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SUMMARY The climate numerical models require a considerable amount
of computing power. The modern parallel architectures provide the needed
computing power to perform scientific simulations at acceptable resolutions.
However, the efficiency of the exploitation of the parallel architectures by the
climate models is often poor. Several factors influence the parallel efficiency
such as the parallel overhead due to the communications among concurrent
tasks, the memory contention among tasks on the same computing node,
the load balancing and the tasks synchronization. The work here described
aims at addressing two of the factors influencing the efficiency: the
communications and the memory contention. The used approach is based
on the optimal mapping of the tasks on the SMP nodes of a parallel cluster.
The best mapping can heavily influence the time spent for communications
between tasks belonging to the same node either to different nodes.
Moreover, if we consider that each parallel task will allocate different
amount of memory, the optimal tasks mapping can balance the total amount
of main memory allocated on the same node and hence reduce the overall
memory contention. The climate model taken into consideration is
PELAGOS025 made by coupling the NEMO oceanic model with the BFM
biogeochemical model. It has been used in a global configuration with a
horizontal resolution of 0.25◦. Three different mapping strategies have been
implemented, analyzed and compared with the standard allocation
performed by the local scheduler. The parallel architecture used for the
evaluation is an IBM iDataPlex with Intel SandyBridge processors located at
the CMCC’s Supercomputing Center.
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INTRODUCTION

The mapping is the process of assigning tasks
to processors. In the case of multiprocessor
architectures, the mapping is managed by a
local scheduler, which decides how to assign
the tasks to the compute nodes. The user can
define a custom mapping too. However she
must always keep in mind two aims conflicting
each other:

maximize the utilization of CPU

minimize the communication among pro-
cesses

We can recognize two mapping techniques:

the static mapping, in which the tasks are
mapped to the processes a priori (in this
case it is necessary to know in advance
the computational load of each task)

the dynamic mapping, in which the tasks
are mapped to the processes at runtime
(useful, for example, when tasks are cre-
ated during the execution or when the
computational load of the task is un-
known)

In this work, we have considered a static map-
ping to optimize the execution time of the PELA-
GOS025 model on the nodes of the Athena par-
allel cluster located at the CMCC Supercom-
puting Center. The PELAGOS025 is a coupled
model among the NEMO oceanic model [13]
and the BFM biogeochemical model [15] devel-
oped at CMCC. The model has been tested in a
global configuration with a horizontal resolution
of 0.25◦ and 50 vertical levels. It uses more
than 50 pelagic variables. Three different parti-
tioning strategies have been defined depending
on the objective to be pursued. In particular:

the minimization of inter-node communi-
cations

the optimization of the memory access for
each node

the minimization of intra-node communi-
cations

These strategies have been compared to the
default mapping defined by the scheduler,
which distributes the tasks on the compute
nodes according to the rank order.

MAPPING FOR MINIMIZING
INTER-NODE COMMUNICATIONS

The main aim of this type of mapping is to mini-
mize the communications among different com-
puting nodes [4]. To accomplish this, the job
is modeled by a graph, whose vertices rep-
resent the processes of the parallel program
and edges the communication channels among
them. This approach is well suited to irregular
patterns of communication, which lacks a struc-
tured topology [5, 9]. In general, the purposes
of partitioning are:

to evenly distribute the vertices to nodes

to minimize and balance the number of
edges between nodes

The NEMO domain is represented by a regular
grid and the computation in each subdomain
requires its own data and those belonging to
the neighbor subdomains according to the 5-
points cross pattern. Each subdomain is also
assigned to a task, associated with a processor.
If the distribution of tasks takes place randomly
on the nodes, it could have a large overhead
due to communications. The optimal solution
provides the partitioning of tasks into p parts so
that:
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each part contains about the same
amount of tasks (or vertices)

the number of edges that cross the
boundaries of a partition is minimal.

