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a b s t r a c t

Fertility evolution in Italy has shown a deep drop in 1995, and
up to now the fertility rate is considered among the lowest in the
world. The empirical distribution of the age-specific fertility rates
is characterized by a decreasing tendency of themaximum fertility
rate and a simultaneous increase of the corresponding mother’s
age. This tendency has been stimulating recent contributions in
modelling and forecasting.

The aim of this paper is to propose a dynamic model for de-
scribing and predicting the evolution of the Italian age-specific fer-
tility rates over time. In particular, a well-documentedmodel, such
as a Gamma function, slightly modified in order to include time-
varying stochastic parameters, is used to describe the systematic
and macroscopic variations of the age-specific fertility rates over
time, while a nonparametric geostatistical model is applied to de-
scribe the correlated residuals at microscopic level. Finally, predic-
tions for the variable under study are provided and main empirical
evidences of the temporal evolution for different mother’s ages are
discussed.
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1. Introduction

Several contributions onmodelling and predicting fertility rates (FR) can be found in the literature.
Some of them are related to the Total FR and are based on different approaches, such as GARCH
(Generalized AutoRegressive Conditional Heteroskedasticity), ARCH and ARIMA (Autoregressive
Integrated Moving Average) time series models (Alders and de Beer, 2004; Keilman and Pham, 2004;
Lee and Tuljapurkar, 1994; Lee, 1993; Lee and Wu, 2003), Bayesian models (Raftery et al., 2014) or
spatio-temporal geostatistical models (De Iaco et al., 2015). Other models provide excellent fits to the
distributions of the age-specific FR referred to specific calendar years (Gayawan et al., 2010; Peristera
and Kostaki, 2007) and are useful in social planning (Billari et al., 2012), for both government and
private institutions (Hoem et al., 1981; Smith, 1987). Moreover, modern mixture models can capture
fertility patterns which exhibit an almost bimodal shape (Chandola et al., 2002). This is common
for age-specific FR distributions of developed countries, such as the United Kingdom, Ireland and
USA, which are characterized by two populations with different age-specific FR (Azzalini, 1985, 2005;
Mazzucco and Scarpa, 2015; Peristera and Kostaki, 2007). Unlike other developed countries, Italy has
maintained a classic fertility pattern (a bell shaped distribution, roughly symmetrical though sharper
in its left part of its peak) with no additional hump.

In this context, a further step in modelling is related with the possibility of considering that age-
specific FR data are often given as a two-way table on a grid, equally spaced in either the vertical
(calendar year) and horizontal (mother’s age) directions. This type of demographic tables requires
not only a temporal analytical perspective, but also a consciousness of the corresponding female
age, which in this case can be interpreted as another dimension of the domain. Then, they can be
suitably interpreted as data with a spatio-temporal like structure on a two-dimensional domain,
i.e. the vertical (time) and horizontal (space) directions. In this case, dynamic fertility tables arise
as an alternative to the standard (static) fertility table, with the aim of incorporating the evolution
of fertility over time. This is consistent with recent advances in demographic research which are
usually based on collection and analysis of individual- and contextual-level data across awide range of
spatial and temporal scales (Matthews and Parker, 2013; Voss, 2007;Weeks, 2004; Débon et al., 2008;
Martinez-Ruiz et al., 2010). Booth (2006) offers a wide overview since 1980 about the approaches
and developments in demographic forecasting. As remarked by Shang (2015), forecasting methods
for age-specific FR can be organized into three classes: parametric (Thompson et al., 1989; Keilman,
2008), semi-parametric (Booth, 1984) and non-parametric models (Bozik and Bell, 1987; Lee, 1993;
Hyndman and Shahid Ullah, 2007; Hyndman and Booth, 2008). Nevertheless, none of the forecasting
methods in the demographic fertility literature takes into account the existing dependence structure
among the data.

In this paper, a new approach inmodelling and forecasting age-specific FR is proposed and applied
to the Italian FRwhich has showna steep decreasing tendency and is considered at themoment among
the lowest in the world. The novelty of this paper is (1) to propose an appropriately modified version
of an existing parametricmodel in order to incorporate themacroscopic variation of age-specific rates
over time and (2) to treat the correlated residuals at microscopic level (which are usually ignored) by
using a two-dimensional geostatistical model.

