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1. Introduction

The search for different families of copulas and/or construc-
tion methods is an active research field since copulas represent
a convenient way to generate multivariate statistical models (see,
e.g., Jaworski et al. (2013, 2010), Joe (1997),Mai and Scherer (2012)
and Nelsen (2006) and the references therein). In particular, in
the last few years, a number of investigations have focused on
the constructions of copulas that describe random vectors with
flexible dependence structures (see, e.g., Durante et al. (2010),
Nikoloulopoulos et al. (2012) and Okhrin et al. (2013) and the ref-
erences therein).

A technique aiming at transforming a copula in order to deter-
mine more flexible structures is given by the so-called patchwork
construction. Specifically, given a copula C , a patchwork copula de-
rived from C is any copula whose mass distribution coincides with
the mass distribution of C up to a d-dimensional box B ⊆ Id (here
I := [0, 1]), in which the probability mass is distributed in a differ-
entway. In particular, if such a box Bhas one vertex coincidingwith
one of the vertices of Id, then it provides as a by-product a powerful
way to change the tail dependence properties of the given C .
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One of the first examples of patchwork copulas is the ordinal
sumconstruction, originated in the context of associative functions
(see, e.g., Alsina et al. (2006) and Klement et al. (2000)); those
copulas are in fact constructed bymeans of a suitable modification
of the comonotone copula Md (see also Durante and Fernández-
Sánchez (2010); Mesiar and Sempi (2010)). Since then, ordinal
sums have been extended in different ways under the names
orthogonal grid constructions (De Baets and De Meyer, 2007),
rectangular patchworks (Durante et al., 2009a; González-Barrios
and Hernández-Cedillo, 2013; Zheng et al., 2011), and gluing
copulas (Mesiar et al., 2008; Siburg and Stoimenov, 2008). Similar
constructions can also be derived from the concepts of upper and
partial comonotonicity (Cheung, 2009; Zhang and Duan, 2013) and
multivariate piecing-together (Aulbach et al., 2012a,b).

In this paper, we propose a unified approach to patchwork con-
structions in the multivariate case. Specifically, we show that, by
using measure-theoretical tools, these constructions can be pre-
sented in a very general setting from which previously considered
methods can easily be derived. Several examples and practical con-
siderations about the applicability of the results to risk estimation
are included.

The relevance of the presented results in applied stochastic
models is (at least) two-fold.

First, patchwork constructions allow us to induce strong pos-
itive tail behaviour in a multivariate distribution, a fact that has
proved to be useful in a number of cases in order to obtain worst-
possible scenarios for various risk measures. For instance, the

http://dx.doi.org/10.1016/j.insmatheco.2013.10.010
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concept of upper comonotonicity (which, as will be seen, is a spe-
cial patchwork construction) has been used in order to show that
several riskmeasures are additive, not only for the sumof comono-
tonic risks, but also for the sum of upper-comonotonic risks,
provided that the level of probability is greater than a certain
threshold. For these notions and properties, see Cheung (2009),
Cheung and Lo (2013) and Zhang and Duan (2013). Moreover, no-
tice that patchwork copulas often appear in the literature as the de-
pendence structures that determine upper (lower) bounds for risk
measures of a portfolio; see, for instance, Embrechts et al. (2013)
and Rüschendorf (2013). In general, patchwork modifications of
the tail of a multivariate distribution function may serve to show
the well-known fact that the identification of a multivariate model
is usually a difficult task when the tail behaviour is to be correctly
identified. In fact, the estimation procedures cannot focus only on
the middle part of the distribution ignoring the tail, since this will
not be a conservative procedure from the point of view of a risk
manager (see, for instance, Hua and Joe (2012)).

In the second place, patchwork copulas can be used as well
to approximate the dependence structure by means of some ba-
sis copulas. Specifically, one may consider a background depen-
dence structure (usually assumed to be the independence or the
perfect dependence) and, hence, may modify it in fine parti-
tion of the multi-dimensional domain in order to obtain a flexi-
ble class of copulas. Such examples include shuffles of Min (Du-
rante and Fernández-Sánchez, 2010, 2012; Durante et al., 2009b),
checkerboard copulas (Carley and Taylor, 2002), or Bernstein cop-
ulas (Sancetta and Satchell, 2004) (for an application to non-life
insurance, see also Diers et al. (2012)), and similar construc-
tions (Zheng et al., 2011).

The paper is organized as follows. Section 2 presents the main
ideas about the multivariate patchwork construction focusing
on the case when the procedure involves the modification of a
dependence structure in only one box. Section 3, instead, presents
patchwork constructions in the general case together with some
analytical properties of the new method. Finally, an illustration
about copulas with orthogonal section is given (Section 4). All
these sections contain several examples (and simulating algorithm
from the generated models) that show the main features of the
methodology. Section 5 concludes.

