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Abstract In the first part of the contribution, we discuss the results of a recent benchmark calculation of
n − 3H and p − 3He phase-shifts below the trinucleon disintegration thresholds. Three different methods—
Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev–Yakubovsky—have been used and
their results are compared. For both n − 3H and p − 3He we observe a rather good agreement between the
three different theoretical methods. In the second part of the contribution, we study the longitudinal asymmetry
An3He

z in the 3He(n, p)3H reaction in order to obtain information about the parity-violating components of the
nucleon–nucleon interaction.

1 Introduction

In recent years, there has been a rapid advance in the ability to obtain accurate solutions of the four-nucleon (4N)
scattering problem with realistic Hamiltonians. Accurate calculations of four-body scattering observables have
been achieved in the framework of the Alt–Grassberger–Sandhas (AGS) equations [1], solved in momentum
space, where the long-range Coulomb interaction is treated using the screening and renormalization method
[2,3]. Also quite well converged solutions of either the Faddeev–Yakubovsky (FY) equations in configuration
space [4,5] or the Hyperspherical Harmonics (HH) expansion method [6] have been reported [7,8].

The effort for solving the 4N scattering problem is motivated by the necessity to investigate the ability
of the different models of the nucleon-nucleon (NN) and three-nucleon (3N) interactions to reproduce the
experimental data in systems with A > 3. Clearly, first of all, it is necessary to establish the accuracy reached
by the theoretical methods in the solution of this problem. In a previous benchmark, the results obtained by
different groups working with different techniques were found to be at variance with each other [9]. In the first
part of the present paper, we compare the new results obtained by means of the HH expansion method to the
calculations performed by solving the AGS and FY equations (a more extended comparison can be found in
Ref. [10]).
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The potentials used in this paper are the I-N3LO model by Entem and Machleidt [11], with cutoff � =
500 MeV, the Argonne v18 (AV18) potential model [12], and a low-k model derived from the CD-Bonn
potential [13]. The I-N3LO potential has been derived using an effective field theory approach and the chiral
perturbation theory up to next-to-next-to-next-to-leading order. The AV18 potential is a phenomenological
potential having a rather strong repulsion at short interparticle distances. The low-k potentials have been
obtained separating the Hilbert space into low and high momentum regions and using the renormalization
group method [13] to integrate out the high-momentum components above a cutoff �. The low-k potential
adopted in this work is obtained starting from the realistic CD-Bonn potential [14] and using a smooth cutoff
� = 2.5 fm−1. The cut of the high-momentum part is reflected in configuration space in an almost total
absence of the repulsion at short interparticle distances. Note that the first and third model are non-local, while
AV18 is local in configuration space. The three potentials reproduce equally well the np and pp data, and are a
representative set of the large variety of modern NN potential models. We note finally that I-N3LO and AV18
interactions, without the inclusion of a suitable 3N interaction model, largely underestimate the 4He binding
energy B(4He). On the contrary, with the adopted low-k potential model we have B(4He) = 29.04 MeV,
slightly overestimating the experimental value of 28.30 MeV.

In the second part of the present paper, we discuss the study of a parity-violating (PV) observable in the
reaction n + 3He → p + 3H. The primary objective of this study is to determine the fundamental parameters
of hadronic weak interactions [15], in particular the strength of the long-range part of the PV NN potential,
mediated by one-pion exchange (OPE).

This paper is organized as follows. In Sect. 2, a brief description of our technique (the HH expansion) used
to solve the 4N scattering problem is reported. In Sect. 3, the results of the benchmark performed with the
AGS and FY techniques are shown. In Sect. 4, we present the study of the reaction n + 3He → p + 3H. The
conclusions will be given in Sect. 5.

2 The HH Method

In this section, a brief description of our technique (the HH expansion) used to solve the 4N scattering problem
is reported. The total kinetic energy, Tc.m., in the center of mass (c.m.) and the nucleon kinetic energy, EN
(N = p, n), in the laboratory reference frame, are given by

Tc.m. = q2

2μ
, EN = 4

3
Tc.m., (1)

where μ = (3/4)MN is the reduced mass of the 1 + 3 system, MN is the nucleon mass, and q the magnitude
of the relative momentum between the two clusters.