The rest of the article is organized as follows. Section 2 presents the available two-way table of
the Italian age-specific FR for the period 1952–2012. In Section 3 the dynamic model with correlated
residuals is introduced and the Italian trend of the age-specific FR (from 13 to 50 years old) over
the temporal interval of interest, is reasonably described by a Gamma function (Hoem et al., 1981),
with stochastic parameters depending on time. Thus, in Section 3.1 the time-varying stochastic
parameters of the Gamma function are estimated and modelled, while in Section 3.2 the age-specific
FR correlated residuals (obtained by removing the FR trend component from the observed age-specific
FR) are appropriately studied through structural analysis. In Section 4 spatio-temporal kriging based
on a suitable class of non-separable covariance models is applied for prediction purposes. Some
empirical evidences of the FR evolution in time and for different mother’s ages are discussed. Finally,
a comparison between the proposed stochastic model with a correlated residual component and the
traditional model, commonly used to describe only the systematic structure, is provided in Section 5.
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Fig. 1. Cartesian diagram of the age-specific FR from 1952 to 2004.

2. Two-way table of age-specific FR in Italy

Fertility evolution in Italy has shown a deep drop in 1995, and up to now the Italian FR is
considered among the lowest in theworld. This tendency has been stimulating contemporary theories
of childbearing and family building and recent contributions in modelling. Italian fertility level can be
partly explained by its scarce family policy that should be more incisive and capable to accommodate
women entry into the labour force (Castro, 2007).

The analysed data set refers to the Italian age-specific FR corresponding to the period 1952–2012.1
In particular, data for the last 8 years (from 2005 to 2012) have been used at first for validation
purposes, then after assessing the accuracy of the model, the complete data set for the period
1952–2012 has been considered for modelling and prediction. In the following, the two-way table
of the Italian age-specific FR for the period 1952–2004 has been described.

The age-specific FR, denoted with Z(s, t), represents the number of births occurring during a given
year t , per 1000 women, in each reproductive age s (13–50 years). This is defined as follows:

Z(s, t) = [B(s, t)/F̄(s, t)] · 1000
where B(s, t) is the number of births to women of a specified age s during a given year t , and F̄(s, t)
is the number of women of the same age s during the specified year t .

Fig. 1 illustrates the Cartesian diagram of the Italian age-specific FR: the distribution of the data
versus the female age is characterized by positive asymmetry, which has been decreasing in the last
10 years.

It is important to highlight that the empirical distribution of the age-specific FR has changed
gradually and significantly over the temporal interval 1952–2004. In particular, the decreasing
tendency of the maximum FR and the simultaneous increasing tendency of the age corresponding
to the maximum FR, are shown in Fig. 2.

1 (Data sources: demo.istat.it/fecondita/index.html for the period 1952–2004 and demo.istat.it/altridati/IscrittiNascita for
the period 2005–2012, published online by the Italian National Institute of Statistics.)

http://www.demo.istat.it/fecondita/index.html
http://www.demo.istat.it/altridati/IscrittiNascita
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Fig. 2. Time plots of the maximum age-specific FR and the corresponding age for the period 1952–2004.

Note that peaks in the distributions occur in the age interval 25–26, for the period 1963–1971,
while a rapid decrease in fertility is registered during the period 1972–1995 (especially for the age
group 27–30). Finally, the fertility decline slows down in the successive period where the highest
age-specific FR are recorded for women over 30. This delay in childbearing is probably associated
with deferred marital status as well as higher educational levels, or with the use of contraceptive and
social status of the mother, as demonstrated by various contributions (Hyndman and Shahid Ullah,
2007).

3. Dynamic model with correlated residuals

FR data, which are observed for different mother’s ages and calendar years, can be naturally
referred to a bidimensional domain with a spatio-temporal structure, whose horizontal direction
(space) is associatedwith themother’s age and vertical direction (time) is associatedwith the calendar
year.

As in many cases encountered in analysing natural processes (Monestiez et al., 2001; Myers,
2002; Skøien and Blöschl, 2006; Spadavecchia and Williams, 2009; Weissmann and Fogg, 1999), this
demographic variable presents a systematic structure (trend) at macroscopic level and a residual
component at microscopic level. In this case, some geostatistical tools which allow both components
to be evaluated, are often convenient (Gething et al., 2006). Then, by recalling the random field theory
(Yaglom, 1962), the observed values of the above mentioned FR are considered as a realization of
a spatio-temporal random field (STRF ) Z over a bidimensional domain D ⇥ T , where D represents
the spatial domain (mother’s age) and T the temporal one (calendar year). In particular, the spatio-
temporal framework is reasonable since:
• the calendar year represents naturally the time coordinate;
• the mother’s age represents another dimension with respect to the calendar year and it is not

directly comparable with it. It worth underlining that for a fixed mother’s age, the data set of the
specific FR (vertical axis) for each calendar year (horizontal axis) is a time series since data are
referred to time points; on the other hand, for a fixed calendar year, the data set of the specific FR
(vertical axis) for eachmother’s age (horizontal axis) is not a time series since data are not referred
to time points;

• the mother’s age has an intrinsic order, but the idea of having past, present and future is not
appropriate;
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• the mother’s age represents a coordinate on a generic 1D domain. Note that a 1D domain is
naturally isotropic, then it is essentially ordered as it is the mother’s age.

