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Abstract 

A sub population of human Müller glia contained within the neural retina is 

known to exhibit stem cell characteristics. Previous studies in the host 

laboratory have investigated their ability to differentiate into different retinal 

populations in vitro, providing a potential source of cells for development of 

therapies to treat retinal degenerative diseases. This study investigated 

molecular factors involved in differentiation of retina ganglion cells (RGCs) 

derived from human Müller stem cells. It also aimed to explore the feasibility 

of transplanting RGC derived from Müller stem cells into large mammalian 

eyes, using collagen based cellular scaffolds. These objectives ultimately 

aimed to study the potential application of Müller stem cells for treatment of 

late stage glaucoma. 

As determined by microarray analysis of total RNA specimens, in vitro 

culture of Müller stem cells undergoing Notch inhibition in the presence or 

absence of bFGF, led to alteration in microRNA (miRNA) profiles. These are 

short RNA molecules synthesised within cells that play a role in various 

cellular processes. MicroRNAs associated with Notch signalling, cell cycling 

and differentiation, were enriched in Müller cell populations undergoing 

Notch inhibition, conditions previously shown to induce RGC development. 

Elevated expression of these specific miRNAs suggests the emergence of 

novel targets under the regulation of the Notch pathway in Müller stem cells. 

These constitute factors that could be potentially used to develop therapies 

which facilitate endogenous neural differentiation of the latent Müller stem 

cell population in the human neural retina.  

Collagen based cellular scaffolds were developed to deliver RGCs derived 

from Müller stem cells onto the inner retina of the large mammalian eye. 

Collagen is a ubiquitous protein found within numerous tissues types, acting 

as a framework for cellular support and adhesion. Delivery of grafted cells 

onto retinal explants in vitro, and transplantation of scaffolds into the rabbit 
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eye in vivo, was examined by confocal microscopy and showed that plastic 

compressed collagen scaffolds served as a potential suitable substrate for 

transfer of cells to the host retina.  Integration was observed in some cases 

and rarely observed into host tissue, facilitated by degradation of the 

extracellular matrix by chondroitinase ABC and by the use of the anti-

inflammatory agent triamcinolone in vivo.  

In conclusion, the present study showed that standardised protocols used to 

differentiate Müller stem cells into RGC promoted alterations in Müller stem 

cell miRNAs associated with RGC development and maturation. In addition, 

compressed collagen scaffolds were shown to aid delivery of RGCs onto the 

inner retinal surface. These observations pave the way for further 

investigations to promote endogenous retina regeneration and refinement of 

transplantation strategies to apply these cells to the development of human 

therapies.  
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1.1. Retinogenesis 

Cell lineages contained within the vertebrate eye have been extensively 

conserved in many species (Andreazzoli, 2009), where the majority of 

molecular regulation of cell fate is mediated by transcription factors, which 

are able to control RNA transcription. Many of these factors act 

synergistically to yield specification to the retinal progenitor population at 

birth. Researchers in the regenerative medicine field are currently targeting 

molecular and epigenetic regulators to develop ocular degenerative 

therapies. Knowledge of the coordinated processes involved in retinogenesis 

will improve our understanding of age-related or inherited retinal diseases 

and will aid in the design of regenerative therapies for degeneration of 

specific cell niches.  

There are seven types of cells born during ocular organogenesis; six 

neurons and one glial population, namely the Müller glia. Synchronised 

development of the retina involves transcriptional and translational control 

which is governed by intrinsic or environmental mechanisms. The eye 

structure is defined within the ectoderm germ layer, specifically involving the 

anterior neural plate and its cellular content. This region undergoes 

repression of Wingless (Wnt1) and bone morphogenetic protein (BMP), by its 

inhibitor Noggin, and is coupled with increased production of basic fibroblast 

growth factor (bFGF) and insulin-like growth factor (IGF) (Pera et al., 2001, 

Delaune et al., 2005). This single region separates to give origin to distinct 

retinal compartments. The newly born retinal primordial tissues then gives 

rise to the optic vesicles (Chow and Lang, 2001, Rembold et al., 2006) which 

house the neuroblasts that will undergo cell division to form the different 

retinal cell layers. Cellular proliferation causes the tissue to evaginate 

laterally, yielding two optic cups where the pigmented RPE lines the outer 

surface, surrounding the developing neural retina (Andreazzoli, 2009).  
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The formation of the mature retina involves an evolutionary conserved time-

competent generation of neurons and glia by the retinal progenitors. Broadly, 

the retinal ganglion cells (RGCs) are produced initially, followed by cones 

and horizontal cells, and at a later stage amacrine cells, rods and bipolar 

cells. Finally, the Müller glia are produced (Figure 1.1). The different retinal 

neurons are all derived from the same population of progenitors that pass 

through various proliferative states (Livesey and Cepko, 2001, Marquardt 

and Gruss, 2002). These cell states are regulated by organisational signals 

provided within the tissue, whether extrinsic or intrinsic. Early retinal 

progenitors are all primarily plastic and able to produce all retinal cell sub-

types, whilst later progenitors have a limited potency and have the capacity 

to produce post-mitotic neural populations that are generated during the later 

stages of organogenesis. The early progenitors are elongated bipolar-like 

cells, which span the final width of the retina, their nuclei are housed within 

the central domain of the retinal microenvironment and are able to migrate 

basally or apically during development, this is commonly known as 

interkinetic migration (IKNM) (Baye and Link, 2007). Early division is 

asymmetrical, where progenitors give rise to two variant daughter cells, one 

becoming an early post-mitotic neuron being ganglion, cone or horizontal in 

fate, whilst the other replenishes the progenitor pool and retains its mother’s 

potency. This mode of division lasts a short time. However, in larger 

mammals it can be a prolonged process before the later neurons are born 

(LaVail et al., 1991). Once early RGCs are generated, they commence 

differentiation into mature ganglion morphologies by developing radial 

extensions towards the inner basal layer. These initially act to anchor the cell 

body into the inner lamina, where they then send extensive axonal 

outgrowths adjacent to the progenitor end feet, directed towards the future 

optic nerve (Hinds and Hinds, 1974). Late progenitors produce the late-born 

post-mitotic neurons, as well as the glial population. The late progenitors are 

similar in their phenotypes to young Müller glia, which retain an elongated  
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Figure 1.1:  Eye field specification and retinogenesis diagrams. 

A) Eye field determination (blue) from the neural plate B) Following 
neuralation and eye field specification, the two retinal territories 
separate. C) Evagination of retinal territories, creating optic vesicles 
with neural retina (NR), RPE and optic stalk. D) mature organisation 
of the ocular tissues and neural retina containing the ganglion cell 
layer (GCL), inner nuclear layer (INL), inner plexiform layer (IPL), 
outer nuclear layer (ONL), and optic nerve (ON) (Adapted from 
Andreazzoli, 2009).  
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bipolar morphology. They also produce late born bipolar and amacrine cells, 

as well as provide the solid scaffold which neurons use to travel towards their 

final destinations within the growing neuroepithelium (Meller and Tetzlaff, 

1976, Reichenbach et al., 1994a, Reichenbach et al., 1994b). Müller glia also 

facilitate the outgrowth of ganglion cell dendrites into the inner plexiform 

layer (Bauch et al., 1998), in order to create synapses with other proximal 

neurons. This is a very similar process utilised by other neural retinal cells 

when developing interlinking signalling networks, such as those observed 

between bipolar cells and both populations of photoreceptors. Müller glia 

guide the cells during late retinogenesis, but also ensure the formation of 

synapses between neurons born both early and late. Once migration and 

proliferation has concluded, the two plexiform-synaptic layers are formed. 

These separate the three retinal nuclear layers to create the final retinal 

mosaic.  

1.1.1. Transcriptional regulators of retinal progenitors 

The signalling and molecular controls imposed on retinogenesis have in part 

been attributed to two synergistic paths, one which down-regulates the 

expression of factors that promote differentiation, whilst the other acting to 

promote multipotency and proliferation. Together these mechanisms work to 

maintain a pool of self-renewing and undifferentiated cells during 

organogenesis. Transcription factors are proteins that act in a sequential 

manner to control the maintenance of adult tissue or the development of 

embryonic tissues. Pax6 is a paired homeobox transcription factor that has 

been termed a “master controller” of eye development, it has been shown to 

regulate the proliferative rate of early progenitors during eye development, 

ensuring enough cells are created to satisfy the cell numbers required for 

retinogenesis. Knockout Pax6 murine models only produce amacrine cells 

following organogenesis, demonstrating the vital role that Pax6 has 

(Marquardt et al., 2001) in retinal development.   
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Sex determining region Y (SRY)-box 2 (Sox2), is another transcription factor 

that regulates early retinal progenitors (Bhatia et al., 2011b) and appears to 

have a direct positive action on the Notch signalling pathway and its 

downstream target Hairy and enhancer of split-1 (Hes1) (Taranova et al., 

2006). Its constitutive activation causes suppression of genes that induce cell 

commitment down a neural lineage, preventing proliferation and self-renewal.  

Notch signalling demonstrates how the microenvironment can be employed 

to alter the fate of different sub-sets of cells within a population of potent 

cells. Increasing the cellular expression of the Notch antagonist Delta, 

progenitors can self-induce differentiation which represses their internal 

Notch signalling, creating a negative feedback loop for their own production. 

This hinders the triggering of the signalling cascade, and in this way can 

commit a population of potent cells to mature (Andreazzoli, 2009). 

Furthermore, Notch signalling has demonstrated a control over apical-basal 

spatial differentiation in both zebrafish and mice, where cells born from 

progenitors within the basal region will become post-mitotic and undergo 

symmetrical division. In contrast, those born proximal to the apical domain 

will undergo asymmetric division, where one daughter cell will maintain its 

Notch signalling and retain a potent ability (Del Bene et al., 2008).  

It has been shown recently that some molecules can intrinsically monitor and 

alter the phenotypes of retinal progenitors. These are known as micro RNAs, 

which can control the extent of translation and/or the degree of proteomic 

expression within a plastic retinal population (Slack et al., 2000, Moss et al., 

1997). These agents have been shown to be involved in layer formation, 

apoptosis and the timing of cellular maturation. 

Müller cells give rise to rod progenitors during normal development in the 

zebrafish. However in dystrophic retina, Müller glia are able to de-

differentiate, regenerate and repopulate injured retina (Bernardos et al., 

2007). This was first observed in lower vertebrates and amphibians, but 
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more recent studies have identified this regenerative potential in mammalian 

species (Fischer and Reh, 2001, Fischer and Reh, 2003). Rat retinal 

progenitors have been isolated and incubated under in vitro conditions and it 

has been suggested that their over expression of Notch1 and Hes1 appears 

to induce generation of Müller glia (Blackshaw et al., 2004). Murine models 

transplanted with activated Müller glia due to injury, have demonstrated the 

capacity to produce neurons of all retinal laminations which is attributed to 

the alteration of their Notch1 profile (Das et al., 2006). These findings 

suggest that Müller glia within mammals, do retain some stem cell 

characteristics, and appear to react under the guidance of the Notch 

signalling pathway. Understanding the mechanisms and factors implicated in 

retinogenesis may aid in the design of novel strategies to target retinal 

degenerations.  