Moreover there are additional constraints due
to the particular partitioning that we want to
perform. Since the tasks are mapped on the
nodes with a particular architecture, they must
be organized in groups matching the number of
cores on each node. Figure 2 shows an exam-
ple of mapping that minimizes the inter-node
communications. Finding the optimal partition-
ing is an NP-complete problem, but there are
heuristics that approximate the optimal solution
very well; in particular, in our case, the parti-
tioning was calculated using the Scotch library
[14]. As above mentioned, each task has been
associated with an unweighted node on the
graph and communications between the neigh-
bors are modeled by arcs with the same weight.
The algorithm used by the Scotch library min-
imizes the communications ensuring load bal-
ancing within a certain range; in our case, how-
ever, we imposed the constraint of mapping the
same number of tasks on each node, so the tol-
erance on the load balancing has been forced
to be zero. Denoting by S the graph, vS the ver-
tices and eS the arcs, we have that wS(vS) and
wS(eS) represent the computation weight of the
corresponding process and the amount of data
to be transmitted on the channel, respectively.
The target machine when the parallel program
runs is also modeled by an unoriented graph T .
At the vertices vT and edges eT of T the inte-
ger weights wT (vT ) and wT (eT ) are assigned
estimating the computational power of the cor-
responding processor and the cost of traversal
of the inter-processor link, respectively. A map-
ping from S to T is obtained by minimizing the
cost function obtained by weighing the cost of
communications with the speeds of the link on

which the communication takes place. Denot-
ing by fc the communication cost function and
by |ρS,T (eS)| the number of edges ofE(T ) used
to route eS , we have

fC(τS,T , ρS,T ) =
∑

eS∈E(S)

wS(eS)|ρS,T (eS)|

This function has several interesting properties:
it is easy to be computed, allows incremen-
tal updates performed by iterative algorithms
and its minimization favors the mapping of in-
tensively intercommunicating processes onto
nearby processors. The mapping algorithm im-
plemented by the Scotch library uses a divide
and conquer approach to recursively allocate
subsets of processes to subsets of processors
[2, 6, 7, 8]. It starts by considering a set of
processors, also called domain, containing all
the processors of the target machine, and with
which the set of all the processes to map is
associated. At each step, the algorithm biparti-
tions a domain not yet processed into two dis-
joint subdomains, and calls a graph bipartition-
ing algorithm to split the subset of processes
associated with the domain across the two sub-
domains (Figure 1). Scotch expects as input

Figure 1:
Divide and conquer approach of the mapping algorithm

implemented by the Scotch library.

a plain ASCII text file containing the graph S

described by its adjacency matrix. The first line
of a graph file holds the version number, (start-
ing from version 4.0 is set to 0). The second
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Figure 2:
Mapping for minimizing inter-node communications

line holds the number of vertices of the graph,
followed by its number of arcs. The third line
holds the graph base index value (baseval) and
a numeric flag. The graph base index value
records the value of the starting index used to
describe the graph; it is usually 0 when the
graph has been output by C programs and 1
for Fortran programs. Its purpose is to ease
the manipulation of graphs within each of these
two environments, while providing compatibil-
ity between them. The numeric flag is made
of three binary digits and indicates if vertex or
edge weights are provided or not. After these
three lines of the header there are as many
rows as the number of nodes in the graph. At
the generic i+ 3 row, we find all the nodes ad-
jacent to the node i.

The input graph file for the Scotch library is
obtained from the preprocessing tool named

cmcc mppopt showproc (suitably modified) of
NEMO; it generates a file containing a matrix
that describes the domain. Each subdomain
made of land points only is labeled with the
value −1 and it is excluded by the computa-
tion, all of the other domains are labeled with
a rank ID and associated with a node of the
graph. As final step, a bash script is responsi-
ble to find, for each node of the graph, which
ones are adjacent to it, following the commu-
nication pattern with 5-points stencil. Finally, it
counts the number of arcs, writes the header of
the file and completes the adjacency matrix of
the graph. The file so created is used by the
Scotch library, which will generate a new text
file containing the partitions.

The output file is composed of:

a header line containing the number of
processed nodes
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one row for each node containing the
node number followed by the partition
number that is associated with

A final script will take care to read this file in
order to obtain the mapping file to be passed
to the scheduler. For our tests, the final script
generates the task geometry string for the LSF
scheduler.

