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Rationale andObjectives: The aim of this study was to identify the optimal parameter configuration of a new algorithm for fully automatic

segmentation of hepatic vessels, evaluating its accuracy in view of its use in a computer system for three-dimensional (3D) planning of liver
surgery.

Materials and Methods: A phantom reproduction of a human liver with vessels up to the fourth subsegment order, corresponding to

aminimumdiameter of 0.2 mm, was realized through stereolithography, exploiting a 3Dmodel derived from a real human computed tomo-
graphic data set. Algorithm parameter configuration was experimentally optimized, and the maximum achievable segmentation accuracy

was quantified for both single two-dimensional slices and 3D reconstruction of the vessel network, through an analytic comparison of the

automatic segmentation performed on contrast-enhanced computed tomographic phantom images with actual model features.

Results: The optimal algorithm configuration resulted in a vessel detection sensitivity of 100% for vessels > 1 mm in diameter, 50% in the
range 0.5 to 1 mm, and 14% in the range 0.2 to 0.5 mm. An average area overlap of 94.9% was obtained between automatically and

manually segmented vessel sections, with an average difference of 0.06 mm2. The average values of corresponding false-positive and

false-negative ratios were 7.7% and 2.3%, respectively.

Conclusions: A robust and accurate algorithm for automatic extraction of the hepatic vessel tree from contrast-enhanced computed

tomographic volume images was proposed and experimentally assessed on a liver model, showing unprecedented sensitivity in vessel

delineation. This automatic segmentation algorithm is promising for supporting liver surgery planning and for guiding intraoperative

resections.
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ecent literature has highlighted the need for methods consisting of the assignment of image voxels to anatomic
R that allow planning liver operations on the basis of

individual patient data (1). The liver has a complex

internal anatomy, which in some cases may differ notably

from commonly adopted schematic classifications (2–6),

thus making liver resection a challenging operation.

Planning systems for liver surgery use specific algorithms to

identify relevant anatomic structures within images obtained

through computed tomographic (CT) or magnetic resonance

imaging. The most crucial step is the segmentation process,
ad Radiol 2011; 18:461–470

om the Biomedical Engineering, Science and Technology Division, Institute
Clinical Physiology, National Research Council, c/o Campus Ecotekne, via
r Monteroni, 73100 Lecce, Italy (F.C., R.F., L.M., S.C.); the Department of
gineering for Innovation, University of Salento, Lecce, Italy (C.D., F.M., A.
affezzoli); and the Department of Obstetrics and Gynecology, Santa Maria
spital, Bari, Italy (A. Malvasi). Received October 14, 2010; accepted
vember 16, 2010. These studies were partially supported by grant
18604 (Bando Laboratori) DD MIUR 14.5.2005 n.602/Ric/2005 from the
lian Ministry of Instruction and Research. Address correspondence to:
C. e-mail: conversano@ifc.cnr.it

AUR, 2011
i:10.1016/j.acra.2010.11.015
structures. In fact, any kind of localized liver treatment

requires the same information: fine liver surface segmenta-

tion, accurate detection of tumors, and precise vessel topog-

raphy (7). Automatic liver segmentation is a challenging

task, because the liver usually shares image intensity values

with other nearby organs (eg, the kidneys), and the bound-

aries of target structures are generally not sharp (8). As a conse-

quence, several liver segmentation methods have been

implemented and validated in recent years, showing

numerous possible compromises between segmentation accu-

racy, computational complexity, and the degree of algorithm

automation (9–13).

In particular, a fully automatic method for the rapid

segmentation of liver tissue and its internal lesions applied to

CT scans was recently introduced by our research group

(14). This method, validated on a series of patient data sets

presenting different anatomic and pathologic situations,

proved to be a robust and efficient tool for performing auto-

matic segmentations of liver tissue and tumors that are very

close to the manual contour drawing made by an expert radi-

ologist and considered to be the gold standard.
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The aim of this study was to present and evaluate a new

algorithm for automatic segmentation of the hepatic vessel

network, with the final goal of integrating our two algorithms

in a single software tool for computer-assisted planning of liver

surgery.

