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Abstract—The goal of array processing is to gather information from
propagating radio-wave signals, as their Direction Of Arrival (DOA).
The estimation of the DOA can be carried out by extracting the
information of interest from the steering vector relevant to the adopted
antenna sensor array. Such task can be accomplished in a number of
different ways. However, in source estimation problems, it is essential
to make use of a processing algorithm which feature not only good
accuracy under ideal working conditions, but also robustness against
non-idealities such as noise, limitations in the amount of collectible
data, correlation between the sources, and modeling errors. In this
work particular attention is devoted to spectrum estimation approaches
based on sparsity. Conventional algorithms based on Beamforming
fail wherein the radio sources are not within Rayleigh resolution range
which is a function of the number of sensors and the dimension of the
array. DOA estimation techniques such as MUSIC (Multiple Signal
Classifications) allow having a larger spatial resolution compared to
Beamforming-based procedures, but if the sources are very close and
the Signal to Noise Ratio (SNR) level is low, the resolution turns to be
low as well. A better resolution can be obtained by exploiting sparsity:
if the number of sources is small, the power spectrum of the signal with
respect to the location is sparse. In this way, sparsity can enhance the
accuracy of the estimation. In this paper, an estimation procedure
based on the sparsity of the radio signals and useful to improve the
conventional MUSIC method is presented and analyzed. The sparsity
level is set in order to focus the signal energy only along the actual
direction of arrival. The obtained numerical results have shown an
improvement of the spatial resolution as well as a reduced error in
DOA estimation with respect to conventional techniques.
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1. INTRODUCTION

The estimation of spatial parameters is of crucial importance in many
applications related to source localization by means of sensors and
antenna sensors. The signal of interest can be picked up by using
one or more sensors. However, compared to the individual sensor
configuration, only a sensor array actually allows taking advantage
of the spatial processing, because it naturally samples the incoming
signals and in this way can filter the signal impinging from a desired
direction, while attenuating the signals from other ones [1, 2]. In
fact, a plurality of signals originating from different spatial directions
but overlapping with each one, both in time and in frequency, is
often received by an antenna sensor array. The goal is to estimate,
as accurately as possible, a particular signal coming from a certain
direction. When the desired signal and the interfering signals occupy
simultaneously the same frequency band, the only temporal filtering is
certainly not able to isolate the useful signal. However, the signal
of interest and those interfering have usually origin from different
spatial regions, so it is possible to make use of spatial diversity for
the aforementioned purpose using a spatial filter in reception [3].
This is the principle on which array processing techniques such as
Beamforming are based [4–6]. However the directions of arrival (DOA)
are not always known, and so the beam pattern cannot be pointed
in the desired direction. In this case the space could be inspected
in blind manner to search possible sources by implementing multiple
filters which point, in turn, in a certain direction to pass the relative
information and to lock those associated with the other ones. A less
cumbersome but more accurate solution is to solve, in a preliminary
way, the DOA estimation problem according to Figure 1 [7].

In practice, the estimation of DOAs is made difficult by the fact
that there is usually an unknown number of signals simultaneously
impinging on the array, each from unknown direction and with
unknown amplitude. In addition the received signals are always
corrupted by noise. Nevertheless, there are several methods to estimate
the number of signals and their directions.

In all these methods the DOA is a parameter estimated from the
received data. The minimum variance in this estimate is given by the
Cramer-Rao bound (CRB), which provides a measure of the fact that
estimating parameters from noisy data necessarily results in a noisy
estimation. In particular, the CRB quantifies the minimal residual
noise achievable in unbiased estimates [8, 9].

The Maximum likelihood estimation technique achieves the
Cramer-Rao bound but it requires a significant amount of computa-
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Figure 1. DOA estimation and Beamforming process for antenna
sensor array.