MAPPING BASED ON MEMORY

In the mapping based on the optimization of the
memory access the goal is to distribute tasks so
that the total memory allocated on a single node
is the same on all of the nodes. This way, it re-
duces the number of simultaneous accesses to
the memory on the same node, thus reducing
the time due to the memory contention. The
mapping problem can be formalized through
the resolution of a minimization problem. De-
noting byMi the memory allocated from the i-th
process, with πi the set of processes belonging
to the i-th partition and P the total number of
partitions, the mapping consists in defining all
sets minimizing the following objective function:

fC = maxp

{ ∑
i∈πp

(Mi) ∀ 1 ≤ p ≤ P

}

As we have seen for mapping based on commu-
nication, there is the constraint that all partitions
must have the same cardinality (perfect balanc-
ing). To solve the exposed problem of minimum
we have used a heuristic algorithm derived from
the Max-Min scheduling algorithm. Denoting by
M = {M0,M1,M2, . . . ,Mt} the set of values of
the memory required by tasks that are not as-
signed to any partition, π the set of all partitions
and Ci the cost associated with each partition
calculated as the sum of the memory of all tasks
associated with the i-th partition, we proceed as
described in the following pseudocode:

foreach i {

Ci <- 0

}

foreach m in M {

let Mi = max{M}

let Cp = min{C}

push i into PI{p}

Cp <- Cp + Mi

remove Mi from M

}

MAPPING FOR MINIMIZING
INTRA-NODE COMMUNICATIONS

The third mapping strategy used is based on
the minimization of intra-node communications,
so it tries to minimize the number of mes-
sages exchanged between tasks mapped on
the same node. This strategy is exactly con-
trary to the former one, which was based on
the minimization of communications among dif-
ferent nodes, and then it maximizes intra-node
communications. The main motivation for the
choice of this strategy comes from some results
available in literature [3, 10, 11]. In the SGI Altix
architecture, the cross pattern communication
is more efficiently if achieved through the dis-
tribution of near tasks on remote nodes. From
the algorithmic point of view, the mapping is
done by considering that each process borders
at most with the four processes close to it. The
global domain is divided on a two-dimensional
grid, so each process can be uniquely identi-
fied by a row index i and a column index j.
In the current mapping strategy, also called
neighbor-away, if the process (i, j) is assigned
to the partition p, then the processes (i+ 1, j),
(i − 1, j), (i, j + 1) e (i, j − 1) will be allocated
on a partition different from p (as we can see in
the figure 3). This mapping strategy always al-
lows canceling the intra-node communications
when the number of partitions is greater than
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Figure 3:
Mapping for minimizing intra-node communications

or equal to 2. With two partitions, for example,
the optimal partitioning is obtained by splitting
the processes as on a chessboard; assigning
the black cells to the first partition and the white
cells to the second one, we could avoid com-
munications among processes belonging to the
same partition.

DEFINITION OF THE ANALYTICAL
MODELS

The mapping strategies described in the previ-
ous sections can be applied if we know the data
related to the communications cost or the mem-
ory allocated by each process. In this section
we present the analytical models for the estima-
tion of the memory required by each process
and the communication model that estimates
the time to transfer data between a process and
its adjacents.

MEMORY MODEL

The parallelization used in NEMO model is
based on a domain decomposition; each pro-
cess has to elaborates a subdomain of dimen-
sion jpi x jpj x jpk including the overlap re-
gion between the process and its neighbors.
The subdomain size is inversely proportional to
the number of processes. The data structure
used in NEMO is based on tridimensional ma-
trix with jpj ∗ jpi ∗ jpk floating-point elements
for each physical variable. BFM instead uses
a data structure with mono-dimensional arrays
in which the values of the pelagic variables are
stored only for the ocean points; so, in general,
the number of elements in a pelagic array is
smaller than the dimension of the subdomain.
PELAGOS025 is a coupled model, so we have
to consider the data structure of both NEMO
and BFM. In general the memory allocated by