The STRF Z is reasonably decomposed as follows:

Z(s, t) = M(s, t) + Y (s, t), (s, t) 2 D ⇥ T , (1)

where M(s, t) = E[Z(s, t)], usually called trend or drift, describes the large-scale variations and Y
describes the second order stationary residuals with zero expected value, and variogram:

2� (hs, ht) = Var{Y (s, t) � Y (s + hs, t + ht)}
wherehs andht are called separation lags, (s, s+hs) 2 D2 and (t, t+ht) 2 T 2. In the literature, there are
several contributions on age-specific FR models describing the systematic structure at macroscopic
level (Azzalini, 1985, 2005; Billari et al., 2012; Gayawan et al., 2010; Mazzucco and Scarpa, 2015;
Peristera and Kostaki, 2007). As shown in Fig. 1, the Italian fertility trend component is characterized
by the following aspects: (a) the age-specific distributions exhibit a decreasing asymmetry over time,
(b) decreasing FR peaks associated with simultaneous increases in the female age especially over the
last forty years, (c) an overall decrease of the FR levels for all female ages. On the basis of the above
mentioned empirical evidences and taking into account that, differently fromother countries, Italy has
maintained a classic fertility pattern (a bell shaped distribution, roughly symmetrical though sharper
in its left part of its peak) with no additional hump, the following functional form for the trend has
been considered:

M(s, t) = At ·
⇢

�Nt

� (Nt)
s(Nt�1) e�� s

�
, (2)

where At and Nt are stochastic positive parameters representing the proportional factor and the
shape coefficient respectively, � (·) is a Gamma function and � is a positive constant, called the rate
parameter (the reciprocal of the scale parameter). Except for the proportional factor At , the trend
component of the age-specific FR is described, for a fixed t , by a Gamma function with a stochastic
shape parameter Nt and a rate parameter � . This functional form, with time-varying stochastic
parameters represents a revised version of the Gamma function (Hoem et al., 1981) and reproduces
the main features of the Italian age-specific FR which are characterized by a bell shaped distribution,
with a slightly positive asymmetry and no additional hump.

3.1. Estimation and modelling trend parameters

The trend parameters have been estimated by using the NLR algorithm in SPSS software (version
20) based on the Sequential Quadratic Programming method which is one of the most successful
methods for the numerical solution of constrained nonlinear optimization problems (Nocedal and
Wright, 1999, p. 527). Table 1 illustrates the parameter estimates and the corresponding standard
errors (Seber and Wild, 2003, p. 21) evaluated for each year (from 1952 to 2004) through the above
mentioned non-linear optimization procedure, under the bound on the constant � = 0.63 which
guarantees the algorithm convergence. As confirmed by analysing the adjusted R̄2 statistic in Table 1,
the age-specific FR trend, described through the function in Eq. (2), provides a good fit for each
calendar year in the interval 1952–2004. At this point, the estimates, denoted with bNt andbAt , of the
stochastic parameters Nt and At have been analysed and modelled.

Fig. 3 shows the temporal behaviour of the estimated values for Nt and At . The empirical
proportional factorbAt for a fixed calendar year t (t = 1952, . . . , 2004), reflects the Total FR for each
year t . Indeed, the temporal behaviour of this factor shows an increasing tendency until the 70s and
a well-documented decline up to the 90s. The estimates for Nt are strongly linked to the average
mother’s age which is characterized by a decreasing tendency until the late 70s, and a sharp increase
for the subsequent years. Then, the time series of the empirical values obtained for Nt and At have
been further studied by using the Box–Jenkins methodology (Box et al., 2013).

As illustrated in Fig. 4, the sample autocorrelation functions (ACF) for both variables tend to damp
very slowly and the sample partial autocorrelation functions (PACF) decay very quickly from lag 2.
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Table 1
Estimates and standard errors (SE) for the parameters Nt and At , obtained by fitting the model in Eq. (2), together with the
adjusted R̄2.

