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Abstract

In this paper we exploit some properties of the travel time model proposed
by Ichoua et al (2003), on which most of the current time-dependent vehicle
routing literature relies. Firstly, we prove that any continuous piecewise lin-
ear travel time model can be generated by an appropriate Ichoua et al (2003)
model. We also show that the model parameters can be obtained by solving
a system of linear equations for each arc. Then such parameters are proved
to be nonnegative if the continuous piecewise linear travel time model satis-
fies the FIFO property, which allows to interpret them as (dummy) speeds.
Finally, we illustrate the procedure through a numerical example. As a by-
product, we are able to link the travel time models of a road graph and the
associated complete graph over which vehicle routing problems are usually
formulated.
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1. Introduction

Most of the literature on time-dependent vehicle routing relies on the
stepwise speed model proposed by Ichoua, Gendreau and Potvin in 2003
(IGP model, in the following). The main point in their model is that they
do not assume a constant speed over the entire length of a link. Rather, the
speed changes when the boundary between two consecutive time periods is
crossed. This feature guarantees that if a vehicle leaves a node i for a node j
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at a given time, any identical vehicle leaving node i for node j at a later time
will arrive later at node j (no-passing or first-in-first-out (FIFO) property).
In this paper we prove that any continuous piecewise linear travel time model
can be generated by an appropriate IGP model, and show how to compute
the model parameters. We also prove that such parameters can be inter-
preted as speeds if the time model satisfies the FIFO property. These results
allow us to link the travel time models of a road graph and the associated
complete graph over which vehicle routing problems are usually formulated.
This is quite interesting because, while the hypothesis of instantaneous speed
variation over an arc is quite realistic for the arcs of the road graph (at least
if the corresponding streets are not too long), it is not so intuitive that this
assumption may be reasonable for the associated complete graph as well.

The literature on Time-Dependent Vehicle Routing is fairly limited and
can be divided, for the sake of convenience, into four broad areas: travel
time modeling and estimation; the Time-Dependent Shortest Path Problem
(TDSPP); the Time-Dependent Traveling Salesman Problem (TDTSP) and
its variants; and the Time-Dependent Vehicle Routing Problem (TDVRP).
Here we focus on the first research stream. [1] proposed a model for time-
dependent travel speeds and several approaches for estimating the parameters
of this model. The modeling approach has been implemented in a commer-
cial courier vehicle scheduling system and was judged to be ”very useful”
by users in a number of different metropolitan areas in the United States.
[2] proposed a travel time modeling approach based on a continuous piece-
wise linear travel time function (the IGP model). Later, [3] investigated
the assumptions that this function must satisfy to ensure that travel times
satisfy the FIFO property. They also described the derivation of travel time
data from modern traffic information systems. In particular, they presented
a general framework for the implementation of time-varying travel times in
various vehicle-routing algorithms. Finally, they reported on computational
tests with travel time data obtained from a traffic information system in the
city of Berlin. [4] investigated exact and approximate methods for estimat-
ing time-minimizing vehicular movements in road network models where link
speeds vary over time. The assumptions made about network conditions rec-
ognize the intrinsic relationship between speed and travel duration and are
substantiated by elementary methods to obtain link travel duration. The
assumptions also imply a condition of FIFO consistency, which justifies the
use of Dijkstra’s algorithm for path-finding purposes.

This paper is organized as follows. In Section 2, we gain some insight into
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a constant stepwise travel speed model with constant distances and illustrate
a procedure for deriving any continuous piecewise linear travel time model
from a suitable IGP model. We also show that the model parameters can
be obtained by solving a system of linear equations for each arc. In Section
3, we illustrate a numerical example, while in Section 4 we exploit the rela-
tionship between the travel time models of a road graph and the associated
complete graph over which vehicle routing problems are usually formulated.
Conclusions and future research issues are reported in Section 5.

