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Summary. Background: G protein-coupled receptors (GP-

CRs) are a major family of signaling molecules, central to

the regulation of inflammatory responses. Their activation

upon agonist binding is attenuated by GPCR kinases

(GRKs), which desensitize the receptors through phos-

phorylation. G protein-coupled receptor kinase 2(GRK2)

down-regulation in leukocytes has been closely linked to

the progression of chronic inflammatory disorders such as

rheumatoid arthritis and multiple sclerosis. Because leuko-

cytes must interact with the endothelium to infiltrate

inflamed tissues, we hypothesized that GRK2 down-regu-

lation in endothelial cells would also be pro-inflammatory.

Objectives: To determine whether GRK2 down-regulation

in endothelial cells is pro-inflammatory. Methods: siRNA-

mediated ablation of GRK2 in human umbilical vein endo-

thelial cells (HUVECs) was used in analyses of the role of

this kinase. Microscopic and biochemical analyses of Wei-

bel-Palade body (WPB) formation and functioning, live

cell imaging of calcium concentrations and video analyses

of adhesion of monocyte-like THP-1 cells provide clear evi-

dence of GRK2 function in histamine activation of endo-

thelial cells. Results: G protein-coupled receptor kinase 2

depletion in HUVECs increases WPB exocytosis and P-se-

lectin-dependent adhesion of THP-1 cells to the endothelial

surface upon histamine stimulation, relative to controls.

Further, live imaging of intracellular calcium concentra-

tions reveals amplified histamine receptor signaling in

GRK2-depleted cells, suggesting GRK2 moderates WPB

exocytosis through receptor desensitization. Conclusions:

G protein-coupled receptor kinase 2 deficiency in endothe-

lial cells results in increased pro-inflammatory signaling

and enhanced leukocyte recruitment to activated endothe-

lial cells. The ability of GRK2 to modulate initiation of

inflammatory responses in endothelial cells as well as leu-

kocytes now places GRK2 at the apex of control of this

finely balanced process.

Keywords: G protein coupled receptor kinase 2; human

umbilical vein endothelial cells; P-selectin; von Willebrand

factor; Weibel-Palade bodies.

Introduction

To initiate an inflammatory response, both leukocytes and

endothelial cells need to be activated by hormones and pro-

inflammatory cytokines. The subsequent cell-surface

expression of adhesion molecules in both cell types results

in the rolling of leukocytes along the endothelial surface,

before eventual firm adhesion and extravasation [1].

Many signaling pathways involved in both endothelial

and leukocyte activation are initiated by stimulating G

protein-coupled receptors (GPCRs) [2]. GPCR signal

transduction is attenuated by GPCR kinase (GRK)-medi-

ated phosphorylation of agonist-bound receptor. This

promotes b-arrestin binding, which uncouples the recep-

tor from its G proteins and mediates receptor internaliza-

tion and recycling [3,4]. Disruption of this machinery

alters the strength and/or duration of physiological

responses to GPCR ligands [5]. Of seven GRK subfami-

lies, the ubiquitously expressed GRK2 has been most clo-

sely linked to inflammatory [2,6] and cardiovascular

function [6,7].

GRK2 protein levels are higher in leukocytes than

other tissues [8] and its cytokine-induced down-regulation

[9–11] is associated with chronic inflammatory disorders

such as multiple sclerosis (MS) [12] and rheumatoid

arthritis (RA) [9,13], as well as inflammatory pain [14].

Correspondence: Daniel F. Cutler, MRC-LMCB, University College

London, Gower Street, London, WC1E 6BT, UK.

Tel.: +20 7679 7808; fax: +20 7679 7805.

E-mail: d.cutler@ucl.ac.uk

Received 26 September 2013

Manuscript handled by: P. H. Reitsma

Final decision: P. H. Reitsma, 21 November 2013

© 2013 The Authors Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis
This is an open access article under the terms of the Creative Commons Attribution License,
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Journal of Thrombosis and Haemostasis, 12: 261–272 DOI: 10.1111/jth.12470

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/19778126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The pathologies of both MS and RA are characterized by

increased leukocyte infiltration of diseased tissues, proba-

bly caused, at least in part, by impaired GRK2-mediated

attenuation of chemokine signaling. For example,

GRK2+/� murine T cells show significantly heightened

migratory responses towards CCL4. This is concurrent

with enhanced calcium signaling and PKB phosphoryla-

tion, indicative of impaired CCR5 desensitization [15].

