changes in the domain geometry or size, that are crucial in a wide
range of applications, have been not yet considered for the morphochemical model (1)-(2).
A very interesting situation is when the domain Ω corresponds to a 3D surface embedded in
R3, say Ω “ Γ Ă R3. In this case the operator ∆˚ “ ∆Γ is the Laplace-Beltrami operator
(for more details see next Section 4) and the domain has no border, that is BΓ “ m, so that
no boundary conditions have to be assigned. This case can be further enriched in realism by
considering Ω as a growing domain Ωptq so that the morphochemical model (1)-(2) becomes
capable of including further information accounting for the rate of growth of the domain,
that can be either pre-assigned or depending from the unknown variables η, θ (see e.g. [2, 55]
for further details).
As a first step in this research direction, in the present study we consider (1)-(2) on the
surface Γ of a fixed sphere of radius R ą 0. As we will show in Section 4, the reaction-
diffusion (RD) system on Γ will be solved numerically by means of the Lumped Surface
Finite Element Method (LSFEM) applied to (1)-(2) with ∆˚ “ ∆Γ, while in this section,
we develop our theoretical analysis within the framework recently proposed by Plaza and
coauthors [55] that describes the surface of interest by a regular parametrisation. To this
aim, let us consider the fixed sphere of radius R ą 0 defined by the parametrisation

Xpφ, ψq “ pxpφ, ψq, ypφ, ψq, zpφ, ψqq “ pR sinψ cosφ,R sinψ sinφ,R cosψq ,
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where φ P r0, 2πs, ψ P r0, πs with φ representing the longitudinal variable and ψ the latitude.
Denoting with h1 “ |Xφ| and h2 “ |Xψ|, it can be proved that for the RD system (1) in the
unknowns η “ ηpXpφ, ψq, tq, θ “ θpXpφ, ψq, tq, the operator ∆˚ is given by

∆˚u “
1

h1h2

˜

ˆ

h2

h1

uφ

˙

φ

`

ˆ

h1

h2

uψ

˙

ψ

¸

,

where u “ η, θ. Then, since h2
1 “ R2 sin2 ψ, h2

2 “ R2 and h1{h2 “ sinψ, h1 h2 “ R2 sinψ, we
have

∆˚u “
1

R2

ˆ

1

sin2 ψ
uφφ `

cosψ

sinψ
uψ ` uψ ψ

˙

. (3)

It thus follows that we can study system (1)-(3) on a rectangular domain for pφ, ψq P r0, 2πsˆ
r0, πs, completed with periodic boundary conditions for φ and a boundedness assumption at
ψ “ 0 and ψ “ π because of the singularity in the effective diffusion coefficients in (3) at the
ψ boundaries.
As far as the spatially uniform equilibria are concerned, the RD system (1)-(3) admits the
physically relevant spatially homogeneous equilibrium Pe “ pηe, θeq “ p0, αq. In this regard,
we recall that in the spatially uniform case Pe can loose its stability either by transcritical or
by Hopf bifurcations [42]. In the former case, the attracting equilibrium Pe loses its stability
because it exchanges its stability properties with another spatially uniform equilibrium. The
instability threshold for the transcritical bifurcation is B “ Btr, where

Btr “
A1 p1´ αqF2pα, γq

pk2 ´ k3qF1pα, γq
, (4)

with

F1pα, γq “ p1´ αqp1´ γ ` αγq, F2pα, γq “
2αγp1` αγ ´ γq ` 1´ γ

αp1` αγq
. (5)

Pe is stable for B ą Btr and unstable otherwise. In the Hopf bifurcation case, the attracting
equilibrium Pe loses its stability because a couple of complex conjugate eigenvalues of the
Jacobian matrix Je “ JpPeq crosses the imaginary axis. The Hopf instability threshold is
C “ CH where

CH “
A1 p1´ αq

F2pα, γq
, B ą Btr. (6)

Pe is stable for C ą CH whereas it is unstable otherwise. Since the Hopf bifurcation at
C “ CH is supercritical, for C ă CH homogeneous oscillations are expected due to the
presence of a stable limit cycle that surrounds the unstable equilibrium Pe.

3. Turing instability and pattern formation

In order to show the occurrence of a Turing instability in system (1)-(3) leading to spatial
pattern formation, we make use of linear stability analysis. We recall that a RD system
exhibits diffusion-driven instability if a homogeneous steady state is stable to small pertur-
bations in the absence of diffusion, but it is unstable to small spatial perturbations when
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diffusion is present [50]. In absence of diffusion, the stability requirement for the spatially
uniform equilibrium Pe is

Je11 ` J
e
22 ă 0, Je11 J

e
22 ´ J

e
12 J

e
21 ą 0, (7)

where Jeij is the ij entry of the Jacobian matrix evaluated at the steady state Pe.
Consider now w “ pη ´ ηe, θ ´ θeq, as a perturbation of the steady state Pe. Linearising the
RD system (1)-(3) about w “ 0, we get

wt “ D ∆̃˚w ` ρ J
ew, (8)

where the diffusion matrix D is given by

D “
1

R2

ˆ

1 0
0 d

˙

and ∆̃˚ “ R2∆˚ with ∆˚ given in (3). Solutions of equation (8) are of the form

wpχ, tq “
ÿ

k

ck e
λ t Ykpχq (9)

where χ “ pφ, ψq is the spatial variable. Here λ “ λpk2q is the temporal eigenvalue and the
spatial solution verifies the Helmholtz equation

∆̃˚Y ` k
2 Y “ 0, (10)

where k2 is the spatial eigenvalue. As shown in Appendix A, the eigenfunctions of the
eigenvalue problem (10) are given by the spherical harmonics:

Y m
l pφ, ψq “ L

|m|
l pcosψq exp pimφq, m “ 0,˘1,˘2, . . . (11)

where the positive integer number l is such that l ě |m| and the related eigenvalues k2

are such that k2 “ l pl ` 1q{R2. Now, to explicitly derive conditions for diffusion-driven
instability, one can substitute (9) into system (8) to get pλ I ´ ρ Je `Dk2qYk “ 0. To thus
obtain Yk nontrivial solutions, λ must be a solution of the characteristic polynomial

λ2
` λ

„

k2

R2
p1` dq ´ ρ pJe11 ` J

e
22q



` hpk2
q “ 0, (12)

with

hpk2
q “ d

k4

R4
´ ρ

k2

R2
pd Je11 ` J

e
22q ` ρ

2 detJe. (13)

For diffusion driven instability to occur, a solution of (12) must be such that Repλq ą 0. By
applying the Descartes’s rule of signs to (12) it follows that, in order to obtain Repλq ą 0,
the term hpk2q must be negative for some k so that we need

d Je11 ` J
e
22 ą 0. (14)
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Hence, the minimum h˚ of hpk2q must be negative for some k. Such a minimum is achieved

for k2
˚ “ ρ

R2

2 d
pd Je11 ` J

e
22q and is such that

h˚ “ hpk2
˚q “ ´

ρ2

4 d
pd Je11 ` J

e
22q

2
` ρ2 detpJeq. (15)

Requiring that h˚ ă 0, by (15) one obtains,

Je11 J
e
22 ´ J

e
12 J

e
21 ă

1

4 d
pd Je11 ` J

e
22q

2 . (16)

In conclusion, (7), (14) and (16) are the conditions for which diffusion driven instability can
induce spatial pattern formation in system (1). When the source terms are given by (2), the
Jacobian matrix Je takes the form

Je “

«

A1 p1´ αq ´B

Cpk2 ´ k3qF1pα, γq ´C F2pα, γq

ff

,

with Fipα, γq given by (5). The set of conditions (7), (14) and (16) for diffusion-driven
instability can hence be specialised as:

CH ă C ă dCH , Btr ă B ă BT , (17)

where d ą 1, Btr and CH given by (4) and (6) respectively, and the Turing threshold BT

given by

BT “
d2A2

1 p1´ αq
2 ` C F2pα, γq r2A1d p1´ αq ` C F2pα, γqs

4 dC pk2 ´ k3qF1pα, γq
. (18)

These inequalities hence determine a region in the parameter space where formation of
stationary spatial patterns is expected because of the interaction between the nonlinear
reaction terms and the diffusion process, see the Turing Region R in Fig.1. The unstable
modes are the spherical harmonics (11) with |m| ď l, for l such that k2 “ lpl ` 1q{R2 lies in
the range

k̃2
1 ă k2

ă k̃2
2, (19)

where k̃2
1{2 are the two roots of the equation in (13) hpk2q “ 0, i.e.

k̃2
1{2 “

ρR2

2 d

!