The accurate segmentation of liver vessels is fundamental for

the successful outcome of several therapeutic liver treatments

(15). In fact, the availability of robust preoperative planning

systems based on precise and automatic identification of the

hepatic vessel network would be very helpful for safely

removing tumors located near major vessels (16,17).

Furthermore, ‘‘in situ’’ ablation techniques (eg, cryoablation,

radiofrequency ablation) are becoming increasingly

important as alternatives to liver resection (18–21). These

techniques also require precise vessel detection for suitable

treatment planning and execution, because major hepatic

vessels strongly influence the actual cancer cell destruction

(22–26). Various approaches to liver vessel segmentation

have been recently implemented and tested (1,27,28), but

none of these methods has demonstrated the ability to

maintain 100% sensitivity in the automatic identification of

vessels < 3 mm in diameter and presenting the true

morphologic configurations of a human liver.

To overcome these limitations, we developed a new vessel

segmentation algorithm, specifically optimized to provide

fully automatic and more sensitive identification of liver

vessels on contrast-enhanced CT (CECT) images.

The effectiveness of our vessel segmentation approach was

assessed on a CECT data set obtained from a liver phantom

produced through stereolithography (STL), a rapid prototyp-

ing technique that allows the accurate fabrication of three-

dimensional (3D) complex shapes starting from a 3D

computer-aided design (CAD) model (29–33). In our case,

the CAD model was derived from a real CECT acquisition

of a human liver, so the resulting phantom (made of

polymeric resin) had a ‘‘natural’’ and precisely known

geometry, accurately reproducing the vessel network of

a human liver along with the shape and volume of the

surrounding parenchyma.

The automatic vessel segmentation performed by our algo-

rithm on CECT images of the phantom was analytically

compared to the measured features of the corresponding

model to quantify the actual sensitivity and accuracy of our

method for both single two-dimensional (2D) slices and 3D

reconstruction of the hepatic vessel network.
MATERIALS AND METHODS

Liver Phantom Production Processes and
Measurements

The liver phantom used in this study was fabricated through

STL, an additive rapid prototyping technique that creates the

desired object by exploiting the photopolymerization of

a low-viscosity liquid resin andbonding theobject sections, layer

by layer. Using this fabrication methodology, complex shapes
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can be obtained on the basis of a direct link with a 3D CAD

drawingof theobject, leading to tailor-madeor single functional

parts that are efficiently and accurately realized (29–33).

The following sections are devoted to the description of

liver CAD model preparation, features of the STL apparatus,

and fabrication processes of the liver phantom, including

specific measurements performed to take into account the

accuracy of actual STL realization.

Liver CAD Model. A CECT liver data set acquired during

a human subject scansion was used to produce the CAD

model that was subsequently passed to the STL apparatus for

phantom production.

The data set used was actually chosen from those collected

for a previous research study (14) developed for a different

purpose. The aforementioned study fully respected national

privacy laws and had been also approved by the ethics

committee. Adopted CT protocols followed the routine clin-

ical protocols used in the involved hospitals for imaging the

abdomen with portal vein phase of contrast enhancement.

In particular, the specific image data set used was acquired

on a LightSpeed Pro 16 CT scanner (GE Medical Systems,

Milwaukee, WI) located at the Interventional Center of the

Rikshospitalet University Hospital (Oslo, Norway). Scanning

acquisition parameters were as follows: voltage, 120 kV; x-ray

tube current, 425 mA; exposure time, 707 ms; and slice

thickness, 2.5 mm. A bolus of 150 mL of a nonionic contrast

agent (Visipaque 320; Nycomed, Zurich, Switzerland) was

administered intravenously.

Obtained CECT scan data were analyzed and processed

through our previous algorithm (14), to automatically segment

the liver volume, and through a semiautomatic tool for vessel

segmentation, with the aim of obtaining a preliminary visuali-

zation of hepatic vessels. This segmentation procedurewas then

checked and manually refined by an expert operator, particu-

larly ensuring the accurate segmentation of all liver vessels

visible on the CECT images. The final result of the manual

segmentation was stored as a sequence of Digital Imaging and

Communications in Medicine images through MATLAB

(TheMathWorks,Natick,MA) and then converted into a single

STL file using a public-domain image processing program

(ITK-SNAP version 1.8; University of North Carolina at

Chapel Hill, Chapel Hill, NC). This STL file represented the

liver CAD model necessary for STL phantom production.