2. Continuous piecewise linear travel times and the IGP model

In this section, we prove that any continuous piecewise linear travel time
model can be generated by an appropriate IGP model. Let G = (V,A) be a
graph, where V = {1, . . . , n} is a set of vertices and A is a set of arcs. With
each arc (r, s) ∈ A is associated a nonnegative length Lrs which is assumed
to be constant over time. Moreover, let [0, T ] be the time horizon over which
a vehicle route (or a set of vehicle routes) may be completed.
According to Ichoua et al (2003), for any arc (r, s) ∈ A the time horizon is
partitioned into Hrs time slots [Trsh, Trs(h+1)] (h = 0, . . . , Hrs − 1). During
each time slot h the speed is assumed to be equal to a constant νrsh on arc
(r, s) ∈ A. Given these speeds, the arc travel time functions τrs(t) can be
computed by using the IGP Algorithm [2]:

Algorithm 1 Computing τrs(t) according to the IGP model

Let t ∈ [Trsh, Trs(h+1)[.
k ← h
d← Lrs
t′ ← t+ d/νrsk
while t′ > Trs(k+1) do

d← d− νrsk(Trs(k+1) − t)
t← Trs(k+1)

t′ ← t+ d/νrs(k+1)

k ← k + 1
end while

return t′ − t.

The main idea of this model is that when the vehicle traverses an arc, speed
is not a constant over the entire length but it changes when the boundary
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between two consecutive time periods is crossed. Firstly, we prove some
properties of the IGP model. For the sake of simplicity, from now on, we
omit the arc indices rs when it is clear which arc (r, s) we are referring to.

Theorem 1. Given an arc (r, s) ∈ A and a start time t, the parameters of
the IGP model satisfy the following equation:

L = (Tp+1 − t)νp +

q−1∑
`=p+1

(T`+1 − T`)ν` + [t+ τ(t)− Tq]νq, (1)

where [Tp, Tp+1] and [Tq, Tq+1] are the time intervals in which the start time
t and the arrival time t+ τ(t) fall, respectively.

Proof. The length traversed by a vehicle in a time interval [t1, t2] is equal to
the integral of its speed function, between t1 and t2. In particular, for any
arc (r, s) ∈ A and any start time t, it turns out that:

L =

∫ t+τ(t)

t

v(t)dt. (2)

Since the IGP model assumes a stepwise speed function, the integral can be
expressed as: ∫ Tp+1

t

νpdt+

q−1∑
`=p+1

∫ T`+1

T`

ν`dt+

∫ t+τ(t)

Tq

νqdt. (3)

Hence the thesis is proved.

Given any arc (r, s) ∈ A, the travel time τ(t) generated by the IGP Al-
gorithm is a continuous piecewise linear function. Let tk (k = 0, . . . , K − 1)
be the breakpoints at which its slope changes. The following property estab-
lishes a relationship between the breakpoints tk of τ(t) and the breakpoints
Th of the speed function for the IGP model.

Theorem 2. Given an arc (r, s) ∈ A, for any travel time breakpoint tk, one
of the following conditions holds:

1. a travel speed change occurs at tk, i.e. there exists a time period
h ∈ {0, . . . , H − 1} such that Th = tk;
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2. a travel speed change occurs at tk +τ(tk), i.e. there exists a time period
h ∈ {0, . . . , H − 1} such that Th = tk + τ(tk).

Proof. Let [Tp, Tp+1] and [Tq, Tq+1] be the time intervals in which tk and
tk + τ(tk) fall, respectively. We prove the thesis by contradiction. Therefore
we suppose that there exists a breakpoint tk with k ∈ {0, . . . , K − 1} and a
∆ > 0, such that :

[tk −∆, tk + ∆] ⊆ [Tp, Tp+1] (4)

and
[tk −∆ + τ(tk −∆), tk + ∆ + τ(tk + ∆)] ⊆ [Tq, Tq+1]. (5)

By writing (1) for the time instants (tk −∆) and tk, we obtain:

L = (Tp+1− tk + ∆)νp+

q−1∑
`=p+1

(T`+1−T`)ν`+ (tk−∆ + τ(tk−∆)−Tq)νq, (6)