tions to derive an estimate [1]. Computationally less demanding esti-
mation procedures such as the Capon Beamformer [10] and the MU-
SIC [11] methods allow evaluating the DOAs of incoming radio signals
by computing the location of peaks in the energy spectrum, but they
feature limitations in the DOA estimation accuracy that are related
to spatial resolution. Spatial resolution, i.e., the minimum angular
distance such that two distinct signals coming from diverse directions
can be distinguishable, is related to the parameter Half Power Beam
Width (HPBW) [1]. It depends on the geometry of the array and the
number of elements, but large-size arrays are often not desirable in
many applications. In [12] we have presented a technique for improv-
ing the accuracy in the estimate of the DOAs in order to retrieve more
information about the scanning objects, such as their shape. The con-
cept of spatial sparsity is useful in DOA estimation problem because
it allows to hold only the information of interest and to set to zero
unnecessary one. This sparsity must be set a priori in the field signal,
that is the signal incident on the array. The method presented here is
an enhanced version of the method proposed in [12]. The estimate ap-
proach is optimized by an iterative method based on the minimization
of two costs, one related to goodness of data fitting, and other deal-
ing with maintenance of the spatial sparsity of the signal. So, for this
scope, Tikhonov regularization method [13, 14] is used in combination
with the MUSIC method in order to converge to the desired solution in
a shorter time and with a lower computational effort. The key point in
the development of a method based on the sparsity of the field signal
is the possibility to represent the spectrum of the signal in sparse way
because the signal energy is concentrated only along the directions of
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interest, i.e., those along which the signals impinging on the sensor
array actually propagate. This results in an improvement of the Signal
to Noise Ratio (SNR) and, hence, of the accuracy in the estimation
of the DOAs even wherein the data are corrupted by a higher level of
noise.

The paper is organized in this way. In Section 2 limitations known
in literature of the classical Capon Beamformer method and MUSIC
are discussed. In Section 3 the proposed method is presented. In
Section 4 final comments are reported.

2. BEAMFORMING AND MUSIC LIMITATIONS

The design of the sensor array in order to achieve specific performances
is the trade-off among the array geometry, the number of sensors,
SNR, as well as a number of other factors. We consider a linear array
consisting of n sensors equally spaced at a distance d as in Figure 2 [1].

Figure 2. Linear array of n antenna sensors.

So dn = (n − 1)d indicates the distance between the n-th sensor
and the first taken as reference in the array, and we suppose that a
source placed at a great distance from the sensor array and coming
from direction ϑ is a signal of frequency f0 and amplitude s0:

s0(t) = s0e
j2πf0t (1)

The source is in the far field with respect to the array, so that the
impinging wave fronts on the sensors can be considered plane. Hence,
the received signal by the n-th sensor is equal to that received by the
first one, except for a time delay τn given by:

τn =
dn

c
sin(θ0) =

dn

λf0
sin(θ0) (2)
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Figure 3. Narrowband Beamformer.

where c is the speed of light and λ = c
f0

is the wavelength of the signal.
So, the signal xn(t) received by the n-th sensor is:

xn(t) = s0e
j2πf0tej2πf0τn = s0(t)ej2π(n−1) d

λ
sin(θ0) (3)

Omitting for simplicity the time index t and representing with the
vector X = [X1 X2 X3 . . . Xn]T the signals received by the n sensors,
it has:

X = s0v0 (4)
where v0 represents the response of the array to narrowband signal
coming from the direction ϑ, known as steering vector:

v0 =v(θ0)=
[
1 ej2π d

λ
sin(θ0) ej2π2 d

λ
sin(θ0) . . . ej2π(N−1) d

λ
sin(θ0)

]
(5)

Let us assume that there are L uncorrelated radio signals
propagating along different directions and impinging on the considered
sensor array. A steering vector for each direction of arrival can
be defined and they can be grouped in a matrix, namely the array
manifold, as follows:

C(ϑ) = [v(ϑ0) v(ϑ1) v(ϑ2) . . . v(ϑL)] (6)
A DOA estimation problem is defined considering that there are

several (D) signals impinging on a linear array with n equispaced
elements, each coming from a direction ϑi, i = 1, . . . , D. The goal
is to use the data received at the array to estimate ϑi.

In a first moment we take in consideration the concept of
Beamforming to solve the DOA estimation problem. So considering
a narrowband Beamfomer (Figure 3), the signals received by the n
sensors are linearly combined by the Beamformer, according to the
coefficients w∗n (weights), so the output Y is:

Y = WHX (7)
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where W is the weights vector, H represents the Hermitian operator
and X = [X1(k) X2(k) X3(k) . . . Xn(k)]T is the vector of the signals
sampled and received by the n sensors at the time instant k.