STL Apparatus. The STL apparatus (SLA 250; 3D Systems

Inc, Rock Hill, SC) used for phantom production was

composed of the following parts (see also Fig 1) and was

used for our purposes according to the reported

configuration:

� a He-Cd laser (Omnichrome series 3056; Omnichrome

Laser and Electro-Optic Systems, Chino, CA) with

a specific power of 17 mW/mm
2, emitting at a wavelength

of 325 nm, with a beam diameter of 0.2 mm;

� a hardware and software scanning system that drives the

laser beam on the surface of the liquid resin vat;



Figure 1. Scheme of the stereolithography
apparatus.

Figure 2. Liver computer-aided design model used for phantom

production, showing the four constituent parts.
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� a computer-controlled platform that can be moved down-

ward and upward along the object during the additive

building procedure;

� an apparatus for resin recoating, operating before each layer

building; and

� a tank filled with a commercial resin (RPC accuGen 100

HC; 3D Systems Inc) characterized by a suitable reactivity

for use with a 325-nm laser source, to be polymerized

when irradiated with an appropriate energy.

The CAD model file is acquired by the STL apparatus via

file-transfer protocol from an external computer equipped

with proprietary software (3D Lightyear; 3D Systems Inc),

which converts the CAD model into a series of instructions

for the object building process and allows all the correspond-

ing parameter settings.

Liver Phantom Fabrication. Preliminary liver phantom fabrica-

tions on a reduced scale were used to define the best config-

uration of the STL production process and to test the

related production accuracy. The final phantom realized

with the full scale was built in four separate parts, to facilitate

cleaning the vessel cavities of uncured resin. To do this, the

aforementioned liver CAD model was divided into four sepa-

rate portions by introducing three parallel and equally spaced

‘‘cutting planes’’ (see Fig 2). Each resulting model portion was

saved as a new STL file and used as a CAD model for the

building process of the corresponding liver phantom element.

After STL productions, all four elements were washed with

isopropyl alcohol that was flushed by means of a syringe into

each phantom cavity, to accurately remove unreacted resin.

The same procedure was also used to remove excess resin

from the external surfaces. Each phantom element was then

postcured under a 325-nm ultraviolet lamp at room tempera-

ture (25�C), to obtain a fully hardened resin. The final

phantom elements resulted stable over time under laboratory

standard room conditions.
CAD Model Correction and Final Phantom Assembly. Before
final phantom assembly, actual STL accuracy in realizing

phantom vessels was specifically assessed on each

manufactured phantom element, with the aim of obtaining

a ‘‘corrected CAD model’’ perfectly identical to the produced

phantom.

All the phantom element surfaces adjacent to a cutting

plane were imaged through an image scanner (HP Officejet

Pro L7680; Hewlett-Packard Corporation, Palo Alto, CA),

and vessel section areas were manually segmented in the six

resulting images using ImageJ software (National Institutes

of Health, Bethesda, MD). Values of segmented areas were

then compared with those obtained by performing the same

manual segmentation on the corresponding CAD model
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images, and, for each vessel section, a surface correction factor

k was calculated using the following formula:

k ¼ Aphantom

Amodel

; (1)

where Aphantom is the vessel section area measured on

phantom images, and Amodel is the area of the same vessel

section measured on the CAD model. The k values obtained

for each vessel section were averaged over each of the six

images considered, and the average of the resulting six mean

values was assumed as the correction factor for vessel section

areas throughout the entire phantom.

The four phantom parts produced were finally assembled

by bonding each one to the others using a silicon sealant,

and after 24 hours, the phantom was ready to be used. A

picture of the phantom is reported in Figure 3.
Acquisition of CECT Images

Phantom Filling Procedure. To facilitate the introduction of

contrast solution into the phantom vessels, both phantom

access channels (corresponding to the hepatic vein and the

portal vein) were equipped with a syringe slightly inserted

into the hole and fixed in a vertical position by means of

a silicon sealant.