L = (Tp+1 − tk)νp +

q−1∑
`=p+1

(T`+1 − T`)ν` + (tk + τ(tk)− Tq)νq. (7)

By subtracting (6) from (7), we obtain:

νp
νq
− 1 =

(τ(tk)− τ(tk −∆))

∆
. (8)

Similarly, we determine (9) for the time instants tk and (tk+∆) by subtracting
(7) from (1) rewritten for the time instant (tk + ∆):

νp
νq
− 1 =

(τ(tk + ∆)− τ(tk))

∆
. (9)

By hypothesis tk is a breakpoint for τ(t), that is:

τ(tk)− τ(tk −∆)

∆
6= τ(tk + ∆)− τ(tk)

∆
. (10)

Since (8) and (9) contradict (10), then the thesis is proved.
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This theorem implies that the speed function is constant piecewise with
at most 2K breakpoints Th included into the set {tk, k = 0, . . . , K − 1} ∪
{tk + τ(tk), k = 0, . . . , K − 1}.

From Theorem 2 the following Corollary follows.

Corollary 3. Given an arc (r, s) ∈ A, if for each time interval [Th−1, Th] no
speed change occurs in [Th−1 + τ(Th−1), Th + τ(Th)] with h = 0, . . . , H − 1,
then it results that:

{tk, k = 0, . . . , K − 1} ⊆ Ω ≡ {Th, h = 1, . . . , H − 1}.

It is worth noting that the analytical representation of τ(t) is not explicitly
given by the IGP model. The Corollary 3 states when the travel time function
τ(t) can be analytically defined as the set of line segments connecting the
points (Th, τ(Th)), with h = 0, . . . , H − 1.

We now prove that any continuous piecewise linear travel time model can
be generated by an appropriate Ichoua et al (2003) model. In particular, we
demonstrate that, for each arc, the model parameters are obtained into two
steps. In the first step the Algorithm 2 determines a set of speed breakpoints
satisfying the hypothesis of Corollary 3 . In the second step the speed con-
stant values and the arc length are obtained by solving a system of linear
equations.

We start by demonstrating the correctness of Algorithm 2 through the
Lemma 4. We denote Γ(t) and Γ−1(t) the arrival time function of τ(t) and
its inverse function, respectively. It is worth noting that if the τ(t) satysfies
the FIFO property then Γ(t) and Γ−1(t) are nondecreasing functions. The
positive monotony of Γ(t) and Γ−1(t) assures a finite number of iterations of
the while loops.

Lemma 4. Given a continuous piecewise linear travel time function τ(t) sat-
isfying the FIFO property, the Algorithm 2 computes a set of speed breakpoints
Th, such that no speed change occurs in the time interval [Γ(Th−1),Γ(Th)] with
h = 1, . . . , H − 1.

Proof. We start by observing that the Algorithm 2 determines a set of speed
breakpoints {Th, h = 1, . . . , H − 1} where

t0 = T0 < Th ≤ TH−1 = Γ(tK−1). (11)
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Algorithm 2 Determine a set of speed breakpoints Ω given the set of time
breakpoints {t0, . . . , tK−1}

Ω=∅
for all t ∈ {t0, . . . , tK−1} do

if t /∈ Ω then
Ω← t
t′ ← t
while (t′ ≤ tK−1) ∧ (Γ(t) /∈ Ω) do

Ω← Γ(t′)
t′ ← Γ(t′)

end while
t′ ← t
while (t′ ≥ Γ(t0) ∧ (Γ−1(t′) /∈ Ω) do

Ω← Γ−1(t′)
t′ ← Γ−1(t′)

end while
end if

end for
return Ω
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Moreover for each determined speed breakpoint Th one of the following
condition holds, with h = 0, . . . , H − 1:

Th ≤ tK−1 ⇒ Γ(Th) ∈ {T0, . . . , TH−1}; (12)

Th ≥ Γ(T0)⇒ Γ−1(Th) ∈ {T0, . . . , TH−1}. (13)

In order to prove the thesis by contradiction, we suppose that the Algo-
rithm 2 determines three distinct speed breakpoint T a, T b and T c such that
no speed change occurs in [T a, T b] but Γ(T a) < T c < Γ(T b).