The wave function describing a n − 3H or p − 3He scattering state with total angular momentum quantum
numbers J, Jz , incoming relative orbital angular momentum L , and channel spin S (S = 0, 1) can be written as

�
L S,J Jz
1+3 = �

L S,J Jz
C + �

L S,J Jz
A , (2)

where the part �
L S,J Jz
C describes the system in the region where the particles are close to each other and

their mutual interactions are strong. Hence, �
L S,J Jz
C vanishes in the limit of large inter-cluster distances. This

part of the wave function is written as a linear expansion
∑

μ cL S J
μ Yμ, where Yμ is a set of basis functions

constructed in terms of the HH functions (for more details, see, for example, Ref. [6]).
The other part �

L S,J Jz
A describes the relative motion of the two clusters in the asymptotic region, where

the 1 + 3 interaction is negligible (except eventually for the long-range Coulomb interaction).
In the asymptotic region the wave functions �

L S,J Jz
1+3 reduces to �

L S,J Jz
A , which must therefore be the

appropriate asymptotic solution of the Schrödinger equation. Let us consider, for example, the p − 3He case.
Then, �

L S,J Jz
A can be decomposed as a linear combination of the following functions

�±
L S,J Jz

=
4∑

l=1

[YL(ŷl) ⊗ [φ3(i jk) ⊗ sl ]S]J Jz

(

fL(yl)
GL(η, qyl)

qyl
± i

FL(η, qyl)

qyl

)

, (3)

where yl is the distance between the proton (particle l) and 3He (particles i jk), q is the magnitude of the relative
momentum between the two clusters, sl the spin state of particle l, and φ3 is the 3He wave function. Moreover,
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FL and GL are the regular and irregular Coulomb function, respectively, with η = 2μe2/q . The function
fL(y) = [1 − exp(−βy)]2L+1 in Eq. (3) has been introduced to regularize GL at small y, and fL(y) → 1 as
y is large, thus not affecting the asymptotic behavior of �

L S,J Jz
1+3 . Note that for large values of qyl ,

fL(yl)GL(η, qyl) ± iFL(η, qyl) → exp[±i(qyl − Lπ/2 − η ln(2qyl) + σL)], (4)

where σL is the Coulomb phase-shift. Therefore, �+
L S,J Jz

(�−
L S,J Jz

) describe the asymptotic outgoing (ingoing)

p − 3He relative motion. If necessary, the long-range magnetic moment interaction can also be taken into
account [16]. Finally,

�
L S,J Jz
A =

∑

L ′S′
[δL L ′δSS′�−

L S,J Jz
− S Jπ

L S,L ′S′�+
L ′S′,J Jz

], (5)

where the parameters S Jπ
L S,L ′S′ are the S-matrix elements which determine phase-shifts and (for coupled

channels) mixing parameters at the energy Tc.m.. Of course, the sum over L ′ and S′ is over all values compatible
with the given J and parity π . In particular, the sum over L ′ is limited to include either even or odd values
such that (−1)L ′ = (−)L = π .

The S-matrix elements S Jπ
L S,L ′S′ and coefficients cL S J

μ occurring in the HH expansion of �
L S,J Jz
C are

determined by making the functional

[
S Jπ

L S,L ′S′
]

= S Jπ
L S,L ′S′ −

〈
�

L ′S′,J Jz
1+3 |H − E |�L S,J Jz

1+3

〉
(6)

stationary with respect to variations in the S Jπ
L S,L ′S′ and cL S J

μ (Kohn variational principle). In the above equation,

E = Tc.m. − B(3He) is the energy of the system, B(3He) being the 3He binding energy. By applying this
principle, a linear set of equations is obtained for S Jπ

L S,L ′S′ and cL S J
μ . This linear system is solved using the

Lanczos algorithm.
This method can be applied in either coordinate or momentum space, and using either local or non-local

potentials [6] (see also Ref. [17] for an application to the A = 3 system). The first step is a partial wave
decomposition of the asymptotic functions �±

L S,J Jz
, a task which can be rather time consuming, in particular

for the Jπ = 2− state. After this decomposition, the calculation of the matrix element in Eq. (6) is fast.
Then, the problem reduces to the solution of the linear system, which is performed using an iterative method
(however, this solution has to be repeated several times due to the necessity to extrapolate the results, see
below).

