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The properties of quantum systems interacting with their environment, commonly 

called open quantum systems, can be strongly affected by this interaction. While this can lead 

to unwanted consequences, such as causing decoherence in qubits used for quantum 

computation1, it can also be exploited as a probe of the environment. For example, magnetic 

resonance imaging is based on the dependence of the spin relaxation times of protons2 in 

water molecules in a host’s tissue3. Here we show that the excitation energy of a single spin, 

which is determined by magnetocrystalline anisotropy and controls its stability and suitability 

for use in magnetic data storage devices4,  can be modified by varying the exchange coupling 

of the spin to a nearby conductive electrode. Using scanning tunnelling microscopy and 

spectroscopy, we observe variations up to a factor of two of the spin excitation energies of 

individual atoms as the strength of the spin’s coupling to the surrounding electronic bath 

changes. These observations, combined with calculations, show that exchange coupling can 

strongly modify the magnetic anisotropy.  This system is thus one of the few open quantum 

systems in which the energy levels, and not just the excited-state lifetimes, can be controllably 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/19777946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

renormalized. Furthermore, we demonstrate that the magnetocrystalline anisotropy, a 

property normally determined by the local structure around a spin, can be electronically 

tuned. These effects may play a significant role in the development of spintronic devices5 in 

which an individual magnetic atom or molecule is coupled to conducting leads.  

In quantum mechanical systems, whenever coupling to the environment induces changes in 

the lifetimes of states it must also induce a shift (often referred to as “dressing” or renormalization) 

of the energy levels of the system6. Measuring the shifts, as opposed to the lifetimes, is difficult 

because it is often not straightforward to extract the bare energy from the dressed value obtained 

from spectroscopic techniques. Furthermore, the effect of the environment can go far beyond the 

renormalization of the energy levels. This occurs for instance in Kondo systems7, where a localized 

spin is exchange coupled to a bath of itinerant electrons, screening the localized spin through the 

formation of a total spin singlet state together with the itinerant electrons. 

The structure of the environment also influences open quantum systems. One very important 

and technologically relevant example of this is magnetic anisotropy. The push to increase data 

storage capacities to the ultimate limit8 has driven research into understanding magnetic anisotropy 

at the atomic scale9-14. Tuning magnetic anisotropy normally can be done via structural10,13 or 

mechanical15 means, though electrical control of anisotropy through the addition and subtraction of 

discrete units of charge on a molecule has been observed16. The interplay between magnetic 

anisotropy and Kondo screening at the atomic and molecular scale has also recently received 

theoretical and experimental attention15,17-19. 

In our experiments (Methods Summary), Co atoms are deposited on a thin-decoupling layer 

of copper nitride (Cu2N) created on Cu(001). Cu2N reduces the coupling of magnetic atoms with 

the underlying metallic substrate11,18. As seen in the scanning tunnelling microscopy (STM) image 

shown in Fig. 1a, the Cu2N islands used here are significantly larger than those used in some prior 

experiments11,18. Scanning tunnelling spectroscopy (STS) measurements performed on four 

representative atoms on this island are shown in Fig. 1b; note that the atoms have negligible 
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differences in their topographic appearance at the voltage at which they were imaged. In these 

spectra, two distinct features are seen: a peak in the local density of states (LDOS) centred at zero 

bias and two steps in differential conductance that occur symmetrically at positive and negative 

voltages. In prior experiments18, the zero-bias peak was found to be a Kondo resonance while the 

differential conductance steps were inelastic electron tunnelling (IET) transitions at spin excitation 

energies described by the spin Hamiltonian4 

H = gµB
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where µB is the Bohr magneton, g is the Landé g-factor, B is the magnetic field, D and E are the 

axial and transverse anisotropy constants, S=3/2 is the total spin, and Sx,y,z are the projections of the 

spin along the appropriate axes. 

The most striking result of this work is that, as observed in Fig. 1b, the spectra of the 

different Co atoms on the Cu2N change dramatically even though the atoms are simply at different 

positions on the same surface, with no observed changes in the local binding. At the edge of a large 

(18.6×20.5 nm2) Cu2N island, the STS spectrum of Co closely resembles prior measurements for 

Co on small (5×5 nm2) Cu2N islands18. However, as the atom’s position shifts towards the centre, 

two striking changes occur: the relative height of the Kondo peak decreases, and the IET step shifts 

to significantly higher energy. Because the IET step is a measure of the magnetic anisotropy energy, 

this suggests that the anisotropy energy is increasing as the Kondo screening is decreasing. 