Since Γ−1(t) is a no-decreasing function, we can assert that Γ−1(T c) /∈
{Th, h = 1, . . . , H − 1}. From the conditions (13) this means that :

T c < Γ(T0). (14)

Since the travel speed is constant after TH−1, from (11) and the positive
monotony of the time arrival function Γ(t) it results that T a < T b ≤ tK−1.
Since the breakpoints T a and T b satisfies the condition (12), then Γ(T a)
and Γ(T b) are speed breakpoints. Finally, the condition (13) requires that
Γ(T0) ≤ Γ(T a) ≤ T ′, which contradicts the inequality (14).

Theorem 5. Given a continuous piecewise linear travel time function τ(t)
satisfying the FIFO property, there always exist a constant length L ≥ 0
and a constant stepwise function v(t), such that τ(t) can be obtained as an
output of the IGP Algorithm when L and v(t) are provided as inputs.

Proof. The thesis is proved if we determine L > 0 and a constant stepwise
function v(t) such that:

L =

∫ t+τ(t)

t

v(t)dt. (15)

We consider as time partition for v(t), induced by the set Ω output from the
Algorithm 2.

the travel speed function can be casted as:

v(t) = νh t ∈ [Th, Th+1[, h = 0, . . . , H − 1,

where νh are unknown. By writing Equation (1) for start times t = Th
(h = 0, . . . , H − 1), we get:

L = (Th+1 − Th)νh +

qh−1∑
`=h+1

(T`+1 − T`)ν` + (Th + τ(Th)− Tqh)νqh , (16)
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where [Tqh , Tqh+1[ represents the time interval in which arrival time Th+τ(Th)
falls. Let ah` be the time spent on the arc during period [T`, T`+1] (` =
0, . . . , H − 1) if the start travel time is Th. Equations (16) constitute a
square linear system:


a11 a12 · · · a1,H−1
0 a22 · · · a2,H−1
...

...
. . .

...
0 0 · · · aH−1,H−1

 ∗

ν0
ν1
ν2
...

νH−1

 =


L
L
L
...
L

 , (17)

where νh (h = 0, . . . , H − 1) and L are the unknowns. For any L > 0 this
system has a unique solution since matrix A is in inferior triangular form
with not null diagonal elements. As stated by Corollary 2, by applying the
IGP model to L and v(t) we obtain a travel time function with no further
time breakpoint guarantees that by applying the IGP model with L and

The contribution of Theorem 3 is twofold. Firstly, it shows that it is
always possible to define the IGP constant stepwise function v(t) over the
time partition induced by Th ∈ {tk, k = 0, . . . , K−1}∪{τ(tk), k = 0, . . . , K−
1} :

v(t) = νh t ∈ [Th, Th+1[, (18)

with h = 0, . . . , H − 1. Secondly, given a constant value L > 0, the constant
values of v(t) are univocally determined by solving the square linear system
(17), where ah,` corresponds to the travel time spent in interval [T`, T`+1[,
when the start travel time is Th, with h = 0, . . . , H − 1 and ` = 0, . . . , H − 1.

Finally, we prove that if the continuous piecewise linear model satisfies
the FIFO property, then the IGP model parameters are nonnegative.

Theorem 6. If the continuous piecewise linear travel time function τ(t) sat-
isfies the FIFO property, then parameters νh, are nonnegative for any L > 0.