The expansion of the scattering wave function in terms of the HH basis is in principle infinite, therefore a
truncation scheme is necessary. The HH functions are essentially characterized by the orbital angular momen-
tum quantum numbers �i , i = 1, 2, 3, associated with the three Jacobi vectors, and the grand angular quantum
number K (each HH function is a polynomial of degree K ). The basis is truncated to include states with
�1 +�2 +�3 ≤ �max (with all possible re-coupling between angular and spin states appropriate to the given J ).
Between these states, we retain only the HH functions with K ≤ Kmax. In the calculation we have included
only states with total isospin T = 1.

The numerical uncertainty comes from the numerical integrations needed to compute the matrix elements
of the Hamiltonian and the truncation of the basis. It has been checked that the numerical uncertainty of the
calculated phase-shifts related to the numerical integration is small (around 0.1 %). The NN interaction has
been limited to act on two-body states with total angular momentum j ≤ jmax = 8 (at the considered energies,
greater values of jmax are completely unnecessary). The largest uncertainty is thus related to the use of a
finite basis. The convergence with �max is rather fast and the value �max = 6 have been found to be sufficient.
The main problem is related to the slow convergence of the results with Kmax. This problem can be partly
overcome by performing calculations for increasing values of Kmax and then using some extrapolation rule
(see for example Ref. [18]) to get the “Kmax → ∞” result. This procedure has an uncertainty which can be
estimated. A detailed study of this problem will be published elsewhere [19]. The convergence of the quantities
of interest in term of Kmax is slower when NN potentials with a strong repulsion at short interparticle distance
are used such as for the AV18 potential. In this case we have estimated the uncertainty to be of the order of
0.5 % in the extrapolated phase-shifts. This problem is less relevant for the I-N3LO and the low-k models. In
these cases, the uncertainty has been estimated to be at most 0.3 %.
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3 Results of the Benchmark

In this section, we show the results of the benchmark performed between the HH, AGS and FY techniques.
We have considered the differential cross section and the neutron (proton) analyzing power Ay0 for n − 3H
(p − 3He) elastic scattering at the considered energies, as functions of the c.m. scattering angle. Furthermore,
we have also considered the triton (3He) analyzing power A0y . This observable is in fact rather sensitive to
small variations of the phase-shifts in the kinematical regime considered in this paper.

In Figs. 1 and 2 we have reported the results obtained using the AGS equation (solid lines), the HH expansion
method (dashed lines), and the FY equations (dotted lines) using the I-N3LO potential. As can be seen by
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Fig. 1 Differential cross section and neutron and triton analyzing powers Ay0 and A0y for n − 3H elastic scattering at En = 1,
2, 3.5, and 6 MeV neutron lab energies as functions of the c.m. scattering angle. Results obtained using the AGS equation (solid
lines), the HH expansion method (dashed lines), and the FY equations (dotted lines) using the I-N3LO potential are compared.
For most of the cases the three curves coincide and cannot be distinguished. The experimental data are from Ref. [20]
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Fig. 2 Same as Fig. 1, but for p − 3He elastic scattering at E p = 2.25, 4.05, and 5.54 MeV proton lab energies. The experimental
data are from Refs. [18,21–25]
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Fig. 3 Same as Fig. 2, but for the AV18 potential

inspecting the two figures, the three curves almost always perfectly coincide and cannot be distinguished.
We have also reported the experimental data for the n − 3H differential cross section [20] and the three
p − 3He observables [18,21–25]. We note that the differences between the three calculations, where they can
be appreciated, are in any case always smaller than the experimental errors.

For the other two potentials, we show the comparison only for p − 3He scattering. The agreement between
the three calculations when the AV18 potential is adopted is again rather satisfactory, as can be seen in Fig. 3.
A small disagreement can be observed only for the A0y observable (see the panels in the last row of Fig. 3).
This observable is also rather sensitive to the small D-wave and F-wave phase-shifts. We already know that
the AV18 model contains a stronger repulsion at short interparticle distance than the I-N3LO. As discussed
above, the convergence of the HH method for this case is more problematic and consequently the calculations
have a larger uncertainty. In spite of these difficulties, the agreement in the considered observables is still quite
good.