1.2. Retinal Degenerative Diseases 

Retinal degeneration is a feature of diseases that affect the posterior 

segment of the eye specifically the retina and choroid. Degeneration of the 

retina leads to neuronal loss and is the predominant cause underlying visual 

loss (Figure 1.2). The eye, in addition to the highly organised system of 

neurons, also houses a complex network of vasculature. Problems within the 

vasculature may lead to leakage or ischaemia, whilst neuropathies lead to 

progressive neuronal atrophy. Loss of vision generally involves an 

abnormality in either or both of these networks.  

Based on the estimated figures released by the World health organisation in 

2010 (Pascolini and Mariotti, 2012), 284 million people are considered 

visually impaired, with over 39.3 million being completely blind. Retinal 

degeneration accounts for 14% of the world’s blind population with 51% due 

to cataract. In developed countries such as the United Kingdom, where 

blindness caused by cataract is no longer a main problem, retinal 

degenerative diseases, such as glaucoma, diabetic retinopathy and age-  
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Figure 1.2: Retinal structures affected by the common causes of retina- 
associated visual loss and their clinical presentation. Glaucoma occurs 
as a consequence of retinal ganglion cell degeneration, Retinitis Pigmentosa 
(RP) is a combination of genetic mutations leading to malfunctions within the 
photoreceptors and retinal pigment epithelium (RPE), Age-related Macular 
Degeneration (AMD) is caused by the abnormalities of the RPE and choroid 
leading to secondary photoreceptor degeneration and Diabetic Retinopathy is 
caused by vascular leakage and retinal ischaemia.   
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related macular degeneration (AMD) are significantly more prominent. At 

present pharmacological interventions used to treat these disorders are 

aimed at controlling their progression, but in many cases, progression cannot 

be halted and patients may go on to develop total and permanent visual loss.    

Diabetic retinopathy (DR) is a condition caused by complications of either 

poorly controlled or a lengthy duration of diabetes mellitus. Hyperglycaemia 

is associated with pericyte loss in the retinal vasculature (Chistiakov, 2011). 

This leads to thickening of the connective tissue, causing retinal vessels to 

become increasingly permeable resulting in localised vascular leakage 

(Hudson, 1996, Wilkinson et al., 2003). As the blood supply becomes more 

restricted retinal ischaemia develops and may be associated with secondary 

neural degeneration as well leading to later sequelae such as 

neovascularisation, haemorrhage and tractional retinal detachment.  

AMD is a leading cause of irreversible blindness that first affects the retinal 

pigmented epithelium (RPE). The ageing process within RPE layer appears 

to trigger a cascade of events that results in neural degeneration. Atrophy of 

RPE manifests in the eventual depletion of photoreceptors and finally loss of 

visual acuity (de Jong, 2006). Lipid containing lesions, known as drusen, are 

deposited between the choroid and RPE at the posterior pole, and are one of 

the earliest manifestations of the disease. Damage is focused on the macula 

region and therefore diminishes the central field of vision. In dry AMD the 

onset is of slow progression, but in wet AMD, the exudative form of the 

disease, the progression may be rapid with sudden and devastating visual 

impairment.  

Primary retinal degenerative diseases include congenital defects that affect 

the development and maturation of the neural retina itself. Retinitis 

Pigmentosa (RP) is usully an inherited condition leading to photoreceptor 

degeneration affecting the rods more than cones and is of a progressive 

nature. It has diverse modes of inheritance where the photoreceptors 
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deteriorate, coupled with secondary degeneration of the RPE (Berson, 

2007). Other congenital defects that lead to macular degeneration and 

neuronal loss are Stargardt’s disease (Kapadia, 2000) and Leber’s 

Congenital Amaurosis (Maguire et al., 2008). All these conditions are 

associated with progressive visual loss with no proven treatments currently 

available. 

1.3. Glaucoma 

Glaucoma is characterised by a progressive optic neuropathy associated 

with loss of RGCs within the inner retina. It is the leading cause of blindness 

in the world after cataract, accounting for 8% of the total blind population. 

This neuropathy is commonly associated with increased intraocular pressure 

(IOP) which results in atrophy of RGCs and their axons, together with the 

clinical observation of optic nerve head cupping (Levin, 2005, Singh, 2005). 

RGCs have long axonal processes which converge collectively to form the 

optic nerve. The optic nerve serves as the nerve channel that relays sensory 

information gathered by the eye to the brain. It acts by transducing the 

pattern of electrical impulses collected within the retina to the visual cortex. 

Generally there is a ratio of 100 cones and rods transmitting visual data to 

one RGC depending on the retinal region. Hence, RGC death or damage 

can lead to loss of vision, if prolonged, to complete blindness.  

The mechanisms which lead to the onset of glaucoma include cell death 

within the ganglion cell population, which ultimately impacts on the complex 

network of the neural retina as well as the efficiency of phototransduction to 

the visual cortex. Peripheral vision is lost initially and complete blindness can 

ensue if not treated. Treatments used to reduce IOP and arrest progression 

of the disease are both medical and surgical. Medical treatments currently 

target the trabecular meshwork (TM) or the ciliary body. These act by 

increasing outflow mechanisms of the TM and reducing aqueous humour 

production in order to reduce IOP, such as Lumigan. Surgical intervention is 
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used when medical treatments are no longer effective and involve laser 

treatment of the TM to increase aqueous outflow or filtration procedures to 

divert the aqueous humour into the subconjunctival space. Evidence 

suggests that patients that have advanced glaucoma with extensive nerve 

fibre degeneration of greater than 90% are still able to perform tasks to look 

after themselves and maintain a reasonable quality of life (Alward, 1999). 

This suggests that 1% of functional ganglion axons are able to retain 

sufficient central vision and can be the difference between being blind and 

being able to perform day to day tasks.  

1.4. Potential of cell-based therapies for Glaucoma 

In order to develop cell based therapies for retinal degenerations, anatomical 

constrictions need to be considered. Studies have mainly concentrated on 

RPE and photoreceptor delivery, due to the accessibility of this region for 

transplantation. Sub-retinal delivery of cells for RPE or photoreceptor disease 

are not dependent upon migration into the neural retina and y do not need to 

form neurite outgrowths for synaptic connections. Hence direct injection 

adjacent to the host RPE layer delivers the cells to their site of activity and 

need. However, cellular transplantation for inner retinal disease faces 

different obstacles compared to photoreceptor or RPE delivery.  

Tissue engineering is required in order to ensure maximum cellular 

integration of transplanted cells within the inner retina when considering cell 

replacement therapies for. Intravitreal injection of cells into the rat eye does 

appear to ensure adequate therapeutic delivery of cells into the inner retina 

(Bull et al., 2011, Johnson et al., 2009, Singhal et al., 2012). However, this 

approach of cellular transplantation onto the inner retinal surface using 

intravitreal injection into larger mammalian eyes is likely to be less 

successful. Rodents have a comparatively large lens; occupying 

approximately over half of the intraocular volume, compared to larger 

mammals, including humans (Hughes, 1979). It is therefore possible that the 
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presence of a large lens in rodents may serve as a scaffold to maintain 

cellular orientation of transplanted cells onto the retina. On this basis, cellular 

scaffolds have been proposed for use to physically support transplanted cells 

onto the retina. The use of scaffolds has also been investigated for non-stem 

cell derived RPE grafting (Falkner-Radler et al., 2011).   

Cellular environments are crucial to the development and growth of cells and 

can direct maturation and differentiation. Hence transplanting cells into 

dystrophic retinal tissue may hinder the regenerative capacity of the cells, 

within its diseased architecture. The extent of integration undergone by 

transplanted stem cells appears to depend on the state of cellular 

maturation. This has been demonstrated by the ability of grafted cells to 

integrate more efficiently when differentiated (Ong and da Cruz, 2012, 

Tibbetts et al., 2012, Stern and Temple, 2011, MacLaren et al., 2006). This 

indicates that pre-differentiation of stem cell populations would be a pre-

requisite for optimal integration and therapeutic efficacy. 

 

Cellular therapies targeted for glaucoma would aim to differentiate cells 

towards an RGC fate. Stem cell therapies for this group of neurons may also 

intend to regenerate the optic nerve itself, which is a far more challenging 

objective. There are five main subdivisions of RGCs; midget, parasol, 

bistratified, photosensitive and finally a group of ganglions cells that are 

involved in fast eye movements.  

When considering cell replacement of RGCs the mode of delivery is pivotal 

as it is important that transplanted cells are able to move into the ganglion 

cell layer and are able to migrate within it. This would ensure optimal 

integration into host tissue, maximising the degree of potential cell 

replacement. Following integration within the inner retina, cells would also 

need to form synaptic connections with the host tissue. Synapse formation 

within the ganglion cell layer itself, as well as within the inner plexiform layer 
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is essential for true RGC function. In addition in order to regenerate the optic 

nerve, cells face the immense challenge of creating long neurite processes 

that must migrate towards the lateral geniculate nucleus of the host brain. 

These steps would be required for fulfilment of adequate cell replacement 

therapies and to date have not all been achieved.  

The enhancement of RGC function observed after stem cell transplantation 

in experimental glaucoma may be due to the secretion of neurotrophic 

factors by the transplanted cells. This therapeutic response is seen across 

the whole central nervous system when stem cells are transplanted, and 

potentially constitute another avenue for cell based therapies (De Feo et al., 

2012).  

Stem cells derived from the bone marrow have been investigated for possible 

use in cell based therapies for glaucoma. Human mesenchymal stem cells 

(MSCs) have been injected into the vitreous of optic nerve axotomised rats 

(Johnson et al., 2010) and have proved to significantly reduced ganglion cell 

death. Ganglion cell survival was further enhanced by inducing the cells to 

express neurotrophic factors (NTFs). Similar observations were seen with 

human MSCs in another rat model of glaucoma (Levkovitch-Verbin et al., 

2010). In this instance IOP was increased using laser to scar the TM in order 

to reduce aqueous outflow. The MSCs rescued the retinal ganglions cells 

from further axonal damage and were also identified as releasing NTFs 

within the degenerative retinal environment. These studies however did not 

show improvement in optic nerve atrophy or cupping. Another bone marrow 

derived MSC population; with extensive stromal phenotype, were 

transplanted into glaucomatous Wistar rats. This model was achieved by 

cautery of the episcleral veins. Transplanted cells did not integrate within the 

host ganglion layer but instead lined along the inner limiting membrane. The 

cells survived for the duration of the experiment and expressed high levels of 

NTFs. Higher levels of ganglion cell survival were observed within the 
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injected glaucomatous eyes compared to their controls of increased IOPs 

(Levkovitch-Verbin et al., 2010). 