t (year) bNt (SE) bAt (SE) R̄2 t (year) bNt (SE) bAt (SE) R̄2

1952 18.39 (0.74) 2400.17 (42.92) 0.98 1979 16.98 (1.02) 1897.32 (50.95) 0.97
1953 18.34 (0.74) 2380.01 (42.87) 0.98 1980 17.02 (1.04) 1821.03 (49.86) 0.97
1954 18.32 (0.76) 2425.88 (45.05) 0.98 1981 17.12 (1.08) 1739.54 (49.38) 0.96
1955 18.26 (0.75) 2406.39 (44.35) 0.98 1982 17.18 (1.13) 1745.62 (51.23) 0.96
1956 18.17 (0.78) 2416.59 (46.45) 0.98 1983 17.29 (1.13) 1682.11 (49.30) 0.96
1957 18.13 (0.80) 2424.61 (47.96) 0.98 1984 17.41 (1.16) 1630.70 (48.48) 0.96
1958 18.10 (0.82) 2414.83 (48.69) 0.98 1985 17.54 (1.21) 1596.39 (49.49) 0.96
1959 18.06 (0.83) 2491.46 (51.10) 0.98 1986 17.67 (1.25) 1521.17 (48.29) 0.96
1960 18.03 (0.80) 2525.13 (49.88) 0.98 1987 17.81 (1.27) 1493.04 (47.79) 0.96
1961 17.99 (0.79) 2530.09 (49.81) 0.98 1988 17.99 (1.30) 1534.27 (49.63) 0.95
1962 17.99 (0.76) 2591.28 (48.96) 0.98 1989 18.10 (1.31) 1495.98 (48.62) 0.95
1963 17.90 (0.75) 2690.74 (50.44) 0.98 1990 18.24 (1.35) 1510.35 (49.97) 0.95
1964 17.83 (0.71) 2835.07 (50.26) 0.98 1991 18.33 (1.35) 1477.75 (48.53) 0.95
1965 17.73 (0.73) 2791.22 (51.52) 0.98 1992 18.48 (1.42) 1466.49 (50.54) 0.95
1966 17.71 (0.77) 2744.78 (53.55) 0.98 1993 18.60 (1.44) 1407.60 (48.76) 0.95
1967 17.61 (0.82) 2658.56 (55.45) 0.98 1994 18.74 (1.51) 1361.63 (49.11) 0.94
1968 17.54 (0.86) 2612.60 (57.18) 0.98 1995 18.94 (1.63) 1332.14 (51.15) 0.94
1969 17.56 (0.89) 2630.73 (59.42) 0.97 1996 19.05 (1.67) 1363.35 (53.40) 0.93
1970 17.44 (0.88) 2544.66 (57.77) 0.97 1997 19.17 (1.72) 1372.93 (54.87) 0.93
1971 17.39 (0.86) 2530.95 (56.38) 0.98 1998 19.25 (1.73) 1362.88 (54.67) 0.93
1972 17.27 (0.82) 2478.02 (53.00) 0.98 1999 19.34 (1.71) 1373.02 (53.98) 0.93
1973 17.19 (0.80) 2458.19 (51.17) 0.98 2000 19.42 (1.72) 1396.67 (55.23) 0.93
1974 17.11 (0.76) 2444.29 (48.82) 0.98 2001 19.49 (1.65) 1388.08 (52.49) 0.94
1975 17.00 (0.79) 2318.22 (48.41) 0.98 2002 19.58 (1.70) 1406.29 (54.29) 0.93
1976 16.95 (0.81) 2220.52 (47.83) 0.98 2003 19.69 (1.74) 1424.47 (56.12) 0.93
1977 16.94 (0.92) 2100.11 (51.23) 0.97 2004 19.76 (1.74) 1471.17 (57.66) 0.93
1978 16.96 (0.96) 2001.90 (50.80) 0.97

Fig. 3. Time plots for the estimates (dashed line) of (a) Nt and (b) At and the corresponding theoretical values (solid line)
obtained through the fitted ARIMA models.

This behaviour confirms that the two time series are finite realizations of non-stationary stochastic
processes. First order differences have been computed and the cointegration test of Engle and Granger
(1987) has been applied. Although the unit-root hypothesis is not rejected for the individual variables,
there is no evidence for cointegrated relationship since the unit-root hypothesis is not rejected for the
residuals from the cointegrating regression. Taking into account the ACF and PACF behaviour, both
time series have been modelled through an ARIMA model, where the order of integration is equal
to 1, the order of the autoregressive component is equal to 1 and the order of the moving average
component is set equal to 1, i.e.:

�(B)(1 � B)Nt = ⇥(B)Ut � 0(B)(1 � B) At = ⇥ 0(B)U 0
t
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Fig. 4. Sample ACF and PACF with 95% confidence intervals (dotted line) for the estimates of (a) Nt and (b) At .

Table 2
ARIMA model results for Nt and At , for the period 1952–2004.