τe ¯
a

τ 2
e ´ 4 dC pk2 ´ k3qF1pα, γq rB ´Btrs

)

, (20)

with τe “ ´dA1pα ´ 1q ´ C F2pα, γq. Therefore if there exists at least one l satisfying
conditions (19)-(20), by starting from a random perturbation of pηe, θeq, system dynamics
can evolve into a spatially heterogeneous pattern generated by the spherical harmonics Y m

l

with |m| ď l. We wish to stress that, when the domain is a fixed sphere, conditions (17)
for the arising of diffusion driven instability are the same as the ones derived in the case
of a fixed planar domain. Hence the shape of the domain seems to have no impact on the
instability thresholds. Instead, the range of the allowable eigenmodes (19) depends on the
radius of the sphere. Eq. (20) shows in fact that increasing the radius R of the sphere has
the effect of increasing the wavenumber for which we would expect a pattern: as a result
higher mode patterns - and hence more complex patterns - are expected for larger spheres.
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Figure 1: Turing Region in the parameter space pC,Bq. The values for the other parameters of the
DIB model are: α “ 0.5; γ “ 0.2; k2 “ 2.5; k3 “ 1.5; A1 “ 10; d “ 20. The Turing region R is the
region in the parameter space pC,Bq where conditions (17) for the spatial pattern initiation are
verified. Note that the Turing region does not depend on the values of A2 and ρ.

4. Numerical Method

In Sections 5-6, we shall present several numerical simulations to describe pattern selection
at the onset of instability and pattern formation depending on the size of the sphere. For
this reason, in this section we briefly describe the numerical method used to solve directly on
a sphere Γ of radius R the RD PDE system (1)-(2) where ∆˚ “ ∆Γ is the Laplace-Beltrami
operator.

We perform the semi-discretisation in space by the Lumped Surface Finite Element Method
(LSFEM) and the integration in time by means of IMEX Euler method that approximates
implicitly the diffusion part of the PDE system and explicitly the reaction kinetics. Con-
vergence and invariance properties of the LSFEM method, that corresponds to the version
with lumping of the SFEM [26], are studied in [29]. By extending the classical FEM, Dziuk
introduced the SFEM in [25] to solve the (stationary) Laplace-Beltrami equation on arbi-
trary surfaces in R3 without boundary, by providing existence/uniqueness results and error
bounds. The SFEM method has then been applied to a selection of parabolic equations in
[28]. The method was then extended to solve general linear elliptic equations and parabolic
equations on both static and evolving domains (ESFEM) [27]. For example, the ESFEM
method has been applied in [2] to solve the well-known Schnakenberg reaction-diffusion sys-
tem on evolving surfaces. Other numerical approaches to solve reaction-diffusion systems on
static surfaces are given, for example, in [16, 63, 68, 69].
For our purposes, here we describe the Lumped SFEM method in the case of a general C2

compact surface Γ in R3 without boundary, i.e. BΓ “ H for the morphochemical RD system
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rewritten in matrix form as
Bu

Bt
“ D∆Γu`Rpuq, for px, tq P Γˆ p0, T s, up0,xq “ u0pxq P C

2
pΓq, (21)

where u “ upx, tq “ pηpx, tq, θpx, tqq : Γˆ r0, T s Ñ R2 is the (vector-valued) solution, D is a
positive definite (diagonal) diffusion 2ˆ 2 matrix, Rpuq “ pρfpη, θq, ρgpη, θqq is the reaction
term from (1) and ∆Γu “ ∇Γ ¨∇Γu is the Laplace-Beltrami operator, that is the tangential
divergence of the tangential gradient ∇Γu on the surface Γ (see [26]). SFEM is based on the
weak formulation of (21), described by

find u P pL2
pr0, T s;H1

pΓqqq2 with 9u P pL2
pr0, T s;H´1

pΓqqq2 such that
ż

Γ

Bu

Bt
ϕdσ `

ż

Γ

D∇Γu ¨∇Γϕdσ “

ż

Γ

Rpuqdσ,

@ t P r0, T s, @ ϕ P H1
pΓq, @i “ 1, . . . , N

(22)

where H1pΓq and H´1pΓq are Sobolev spaces on Γ and L2pr0, T s;HkpΓqq, k P t´1, 1u are
Bochner spaces on Γ, respectively. 2

Bu
Bt
ϕ is the vector-by-scalar product and ∇Γu¨∇Γϕ “

ˆ

∇Γη ¨∇Γϕ
∇Γθ ¨∇Γϕ

˙

is the contribution arising

from the Green formula on surfaces (see [26]) applied to the Laplace-Beltrami operator.
To build the semi-discrete problem and then the approximation in space, we consider first
of all a triangulation Th of Γ given by a set of NT P N triangles tTiu

NT
i“1 such that:

(i) all vertices txju
N
j“1 lie on Γ and the triangulated surface is given by Γh “

NT
ď

i“1

Ti.

(ii) Γh is an approximation of the surface considered and it is possible to consider a one-to-
one map a|Γh

between Γ and Γh , such that for a given function V : Γh Ñ R, it is possible
to define its lift on Γ given by V ` : Γ Ñ R such that V `papxqq “ V pxq, @x P Γh. (For more
details see [26]).
Then we consider the space of piecewise linear polynomials over Γh defined by:

Sh “ tV P C0
pΓq | V|T P P1pT q @ T P Thu (23)

and S`h “ tV
`|V P Shu the lifted counterpart of Sh. The semidiscrete RD problem is:

find uh P pL
2
pr0, T s;Shqq

2 with 9uh P pL
2
pr0, T s;Shqq

2 such that
ż

Γh

Buh
Bt

ϕhdσ `

ż

Γh

D∇Γh
uh ¨∇Γh

ϕhdσ “

ż

Γh

Rpuhqϕhdσ

@ t P r0, T s, @ ϕh P Sh.

(24)

If txju
N
j“1 is the set of vertices in Th, let us choose tϕipxqu

N
i“1a basis for Sh such that, for

each i, ϕipxjq “ δij for all j “ 1, . . . , N . Hence, every uh in (24) may be expressed as

uhpx, tq “
N
ÿ

i“1

ξiptqϕipxq, (25)

2The Sobolev space H1pΓq is the space of functions g : Γ Ñ R such that, for i “ 0, 1, the i-th order
tangential derivatives, meant in a distributional sense, are L2pΓq. The Sobolev space H´1pΓq is the topo-
logical dual space of H1pΓq. For k P t´1, 1u, the Bochner space L2pr0, T s;HkpΓqq is the space of functions

u : Γˆ r0, T s Ñ R such that
şT

0
}up¨, tq}2HkpΓqdt ă `8 and

şT

0
} 9up¨, tq}2HkpΓqdt ă `8. (See [65].)
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where for i “ 1, . . . , N , ξiptq “ pξη,iptq, ξθ,iptqq are time-dependent coefficients to be identified
for the two unknown functions ηpx, tq, θpx, tq of the original RD system. As usual in the finite
element approach, to calculate the ξiptq we consider (24) for each ϕi P Sh in the basis and
we replace uh by the expansion (25). It is worth noting that, owing to the presence of
nonlinear reaction terms, the integrals

ş

Γh
Rpuhqϕidσ cannot be expressed in matrix form

and approximation techniques must be used. In the present approach, we apply the so-called
mass lumping technique (see for example [31, 32] for planar FEM application) and following
[29] we call the resulting method as LSFEM. In analogy with [31, 32], we consider the
Lagrange interpolation operator πh : C0pΓhq Ñ Sh such that for any function v on the knots
πhpvpxjqq “ vpxjq holds for all j “ 1, . . . , N . Then we formulate the lumped semidiscrete
RD problem as:

find uh P pL
2
pr0, T s;Shqq

2 with 9uh P pL
2
pr0, T s;Shqq

2 such that
ż

Γh

πh

ˆ

Buh
Bt

ϕi

˙

dσ `

ż

Γh

D∇Γh
uh ¨∇Γh

ϕidσ “

ż

Γh

πhpRpuhqϕiqdσ

@ t P r0, T s, @ ϕi P Sh, @i “ 1, . . . , N.

(26)

In other words, we are approximating nonlinear integrands with their piecewise linear ap-
proximations in order to obtain an easy matrix formulation of the problem. In fact, if the
semidiscrete solution uh is expressed in the usual basis (25), D “ diagpd1, d2q accounts for
the diffusion coefficients and f, g are the reactions components of Rpuq, then (26) can be
written as a nonlinear ODE system of 2N equations as follows

ĂM 9ξη ` d1Aξη “ ĂMRηpξη, ξθq,

ĂM 9ξθ ` d2Aξθ “ ĂMRθpξη, ξθq,

where

Rηpξη, ξθq “ ρ

¨

˚

˝

fpξη,1, ξθ,1q
...

fpξη,N , ξθ,Nq

˛

‹

‚

, Rθpξη, ξθq “ ρ

¨

˚

˝

gpξη,1, ξθ,1q
...

gpξη,N , ξθ,Nq

˛

‹

‚

.

(27)

The usual stiffness and lumped mass matrices are given by

Ai,l “

ż

Γh

∇Γh
ϕi ¨∇Γh

ϕldσ @ i, l “ 1, . . . , N,

ĂMi,l “

#

ş

Γh
πhpϕi, ϕlqdσ if i “ l

0 if i ‰ l
@ i, l “ 1, . . . , N.