Moreover, loss of GRK2 in the endothelium can enhance

cytokine expression, increasing the incidence of macro-

phage extravasation in endothelial-GRK2�/� mice [16].

Endothelial activation is mediated by pro-inflamma-

tory and procoagulant factors, delivered to the endothe-

lial cell surface by exocytosing Weibel-Palade bodies

(WPBs). These specialized secretory organelles store the

multimeric glycoprotein von Willebrand factor (VWF)

[17] and are formed at the trans-Golgi network [18–20],
with the help of an AP-1/clathrin coat [21]. Upon injury

or infection, mature organelles, previously anchored to

cortical actin [22], fuse with the plasma membrane and

release VWF to initiate hemostasis [23,24]. Other WPB

cargo such as the leukocyte receptor P-selectin, its co-

factor CD63 [25] and pro-inflammatory cytokines are

also delivered to the cell surface or released into the cir-

culation. WPBs are thus central to endothelial regulation

of inflammation.

As GRK2-deficiency in leukocytes has been closely

linked to inflammatory disorders, we determined whether

it also affects the pro-inflammatory behaviour of endothe-

lial cells.

Materials and methods

Cell culture and transfection

Human umbilical vein endothelial cells (HUVECs, TCS

Cellworks, Buckingham, UK) and THP-1 cells (a gift

from Dr Patric Turowski) were cultured as previously

described [26]. Two-round nucleofections (Nucleofector

II, programme U-001, Amaxa Biosystems, Gaithersbrg,

MD, USA) with 200 pmol siRNA and 106 HUVECs

(passage 3) were performed 48 h apart for assay 48 h

later. GRK2 siRNA sequence 1: 5′-UG-

UCCAGUAACUUGAUUCC-3′ (Sigma, St Louis, WA,

USA), sequence 2: 5′-GCUCGCAUCCCUUCUCGAA

UU-3′. Mock transfections were performed using firefly

luciferase siRNA [27]: 5′-CGUACGCGGAAUACUU

CG-3′. For ssHRP [28] expression, 7 lg construct was

included in the second reaction.

Antibodies

Antibodies used were: rabbit polyclonal anti-human VWF

antibody and its HRP-conjugated form (DAKO, Cam-

bridgeshire, UK); sheep polyclonal anti-TGN46 (Abcam,

Cambridge, UK); anti-P-selectin (R&D Systems, Minnea-

polis, MN, USA); rabbit polyclonal anti-GRK2; mouse

monoclonal anti-b-actin (Santa Cruz Biotechnology,

Middlesex, UK); mouse monoclonal anti-MyRIP (a gift

from Professor Seabra, Imperial College London); and

Alexafluor-conjugated (Invitrogen, Paisley, UK) and

HRP-conjugated (Jackson Immunoresearch, Suffolk, UK)

secondary antibodies.

Immunofluorescence and WPB quantification

Transfected HUVECs were fixed and stained as described

previously [21]. Images were taken using a Leica TCS

SPE scanning confocal microscope, a 639 (NA1.3) or

409 (NA1.15) oil immersion lens (NA 1.15) and LAS-AF

Software (Leica, Buckinghamshire, UK). Acquisition set-

tings were: 0.5 lm z-stack step size, 1024 9 1024 pixel

resolution, 3–4 frame average and 19 zoom. For quantifi-

cation, the LAS-AF mark-and-find feature and a motor-

ized stage were used to generate 15–25 random fields of

view (FoV, 300–400 cells) per treatment condition in each

replicate experiment. WPBs were quantified using Image

J; background subtraction was performed on the VWF

channel using a rolling ball algorithm (radius 2 pixels)

and a manual threshold applied. Segmented objects over

0.1 lm2 were counted and measured for Feret’s diameter

(defined as the longest diameter across a WPB in 2D pro-

jection) using Image J.

Secretion assays

VWF secretion assays have been described previously

[21]. Briefly, cells were rinsed and incubated in release

medium for 30 min, then release medium plus

100 ng mL�1 phorbol 12-myristate 13-acetate (PMA,

Sigma-Aldrich, St Louis, MO, USA) or 10 lM histamine

for 45 or 30 min, respectively. Medium was collected to

sample VWF release and intracellular VWF determined

from cell lysates. Secreted VWF is presented as a percent-

age of the total VWF (media plus lysates). All results are

normalized to total lysate protein content, as determined

by bicinchoninic assay (Pierce, Rockford, IL, USA).