Capon Beamformer belongs to the class of the so-called Quadratic
Algorithms [1], where the steering vector v(ϑ) is varied over a priori
range of the sources defined in ϑ-space. The spatial spectrum is
obtained and its value is plotted where the D largest values are selected
as the estimate of ϑ1, ϑ2, . . . , ϑD. It is assumed that D, the number
of sources, is known.

The spatial spectrum is defined as:

PCapon =
1
k

K∑

k=1

∣∣vH(ϑ)wX(k)
∣∣2 − π

2
≤ ϑ ≤ π

2
(8)

where w is calculated in accordance with Minimum Variance
Distorsionless Response (MVDR) Beamformer algorithm:

w =
R−1

x v(ϑ)
vH(ϑ)R−1

x v(ϑ)
(9)

Rx is the sample covariance matrix, i e., Rx = 1
k

∑K
k=1 X(k)X(k)T .

So, by replacing (9) in (8) and by performing the calculations, the
Capon spectrum is:

PCapon(ϑ) =
1

vH(ϑ)R−1
x v(ϑ)

(10)

For a comparison with the proposed method, three different cases
of study are reported. In the first test case, we consider an operating
frequency of 32.8 kHz, in accordance to ultrasonic sensor presented
in [12]. The linear array consists of 10 sensors, and we suppose that
two signals coming from different spatial directions are picked up by the
sensor array. Although the spatial position of an object is completely
defined by azimuth and elevation angles, the adopted linear array
allows estimating only the azimuth angle ϑ. The results are shown
in Figure 4, where the considered DOAs and SNR are specified for
each case.

It is possible to see that in Figure 4(a) the peaks related to the two
DOAs are distinguishable. In fact, the angular separation between the
two DOAs is equal to 15◦, i.e., this value is greater than the value
HPBW (Half Power Beam Width) that is for a linear array of 10
sensors about 10◦ [1]. In Figure 4(b) the angular separation between
the DOAs is 5◦, but the SNR is such that the two peaks are slightly
distinguishable. In Figure 4(c) the spatial resolution is low due to the
small angular separation and reduced SNR. So the spectrum contains
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(c)

(a) (b)

Figure 4. (a) DOA1 = −30◦, DOA2 = −15◦; SNR = 15 dB.
(b) DOA1 = −30◦, DOA2 = −25◦; SNR = 15dB. (c) DOA1 = −30◦,
DOA2 = −25◦; SNR = 5dB.

Table 1. Estimate angles by Capon Beamformer.

Case/Estimate ϑ1 ϑ2 ϑ̂1 ϑ̂2

Case 1 −30◦ −15◦ −30.41◦ −15.52◦

Case 2 −30◦ −25◦ −30.27◦ −25.85◦

Case 3 −30◦ −25◦ / −26.97◦

a single peak in the region of two signals. In Table 1 the respective
estimates are reported.

MUSIC is a method which belongs to family of Subspace
Algorithms. It is assumed that the received waveform consists of D
plane wave signals plus uncorrelated noise, and so it is possible to
reduce the problem from a K-dimensional problem to a D-dimensional
problem which defines the signal subspace. Generally, the signal



376 Vergallo, Lay-Ekuakille, and Caratelli

subspace can be defined once the angles of arrival of the D signals
are known, but in the parameter estimation problem, these angles are
unknown. So the received data from the sensors are utilized to estimate
the signal subspace and, thereby, determine the angles of arrival. For
this aim, the sample covariance matrix of the data Rx is expanded
using the eigenvalues and eigenvectors,

Rx =
N∑

i=1

λiΦiΦH
i (11)

where Φi are the eigenvectors and λi are the eigenvalues. In this way
rewrite Rx as:

Rx = ΦiΛΦH
i (12)

with Λ = diag[λ1, λ2, . . . , λN ].
We refer to the first D eigenvalues, considered in order of

decreasing size as the signal-subspace eigenvalues. Nevertheless, there
is still a noise component in the signal subspace. The remaining
eigenvectors define a noise subspace that does not contain any signal
component.