The phantom was then filled with a saline-diluted solution

of a nonionic contrast agent (Ultravist 300; Schering AG, Berlin,

Germany) prepared by adding 12 mL of Ultravist 300 (contain-

ing 300 mg iodine/mL) to 100 mL of sodium chloride (0.9%),

because this concentration would suitably simulate the contrast

agent levelpresent in the liverduring thevenousphaseof a typical

clinical CECT examination (personal communication from

an expert radiologist). The solution obtained was also labeled

with a small amount of methylene blue to allow an easy visual

check of contrast solution presence in each phantom vessel.

Finally, to eliminate air bubbles from the vessels and to

ensure optimal filling, the contrast-filled phantom was placed

inside a chamber of a lyophilizator equipped with a vacuum

pump (LIO 5P 4k, 5 Pa; Trezzano sul Naviglio, Milan, Italy)

for 30 minutes. A picture of the contrast-filled phantom is

shown in Figure 4.

Image Acquisition. Helical CT scans were performed using

a 64-slice CT scanner (Aquilion 64; Toshiba Medical, Tokyo,

Japan), using the following parameters (corresponding to

a standard protocol for abdominal acquisition): voltage,

120 kV; x-ray tube current, 428 mA; gantry rotation time,

0.55 seconds; collimation, 0.5 mm; reconstruction interval,

0.5 mm; exposure time, 700 ms; reconstruction filter, FC 13;

pixel size, 0.625 � 0.625 mm; image matrix, 512 � 512;

and slice thickness, 0.5 mm.

During CT scanning, the phantom was placed in an open

plastic box with its seam production planes aligned with the

x-ray transmission direction, to minimize possible image arti-

facts due to such discontinuities. The acquired data were saved

in Digital Imaging and Communications in Medicine format.
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Image Segmentation and Experimental Optimization of
Algorithm Configuration

A new fully automatic custom-developed software program

was used for phantom image segmentation from Digital

Imaging and Communications in Medicine data. This soft-

ware was obtained from combining our previous tool for

segmentation of liver tissue (14) with a new algorithm for

automatic vessel segmentation. In particular, our vessel

segmentation algorithm is based on a custom ITK implemen-

tation and optimization of the vesselness filter method (34), as

briefly summarized herein.

A Hessian matrix and corresponding eigenvalues jl1(s)j #
jl2(s)j # jl3(s)j are computed for each image voxel at a scale

s, corresponding to a certain sought vessel size, providing infor-

mation on the contrast between the regions inside and outside

the range (�s,s) along each principal direction. Then, for each

voxel, the following vesselness function is calculated:

v ¼

8>>>><
>>>>:

0 if l2.0 or l3.0h
1� exp

�
� R2

A

2a2

�i
,exp

�
R2
B

2b2

�

,
�
1� exp

�� S2

2c2

��
otherwise

;

(2)

where

RA ¼ jl2j
jl3j; (3)

RB ¼ jl1jffiffiffiffiffiffiffiffiffiffiffiffiffiffijl2,l3j
p ; (4)

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ l23

q
; (5)

and a, b, and c are constant coefficients having the following

values: a = 0.5, b = 0.5, and c = 5.

The vesselness function is expected to provide the higher

values only for voxels belonging to bright tubular structures

(ie, vessels), characterized by l2 z l3 < 0 and l1 z 0 (with

jl1j << jl2j).
In our case, the vesselness function was evaluated for eight

different values of s, approximately covering the range of all

phantom vessel diameters (0.2–16 mm). We assumed as final

vesselness of each image voxel the value obtained as

v0 ¼ maxvðsÞ
s

: (6)

Finally, the value of v0 for each image voxel was compared

with an experimentally determined threshold parameter T

to decide whether the considered voxel had to be depicted

as a vessel voxel in the final output image. At the end of the

segmentation process, the segmented liver structures could



Figure 3. The realized phantom.

Figure 4. The liver phantom after the contrast filling procedure.
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be viewed either as a 3D object or as a sequence of 2D slices

through ITK-SNAP.