Total VWF measurements were used to compare VWF

protein expression in mock and GRK2-depleted cells. To

measure unregulated secretion over longer periods, cells

were rinsed and incubated in serum-free release medium

for 4 h, or in optiMEM reduced serum medium (GIBCO,

Paisley, UK) for 7 h.

ssHRP secretion assays

Eight hours post-transfection, cells were rinsed and incu-

bated in phenol red-free HUVEC growth medium (Sigma);

17 h later, medium was collected and cells lysed in 50 mM

Tris/Cl pH2 on ice. Samples were processed and analyzed

as described previously [29]. Secretion is presented as a pro-

portion of total ssHRP (media plus lysates).
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Western blotting

Cell lysates were collected in RIPA buffer (50 mM Tris-

HCl pH 7.5, 300 mM NaCl, 1% deoxcholate, 2% Triton-

X100, 0.1% SDS). Proteins were separated by SDS-

PAGE on 8% acrylamide gels prior to transfer onto a

protran nitrocellulose transfer membrane. Separation of

pro- and mature VWF was performed on precast Novex�

(Life Technologies, Paisley, UK) 6% Tris-Glycine

1.5 mm gels. Blots were probed with primary and HRP-

conjugated secondary antibodies (above). Band quantifi-

cation was performed using a Molecular Imager GS-800

densitometer and Quantity One Software (version 4.6.3,

BioRad, Hertfordshire, UK), normalizing against a b-
actin loading control.

VWF multimer analysis

Samples were concentrated using Vivaspin500 centrifugal

filter units (Sartorius, Goettingen, Germany) and run on

SDS-agarose gels as described previously [29]. Multimer

patterns were analyzed using the Image J plot profile

function to measure intensity changes down each lane,

normalized against total signal.

Quantitative PCR

RNA extraction, cDNA preparation and PCR were per-

formed as described previously [22], quantifying normal-

ized expression (using actin) by the DDCT method [30].

Single product amplification was verified by melting curve

analysis and gel electrophoresis. Primers used were:

GRK2 forward: 5′-GGACAGTGATCAGGAGCTCTA-

3′; reverse: 5′-AAGGACTGCATCATGCATGGC3-’;

VWF forward: 5′-GCCATCATGCATGAGGTCAGA-3′;
reverse: 5′-GGCTCCGTTCTCATCACAGAT-3′; actin

forward: 5′-TGGTGGTGAAGCTGTAGCC-3′; reverse:

5′-GCGAGAAGATGACCCAGAT-3′; HRH1 forward:

5′-GGGCCGTCCTCTCTGCCTCTT-3′; reverse: 5′-
GCCGAGGCTCGGGTCTTGGT-3′.

Calcium imaging

29 Fluo-4 calcium indicator, containing 25 lm probene-

cid, was prepared in serum-free release medium as per man-

ufacturer’s instructions (Fluo-4 DirectTM Calcium Assay

Kit, Molecular Probes, Life Technologies, Paisley, UK).

Nucleofected cells seeded onto 1.45-mm glass-bottom

imaging dishes (PAA) were rinsed and loaded with 19

Fluo-4 for 30 min at 37 °C/5% CO2 prior to imaging.

Movies were acquired using an UltraVIEW VoX spinning

disc system (PerkinElmer, Waltham, MA, USA) mounted

on an inverted microscope (TiE; Nikon, Surrey, UK) with

an EM charge-coupled device camera (512 9 512 pixels;

C9100-13; Hamamatsu Photonics, Hertfordshire, UK) and

488- and 561-nm solid-state lasers. Cells were visualized

using a 1009 oil immersion lens (NA 1.4), inside a 37 °C
heat-controlled chamber. Z-stacks of 0.5-lm spacing were

acquired using a piezo stage (NanoScanZ; Prior Scientific,

Cambridgeshire, UK) every 10 s for 10 min. At time-points

60, 300 and 480 s, 10 mM histamine, 200 lm A21387 iono-

phore and 50 mM EGTA were added, respectively, to stim-

ulate cells and provide a maximal (fmax) and minimal

fluorescent signal. To determine changes in intracellular

calcium levels, a 40 9 40 pixel ROI was drawn juxtanucle-

ar in the cytosol for each cell and the mean fluo-4 intensity

measured at every time-frame using Velocity software (Per-

kinElmer). Measurements were normalized against fmax to

eliminate inconsistencies in indicator loading. To align

curves for comparison, Fluo-4 intensity at time-point 60 s

was subtracted from all values.