Variable Parameter Estimate Std. Error p-value

Nt � 0.964 0.031 <0.0001
✓ �0.442 0.102 <0.0001

At �0 0.849 0.112 <0.0001
✓ 0 �0.458 0.20 0.0241

where �(B) and ⇥(B) with parameter � and ✓ , respectively, are polynomials of the first order in the
lag operator B, similarly for � 0(B) and ⇥ 0(B) with parameter �0 and ✓ 0, respectively, while U and U 0

are white noise random processes with variances � 2
U and � 2

U 0 respectively.
Table 2 reports the parameter estimates of (�, ✓) for the model of Nt and (�0, ✓ 0) for the model

of At and the standard errors. Moreover, the associated p-values support the assumption that the
parameters are statistically significant.

Fig. 3 illustrates the time plots of the empirical values for Nt and At , together with the
corresponding theoretical values obtained through the ARIMAmodels. Apart from the visual detection
of the good fitting, the selected ARIMA models have passed the residual diagnostics: the zero mean
hypotheses for both the residuals are not rejected and the correlograms and the Ljung–Box statistics
indicate that the residuals behave as white noise processes. Thus, the reliability of ARIMA models for
Nt and At supports their application for prediction purposes. In other terms, the fitted models can be
used to estimate the values for the parameters Nt and At for time points in the future, and then to
evaluate the fertility trend, as in Eq. (2), for different mother’s ages and future calendar years.

In conclusions, it is worth highlighting that differently from other age-specific FRmodels proposed
in the literature, the trend model in Eq. (2) is based on a Gamma function where Nt and At are
stochastic coefficients and its dependence from both the mother’s age and the calendar year is
explicitly expressed.

3.2. Structural analysis and modelling for FR residuals

Given the Italian age-specific FR over time, which represents a finite realization of the STRF Z in
Eq. (1), the correlated residuals Y are obtained by removing the trend component, as in Eq. (2), from
the observed age-specific FR. Fig. 5 illustrates the 2D view of the above mentioned age-specific FR
residuals. As clarified, this STRF Y is able to capture the small-scale variations, which sometimes are
erroneously treated as uncorrelated residuals.

In this context structural analysis is developed for the 2D FR residuals available from 1952 to 2004
(called temporal dimension) and for different mother’s age (called spatial dimension), and a suitable
variogram model of the residuals is identified and used for prediction purposes by applying kriging
(Journel and Huijbregts, 1981). Regarding the computational aspects, predictions have been obtained
by using the program K2ST, which is a modified GSLib routine (De Iaco and Posa, 2012).



112

Fig. 5. 2D perspective of the table of age-specific FR residuals in Italy from 1952 to 2004.

Note that, after producing the predictions for the residuals through ordinary kriging, the trend
component has to be added to the residuals in order to obtain the predicted age-specific FR.

3.2.1. Structural analysis
Structural analysis begins with the estimation of the variogram of the STRF Y in Eq. (1), over the set

of data locations A = {(s, t)i, i = 1, 2, . . . , n}, where the coordinate s is associated with the mother’s
age and t is associated with the calendar year. Then, the sample variogramb� is evaluated as follows:

b� (hs, ht) = 1
2|L(hs, ht)|

X

L(hs,ht )

{Y (s + hs, t + ht) � Y (s, t)}2, (3)

where |L(hs, ht)| is the cardinality of L(hs, ht) = {(s + hs, t + ht) 2 A, (s, t) 2 A}.
It is important to highlight that no metric is defined in the 2D domain. Indeed, the pairs of points

separated by (hs, ht) are detected by computing, separately, the distances (in terms of age and year);
thus, the pairs of realizations, y(s, t) and y(s+hs, t+ht), correspond to points that are simultaneously
separated by hs in the spatial domain or horizontal direction (mother’s age), and ht in the temporal
domain or vertical direction (calendar year). On the basis of the above-mentioned interpretation,
we will use the expression ‘‘space–time variogram’’. The sample space–time variogram for the age-
specific FR residuals has been determined and shown in Fig. 6(a).

The variogram surface reflects a well-structured correlation, which is high for small lags (hs, ht)
and it is lower and lower for greater lags.
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Fig. 6. (a) Sample variogram surface, (b) variogram model of the age-specific FR residuals.