2. The new approach to patchwork construction

Let C be a copula, i.e., C : Id → I is the restriction to Id of
a multivariate distribution function whose univariate margins are
uniform on I. As such, it can be extended in a unique way to Rd, a
fact that will be used extensively in this paper (see, e.g., Jaworski
et al. (2013, 2010)). Let µ = µC be the unique probability measure
on the Borel sets of Id that is associated with C (see, e.g. Durante
and Sempi (2010)) µC is a d-fold stochastic measure on Id, namely,
the image measure of µ under any projection equals the Lebesgue
measure λ on I: for i ∈ {1, . . . , d} and for a Borel subset Ai of I,

µ(I × · · · × I × Ai × I × · · · × I) = λ(Ai).

Moreover, for every d-dimensional box B = [a, b] = [a1, b1] ×

· · · × [ad, bd] contained in Id, one has

µC (B) = VC (B) , (1)

where VC indicates the C-volume (see Durante and Sempi (2010)
for the formal definition). In the following, we denote by Cd the
class of d-copulas.

According to the patchwork construction, by starting with C ∈

Cd a different copula can be determined bymodifyingµC in a given
d-dimensional box B = [a, b] of Id, as clarified in the following
definition.
Definition 1. Let µ be a d-fold stochastic measure. Let B be a d-
dimensional box of Id with µ(B) > 0 and let µB be a measure
defined on the Borel subsets of B such that µB(B) = µ(B). A
measure µ∗ is called the patchwork of µB into µ if, for every Borel
subset A of Id, one has

µ∗(A) = µ(A ∩ Bc) + µB(A ∩ B). (2)

The measure µ∗ will be denoted by ⟨B, µB⟩
µ.

It follows immediately from Definition 1 that ⟨B, µB⟩
µ is a

probability measure on the Borel sets of Id. Moreover, under some
additional assumptions, it can be proved that ⟨B, µB⟩

µ is also a d-
fold stochastic measure, i.e. it corresponds to a copula.

Theorem 1. Let B = [a, b]. The following statements are equivalent:

(a) µ∗
= ⟨B, µB⟩

µ is a d-fold stochastic measure;
(b) µB(Bi) = µ(Bi) for every d-box of the form

Bi = [a1, b1] × · · · × [ai−1, bi−1] ×

a′

i, b
′

i


× [ai+1, bi+1] × · · · × [ad, bd] .

Proof. It is enough to consider the sets of the form

Di = I × · · · × I × [ci, di] × I × · · · × I.

Since µ is a d-fold stochastic measure, there is nothing to prove if
Di ∩ B = ∅. Assume now, first,

[ci, di] ∩ [ai, bi] = [ai, di] .

Then, ifBi = I × · · · × I × [ai, di] × I × · · · × I, one has, since µ is
d-fold stochastic:

µ∗(Di) = µ∗(I × · · · × I × [ci, ai] × I × · · · × I)
+ µ∗(I × · · · × I × [ai, di] × I × · · · × I)

= µ(I × · · · × I × [ci, ai] × I × · · · × I) + µ∗(Bi)

= (ai − ci) + µ(Bi ∩ Bc) + µB(Bi ∩ B).

(a)H⇒ (b) Ifµ∗ is a d-fold stochasticmeasure, one hasµ∗(Di) =

di − ai, so that

di − ai = µ(Bi ∩ Bc) + µB(Bi ∩ B),

whence

µB(Bi ∩ B) = (di − ai) − µ(Bi ∩ Bc)

= µ(I × · · · × I × [ai, di] × I × · · · × I)
− µ(Bi ∩ Bc) = µ(Bi ∩ B).

(b) H⇒ (a) If µB(Bi ∩ B) = µ(Bi ∩ B), then one has

µ∗(Di) = ai − ci + µ(Bi ∩ Bc) + µ(Bi ∩ B)
= (ai − ci) + µ(Bi) = (ai − ci) + (di − ai) = di − ai

so that µ∗ is indeed d-fold stochastic.
The other cases are dealt with in a similar manner. �

From Theorem 1 it is clear that the possibility of obtaining a
d-fold stochastic measure via a patchwork procedure depends on
a suitable choice of the measure µB satisfying condition (b) of
Theorem 1. To this end, it is convenient to reformulate the problem
in an equivalent, but easier-to-handle, way.

Let C ∈ Cd be a copula; let µC be the d-fold stochastic measure
induced by C on the family B(Id) of Borel subsets of Id.