THP-1 flow assays

Nucleofected HUVECs were seeded onto gelatin-coated l-
slides VI0.4 (ibidi, Munich, Germany). Slides were mounted

on the microscope stage of an Axiovert 100 (Carl Zeiss,

Welwyn Garden City, UK), maintained at 37 °C, and con-

nected to a syringe pump system (Harvard Aparatus, Holl-

iston, MA, USA) to draw fluid through the chamber with a

wall shear stress of 0.07 Pa (0.7 dyne/cm2). Cells were

rinsed with perfusion medium (HBSS containing Ca+2 and

Mg+2 and 0.2% BSA) under flow, then 106

THP1 cells mL�1 were perfused across the endothelial sur-

face for 3 min to image steady-state rolling. Next, a 10-min

stimulation of HUVECs, using perfusion medium + 10 lM
histamine, was followed by a second THP-1 cell perfusion

in the absence of secretagogue. The latter was recorded for

5 min to observe monocyte rolling. Movies were taken at

109 objective with a FoV of 784 9 576 pixels

(559.78 9 411.26 lm) using a QIMAGING Scientific

(QIMAGING Scientific, Surrey, Canada) CMOS Rolera

bolt camera, acquiring at a rate of 24 frames/second, and

Micro-Manager 1.4.13 software. To quantify firmly

adhered monocytes on the endothelial surface, random

snapshots were taken in the absence of flow at the end of

the movie. In antibody blocking experiments, HUVECs

were incubated with 15 lg mL�1 sheep polyclonal anti-

human P-selectin (R&D Systems, Minneapolis, MN, USA)

or IgG from sheep serum (Sigma-Aldrich) at 37 °C for

30 min prior to experimentation. Antibody was present for

the remainder of the experiment.

Results

Loss of GRK2 reduces WPB numbers

To investigate a potential role for GRK2 in modulating

endothelial behaviour, we examined whether GRK2-

depleted HUVECs produce normal WPBs, a key determi-

nant of endothelial inflammatory function. GRK2 deple-

tion was, on average, 85% (siRNA1, n = 6) or 94%
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Fig. 1. G protein-coupled receptor kinase 2 (GRK2) KD reduces WPB number without affecting biogenesis. (A–C) HUVECs were transfected

with one of two siRNA sequences targeting GRK2, or with luciferase siRNA for mock treatments. (A) Representative western blot. GRK2

depletion was 85% (49–98%, n = 5) for siRNA sequence 1 and 94% (79–99%, n = 7) for siRNA sequence 2 as determined by SDS-PAGE and

quantified by densitometry. GRK2 levels were normalized to b-actin protein expression. (B) Cells were fixed and stained for VWF (green) and

DAPI (blue) and imaged at 639 objective (20–25 fields of view per condition, 450–650 cells) as confocal stacks ready for quantification. Pre-

sented images are maximum intensity projections. Scale bar 20 lm. (C) Quantification of experiments represented in B. WPB number per cell

is reduced by 34% (n = 4, P = 0.024) and 28% (n = 4, P = 0.021) following GRK2 KD using siRNA (i) sequence 1 and (ii) sequence 2, respec-

tively. Data are normalized against the maximum mock value for each experiment. Error bars represent SEM. Statistics were performed using

a Student’s t-test. (iii) Distribution of WPB Feret’s diameter, represented as a cumulative frequency chart of the percentage of total organelles

found in 0.5 lm bins. (D) HUVECs transfected with luciferase (mock) or GRK2 (sequence 2) targeting siRNA were fixed and stained for P se-

lectin (red), VWF (magenta) and MyRIP (green). Scale bar 20 lm.
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(siRNA2, n = 7) effective using two different siRNA

sequences (Fig. 1A). Transfected cells were thus processed

for image analysis. We observed a 34% (siRNA1, 29–
49%, n = 4) and 28% (siRNA2, 19–36%, n = 4) reduc-

tion in WPB numbers upon GRK2 depletion, without

any consistent change in organelle length (Fig. 1C).

To assess whether other WPB characteristics were

altered, recruitment of P-selectin and MyRIP to organ-

elles was also analyzed by immunofluorescence. P-selectin

is an integral membrane protein incorporated into WPBs

at the trans-Golgi network (TGN) [31], whereas the

Rab27A-MyRIP-MyoVA complex is recruited later and

predominantly found on mature organelles [32]. Incorpo-

ration of these proteins into WPBs is therefore indicative

of successful progression through two independent stages

of biogenesis. Both proteins were found to localize

correctly in GRK2-depleted cells, indicating that cargo

selection and maturation is unaffected (Fig. 1D). Further-

more, in both cell populations, 52% of cells showed P-se-

lectin recruitment to WPBs, suggesting it is targeted

equally efficiently (data not shown).