Multipotent adult stem cells have also been proposed as a tool for retinal 

ganglion cell regeneration. Recent work has demonstrated that adult human 

Müller stem cells have the ability to restore RGC function in a rodent model 

of glaucoma. This stem cell population was able to refine their gene 

expression pattern to that of a ganglion cell precursor invitro prior to 

transplantation. Functional data within this rat model of glaucoma consisting 

of ganglion cell depletion, has demonstrated the ability of these cells to 

partially restore ganglion cell function (Singhal et al., 2012). An alternative 

adult cell population used in experimental studies to treat glaucoma-like 

disease is the olfactory ensheathing cells (OECs), isolated from rat cadaveric 

nasal tissue. These cells when injected into eyes with optic nerve transection 

had a neuroprotective effect, which appears to be mediated by the secretion 

of Brain-derived neurotrophic factor (BDNF) (Li et al., 2003). 

Debates about the pathological progression and cause of glaucoma have led 

to development of different experimental models. This has built controversy 

on the extent of rescue delivered by these cell therapies. Methods for 

gathering data of ganglion cell survival and optic nerve protection are vast 

and researchers in this field use different outcome measures, including 

ganglion cell numbers, optic nerve head cupping, pattern electroretinograms 

and scotopic negative threshold responses. On this basis, to avoid variations 

in the analysis of stem cell uses, standardised methods need to be 

employed. Specifically when assessing the real functional benefit provided by 

cell therapies for glaucoma. 

Replacing or improving the health of the resident RGCs, even by a small 

proportion can have a large impact on a patient’s quality of life. Replacing 

such a low number of the RGCs is a simpler task than repopulating the whole 

ganglion cell layer and would be a significant advance for those who are 
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afflicted with advanced glaucoma. Glaucoma patients may potentially benefit 

from the repopulation of small areas of the central retina, which could 

potentially improve the range of tasks the patients could perform. This 

assumption may require the combination of stem cells therapy and tissue 

engineering.    

1.5. Stem Cells  

Stem cells are able to maintain an undifferentiated state as well as having 

the ability to continuously divide and self-renew.  These cells can produce 

daughter cells that can commit to lineages of a variety of cell types, and 

therefore have the potential to regenerate any type of tissue.  

Stem cells taken from different mature or immature tissues represent cells 

with different competencies and plasticity, based upon their development, 

source and birth. Cells taken from adult tissue that possess the stem cell 

attribute of self-renewal and ability to maintain their population, are able to 

re-enter the cell cycle, but are not always capable of generating cells from all 

the primary embryonic tissues.  

Mammalian stem cells can be sourced from either embryos or post natal 

tissues. Post natal stem cells include cells isolated from infant or adult bone 

marrow and visceral tissues.  Therefore it is conceivable that cell based 

therapies could provide a viable option for patients facing terminal vision 

loss. 

1.5.1. Embryonic stem cells 

Embryonic stem cells (ESCs) derive from the internal cells of the developing 

embryo at the blastocyst stage. These cells can be taken from the inner cell  
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Figure 1.3: A sub-population of Müller glia from adult human post 
mortem retinal tissue express markers of neural stem cells in vitro. 
Müller stem cells in culture express (A) the intermediate filament nestin, 
a marker of neural stem cells, (B) SOX2 which is a marker of all neural 
stem cells and including those of the retina, and (C) the early retinal 
progenitor marker CHX10. (D) These cells can be grown indefinitely 
and form neurospheres of Nestin positive cells. Following culture under 
differentiating conditions, they express neural morphology and markers 
of various retinal neurons (Figure adapted from Bhatia et al., 2010 and 
Lawrence et al., 2007)  
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mass (ICM) and exhibit the capacity to develop into all mature cells types 

present within an adult (Evans and Kaufman, 1981). This pluripotent nature 

is coupled with the ability to continuously proliferate, for which they can 

theoretically be made to propagate infinitively in vitro. This poses an 

attractive source of cells for cell-based therapies, as ESCs are able to adapt 

their morphology and phenotype in vitro in order to generate all adult cell 

types upon specific conditions in culture. As such, this led to the conclusion 

that these cells would be able to differentiate into specific cell lineages, using 

well defined external factors. Such lineages have included the production of 

hepatocytes (Watt and Forrester, 2006), retinal pigmented epithelium (Hirano 

et al., 2003), cardiomyocytes (Zhang et al., 2002), neurons (Bibel et al., 

2004) and glia (Vadivelu et al., 2005). Human ESCs (hESCs) have also 

shown the ability to differentiate into photoreceptor progenitors, mature 

photoreceptors and RPE (Lamba et al., 2009, Idelson et al., 2009), 

determined by their pattern of gene expression. Transplantation of RPE 

differentiated cells into a rodent model of photoreceptor depletion, was 

shown to induce functional improvement in response to light stimuli in vivo 

(Lamba et al., 2009). Although ESCs can potentially generate a multitude of 

cell types, the ethical restraints and the use of allogeneic material is still 

being deliberated. The main moral argument against this type of therapy lies 

with the use of embryos as a source of cells. Like induced pluripotent cells 

(iPS), ESCs have the ability to over proliferate under standard cultural  

protocols, and to form teratomas (Hentze et al., 2009). Classification and 

validation of this stem cell source still requires many investigations before 

designing cell based therapies for retinal degenerations.     

1.5.2. Induced pluripotent stem cells 

Within the last 5 years, a new group of pluripotent stem cells has been 

generated in vitro; these cells are known as induced pluripotent stem (iPS) 

cells. These originate from terminally differentiated somatic cells that have 
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undergone genetic reprogramming, arbitrated by either vector or non-vector 

means. Keratinocytes or fibroblasts from skin biopsies, are coaxed into 

continuously expressing a combination of different transcription factors; 

Octamer 3/4, Oct4, cellular myelocytomatosis oncogene, c-Myc, Krüppel-like 

factor 4, Klf4 and Sox2. Alternatively, they can be induced by only four 

factors Oct4, Sox2, Nanog and Lin28 (Takahashi and Yamanaka, 2006, 

Okita et al., 2007). Generation of these “artificial stem cells” remove some of 

the controversy surrounding the use of embryonic stem cells as they can be 

engineered from the patient’s own cells.  The use of these cells may also 

limit some of the difficulties found when harvesting tissue-specific adult stem 

cells, or when using allogeneic donor strategies. Hence, iPS cells would 

remove the restraint of the use of immunosuppressive drugs to maintain the 

survival of non-autologous transplanted cells. iPS cell therapy potentially can 

be optimised to expand cells of a required lineage under standardised 

protocols using exogenous factors, such as mitogens and basement 

proteins.  

iPS cells like embryonic stem cells are pluripotent and harbour the capacity 

to produce a variety of cell types spontaneously. However, due to the 

methods used to generate these cells, iPS cells may not be proved safe for 

transplantation. This is due to the risks faced when transforming these cells, 

as inducing the cells to up-regulate oncogenes has been shown to promote 

teratoma formation and the onset of uncontrollable proliferation. Ex vivo 

teratomas produced from iPS cultures have been shown to contain normal 

tissues of all three embryonic germ layers in an unorganised, sporadic 

pattern. Up-regulation of c-Myc has been shown to encourage the 

establishment of proliferation at an abnormal rate. Due to the increased rate 

of cell cycling there is an increased possibility of random genomic integration 

of these genes following transduction which can lead to oncogenesis and 

malignancy (Nakagawa et al., 2008). Improving methods of reprogramming 

have partly reduced the risk of promoting over proliferation. In addition, 
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reduction in the number of reprogramming genes used, as well as the 

regimes undertaken to induce pluripotency, has minimised the incidence of 

teratoma formation. Alternative induction methods have included the use of 

non-vector or -viral mediated transduction; whether by non-integrating gene 

processes or small molecules (Okita et al., 2008). However, to date the 

methods have not yielded complete success when eradicating the risk of 

inducing severe genomic alterations and unwanted cellular division. 

In relation to the application of iPS cells for retinal therapies, a type of cell 

that can be spontaneously produced using iPS cells are RPE cells, 

characterised by pigment production and atypical tight cell-cell interactions 

accompanied by expression of RPE markers (Carr et al., 2009). Alternative, 

differentiating regimes have also produced neural and glial-like cells (Dimos 

et al., 2008, Tokumoto et al., 2010, Jang et al., 2010). 

1.6. Adult tissue-derived stem cells 

Adult stem cells are found within most mature tissues where they are thought 

to repair and maintain tissues of the body. Examples of these cells are those 

found within the crypts of Lieberkuhn in the ileum (Al-Dewachi et al., 1979), 

and the Limbus within the ocular surface of the cornea (Thoft et al., 1989). 

Cell culture of adult stem cells can develop into finite lineages that can 

potentially be used to replenish specific cell niches such as haematopoietic, 

nerve or muscle. Although adult stem cells are multipotent, their function is 

generally limited to their location when induced to differentiate. Retinal stem 

cells or progenitors isolated from the adult or foetal human ocular tissue have 

been explored as a possible source for stem cell therapies directed for retinal 

degenerations (Lawrence et al., 2007, Klassen et al., 2004). They retain the 

ability to produce multiple cell types contained within the retina. It had been 

previously shown that the tissue from which retinal stem-like cells originate is 

the early post natal ciliary margin (Xu et al., 2007) within the xenopus and 

zebrafish. Tropepe et al. later showed that in mice these cells were contained 
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within a similar region to the amphibian ciliary marginal zone, and had the 

innate ability to differentiate into a range of retinal neurons as well as, to 

lesser extent, RPE cells (Tropepe et al., 2000). However, more recent 

studies have identified stem cells within the neural retina itself, which has 

been shown to be a sub-population of Müller glia (Bhatia et al., 2009, Bhatia 

et al., 2010, Bhatia et al., 2011a, Lawrence et al., 2007).  

1.6.1. Müller stem cells 

Müller cells are the main glial cells of the retina and are located throughout 

its whole structure. They provide biochemical support to the neurons and 

blood vessels of the retina, as well as structural support. The cell bodies of 

Müller glia are found within the inner nuclear layer, with cytoplasmic 

projections extending laterally and transversely throughout this layer, 

enabling interactions between themselves and other neural cell bodies.  

These interactions ensure that Müller cells can participate in neural 

homeostasis within the retinal microenvironment. Müller cells are 

characterised by the expression of epidermal growth factor receptor; EGF-R, 

glutamine synthetase, vimentin and cellular retinaldehyde binding protein; 

CRALBP.   

Within the developing mammalian adult brain, radial glia have been found to 

have the ability to repopulate both the neural cell populations as well as the 

glial population itself (Merkle et al., 2004). Other pools of glia within the CNS 

have also shown neural stem cell traits. Bergmann glia housed in the 

cerebellum of adult mice express the neural stem cell markers Sox1 and 

Sox2 (Sottile et al., 2006).  

 

Müller glial stem cells could provide a possible tool for the design of cell 

based therapies to regenerate the human retina (Lawrence et al., 2007). 

Müller stem cells have been shown to regenerate the retina after damage in 

various species, including post natal chick (Fischer and Reh, 2001, Fischer 
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and Reh, 2000), rodents (Das et al., 2006) and zebrafish (Yurco and 

Cameron, 2005, 2012). It had been thought that these innate characteristics 

had not been conserved within adult humans, despite the retina harbouring 

this cell type. Recent evidence in our laboratory has shown that these cells 

upon transplantation can partially restore retinal function in rat models of 

retinal degeneration, including neurotoxic damage to the ganglion cell layer 

(Singhal et al., 2012).  