(28)

The ODE system (27) is endowed with the initial condition ξηp0q “ ξ0
η, ξθp0q “ ξ0

θ arising
from the discretisation of initial conditions ηpx, 0q, θpx, 0q on the surface.
By reordering the unknowns ξη “ pξη,1, . . . , ξη,Nq

T , ξθ “ pξθ,1, . . . , ξθ,Nq
T in a column vector,

say ζ P R2N , the problem (27) may be rewritten in compact form as

M̄ 9ζ ` D̄ Āζ “ M̄F pζq, (29)

where F “ pRT
η , R

T
θ q

T and M̄ , Ā and D̄ are now block diagonal matrices having on the

diagonals ĂM , A and the diffusion coefficients d1IN , d2IN (IN P RNˆN identity matrix),
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respectively.
In our application, we will solve this ODE system by the IMEX Euler method on a uniform
meshgrid of timestep ht ą 0, yielding the following full discrete scheme:

pM̄ ` htD̄Āqζn`1 “ M̄ζn ` htM̄F pζnq, n “ 0, . . . , Nt (30)

where ζ0 is given by the IC of the RD system. Hence in (30), two linear systems of dimension
N have to be solved at each timestep tn “ t0 ` nht.

To obtain the simulations of the next sections, we implement the LSFEM/IMEX Euler
method in the MATLAB environment and to solve the linear systems we apply a direct
solver. The numerical solutions on the sphere for η and θ will be recovered by (25) in the
polynomial basis ϕi of degree k “ 1. In [29], it has been proved that the LSFEM/IMEX
Euler method is able to preserve invariant regions of RD systems on closed compact surfaces,
jointly with a counter-example showing that SFEM without lumping does not satisfy this
property that is indeed important from the physical point of view. Moreover, due to the
diagonal structure of mass matrix in (28), from the computational point of view the LSFEM
method is less expensive than classical SFEM.

In the simulations presented in next Sections 5-6, we will show the numerical solutions
obtained by the LSFEM method on the sphere for several choices of the parameters in
the morphochemical model. Moreover, to appreciate the pattern distribution on the dark
side of the sphere, we will show also the projection of each numerical solution in spherical
coordinates pφ̃, ψ̃q P r´π, πs ˆ r´π{2, π{2s. We remark that solving the RD-PDE system
directly on the sphere with our approach avoids numerical problems due to the singularity
arising when the systems is instead solved on a rectangular domain in spherical coordinates,
as for example in [69].

5. Pattern selection at the onset of instability

In order to gain more insight about the steady pattern that will arise at the onset of insta-
bility, the reaction-diffusion problem can be reduced to the nonlinear bifurcation equation
governing the dynamics. For this purpose, general methods as the Lyapunov-Schmidt re-
duction [37], perturbation expansions using the Fredholm alternative [7, 21, 30, 52] or the
center manifold reduction [15] can be used alternatively. In the case of a sphere, according
to the center manifold approach, near a bifurcation point a physical variable of interest w is
expanded in terms of spherical harmonics on a (2l ` 1) center manifold, such that in spher-

ical coordinates we have w “
l
ÿ

m“´l

zmptqY
m
l pφ, ψq, where all the modes zm have the same

growth rate λ. In fact, differently from the case with no symmetry where only one linearly
independent mode loses stability at a given set of parameter values, in the case of spherical
symmetry there are (2l ` 1) independent modes losing stability with the same growth rate
λ. The dynamics of the zm modes are prescribed by the set of (2l ` 1) nonlinear ordinary
differential equations that, truncated at the quadratic order, have the form:

9zm “ λ zm ` β
l
ÿ

j,k“´l

cpj, k,mq zj zk, m “ ´l, . . . , l, (31)
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where λ is the common growth rate of the fastest growing perturbation mode obtained from
the linear stability analysis of the spatially homogeneous solution; β is an arbitrary scaling
parameter and the coefficients cpj, k,mq are the so called Clebsch-Gordan coefficients. We
refer to [47, 48, 51] for a more detailed description of the center manifold reduction proce-
dure and for the derivation of the bifurcation equations. The equilibrium solutions of the
bifurcation equations (31) correspond to steady patterns on the spherical surface for the
model and the dynamics on the center manifold determines which patterns are selected - at
the bifurcation - when the spatially homogeneous steady solution loses its stability. Since
the bifurcation equations are p2l ` 1q, the ODE problem becomes more and more involved
as l increases. However, the cases of even and odd l have been proved to be quite different
[12, 13, 48]. In fact, for odd l there are no quadratic terms in the bifurcation equations
whereas for even l quadratic terms are present but, because of the spherical symmetry, a
unique quadratic term is allowed [48, 61]. It follows that in the case of even l, the behavior
on the center manifold is uniquely determined up to the quadratic order. This is a really
striking feature because - at the onset of instability - models belonging to very different
contexts can generate the same type of patterns and this universality is a direct consequence
of the spherical symmetry. In particular, for l “ 6, 10, 12 it has been proved that at the
onset of instability a spot pattern is selected [48].
For the case l “ 6, analytical investigations performed in [12] have revealed that the nonlinear
bifurcation equations describing the dynamics in the center manifold exhibit four solutions
which have symmetry Op2q (axysimmetric), I (icosahedral), O (cubic) and Dp6q (hexago-
nal). On the ground of variational principles, the icosahedral solution, i.e. with a pattern of
spots, has also been indicated as the preferred one. This result has also been explained by
looking at the stability properties of the different solutions in terms of the eigenvalues of the
Jacobian matrix of (31). In fact, near the bifurcation, all the solutions are unstable but only
the icosahedral solution has a single positive eigenvalue, while the remaining eigenvalues are
negative. This solution is then preferred because it can become stable thanks to a saddle-
node bifurcation if higher-order terms are considered in the bifurcation equations (31) (see
[48, 61]).
The above analytical findings have been confirmed by numerical studies performed by solv-
ing different models on the surface of the sphere. For example, [69] and [16] considered
two different RD systems to investigate pattern formation within the biomedical context of
viruses and tumors, respectively. For the case l “ 6, both of them found a stable spotted
pattern emerging at the onset of instability for the spatially homogeneous solution. Spot-
ted patterns were also found in [12] in a different context of convection problems. In [48],
extensive investigations on the modified Swift-Hohenberg model for l “ 6 confirmed that
the spotted pattern is the one selected by the system dynamics at the onset of instability.
Further numerical investigations for this model have shown that, moving away from the bi-
furcation boundary, a transition from an icosahedral solution with a pattern of spots to an
axisymmetric striped pattern occurs and that a variety of more complicated patterns can be
stable further away from the onset of the Turing instability.
For the case l “ 6, we prove that the morphochemical model (1)-(2) shares the above uni-
versality property when the homogeneous steady state Pe undergoes Turing instability. Let
us consider ρ “ 10, C “ 5 and let us fix the values of the other parameters as in Fig.1. The
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eigenvalue equation (12)-(13) becomes:

λ2
` λ p21 b` 39.0909q ´ 4454.5454` 225B ´ 910.9090 b` 20 b2

“ 0,

where b “ k2{R2. The largest eigenvalue is given by

λ` “ λ`pb, Bq “ ´10.50 b´ 19.5454` 5
a

hpb, Bq,

where hpb, Bq “ 3.610 b2 ` 52.85 b ´ 9B ` 193.4. To find specific conditions for which the

largest eigenvalue λ` is zero, we maximize λ` with respect to b, by calculating
dλ`
db

“ 0.

Then the maximum is achieved for bmax “ ´7.3205` 0.2908 10´3
?

1.034` 0.16245 109B so
that λmax` pBq “ λ`pbmax, Bq can be considered as a smooth function of the parameter B.
By requiring that λmax` pBq “ 0, we get B “ 65.8955 that corresponds to the Turing bifur-
cation threshold BT given in (18). It follows that bmax “ 22.7727 and k2

max “ 22.7727R2.
Hence for B “ BT “ 65.8955, the larger eigenvalue λ` is zero and the other one is strictly
negative and uniformly bounded away from zero, i.e. we are on the Turing curve in the
bifurcation diagram. We now select the radius of the sphere so that l “ 6 corresponds
to the fastest perturbation modes growing away from the spatially homogeneous solution.
Recalling that k2 “ lpl ` 1q{R2, we get that for l “ 6, the value of R corresponding to
the critical value of k2 is R˚ “ 1.1653. Fig.2 shows the pattern formation process on a
sphere of radius R˚ for different values of the parameter B, when the other parameters are
fixed as indicated before. Looking at the bifurcation diagram in Fig.1, this variation of B
inside the Turing region corresponds to the decreasing of the value of B along the vertical
line C “ 5, starting from the Turing boundary (B « BT ). Fig.3 reports the correspond-
ing solutions projected in spherical coordinates pφ, ψq to emphasize the spatial structure
also on the dark side of the sphere. Numerical results shown in Fig.2 and Fig.3 confirm
the previous analytical findings. For all simulations we applied the LSFEM/IMEX Euler
method with timestep ht “ 2 10´3on a sphere discretization Γh of N “ 4098 nodes. For
B “ r65.5, 62, 57, 52, 48, 46, 44, 40, 30s, the stationary patterns were attained at the final
times T “ T pBq “ r180, 90, 45, 36, 18, 18, 18, 18, 18s. It is worth noting that in a neighbor-
hood of the Turing bifurcation line the morphochemical model selects pattern composed of
spots. Moreover, departing from the Turing bifurcation curve, the system undergoes differ-
ent morphological transitions exhibiting a large variety of patterns. In fact, for B lower than
BT in turn we find: spots (B “ 65.5, B “ 62); stripes (B “ 57, B “ 52); one armed-spirals
(B “ 48, B “ 46); again stripes (B “ 44) and finally reversed spots (B “ 40, B “ 30). As
insightfully discussed in [48], moving away from the bifurcation line (in our case: fixing C
and decreasing the value of B within the Turing region), the transition from spotted pattern
to other kinds of pattern are essentially system-dependent since, in the case of even l, the
bifurcation equations that describe system dynamics on the center manifold are universal
up to the quadratic order whereas higher order terms depend on the structure of the specific
system under study. It is worth noting that, for decreasing values of B, our morphochemi-
cal model and the Swift-Hohenberg one [48, 64] exhibit some qualitative similarities in the
sequence of pattern transitions. This finding would deserve further investigations, but for
the moment we just point out the following facts: (i) the transition from an icosahedral
solution with a pattern of spots to an axisymmetric striped pattern and (ii) the emergence
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Figure 2: LSFEM numerical solutions ηpx, T q of the DIB model (1)-(2) on the sphere Γ of radius
R˚ “ 1.1653 with model parameters ρ “ 10, C “ 5 fixed and decreasing values of B starting from
the Turing boundary near the threshold BT “ 65.8955. The other parameter values are chosen as in
Fig.1. For each value of B the final time of integration T is reported in the main text. Simulations
show the rich morphological transition scenarios present in the Turing region. (See also next Fig.3)