Disruption of WPB biogenesis can result in the loss of

higher molecular weight (HMW) forms of VWF [21]. We

therefore determined the multimeric state of intracellular

VWF as an additional descriptor of organelle structure.

VWF multimerisation was slightly reduced in GRK2-

depleted cells, suggesting either VWF maturation is

reduced or mature protein is being lost from the cell (see

Fig. 2A).

Reduction in WPB numbers is not due to reduced VWF

expression

VWF drives the formation of WPBs [33]. Deficiencies in

VWF expression can therefore reduce WPB numbers, as

seen in von Willebrand disease [34]. To determine if this

is causative of fewer organelles here, VWF protein levels

in control and GRK2 knock-down (KD) cells were quan-
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Fig. 2. von Willebrand factor (VWF) synthesis and processing is normal in GRK2 KD cells. (A) Control and GRK2-depleted cell lysates were

collected in serum-free medium and analyzed on 1.4% SDS-agarose gels under non-reducing conditions to separate VWF multimers. Represen-

tative immunoblot of VWF; multimerisation decreases from top to bottom. (B) VWF content in control and GRK2-depleted cell lysates was

assayed by ELISA and normalized to total protein content as determined by BCA assay. To aid comparison between experiments, data were

then normalized intra-experimentally to the maximal mock reading. Error bars represent SEM. There is no consistent change in VWF protein

levels in GRK2 KD cells (n = 5). (C) Relative VWF mRNA expression in transfected cells was quantified by RT-qPCR. A consistent trend

towards an increase in VWF expression of 24% (14–35%, P = 0.08) with siRNA sequence 1 and 31% (16–57%, P = 0.13) with sequence 2 is

seen in GRK2 KD cells (n = 3). Statistics were performed using a Student’s t-test. (D) Representative immunoblot. Mock and GRK2 KD cells

were lysed in RIPA buffer and run on a 6% Tris-glycine gel to separate proVWF and VWF. Following transfer, the blot was cut and probed

for VWF, GRK2 and b-actin. (E) Mock and GRK2 KD (siRNA sequence 2) cells were fixed and stained for TGN46 to label the TGN and

imaged as confocal stacks at 409 objective. Images presented are representative regions of interest shown as maximum projections. Scale bars

20 lm.
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tified by both ELISA and western blot and found to be

comparable (Fig. 2). VWF transcript, however, was

consistently, although statistically insignificantly,

increased by 24% and 31% (siRNA1 and 2 respectively)

in GRK2-depleted cells (Fig. 2C). Loss of GRK2 thus

does not reduce WPB numbers by reducing VWF expres-

sion.

VWF progression through the early secretory pathway is

unaffected by GRK2 depletion

We next investigated whether WPB formation is GRK2

dependent. If WPB biogenesis is slowed, VWF is likely to

accumulate in pre-Golgi compartments of the secretory

pathway, as observed following expression of VWD-caus-

ing VWF variants [35]. As VWF passage through the

TGN is marked by the furin-mediated cleavage of its pro-

peptide [36], VWF progression through the Golgi can be

determined by the ratio of pro-VWF to VWF. As shown

in Fig. 2(D), this ratio was unaffected by GRK2 deple-

tion, as was the gross morphology of the TGN (Fig. 2E).

GRK2 therefore does not influence WPB numbers by reg-

ulating VWF trafficking through the early secretory path-

way.

GRK2-deficient HUVECs secrete more VWF in the absence

of secretagogue than control cells

If VWF expression and WPB formation are normal in

GRK2-depleted cells, reductions in organelle number are

likely to be the result of increased WPB exocytosis or

constitutive VWF secretion. Steady-state VWF release

was therefore examined by ELISA. When incubated in

reduced-serum medium in the absence of added secreta-

gogue, GRK2-depleted cells released almost 60% more

VWF than controls (Fig. 3Ai). Furthermore, a consistent

(but statistically insignificant) 33% increase in unregu-

lated secretion in the total absence of serum, and hence

stimulus, was also seen in KD cells (Fig. 3Aii). GRK2-

depleted cells thus possess fewer WPBs because they

release more VWF under resting conditions. To determine

whether constitutive secretion is up-regulated in GRK2-

deficient cells, the secretion of ssHRP [28], a marker for

this pathway, was monitored and found to be unchanged.