Let us consider now the low-k potential, which has no repulsion at short interparticle distance. Consequently,
in this case, we expect a good agreement between the results of the different techniques. For this potential, the
calculations have been performed using the AGS (solid curves) and HH (dashed curves) methods, only. From
Fig. 4, we see that, as expected, the results are practically indistinguishable, confirming that for soft potentials
the convergence of the calculations is excellent.

Finally, in the literature for p − 3He scattering, there exist measurements of other spin correlation observ-
ables (Ayy , Axx , Azz , Axz , and Azx ). Also for these observables we have found a good agreement between the
predictions obtained by the three different methods, for all the potential models considered here.

4 The 3He(n, p)3H Longitudinal Asymmetry

For ultracold neutrons, the longitudinal asymmetry An3He
z for the reaction 3He(n, p)3H is given by An3He

z =
az cos θ [26], where θ is the angle between the outgoing proton momentum and the neutron beam direction. The
coefficient az can be expressed in terms of products of T -matrix elements involving three parity-conserving
(PC) and three PV transitions (see Ref. [26] for more details). The PV T -matrix elements are calculated as
mean values of the PV interaction between 4N scattering states. The latter quantities have been obtained as
discussed in Sect. 2 by means of the HH method and using the I-N3LO NN potential plus the N-N2LO 3N
interaction model [27].

Until recently, the standard setting by which nuclear PV processes were analyzed theoretically was the use
of potentials derived from the usual meson-exchange mechanism, in particular using the model proposed by
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Fig. 4 Same as Fig. 2, but for the low-k potential. Only the AGS and HH results are reported

Desplanques, Donoghue, and Holstein (DDH) [28]. In recent years, a new, more systematic, approach based
in a model-independent field-theoretic treatment of the nuclear forces has been vigorously pursued [29–31].
In this effective field theory (EFT) approach the pion couples to nucleons by powers of its momentum Q,
and the Lagrangian describing these interactions can be expanded in powers of Q/�χ , where �χ ∼ 1 GeV
specifies the chiral-symmetry breaking scale. The EFT has been used to describe also the PV components in
the NN interaction. Kaplan and Savage [32] wrote in a pioneering work an effective Lagrangian describing
the PV interaction of pions and nucleons up to one derivative. This Lagrangian includes a “Yukawa” pion–
nucleon interaction with no derivatives, multiplied by a parameter denoted as h1

π and known as the “weak
pion–nucleon” coupling constant. It gives the long-range OPE contribution to the PV NN interaction.

The PV NN potential at next-to-next-to-leading (N2LO) was derived for the first time by Zhu et al. [33].
This potential includes the long-range OPE component, medium-range components originating from two-pion
exchange (TPE) processes, and short-range components deriving from ten four-nucleon contact terms (the
Authors of Ref. [33] noted that at low energy their ten contact interactions collapse into five independent oper-
ators, corresponding to the five S–P low-energy PV amplitudes [34]). In a series of other works, Desplanques
et al. have also derived the contribution of the TPE diagrams at N2LO [35] to study, in particular, PV effects
in the capture reaction 1H(n, γ )2H. The expression of the TPE contribution obtained by Desplanques et al. is
slightly different from that one reported by Zhu et al. [33].

We have recently derived again the PV NN potential at N2LO, in order to clarify the exact expression of the
TPE contribution. Moreover, the more recent analysis of Ref. [36] has shown that actually there exist only five
independent contact terms with one derivative. We give a short summary of the properties of this PV potential
below. It contains six unknown parameters, the pion-nucleon PV coupling constant h1

π and five low-energy
constants (LEC’s).

4.1 The PV Interaction

The potential can be constructed using time-ordered perturbation theory, following the same approach as for
the PC potential described in Ref. [37]. The different diagrams contributing to the PV NN potential up to order
O(Q) are shown in Fig. 5. The OPE diagram (a) gives the lowest order (LO) contribution (of order Q−1).
There is no contribution of order Q0, but there are several contributions of order Q1 (namely, at N2LO): a
relativistic correction coming from diagram (a), TPE contributions coming from diagrams (d), (f), and (g),
and five contact interactions described by diagram (CT). The contributions of diagrams (b) and (c) vanish
due to the integration over the loop variable, while those of diagrams (e) and (h) (vertex corrections) can be
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(d) (e) (h)(f)(a) (CT) (b) (c) (g)