Proof. The thesis is proved if we demonstrate that, for any given L > 0, the
solution of (17) is a strictly positive vector, i.e. νh > 0, with h = 0, . . . , H−1.
Matrix A is in inferior triangular form with not null diagonal elements. Since
the coefficient ah,` represents the time spent on the arc during the period
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[T`, T`+1] if the start travel time is Th, then:

ah,` =


≥ 0 if h < `

> 0 if h = `

0 if h > `

, (19)

with h = 0, . . . , H − 1 and ` = 0, . . . , H − 1. Since τ(t) satisfies the FIFO
property, then :

0 ≤ a0,` ≤ · · · ≤ a`−1,` < a`,`, (20)

with ` = 0, . . . , H − 1. System (17) can be solved by executing a sequence
of H pivot operations. In particular during the q-th iteration, we choose as
pivot the diagonal element (`, `), with ` = H − q and q = 1, . . . , H. Let
us denote with Lhq the h-th component of the right hand side value of (17)
after q pivot operations, with q = 0, . . . , H and h = 0, . . . , H − 1. It is worth
noting that the solution of (17) is a strictly positive vector, only if, during
the q-th iteration, the minimum ratio test on the `-th column is satisfied only
at the `-th row, with ` = H − q and q = 1, . . . , H. Since the matrix A is in
superior triangular form, this implies that:

L`,q−1/a`,` = min
h=0,...,`

(Lh,q−1/ah,` : ah,` > 0), (21)

with ` = H − q and q = 1, . . . , H. From (20), it results that the thesis is
proved if, given L > 0, then:

0 < L`,q−1 ≤ L`−1,q−1 ≤ · · · ≤ L0,q−1, (22)

with ` = H − q and q = 1, . . . , H. We demonstrate (22) by induction on q.
Case q = 1. Since in (22) ` = (H − 1) and q − 1 = 0, it results that

0 < L = LH−1,0 = LH−2,0 = · · · = L0,0.

Case q > 1. We suppose that (22) holds for q. From (20) and (22) it results
that

0 < L`−1,q−1 − L`,q−1(a`−1,`/a`,`) ≤

≤ L`−2,q−1 − L`,q−1(a`−2,`/a`,`) ≤ . . . (23)

· · · ≤ L0,q−1 − L`,q−1(a0,`/a`,`),
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with ` = H − q. At the q-th iteration the pivot is a`,` with ` = H − q and it
results that:

L`−h,q = L`−h,q−1 − L`,q−1(a`−h,`/a`,`), (24)

with h = 1, . . . , `. From (24) and (23), it results that (22) holds for (q + 1),
that is:

0 < L`,q ≤ L`−1,q ≤ · · · ≤ L0,q, (25)

with ` = H − q − 1.

3. A Numerical Example

We provide a numerical example to illustrate the previous properties.
The arc lenght L is equal to 3. Figure 1(a) describes a continuous piecewise
linear travel time function τ(t), whose breakpoints tk are reported in Table
1 along with the corresponding τ(tk) travel times.

k tk τ(tk)
0 0 2
1 4 2
2 5 1.5

Table 1: Values of tk and τ(tk) for the numerical example

h Th Γ(Th) Γ−1(Th)
0 0 2 -
1 1 3 -
2 2 4 0
3 3 5 1
4 4 6 2
5 5 6.5 3
6 6 - 4
7 6.5 - 5

Table 2: Values of Th determined by Algorithm 2 for the numerical example
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The Algorithm 2 determines the speed breakpoints reported in Table 3.
We compute the constant stepwise IGP speed function v(t) by solving the
following linear system:



ν0+ν1 = 3

ν1+ ν2 = 3

ν2+ ν3 = 3

ν3+ ν4 = 3

ν4+ ν5 = 3

ν5+ 0.5ν6 = 3

0.5ν6+ ν7 = 3

1.5ν7 = 3

(26)

It is worth noting that the sum of the variables’coefficients in the h − th
equation is equal to τ(Th). In particular, it is equal to τ(0) = 2 in the first
equation, τ(1) = 2 in the second equation, etc. The speed values come up to
be: ν0 = 1, ν1 = 2, ν2 = 1, ν3 = 1, ν4 = 2, ν5 = 2, ν6 = 2, ν7 = 2. See Figure
1(b) for a graphical representation.