Like most adult stem cells, human Müller stem cells appear to be multipotent 

and therefore tissue specific and restricted to producing different retinal cell 

subtypes. They express Sox2, Pax6, Chx10 and Notch1 (Lawrence et al., 

2007, Bhatia et al., 2011b). Immortalised cells cultured in vitro are able to 

differentiate into a variety of retinal neurons, which in turn express distinctive 

markers. These include; peripherin, a marker of photoreceptors, Protein 

Kinase, a marker of bipolar cells, calretinin, a marker of both amacrine and 

horizontal cells along with Brn3b; an early marker of committed RGC 

precursors (Lawrence et al., 2007, Singhal et al., 2012, Bhatia et al., 2011b).  

These cells are also able to form neurospheres that express Nestin, a protein 

marker of early stem cell differentiation (Figure 1.3). The formation of 

neurospheres and subsequent ability to differentiate in vitro is achieved using 

bioactive growth factors such as basic fibroblast growth factor (bFGF), 

epithelium growth factor (EGF) or insulin.   

Sourcing human Müller stem cells is a relatively easy procedure as they can 

be obtained from cadaveric donor tissues and can be induced to undergo 

extensive expansion in vitro. Use of these cells for human therapies would 

eradicate the ethical and moral objections to embryonic stem cell based 

therapies and merits investigations. 



48 
 

1.6.1.1. Differentiation of Müller stem cells into retinal ganglion 

cells 

Committing the Müller stem cell population to a RGC fate involves inhibiting 

the Notch signalling pathway, one of the early regulatory signalling cascades 

that prevent specification of both early and late retinal progenitors 

(Andreazzoli, 2009). This pathway involves a family of transmembrane 

protein receptors that act to suppress differentiation of stem cells and 

maintain a constant level of proliferation. When a Notch ligand binds the 

receptor, an intracellular domain of the protein activates and triggers a 

cascade reaction (Jadhav et al., 2006). By upregulating its target genes, the 

pathway causes inhibition of differentiation by down regulating factors that 

encourage neural development. Progenitors and stem cells maintain their 

pluripotent state during development by maintaining this signalling pathway 

active. Hence in order to differentiate, signalling via this pathway must be 

prevented.  

Human Müller stem cells treated with a Notch inhibitor undergo a significant 

adaptation to a proneural state. When this state is exploited by the 

subsequent addition of bFGF, it causes the cells to downregulate their  gene 

expression of markers of Müller cells and convert to the expression of 

markers an early RGC precursor, demonstrating their ability to revert back to 

the mitotic phase and differentiate towards a RGC phenotype (Singhal et al., 

2012).  

Over the last ten years investigators have found another group of 

translational modulators, in the form of microRNAs (miRNA), active during 

development and adulthood. microRNAs are short sequences of RNA that 

are simultaneously generated alongside their messenger RNA (mRNA). 

They function by suppressing the translation of proteins by steric hindrance 

or degradation of the mRNA preventing translation. miRNAs are involved in 

the regulation of the downstream targets of Notch, and have also been 
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targeted themselves by Notch, preventing differentiation (Garzia et al., 2009). 

Investigating their capacity within Müller stem cells could potentially be used 

to promote differentiation of latent Müller glia within dystrophic retina, 

removing the need for invasive therapy of cellular scaffolds. 

1.6.2. Bone marrow derived stem cells 

The bone marrow houses a heterogeneous population of stem cells that 

perform specific duties. The two main subsets of stem cells present in the 

bone marrow are haematopoietic and mesenchymal stem cells. Use of 

autologous bone marrow cells eliminates the potential risk of allogenic 

transplantation, which in many cases necessitates lifelong 

immunosuppression. Haematopoietic stem cells (HSCs) are able to induce 

differentiation down various haematopoietic lineages giving rise to all the 

blood cells of the circulatory system, whilst maintaining a pool of blood stem 

cells and progenitors. Mesenchymal stem cells represent a population that 

exhibit large mononuclei and have the ability to adhere to plastic culture 

surfaces. These cells have also been retrieved from non-bone marrow 

sources derived from tissue originating from the mesoderm, such as adipose 

tissue, as well as non-mesoderm tissues including liver, umbilical cord, cord 

blood and placenta. MSCs possess cellular features typical of cells contained 

within both the stroma and mesenchyme. These are the connective tissues 

which surround the organs of the body. Whilst the stroma imparts structural 

support, the mesenchyme forms loosely around the organs and contains 

highly mobile cells. These stem cells have been shown to differentiate into a 

wide range of cells, displaying pluripotent ability (Shakhbazau et al., 2011, 

Chen et al., 2012, Khlusov et al., 2011). It was assumed that MSCs would 

exhibit only a multipotent capability, only differentiating into restricted 

lineages. However these cells are able to produce daughter cells that 

possess cellular attributes characteristic not only of the mesoderm, but also 

the ectoderm and endoderm germ layers. Bone marrow derived stem cells 
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demonstrate a potential pool of cells that can undergo multipotent 

differentiation for possible retinal degeneration applications.    

1.7. Retinal ganglion cell differentiation 

RGCs are the first cells generated during mammalian retinogenesis from the 

primary retinal neuroblasts, following initial formation of the optic cups from 

the neural plate at embryonic day (E) 8.0 (Young, 1985). The neuroblasts 

present then proliferate under the influence of Pax6 (Livesey and Cepko, 

2001, Marquardt et al., 2001). RGCs appear in the mouse at E11.5, when 

the stem cells begin to divide asymmetrically producing a progeny of 

daughter cells which have exited cell cycling (Young, 1985). These primary 

RGC precursors do not all develop into ganglion cells but this early 

specification begins within the temporal, central region of the young retina 

and spreads out to the anterior periphery (Hu and Easter, 1999). This 

primary proliferation is prompted by the secretion of Shh which follows a 

route to the outer regions of the retina and has been evidenced in zebrafish, 

in which it appears to be the main factor responsible for RGC specification. 

The next stage involves a refinement period of cell competence that 

determines their development; this comprises the expression of basic helix-

loop-helix (bHLH) transcription factors Ath5 and NeuroD at E13.5 in the 

mouse, that induce these precursors to commit to RGC fate (Brown et al., 

1998, Pennesi et al., 2003). In addition, inhibitors of the cell cycle; p27
Kip1 

and p57
Kip2

 are also expressed within these precursor cells, and are charged 

with hindering the activity of cyclin kinases (Dyer and Cepko, 2001). The 

exact combination of gene expressions that contribute to RGC precursor 

development does not appear to be completely defined due to the early birth 

of this population. The scenario may involve RGC precursor commitment 

being determined during early progenitor proliferation, where a progenitor 

competent in becoming any retinal cell decides to devote its lineage to a 

ganglion fate. Alternatively postmitotic cells become ganglion cells when all 
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the progenitor divisions have concluded. Despite this we see genes, 

consecutively involved in the tailoring of retinal cell genesis. Specifically for 

RGCs we find Pax6, Six3, Rx, Chx10 and the Notch pathway including the 

Ath5 and the Brn3 family (Mu and Klein, 2004, Marquardt et al., 2001). 

These factors determine the correct spatial patterning of the ganglion cell 

layer and ensure its networking organisation is correctly established.  

The Notch pathway prevents the expression of proneural genes and triggers 

the expression of an alternative set of bHLH factors; Hes1 and Hes5 which 

have been shown to target the Ath family for repression. Ath5 is essential for 

RGC production and alterations in its expression is manifested in changes in 

the amount of ganglion cells made during retinogenesis. Overexpression of 

Ath5 results in an excess of RGCs made at the expense of other neurons 

and glia in chick (Liu et al., 2001) and xenopus (Kanekar et al., 1997) retinae. 

Knock-out experiments in mice (Wang et al., 2001) and zebrafish (Kay et al., 

2001) for Ath5 homologs ended with the almost complete lack of RGCs and 

a surplus of both cones and amacrine cells. Though Ath5 expression is 

essential for RGC initiation and determination and all cells committed to a 

ganglion fate expressed Ath5, not all the Ath5-expressing cells become 

RGCs, suggesting the upstream roll of this bHLH in RGC specification as 

well as the presence of other influential cues involved in ganglion 

differentiation. Hence the over production of RGCs observed in knock-in 

studies indicates the creation of a larger cohort of proliferative progeny 

competent to generate RGCs.  

Downstream targets of Ath5 are the earliest determinant switches of RGC 

differentiation. The class IV POU domain transcription factor; Brn3b is similar 

to other transcription factors. Like Pax6, Brn3b has a bipartite DNA binding 

domain (Liu et al., 2000) and it has been reported that Brn3b expression is 

vital for RGC development and maturation. BRN3B knockout mice fail to 

produce a normal population of ganglion cells, losing 70% viability (Liu et al., 
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2000). Brn3b expression occurs rapidly, once the progenitors of the retina 

have exited the cell cycle and have committed to a RGC specification. Ath5 

proceeds the expression of Brn3b in competent ganglion cell progenitors, 

whilst Brn3b expression is exclusively found in post mitotic RGC precursors 

as well as mature ganglion cells (Gan et al., 1999). It is thought Ath5 

commences Brn3b expression, however its maintenance involves other cues 

once Ath5 production ceases, indicative of the presence of cofactors that lie 

between the two genes and may act to maintain Brn3b independently of 

Ath5, or in association. Apoptosis of ganglion cell progenitors coincides with 

a depression of BRN3B, indicating a close synergy between RGC maturation 

and BRN3B expression. 

Final differentiation entails the spatial localisation of the RGC and the 

development of functional axons, dendrites and synapses. This organisation 

requires genes able to orchestrate ion channel formation, axon guiding 

agents and synaptic neurotransmitters. Cells undergoing differentiation 

commit to migrate to the inner layer of the neuroepithelium and become 

polarised in morphology and send out axonal projections which ultimately 

converge together to from the optic nerve. 87 genes have been reported, 

which are under the regulation of Brn3b are the controllers of the final 

differentiation of RGC and are involved in their maturation and maintenance 

of function (Mu and Klein, 2004). Brn3b also has a negative impact on Shh 

secretion and acts to prevent abnormal amounts of proliferation once 

maturation has commenced (Zhang and Yang, 2001). The transcriptional 

control of ganglion cells gives an insight into how stem cell differentiation 

may be influenced to follow a neural lineage, as well as how control of the 

transcription factors by epigenetic targeting may be induced.    

1.8. Tissue Engineering for Stem Cell Transplantation into the Eye 

The eye is considered to be an extension of the brain, and as such is part of 

the central nervous system (CNS). Damage within the CNS is irreversible 
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due to the lack of regenerative cells and the non-permissive architecture of 

these tissues (Jacobs and Fehlings, 2003). Regeneration of the retina may 

not be possible, but studies are aimed at improving function by either 

replacing damaged cells or promoting survival and regeneration of the 

remaining cells. To this effect, cell delivery to replace neural populations, 

would need to achieve differentiation, integration and survival with the host 

tissue (Mason and Dunnill, 2008). Encouraging residual dystrophic cells to 

survive and maintain their inherent functionality may also be achieved by 

delivery of cells that release trophic factors, as well as injections of 

therapeutic drugs, genes or factors. Tissue engineering aims to enhance, 

restore or maintain tissue function and involves the application of various 

disciplines in the biological, engineering and medical fields. 