Fig. 5 Time-ordered diagrams contributing to the PV potential (only one time ordering is given). Nucleons and pions are denoted
by solid and dashed lines. The solid dot represents a PV vertex

reabsorbed by a redefinition of the coupling constant h1
π . More details on the derivation of the potential will

be reported elsewhere [38].
In order to transform this potential in r -space, we have to multiply the expressions reported above by a

cutoff, which has been chosen as

f�(k) = exp(−(k/�)4), (7)

where � = 500 ÷ 700 MeV is a cutoff parameter. With such a choice (a function which depends on k only),
the resulting potential is local. The potential contains six unknown parameters, the pion–nucleon PV coupling
constant h1

π and five LEC’s Ci , i = 1, . . . , 5 multiplying the contact interactions. In addition, the potential
will depend on the cutoff parameter � needed to cut the potential at high k. A first estimate for these LEC’s
can be obtained by comparing the chiral potential with the DDH model [28]. We have found C2 ≈ 10−6, while
the other LEC’s are moreless of the order of 10−7 [19].

Some of the LEC’s can be fixed using the following three accurate measurements of the angle-averaged
p–p longitudinal asymmetry A

pp
z (E), obtained at different laboratory energies E :

A
pp
z (13.6 MeV) = (−0.97 ± 0.20) × 10−7, [39],

A
pp
z (45 MeV) = (−1.53 ± 0.21) × 10−7, [40], (8)

A
pp
z (221 MeV) = (+0.84 ± 0.34) × 10−7, [41].

Using the PV potential derived from EFT, and taking into account the matrix elements of the different isospin
operators, the longitudinal asymmetry at the end can be expressed as

A
pp
z (E) = a0(E)h1

π + a1(E)C ′
1 + a2(E)C2, (9)

where C ′
1 = C1 + 2C4 + 2C5 and a0(E), a1(E) e a2(E) are numerical coefficients independent from the

values of the LEC’s (however, they depend on �). We would like to fix the three unknown parameters h1
π ,

C ′
1, and C2 imposing that at the three given energies the longitudinal asymmetry of Eq. (9) reproduces the

experimental values of Eq. (8). However, the values of ai at low energy scale as
√

E , since the longitudinal
asymmetry is dominated by the contribution of S-waves. In practice, the experimental data at E = 13.6 MeV
and E = 45 MeV are equivalent and the number of independent equations reduces to two.

It is therefore necessary to fix the value of one of the constant to determine the remaining two. In the
following, we assume that the h1

π value be in the “reasonable range” discussed in Ref. [28]. In particular we
perform the calculations for three values of the coupling constant h1

π :

1. h1
π = 4.56 × 10−7 (“best choice”)

2. h1
π = 0 (minimum value of the “reasonable range”)

3. h1
π = 11.4 × 10−7 (maximum value of the “reasonable range”)

The values of C ′
1 and C2, corresponding to the three choices of h1

π and determined in order to reproduce the
experimental longitudinal asymmetries at 45 and 221 MeV, are reported in Table 1.

4.2 Results

In Table 2, we present the results of a preliminary calculation of az for the various choices of h1
π and �,

by taking the values of C ′
1 and C2 from Table 1, and assuming C1 = C ′

1 and C3,4,5 = 0. We observe that

An3He
z is dominated by the contribution of the (isovector) LO OPE potential. Naively, one expects that the
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Table 1 Coefficients C ′
1 and C2 for different values of h1

π and � determined to reproduce the experimental values of A
pp
z at 45

and 221 MeV

� (MeV) C ′
1 C2 C ′

1 C2 C ′
1 C2

h1
π = 4.56 × 10−7 h1

π = 0 h1
π = 11.4 × 10−7

500 −2.15516 9.98171 −1.51765 4.00256 −3.11142 18.9504
600 −2.69957 10.03513 −2.18203 4.42237 −3.47588 18.4543
700 −4.22214 10.66532 −4.68110 5.86730 −3.53372 17.8623

Table 2 The coefficient az (in units of 10−7) describing the 3He(n, p)3H longitudinal asymmetry (preliminary results).