A first candidate to account for the observed variations in the magnetocrystalline anisotropy 

would be a change in the structure of the Cu2N. Both magnetic anisotropy and exchange coupling 

arise from the overlap of the orbitals of the Co atom with those of the atoms in the surface, 

primarily the neighbouring nitrogen atoms11. For small crystal deformations, the relative change of 

the magnetocrystalline anisotropy should be proportional to the strain, with the constant of 

proportionality of order unity in the elastic regime4,20. Atomically resolved images of the Cu2N 

islands reveal no change in the lattice constant (with an uncertainty of a few pm), limiting the 
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maximum strain to be a few percent. Measurements of the Cu2N bandgap onset, whose change 

should be very sensitive to small changes in the lattice constant21, further restrict the maximum size 

of the strain: as seen in Fig. 1c, we find that the bandgap shifts by a few percent at the centre of the 

island compared to the edges, suggesting substantially smaller changes in the lattice. Therefore, 

while structural changes of the Cu2N may account for some portion (less than 1%) of our observed 

energy shift, they cannot account for the majority of the effect. Detailed and technically demanding 

calculations of large Cu2N islands may provide a more precise measure of this contribution.  

Having ruled out a structural origin of the joint variations of Kondo resonance and the 

effective magnetic anisotropy, we explore a new physical scenario where changes in the exchange 

coupling between the Co spin and the conduction electrons, which lead naturally to a change of the 

Kondo temperature, also affect the spin excitation energies. We do so using both the Kondo and 

Anderson models, generalized to include single ion magnetic anisotropy (Supplementary 

Discussion). In the Kondo model, the dimensionless constant ρJ, the product of the density of states 

of substrate electrons at the Fermi energy ρ and the exchange energy J, controls the influence of the 

conduction electrons: the spin susceptibility is renormalized to linear order in ρJ while the local 

spin relaxation rate is proportional to (ρJ)2 22-24. In nuclear magnetic resonance, these phenomena 

are the well-known Knight shift and Korringa spin relaxation, respectively25. The environmentally 

induced decay rate necessarily comes together with a renormalization of the associated transition 

energy6. For the Kondo model with single ion anisotropy, second order perturbation theory yields 

the following expression for the renormalized excitation energy (Supplementary Discussion):  
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where Δ0 is the bare excitation energy, corresponding to spin excitations between the levels 

described by equation (1); kB is Boltzmann’s constant; T is the temperature; and W is the bandwidth 

of the substrate electrons. The second term in this equation is an exchange-driven shift of the spin 



 5 

excitation energies and is formally similar to the normally overlooked second order contribution to 

the Knight shift26. Qualitatively equation (2) accounts for our central observation: as ρJ decreases, 

the Kondo temperature7 TK 

kBTK !W !Je"1/!J 	   (3)	  

goes down while at the same time the spin excitation energy goes up. Whereas in most systems 

environmentally induced shifts can not be quantified because it is not possible to determine the bare 

energy Δ0, here the correlated variations of the Kondo temperature and the excitation energy reveal 

the significant renormalization of the single ion magnetic anisotropy by Kondo exchange.  

Equation (2) is based on a perturbative calculation and, as such, cannot reproduce the full 

Kondo phenomenology. To overcome this limitation, obtain further evidence for the above 

scenario, and have a more microscopic understanding of the origin of the variation of ρJ, we have 

carried out non-perturbative calculations, based upon a multi-orbital Anderson model with three 

local orbitals holding an anisotropic spin-3/2 (Supplementary Discussion). This model is defined by 

three parameters: the one-electron energies of the local orbitals Ed, the effective Coulomb repulsion 

between electrons U, and the single-particle broadening Γ due to tunnelling between the local 

orbitals and the substrate. Ed and U determine the electron removal and addition energies E0 and U-

E0 (Supplementary Discussion); therefore E0, U-E0, and Γ are the relevant energy scales that govern 

the Kondo physics. 

We solve the generalized Anderson model with the One Crossing Approximation (OCA)27 

and obtain the spectral function, which can be related to the experimentally measured STS 

spectra28. The observed symmetry upon bias inversion of the experimental dI/dV curves is best 

reproduced when we consider the electron-hole symmetric case (E0=U/2), as illustrated in Fig. 2; 

however, our results are robust and also occur in the absence of electron-hole symmetry. In the 

symmetric limit, the relation between the Anderson and Kondo models leads to a particularly 
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simple linear relationship7: ρJ = 8 Γ/U. Thus, a change in ρJ can arise in general from variations of 

Γ, U, or Ed.  