Let µB be a measure on the Borel sets B(B) of B = [a, b] that
satisfies condition (b) of Theorem 1. Define µB : B(B) → I byµB = µB/α, where α := µC (B) > 0. Obviously,µB is a probability
measure on B(B) and, hence, the map x → µB ([a, x]) is a d-
dimensional distribution function concentrated on B. Thus, in view
of Sklar’s Theorem (Sklar, 1959) (see also de Amo et al. (2012) and
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Fig. 1. Pairwise scatterplots from a random sample of 1000 realizations from the copula ⟨B, CB⟩
C where B = [0.8, 1]2 , C is a Frank copula and CB is a Gumbel copula with

Kendall’s tau respectively equal to 0.5 and 0.5 (left); 0.75 and 0.75 (right).
Durante et al. (2012, 2013)), there exists a copula CB such that, for
every x ∈ [a, b], one has

µB ([a, x]) = CB
F 1

B (x1), . . . ,F d
B (xd)


, (3)

where the marginal distribution function F i
B is given, for every

i ∈ {1, . . . , d}, byF i
B(xi) = µB ([a1, b1] × · · · × [ai−1, bi−1] × [ai, xi]

× [ai+1, bi+1] × · · · × [ad, bd])

=
1
α

µC ([a1, b1] × · · · × [ai−1, bi−1] × [ai, xi]

× [ai+1, bi+1] × · · · × [ad, bd]) ,

for every xi ∈ [ai, bi] (here and in the following, we refrain to give
the formal expression ofF i

B outside [ai, bi] since this is obvious in
view of the properties of a distribution function).

It follows thatµB, and hence µB, only depend on the choice of a
specific copula CB and the knowledge of the measure µC .

Thus, the copula C∗ associated with µ∗
= ⟨B, µB⟩

µ can be
represented, for every u ∈ Id, by

C∗(u) = µC ([0,u] ∩ Bc) + µB([0,u] ∩ B), (4)

which can be rewritten as

C∗(u) = µC

[0,u] ∩ Bc

+ α CB
F 1

B (u1), . . . ,F d
B (ud)


. (5)

The construction just introduced immediately yields the following
result.

Theorem 2. Let C and CB be d-dimensional copulas and let B =

[a, b] be a non-empty box contained in Id such that µC (B) > 0. The
function C∗

: Id → I given by (5) is a copula.

The copula of (5) is called patchwork of (B, CB) into C and it is
denoted by the symbol C∗

= ⟨B, CB⟩
C . The copula C is called the

background copula of the patchwork. Themeasure induced by C∗ is
⟨B, µB⟩

µC , where µC is induced by C while µB can be constructed
by its distribution functions given by

µB ([a, x]) = α CB
F 1

B (x1), . . . ,F d
B (xd)


.

The method of Theorem 2 has been often used in the literature,
as shown in the next examples.
Example 1. Consider the patchwork of copulas of type ⟨B, CB⟩
C ,

where B = [a, 1]. Then, it follows from (5) that, for all u ∈ Id one
has

C∗(u) = µC ([0,u] \ [a, 1]) + α CB
F 1

B (u1), . . . ,F d
B (ud)


, (6)

where α = VC (B) and, for every i ∈ {1, . . . , d}, one has

F i
B(xi) =

1
α

VC ([a1, 1] × · · · [ai, xi] × · · · × [ad, 1]) .

This construction was introduced in
González-Barrios and Hernández-Cedillo (2013, Theorem 3.4) for
themultivariate case, althoughwas proved in amore complexway
(at least in our opinion). An algorithm for generating a random
sample from the copula C∗ of (6) goes as follows.

Algorithm 1. 1. Generate u from the copula C .
2. Generate v from the copula CB.
3. For i = 1, 2, . . . , d set wi = (F i

B)
−1(vi).

4. If u ∈ B, then returnw.
Otherwise, return u.

As is apparent, the efficiency of the algorithm depends both on
the ability to generate a randompair from the copulas C and CB and
on the possibility to derive the inverse of the functionsF i

B.
A special feature of this construction should be stressed here.

Intuitively, suppose that one wants to induce a specific behaviour
of C near the corner 1. Then, it is possible to select a constant a close
to 1 and to adopt the construction (6) by gluing a copula CB with a
desired tail behaviour (for instance, with a non-trivial tail depen-
dence coefficient) into the probabilitymass distribution associated
C . In Fig. 1 two examples of a bivariate random sample from such
copulas are presented showinghow the tail behaviour near (1, 1) is
modified. For explicit calculations about how patchwork construc-
tions modify the tail dependence coefficients in the bivariate case,
we also refer to Durante et al. (2009a). A trivariate example is given
in Fig. 2 showing how the behaviour of each pairwisemarginal near
the upper corner of the unit square is changed. �

Example 2. A special case related to Example 1 has been used in
order to find bounds for functions of dependent risks (Embrechts
et al., 2005; Embrechts and Puccetti, 2006, 2010; Embrechts et al.,
2013). Specifically, given the vector of losses (L1, L2) having fixed
marginals, the worst-possible VaR (at level α) for the sum L+

= L1
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Fig. 2. Random sample of 1000 realizations from the copula ⟨B, CB⟩
C where B = [0.5, 1]3 , C is the independence copula and CB is the comonotone copula.
+ L2 (write: VaRα(L+)) is given when (L1, L2) is coupled by
⟨[α, 1]2,W2⟩

M2 . Interestingly, it is well known that

VaRα(L1) + VaRα(L2) ≤ VaRα(L+),

where the left hand side of the previous inequality corresponds to
the case when (L1, L2) is coupled by M2. Now, for any copula C ,
consider the patchwork C∗

= ⟨[α, 1]2, C⟩
M2 . This copula can be

used in order to interpolate between the comonotonic scenario and
theworst-case scenario for VaRα(L+). Numerically, such a property
is illustrated in Table 1.