Actually, s was expressed in voxel units (with the minimum

possible value being 1.0 voxel), and for each vessel voxel,

maximum vesselness value was expected at the scale that

approximately matched the vessel diameter. Therefore, we

expected some problems in detecting vessels whose diameters

were below the voxel dimension, as detailed in the ‘‘Discussion’’

section.

The optimal T value was determined by comparing the

total volume of phantom vessels, measured on the corrected

CAD model through the software Myriad 3D Reader (Infor-

mative Graphics Corporation, Scottsdale, AZ) and in prin-

ciple equivalent to the volume of venous blood in the liver,

with the total volume of the vessels obtained from automatic

segmentation of phantom CT images by using different

T values. The T value that generated a segmented vessel

volume coincident with the value measured on the corrected

CADmodel was selected as the optimal T value. The resulting
accuracy of the vessel segmentation carried out through our

algorithm using the selected T value was then evaluated in

detail, as described in the next paragraph.

Techniques for Segmentation Accuracy Evaluation

The accuracy of the developed vessel segmentation method

was evaluated by considering both the 3D features of the vessel

tree and the single 2D liver slices and by comparing them to

the ‘‘ground truth,’’ which for the former (3D vessel tree)

was represented by the corrected 3D CAD model and for

the latter (2D slices) corresponded to the CT images manually

segmented by an experienced operator. Details of the specific

methodologies adopted to assess the quality of vessel segmen-

tation are provided in the following sections.

Three-Dimensional Analysis of the Segmented Vessel Tree. Both
the automatically segmented and the model-derived liver

vessel trees were divided into twomain segments, correspond-

ing to themain branches of the hepatic vein and the portal vein.

respectively, and the vessel subsegments of each main branch

were labeled hierarchically. In this way, vessel subsegments

up to the fourth order were identified in both vessel trees.

The sensitivity of the segmentation algorithm used was

evaluated as a function of vessel diameter and vessel order,

by identifying in each case the percentage of correctly

segmented vessels in all those physically present in the

phantom, taking as reference the corrected CAD model.

Therefore, for each vessel order and diameter range consid-

ered, sensitivity percentage was calculated according to the

following formula:

sensitivity ¼ TP

TPþ FN
; (7)

where TP represents the true-positives (ie, phantom vessels

that were correctly segmented by the algorithm) and FN

the ‘‘false-negatives’’ (ie, phantom vessels that were not iden-

tified by the algorithm).

Two-Dimensional Analysis of Liver Slices. To perform an

accurate and more local evaluation of algorithm effectiveness

in reproducing the precise morphology of segmented vessels,

we also compared the results of manual and automatic

segmentation on four parallel equally spaced liver phantom

slices, each one representing the ‘‘median slice’’ of the corre-

sponding phantom element.

Two values were obtained for the area of each vessel section

present in the liver slices: one was measured on the automat-

ically segmented CECT image, and the other was obtained

from manual segmentation of the same CECT slice

performed by an experienced operator.

As recommended by Altman and Bland (35), agreement

between the twomethodswas assessed by calculating the paired

difference for each measurement and by estimating the bias

(mean difference) and 95% limits of agreement (2 standard

deviations around the mean difference) relative to the average

measurement of both methods. In addition to the Bland-
465



Figure 5. Plot of the difference between the total volume of the

segmented liver vessel tree and the corresponding volumemeasured
on the corrected computer-aided design model as a function of the

T value used (dashed lines identify the optimal parameter setting).
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Altman statistics, Pearson’s correlation coefficient (r) was calcu-

lated as a measure of consistency between the two methods.