Figures 1d and 2 highlight the results of our OCA calculations. Increasing Γ, keeping U 

constant, the charge addition peaks at high energy broaden and shift (Fig. 2c). Moreover, in an 

energy window of ~10 meV around the Fermi energy, two relevant features are found, in agreement 

with our experimental observations: a Kondo resonance at the Fermi energy and a step a few meV 

above and below. Our OCA calculations show that the Kondo peak grows as Γ increases, while at 

the same time the spin excitation step shifts to lower energy (Supplementary Discussion), in 

agreement with the perturbative theory. As illustrated in Fig. 2d, this general behaviour in our OCA 

calculations is not sensitive to the specific choice of D or E. Importantly, the non-perturbative 

results show that the shift also changes linearly with (Γ/U)2, in qualitative agreement with equation 

(2). A similar shift of the singlet to triplet excitation energy has been recently obtained from an 

Anderson model of two exchange coupled spin ½ sites treated in the Non Crossing 

Approximation29. 

Renormalization of the magnetic anisotropy can arise in a variety of different scenarios 

where Γ, U, and Ed change at different locations on the surface. Here, we believe that variations in Γ 

are the most likely cause of the observed changes of the dI/dV. As seen in Fig. 1c, the gap of Cu2N 

increases by about 0.1 V as we move from the island edge to the island centre. A larger gap implies 

a higher tunnelling barrier, leading to a smaller Γ and therefore a smaller ρJ. However, a 

comparison with results obtained on islands with different sizes, showing that large islands present 

a variation of the magnetic anisotropy far from the edges despite the apparent constant gap, 

suggests that the situation may be more complex (Supplementary Discussion). For example, surface 

states confined under the Cu2N may play a role30. In addition, variations in U and Ed, which have 

been correlated with substantial changes in Kondo screening for Co on Cu(100)31, may also drive 

variations in exchange coupling. However, our calculations suggest that these parameters must 

change by more than 1 eV to account for a significant fraction of the observed shifts. 
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The magnetic field behaviour of the STS also changes as the position of a Co atom varies on 

the large Cu2N island. As seen in Fig. 3a,b,d,e, the field dependence of the IET step for a Co atom 

near the edge of the island is well-described by equation (1) with a large D term and E~0, consistent 

with results obtained at the centre of small Cu2N islands18. However, as seen in Fig. 3c,f, the IET 

step of a Co atom near the centre of the large Cu2N island can only be properly described by 

including a large E term. Excellent qualitative agreement between the spectral functions calculated 

using the OCA for the Anderson model (Fig. 1d) and the experimental spectra (Fig. 1b) are 

obtained using the values of D and E obtained in Fig. 3f. 

We note that the Co atom’s environment becomes more isotropic as Γ increases. More 

precisely, for systems with both axial and transverse anisotropy, all three axes are different4. As Γ 

increases, exchange will dominate the smaller transverse term, leaving the system with just a 

smaller axial anisotropy; eventually, for large Γ the system will effectively become isotropic. The 

first stage of this is precisely what is observed experimentally in Fig. 3. 

Exchange driven renormalization of magnetic anisotropy should be present in any system in 

which a magnetic impurity is coupled to an electronic bath, even if no Kondo screening occurs, but 

normally cannot be observed directly because either the unscreened spin excitations cannot be 

determined directly or the coupling cannot be controllably varied. Understanding this phenomenon 

is therefore crucial for future engineering of nanoscale quantum spintronic systems, which often 

involves placing an atomic or molecular spin in contact with an electronic reservoir5. Magnetic 

atoms on large Cu2N islands are therefore a special physical system with which we can observe and 

thereby understand the quantum mechanical “dressing” and “undressing” of a spin. This 

renormalization also provides an electronically tunable mechanism for controlling the magnetic 

anisotropy experienced by a quantum spin, which could have significant ramifications for the 

design and control of magnetic bits at the atomic and molecular scale. Not only does this 

mechanism enable control of the magnitude of the magnetic anisotropy, but it also can be used to 
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tune the relative strengths of the axial and transverse terms, which can be used to enhance or 

weaken various charge and spin tunnelling phenomena4,19. 
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Methods Summary 

The majority of the STM experiments were performed using an Omicron Cryogenic STM 

operating in ultrahigh-vacuum (chamber pressures below 5×10-10 mbar) at an effective sample 

temperature of 2.5 K. Superconducting magnets can apply fields of up to 6 T perpendicular to the 

surface of the sample or up to 2 T perpendicular to the surface of the sample plus up to 1 T in the 

plane. Additional STM experiments were performed using a SPECS JT-STM, a commercial 

adaptation of the design described by L. Zhang et al.32, operating in ultrahigh-vacuum with similar 

chamber pressures and at a base temperature of 5 K. 