The second step of structural analysis consists in choosing a theoretical admissible model
(Christakos, 1984) and fitting it to the sample space–time variogram. In literature, various admissible
variogram models are available; one can choose between separable or non-separable variogram
models, where the formermodels are based on the assumption that the two dimensions of the domain
are independent and the latter models are based on the assumption that there exists an interaction
factor. Recently, different forms of non-separability have also been defined and wide classes of non-
separable variogrammodels have been classified according to these characteristics (De Iaco and Posa,
2013). Indeed, the selection of the appropriate class of models for the age-specific FR residuals has
been based on the geometric features of the empirical variogram surface and some properties, such
as the type of non-separability (De Iaco et al., 2013). Thus, the following spatio-temporal variogram
model, belonging to the Gneiting class (Gneiting et al., 2002), has been chosen:

� (hs, ht; 2) =

8
><

>:

0 (hs, ht) = 0

N + C

"

1 �
(

1
�
a · h2↵

t + 1
�⌧

)

· exp
(

� c · h2�
s

�
a · h2↵

t + 1
���

)#

otherwise
(4)

where 2 = (N, C, a, c, ↵, ⌧ , � , �) with N, C, a � 0, c 2 R, ⌧ � 0.5 (for 1D spatial dimension),
↵, � 2 (0, 1], � 2 [0, 1]; this non-separable model allows the interaction between FR specified by
age and their temporal evolution to be considered. The above Gneiting model has been fitted through
non-linear least squares estimation (Cressie, 1985), based on the following function:

W (2) =
X

L(hs,ht )

L (hs, ht) ·
⇢

b� (hs, ht)

� (hs, ht; 2)
� 1

�2

. (5)

In particular, the parameters a, c,N, C and � of the above model have been estimated through the
S-Plus function nls (non-linear least squares regression). The remaining parameters have been easily
fixed through the visual inspection of the sample variogram surface. The smoothness parameters ↵
and � , as well as the parameter ⌧ , have been set equal to 1, on the basis of the parabolic behaviour of
the sample variogram near the origin along the spatial and temporal profile. Fig. 6(b) illustrates the
fitted Gneiting model in Eq. (4), with 2 = [0.21232, 97.168, 0.0045606, 0.048146, 1, 1, 1, 0.9438].
Note that the relative mean square error (corresponding to the minimum value of W (2) divided by
the total number of pairs in the set L (hs, ht), for all hs and ht ), is equal to 0.019, while the square root
of the relative mean square error is equal to 0.136. These values provide a measure of the goodness of
fit and support the choice of the non-separable model given in Eq. (4).

In the following section, a further validation of the space–time variogram model has been
proposed; then, the validated model has been used for yearly predictions.
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Fig. 7. Scatter plot of the residuals of observed age-specific FR versus the residuals of estimated FR from1952 to 2004, obtained
through cross-validation.

Table 3
Predicted values ofNt andAt obtained through the fitted ARIMAmodels for (a) the period 2005–2012, (b) the period 2013–2025.

(a) (b)
t (year) bNt bAt t (year) bNt bAt t (year) bNt bAt

2005 19.841 1489.201 2013 20.099 1544.940 2021 20.233 1498.244
2006 19.919 1501.257 2014 20.116 1543.853 2022 20.249 1488.595
2007 19.994 1508.457 2015 20.134 1540.893 2023 20.264 1478.521
2008 20.068 1511.715 2016 20.151 1536.376 2024 20.280 1468.093
2009 20.140 1511.773 2017 20.168 1530.565 2025 20.295 1457.371
2010 20.210 1509.233 2018 20.184 1523.680
2011 20.278 1504.583 2019 20.201 1515.902
2012 20.344 1498.220 2020 20.217 1507.381

3.2.2. Model validation
In the previous section, a suitable space–time variogram model has been fitted to the empirical

variogram surface of the age-specific FR residuals; as a subsequent step the reliability of the fitted
model in Eq. (4) has been evaluated through the application of cross-validation and jackknife
techniques. Some statistical tools based on the comparison between estimates and sample data, have
been used to evaluate the goodness of the fitted model. Among these, the mean absolute error (MAE)
and the root mean square error (RMSE) between the true values and the estimated ones have been
computed and the test of the null hypothesis that the difference between the truemean value and the
estimated one is equal to zero has also been conducted. Afterwards, the space–time kriging based on
the same model in Eq. (4) has been used to predict the age-specific FR for future time points.

Cross-validation results have been represented through the scatter plot between observed values
and estimates, and appropriately summarized (Fig. 7). The comparison between the descriptive
statistics computed for the residuals of observed age-specific FR and the estimated rates, together
with the correlation coefficient (equal to 0.995) encourage the use of model in Eq. (4) for prediction
purposes. Moreover, this is also confirmed by analysing the box plots of the observed and estimated
FR residuals (Fig. 7).

In addition, the jackknife kriging predictions for the age-specific FR from 2005 to 2012 have been
also computed by using the above fitted model and by considering the residuals up to 2004. In this
way, after predicting the residuals for the period 2005–2012, the trend values of the same period have
been added to the jackknife predicted residuals in order to obtain the age-specific FR predictions. Note
that, for this aim, the stochastic parameters of the trend model in Eq. (2) have also been predicted for
the period 2005–2012 through the corresponding ARIMA models discussed in Section 3. Table 3(a)
reports the predicted values for these parameters.
Then the observed age-specific FR from 2005 to 2012 (which were available but not used in the
previous structural analysis) have been comparedwith thepredicted ones. Figs. 8–9 illustrate themain
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Fig. 8. (a) Scatter plot of the observed age-specific FR versus the estimated FR for the period 2005–2012, (b) box plot of the
square root of the error variance estimations.