of one-armed stationary spirals after axysimmetric solutions. The latter aspect denotes an
interaction between odd and even modes since these kinds of pattern only arise through a
linear combinations of spherical harmonics of degrees l and l ` 1, [64].

All the numerical results reported in this section were obtained with initial conditions u0pxq
defined in (21) prescribed as small spatially random perturbations added to the homogeneous
equilibrium Pe. Keeping all the other parameters fixed, the stationary spatial patterns that
emerge only depend on the initial conditions and on the value of the chosen bifurcation
parameter B. In this context, it is interesting to note that, for a variety of random initial
conditions and in a suitable range of the bifurcation parameter, the obtained final patterns
are qualitatively similar from a morphological point of view so that each pattern can be
considered to belong to a given morphological class. Hence, by using random perturbations
of Pe and moving in the Turing region by only varying the bifurcation parameter B, we have
found three relevant morphological classes of patterns: spots, stripes/labyrinths, reversed
spots (see Fig.2 and Fig.3). These classes of patterns are worth of interest since they are
ubiquitously detectable in a large variety of pattern forming systems. For example, in ecolog-
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Figure 3: LSFEM numerical solutions ηpx, T q of the DIB model (1)-(2): 2D view in spherical
coordinates of the morphological scenarios depicted in Fig.2 for decreasing values of the parameter
B in the Turing region.

ical mathematical models that describe the community scale dynamics of dryland vegetation
over flat terrain [35, 57, 70], the spot, labyrinth and reversed spot (gap) patterns reflect the
landscape self-organisation with respect to water resources. In particular, the transition
‘gaps Ñ labyrinths Ñ spots’ as the ecosystem aridity increases has been interpreted as an
early indicator of landscape desertification [38, 39].

6. The role of the effective domain size on pattern formation

In Section 3, by using linear stability analysis, we found that - fixing the diffusion coefficient
d and the kinetic system parameters - the range of wavenumbers yielding the arising of
spatial patterns depends on the constant A “ ρR2 (see expressions (19) and (20)). This
implies that more complex and structured patterns can be expected by increasing the value
of A . Obviously, higher values of A can be obtained increasing the value of ρ for a fixed
value of the radius R or by increasing the sphere radius R for a fixed value of the parameter
ρ. Since the surface area of the sphere Γ is |Γ| “ 4πR2, it is easy to see that A “ ρ|Γ|{4π is
proportional to the geometric size of the domain of integration and ρ can indeed be regarded
as a scaling parameter of the surface area [50]. For our purposes, let us define A “ ρR2 the
effective domain size for the PDE surface model (1).
In Section 5, the classification of patterns in terms of variation of B has been obtained for
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Figure 4: DIB model (1)-(2) for pC,Bq “ p3, 30q, reversed spot pattern. LSFEM numerical solutions
ηpx, T q for pR0, ρ0q “ p1, 1000q (left panel) and for pR1, ρ1q “ p3, 111.11q (right panel) obtained
at final time T “ 1, with timestep ht “ 10´4 on a meshgrid of N “ 65538 nodes. Very similar
solutions are obtained on different spheres but for same effective domain size A » 1000.

A “ A0 “ 13.5792. The range of unstable wavenumbers selected by (20) indicates that just
few modes are present in the resulting patterns and, as confirmed in Fig.2 and Fig.3, simple
structures are selected. In this section we propose a systematic numerical study of the effects
of varying the effective domain size A on pattern formation on a sphere. To this aim, we
restrict this study to three representative choices of the bifurcation parameters, prototypical
of the three morphological classes identified in Section 5. In particular, we shall consider
pC,Bq “ p5, 62q for the spots, pC,Bq “ p3, 66q for the stripes/labyrinths and pC,Bq “ p3, 30q
for the reversed spots (holes).

6.1. Fixed A : the same morphology on spheres of different radii R

First of all we check that, keeping the value of the effective domain size A fixed, we can
obtain the same pattern distribution on spheres exhibiting different radii R. Let us consider
the parameter values pC,Bq “ p3, 30q, for which reversed spots are expected. We solve two
different problems for pR0, ρ0q “ p1, 1000q and pR1, ρ1q “ p3, 111.11q, such that the effective
domain sizes are numerically the same A0 “ 1000 » A1 “ 999.99. By the expression of A ,
it is easy to see that

ρ1 “ ρ0

ˆ

R0

R1

˙2

(32)

holds so that this relationship can be regarded as an effective scaling law among spheres of
different radii R but yielding the same effective domain size A for the RD system.
In Fig.4 we show the numerical solutions of model (1)-(2) obtained by applying the LSFEM
method (see Section 4) for the cases pR0, ρ0q (left panel) and pR1, ρ1q (right panel). The
corresponding projections in spherical coordinates are also shown. The numerical results in
Fig.4, obtained by the LSFEM method at final time T “ 1 with timestep ht “ 10´4 on a
meshgrid of N “ 65538 nodes, show that: (i) reversed spots are obtained in both cases; (ii)
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even if we have two spheres Γ0 and Γ1 with different surface areas |Γ0| “ 4π and |Γ1| “ 36π,
the proper choice of the scaling parameters ρ0 and ρ1 allows to fit the same number of
structures in these geometrically different areas. Note that, point (ii) above can be viewed
as a numerical validation of the analytical results about the range of unstable modes in (20)
discussed in Section 3, since in both cases the theory predicts that the same number of
unstable modes will be present in the solution. In Section 7, we shall introduce a range of
indicators capable of providing also a quantitative corroboration of this equivalence.

6.2. Effects of varying A by varying ρ

In the present section, we study the impact on pattern morphology of varying the effective
domain size A . To this aim, we have kept fixed the actual geometry - that is the radius
R of the sphere - and increased the value of ρ. In the following we shall present numerical
simulations obtained by: (i) fixing R “ 3; (ii) considering the set of bifurcation parameters
pC,Bq representative of the three morphological classes reported in Section 5 and (iii) se-
lecting the following ρ values, ρ “ 1, 10, 56, 100, 150, 300. In the case of labyrinths we shall
also include additional ρ values, in order to better emphasize the rich scenario of spatial
structures prevailing in this case. Our choice of varying A by increasing ρ instead of R (i.e.
instead of considering increasingly larger spheres) has a specific computational motivation.
In fact, for fixed ρ, increasing the radius of the sphere Γ would imply using progressively
finer space meshsizes, in order to achieve an adequate approximation Γh « Γ by an appro-
priate triangulation. Of course, this would imply to increase the dimension 2N of the ODE
system in (29), resulting in a notably larger computational effort to apply the full discrete
IMEX method in (30), with a fixed timestep ht. Instead, by fixing the sphere radius R a
(sufficiently large) value of N can be fixed, whereby by increasing ρ only the stiffness of the
corresponding ODE system (29) is increased, but not its dimension. As a result of this, the
IMEX scheme in (30) must be simply applied with a (sufficiently) small timestep ht. Small
timesteps ht, say ď 10´3, imply that a large number Nt » T {ht of linear systems have to
be solved in (30) until the final time of integration T . On the other hand, larger values
of ρ imply faster transients in the solution, that is smaller T can be considered. Hence,
in order to optimise the computational effort, for the following simulations we adopt this
second strategy and we consider in the more expensive case N “ 262146, ht “ 10´5. Note
that, for large values of ρ we consider fine meshsizes on |Gammah, that is larger N , to be
able to capture the corresponding more involved pattern structures. For the LSFEM simu-
lations for each parameter set pC,Bq, we will report the details of the algorithm settings as
pρ, T pρq, ht, Nq, i.e. in dependence of ρ the values of the final time of integration T “ T pρq,
the timestep and the degrees of freedom N for the LSFEM method applied.