Natural polymers are favoured by tissue engineers due to their inherent 

biocompatibility with the body, and have been extensively employed clinically 

to create in vivo substrates, such as lubricants, dermal and wound sealants, 

surgical sponges and dermal fillers (Johl and Burgett, 2006, Lapcik et al., 

1998). Cell delivery by such polymers has been studied using astrocytes, 

Schwann cells and neural progenitors, and these potentially can be used for 

retinal cell transplantation.  

Collagens are an important source of natural polymers and are a family of 

ubiquitous proteins, which constitute a significant proportion of the basement 

membrane and support tissue structures. Type I collagen is used currently in 

the clinic in the form of surgical sponges for swabbing and wound dressings, 

and has also been used for drug delivery in this form (Bai et al., 2010). Both 

collagen hydrogels and electrospun matrices have also been studied for 

clinical application.  Since both collagen gels and scaffolds are inherently 

weak, similar to other natural polymers following extraction processes, they 

require structural reinforcement (Matthews et al., 2002, Pieper et al., 2002). 

Chemical crosslinkers are currently the prime candidate used to improve 



54 
 

durability and give strength to such matrices. Glutaraldehyde (GTA) is an 

aldehyde derivative used in laboratory settings as a fixative which has the 

ability to crosslink cellular proteins, and as such is used to strengthen 

collagen matrices. However the use of such chemicals is cytotoxic when 

implanted in vivo, due to the release of residual reactive moieties from GTA. 

In addition, to chemical crosslinkers, non-toxic crosslinking catalysts are also 

used to enhance collagen robustness as well as other natural polymers 

(Macaya and Spector, 2012). Genipin is sourced from gardenia plants and is 

an aglycone (non-saccharide sugar component) which constitutes a natural 

protein crosslinker that catalyses protein fibre coupling. Following 

crosslinking, collagen matrices have been studied for its factor loading 

capabilities where evidence demonstrated the ability of collagen being able 

to stably release ciliary neurotrophic factor (CNTF) to proximal rat neural 

stem cells, safeguarding their proliferation and survival, under culture 

conditions (Yang et al., 2010).  

An alternative source of natural material is hyaluronan (HA), which like 

collagen is found extensively in connective tissues and within cellular 

supportive matrices. It has an innate feature which enables cells to grow and 

proliferative in vivo as well as aiding wound healing processes (Pakulska et 

al., 2012). HA is intrinsically weak and unlike other natural polymers, it is 

unable to polymerise once it has been extracted from native tissues and is 

prone to digestion unless exhaustively crosslinked or blended with other 

polymers which impart strength to the mixture (Ji et al., 2006, Zheng Shu et 

al., 2004). One such example is the blending of methylcellulose and HA for 

gels containing bFGF and EGF for transplantation for spinal cord (Kang et 

al., 2009) and stroke (Cooke et al., 2011) degenerations. It was initially 

evident that in order to sustain factor loading of HA mixed matrices would 

require further modulation, as factors were seen to leach fully within 24 hours 

following loading. To sequester the factors suitably poly(lactic-co-glycolic 

acid (PLGA) nanoparticles were made to incorporate the factors which were 
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then included into the matrices, which improved the release profile of these 

factors (Baumann et al., 2009). 

Synthetic materials have also been proposed, and have generally been used 

in the past as co-polymers; however researchers are examining the potential 

of their standalone application for drug and cell delivery. The processing of 

such polymers gives researchers the opportunity to synthesise materials 

from the bottom up, where the features can be tailored for a distinct use. 

Both BDNF and NT-3 have been incorporated into synthetic materials 

composing of poly-(N-isopropylacrylamide) (PNIPAAm) with the addition of 

poly-(ethylene glycol) (PEG) functional groups. Constructs were found to 

release the two factors over a period of 30 days in vitro (Vernengo et al., 

2008). Poly-(lactic acid) (PLA) is usually used in biology as a co-polymer. 

Modification of its monomer sequence can be made to include agents such 

as NT-3, which can subsequently prolong its release for up to 14 days in 

murine models of spinal cord injury (SCI) (Piantino et al., 2006). Retinal 

progenitors have been cultured on synthetic PLA, and its derivatives (Tomita 

et al., 2005), polycaprolactone (PCL) (Sodha et al., 2011) and poly-(glycerol-

sebacate) (PGS) (Neeley et al., 2008) have been investigated for their 

potential to support cells for transplantation.  

Construct-tissue dynamics has been shown to be integral to the survival of 

grafted cells, integration into host tissue and prevention of necrosis of local 

cell populations. Preventing cellular aggregation of transplanted cells and 

encouraging cellular distribution on a tissues surface has been shown to 

promote cell survival and host integration (Pakulska et al., 2012). Whilst 

uniform distribution of grafted cells can favour survival of transplants, the 

presence of a cellular support which provides an adherent surface for grafted 

cells limits anoikis (a form of cell death) (Frisch and Francis, 1994, Frisch 

and Screaton, 2001) and suggests an advantage over cell suspension 

delivery.  
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An ideal engineered construct needs to have an in vitro 3D structure able to 

regulate and control cell function. Proteins of the basement membrane have 

been used as a 2D planar culture layers or in a 3D form, and this includes 

extracellular membrane proteins reconstituted from the basement 

membrane. These are aimed to support cell growth, attachment and 

differentiation. The extent to which uniform cellular integration occurs 

throughout the whole inner surface of the retina following transportation has 

so far been limited in our laboratory with an uneven distribution of 

transplanted cells observed upon injection of cell suspensions. Cellular 

scaffolds or nanostructures have been proposed to address this problem, 

whilst supporting the cells structurally and assisting in their delivery onto the 

damaged retina. Employing a cellular scaffold involves engineering a 

structure which has biocompatibility and bio mimicry.  

There is therefore the need to create a vehicle for cell delivery in order to 

regenerate the retinal ganglion cell population after degeneration, the major 

pathology of glaucoma. The creation of a suitable construct would provide a 

platform for uniform cellular distribution which would aim to promote host 

integration and cell survival. This project favoured the use of Collagen Type-I 

as a natural polymer, which has recently been modified by non-toxic 

processing involving physical crosslinking removing the need for using 

chemicals. Collagen scaffolds produced by plastic compression (PC) (Brown 

et al., 2005) can be produced that have a geometrical conformation 

resembling the in vivo dimensions of a basement membrane. Type-I 

Collagen is a readily sourced protein that can be tailored to build these 

matrices to provide biological support to cells. Stem cell transplantation 

studies to repair degenerated retina have not yet achieved adequate cellular 

distribution across the neural retina. This is partly attributed to the anatomical 

features of the retina and surrounding tissues that prevent optimal migration 

and integration of injected cells. There is therefore the need to develop 
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methods that can efficiently and safely deliver cells into the retina as a tool 

for cell based therapies to treat retinal disease. 
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1.9. Objectives of this thesis 

Based on the current knowledge within the field of stem cell biology and 

transplantation, and the need for the design of cell based therapies to treat 

end stage glaucoma, it is important to define parameters to ensure optimal 

differentiation of retinal ganglion cells (RGCs) from Müller stem cells, as well 

as to design appropriate methods to ensure widespread delivery of these 

cells into the RGC layer. To validate previous protocols used for RGC 

generation in vitro  this study investigated molecular mechanisms known to 

promote RGC differentiation during development. The project also aimed to 

develop collagen-based scaffolds for cellular delivery onto the retina in vitro 

and in vivo, and examined the interaction between Müller  stem cell-derived 

RGCs and the scaffolds. 

The following objectives were therefore formulated. 

1. To investigate downstream targets involved in the Notch signalling 

pathway that lead to differentiation of Müller stem cells into RGCs in 

vitro. This part of the study involved the examination of miRNA 

expression by cells undergoing Notch inhibition, as well as the 

determination of transcription factors controlled by Notch activation, 

and upregulation of known RGC markers. 

 

2. To develop protocols for the design of cellular scaffolds to facilitate 

uniform transplantation of RGCs onto the inner retina. This research 

involved the use of electrospinning protocols as well as compression 

methods to produce collagen scaffolds which could serve as supports 

for cell transplantation. Various crosslinking agents as well as their 

affect on cell viability, proliferation and differentiation were used in the 

study. 
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3. To determine the capacity of cellular scaffolds to support migration 

and integration of RGCS into the retina. This part of the study 

examined the ability of scaffolds to facilitate migration of RGCs onto 

the human retinal explants in vitro and onto rabbit retina in vivo.  
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Chapter 2: Changes in MicroRNA Expression 

during Retinal Ganglion Cell 

Differentiation of Müller Stem Cells 
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2.1. Müller Glia with stem cell characteristics in the adult retina 

Adult retinal stem cells have been identified within the mature human retina. 

Investigations into the features of this population have identified them as a 

population of Müller glia. These cells appear to remain quiescent within adult 

tissue and are unable to regenerate retina, however they constitute a 

population that has the potential for establishing cell-based therapies for 

retinal degenerations. To understand this capacity, a better understanding of 

the properties of retinal stem cells within the Müller population is required. 

RGCs are the first cells to be born in the retina, with Müller glia being 

generated last. In fish and amphibians Müller cells are able to repair retinal 

damage incurred even during adulthood (Bernardos et al., 2007). It is 

thought that the cohort of cells that possess the capacity to regenerate retinal 

tissue in these species are a population of late radial glial progenitors that 

appear to have retained their progenitor potential, and are able to re-enter 

the cell cycle (Walcott and Provis, 2003, Seigel et al., 1996, Das et al., 2006). 

They also retain their predecessors’ morphology of elongated bipolar-like 

structures, which during development aids with the migration of young 

neurons to their various retinal laminae (Meller and Tetzlaff, 1976). 

Retinogenesis involves two distinct histogenic periods, one involves early 

neuronal development and the second involves the generation of late born 

neurons and the glial population. Assuming that the radial glial progenitors 

are conserved within the mature Müller population, it could imply that these 

cells would be restricted in producing progeny born later during 

retinogenesis. However in fish and amphibians this is not the case. 

In response to injury, quiescent Müller stem cells in amphibians have the 

ability to undergo phenotypic adaptations to permit de-differentiation, 

controlled proliferation, migration to damaged lamina and differentiation into 

new neurons (Reh and Fischer, 2001, Ooto et al., 2004). Both fish and 

amphibian retinae can undergo neural growth through the proliferation of 
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Müller stem cells in the ciliary marginal zone (CMZ) (Mack et al., 1998), 

which is the junction at which the neural retina and ciliary body meet. Müller 

stem cells are also housed within the main body of the teleost fish retina and 

largely yield RGCs following damage, although the primary production of new 

cells is co-ordinated from the CMZ (Julian et al., 1998, Kassen et al., 2008). 