Cu(001) samples (MaTeck single crystal with 99.999% purity) were prepared by repeated 

cycles of sputtering and annealing with Ar and annealing to 500°C. Cu2N was prepared on top of 

clean Cu(001) samples by sputtering with N2 and annealing to 350°C. The sample was held below 

30 K while Co atoms were evaporated onto the surface. 

The bias voltage V is always quoted in sample bias convention. Topographic images were 

obtained in the constant current imaging mode with V and tunnel current I set to V0 and I0 

respectively and processed using WSxM33. Differential conductance measurements were obtained 

using a lock-in amplifier, with AC modulation voltages of 100 µV at approximately 750 Hz added 

to V; spectra were acquired by initially setting V = V0 and I = I0, holding the tip at a fixed position 

above the surface, and then sweeping V while recording I and dI/dV. 

Differential conductance spectra shown in Figs 1b-c and 3a-c and Supplementary Figs 3b-c 

and 4d taken at zero perpendicular field B⊥ were acquired with an in-plane 1 T field to reduce 

vibrational noise; no noticeable change in the spectral features was observed compared to B=0. 
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Figure 1 | Spectroscopy of Co on a large (18.6×20.5 nm2) Cu2N island. a, Topographic STM 

image (setpoint voltage V0=100 mV, setpoint current I0=100 pA) of Co atoms on a Cu2N island. 

Coloured arcs label the atoms and crosses indicate the location of spectra acquired over nearby bare 

Cu2N. b, Low-bias dI/dV (V0=15 mV, I0=1 nA) spectroscopy acquired at perpendicular magnetic 

field B⊥=0 on top of four atoms labelled in panel a; spectra are offset vertically for clarity. c, High-

bias differential conductance spectra (V0=1.5 V, I0=50 pA) acquired at B⊥=0 near atoms at locations 

labelled with a cross in panel a; spectra are offset vertically for clarity. d, Spectral function Ad(ω) 

obtained from the Anderson model calculations (D=3.5 meV, E=2 meV, T~2.3 K, U=4 eV) with 

Γ=20 meV (red), 50 meV (green), and 90 meV (black). For consistency with the STM spectra in 

panel b, Ad(ω) is normalized such that the integrated weight up to 15 mV is constant; spectra are 

vertically offset for clarity. 
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Figure 2 | Generalized Anderson model of the Co electrons coupled to a bath of conduction 

electrons. a, Scheme of the many body energy levels for the three charge states of Co. b, Scheme 

of the S=3/2 multiplet split by the magnetic anisotropy. The lowest (shaded) states form an effective 

two-level Kondo system. c, Scheme of the generalized Anderson model for small Γ (left panel) and 

large Γ (right panel), showing the addition energies and the spectral function Ad(ω); the gray shaded 

area represent the Fermi sea of conduction electrons. Fine structure around the Fermi energy EF is 

shown in the middle sections, with the blue vertical arrows labelling steps in the spectral function 

corresponding to spin excitations. d, Spin excitation energies obtained from the OCA for various 

anisotropy values (blue: D=3 meV, E=0 meV; red: 3 meV, 2 meV; green: 4 meV, 0 meV; black: 

4 meV, 2 meV) and values of (Γ/U)2. 
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Figure 3 | Magnetic field dependence of differential conductance spectra of Co on 

18.6×20.5 nm2 Cu2N island. a-c, Low bias differential conductance (dI/dV) spectra acquired at 

B⊥=6 T (top), 4 T (middle), and 0 T (bottom) over atoms corresponding to those with similar colour 

labels in Fig. 1 (V0=15 mV, I0=1 nA); spectra are offset vertically for clarity and dashed vertical 

lines are a guide to the eye highlighting the change in energy of the IET step. d-f, IET step energy 

vs. perpendicular magnetic field. Solid dark blue line illustrates the evolution of equation (1) with 

S=3/2, g=2, E=0, and D=2.5 meV, 3.3 meV, and 5.0 meV (assigned based on the excitation energy 

at B⊥=0) respectively; solid light blue line is for D=3.5 meV and E=2.0 meV, obtained from a fit of 

all the data points in panel f. 
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