Fig.s 5-6-7 show the numerical simulations obtained by solving the DIB model (1)-(2) on a
sphere of radius R “ 3 for the three choices of the bifurcation parameters pC,Bq reported
above. In the first case, we have spot patterns, in the second one labyrithine patterns and
in the third one patterns consisting of reversed spots (holes) in a flat surface. By increasing
ρ, that is by increasing the effective domain size A , the number of unstable modes (20)
present in the solution increases and progressively more structured patterns develop. Fig. 5
concerns the case of spots and shows that for larger effective domain sizes, more and more
spots of smaller size are present at the stationary state. It is worth noting that for this
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Figure 5: DIB model for pC,Bq “ p5, 62q, spot patterns on the sphere of radius R “ 3: LSFEM
numerical solutions ηpx, T q for ρ “ r1, 10, 56, 100, 150, 300s attained at the corresponding final
integration times T “ T pρq “ r180, 90, 27, 22.5, 18, 3.6s (for further algorithm details see the main
text). Snapshots from top left to bottom right show the morphological changes of the spot pattern
on the sphere due to the variation of the effective domain size. Corresponding projections are
shown in the bottom panels.

choice of parameter values, near the boundary of the Turing region, the stationary states
are attained for very longtime. For this reason, we suppose that some short stripes present
among the spots, for ρ ě 56 are indeed trains of spots that have not been able to split
completely at the (even long) final time of integration of our simulations. In this case,
the LSFEM numerical simulations have been obtained by using the following algorithm
settings pρ, T pρq, ht, Nq: ρ “ r1, 10, 56, 100, 150, 300s, T “ r180, 90, 27, 22.5, 18, 3.6s, ht “
r2 10´3, 2 10´3, 10´3, 5 10´4, 2 10´4, 10´4s, N “ r4098, 4098, 16386, 65538, 65538, 65538s.

As far as the labyrinthine patterns is concerned, Fig. 6 shows that increasing ρ, the
branches corresponding to the maxima (in yellow) increase in number and become thin-
ner and more curved but they are always larger than the branches corresponding to the
minima (in red). Moreover, the maximum and minimum values increase proportionally in
height and depth so that uniform spatial pattern oscillations are obtained. In this case,
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Figure 6: DIB model for pC,Bq “ p3, 66q, labyrinth patterns on the sphere of radius R “ 3: LSFEM
numerical solutions ηpx, T q for ρ “ r2, 3, 10, 56, 100, 150, 300, 500s attained at the corresponding
final integration times T “ r45, 27, 9, 4.5, 2, 2, 0.9, 0.1s (for further algorithm details see the main
text). Snapshots from top left to bottom right show the morphological changes of the labyrinths
- on the sphere and in the corresponding projection - due to the variation of the effective domain
size.

the LSFEM numerical simulations have been obtained by using the following algorithm set-
tings pρ, T pρq, ht, Nq: ρ “ r2, 3, 10, 56, 100, 150, 300, 500s, T “ r45, 27, 9, 4.5, 2, 2, 0.9, 0.1s,
ht “ r5 10´3, 5 10´3, 2 10´3, 5 10´4, 2 10´4, 2 10´4, 5 10´5, 10´5s, N “ 16386 for ρ “ 2, 3
otherwise N “ 65538.

In the last case, for increasing values of ρ the reversed spots on the sphere increase in number
and become progressively of smaller size and deeper. The maximum value corresponds to the
flat surface (the red colour in Fig.7) and is essentially insensitive to changes in ρ, whereas
the minima in the holes grow larger with increasing ρ. In this case, the LSFEM numerical
simulations have been obtained by using the following algorithm settings pρ, T pρq, ht, Nq: ρ “
r1, 10, 56, 100, 150, 300s, T “ r27, 9, 4.5, 1, 1, 0.9s, ht “ r5 10´3, 5 10´3, 5 10´4, 10´4, 10´4, 10´4s,
N “ 16386 for ρ “ 2, 3, N “ 262146 for ρ “ 300, otherwise N “ 65538.
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Figure 7: DIB model for pC,Bq “ p3, 30q, reversed spots (holes) on the sphere of radius R “ 3:
LSFEM numerical solutions ηpx, T q for ρ “ r1, 10, 56, 100, 150, 300s attained at the corresponding
final integration times T “ r27, 9, 4.5, 1, 1, 0.9s (for further algorithm details see the main text).
Snapshots from top left to bottom right show the morphological changes of the patterns - on the
sphere and in the corresponding projection - due to the variation of the effective domain size.

7. Pattern labelling with quantitative indicators

In this section, we introduce some quantitative indicators to classify the patterns obtained
in Section 6.

7.1. Spatial mean and degree of flatness

As first indicator we consider the ‘spatial mean value’ of the morphology ηpx, tq, that is

xηptqy “
1

|Γ|

ż

Γ

ηpr, tqdr. (33)

This indicator for longtime integration allows us to discriminate between stationary and
oscillating patterns: if xηptqy reaches an approximately constant value, a stationary pattern
tends to be attained whereas an asymptotic oscillatory behaviour of xηptqy indicates an
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Figure 8: DIB model for pC,Bq “ p3, 30q, reversed spots. Time behaviours of the ‘spatial mean’
(33) and the ‘degree of flatness’ (34) for the solutions in Fig.4. For pR0, ρ0q “ p1, 1000q and for
pR1, ρ1q “ p3, 111.11q, that is same effective domain size A » 1000, the same asymptotic value is
obtained: this result is a quantitative validation of the scaling law (32).

oscillating pattern.
As second indicator we consider a mean measure of the spatial gradient, that is

Eηptq “
1

2
}∇Γηptq}

2
2 “

1

2

ż

Γ

|∇Γηpr, tq|
2dr (34)

that allows to collect information on the spatial variations of the solution. The function Eηptq
can in fact be considered as a measure of the ‘degree of flatness’ of a given solution because
it indicates how far the solution is from being spatially homogeneous. In fact, since for a
spatially homogeneous solution @x P Γ, ∇Γηpxq “ 0 holds, if limtÑ8Eηptq “ Ē “ 0 then
no spatially inhomogeneous steady pattern exists. Whereas, if Eηptq Ñ Ē ą 0 a spatially
structured solution is attained. These indicators can be used to quantitatively confirm the
results of Section 6.1 and Fig.4, that is in correspondence of different spheres but for the same
effective domain size A the same morphochemical scenario is present. This equivalence is
quantified in Fig. 8, where we show that the ‘spatial mean’ (33) (left panel) and the ‘degree
of flatness’ (34) (right panel) indicators asymptotically tend to the same value for the two
choices pR0, ρ0q “ p1, 1000q and pR1, ρ1q “ p3, 111.11q.

7.2. Density of structures

In this section we analyse the patterns studied above in terms of the structures present in the
solution for a given choice of the effective domain size A “ R2ρ. We shall show that there
exists a critical value of A , say A ˚, such that for A ě A ˚ the emerging pattern is solely
determined by the choice of the fixed bifurcation parameters pC,Bq and its morphological
structure is independent from the effective domain size A . We define this particular pattern
the intrinsic pattern. Instead, for A ă A ˚ there is not enough space for the pattern to
completely express its typical shape. In contrast, we call extrinsic patterns those obtained
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for A ă A ˚. Since in the cases considered in Section 6.2 we have changed the value of A by
only changing the parameter ρ, equivalently we shall show that in our numerical simulations
a critical value ρ˚ exists such that the intrinsic pattern can emerge.
We first observe that, in the Turing’s mechanism of pattern formation, the characteristic
wavelength of the emerging pattern is solely dependent on the reaction and diffusion coef-
ficients whereas the domain size only fixes the number of repetitions of the basic pattern
that fits into the domain [53]. Hence, the total number of spots or stripes is proportional
to the domain size. To express this result quantitatively, we use some tools from cluster
analysis to define a density of structures for each kind of pattern identified. In the case of
spots and reversed spots, it is straightforward to simply count the number of spots/holes,
say Npρq as a function of ρ. Hence, we define the density of spots δs and the density of
reversed spots/holes δh by

δspρq “ Ns{A “ Ns{pR
2ρq, δhpρq “ Nh{A “ Nh{pR

2ρq (35)

Cluster analysis is applied by using some functions of the Matlab Statistics toolbox. Briefly,
for each value of ρ, we define a threshold for the projected solution ηpφ, ψ, T q to identify
the locations of spots/holes as points Pk of coordinates Xij “ pφi, ψjq in the plane. Hence,
a matrix of distances D among these points is computed, on the basis of which the same
points are first pairwise grouped starting from their minimum distances and then combined
into progressively larger groups in a hierarchical way. This operation is performed by using
the Matlab function Z=linkage(D) that yields an agglomerative hierarchical cluster tree Z.
The Matlab function T=cluster(Z,’cutoff’,c) recognises the formation of a cluster when a
node in the tree and all its subnodes have inconsistency value lower than a given threshold
c. The inconsistency coefficient I characterizes each link in the tree by comparing its height
with the average height of links at the same level (for leaves I “ 0). The higher the value
of I, the less similar are the objects connected by this link. Heuristically, we have chosen
the cutoff c to identify the clusters as the mean value of I on our data of spots/holes. The
output of the above cluster function is a vector T such that n “ Tk means that the point Pk
in the data belongs to the n-th cluster identified, hence N “ maxpnq yields the total number
of clusters identified for this set of data.
We have thus used this procedure to extract the values of Ns, Nh in the above definitions
of density (35) for spots and holes, respectively. In Fig.9, we report an example of cluster
identification to extract the value Nh for the reversed spot solution shown in Fig.7 for ρ “ 10
and here reported again in the upper left subplot. In Fig.9, upper right plot, we show the
clusters formed by the points Pk, k “ 1, . . . , NP located in the plane by the algorithm. In
Fig.9, lower left plot, we show the dendrogram of the hierarchical cluster tree Z and in Fig.9,
lower right plot, the inconsistency index Ik, k “ 1, . . . , NP . It is easy to see that Nh “ 20
clusters have been identified. (Indeed 19 holes are present in the pattern solution, we found
Nh “ 20 because in the planar projection one of them is cut in two on the boundary).