Amphibian retina can also undergo regeneration through trans-differentiation 

of their RPE (Raymond, 1991), as well as the stem cells of the CMZ (Umino 

and Saito, 2002). The outer nuclear layer (ONL) of the adult fish contains rod 

precursors able to respond to rod photoreceptor damage, and can stimulate 

proximal Müller stem cells to proliferate into photoreceptors and migrate into 

the ONL along the surface of non-plastic residual Müller glia (Reh and 

Levine, 1998, Morris et al., 2008, Otteson and Hitchcock, 2003). In zebrafish 

Müller cells express the “master controller” transcription factor Pax6, cone 

rod homeobox (CRX) and α1-tubulin (Fausett and Goldman, 2006, Fausett et 

al., 2008), indicative of the innate capacity of these cells to enable production 

of all retinal neurons in the post-natal period (Bernardos et al., 2007). Müller 

glia from zebrafish constitutively upregulate the expression of the basic helix-

helix (b-HLH) transcript achaete-scute homolog-1a (ash-1a), which is thought 

to assist in the transformation of dormant Müller stem cells into potent 

progenitors, encouraging a pro-neuronal, cell cycling state (Fausett et al., 

2008).  

Whilst adult cold blooded vertebrates demonstrate the innate ability to 

regenerate the neural retina, warm blooded animals show a restricted 

capacity, which in most cases ceases rapidly following birth. When damaged, 

the young chick retina has the ability for a cohort of Müller glia to alter their 

expression profile to that of a pro-neuronal state. This behaviour is mediated 

by the ash-1a homolog CASH-1, Pax6 and Chx10. These cells mainly 

generate other Müller cells with or without progenitor features, however a 

number of them are able to exit the cell cycle and differentiate into retinal 

neurons, demonstrating their regenerative capabilities (Fischer and Reh, 



63 
 

2001, Fischer and Reh, 2003). However this regenerative ability becomes 

less potent over time and decreases with increasing age. The anatomical 

region housing the majority of the progenitor-like cells diminishes over time, 

and is observed to regress to the more peripheral retinal domains.  

In vivo de-differentiation and proliferation of the latent Müller stem cell 

population can be induced by bFGF and insulin injections (Fischer et al., 

2002). Expression of NeuroD contributes to neuronal differentiation of chick 

Müller stem cells, but it is thought that the relatively low degree of glial to 

neuronal differentiation is due to the presence of pro-glial signalling mediated 

by bone morphogenetic proteins (BMPs) within injured retinal tissue (Fischer 

et al., 2004b, Fischer et al., 2004a). Notch is also a major contributory factor 

to the progenicity of Müller stem cells following injury. Its constitutive 

signalling maintains the proliferative and undifferentiated state of the Müller 

stem cell population, and also limits the extent of neuronal de-differentiation 

by Müller glia within the retina (Hayes et al., 2007). 

Mammalian retinae have also exhibited evidence of a restricted level of 

retinal regeneration, driven by a sub-population of Müller cells in early post-

natal life (Blackshaw et al., 2004). Both rat and murine retina have been 

shown to contain a cohort of Müller cells that express the homeodomain 

transcription factors Pax6 and Chx10 (Rowan and Cepko, 2004), with murine 

Müller cells directing their plasticity via their expression of Notch and  Nestin 

(Roesch et al., 2008). Various markers of neuronal development have been 

also found to be upregulated within rodent Müller stem cells following injury. 

The adult human retina also harbours a population of Müller cells that 

express proteins of early retinal progenitors such as, Sox2, Chx10 and Pax6, 

as well as markers of retinal glia and neurons (Bhatia et al., 2011b).  

The main pathways involved in co-ordinating Müller-derived retinal 

regeneration in mammalian retina have been identified as the Notch and 

Wnt/β-catenin signalling cascades (Das et al., 2006, Osakada et al., 2007). 
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Wnt3a promotes proliferation of Müller stem cells in murine models of 

photoreceptor deficiency, whilst in humans Notch-1 has been shown to play 

a role in maintaining cell cycling and an undifferentiated state in vitro. 

Inhibition of this pathway in human Müller stem cells has been shown to 

induce RGC differentiation (Singhal et al., 2012). 

2.1.1. The Notch pathway 

The Notch pathway has been shown to play a significant role within the 

development of the central nervous system. Since the Notch-1 pathway is an 

integral component of Müller stem cell differentiation, the understanding of 

how Notch controls RGC maturation is crucial in determining the extent of 

RGC development in vitro, as well as the mechanisms involved in such a 

process. 

The Notch pathway involves the constitutive signalling of a heterodimeric 

transmembrane receptor within stem cell populations, and is a highly 

conserved signalling mechanism observed in many species (Yu et al., 2008). 

This pathway mediates the maturation as well as the maintenance of stem 

cell niches, especially those involved in neurogenesis. The Notch receptor 

family of proteins span the plasma membrane in a characteristic single pass 

fashion where the extracellular domain, consisting of multiple EGF-like 

motifs, is involved in the ligand binding process (Faigle and Song, 2013) 

(Figure 2.1). There are four members of the Notch family, identified by the 

number of EGF repeat motifs. In Drosophila the protein receptor is activated 

by the binding of its extracellular domain by its ligand, either Serrate or Delta 

on adjacent cells (Louvi and Artavanis-Tsakonas, 2006). These ligands have 

either an excitatory or inhibitory mode of action, depending on the state and 

or maturation of neighbouring cells. Serrate inhibits the Notch cascade whilst 

Delta and its mammalian homologues, Jagged and Delta-like, activate the 

pathway (Stump et al., 2002). Following binding and activation, both the
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Figure 2.1: Processing and activation of Notch-1 by proteolytic 

cleavage. Upon binding with its ligands (Delta or Jagged) the Notch 

receptor is activated, both the intracellular (ICD) and extracellular domains 

of the receptor are cleaved. The ICD is released by the action of gamma 

secretase and translocates to the nucleus, where it initiates the 

transcription of Hes1 and Hes5, mediated by CSL proteins. Hes1 and 

Hes5 act as transcriptional repressors of pro-neural genes, attenuating 

neural differentiation. (Modified from Hakateyama and Kageyama, 2004, 

using Motifolio) 
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extracellular and intracellular domains undergo enzymatic cleavage. The 

ligand-bound extracellular domain is cleaved by the tumour necrosis factor 

alpha-converting enzyme (TACE) and is in turn endocytosed along with its 

ligand, into the ligand expressing cell. Subsequently the Notch intracellular 

domain (ICD) is also cleaved upon activation, mediated by the enzyme 

presenilin gamma secretase (Miele et al., 2006a, Miele et al., 2006b).  

Upon cleavage from the transmembrane receptor, the Notch ICD 

translocates to the nucleus where it interacts with a member of the 

CBF1/RBP-J kappa, Suppressor of Hairless, Lag-1 (CSL) transcription factor 

family. This association is thought to be mediated by the RBP-J kappa-

association molecule (RAM) of the Notch ICD (Miele et al., 2006a, Miele et 

al., 2006b, Okuyama et al., 2008, Deregowski et al., 2006). A number of 

genetic targets have been identified as housing CSL binding sites that 

propagate the Notch signalling cascade for cellular regulation. These include 

Hairy enhance of split-1 (Hes-1), NF-kB, Cyclin D1 and c-Myc. Some are 

present in all tissue types whilst others are limited to specific tissues 

(Okuyama et al., 2008, Miele and Osborne, 1999). 

Activation of the transcription of Hes1 and subsequently of Hes5 by the 

Notch ICD is followed by their interaction with the transcription repressor 

Groucho (Nagel and Preiss, 2011). This results in the suppression of 

transcription of downstream pro-neuronal genes, hindering differentiation 

during development (Hatakeyama et al., 2006, Das et al., 2005, Ohsawa and 

Kageyama, 2008). The activity of Notch in repressing neural development is 

also synchronised with continuous self-renewal, allowing stem cells to remain 

within the cell cycle. Cyclin D1 and CDK2 transcription factors are directly 

activated by Notch signalling, and when activated via CSL binding, their 

levels of mRNA have been shown to increase in neuroepithelial and cancer 

cells (Ronchini and Capobianco, 2001). Notch signalling plays a regulatory 

role in Müller glial differentiation and maintenance of the glial state (Nelson et 
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al., 2011, Nelson and Hyde, 2012). In addition, downregulation of Notch 

signalling in human Müller glia with stem cell characteristics has been shown 

to induce RGC differentiation (Singhal et al., 2012). 

2.1.2. The Role of the Notch-1 Pathway in Müller Stem Cells 

Ocular development encompasses a range of developmental processes 

including gliogenesis, neurogenesis and vascularisation in a conserved, well-

ordered manner.  

Notch 1 expression has been identified within the developing eye, with  

expression being located on the inner surface of the optic cup. During 

development Notch activity is down regulated once progenitors begin 

differentiation and maturation, which is followed by migration to their 

respective layers within the retina. Ganglion cells being the first to be born 

are the first population where Notch signalling is down regulated. This is an 

essential step for RGC maturation in both Chick and Xenopus retinae 

(Ohsawa and Kageyama, 2008). The loss of Notch activity and its 

downstream effector Hes1 favours an intrinsic establishment of pro-neural 

gene expression inducing differentiation. In terms of the RGC population, this 

involves the upregulation of the human gene ATOH7, as well as its murine 

equivalent Math5 and Mash1. Notch signalling within the initial progenitor 

pool prevents the onset of ganglion cell neurogenesis and aids the 

development of Müller glia during gliogenesis (Gaiano et al., 2000). Prior to 

rod, bipolar and glial differentiation the late progenitors transform into a 

resilient radial glial subtype which retains the bipolar elongated morphology 

and proliferative capacity of their earlier predecessors, ensuring their ability 

to produce glia and neurons. Evidence in Xenopus development has 

demonstrated that cells produced during late retinogenesis that originate 

from late-radial glial progenitors and are able to maintain Notch activity, 

develop into Müller glia (Dorsky et al., 1995). Although these cells require 

Notch signalling to commit initially to gliogenesis, in order to terminally 
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differentiate, Notch signalling must ultimately be repressed (Dorsky et al., 

1995). This mode of progenitor development may be the reason why in lower 

mammals and amphibians Müller glia are able to de-differentiate and re-enter 

the cell cycle in response to neuronal damage. 