4. Linking the travel time models of a road graph and the associ-
ated complete graph

Vehicle routing problems are often modelled on a complete graph G′ in
which the vertices represent the customers (and possibly additional facilities,
such as a depot) and the arcs model quickest paths between pairs of customers
and facilities on the underlying road graph G. The main point in the IGP
model is that it does not assume a constant speed over the entire length of a
link. Rather, the speed changes when the boundary between two consecutive
time periods is crossed. This feature guarantees that FIFO property holds.
While the hypothesis of instantaneous speed variation over an arc is quite
realistic for the arcs of the road graph (at least if the corresponding streets are
not too long), it is not so intuitive that this assumption may be reasonable
for the associated complete graph as well.

In this section, we exploit the relationships between the travel time models
of the two graphs. In particular, we show that if the arc travel times of the
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road graph follow Ichoua et al (2003), then the arcs of the complete graph
can be modeled by the same variation law (with suitable parameters). Let
p be a simple path {i = i0, i1, . . . , j = im} on the road graph G. We denote
with Pij the set of simple paths on G, connecting customer/facility i to
customer/facility j. Let z(p, t) be the traversal time of path p, whenever
a vehicle leaves vertex i at time t. We observe that z(p, t) is the sum of
continuous piecewise linear functions. For example, for m = 2:

z(p, t) = τi0i1(t) + τi1i2(t+ τi0i1(t)). (27)

Hence z(p, t) is continuous piecewise linear itself. On the complete graph G′,
the time-dependent travel time τ ′ij(t) of arc (i, j) ∈ A′ is given by:

τ ′ij(t) = min
p∈Pij

z(p, t). (28)

Since Pij is a finite set, function τ ′ij(t) is continuous piecewise linear too.
Hence, Theorem 3 implies that τ ′ij(t) can be generated by an IGP model,
with a suitable choice of parameters L′ij and ν ′hij (h ∈ 0, . . . , H ′ij). It is worth
noting that this property holds for any choice of L′ij > 0. In particular, L′ij
can be chosen equal to the length of the shortest path from node i to node
j on the road graph.

A straightforward consequence is that the IGP model does not suffer
from the drawback pointed out by Fleischmann et al [3] who stated: ”A
drawback of the models with varying speeds but constant distances is that
they do not consider potential changes of the fastest paths themselves due to
varying travel times, which imply changes of distances”. Another outcome
is that the lower bounding procedure proposed by Cordeau et al [5] for the
Time-Dependent Traveling Salesman Problem can be applied to the wider
class of instances with continuous piecewise linear arc travel times: first, the
IGP model’s parameters have to be computed by solving a system of linear
equations for every arc; then speeds νijh are expressed as

νijh = δijhbhuij, (29)

where:

• uij is the maximum travel speed across arc (i, j) ∈ A during [0, T ], i.e.
uij = max

h=0,...,H−1
νijh;
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• bh belongs to [0, 1] and is the best (i.e. lightest) congestion factor during
interval [Th, Th+1], i.e. bh = max

(i,j)∈A
νijh/uij;

• δijh belongs to [0, 1] and represents the degradation of the congestion
factor of arc (i, j) in interval [Th, Th+1] with respect to the less congested
arc in [Th, Th+1];

finally, a lower bound can be computed by: (a) determining a time-independent
Traveling Salesman Problem optimal solution w.r.t. maximum travel speeds
uij; (b) evaluating its traversal time w.r.t. to the most favourable congestion
factor during each interval h, i.e. vijh ← bhuij.

5. Conclusions

In this paper we have shown that the travel time model proposed by
Ichoua et al (2003) is quite general since any continuous piecewise linear
travel time model can be generated from it with a suitable choice of its
parameters. Then some light has been shed on the relevance of this model
on road graphs and the associated complete graphs. As a future research
topic, we would suggest the extension of the lower bounding approach [5] to
other time-dependent arc and node routing problems.
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Figure 1: A continous piecewise linear arc travel time function and the associated constant
stepwise speed function.
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