Remark 1. A general advice is needed here about Example 1. Sup-
pose that a vector X of random losses is associated with a copula
of type C∗

= ⟨[a, 1] , CB⟩
C , where each ai corresponds to the α-

quantile of Xi (think at α = 0.95, for instance). Then, intuitively, B
represents a risky region for the loss portfolio. In view of the patch-
work construction, PC∗(X ∈ B) = PC (X ∈ B). In other words, the
probability that the losses are jointly in the risky region is the same
for the two dependence structures. Therefore, the effect of this spe-
cific patchworkmodification concerns thewayhow the probability
mass is spread around the corner and not the probability of having
joint extreme losses (i.e. losses falling in the region B).

Example 3. Let CB be an arbitrary d-copula and let Md(u) =

min{u1, . . . , ud} be the comonotone copula. Consider the patch-
work of copulas of type ⟨B, CB⟩

Md , where B = [0, a]. Then,
taking into account that Md concentrates the probability mass
entirely along the main diagonal of Id, it follows that, for every
i ∈ {1, . . . , d}, one has

F i
B(x) =

1
α

VMd ([0, a1] × · · · × [0, x] × · · · × [0, ad])

=
1
α

min{a1, . . . , x, . . . , ad}.

Here and in the following theMd-volume of a box is calculated us-
ing the formula of Nelsen (2006, Exercise 2.3.5), namely

VMd ([a, b]) = max{min{b1, . . . , bd} − max{a1, . . . , ad}, 0}.

Thus Eq. (5) may be further simplified as

C∗(u) = µC

[0,u] ∩ Bc

+ α CB


min{a1, . . . , u1, . . . , ad}

α
, . . . ,

min{a1, . . . , ud, . . . , ad}
α


.

Notice that in this case, α = VMd(B) = min{a1, . . . , ad}.
When all the components of a are equal to a, constructions of

copulas of this type describe upper comonotonic random vectors.
For the study of these dependence structures and their applica-
tions, we refer to Cheung (2009); Zhang and Duan (2013). Exam-
ples are illustrated in Fig. 3. �

Example 4. Consider the d-box B = ]a, b[d, a copula C ∈ Cd and
the background copulaMd. Since

F i
B(ui) =

1
b − a

max{min{b, xi} − a, 0},
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Table 1
Numerical approximation of VaR0.90(LC

∗

1 , LC
∗

2 )where L1, L2, ∼ N(0, 1), C∗
= ⟨[0.90, 1]2, C⟩

M2 for
a Clayton copula C with Kendall’s τ equal to the indicated value. Results based on 106 simulation
from the given copula.

τ = 1 τ = 0.50 τ = 0.00 τ = −0.50 τ = −1

VaRα(LC
∗

1 , LC
∗

2 ) 2.5631 2.5663 2.5749 3.0340 3.2897
Fig. 3. Random sample of 1000 realizations from the copula ⟨B, CB⟩
M2 where B = [0, 0.8]2 , CB is a Frank with Kendall’s tau equal to 0.5 (left) and 0.75 (right).
for every ui ∈ I, from Eq. (5) one has, for the patchwork of C into
Md

⟨]a, b[d, C⟩
Md(u)

= (b − a) C
F i

B(u1), . . . ,F i
B(ud)


+ µMd


[0,u] ∩ Bc .

This copula is an ordinal sum (see Durante and Fernández-Sánchez
(2010); Jaworski and Rychlik (2008); Mesiar and Sempi (2010)). In
particular, such amethod includes the lower and tail comonotonic-
ity presented in Zhang and Duan (2013). �

3. Patchwork construction: the general case

The procedure described in the previous section may also be
applied when the measure induced by a copula is modified in
several boxes of Id. Let S be equal to either {1, . . . , n} or to N. Let
λd be the d-dimensional Lebesgue measure on Id.

Definition 2. Letµ be a d-fold stochastic measure on B(Id). Given
S, let (Bs)s∈S be a family of d-boxes contained in Id such that
µ(Bs) > 0 (s ∈ S) and λd(Bs ∩ Bs′) = 0 if s ≠ s′. Set B = ∪s∈S Bs
and, for each s ∈ S, let µs be a measure defined on the Borel sets
B(Bs) of Bs such that µs(Bs) = µ(Bs) > 0. A measure µ∗ is called
the patchwork of (µs)s∈S intoµ if, for every Borel subset A of Id, one
has

µ∗(A) := µ

A ∩ Bc

+


s∈S

µs (A ∩ Bs) . (7)

The measure µ∗ will be denoted by ⟨Bs, µs⟩
µ

s∈S .

It follows immediately from the definition (7) that ⟨Bs, µs⟩
µ

s∈S
is a probability measure on the Borel sets of Id. By an argument
analogous to that of Theorem 1 one proves the following theorem.