Optimal task mapping for NEMO model

07

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

each process is given by a term directly propor-
tional to the subdomain dimension (according
to the data allocated in NEMO), directly pro-
portional to the number of ocean points in the
subdomain (according to the data allocated in
BFM) and a constant quantity of memory re-
lated to scalar variables and data needed for
parallel processes management. The memory
model can be formalized by the equation

M = α · jpi · jpj · jpk + β ·Opt+ γ

where jpi, jpj and jpk represent the dimen-
sion of the subdomain along the three direc-
tions and Opt is the number of ocean points
in the subdomain. As in a linear model we
can evaluate the coefficients α, β and γ us-
ing a linear regression. The configuration used
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Figure 4:
Memory distribution related to the number of ocean

points given by a 19x45 domain decomposition.

to evaluate the coefficients is based on a sim-
ulation executed on 672 processes; for each
process we have measured the total amount of
allocated memory. The number of ocean points
of each subdomain is evaluated using the input
file of the model named bathymetry storing the

pelagic depth in each point of the global do-
main. Figure 4 shows the memory evaluated
for the configuration with 672 processes. On
the y-axis the quantity of memory located by
the subdomain containing the number of ocean
points reported on the x-axis, is shown. Table 1

Coefficient Value

α 1.030 KB

β 6.142 KB

γ 421.44 MB

R2 97.49%

Standard error 62.62 MB

Table 1
Estimate of the memory model coefficients given by

linear regression. α represents the memory allocated for
each point in the domain, β is the memory allocated for
each ocean point and γ stands for the memory needed

for scalar variables

reports the evaluation of the coefficients ob-
tained with the linear regression, the standard
error and the coefficient of determination R2,
that evaluate the differences between the val-
ues of memory estimated and measured. This
coefficient can assume values between 0 and
1. A value of 1 means that there is a perfect
correlation, i.e. there is no difference between
the estimated value and the actual one. At a
later stage the model is checked out on other
decompositions. Table 2 reports the value of
the root mean square error (RMSE), expressed
in GigaBytes, for each examined decomposi-
tions. This value represents the square root
of the mean-square error. The relative RMSE,
instead, expresses the root mean square er-
ror compared to the average of the examined
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sample. The relative RMSE is always less than

Decomp. Relative RMSE RMSE (GB)

160 4.651% 0.0995

192 5.106% 0.0950

224 4.647% 0.0763

256 5.489% 0.0813

288 5.773% 0.0790

320 5.568% 0.0698

512 4.907% 0.0473

Table 2
Root mean square error (in absolute value and relative to

the mean) measured for some decompositions.

6%, so we can assume that the memory model
estimates with a good approximation the ac-
tual trend. This model can be refined analyzing
more in detail the observed data. In fact for
some domains an amount of constant memory
independent from the number of ocean points,
but related to the size of the domain, is allo-
cated.

COMMUNICATION MODEL

The communications among processes in the
NEMO model are based on a cross communi-
cation pattern with a 5-points stencil, that is
each process sends data to the four neigh-
bors. The communications are implemented
using point-to-point MPI calls. To ensure the
exchange of the elements at the corners, there
are two communication phases: in the first
phase all processes only exchange in the east-
west direction, then swap along the north-
south direction. In each of the two phases

the generic process implements a nonblocking
send (MPI Isend) to the neighbors, then calls
a blocking receive to obtain the correspond-
ing values and finally invokes the MPI Wait to
check for the send completion. Based on this
implementation we can define a communica-
tion model envisioning a crossbar interconnec-
tion between computing nodes of the parallel
cluster. In the communication model we have
assumed a full duplex channel, i.e. the chan-
nel can be used simultaneously to receive and
to send data to the same recipient. The com-
munication time will be directly proportional to
the amount of exchanged data plus a latency
time to establish the connection. Consider-
ing that during the exchange in the east-west
direction each process must send the entire
face formed by jpj ∗ jpk elements, while during
the exchange in the north-south direction the
amount of data is equal to jpi ∗ jpk, indicating
with Tw the time required to transfer an element
and with Ts the startup time of the communica-
tion, we can model the communication time in
the following way:

Tcom = 2 ∗ (jpi+ jpj) ∗ jpk ∗ Tw + 4Ts

Tw and Ts depend on the type of interconnec-
tion: if the communicating processes are on
the same computing node, the exchange of
messages takes place through shared mem-
ory without involving the interconnection net-
work; otherwise, they depend on the transmis-
sion speed of the interconnection network. For
the evaluation of the parameters Tw and Ts

we used the benchmark included in the suite
HPCC (High Performance Computing Chal-
lenge) [12, 1], which is widely recognized in
the context of high performance computing.
In particular we used the b eff benchmark,
which measures the latency and the band-
width of the interconnection system. Table 3
shows the latency and bandwidth for the clus-
ter Athena. The communication time is smaller
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Inter-node Intra-node

Bandwidth
(GB/s)

0.2 1.1

Latency
(µ sec)

5.5 0.9

Table 3
Bandwidth and latency for inter- and intra-node

communications referred to the Athena cluster and
measured with the b eff benchmark

when the communications occur between pro-
cesses mapped on the same node. However,
the proposed model is difficult to apply since
we have to identify for each communication if it
occurs inter- or intra-node.

Figure 5:
Example of processes allocation on a compute node.
Gray cells represent processes allocated on the same

node.

The inter-node communications can be formal-
ized topologically describing the area of the pro-
cesses assigned to the same node and using
two sets, nbi and nbj.

The element nbij represents the number of
blocks of contiguous processes along the col-
umn j, while the value nbji indicates the num-
ber of blocks of contiguous processes along the
row i.

Looking at the figure 5 and imagining that the
processes in gray are assigned to the same
node, the values of nbi and nbj are listed at
the end of each row and each column. The
number of inter-node communications will then
be equal to

Ncom = 2(
∑
nbij +

∑
nbji)

The amount of data exchanged with another
node will be equal to

Msg = 2 ∗ jpk ∗ (jpi ∗
∑
nbij + jpj ∗

∑
nbji)

Finally, the inter-node communication pattern
can be expressed by

Tinternode =Msg ∗ Tw +NcomTs

Let’s consider separately the two components
that contribute to the communication time: the
latency, related to the communication start time,
and the bandwidth, related to the data actually
transferred.

To evaluate the data transfer component, we
consider the region as a whole domain allo-
cated on the same node. This area will have a
number of points equal to jpi ∗ jpj ∗ jpk ∗ np
(where np is the number of processes per
node). Taking the number of processes per
node constant and decomposing only along the
i and j directions, the transfer time is minimal
if the perimeter of the above mentioned area
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is minimal. Maintaining a constant area, the
perimeter is minimal in the case of square area
and that is when

jpj ∗
∑
nbij = jpj ∗

∑
nbji

∑
nbij ∗

∑
nbji = np

Instead, to minimize the latency, we have
to minimize the number of communications
among different nodes, regardless of the size of
the message. The minimum is obtained again
by placing these processes on a square and
then

∑
nbij =

∑
nbji =

√
np

Finally, we have to notice that the described
model takes into account only the communica-
tion time and does not consider any load imbal-
ance among processes. The load imbalance
generates an idle time of the faster processes
waiting for the most computationally burdened
process.

PERFORMANCE ANALYSIS

A set of tests were carried out to verify the scal-
ability of the model using the above described
mapping strategies. This way it was possible to
evaluate the impact of different strategies and
to estimate the improvement they bring.

COMPUTING ENVIRONMENT

The tests were carried out on the Athena clus-
ter, located within the CMCC Supercomputing
Center. Athena is a parallel cluster with 482
IBM iDataPlex dx360 M4 nodes, each one com-
posed of:

two Intel Xeon E5-2670 SandyBridge 2.6
GHz and 8 cores, for a total of 16 cores
per node;

64GB of RAM (4 GB for each core);

three cache levels, 32KB, 256KB and
20MB respectively.