For the labyrinths it is instructive to note that on the one hand very few clusters can be
extracted, since the group of connected stripes generated by varying the effective domain
size A is essentially invariant, on the other hand the width of stripes and their lengths are
different. For this reason, in the case of labyrinths we define the density structure δl in a
slightly different way, that is δl “ Lm{A “ Lm{pR

2ρq, where Lm is a measure of the total
length of the labyrinth. For each value of ρ, given a threshold to extract the positive values
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Figure 9: Cluster identification for reversed spots in the polar projection of ηpx, y, T q solution for
ρ “ 10 on the sphere R “ 3 (see Fig.7). Nh “ 20 clusters have been identified, indeed 19 holes are
present, since in the planar projection one of them is cut in two on the boundary. See the main
text for the explanation of the tree Z and of the inconsistency index I.

of the solution, we estimate Lm by calculating the area a covered by all the stripes present
and their mean width w such that Lm “ a{w.
We report the behaviour of the three structure densities δspρq, δlpρq, δhpρq in Fig. 10. In all
the cases, we found that

lim
ρÑ8

δspρq “ cs ą 0, lim
ρÑ8

δhpρq “ ch ą 0, lim
ρÑ8

δlpρq “ cl ą 0,

that is for all kinds of patterns a constant density of structures is obtained for large values
of the effective domain size A . Hence, for each choice of the bifurcation parameters pC,Bq,
we can identify the threshold value ρ˚ such that we can distinguish between extrinsic and
intrinsic patterns, in fact here ρ˚l » 100, ρ˚h » 100, ρ˚s » 150 (See Fig. 10).

7.3. Absolute and relative spatial heterogeneity

To investigate the way in which the spatial heterogeneity varies with the domain size |Γ|,
we focus on the so called heterogeneity function that was introduced by Berding in [4] as
a quantity to compare theory and experiments in parametric studies since it accounts in a
simple but effective way the spatial structure of the RD patterns. In particular, Berding
introduced such a heterogeneity function for the spatial patterns generated by RD systems
with zero flux boundary conditions on a one-dimensional domain Ω “ r0, Ls and showed
that - keeping the kinetic system parameters fixed - heterogeneity typically increases as the
diffusion coefficient decreases or as the size of the diffusion domain increases.
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Figure 10: Structure densities δlpρq for labyrinths (left plot), δhpρq, δspρq for reversed spots and
spots (right plot). In all three morphological classes it is evident the existence of ρ˚ discriminating
between intrinsic (ρ ě ρ˚) and extrinsic patterns (ρ ă ρ˚). In fact, for ρ ě ρ˚, that is after the
critical effective domain size A˚ “ R2ρ˚, a constant density of structures is obtained.

For our specific application, after [4], the heterogeneity function can be defined as function
of the scaling parameter ρ as follows

Hpρq “
1

|Γ|

ż

Γ

p|∇Γη̄pxq|
2
` |∇Γθ̄pxq|

2
qdx, (36)

where pη̄pxq, θ̄pxqq is the diffusion-driven spatially heterogeneous steady state solution of
system (1)-(2) on the sphere Γ in correspondence of ρ, that is

η̄pxq “ lim
tÑ8

ηpx, tq, θ̄pxq “ lim
tÑ8

θpx, tq x P Γ.

In this study we found that varying the scaling parameter ρ, Hpρq increases monotonically
with ρ in a suitable parameter interval rρmin, ρmaxs. When Γ is a fixed sphere, we found that
the heterogeneity function Hpρq displays the same theoretical trend as in the planar case.
We can define the discrete version of (36) by

HT
h pρq “

1

|Γ|

ż

Γh

p|∇hη̄hpxq|
2
` |∇hθ̄hpxq|

2
qdx « Hpρq, (37)

by using the tangential gradients on Γh and the numerical solutions η̄hpxq “ ηhpx, T q, θ̄hpxq “
θ̄hpx, T q obtained by the LSFEM method at the final time of integration T chosen such that
the stationary solution is attained (see previous Section 4 for the notations). As explained
in Section 4, LSFEM yields the approximation of the L2-norm of the gradients through the
stiffness matrix A in (28) such that

pη̄ThAη̄h ` θ̄
T
hAθ̄hq{|Γ| ” HT

h pρq, (38)

where pη̄hqj “ η̄hpxjq, pθ̄hqj “ θ̄hpxjq are the numerical solutions on the meshpoints xj P
Γh, j “ 1, . . . , N . It is worth noting that, by construction, (38) corresponds to the composite
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Figure 11: Morphological indicators: numerical approximations of the indicators in (36),(33),(39)
evaluated for the stationary patterns reported in Fig.s 5-6-7 for increasing values of ρ obtained at
the final time T . Left plot: the “heterogeneity function” HT

h ρ in (36). Middle plot: spatial mean
value xηpT qy as function of ρ. Right plot: normalised heterogeneity GTh ρ in (40).

midpoint quadrature rule for the integral in (37). The discretization error between Hpρq and
HT
h pρq in (38) calculated by means of the weak formulation of the LSFEM method can be

analysed as in [26] and corresponds to a second order approximation in h. Fig.11 (left) shows
the discrete ‘heterogeneity function’ (38) HT

h pρq for the three pattern typologies: spots (B “
62, C “ 5), labyrinths (B “ 66, C “ 3) and reversed spots (B “ 30, C “ 3) corresponding
to the numerical solutions shown in Fig.s 5–7. In all three cases, when ρ P r1, 300s, HT

h pρq
is a monotonically increasing function of ρ meaning that higher ρ values produce spatial
patterns with a higher degree of heterogeneity. In fact, numerical experiments shown in
Fig.s 5-7 confirm this result, since more and more structured spatial patterns appear for
larger ρ in all of the three cases considered.
In analogy with the evaluation of pattern heterogeneity, discussed above, it would be useful
to be able to distinguish among the above different morphological classes on the basis of
some appropriate integral indicator. To this aim, HT

h pρq alone is not sufficient, since it is not
able to capture aspects specifically related to the pattern shape. In fact, by inspection of Fig.
11(left) one can assess that the trend of the heterogeneity function HT

h pρq is qualitatively the
same for spots, reversed spots and labyrinthine patterns. From this point of view, the spatial
mean value xηpT qy in (33) appears to be more effective. In fact, as shown in Fig. 11(middle),
for each of the chosen patterns, xηpT qy (as function of ρ) is rather insensitive to changes in
the parameter ρ but takes asymptotically significantly different values in correspondence of
the different pattern types: « 1 for the reversed spots, « 0.2 in the case of labyrinths and
« 0.06 in the case of spots. We stress that values of xηpT qy approaching zero indicate a
complete balance between the maximum and the minimum of the spatial oscillations of the
patterns.
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The above information is indeed accounted by the following function Gpρq,

Gpρq “
Hpρq

1

|Γ|

ż

Γ

pη̄prq2 ` θ̄prq2qdr
, (39)

that was proposed in [4] to compare the ability of different models to produce spatial patterns.
By following the same arguments and notations used to obtain (38) as discrete approxima-
tion of (36), we compute an approximation of (39) on the sphere as post-processing of our
numerical simulations by LSFEM, then we define

GT
h pρq “

HT
h pρq

1

|Γ|

ż

Γh

pη̄hprq
2
` θ̄hprq

2
qdr

« Gpρq. (40)

Thanks again to the weak formulation analysed in Section 4, the integral in the denominator
can be calculated exactly in terms of the lumped mass matrix ĂM in (28), such that we have

GT
h pρq “

η̄ThAη̄h ` θ̄
T
hAθ̄h

η̄Th
ĂMη̄h ` θ̄Th

ĂMθ̄h
. (41)

We aim to use GT
h pρq for classification purposes within the Turing region. From numerical

investigations in the range ρ P r1, 300s we found that, for the selected patterns, GT
h pρq grows

linearly with ρ, as shown in Fig.11 (right). As a consequence, each of the three patterns

exhibits a different heterogeneity slope, i.e.
dGT

h pρq

dρ
“ constant, that could be used as a

quantitative indicator to mark out different morphological classes of patterns: the higher
the slope the higher the pattern heterogeneity. In this sense, labyrinth patterns exhibit the
highest degree of spatial heterogeneity and reversed spots the lowest one. This appears fully
consistent with numerical simulations depicted in Fig.7 which show that reversed spots are
holes in an essentially flat substrate.
The fact that the heterogeneity indicator G defined in (39) depends linearly on ρ, when
keeping the radius of the sphere R fixed, has the same geometrical meaning as the constancy
of the intrinsic pattern density keeping the effective domain area A “ ρR2 constant, as
expounded in Section 6. In fact, if G be evaluated keeping the effective area constant, it
would be independent on ρ. This can be straightforwardly shown in the case of a square
domain of side L onto which square-based pyramids all of the same height h are formed. In
this simple scheme, keeping L constant, ρ corresponds to the number of squares into which the
domain is subdivided, that form the basis of pyramids of height h. Assuming, for simplicity
that η̄ “ θ̄, one obtains: Gpρq “ 4 ρ ph{Lq2. Since L is constant, from the last equation

one immediately finds that dGpρq
dρ

“ 4 ph{Lq2, while at constant effective domain area, i.e.