Theorem 3. Assume the notations of Definition 2. Moreover, for
every s ∈ S, let Bs = [as, bs]. If µs(Bi) = µ(Bi) for every d-box
of the form

Bi =

as1, b

s
1


× · · · ×


asi−1, b

s
i−1


×


a′

i, b
′

i


×


asi+1, b

s
i+1


× · · · ×


asd, b

s
d


contained in Bs, then µ∗

= ⟨Bs, µs⟩
µ

s∈S is a d-fold stochastic measure.

As is apparent from the definition, given a system of Borel sets
(Bs)s∈{1,...,n} (with λd(Bs ∩ Bs′) = 0 if s ≠ s′) the patchwork of
(µs)s∈{1,...,n} into µ can be obtained by considering the patchwork
of µn into ⟨Bs, µs⟩

µ

s∈{1,...,n−1}. This is also true when one deals with
countable many measures, in the sense specified below. Consider,
in fact, the family of finite real (also called signed) measures on
B(Id). This is a real linear space that can be endowedwith the norm
of total variation given by

∥µ∥tv := sup

 
n∈N

|µ(En)|


,

where the supremum is taken over all the countable and measur-
able partitions (En)n∈N of I2. The following result holds.

Theorem 4. Let ⟨Bs, µs⟩
µ

s∈Z+
be the patchwork of (µBs)s∈S into µ.

Then the sequence
⟨Bs, µs⟩

µ

s∈{1 ...,n}


n∈N

converges in total variation to ⟨Bs, µs⟩
µ
s∈N.

Proof. On account of the definition of patchwork one has ⟨Bs, µs⟩
µ

s∈{1 ...,n} − ⟨Bs, µs⟩
µ
s∈N


tv

≤ 2

j≥n+1

µ(Bj),

which is the n-th remainder of a convergent series, and, as a
consequence, tends to zero as n goes to +∞. �

Now, let C ∈ Cd be a copula, and let µC be the d-fold stochastic
measure induced by C on the family B(Id) of Borel subsets of Id.
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For s ∈ S let Bs = [as, bs] be a d-box contained in Id, and let µs be a
measure on the Borel sets B(Bs) of Bs such that µs(Bi) = µ(Bi) for
every d-box of the form

Bi =

as1, b

s
1


× · · · ×


asi−1, b

s
i−1


×


a′

i, b
′

i


×


asi+1, b

s
i+1


× · · · ×


asd, b

s
d


contained in Bs. Define µs : B(Bs) → I by µs = µs/αs, where
αs = µC (Bs) > 0. Obviously,µBs is a probabilitymeasure onB(Bs).
As above, themaps x → µs([as, x]) are distribution functions, and,
hence, for every x ∈ [as, bs], one has

µs

as, x


= Cs

F 1
Bs(x1), . . . ,

F d
Bs(xd)


, (8)

where the marginal distribution function F i
Bs is given, for every

i ∈ {1, . . . , d}, byF i
Bs(xi) = µs


as1, b

s
1


× · · · ×


asi−1, b

s
i−1


×


asi , xi


×


asi+1, b

s
i+1


× · · · ×


asd, b

s
d


=

1
αs

µC

as1, b

s
1


× · · · ×


asi−1, b

s
i−1


×


asi , xi


×


asi+1, b

s
i+1


× · · · ×


asd, b

s
d


.

It follows that µs, and hence µs, only depends on the choice of a
specific copula Cs and the knowledge of the measure µ.

The copula C∗ associated with µ∗ can be represented, for every
u ∈ Id, by

C∗(u) = µC ([0,u] ∩ Bc) +


s∈S

µBs([0,u] ∩ Bs), (9)

where B = ∪s∈S Bs; this can be rewritten as

C∗(u) = µC

[0,u] ∩ Bc

+


s∈S

αs Cs
F 1

Bs(u1), . . . ,F d
Bs(ud)


, (10)

where B = ∪s∈S Bs. The construction just introduced immediately
yields the following result.

Theorem 5. Let C and CBs (s ∈ S) be d-dimensional copulas and
let Bs (s ∈ S) be a system (finite or countable) of non-empty boxes
contained in Id such that λd(Bs ∩Bs′) = 0 if s ≠ s′. Then the function
C∗

: Id → I given by (10) is a copula.

The copula of (10) is called the patchwork of (Bs, CBs)s∈S into
C and it is denoted by the symbol C∗

= ⟨Bs, CBs⟩
C
s∈S . Notice that

the measure induced by C∗ is ⟨Bs, µBs⟩
µ

s∈S , where µ is induced by C
while µBs can be constructed by its distribution functions given by

µBs ([as, x]) = αs Cs
F 1

Bs(x1), . . . ,
F d
Bs(xd)


.

Example 5. Let θ ∈ ]0, 1[ and let C1 and C2 be bivariate copulas.
Consider the boxes B1 and B2 defined by

B1 := [0, θ ] × I, B2 = [θ, 1] × I,

respectively and consider the patchwork

C := ⟨Bi, Ci⟩
Π2
i=1,2.