Fig. 9. Scatter plots of the observed age-specific FR versus the estimated FR from 2005 to 2012 (a–h).

results obtained from jackknife technique. It is worth noting that the predicted FR values reproduce
very well the observed FR data, as shown in Fig. 8(a). Moreover, the correlation coefficient computed
between the observed FR and the predicted ones is close to 1 (0.998) and the p-values related to the
test of the null hypothesis that the difference between true mean value and estimated mean value is
equal to zero, leads to the acceptance of the test.

Fig. 8(b) illustrates the box plot of the kriging standard deviation (i.e. square root of error variance
estimation). It is evident that the corresponding frequency distribution is approximately symmetric
and is characterized by low variability. Note that the scatter plots of the observed age-specific FR
versus the estimated FR, evaluated for each year from 2005 to 2012 (Fig. 9), confirm the results
obtained from the analysis performed on the eight-year period (Fig. 8). These results and other
statistics such as the MAE and the RMSE (5%–7% of the FR mean), as well as the p-values for the tests
on the estimations errors, also reflect the reliability of the kriging estimates.

4. Predictions of the Italian age-specific FR

Given the variogram model in Eq. (4), spatio-temporal kriging has been properly applied in order
to obtain predictions of the specific FR residuals for each mother’s age, from 13 to 50 years old, over
the period 2013–2025. Then, the age-specific FR predicted values for the period 2013–2025 have been
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Fig. 10. Space–time perspective of the table of fertility in Italy from 1952 to 2012, together with the predicted values and their
relative kriging standard deviations from 2013 to 2025.

obtained by adding the predicted residuals to the trend components based on themodel in Eq. (2) and
on the parameter estimates in Table 3(b).

The 2D perspective of the observed age-specific FR from 1952 to 2012 together with the predicted
age-specific FR from 2013 to 2025 and their relative kriging standard deviations (i.e. square root of
the kriging error variance per FR unit) is shown in Fig. 10. It is evident that the age-specific FR tends to



117

Fig. 11. Time plots of the maximum FR and the corresponding age for the period 1952–2004, together with the predicted
maximum FR for the women (continuous thick line) and mother’s age corresponding to the maximum FR (dashed thick line)
from 2013 to 2025.

be, on average, lower with respect to the previous period, the asymmetry decreases over time and the
maximum values tend to bemore concentrated around the age interval of 31–33 years old up to 2022
and at the age of 32 years old for the following three years. The relative kriging standard deviations,
averaged over the mother’s age, for the period 2013–2025 show an increasing tendency over time,
although it is very slow (0.009 per year). This suggests that predictions can be considered reliable up
to the end of the estimation period.

The time plots of the maximum FR and the corresponding mother’s age for the period 1952–2025
are shown in Fig. 11. Note that the maximum FR for the women will continue decreasing slowly
from 2013 to 2025 (continuous thick line), while the mother’s age corresponding to the maximum
FR (dashed thick line) is going to stabilize around 32 years old. This trend is much more evident by
considering the predicted values from 2013 to 2025 shown in Table 4.

This perspective should stimulate more incisive family policies which should support childbearing
as well as financial assistance and tax reliefs.

5. A comparative analysis

The use of the proposed dynamic model can be justified and supported on the basis of a
comparative analysis. The comparison has been conducted with respect to the traditional Gamma
model (Hoem et al., 1981), which is widely used to describe the systematic structure of the age-
specific FR. In the following, some inferential tests have been proposed and discussed. First of all,
it has been worth testing if predictions can be significantly improved when the new dynamic model
with correlated residuals is used instead of the traditionalmodel,which enables for describing only the
macroscopic variations of the variable under study. Thus, given the null hypothesis that the difference
between the absolute estimation errors, obtained through the traditional model, and the absolute
errors, obtained through the new model, is on average less than zero, a one-tailed test on the right
has been performed. Note that this test has been conducted for the period 2005–2012, for which true
values are available and the estimated errors can be computed.

The importance of using the proposed stochastic model with correlated residuals is proved by the
rejection of the null hypothesis at a 5% significance level: indeed, the p-value corresponds to 1.33E�39
(<0.05).
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Table 4
Predictions for the age-specific FR in Italy from 2013 to 2025.