A “ ρL2 “ k one gets: Gρ “ 4 k h2{L4 which is independent on ρ so that dGpρq{dρ “ 0.
The last equation expresses formally the constancy of intrinsic pattern density in terms of
Gpρq.

To sum up this section, the density structure indicator δ and the heterogeneity function Gpρq
- discussed in Sections 7.2 and 7.3 respectively - have allowed to assign a given pattern to
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Figure 12: The laboratory rotary-barrel reactor used for Zn plating onto Cu spheres

one of three different morphological classes.
Moreover, an effective scaling law among spheres of different radii - within a given pattern
class - has been validated by spatial mean and degree of flatness indicators (Section 7.1).

8. Comparison with experiments

Experimental validation of the DIB model (1)-(2) integrated on a sphere has been performed
with reference to the scientific case of electrodeposition of Zn from alkaline zincate solution
onto Cu spheres 2.5 mm in diameter in a laboratory rotary-barrel reactor equipped with a
central Cu-bar counter-electrode (see Fig. 12). This specific example refers to an electromet-
allurgical process, that is key to the performance of zinc-air batteries. It is worth noting
that the reactions addressed in this work are fully inorganic ones and, at variance with many
studies in pattern formation, they do not refer to a biological system. Basic information
on electrometallurgy and the relevant notation can be found in [56] while a description of
zinc-air batteries and their chemistries, including details on the specific operation considered
in the present paper, is available in [14]. Moreover, the Zn electrodeposition process implies
the growth of a metal film on top of a spherical metallic support. Therefore, the problem
is an intrinsically moving-domain one and a formally complete solution would require to
follow the shape change of the cathode from the initially spherical one to that resulting from
the patterns developing in the added metal film. Nevertheless, quantitatively, typical film
thicknesses lie in the range of a few tens of microns, while support diameters are generally
larger than 1 mm: the domain shape change can thus be neglected, at least for the scope of
the present investigation. Of course, it would be highly interesting to generalize our metal
deposition problem to the moving-domain case and we are planning to attack this problem
in the near future, based on high-standard seminal work available in the literature, such
as that described in [2, 55] and references therein. The electrolyte was a real spent ZAFC
electrolyte containing 6 M KOH and saturated with zincates (extracted from the waste tank
of a laboratory single-cell present in our laboratory). Electrodeposition was carried out po-
tentiostatically, applying a series of cathodic overvoltages (see Fig. 13), measured against
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Figure 13: Linear-sweep voltammogram measured in the laboratory rotary-barrel reactor loaded
with Cu spheres and operating potentiostatically (Zn reference electrode) in a saturated alkaline
zincate solution. We indicated in red the overvoltages at which we carried out the electrodeposition
experiments.

a Zn rod immersed in the zincate bath just outside the rotary barrel: accurate calibration
of the ohmic drop was beyond the scope of the present investigation. The classical reaction
system for Zn electrodeposition from zincate solution is [5, 23]:

Zn(OH)2´
4,aq Õ Zn(OH)2,surf ` 2 OH´ (42a)

Zn(OH)2,surf ` e´ Õ Zn OHsurf `OH´ (42b)

Zn OHsurf ` e´ Õ Zn`OH´ (42c)

where Eq.(42.b) is the rate determining step. The overall equation describes the reduction
of oxidized Zn in the form of zincate (Zn(OH)2´

4,aq), stable in the typical alkaline electrolyte
of a zinc-air battery to metallic Zn: this reaction represents the charging step in a zinc-air
battery and in the flow-cell concept we are developing (see [6, 14] for details) is carried out
in a dedicated reactor (see Fig. 12). The overall reaction goes on through three steps: (42.a)
the adsorption of zincate to zinc oxide; (42.b) the one-electron reduction of adsorbed Zn(II)
hydroxide to intermediate adsorbed Zn(I) hydroxide and (42.c) the one-electron reduction
of surface Zn(I) metallic Zn.
From Eq.s (42) one can straightforwardly derive the set of phenomenological kinetic equations
(for details on the derivation, see Appendix B):

$

’

&

’

%

f1pθ1, θ2q “
Ñ

k 1 Zp1´ θ1 ´ θ2q´
Ð

k 1 θ1´
Ñ

k 2 θ1`
Ð

k 2 θ2,

f2pθ1, θ2q “
Ñ

k 2 θ1´
Ð

k 2 θ2´
Ñ

k 3 θ2`
Ð

k 3,

(43)
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where f1 and f2 are the reaction rates and Z, θ1 and θ2 - which are functions of space

and time - are defined as Z “
”

Zn(OH)2´
4,aq

ı

, θ1 “

”

Zn(OH)2,surf

ı

, θ2 “ rZn OHsurf s. The

constants
Ñ

k i,
Ð

k i, i “ 1, 2, 3, are the kinetics constants in equations p42q: the right arrow
denotes the forward reaction, the left arrow the backward one. We have described the
surface concentrations with surface fractions θ1, θ2 and we have formally incorporated the

Zn activity in the kinetic constant
Ð

k 3.

The dimensional source terms exhibit the following units: [f1, f2] m´2 s´1; [
Ñ

k 1] mol´1 s´1;

[Z] mol m´2; [θ1, θ2] 1; [
Ð

k 1,
Ñ

k 2,
Ð

k 2,
Ñ

k 3,
Ð

k 3] m´2 s´1. The dimensionless form of Eq. (43) can
be straightforwardly obtained by using the normalization constants for space and time used
for Eq. (1) and choosing a reference value of 1 mol m´2 for Z, as customary in metallurgical
thermodynamics (e.g. [22]).
Since the corrosion rate in the relevant conditions (i.e. during electrodeposition) is negligible,

one can set
Ð

k 3– 0, hence Eq. (43) rewrites to:
$

’

&

’

%

f1pθ1, θ2q “
Ñ

k 1 Zp1´ θ1 ´ θ2q´
Ð

k 1 θ1´
Ñ

k 2 θ1`
Ð

k 2 θ2,

f2pθ1, θ2q –
Ñ

k 2 θ1´
Ð

k 2 θ2´
Ñ

k 3 θ2.

(44)

From the experimental fact that Eq. (42.b) is the rate determining step, we can make the
approximation: θ2 ăă θ1. The first equation of Eq. (44) thus rewrites to:

f1pθ1, θ2q –
Ñ

k 1 Zp1´ θ1q´
Ð

k 1 θ1´
Ñ

k 2 θ1`
Ð

k 2 θ2,

and from the high surface coverage with hydroxides resulting from the fact that high zincate
concentrations are typical of the Zn recovery process from spent ZAFC electrolytes, one can
approximate θ2 – 1´ θ1, allowing to restate the kinetic system in the form

$

’

&

’

%

f1pθ1q –
Ñ

k 1 Zp1´ θ1q´
Ð

k 1 θ1´
Ñ

k 2 θ1`
Ð

k 2 p1´ θ1q,

f2pθ1q –
Ñ

k 2 θ1 ´ p
Ð

k 2 `
Ñ

k 3qp1´ θ1q.

Since the rest of our deduction will be made under the steady state assumption, from now
on we shall drop the – symbols. We observe that the growth rate r of electrodeposited Zn
is the opposite of that of Zn OHsurf consumption, f2, so that we can write

r “ ´f2, (45)

hence, applying Eq. (45) and rearranging terms in view of the discussion of the physical
meaning:

$

’

&

’

%

f1pθ1q “ p
Ð

k 2 `
Ñ

k 1 Zqp1´ θ1q ´ p
Ð

k 1 `
Ñ

k 2qθ1,

rpθ1q “
Ð

k 2 p1´ θ1q ´ p
Ñ

k 2 `
Ñ

k 3qθ1`
Ñ

k 3,

(46)

The fact that Eq. (42.b) is the rate determining step, implies the following relationships of
the kinetic constants:

Ð

k 1"
Ñ

k 2;
Ñ

k 1 Z "
Ð

k 2,
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hence we can rewrite (46) in a simplified form, without loss of generality:
$

’

&

’

%

rpθ1q “
Ð

k 2 p1´ θ1q ´ p
Ñ

k 2 `
Ñ

k 3qθ1`
Ñ

k 3,

f1pθ1q “
Ñ

k 1 Zp1´ θ1q´
Ð

k 1 θ1.

(47)

System (47) can be straightforwardly interpreted as a special case of the source terms of the
DIB model in Eq. (2), as detailed below:

Ð

k 2“ A1 η,
Ñ

k 2 `
Ñ

k 3“ B,
Ñ

k 3“ Bα,

Ñ

k 1 Z “ Cp1` k2ηq r1´ γp1´ θ1qs ,
Ð

k 1“ Dp1` λθ1qp1` k3ηθ1q.