So we define signal subspaces as:

US = [Φ1 Φ2 . . . ΦD] (13)

and noise subspace as:

UN = [ΦD+1 ΦD+2 . . . ΦN ] (14)

A way to determinate the previously subspaces is the Singular
Value Decomposition (SVD) applied to the matrix Rx. After, the
function Q(ϑ) is calculated, which is called null spectrum by projecting
v(ϑ), defined for all possible values of ϑ in a fixed range −π/2 ≤ ϑ ≤
π/2, on UN . Q(ϑ) is expressed in terms of the eigenvectors of the noise
subspace:

Q(ϑ) = vH(ϑ)
[
UNUH

N

]
v(ϑ) (15)

The principle on which MUSIC is based is that the eigenvectors in
the noise subspace are orthogonal to those of the signal subspace. Since
the signal subspace contains information about the angles of arrival of
each plane wave, the steering vectors of these angles are also orthogonal
to the vectors in noise subspace. Thus if the product between a steering
vector of the DOA of a wave and the vectors of the noise subspace is
zero, the quantity defined in the Equation (15) is null too. The inverse
of Q(ϑ) is called Music Spectrum:

PMUSIC(ϑ) =
1

vH(ϑ)UNUH
N v(ϑ)

(16)
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Music spectrum will have peaks in correspondence of the angles
where the steering vectors v(ϑ) are orthogonal to the noise eigenvectors
of UN .

We assess the estimate accuracy of MUSIC for different DOAs,
SNR levels, and number of samples which, in this case, affects the
performance of the algorithm. Let us consider the same tests used
for the assessment of the Capon Beamforming technique. The results
are shown in Figure 5 where the number of samples is 1024 as in the
previous test.

We note an improvement in terms of resolution in solving the
problem of DOA estimation using MUSIC method.

In Table 2 the respective estimates are reported too.
The limits of MUSIC in terms of spatial resolution are outlined in

(c)

(a) (b)

Figure 5. (a) DOA1 = −30◦, DOA2 = −15◦; SNR = 15 dB.
(b) DOA1 = −30◦, DOA2 = −25◦; SNR = 15dB. (c) DOA1 = −30◦,
DOA2 = −25◦; SNR = 5dB.
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Figure 6(a). If the number of samples is small, a consistent degradation
of the accuracy in DOA estimation can occur (see Table 3). Similarly,
when the SNR level drops down, the MUSIC peaks can become not
distinguishable even where a large number of samples is used (see
Figure 6(b)).

3. PROPOSED METHOD

In the previous section, the limits, known in literature, of conventional
DOA estimators such as the Capon Beamforming and MUSIC methods
have been discussed. In order to achieve a finer spatial resolution in

Table 2. Estimate angles by MUSIC method (good spatial resolution).

Case/Estimate ϑ1 ϑ2 ϑ̂1 ϑ̂2

Case 1 −30◦ −15◦ −30◦ −15.04◦

Case 2 −30◦ −25◦ −30◦ −25.07◦

Case 3 −30◦ −25◦ −30.18◦ −25.25◦

Table 3. Estimate angles by MUSIC method (low spatial resolution).

Case/Estimate ϑ1 ϑ2 ϑ̂1 ϑ̂2

Case 1 −30◦ −15◦ −30◦ /
Case 2 −30◦ −25◦ / −26.36◦

(a) (b)

Figure 6. (a) DOA1 = −30◦, DOA2 = −25◦; SNR = 5 dB; samples
= 100. (b) DOA1 = −30◦, DOA2 = −25◦; SNR = −5 dB; samples
= 1024.
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DOA estimation, sparsity is exploited. In particular, a sparse solution
for the unknown field signal is derived in order to obtain a sparse
energy spectrum having peaks only along the directions of interest.
The problem to solve is the following:

Y = C(ϑ)s + w (17)

where Y ∈ Rn×k is the vector containing the output of the sensor array
due to the sampled signal, incident on it, with n the number of sensors
in linear array and k the number of acquiring samples; C(ϑ) ∈ Rn×D

is the array manifold defined for the DOAs of the incident signals, D
is the number of incident sources; s ∈ RD×k is the vector of the field
signals incoming on the sensor array from a certain spatial direction;
w ∈ Rn×k is an additive Gaussian noise.