The first two cache levels are local to each core,
and the last one is shared by all the 8 cores in-
side the processor. Thanks to the vector unit
and the AVX instruction set, each core is able to
perform 8 double precision floating point oper-
ations per clock cycle, expressing a calculating
capacity for each node equal to

16 cores/node ∗ 8 FLOP/core ∗ 2, 6 GHZ

= 332.8 GFlops/node

The entire cluster is able to perform 160.41
TFlops. In addition, the processor supports
a 2-way Simultaneous Multi Threading (SMT),
which allows to run two threads simultaneously
on each core; so, activating SMT, we can run
32 threads per node. The nodes are intercon-
nected by two networks: the first one is a Gi-
gabit Ethernet and is used for the cluster man-
agement; the second one is a Mellanox Infini-
Band FDR 56Gb/s, which is used to exchange
messages during the execution of MPI parallel
applications. The parallel environment includes
MPI libraries, numerical libraries and compilers
developed by IBM and optimized for the archi-
tecture. The allocation of computing resources
to the jobs is handled by the LSF scheduler.

TEST PLAN

The model PELAGOS025 taken into account is
characterized by a global domain size of 1442
x 1021 x 50 grid points. This domain has been
divided into jpni x jpnj subdomains and, elimi-
nated those containing exclusively land-points,
each of the remaining subdomain has been as-
signed to a processor. The greatest decompo-
sition tested on Athena contains 7680 subdo-
mains partitioned as 155 x 73. Starting from
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it, several configurations adequately spaced,
were defined in order to experimentally define
the scalability curve. The tests were planned to
be performed on a number of processors rang-
ing from 160 to 7680. Unfortunately, when the
number of processors exceeds 3488, the appli-
cation failed due to a bug at run time.

The execution was then reformulated in seven
decompositions, summarized in more detail in
table 4. The execution of each run is preceded

Decomposition Number of processors

6 x 29 160

38 x 18 544

52 x 24 944

104 x 17 1344

70 x 34 1728

122 x 23 2048

63 x 79 3488

Table 4
List of the decompositions tested on Athena

by the execution of a script, that allows to de-
fine the parameters for setting up the machine;
it analyzes an input parameter that specifies
which of the four types of mapping we want to
use and takes the value

card in which the processes are mapped to
partitions according to the rank number;

away which minimizes the intra-node commu-
nications;

mem which allows to obtain a mapping based
on the memory;

comm which minimizes the inter-node commu-
nications.

Each of these types of mapping was tested on
each decomposition indicated in the table 4.
Each test was repeated three times in order to
mitigate the effect of jitter introduced by the op-
erating system and the management services
of the cluster, for a total of 84 executions. In
addition, each run was performed at empty ma-
chine exclusively dedicated to the running job.

RESULTS

In this section we summarize the results ob-
tained testing the reference decomposition on
Athena. Each run carried out a simulation of 40
time steps. The execution time for a single time
step and the average on all of the time steps
have been measured. The time of the first, the
twentieth and the last two time steps have been
excluded from the analysis, since they perform
I/O operations. In table 5 we report the data for
the wall-clock time estimated only for the com-

card away mem comm

160 25.04 22.06 22.94 25.02

544 6.69 6.28 6.10 6.73

944 3.89 3.43 3.55 3.90

1344 3.04 2.63 2.62 3.30

1728 2.24 1.86 1.90 2.23

2048 2.02 1.61 1.73 2.02

3488 1.39 1.27 1.25 1.28

Table 5
Wallclock time of PELAGOS025 model on Athena with

different mapping strategies
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putation. Figure 6 shows as the computational
time for each time step decreases significantly
using the away and mem strategies compared
with the mapping used by the scheduler (card),
while the computation time for each step re-
mains almost unchanged using the comm strat-
egy.
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Figure 6:
Wall-clock time of PELAGOS025 model on Athena with

different mapping strategies

This means that a mapping strategy balancing
the memory allocated on each node performs
better than one that tries to minimize inter-node
communications.

This result can be justified by the type of ar-
chitecture. As previously described, the com-
puting nodes of Athena are interconnected via
a Mellanox InfiniBand FDR 56Gb/s network,
therefore the exchange of MPI messages dur-
ing the execution of parallel applications is very
fast; decreasing the number of these communi-
cations do not therefore leads to considerable
benefits.