GRK2 depletion therefore specifically affects VWF

release (Fig. 3B).

A GRK2-depleted endothelium is hyper-responsive to

histamine stimulation

The observed change in VWF release, coupled to the

known role of GRK2 in desensitization, suggested that

WPB loss might result from enhanced sensitivity to

GPCR signaling. To determine whether GRK2 depletion

affects endothelial activation, we challenged cells with his-

tamine, a GPCR agonist [37] and pro-inflammatory stim-

ulant [38] of WPB exocytosis. GRK2 KD cells released

78% (45–179%, n = 6) more VWF than controls during a

30-min incubation with 10 lM histamine, consistent with

increased sensitivity (Fig. 4A). There was no difference in

the multimeric state of the VWF released by GRK2-defi-

cient HUVECs, indicating that similar organelles are

secreted in both cell populations (Fig. 4Aii).

We also performed a secretion assay in the presence of

PMA, a membrane permeant DAG analogue, which

stimulates WPB exocytosis by raising both intracellular

calcium and cAMP levels, independent of cell surface

receptors. Importantly, there was no difference in regu-
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Fig. 3. Unregulated secretion is increased in GRK2 KD cells. (A) Mock and GRK2 KD (siRNA sequence 2) cells were rinsed and incubated

with (i) reduced-serum medium (optiMEM) for 7 h or (ii) serum-free medium for 4 h. Media and cell lysates were then collected and assayed

for VWF content by ELISA, before normalizing to lysate total protein content as determined by BCA assay. The percentage of total VWF

(medium plus lysates) released over 1 h was calculated and is presented here to allow comparison between the two conditions. Error bars repre-

sent SEM. Statistics were performed using Student’s t-test. (Ai) A 59% increase in VWF release is seen in GRK2 KD cells assayed in Opti-

MEM (n = 3, P = 0.01). (Aii) In the absence of serum, a 33% increase in VWF secretion is seen (n = 4, P = 0.3). (B) HUVECs were
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n = 3). Error bars represent SEM.
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lated secretion between control and KD cells in

this instance, suggesting that the organelles of siRNA-

treated cells are not generally secretion super-competent

(Fig. 4B).

To confirm that the enhanced histamine-stimulated

secretion observed in GRK2-depleted cells was due to

impaired GPCR desensitization, we next investigated the

amplitude of downstream signaling events. Intracellular

calcium concentrations before and during histamine stim-

ulation were monitored by live-imaging cells loaded with

Fluo-4 indicator. As shown in Fig. 5, Ca2+ influx in

response to histamine was augmented in GRK2-depleted

cells relative to controls. This was not due to general

changes in receptor abundance, as HRH1 mRNA, the

only histamine receptor expressed in HUVECs [39], was

equivalent in GRK2 KD and control cells (Fig. 5B).

Endothelial GRK2 is anti-inflammatory

To establish the functional relevance of these changes, we

assayed monocyte-like THP-1 cell adhesion to HUVEC

monolayers. Control and GRK2-depleted HUVECs were

stimulated with histamine before being perfused with 106

THP-1 cells mL�1 under flow. The number of firmly

adherent cells after 5 min was found to be increased

almost 3-fold in GRK2-depleted cells (Fig. 6B). This

increase was dependent on P-selectin, because, in the pres-

ence of 15 lg mL�1 function-blocking P-selectin anti-

body, THP-1 adhesion was reduced to control levels in

GRK2 KD cells (Fig. 6B). There was no significant dif-

ference in adhesion between control and GRK2-depleted

cells in the absence of secretagogue (Fig. 6B).

To verify that these observations result from increased

WPB exocytosis, and not changes in P-selectin expression,

P-selectin protein levels in mock and KD cell lysates were

examined by SDS-PAGE and found to be comparable

(Fig. 6C). Furthermore, P-selectin targeting to WPBs was

not affected by loss of GRK2 (Fig. 1D). Increased THP-1

cell adhesion to GRK2-depleted HUVECs therefore

results from increased delivery of P-selectin to the plasma

membrane upon stimulation.