At the first step, the noise w is neglected. So, if the incident signals
s on the sensor array and their DOAs are known, the matrix C(ϑ) is
determined and the vector Y can be calculated in simple and unique
way by Equation (17). The inverse problem consisting in the evaluation
of the signal s starting from the Y measurements is not trivial because
the matrix C(ϑ) is unknown. In order to circumvent this problem let
us consider a great number of possible DOAs and redefine C(ϑ) for
this set. So the problem (17) is reformulated as follows:

Y = Cϑ̃(ϑ)sϑ̃ (18)

where the noise is neglected for now as aforementioned. So Cϑ̃(ϑ) ∈
Rn×Dϑ is the array manifold relative to set of possible DOAs with Dϑ

the number of possible DOAs, i.e., ϑ̃ = [ϑ1, ϑ2, . . . , ϑDϑ
], sϑ̃ is the

vector of field signal defined for each DOAs of the set ϑ̃. However
this representation can lead to an ill-posed problem. In fact, Cϑ̃(ϑ)
is, in the general case, an underdetermined matrix because there are
more unknowns than independent linear equations. So the solution of
the problem could be not uniquely defined. An easy and effective way
for overcoming this obstacle is by Moore-Penrose pseudo-inverse [15]
which calculates the least mean square solution. So the cost function,

J1(sϑ̃) =
∥∥Y − Csϑ̃

∥∥2 (19)

is minimized by the calculated solution which is among the all infinite
solutions that a minimum norm (or least squares solution):

sϑ̃ = CT
θ̃

(
Cθ̃C

T
θ̃

)−1
Y (20)

In Equation (19) Cϑ̃ (ϑ) = C and it defines a cost related to the
goodness of the fitting of the data. However if r is the rank of matrix
Cϑ̃ (ϑ) and it is such that r < n, the problem is ill-posed, so the Singular
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Value Decomposition is used for Cϑ̃(ϑ). The solution to problem (18)
is that to least squares in Equation (20), but when in Equation (18) is
added the noise,

Y = Cϑ̃(ϑ)sϑ̃ + w (21)

the noise components can be amplified in the directions of the singular
vectors with small singular values. So we consider the measurements
Y corrupted by the noise which defines the SNR level. In Figure 7 the
least squares solution is depicted for three cases with different SNR.
The DOAs to estimate are ϑ1 = −30◦ and ϑ2 = −15◦ in Figures 7(a)–
(b) and so the angular distance between the two considered DOAs is
such to be bigger of HPBW parameter. While in Figure 7(c) the DOAs
are ϑ1 = −30◦ and ϑ2 = −25◦. The number of considered samples is
equal to 100.

The least squares solution with respect to the considered set of

(a) (b)

(c)

Figure 7. Least squares solution.
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DOAs ϑ̃ is shown, and each curve corresponds to a single sample k. It
is possible to see in Figure 7(a) that with a SNR very high equal to
55 dB the two peaks are distinguishable, as also in Figure 7(b) with a
minor SNR of 5 dB, but the energy of the signal in this case is lower
than in the previous case. In Figure 7(c) the two peaks are not distinct
due to the high noise in the signal (SNR = 5 dB) and a small angular
distance of the sources.

So it is desirable to solve the problem (21) by a different approach,
especially when the angular distance of the sources to be detected is
small, and the solution calculated through the least squares would lead
to a poor spatial resolution as seen in Figure 7(c).

In this case, regularization methods are used to solve ill-posed
problems by including a priori knowledge about sϑ̃ to stabilize the
problem and to provide a reasonable and useful solution. So a second
function in addition to that defined in Equation (19) is introduced to
reinforce the desired reconstruction:

J2(sϑ̃) =
∥∥sϑ̃ − s0

∥∥2 (22)

which means that there is a preference for a reconstruction close to
default solution s0. We set this default solution in way to obtain a
sparse spatial information for the field signal sϑ̃ to be calculated.