Eq. (10) now yields, for every point (u1, u2) ∈ I2,

C(u1, u2) = θ C1

u1

θ
, u2


+ (1 − θ) C2


u1 − θ

1 − θ
, u2


.

The previous expression coincides with the method for construct-
ing gluing copulas (Siburg and Stoimenov, 2008); by using similar
arguments it can be extended aswell to d-dimensional copulas and
to the case when more boxes are involved, as in the case of gluing
ordinal sums (Durante and Jaworski, 2012;Mesiar et al., 2008). �
Remark 2. It is now easy to extend the construction of ordinal
sums to the case in which more d-boxes ]as, bs[d (s ∈ S) are given
having their main diagonal lying on that of the unit box Id; let
Cs ∈ Cd be a set of copulas indexed by S. Set B = ∪s∈S ]as, bs[d.
Then the same argument of Example 4 yields that ⟨Bs, Cs⟩

Md
s∈S is an

ordinal sum of copulas in the sense of Durante and Fernández-
Sánchez (2010), Jaworski and Rychlik (2008) andMesiar and Sempi
(2010). In particular, the interval comonotonicity of Zhang and
Duan (2013) can be expressed in this form.

Remark 3. The general patchwork construction presented in
Theorem 5 may be used as well to modify the tail behaviour of
a copula in two or more corners of Id. The importance for such
constructions has been stressed in the bivariate case in Zhang
(2008) (see also Durante et al. (2009a)).

Now, let us consider the patchwork as a general operator among
function spaces. Define C S

:= {(Cs)s∈S}, where, for every s ∈ S, Cs
is a d-copula. Let C ∈ Cd and let Bs (s ∈ S) be a system of d-boxes as
in Theorem 5. Formally, the patchwork is defined as the mapping
TC : C S

→ Cd given by

TC ((Cs)s∈S) := ⟨Bs, Cs⟩
C
s∈S . (11)

Such a mapping is continuous, in the sense that small changes
components of the generating copula family (Cs)s∈S does not
amplify in the patchwork process, as shown below.

Theorem 6. Let (Bs)s∈S be a family of d-boxes contained in Id,
indexed by S, and such that λd(Bs ∩ Bs′) = 0 for s ≠ s′; let C be a
d-copula such that µC (Bs) > 0 for every s ∈ S. Then the mapping TC
given by (11) is uniformly continuous when the space Cd is endowed
by the uniform distance d∞, and C S by the distance

dS

(Cs)s∈S, (Cs)s∈S


:= sup

s∈S
max
u∈Id

|Cs(u) −Cs(u)|

= sup
s∈S

d∞(Cs,Cs).

Proof. Let B = ∪s∈S Bs. Given ε > 0 define δ := ε/µC (B) and
consider (Cs)s∈S and (Cs)s∈S in C S with

dS

(Cs)s∈S, (Cs)s∈S


< δ.

With reference to (10), one now has

d∞


TC ((Cs)s∈S), TC ((Cs)s∈S)


= max

u∈Id

 ⟨Bs, Cs⟩
C
s∈S(u) − ⟨Bs,Cs⟩

C
s∈S(u)


≤ max

u∈Id


s∈S

αs
 Cs

F 1
Bs(u1), . . . ,F d

Bs(ud)


−Cs
F 1

Bs(u1), . . . ,F d
Bs(ud)


≤


s∈S

αs dS

(Cs)s∈S, (Cs)s∈S


< δ


s∈S

αs = δ µC (B) = ε,

which proves the assertion. �

An interesting result is obtained when (Cs)s∈S ∈ C S is such that
Cs = C ′

∈ Cd for every s ∈ S. In this case, in fact, one can show
that the patchwork generates a variety of different dependence
structures up to a single case.

Theorem 7. Let Bs (s ∈ S) be a system (finite or countable) of
non-empty boxes contained in Id such that λd(Bs ∩ Bs′) = 0 and
B = ∪s∈S Bs. Let C be a copula. Suppose that µC (B) < 1. Then there
exists a unique copulaC that is invariant under the map F : Cd → Cd
defined by

F

(C ′)s∈S


:= ⟨Bs, C ′

⟩
C
s∈S .
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Proof. Let C ′ and C ′′ be two d-copulas. Then

d∞(

F(C ′), F(C ′′)


) = max

u∈Id

⟨Bs, C ′
⟩
C
s∈S(u) − ⟨Bs, C ′′

⟩
C
s∈S(u)


≤ max

u∈Id


s∈S

αs
 C ′

F 1
Bs(u1), . . . ,F d

Bs(ud)


− C ′′
F 1

Bs(u1), . . . ,F d
Bs(ud)


≤


s∈S

αs d∞(C ′, C ′′) = µC (B) d∞(C ′, C ′′).