Discussion

Extravasation of circulating leukocytes and their subse-

quent migration into afflicted tissue during inflammation

must be tightly regulated, because excessive recruitment

results in inflammatory disease. Leukocyte GRK2 activity

is known to limit leukocyte migration along chemotactic

gradients and thus prevent aberrant tissue infiltration

[9,12,13,15,40]. Here we show for the first time that

GRK2 also regulates endothelial activation and leukocyte

recruitment in vitro. Together these activities have the

potential to limit both early and late events in the initia-

tion of inflammation and thus prevent the harmful accu-

mulation of leukocytes inside the body.

A key pro-inflammatory stimulant of endothelial cells

is histamine [38], which triggers calcium-mediated WPB

exocytosis by binding to HRH1 [39,41], a GPCR phos-

phorylated by GRK2 [37]. Consistent with a failure in

HRH1 desensitization, we report that histamine-invoked

calcium influx is amplified in GRK2-deficient HUVECs,

as is subsequent VWF release. Similar effects of GRK2

depletion on calcium signaling have been reported upon

CCR5 stimulation in activated T cells, suggesting a gen-

eral mechanism for regulation of inflammatory signal

transduction [15]. In addition to GRK2, HUVECs have

been reported to express GRK5 and 6 [42]. To the best

of our knowledge, there is no reported interaction

between these kinases and HRH1 that may complicate
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© 2013 The Authors Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis

An anti-inflammatory role for endothelial GRK2 267



interpretation of the results presented. GRK5 and 6 do,

however, desensitize other receptors that are capable of

stimulating WPB exocytosis, such as PAR-1 [42], and

thus may contribute to the regulation of other hemostat-

ic and inflammatory pathways in a similar manner to

GRK2.

Histamine signaling through HRH1 has previously

been shown to induce P-selectin-mediated leukocyte roll-

ing in post-capillary venules [39,43]. Consistent with this,

we see a 3-fold increase in the number of THP-1 cells

adhering to GRK2-depleted HUVECs following enhanced

receptor activation. These leukocyte-endothelial interac-

tions rely on the regulated translocation of adhesion mol-

ecules and receptors to the cell surface. In the case of

endothelial P-selectin, this is achieved through WPB exo-

cytosis. The importance of P-selectin in mediating tether-

ing between endothelial cells and leukocytes is well

established [44]. In P-selectin-deficient mice, both initial
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rolling, as seen by intra-vital microscopy, and subsequent

neutrophil recruitment to inflamed sites are severely

impaired [45]. Similarly, antibodies against P-selectin

glycoprotein ligand-1 (PSGL-1), the leukocyte counter-

receptor for P-selectin, block rolling of human polymor-

phonuclear cells in rat mesenteric venules [46]. Here we

indicate that the converse is also true; enhanced delivery

of P-selectin to the endothelial surface can promote exces-

sive accumulation of adherent leukocytes.

Consistent with our data, increased cell-surface P-selec-

tin has been shown to correlate with the development of

inflammatory infiltrates in a number of pathologies. In

murine atherosclerotic lesions, histochemical staining of

endothelial P-selectin is strongest at sites of active macro-

phage infiltration [47]. Moreover, VEGF-induced P-selec-

tin up-regulation leads to psoriasis and contact dermatitis

[48], whereas enhanced surface translocation of P-selectin

in pancreatic capillaries, through WPB exocytosis, vastly

contributes to the progression of severe acute necrotizing

pancreatitis [49]. Endothelial P-selectin expression is also

increased in the inflamed synovial tissue of patients with

rheumatoid arthritis [50], where it promotes monocyte-

microvasculature interactions [51]. Paradoxically, loss of

P-selectin is reported to enhance progression of murine

collagen-induced arthritis [52]; the contribution of adhe-

sion molecules to inflammatory responses is therefore

complex. It is unknown whether endothelial GRK2 is

down-regulated in any of these pathologies; however, it is

tempting to speculate that augmentation of endothelial

activation would serve to exacerbate the already

enhanced chemotactic responses of GRK2-deficient leu-

kocytes.