Nevertheless J1(sϑ̃) and J2(sϑ̃) cannot generally be both
minimized at the same time, so it is necessary to find a compromise,
which can be simply obtained by taking a linear combination of the
two:

J(sϑ̃) = J1(sϑ̃) + λJ2(sϑ̃) (23)

Scalar λ is the regularization parameter balancing the tradeoff between
the two costs. A common method to resolve the problem (23) is
Tikhonov Regularization:

sϑ̃λ
= arg min

{∥∥J1(sϑ̃)
∥∥2

2
+ λ2

∥∥J2(sϑ̃)
∥∥2

2

}
(24)

There is a whole family of solutions indexed by λ. If this
regularization parameter is very large, the solution favors the a priori
information because the data and consequently the noise are ignored;
while, if λ is small the solution is that non-regularized, i.e., that to
least squares which is sensitive to noise. Simpler method to calculate
this parameter is a graphical tool known as L-curve [16]. Tikhonov
problem must be resolved for each k sample,

J(sθ̃(k)) =
∥∥Y (k)− Cθ̃sθ̃(k)

∥∥2

2
+ λ2

∥∥sθ̃(k)− s0

∥∥2

2
(25)

The sparsity information will be maintained in s0 defining it in this
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way:

s0 =

√√√√
k∑

i=1

(sj(i))
2 ∀ j = 1, . . . , Dϑ (26)

that is for each possible DOAs the sϑ̃(k) solutions calculated, by solving
the k Tikhonov problem, are added together. This has the effect to
reinforce the sparsity of the signal because the smallest terms in s0 are
set to zero, i.e., s0 is such that it contains a great number of elements
equal to zero and just few components are different from the null value.
The steps to solve in iterative way the algorithm are shown in the block
diagram of Figure 8.

Figure 8. Steps of the proposed method.

With reference to the flow chart reported in Figure 8, a least
square solution of the problem is derived, and, in this way, the vector
s0 is calculated. On this vector the spatial sparsity is imposed setting to
zero the entries below the 20% of its maximum. This threshold value is
established in such way to keep the information in the desirable range.
In fact, with reference the least squares solution in Figure 7(c), s0,
calculated by Equation (26) is shown in Figure 9.
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Figure 9. No-sparse initial s0.

Table 4. Estimate angles by proposed method.

Case/Estimate ϑ1 ϑ2 ϑ̂1 ϑ̂2

Case 1 −30◦ −25◦ −30◦ −24.55◦

So we are only interested in the range where there is a peak in order
to be able to distinguish the two DOAs. sϑ̃(k) is calculated by solving
Tikhonov problem and this solution is used to reconstruct the sensor
array output because the sparsity of the signal has been reinforced
and the energy of the field signal has been concentrated along DOAs
of interest. So the imposed spatial sparsity has the effect to increase
the SNR in the field signal. Consequently the new reconstructed Y
vector results to be less corrupted by noise. MUSIC method is applied
on this reconstructed output. The result is depicted in Figure 10 with
reference to the case in Figures 7(c) and 9.

In Figure 10(a) the solution sϑ̃(k) at the second iteration of the
algorithm is shown, while in Figure 10(b) the result by application of
MUSIC method on the reconstructed data is depicted compared with
the solution obtained by classical MUSIC method. The algorithm
is stopped when the two desired DOAs are obtained. So the only
information, required for this method are the DOAs to calculate, is
the number of sources incident on the antenna sensor array. The final
results are shown in Figures 10(c)–(d). It is clear that the sparse
solution allows to obtain a better result compared to MUSIC, because
the signal energy is concentrated along the DOAs of interest and so
the two DOAs are detected. In Table 4 the estimate of the considered
DOAs are reported.
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(a) (b)

(c) (d)

Figure 10. (a) Iteration #2: Tikhonov solution. (b) MUSIC
spectrum without sparse solution vs. MUSIC spectrum with sparse
solution. (c) Iteration #5: Tikhonov solution. (d) MUSIC spectrum
without sparse solution vs. MUSIC spectrum with sparse solution.

In different problems related to search of a sparse solution, it has
been proved that l1-norm is more indicated with respect to l2-norm,
because a solution based on the least squares minimization as reported
in Equation (25) tends to weight more residues larger than those small,
and a few components in the solution near to zero cannot be completely
cancelled [17, 18]. So, a sparse solution could not be obtained or the
convergence of the problem can be more slow. However, the result
in Figure 10 shows that through the use of l2-norm the energy of
the signals is focused along the directions of interest because a sparse
solution is calculated. That is due to the fact that computation of s
by solving Equation (25) is based on the consideration that the non-
zero coefficients in s0 are relative to the columns in Cϑ̃(ϑ) necessary to
concentrate the energy of the signal in certain directions. In Figure 9
is shown as to choose a possible location of the zeros in the solution,
and consequently, the range where the solution must be searched, that
is around the max of s0. So only the columns of Cϑ̃(ϑ) related to
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this selected range are take in consideration during the minimization
of the problem, the other ones reinforce the spatial sparsity because
the corresponding steering vectors gives a null information for those
directions out from the selected range.