Thus F is a contraction mapping if µC (B) < 1. Moreover, the
space Cd is a compact (see, e.g., Durante et al. (2012)), and, hence,
complete, metric space. Therefore, by the Banach fixed point
theorem, there exists a unique copula C ∈ Cd that is invariant
under F , F(C) = C . �

4. Illustration: copulas with a given orthogonal section

The construction of copulas that take given values on specific
sections has been extensively considered in the literature (see,
e.g., Nelsen (2006) and the references therein). Since most of these
constructions are limited to the 2-dimensional case, we wish to
extend the results of Klement et al. (2007) (see also Durante et al.
(2007) and Jaworski (2013)) and to consider multivariate copulas
that have a prescribed orthogonal section. We start by the very
definition.

Definition 3. Given a copula C ∈ Cd and b ∈ ]0, 1] the function
hC
j,b : Id−1

→ I defined, for j = 1, . . . , d, by

hC
j,b(u1, . . . , uj−1, uj+1, . . . , un) := C(u1, . . . , uj−1, b, uj+1, . . . , un)

will be said to be the j-th orthogonal section of C at b.

Obviously hC
j,b satisfies the following conditions:

(a) hWd
j,b ≤ hC

j,b ≤ hMd
j,b , whereWd andMd are the Fréchet–Hoeffding

bounds;
(b) hC

j,b is (d − 1)-increasing;
(c) hC

j,b is 1-Lipschitz.

On a probability space (Ω, F , P) let U1, . . . ,Ud be random
variables uniformly distributed on (0, 1) and having C as their
distribution function. Then

hC
j,b(u1, . . . , uj−1, uj+1, . . . , un) = P

 d
i=1
i≠j

{Ui ≤ ui} ∩ {Uj ≤ b}


= b P

 d
i=1
i≠j

{Ui ≤ ui} | Uj ≤ b


= b FU1,...,Uj−1,Uj+1,...,Ud|Uj≤b(u1, . . . , uj−1, uj+1, . . . , un).

Thus the section hC
j,b is b times the conditional distribution function

of the vector

(U1, . . . ,Uj−1,Uj+1, . . . ,Ud)

under the condition Uj ≤ b.
In general, when no restrictions are imposed on the continuous

random variables X1, . . . , Xd linked by the copula C , one has, for
each (x1, . . . , xj−1, xj+1, . . . , xd) ∈ Rd−1,

hC
j,b


FX1(x1), . . . , FXj−1(xj−1), FXj+1(xj+1), . . . , FXd(xd)


= b FX1,...,Xj−1,Xj+1,...,Xd|Xj≤QXj (b)

(x1, . . . , xj−1, xj+1, . . . , xd),

where QXj is the quantile function of Xj. Thus orthogonal sections
express one’s knowledge about the vector (X1, . . . , Xj−1, Xj+1,
. . . , Xd) under the condition that Xj does not exceed a prescribed
fixed value. This corresponds to truncation (on the right) of the
random variable Xj, a well-known statistical practice. As such,
copulas with a given orthogonal section have been, for instance,
considered in some extensions of the Koziol–Green model
(seeGaddah andBraekers (2010, 2011) and the references therein).

Moreover, notice that the knowledge of the conditional distri-
bution of X given Xj ≤ QXj(b) is also of interest in the deriva-
tion of novel risk measures in the financial sectors like CoVaR (see,
e.g., Bernard et al. (2013)).

Now, the construction of copulas with a given orthogonal sec-
tion can be obtained by using the following result, which gener-
alizes Proposition 2.1 in Klement et al. (2007). The result below
deals with the orthogonal section related to the d-th coordinate;
one might as well have chosen a different coordinate.

Theorem 8. If a function hb : Id−1
→ I satisfies conditions (a)–(c)

of Definition 3, then there exists a copula C ∈ Cd of which hb is the
d-th orthogonal section at b.

Proof. Given u = (u1, . . . , ud) ∈ Id set u′
:= (u1, . . . , ud−1). The

function defined by

Cb(u) :=



ud hb(u′)

b
, ud ≤ b,

hb(u′) +
ud − b

(1 − b)d−1

×

d−1
i=1

(ui − hb(1, . . . , 1, ui, 1, . . . , 1)) , ud > b,

is a d-copula. It is immediately seen that the d-th orthogonal
section ofCb at b equals hb. It follows from (a) of Definition 3 that

hb(u1, . . . , ui−1, 0, ui+1, . . . , ud−1) = 0;

thereforeCb(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0,

for i ≠ d, while the definition of Cb yields Cb(u′, 0) = 0. On the
other hand, since hb(1, . . . , 1) = b one has, for i ≠ d,

Cb(1, . . . , 1, ui, 1, . . . , 1) = hi +
1 − b

(1 − b)d−1
(1 − b)d−2 (ui − hi)

= hi + ui − hi = ui,

where hi := hb(1, . . . , 1, ui, 1, . . . , 1). For ud = t one hasCb(1, . . . , 1, t) = t , if t ≤ b, while, if t > b,

Cb(1, . . . , 1, t) = b +
t − b

(1 − b)d−1
(1 − b)d−1

= b + t − b = t.