Moreover, suitable metrics for comparing 2D shapes of

vessel sections derived from automatic and manual segmenta-

tions were adapted to the specific purpose of this study from

our previous work (14) and were used to further quantify

vessel segmentation accuracy. For each vessel section, the

overlapping areawas assessed by calculating the Dice similarity

coefficient (DSC), the false-positive ratio (FPR), and the

false-negative ratio (FNR), respectively, defined as follows:

DSC ¼ 2ðM1XA1Þ
M1 þ A1

; (8)

FPR ¼ 2ðM0XA1Þ
M1 þ A1

; (9)

and

FNR ¼ 2ðM1XA0Þ
M1 þ A1

; (10)

where A and M represent, respectively, automatic and manual

segmentation, and 1 and 0 correspond, respectively, to the

consideration of vessel and parenchyma pixels.
RESULTS

CAD Model Correction

To obtain a CADmodel perfectly identical to the vessel tree of

the phantom, vessel sections in each slice of the original CAD

model were ‘‘corrected’’ through multiplication by the exper-

imentally determined correction factor k = 0.941.

The resulting ‘‘corrected CAD model’’ was used as a ‘‘gold

standard’’ for the subsequent evaluations of vessel segmenta-

tion accuracy on the basis of the analysis of the 3D vessel tree.
Optimization of Algorithm Threshold Parameter

The optimal value of the segmentation threshold parameter T

was determined as the value that minimized the difference

between the total volume of the segmented liver vessel tree

and the corresponding volume measured on the corrected

CAD model.

Figure 5 shows the curve obtained by plotting the afore-

mentioned volume difference as a function of the T value

used; it can be observed that the difference goes to zero for

T = 2059.

The effects of different T values on vessel segmentation is

also qualitatively shown in Figure 6, illustrating the results of

manual and automatic segmentation on a typical liver CT

slice, with emphasis on the differences between the automatic

segmentation performed with the optimal threshold

(T = 2059) and the same operation conducted with a lower

or higher T value.
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In particular, from Figure 6a, it can be noted how using too

low a threshold (eg, T = 500) overestimates all the vessel

sections and causes the appearance of ‘‘additional vessels’’

(false-positives) not actually present in the scanned phantom.

On the contrary, using too high a threshold (eg, T = 5000)

underestimates all the vessel sections and does not allow detec-

tion of the smallest vessels (false-negatives).

These effects are further highlighted in Figures 6b and 6c,

respectively reporting the zoom shots of the areas labeled 1

and 2 in Figure 6a. Figure 6b shows how too low a T value

can misinterpret a group of small vessels as a single larger

one, and Figure 6c points out the case in which a single large

vessel is erroneously split into a set of smaller vessels because of

too high a T value.

Automatic segmentation performed at T = 2059 globally

showed a very good concordance with the manual segmenta-

tion results; therefore, this value was selected as the optimal

threshold for automatic segmentation of liver vessels from

CECT images.

Figure 7 shows the 3D image resulting from the automatic

segmentation performed on our phantom using the selected

value of threshold parameter (T = 2059). The accuracy of

this segmentation was then specifically quantified through

the previously described evaluation techniques, whose results

are reported in the following paragraphs.
Three-Dimensional Analysis of the Segmented
Vessel Tree

Sensitivity analysis of the implemented segmentationmethod-

ology was carried out by comparing the segmented vessel tree

with the corrected CAD model, separately analyzing vessel

diameters and vessel subsegment order.

Regarding vessel diameter, as reported in Figure 8, sensi-

tivity was 14% for very small subsegment branches with diam-

eters in the range 0.2 to 0.5 mm and increased to 50% for

branches 0.5 to 1 mm in diameter. Sensitivity was 100% for

all branches in the range 1 to 16 mm.



Figure 6. Effect of the adopted T value on the accuracy of the

vessel segmentation obtained: (a) global effect on a typical liver slice;
(b) zoom shot of area 1, showing how the use of too low a T value

causes the misinterpretation of a group of small vessels as a single

larger one (blue line); (c) zoom shot of area 2, showing how too
high a T value causes the erroneous splitting of a single large vessel

into a set of smaller ones (green lines).

Figure 7. Result of the automatic phantom image segmentation

(T = 2059).

Figure 8. Sensitivity of the vessel segmentation algorithm against

vessel diameter (percentage of segmented vessels with respect to

the actual phantom vessels).

Figure 9. Sensitivity of the vessel segmentation algorithm against
vessel order (percentage of segmented vessels with respect to the

actual phantom vessels).
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In relation to subsegment order, as reported in Figure 9,

sensitivity was 100% for first-order branches, and it decreased

to 88%, 80%, and 70%, respectively, for second-order, third-

order, and fourth-order branches.