2.1.3. MicroRNA function and phenotype regulation  

Neural stem cell renewal and maturation has also been linked to a range of 

external and internal control mechanisms during development. Recent 

research has begun to define the processing cues that act as molecular 

regulators of protein expression profiles by means of restricting or enhancing 

transcript production. These endogenous regulators are known as 

microRNAs (miRNAs). There have been over 1,000 miRNAs identified in the 

human genome. They function to repress translation by targeting gene 

coding transcripts and altering their conformation, ultimately causing steric 

hindrance of their target messenger RNA (mRNA). This changes the gene 

patterning within a cell which can in turn promote different cellular activities, 

for example division, differentiation, potency or apoptosis (Guo et al., 2010, 

Takada and Asahara, 2012).  

miRNAs are short single stranded sequences of RNA which can range 

between 10-22 nucleotides (nt) long, and are encoded within intronic or 

intergenic regions of genomes in a conserved manner between eukaryotic 

species. The transcription of miRNAs provides an extra layer of control on 

post-transcriptional and translational processes, resulting in a system that 

functions to regulate the extent of protein activity. The majority of this control 

is reflected on the production of protein, and manifests at the mRNA level by 

mediating the stability of the mRNA structure. Unlike small interfering RNAs 

(siRNAs), miRNAs are made from single-stranded transcripts rather than 

long double-stranded sequences. Targeted genes undergo transcription by 

Polymerase III which simultaneously triggers the production of miRNA 

transcripts via the action of Polymerase II. This yields a short sequence 
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adjacent to the target gene, producing a hairpin structured primary microRNA 

(pri-miRNA) sequence 72-100 nucleotides (nt) long. Prior to exiting the 

nucleus miRNAs are modified via cleavage of the hairpin ends, which is 

performed by associating with Drosha (RNase III enzyme), DGCR8 (in 

vertebrates) or Pasha (in non-vertebrates), producing smaller hairpin/stem-

loop structures. These are known as precursor microRNA (pre-miRNA) 

duplex comprising of 65-70nt, or less, with 2-5nt 3’ overhangs (Liu et al., 

2008, Okamura et al., 2008a, Okamura et al., 2008b). The molecule then 

exits the nucleus and enters the cytoplasm through the nuclear pores aided 

by Exportin-5 complexes, powered by Ran-GTP. Upon entry into the cytosol, 

pre-miRNAs form complexes with Dicer, which consequently remodels and 

cleaves the RNA molecule to produce mature miRNAs, approximately 22nt 

long (Khvorova et al., 2003, Schwarz et al., 2003). The resulting duplex binds 

RNA-induced silencing complex (RISC) as well as Argonaut proteins, namely 

Ago1, Ago2, Ago3 and Ago4, to aid the stabilisation of the short RNA 

molecule. This causes the complementary strand of the small hairpin to be 

discarded (Parker and Barford, 2006). The binding is mediated by RNA 

binding proteins such as HIV-1 TAR RNA binding protein (TRBP) and 

Cellular protein activator of PKR (PACT), and supports the association 

between the two molecules. Dependent on the complementary nature of the 

mature miRNA sequence to its mRNA target, it is able to cause degradation 

of the mRNA transcript upon its binding to Ago2 (Takada and Asahara, 

2012). When miRNA sequences are not fully complementary there is semi- 

efficient binding of the complex to its targets, resulting in mRNA retention for 

either gene silencing or translational inhibition (Figure 2.2). The mechanisms 

by which miRNA finally degrades mRNA or disrupts translation is by binding 

to the 3’ untranslated regions (UTRs) of target mRNAs. miRNAs are able to 

target and suppress multiple mRNA transcripts, whilst one mRNA can be 

targeted by numerous miRNAs depending on their location, maturation and 

function. 
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Figure 2.2: microRNA biogenesis.  The primary miRNA hairpin structure is 

synthesised via the action of RNA polymerase II, which is then modified by 

DRGC8/Drosha complex, resulting in the production of the precursor miRNA 

molecule. The RNA molecule is exported out of the nucleus and undergoes 

cleavage by Dicer. One of the final, mature strands associates with RNA 

induced silencing complex (RISC), where the miRNA and its transcript target 

interact, which either leads to translation suppression or mRNA degradation.  

(Modified from Liu et al, 2008, using Motifolio). 
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Although mature miRNAs are regulatory agents within translational 

processes, they themselves have been shown to be under regulation by 

other components of the gene expression machinery. The majority of miRNA 

modulation involves their repression in the nucleus by transcription factors, 

cofactors and other miRNAs. Transcription factors determine the expression 

of mature miRNA by preventing pri-miRNA production (Rodriguez et al., 

2004). Cofactors involved in miRNA maturation can prevent or enhance their 

production. Proteins recruited to hinder miRNA maturation alter the cleavage 

of immature miRNAs by Drosha or Dicer and the Argonaut proteins (Zhang 

and Zeng, 2010). Enhancing miRNA generation involves proteins facilitating 

cleavage by either Dicer or Drosha. KH-type splicing regulatory protein 

(KHSRP) contains several multifunctional RNA-binding sites intended to aid 

both Drosha and Dicer recruitment of a number of RNA transcripts, 

especially pre-miRNAs and pri-RNAs (Trabucchi et al., 2009). Other auxiliary 

protein expression, involved in miRNA production can alter their generation, 

including Argonaut proteins (Zhang et al., 2009) and the nuclear pore protein 

Exportin-5 (Yi et al., 2005). These can all effect cellular proliferation, 

differentiation and maturation within different tissues.  

2.1.4. MicroRNA Expression in the Retina 

miRNAs are extensively expressed within mammalian brain tissue, indicative 

of their possible role in neural function and development. Different families of 

miRNAs have demonstrated the ability to refine neural progenitor 

differentiation, directing their fate and function (Wienholds et al., 2005, Du 

and Zamore, 2005, Krichevsky et al., 2003). miR-124 and miR-128 are highly 

expressed in adult brain neurons, whilst miR-23 is primarily expressed in 

astrocytes. Additionally, miR-9 and miR-125 are constitutively found across 

all neuronal sub-types (Smirnova et al., 2005). miRNAs are attractive targets 

for controlling the onset of neurogenesis and lineage-specific gene 

expression within neural stem cells, as well as retinal stem cells. Inducing 
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dysfunctional expression of miRNAs contained within the brain during 

development showed altered population densities within this tissue. Forced 

ectopic expression of miR-9, miR-124 and miR-128 in late neural precursors 

reduced the production of astrocytes whilst reducing miR-9 activity, either in 

combination with miR-124 or alone, hindered neural generation. It is thought 

that both miRNAs exert their control by regulating the signalling pathways of 

STAT3 and Notch, which are involved in the proliferative and neurogenic 

ability of stem cells (Krichevsky et al., 2006). Let-7 is another miRNA 

expressed in stem cells within the murine brain and it is suggested to have a 

role in early neural specification (Wulczyn et al., 2007). Notable miRNA 

differences have been found between post-natal mouse brain and retina. 

These include, miR-9, miR-335, miR-31, miR-106, miR-129, miR-3p, miR-

691and miR-26b (Huang et al., 2008, Loscher et al., 2007).  

Whole eye analysis has indicated the enriched presence of miR-204 and 

miR-96 in both mice (Lagos-Quintana et al., 2003) and zebrafish tissue 

(Wienholds et al., 2005), suggesting an important role for eye function. 

However, extraction of murine embryonic retinal tissue at E.10.5, 

demonstrated different expression profiles. miR-204 was highly expressed in 

the ciliary body, lens and RPE, whilst miR-184 was absent from retinal tissue 

but was expressed in the lens and cornea. The developing optic cup 

demonstrated enriched expression of miR-124a miR-9, miR-29 and miR-

181a at E10.5, with their adult expression profiles confined to the retina 

(Karali et al., 2007). Within postnatal P7 mouse retina, miR-181 was found 

within the ganglion and inner plexiform layer only and miR-204 was located 

in the RPE and ciliary body regions (Ryan et al., 2006). One month old 

murine retinas showed distinct locations of three retinal miRNAs: miR-182 

was detected within the ONL and let-7 and miR-181a were identified in the 

INL, and in the mature RGCs(Loscher et al., 2007). 
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2.1.5. MicroRNA regulation of the Notch-1 Pathway 

To understand and fully utilise miRNAs in mature and developing retina for 

regenerative therapies, it is important to predict and verify their targets. 

miRNAs have been shown to interact with the Notch pathway, by either 

regulating it up- or down- stream of its locus, impacting on its functional role 

in both oncogenic and stem cells. The majority of evidence demonstrating 

Notch and miRNA interaction is from studies involving tumorigenesis or 

development. Like the genetic transcripts involved in tumour progression, 

miRNAs can be either ontogenetic or tumour-suppressive in their action. 

Upstream modulators of Notch include miRNAs that act as tumour-

suppressor agents that inhibit the expression genes involved in the 

translation of Notch or factors involved in its signalling (Figure 2.3).  

In the Drosophila miR-1 targets Notch via Delta repression preventing 

activation and nuclear translocation of its ICD (Kwon et al., 2005). miR-1 also 

suppresses the Notch pathway in murine ESCs during development (Ivey et 

al., 2008). Another tumour-suppressive agent involved in Notch regulation is 

miR-34. This has been shown to arrest Notch-1 and -2 signalling in 

gastrointestinal pancreatic cancer cells and appears to prevent cellular self-

renewal and abnormal growth (Ji et al., 2009, Ji et al., 2008). miR-124a 

activity is preferentially expressed in neurons, and has been implicated in 

neurogenesis and differentiation in the subventricular zone (SVZ), where it 

represses Sox9 during neural development. Following focal cerebral 

ischemia in adult rats miR-124a was shown to markedly decrease in the 

SVZ, coupled with the onset of Notch activation. Forced the expression of 

miR-124a in SVZ cells led to Jagged-1 (JAG-1 the Delta ligand homolog) 

repression, which acts normally to activate Notch (Liu et al., 2011). This 

resulted in decreased proliferation of neural progenitors but enhanced 

differentiation. 
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Figure 2.3: Regulation of the Notch signaling pathway by miRNAs.  A 

schematic illustration of Notch targeting for miRNA silencing by both 

upstream and downstream mature miRNAs, based on up to date 

oncogenetic studies.  
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In contrast, miRNAs are also able to repress downstream targets of the 

Notch pathway, preventing propagation of its signalling. The miR-199 family 

negatively regulates Notch targets, and acts downstream of Notch, inhibiting 

their activity by promoting differentiation rather than maintaining an 

undifferentiated state. Downregulation of the miR-199 family has resulted in 

the progression of different cancers. Specifically miR-199a expression is 

markedly reduced in both hepatocellular carcinoma (HCC) (Murakami et al., 

2006) and ovarian cancers (Iorio et al., 2007) and has been shown to 

prevent cell cycling by acting at the G2/M phase.  miR-199b-5p targets Hes-1 

to inhibit transcription of pro-differentiating genes in medulloblastoma (MB) 

cancer cells. MB patients that presented with metastatic tumours had 

reduced levels of miR-199b-5p compared to non-metastatic patients, 

indicating that this miRNA is an important onco- and Notch- suppressive 

agent (Andolfo et al., 2012, Garzia et al., 2009). 

Lastly, the miR-200 family has been shown to act as a Notch-1 antagonist in 

cancer stem cells undergoing epithelial-mesenchymal transition (EMT) (Burk 

et al., 2008). Notch-1 promotes the activation of the zinc-fingered E-box 

binding homeobox (ZEB) proteins, ZEB1 and ZEB2, as well as CD44, 

EpCam and Hes-1 in different cancer cell lines, including the human 

pancreatic cancer cell line AsPC-1 (Korpal et al., 2008, Park et al., 2008, 

Gregory et al., 2008). When these cells are induced to ectopically express 

Notch-1 miR-200b and miR-200c are reduced significantly. Conversely, when 

the expression of these two miRNAs was upregulated, EMT diminished, 

Notch signally ceased and E-cadherin, a cell attachment protein, increased 

(Bao et al., 2011, Kong et al., 2010, Li et al., 2009). These observations 

indicate that miR-200 family and Notch act antagonistically, inhibiting each 

other’s expression depending on the cellular state.  