(48)

The terms of Eq.s (42.b) and (42.c) refer to electrochemical reactions, they can be expressed
in an Arrhenius form, containing an electrical activation term, that is a function of the
applied overvoltage u.

ki “ Ai exp

˜

Eelectrochem
act,i

RT

¸

“ Ai exp

˜

Echem
act,i ` E

electr
act,i puq

RT

¸

(49)

hence

Ð

k 2“
Ð

A2 exp

¨

˝

Ð

E
chem

act,2 `
Ð

E
electr

act,2 puq

RT

˛

‚–
Ð

A2 exp

¨

˝

Ð

E
chem

act,2

RT

˛

‚ ñ
B
Ð

k 2

Bu
– 0,

Ñ

k 2“
Ñ

A2 exp

¨

˝

Ñ

E
chem

act,2 `
Ñ

E
electr

act,2 puq

RT

˛

‚–
Ñ

A2 exp

¨

˝

Ñ

E
chem

act,2 ´2F
Ñ
α2 u

RT

˛

‚:“
Ñ

i o,2 exp

˜

´
u

Ñ

BT,2

¸

Ñ

k 3“
Ñ

A3 exp

¨

˝

Ñ

E
chem

act,3 `
Ñ

E
electr

act,3 puq

RT

˛

‚–
Ñ

A3 exp

¨

˝

Ñ

E
chem

act,3 ´2F
Ñ
α3 u

RT

˛

‚:“
Ñ

i o,3 exp

˜

´
u

Ñ

BT,3

¸

.

We observe that
Ð

k 2 refers to an anodic process and since in our electrodeposition process we

are applying cathodic conditions, it can be regarded as independent on u. Moreover,
Ñ

k 2 and
Ñ

k 3 can eventually be expressed in the classical Tafel form. It is worth noting that - owing
to the assumptions adopted for the kinetic discussion of the electrodeposition process from
a zincate bath - the formal interpretation of the DIB parameter A1 in this context is slightly
different from - though of course theoretically coherent with - the general one expounded
in Section 2, where the role of u and η is in fact identified on the basis of electric field
localisation effects, according to [10, 34]. Finally, by plugging (49) into the terms of (48)

containing B, and assuming - without loss of generality - that
Ñ

BT,2“
Ñ

BT,3:“
Ñ

BT , one obtains

B “
´

Ñ

i o,2 `
Ñ

i o,3

¯

exp

˜

´
u
Ñ

BT

¸

; α “

Ñ

i o,3
Ñ

i o,2 `
Ñ

i o,3
(50)
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Figure 14: Optical and scanning electron micrographs of Cu spheres with Zn electrodeposits obtained
potentiostatically at the overvoltages reported in Fig. 13

Therefore, the only parameter of the DIB model that is a function of u is B. In order
to compare solutions of η obtained from the DIB model by varying B over a range con-
tained in the Turing region, we have carried out a series of experiments by varying u over
a range of negative values, corresponding to different applied cathodic overvoltages. Poten-
tiostatic electrodeposition experiments were carried out at five representative overvoltages
(u “ ´0.125,´0.375,´0.5,´1.0,´1.5 V) for 2 hours (see Fig. 13). Typical Zn morphologies
were documented by optical and scanning electron microscopies and are reported in Fig. 14.
Recalling that decreasing values of u correspond to increasing values of B, from the reported
micrographs one can notice that the film grown at u1 is relatively flat and exhibits some
metal recesses (holes) on an overall flat surface; the sphere coated at u2 exhibits bands with
higher Zn content; the electrodeposits obtained at u3, u4 and u5 show a nodular structure
with a progressively higher density of globular grains the dimensions of which decrease with
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increasing overvoltage.

In this paper we have restricted our validation to a semiquantitative, but, in our opinion,
highly diagnostic level: focussing on the one hand on the interpretation of our general elec-
trodeposition model in terms of a specific chemistry (Eq.s (42)-(48)) and on the other hand
on the experimental proof of the impact of the systematic variation of a real electrochemical
parameter on pattern formation. In a subsequent paper [62] we have addressed the problem
of comparing quantitatively experimental patterns and model predictions with a parameter
identification approach.

9. Conclusions

In this paper we have investigated the emergence of spatial organization phenomena for the
morphochemical electrodeposition model introduced and experimentally validated in [10],
extending its study to spherical surfaces. We have used linear stability analysis to derive
conditions for Turing pattern formation. We found that, by fixing the diffusion coefficient
d and the kinetic system parameters, the range of wavenumbers yielding the arising of
spatial patterns depends on the constant A “ ρR2 that we have interpreted as effective
domain size. By fixing the value of A so that the spherical harmonics of degree l “ 6
correspond to the fastest perturbation modes growing away from the spatially homogeneous
equilibrium Pe, we have shown that the morphochemical RD model (1)-(2) exhibits a stable
spotted pattern emerging when the spatially homogeneous steady state Pe undergoes Turing
instability. This phenomenology turns out to be perfectly in line with the general theoretical
results concerning pattern formation on the surface of the sphere. We also numerically found
that, decreasing the bifurcation parameter B from the Turing bifurcation curve, the system
undergoes different morphological transitions exhibiting a large variety of modifications of
three basic pattern classes: spots, labyrinths and reversed spots. The structures obtained
by numerical integration match precisely those obtained experimentally by electrodepositing
zinc onto copper spheres.
Furthermore, within each class of patterns, we have found that a critical value of A “ A ˚

exists, such that for A ě A ˚ intrinsic patterns emerge, namely patterns that are solely
determined by the choice of the fixed bifurcation parameters and with a morphological
structure independent from the value of A . On the contrary, for A ă A ˚, extrinsic patterns
arise, namely patterns that are unable to completely express their typical shape because they
have not enough space. Finally, we have shown that the different patterns can be classified
by appropriate quantitative indicators.
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Appendix A

In this appendix, we explicitly derive the eigenfunctions of the eigenvalue problem (10). To
this aim, we observe that system (10) can be solved by separation of variables, searching for
solutions in the form Y pφ, ψq “ QpφqP pψq. As a consequence, one gets

1

sin2 ψ
P pψqQ2pφq `QpφqP 2pψq `

cosψ

sinψ
P 1pψqQpφq ` k2 P pψqQpφq “ 0,

that, by dividing both sides by P pψqQpφq{ sin2 ψ, reads as:

Q2pφq

Qpφq
`
P 2pψq

P pψq
sin2 ψ ` sinψ cosψ

P 1pψq

P pψq
` k2 sin2 ψ “ 0. (51)

In (51), the first term is a function of φ and the sum of the others is a function of ψ.
Hence the terms involving P and Q have to be equal to constants which sum is zero. As a
consequence, for each m “ 0,˘1,˘2, . . . we get the ordinary differential equations:

Q2pφq

Qpφq
“ ´m2, (52)

equipped with periodic boundary conditions and

ˆ

k2
´

m2

sin2 ψ

˙

P `
1

sinψ
psinψ P 1q

1
“ 0, (53)

with P bounded at ψ “ 0 and ψ “ π. Solutions of equation (52) can be straightforwardly
proved to be Qpφq “ exp pimφq whereas, as far as equation (53) is concerned, the change of
variable s “ cosψ allows to obtain the so called associated Legendre’s equation

“

p1´ s2
qP 1psq

‰1
`

„

k2
´

m2

p1´ s2q



P psq “ 0 (54)

with P psq bounded at s “ ˘1. By using the method of power series it is possible to
show that solutions P psq (54) can be written in terms of the Legendre polynomials, i.e.

P psq “ Lml psq “ p1 ´ s2qm{2
dm

dsm
Llpsq where the Legendre polynomial Llpsq is given by

Llpsq “ 2l
l
ÿ

k“0

sk
ˆ

l

k

˙ˆ

l`k´1
2

l

˙

and l is a positive integer number such that l ě |m|. The

eigenfunctions of the eigenvalue problem (10) are hence given by the spherical harmonics:

Y m
l pφ, ψq “ L

|m|
l pcosψq exp pimφq.

Appendix B

In this appendix, we show in more detail the derivation of the set of phenomenological kinetic
equations (43). The rate equations reported in (43) can be derived according to standard
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phenomenological homogeneous chemical kinetics (see, e.g. [54] pages 1-7) as the source
terms of balance equations for Zn(OH)2,surf and Zn OHsurf .
Since Zn(OH)2,surf is generated in forwards reaction (42.a) and backwards reaction (42.b)
positive contributions appear in the respective source terms (43); the same species is con-
sumed in backwards reaction (42.a) and forwards reaction (42.b) and therefore the corre-
sponding contributions to the source term are negative. The molecularities correspond to
classical mono- and bi-molecular models (see, e.g. [54] pages 7-9) and the forwards and

backwards rate constants
Ñ

k i,
Ð

k i, i “ 1, 2, 3, as customary, can be interpreted in terms of the
Arrhenius model as ways to incorporate the dependence of reaction velocity on non-chemical
generalized forces acting on the system. As far as the mass balance of Zn OHsurf is con-
cerned, forwards reaction (42.b) and backward reaction (42.c) generate this species, while
backwards (42.b) and forwards (42.c) consume it, yielding positive and negative contribu-
tions, respectively.
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