The number of branches in the phantom for each subseg-

ment order was also counted and is reported in Table 1, along
with the corresponding diameter ranges and the number of

vessels that were correctly identified by the algorithm.
Two-Dimensional Analysis of Liver Slices

The level of agreement between manual and automatic liver

vessel segmentation was quantified by measuring the corre-

sponding vessel section areas on various 2D liver slices and

using Bland-Altman statistics, Pearson’s correlation coeffi-

cient, and the calculus of threemetrics (DSC, FPR, and FNR).

Figure 10 shows the Bland-Altman plot obtained, in which

the average error in vessel section area (expressed as bias � 2

standard deviations) was 0.06 � 8.41 mm2. Pearson’s correla-

tion coefficient, assumed as a measure of consistency, was

found to be 0.997. For a graphical representation, the scatter-

plot of vessel section areas is reported in Figure 11, together

with the line of unity.

This good level of accuracy was also confirmed by the values

of the calculated metrics. In fact, automatically segmented

vessel sections overlapped the greatmajorityof the correspond-

ing real phantom oneswith significant robustness (DSC= 94.9

� 6.5%). Furthermore, the algorithm achieved an FPR of 7.7
467



TABLE 1. Number of Vessels in the Phantom and Number of Vessels Identified by the Automatic Segmentation Algorithm, Grouped
by Corresponding Subsegment Order

Vessel Order

Total1 (9.8–16.0 mm) 2 (0.4–9.4 mm) 3 (0.5–3.1 mm) 4 (0.2–2.0 mm)

Phantom vessels 2 16 15 10 43

Segmented vessels 2 14 12 7 35

Figure 10. Bland-Altman plot for comparison of automatically and

manually segmented vessel section areas.

Figure 11. Scatterplot showing the performed measurements of
vessel section areas. The line of equality is also shown.

CONVERSANO ET AL Academic Radiology, Vol 18, No 4, April 2011
� 13.7% and an almost ideal FNR (2.3� 4.1%), indicating the

substantial absence of undetected vessel voxels.
DISCUSSION

Routine clinical planning of surgical liver resection usually

involves the schematic classification of various liver segments.

However, in many cases the liver’s complex internal anatomy

differs markedly from commonly adopted classifications (eg,

Couinaud classification) (3–5). In all of these cases, the

surgeon is obliged to imagine the 3D liver structure on the

basis of a multitude of 2D images (typically several hundred

for high-resolution CT scans), and this complex task is one

of the main reasons for the difficulty of liver resection.

The recent introduction of computer planning systems offers

a new way to identify relevant anatomic structures within liver

diagnostic images. The final output of such systems is the display

of a virtual 3D liver model on a computer screen, allowing

a surgeon to perform navigation in virtual volumes, all possible

rotations, zoom shots, and volume calculations (36,37), with

a consequent increase in surgical precision (38–43).

The most crucial step in computer-based planning of liver

surgeries is the segmentation process, in particular the

segmentation of liver vessels, which is of fundamental impor-

tance for accurate intervention planning but at the same time

can be subject to several significant errors.

In this study, we assessed an innovative software tool for

automatic segmentation of the hepatic vessel network from

a CECT liver scan, evaluating the actual effectiveness of our

algorithm through an experimental study on a highly precise
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phantom reproduction of a human liver, for which all

morphologic details and boundary conditions were known

in detail ‘‘a priori.’’

After experimental definition of the most suitable threshold

parameter, to optimize the accuracy of the implemented algo-

rithm, we quantified the algorithm performance in two inde-

pendent ways: (1) 3D analysis of global sensitivity on the basis

of vessel tree assessment and (2) detailed 2D pixel-based statis-

tical analyses on vessel sections present in single CT slices.