Different considerations, however, can be made
for the mem strategy; the distribution of the tasks
so that the total memory allocated on a single

node is the same on all of the nodes, reduces
the number of simultaneous accesses to the
memory on the same node, reducing also the
time for the memory contention.

Some other improvements are due to the use
of the away mapping strategy. As above de-
scribed, it aims at minimizing the number of
messages exchanged between tasks mapped
on the same node.

The success of this mapping strategy depends
on the configuration of the problem.

The subdomains including coastal areas also
include land-points, which are not involved in
the computation; so these subdomains will re-
quire a memory load lower than those that in-
clude only ocean points.

Moreover, our model takes into account not
only the geographical area of the partition, but
also the depth of the water at those points;
so the subdomains that require more mem-
ory will be concentrated in the deepest parts
of the ocean. Thus, we can deduce that closed
subdomains require approximately the same
amount of memory; a mapping strategy plac-
ing the closed processes on different nodes will
also produce a memory balancing, returning in
the mem strategy case.

These considerations are also supported by
measuring the memory balance among nodes,
as shown in the table 6.

In order to highlight the improvements made by
the use of different mapping strategies (away,
mem and comm), table 7 reports the percentage
of improvement that they bring compared to the
mapping used by the scheduler (card).

Figures 7 and 8 show respectively the parallel
speedup and efficiency for the different map-
ping strategies.

Since each time step simulates a time interval
of 1080 seconds we can estimate the number
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card away mem comm

1.56% 1.09% 1.00% 1.56%

16
0

124 610 564 124

1.44% 1.19% 1.00% 1.42%

54
4

1118 2084 2040 522

1.38% 1.18% 1.00% 1.46%

94
4

1942 3614 3568 916

1.45% 1.18% 1.00% 1.43%

13
44

2734 5184 5130 1306

1.37% 1.19% 1.00% 1.39%

17
28

3512 6632 6568 1728

1.37% 1.09% 1.00% 1.34%

20
48

4126 7886 7842 1974

1.27% 1.16% 1.00% 1.30%

34
88

7286 13454 13416 3590

Table 6
Memory balancing expressed as percentage between the

most loaded node over the average one and the
inter-node communication links evaluated for different

decompositions and different mapping strategies
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Figure 7:
Parallel speedup of PELAGOS025 model on Athena with

different mapping strategies
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Figure 8:
Parallel efficiency of PELAGOS025 model on Athena with

different mapping strategies

away mem comm

160 11.89% 8.37% 0.05%

544 6.18% 8.84% -0.61%

944 11.72% 8.72% -0.19%

1344 13.26% 13.69% -8.56%

1728 16.85% 15.32% 0.66%

2048 20.19% 14.50% -0.07%

3488 8.45% 10.31% 7.69%

Table 7
Speedup for each mapping strategy referred to the
default one (card) defined by the local scheduler
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of Simulated Years Per Day (SYPD) that repre-
sents the amount of years that we can simulate
in 24 hour of run (Figure 9).
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Figure 9:
Amount of years that can be simulated in 24 hours of

calculation

CONCLUSION

The tests carried out show that a mapping
strategy that balances the memory allocated
on each node is better than one that aims to
minimize inter-node communications. The op-
timization of the use and access to the memory
plays an increasingly important role in exascale
perspective. In fact, the new architecture will
be designed by increasing the number of cores
inside the cluster, but this will not be followed
by an equally rapid increase in the amount of
RAM memory. This implies that the amount
of memory for the single core will decrease,
making the strategies of optimizations that aim
to reduce access to the memory more useful
than others. Another important consideration is
emerged in the analysis of the mapping strategy
that minimizes the intra-node communications;
due to the particular configuration of the prob-
lem, away mapping implies a balancing of the

memory and, consequently, an improvement al-
most equivalent to mem type. Finally, due to the
low latency and high bandwidth, a type of map-
ping based on the minimization of inter-node
communications is almost completely irrelevant
in the problem optimization. More in general,
the strategy of the mapping is successful, as
it involves an average improvement of 10% in
execution time. This is a very useful result,
whereas it has not been modified the source
code.
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