Tikhonov problem defined in Equation (25) has a closed-form
solution which can be calculated by setting:

∂

∂sDϑ̃

{
λ2(s− s0)T (s− s0) + (y − Cϑ̃s)T (y − Cϑ̃s)

}
= 0 (27)

and so,

sθ̃i
(k)=

{
vi

(
λ2

λ2+σ2
i
s0i + σi

σ2
i +λ2 uT

i Y (k)
)

for i = 1, . . . , r

vis0i for i = r + 1, . . . , Dϑ̃

(28)

where r is the rank of matrix Cϑ̃(ϑ). Singular value decomposition
is applied on Cϑ̃(ϑ), Cϑ̃(ϑ) = UΣV =

∑r
i=1 uiσiv

T
i , and s0i = vT

i s0,
for i = 1, . . . , Dϑ̃. So the search of the minimum of the regularization
residue for each algorithm iteration means that the best source estimate
is used on each algorithm iteration. Figure 10 and Table 4 confirm the
goodness of the proposed method.

However, since the method has been proposed as an improvement
on MUSIC method, an analysis of its performance in terms of error
behavior is reported. So, the limit of MUSIC is due to its low spatial
resolution when two sources are separated by much less than the
beamwidth of the array. In Figures 11 and 12 the location of the

(c)

(a)

(b)

Figure 11. Error behavior for MUSIC method. (a) SNR = 15dB.
(b) SNR = 5 dB. (c) SNR = −8 dB.
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(c)

(a)

(b)

Figure 12. Error behavior for Sparse method. (a) SNR = 15 dB.
(b) SNR = 5 dB. (c) SNR = −8 dB.

estimates obtained with the new method and MUSIC are depicted for
100 trials considering several SNR. The results are shown through a
histogram representation. A linear array with 10 sensors is considered.
The DOAs to estimate are: DOA1 = −30◦, and DOA2 = −25◦.

In Figure 11(a) the signals are resolved on all trials and the
estimates are clustered around the correct value. In Figure 11(b) the
signals are resolved on most trials, while on several trials the signals
are not resolved. In Figure 11(c) more trials have unresolved signals.

In Figure 12 only in the case (c) a few of trials have unresolved
signals. So the proposed method is more accurate than classical
MUSIC method. MUSIC has estimation difficulties if impinging
directions are closer to −90◦ and 90◦. This problem is present in the
proposed method also, and it is has not yet been resolved.

4. FINAL COMMENTS

The most important problem in antenna sensor array processing is
the estimation of the position of sources emitting a signal (passive
localization) or a point target illuminated by external signal (active
localization).

A point in three dimensional space is defined by three parameters,
namely, distance sensor-point, azimuth and elevation. The distance
sensor-point is often measured by means of time of flight [12]. The
azimuth and elevation angles are obtained from the measurements
of direction of arrival (DOA). A source is assumed where there is
a concentration of energy. This work has been focused on the
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development of an algorithm of DOA estimation to locate the sources
of interest. Classical methods such as the Capon Beamformer and
MUSIC have been analyzed in the context of DOA estimation problem.
After having highlighted their limitations, an approach based on
the sparsity of the signal incoming on the sensor array has been
presented and discussed in detail. The sparsity is imposed a priori
considering a representation of the problem in overcomplete form, due
to the fact that the array manifold is constructed considering a great
number of possible DOAs. The solution is achieved by the Tikhonov
regularization method which provides a good trade-off in terms of
fitting of the data and spatial sparsity of the field signal. The developed
method allows concentrating the energy of the signal along the DOAs
of interest. Cases of study are presented by different combinations
of SNR, DOAs and number of samples. There is an improvement
compared to the classical MUSIC method, and a smaller estimate error
as it is possible to see from the analysis of the behavior error too. So
spatial sparsity provides a clear advantage in DOA estimation. The
only constraint is the knowledge of the number of sources to detect.
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