h1
π = 4.56 × 10−7 h1

π = 0 h1
π = 11.4 × 10−7

OPE/LO FULL OPE/LO FULL OPE/LO FULL

500 −0.551 −0.544 0.000 +0.044 −1.377 −1.425
600 −0.554 −0.578 0.000 +0.034 −1.385 −1.497
700 −0.546 −0.584 0.000 +0.009 −1.366 −1.473

The calculations are performed using the I-N3LO NN plus the N-N2LO 3N potentials for the PC interaction, and the chiral PV
potential model discussed in this paper for various choices of the pion–nucleon coupling constant h1

π and the cutoff parameter
�. The corresponding values of the LEC’s Ci , i = 1, . . . , 5 are discussed in the text. In the columns labeled “OPE/LO” we have
reported the values of az calculated by retaining in the PV potential only the LO OPE contribution, while in the columns labeled
“FULL” we have included all terms

most important contribution would come from the isoscalar operators (those multiplied by the LEC’s C1 and
C2). In fact, at this energy, the reaction proceeds mainly through the close 0+ and 0− resonances, which are
considered to have total isospin T = 0 [42]. Thus, the isoscalar operators in the PV potential should give
the dominant contribution. However, the Coulomb interaction in the final state induces sizable isospin mixing
configurations and, since the LO OPE term is the longest range term, at the end it gives the most important
contribution, except the case where h1

π is close to zero. The contribution of the relativistic correction to the LO
OPE is always very tiny. For the case h1

π = 0, az is given mainly by the contribution of the isoscalar operator
multiplying the LEC C2.

Let us discuss now the dependence of az on the LEC’s C3,4,5. Due to some cancellations between the
contributions coming from the TPE and the different contact interaction terms, we have found a noticeable
sensitivity to these LEC’s, of the order of 20%. Therefore, the measure of this observable could be very useful
to extract them. From the table, we observe also that az does not depend very much on �. This dependence
in some measure gives indication of the importance of high order contributions. The fact that it is found to be
weak, it gives confidence that the PV potential at N2LO represents a good description of the NN PV potential.

5 conclusion

In the first part of this work, we have shown that for I-N3LO and the selected low-k potential model, which
have a “soft” repulsion at short interparticle distances (the low-k model has no repulsion at all), the results
obtained by the different techniques used to solve the 4N scattering problem are in very good agreement.
With the AV18 potential, the agreement is not so perfect, although the (slight) differences can be appreciated
only for some small polarization observables. We can conclude therefore that the A = 4 scattering problem is
nowadays solved with a very good accuracy, better than 1%.

Concerning the comparison with the experimental data, we have confirmed the large under prediction of
the p − 3He Ay0 observable, a problem already put in evidence some time ago [4,24,43], and certainly related
to the N − d “Ay puzzle”. For this observable we have observed a moderate dependence on the considered
potential models. The discrepancies found, in particular for Ay0, indicate a serious difficulty of the existing
NN force models in describing the 4N continuum. This difficulty can hardly be solved by the inclusion of a
standard type 3NF, used to reproduce the few-nucleon binding energies [8,9,18]. Its origin could rather lie
either in the NN forces themselves, or in the presence of a 3NF of unknown type. Clearly, an eventual solution
of the A = 4 Ay0 problem should be related in some way to the solution of the N − d “Ay puzzle”. Recently,
new models of 3N forces have been proposed [44,45], their effects on the 3N and 4N continuum is under study.

In this contribution, we have also presented a preliminary study of the longitudinal asymmetry in
3He(n, p)3H using a PV NN potential derived from an effective field theory framework at next-to-next-to-
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leading order, including one- and two-pion exchanges, contact interactions and relativistic corrections. This
potential depends on six low-energy constants. Some of these parameters have been constrained to reproduce
the existing accurate measurements of the p-p longitudinal asymmetry. Using these constraints we compute
An3He

z and study the sensitivity of such an observable to the unconstrained parameters. The main motivation
of this study is related to the goal of understanding the hadronic weak interaction, in particular its long-range
contribution related to the OPE. To be noticed that a number of experiments aimed at studying parity violation
in low-energy processes involving few nucleon systems are being completed or are in an advanced stage of
planning at cold neutron facilities, such as the Los Alamos Neutron Science Center, the NIST Center for
Neutron Research, and the Spallation Neutron Source at Oak Ridge.
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