In our first analysis, we compared the 3D vessel tree result-

ing from automatic segmentation of our contrast-filled

phantom to the corresponding vessel tree obtained from the

corrected CAD model used for phantom production. We

counted 43 vessel branches in the corrected CAD model,

which were subdivided into 11 groups according to diameter

(range, 0.2–16 mm) and classified in four different vessel

subsegment orders. Sensitivity in relation to the vessel diam-

eter (Fig 8) was particularly high, with 100% of vessels with

diameters > 1 mm correctly identified. Then, as expected,

sensitivity decreased to 50% for vessels in the range 0.5 to 1

mm (comparable to the imaging system resolution), and

residual 14% sensitivity was maintained for vessels < 0.5 mm

(ie, less than the physical pixel-related resolution). Neverthe-

less, some omitted small vessels were not optimally filled by

contrast solution, so actual algorithm sensitivity in the detec-

tion of vessels < 1 mm in presence of ‘‘ideal’’ contrast filling is

expected to be somewhat higher anyway with respect to the

aforementioned values.

Sensitivity in relation to vessel subsegment order (Fig 9)

started with 100% for first-order vessels and then progressively
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decreased for higher order vessels. However, this is only due to

an increasing proportion of small vessels with increasing vessel

order, while we verified that all vessels > 1 mm were correctly

segmented at least up to the fourth order, independently of the

angle in which they originated from the corresponding parent

vessels and of anyother specificmorphologic condition.More-

over, narrowvesselswith diameters < 1mmare unlikely to have

significant clinical importance during liver resection planning.

The achievement of 100% sensitivity in the fully automatic

detection of all vessels with diameters > 1mm, independent of

vessel subsegment order and specific morphologic conditions,

is a remarkable result, considering that recently reported alter-

native methods for analogous purposes used phantoms with

simplified vessel geometries (27), reached detection sensitiv-

ities close to 100% only for vessels with diameters > 3 mm

(1), or required operator interaction to correctly identify

vessels with diameters < 4 mm (28).

Our additional 2D analysis was conducted on single equally

spaced CT slices sampled all along the phantom and aimed to

determine the actual accuracy of the implemented segmenta-

tionmethod in reproducing the precise shape of each identified

vessel. Again, our approach achieved very good results, because

the average DSC index, accounting for the degree of overlap

between automatically and manually segmented areas, was

94.9 � 6.5%, and Pearson’s correlation coefficient, measuring

the consistency between the two segmentation methods, was

0.997. In addition, the very low value of FNR (2.3 � 4.1%)

indicated the substantial absence of undetected vessel voxels,

while the higher value of FPR (7.7 � 13.7%), coupled with

the positive value of the average error in vessel section area

(0.06 mm2, corresponding to a percentage error of 4.73%),

documented that inmost cases, automatically segmented vessels

resulted slightly larger than corresponding real ones. This is an

intrinsic feature of our methodology, which in case can be

tuned by optimizing the threshold parameter T using an

‘‘augmented’’ vessel volume instead of the actual one. This

represents a further advantage in view of possible clinical use,

because our software can automatically provide a minimum

safetymargin around the real vessels, and this can be particularly

useful when planning specific liver interventions.
CONCLUSIONS

We developed a new fully automatic method for the 3D

segmentation of all liver structures (parenchyma, vessels,

and, if present, tumors) from CECT scans, resulting from

the combination of a previously validated tool for segmenta-

tion of liver volume and hepatic tumors (14) with a new

algorithm for automatic vessel segmentation, whose effective-

ness has been experimentally evaluated in the present work.

The vessel detection sensitivity of our algorithm was excel-

lent, even compared to recently reported results of different

tools for analogous purposes, showing the unprecedented

ability to correctly segment all liver vessel branches > 1 mm

in diameter, at least up to the fourth subsegment order and
regardless of specific morphologic conditions. Accuracy in

the precise reproduction of identified vessel morphology

was also very high, with the possibility of including a tunable

safety margin around each segmented vessel.

We therefore conclude that our liver segmentation

software, including tools for parenchyma identification and

internal lesion detection, is a promising computer system for

supporting 3D planning of liver surgery and guiding

intraoperative resections.

Future developments will include exploring strategies to

improve algorithm sensitivity in detecting vessels < 1 mm

and experimental studies to optimize the threshold parameter

for planning liver surgeries that require specific safety margins.
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