Recently, endothelial-targeted deletion of GRK2 in

mice revealed that, even in the absence of pro-inflamma-

tory mediators, loss of GRK2 in the endothelium triggers

macrophage infiltration [16]. This is attributed to up-reg-

ulation of cytokine expression in response to reactive

oxygen species (ROS), generated by GRK2-depleted

mitochondria. Here we provide a more direct mechanism

by which loss of GRK2 could promote leukocyte adher-

ence to the endothelial wall, and thus extravasation,

through impaired inflammatory receptor desensitization

and enhanced WPB exocytosis. This could occur down-

stream of the systemic cytokine signaling induced by loss

of GRK2 itself, or upon development of inflammatory

disease. How these mice respond to infection or induc-

tion of chronic inflammatory conditions remains to be

tested.
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The storage of both P-selectin and VWF in the same

secretory compartment ensures coordinated delivery of

both proteins to the cell surface, implying they function in

the same processes. Although THP-1 accumulation in

GRK2-depleted cells was P-selectin dependent here, the

increased secretion of VWF from these cells may also

affect inflammation. VWF is itself capable of interacting

with PSGL-1 via its A1 domain, an interaction enhanced

by the presence of b2-integrins [53]. The involvement of

the latter, plus observations of reduced rolling in P-selec-

tin-deficient mice [45], suggests these interactions are more

important in the latter stages of leukocyte recruitment and

adhesion. The combined action of increased P-selectin and

VWF secretion is therefore consistent with the strong

impact of GRK2 depletion on firm adhesion, described

here, as opposed to just rolling. We speculate that in vivo,

the inflammatory effects of increased VWF secretion could

be yet further enhanced through the recruitment of large

numbers of activated platelets, which themselves induce P-

selectin-dependent leukocyte rolling and WPB exocytosis

[54]. Platelets also up-regulate expression of additional

adhesion molecules, such as E-selectin and VCAM-1 [55],

and further enhance leukocyte activation [56].

Delivery of a bolus of adhesion molecules to the endo-

thelial membrane requires the formation of functionally

competent secretory organelles. We find that GRK2

depletion does not significantly affect WPB morphology

or cargo recruitment, including incorporation of P-selec-

tin. Interestingly, loss of GRK2 does, however, result in a

30% reduction in WPB numbers. This may be explained

by the observed increase in unregulated VWF secretion,

which is most likely attributable to basal exocytosis of

WPBs as described by Giblin et al. [57]. Interestingly, this

increase in VWF release is not accompanied by a change

in steady-state levels of VWF protein, although as WPBs

contain approximately 50% of all intracellular VWF [58],

a 30% fall in organelle number is only expected to result

in a relatively small reduction in total protein. As the

relationship between levels of VWF and numbers of

WPBs is complex, with both initial formation and subse-

quent pre-exocytic stages of WPB biogenesis offering

opportunities to adjust this ratio [24], it is currently diffi-

cult to determine why a fall in protein is not observed.

The simplest explanation for the effects of GRK2

depletion on unregulated VWF secretion is a general fail-

ure in GPCR desensitization. The observed difference in

VWF release between GRK2-depleted cells assayed in

serum-free and reduced-serum media does suggest that

unidentified extracellular agonists may play such a role.

Unregulated secretion is, however, still enhanced by 30%

in the absence of serum. This could result from autocrine

or paracrine signaling; HUVEC confluency is known to

affect WPB numbers [59]. Alternatively, the recent obser-

vation that GRK2 depletion increases mitochondrial pro-

duction of ROS [16], known stimulants of WPB

exocytosis [60], may promote low-level endothelial-auton-

omous stimulation of WPB exocytosis.

Reduced organelle number had no inhibitory effect on

histamine-evoked VWF secretion. On the basis that, at

most, only 25% of total intracellular VWF was released

from GRK2-deficient cells upon histamine stimulation,

we suggest that organelle numbers are not limiting under

these conditions. Whether WPB number is relevant under

conditions such as chronic stimulation, remains to be

determined. Moreover, in vivo, endothelial cells are unli-

kely to be confronted by a single stimulus following

injury or infection. Angiotensin, vasopressin and adrena-

line all bind to receptors that are under GRK2 regulation

[61–63] and capable of stimulating WPB exocytosis [64–
66]. Indeed, VWF release is also enhanced in response to

adrenaline in GRK-depleted HUVECs (data not shown).

It may be that the combined activities of these secreta-

gogues, enhanced by the absence of receptor desensitiza-

tion, would exhaust WPBs in GRK-depleted cells quicker

than in control cells.

In conclusion, our data are consistent with a model in

which GRK2 limits endothelial activation at steady-state

and during an inflammatory response by desensitizing

GPCRs, including the histamine receptor, to the presence

of agonist. Together with previously published data, this

suggests that GRK2 activity could be required in both

endothelial cells and leukocytes to limit excess cellular

infiltration of inflamed tissues. The ability to modulate an

inflammatory response in at least two of the cell types

involved potentially allows for GRK2 to mount a coordi-

nated control of this finely balanced process.
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