Age Calendar year
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

13 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0
15 1 1 1 1 1 1 1 1 1 1 1 1 1
16 2 2 2 2 2 2 2 2 2 2 2 2 2
17 5 5 5 5 5 5 5 4 4 4 4 4 4
18 9 9 9 9 8 8 8 8 8 8 8 8 8
19 14 14 14 14 13 13 13 12 12 12 11 11 11
20 20 20 20 19 19 19 18 18 17 17 16 16 15
21 26 26 26 25 25 24 24 23 23 22 22 21 21
22 32 32 32 32 31 31 31 30 30 30 29 29 28
23 39 39 39 39 38 38 38 37 37 37 36 36 36
24 48 47 47 46 46 46 45 45 45 44 44 44 43
25 56 55 55 55 54 54 54 53 53 53 52 52 51
26 64 64 63 63 63 63 63 62 62 62 61 61 61
27 73 72 72 72 72 71 71 71 70 70 69 69 68
28 81 81 80 80 80 80 79 79 79 78 78 77 77
29 88 88 88 88 87 87 87 86 86 85 84 84 83
30 95 95 94 94 93 92 92 91 90 89 88 87 87
31 98 98 97 97 96 95 94 93 92 91 90 89 88
32 97 97 96 96 96 95 95 94 93 93 92 91 91
33 93 93 93 93 92 92 92 91 90 90 89 88 88
34 88 88 88 88 87 87 86 86 85 85 84 83 83
35 80 81 81 81 80 80 79 79 78 78 77 76 76
36 71 72 72 72 72 71 71 71 70 70 69 69 68
37 62 62 62 62 62 61 61 61 60 60 60 59 59
38 51 51 51 51 51 51 51 51 51 50 50 50 50
39 41 40 41 41 41 41 41 41 41 41 40 40 40
40 31 30 31 31 31 31 31 31 31 31 31 31 31
41 21 21 21 22 22 22 22 22 23 23 23 23 23
42 13 13 14 14 14 15 15 15 16 16 16 17 17
43 8 8 8 9 9 9 10 10 10 10 11 11 11
44 5 5 5 5 5 5 6 6 6 6 6 6 6
45 3 3 3 3 3 3 3 3 3 4 4 4 4
46 1 2 2 2 2 2 2 2 2 2 2 2 2
47 1 1 1 1 1 1 1 1 1 1 1 1 1
48 0 1 1 1 1 1 1 1 1 1 1 1 0
49 0 1 1 1 0 0 0 0 0 0 0 0 0
50 0 1 1 1 0 0 0 0 0 0 0 0 0

After this step, the predictions based on the traditional Gamma model (2) and the new dynamic
model have been compared for the period 2013–2025. In Fig. 12, the histogram of the differences
between the predictions obtained through the use of the traditional model and the new proposed
model, is illustrated. A two-tail test has also been performed on the null hypothesis that this difference
is on average equal to zero; this hypothesis corresponds to the assumption that the two models lead
to the same results, in terms of predictions. The null hypothesis has been rejected, as confirmed by
the low p-value 2.23E�19 (<0.05) shown in Fig. 12.

6. Conclusions

In this paper, a stochastic model for the age-specific FR in Italy was proposed and the application
of such a model for forecasting purposes was presented and compared with respect to the use of the
traditional Gamma model. The advantage of this model is that it does not take apart the effects of
both calendar year and mother age. In particular, macro-scale variations related to the presence of
a FR trend over the domain and micro-scale variations of the residuals which are characterized by a
strong correlation were both analysed. It is important to highlight that although the Gamma function
reflects the main characteristics of the variable under study and the validation results support this



119

Fig. 12. Histogram of the differences between the age-specific FR predictions based on the traditional model and the
predictions based on the dynamic model with correlated residuals, for the period 2013–2025.

choice, further developments might consider the use of other functional forms for the trend, such as
the one proposed by Mazzucco and Scarpa (2015).

After removing the large-scale trend from the observed age-specific FR, structural analysis was
developed for the correlated residuals in order to identify a suitable variogram model to be used for
prediction purposes. In particular, a non-separable variogram model (such as the Gneiting class of
models) which allows the users to take into account the interaction between mother’s age (spatial
coordinate) and calendar year (temporal coordinate), was fitted and applied in the prediction process.

On the basis of prediction results, the maximum FR will continue decreasing from 2013 to 2025,
while the mother’s age corresponding to the maximum FR is going to stabilize around 32 years old.
This evidence should encourage the adoption of special measures to support family building and
childbearing.

At last, it is worth underlining that this kind of approach lets foresee new fields of application
for spatial and spatio-temporal statistics, which can be extended to a more general frame, where
observations are referred to a coordinate system, which is not strictly related to a geographic system.
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