The boundary conditions of a copula are thus satisfied. In order to
show thatCb is d-increasing consider first a box R = R′

×

u′, u′′


included in Id−1

× [0, b]; here R′
=

d−1
i=1 [ai, bi]. The vertices of

R are (v′, u′) and (v′, u′′), where v′
= (v′

1, . . . , v
′

d−1) with v′

i ∈

{ai, bi} (i = 1, . . . , d − 1). Then, if s := card({i : v′

i = ai})

VCb(R) =


v′

(−1)s
Cb(v′, u′′) −Cb(v′, u′)


=

u′′

b


v′

(−1)s hb(v′) −
u′

b


v′

(−1)s hb(v′)

=
u′′

− u′

b


v′

(−1)s hb(v′) =
u′′

− u′

b
Vhb(R

′) ≥ 0,

since hb is (d − 1)-increasing.
Consider now a box R = R′

×

u′′, u′


contained in Id−1

× ]b, 1].
For the ease of notation, set h′

i := hb(1, . . . , 1, ai, 1, . . . , 1) and
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h′′

i := hb(1, . . . , 1, bi, 1, . . . , 1). Then an easy, but fairly long,
calculation yields

VCb(R′
×


u′, u′′


) =

u′′
− u′

(1 − b)d−1


v′

(−1)s
d−1
i=1

(bi − h′′

i )(ai − h′

i)

=
u′′

− u′

(1 − b)d−1

d−1
i=1


(bi − ai) − (h′′

i − h′

i)


≥
u′′

− u′

(1 − b)d−1

d−1
i=1

{(bi − ai) − (bi − ai)} = 0,

where use has been made of the 1-Lipschitz property of hb.
The general case follows from the additivity ofCb-volumes. �

Notice that the function Id−1
∋ u′

→
hb(u′)

b is a (d − 1)-
dimensional continuous distribution function on Id, as is immedi-
ately seen; therefore, there exists a unique copula Cb ∈ Cd−1 such
that, for every u′

= (u1, . . . , ud−1) ∈ Id−1,

hb(u′)

b
= Cb


F b
1 (u1), . . . , F b

d−1(ud−1)

, (12)

where, for i = 1, . . . , d − 1, F b
i is its i-th marginal

F b
i (ui) =

hb(1, . . . , 1, ui, 1, . . . , 1)
b

.

Recourse to the construction of patchwork copulas allows us to
characterize all copulas in Cd that have hb as their d-th orthogonal
section.

Theorem 9. Given the orthogonal section hb the following statements
are equivalent for a copula C ∈ Cd:

(a) C has hb as its d-th orthogonal section;
(b) C has the representation

C(u) = b C1


F b
1 (u1), . . . , F b

d−1(ud−1),
ud

b


,

for un ≤ b, and

hb(u′) + (1 − b) C2


u1 − hb(u1, 1, . . . , 1)

1 − b
, . . . ,

ud−1 − hb(1, . . . , 1, ud−1)

1 − b
,
ud − b
1 − b


,

for un > b, where C1 is any copula that has Cb of Eq. (12) as
marginal, viz., C1(v′, 1) = Cb(v′) for every v′

∈ Id−1, while C2
is any d-copula.

Proof. (a) H⇒ (b) It will be seen that C can be written as ⟨Cj,

Rj⟩
Cb
j=1,2. To this end, take R1 = Id−1

× [0, b] and R2 = Id−1
× [b, 1].

The function

Id ∋ u → H(u) :=
1
b
C(u′, bud)

is a distribution function concentrated on R1 whose d-th marginal
is given by H(u′, 1) = hb(u′). Therefore, H must necessarily be
expressed in the form

H(u) = C1


F b
1 (u1), . . . , F b

d−1(ud−1),
ud

b


,

where C1(v′, 1) = Cb(v′) for every v′
∈ Id−1. In a similar manner,

the function

Id ∋ u → H2(u) :=
1

1 − b


C


(1 − b)(u1 + hb

1(u1)), . . . ,

(1 − b)(ud−1 + hb
d−1), ud − b


− hb(u′)



is a distribution function concentrated on R2; therefore there exists
a copula C2 such that

H2(u) = C2


u1 − hb(u1, 1, . . . , 1)

1 − b
, . . . ,

ud−1 − hb(1, . . . , 1, ud−1)

1 − b
,
ud − b
1 − b


.

The proof of implication (b) H⇒ (a) is obvious. �

5. Conclusions

Wehave presented amethod to construct copulas bymodifying
the probability mass distribution of a given copula in some
suitable subsets of the domain. The methodology presented here
includes as special cases a number of constructions presented in
the literature under different names, including upper and partial
comonotonicity. In particular, the method shows that it is possible
to spread the probability mass distribution of a copula in the tail
of a distribution in a multitude of ways. Therefore, modelling and
estimating risks when the tails are involved should be an exercise
that need special care, since the tail behaviour may be much more
complex than standard copula families are able to describe.
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