Emerging evidence suggests that miRNAs are potential agents that could be 

targeted for novel therapy strategies in cancer or regenerative medicine. 
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Human Müller stem cells, which appear to lie dormant in the human retina in 

vivo, regulate their renewal and progenicity through Notch-1 signalling in vitro 

(Singhal et al., 2012). Therefore Notch constitutes a target for either 

induction of endogenous regeneration in vivo or regulation of cell 

differentiation for in vivo grafting. The extent of miRNA control is yet to be 

examined in these cells and understanding the roles these molecules may 

play in Müller stem cell differentiation in vitro, may aid in the development of 

regenerative therapies using these cells. On this basis, this chapter aimed to 

investigate the expression of miRNAs by Müller stem cells following 

differentiation into RGC phenotypes. 
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2.2. Objectives and experimental design 

The aim of this chapter was to investigate changes in miRNA expression by 

Müller stem cells following a differentiation protocol aimed at inducing Notch 

downregulation to yield an enriched population of RGC precursors. Current 

research suggests that miRNAs involved in neural stem cell differentiation 

are controlled by other miRNAs and various co-factors and transcription 

factors. The epigenetic control of neural cell populations by miRNAs has 

identified some signalling pathways, illustrating a control of transcription and 

downstream expression of neuronal genes. It was therefore important to 

identify changes in miRNA expression profiles during human Müller stem cell 

differentiation into RGCs in vitro. Understanding the role of these molecules 

and the timing of generation may aid in the design of cell therapies to replace 

RGC damaged by degeneration.  

The general objectives of this chapter were: 

1. To identify the downstream Notch pathway targets that lead to 

differentiation of human Müller stem cells into RGC in vitro. 

2. To investigate changes in microRNA expression profiles following 

inhibition of the Notch pathway in human of Müller stem cells. 

3. To investigate changes in microRNA expression following inhibition of 

the Notch pathway in the presence of bFGF in Müller stem cells. 

To fulfil the above objectives, the following experiments were performed: 

1. Investigation of the effect of Notch inhibition with N-[N-(3,5-

Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester 

(DAPT) in the presence of bFGF, on Hes1 and retinal ganglion cell 

markers by differentiated Müller stem cells. This was assessed using 

RT-PCR, immunocytochemistry and western blotting techniques. 
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2. Evaluation of differentially expressed miRNAs in undifferentiated 

Müller stem cells and comparison with cells undergoing Notch 

inhibition in the absence of bFGF, using microarray analysis with 

Agilent platform. 

3. Evaluation of differentially expressed miRNAs in undifferentiated 

Müller stem cells in comparison with cells undergoing Notch inhibition 

in the presence of bFGF, a protocol known to induce RGC 

differentiation of Müller stem cells, using microarray analysis, 

performed as indicated above.  
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2.3. Results 

2.3.1. The effect of Notch inhibition in Müller stem cells cultured in 

the absence of bFGF 

Cells were cultured for one week in the presence of 50µM DAPT with or 

without ECM. The ECM gel used was composed primarily of laminin, 

collagen type IV, heparan sulfate proteoglycan and entactin, and was used to 

facilitate the differentiation of RGC-derived Müller stem cells, as previously 

demonstrated by our laboratory (Singhal et al., 2012). This treatment was 

observed to induce morphological cell changes consistent with acquisition of 

neural features. These included formation of long cytoplasmic projections 

and branching occurring on cultured cells, coupled with the appearance of 

phase-bright nuclei (Figure 2.4A) suggestive of neural differentiation. These 

projections were measured and demonstrated the induction of neurite 

development with Notch inhibition, which was significantly increased in the 

presence of ECM (Figure 2.4B).  

Notch inhibition was also examined by gene expression analysis of various 

genes involved in the Notch pathway during normal stem cell maturation. 

This investigation demonstrated that in the DAPT treated cells Notch-1 

expression in Müller stem cells was not modified, either in the presence or 

absence of ECM, as compared with the DMSO control (Figure 2.5). In 

contrast, Hes-1, a downstream factor of the Notch pathway, was significantly 

decreased by culturing Müller stem cells with DAPT in the presence or 

absence of ECM. Analysis of Hey2 (another factor of the Notch pathway) 

expression showed that Notch inhibition with DAPT caused a decrease in 

mRNA levels of this molecule. Culture of these cells on ECM caused 

increased expression of Hey2, but lower levels were observed when DAPT 

was added to cells cultured on ECM, as compared with controls. Marked 

elevations were observed in mature transcripts involved in RGC 

development, namely Brn3b and Islet-1 (Figure 2.6). Brn3-b is a member of  
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A 

B 

Figure 2.4: Effect of Notch inhibition in the absence of bFGF on Müller stem 
cell morphology. Phase-contrast imaging of Müller stem cells cultured under 

control conditions (no treatment), in the presence of DMSO (vehicle), and in the 
presence of DAPT, either with or without ECM coating. In this Müller stem cell 
population DAPT induced morphological changes, with development of phase-bright 
nuclei and outgrowth of long neurites (white arrow). Freehand measurement of the 
cellular projections, using a calibrated image J scale enabled analysis of neurite 
length which was markedly increased in the presence of DAPT in presence and 
absence of ECM. Scale bar=100μm  
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Figure 2.5: Expression of transcription factors of neural development by 
Müller stem cells, following Notch inhibition in the absence of bFGF. RT-PCR 

showing expression of genes involved in Notch signaling, specifically Notch-1, Hes1, 
and Hey2, following culture with DAPT for 7 days with or without ECM. A) Notch-1 
remained unaltered following treatment with DAPT. Beta actin was used as the 
housekeeping gene to normalise gene expression levels. B) Treatment with DAPT 
induced decreased expression of Hes1 in the presence and absence of ECM. C) 
Hey2 expression levels decreased significantly with DAPT treatment in the absence 
of ECM, however a marked increase in its expression was observed in cell cultured 
without DAPT in the presence of ECM Gel images are representations of the 
expression of these factors, whilst histograms represent the mean ± SEM of 4 
experiments.  
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Figure 2.6: Markers of RGC precursors following Notch inhibition in Müller 
stem cells in the absence of bFGF. RT-PCR demonstrating the expression of 

Brn3b and Islet-1.Following Notch repression with DAPT after 7 days culture with or 
without ECM coatings. A) DAPT induced Brn3b to elevate significantly in the 
presence of ECM, although ECM coating also induced marked elevations of Brn3b 
expression. B) Treatment with DAPT induced an increase in mRNA expression of 
Islet-1 either in the presence and absence of ECM. Beta actin was used as the 
housekeeping gene to normalise gene expression levels. The results are the mean ±  
SEM of 4 experiments 
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the POU-domain family and serves as a neuronal transcription factor during 

the early stages of RGC development. Islet-1 is a LIM-homeodomain 

transcription factor and is thought to have a synergistic function with Brn3-b 

during the early stages of retinogenesis and RGC maturation (Mu et al., 

2008). These factors were used to determine the effect of the Notch pathway 

on the development of RGC-derived Müller stem cells. Raised levels of 

Brn3b were only observed when cells were cultured in the presence of DAPT 

and ECM.  

Following initial examination of Hes1 and Notch1 expression at the mRNA 

transcript level, western blotting and immunocytochemical analysis were 

performed on cell populations cultured with the Notch inhibitor DAPT. Protein 

preparations were made by lysis of cells cultured in the presence or absence 

of DAPT. Untreated cells showed elevated baseline expression of Notch 

(Figure 2.7B) and Hes1 (Figure 2.8B) proteins, as compared with treated 

cells. Cells cultured with the Notch inhibitor DAPT demonstrated depletion of 

Notch ICD whilst Hes1 expression was also decreased, although not 

significantly (Figure 2.8B). Immunocytochemistry depicted the localisation of 

both Hes1 and Notch within cell cultures. Untreated cells exhibited Notch and 

Hes1 localisation in the nuclear and cytoplasmic domains suggesting that 

Notch signalling pathway is active within these cell populations (Figure 2.7A 

and 2.8A). Treatment with DAPT resulted in decreased cellular expression of 

Notch (Figure 2.7A) and Hes1 (Figure 2.8A) in the nuclei of these cells. 

However, Notch remained within the cytoplasm and Hes1 continued to be 

located within the perinuclear domains, although its intensity appeared to 

decrease with DAPT treatment.  
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Figure 2.7: The effect of Notch inhibition on Notch-1 protein expression in 

Müller stem cells. (A) Immunostaining of control (untreated cells) for Notch-1 

showed widespread intracellular localization of this factor within the cells. 

Staining was observed in both the nuclei (white arrows) and cytoplasm. Staining 

of cells treated with DAPT showed a decreased intracellular expression of this 

protein. Notch-1 expression within the perinuclear domains and nuclear regions 

diminished with DAPT treatment (red arrows). (B) Western blotting detected the 

presence of ICD within control and treated cells, although a lower quantity was 

found in DAPT treated cells, with or without ECM. The results are the mean ±  

SEM of 4 experiments. Scale bar=50µm. 
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Figure 2.8: The effect of Notch inhibition on Hes1 protein expression in 

Müller stem cells. (A) Immunostaining of untreated cells with Hes1 antibody 

demonstrated the localization of the transcription factor within the perinuclear 

and nuclear domains of the cells (white arrow). However, staining of cells 

treated with DAPT showed a decreased cellular expression of this factor, there 

was a marked decrease in nuclear and perinuclear staining (red arrows). (B) 

Western blotting confirmed the trend of Hes1 depletion following Notch 

inhibition, although not significant. The results are the mean ± SEM of 4 

experiments. Scale bar=50µm 
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2.3.2. The effect of Notch inhibition in Müller stem cells cultured in 

the presence of bFGF  

Following culture of Müller stem cells on ECM with the addition of DAPT 

(50µM) and bFGF (20ng/ml), a RGC differentiation protocol previously 

developed in our laboratory, cells exhibited neurite outgrowth with primary 

and secondary branching of cellular projections as observed under light 

microscopy (Figure 2.9A). Measurement of the cellular projections 

demonstrated marked increase of neurite length in the presence of 

DAPT+bFGF in both the presence and absence of ECM (Figure 2.9B) 

indicative of a neural morphology and characteristic of in vitro differentiation. 

As previously seen with cells treated with DAPT in the absence of bFGF, 

cells cultured with this Notch inhibitor in the presence of bFGF did not exhibit 

significant changes in their mRNA expression of Notch. However, gene 

expression analysis demonstrated a significant decrease of Hes1 (p<0.0001 

without ECM and p<0.0002 with ECM) and Hey2 transcripts in RNA samples 

taken from cells treated with DAPT and bFGF, in the presence or absence of 

ECM, as compared to untreated cells (Figure 2.10). This suggests that 

knock-down of Notch and its downstream effectors were evident, and that its 

signalling pathway was also altered. Markers that indicate the development 

of RGC precursors, increased following Notch inhibition in the presence of 

bFGF. Islet-1 increased with differentiating protocols in both the presence 

and absence of ECM coating (Figure 2.11B). However, the early RGC 

marker Brn3b increased significantly when treated cells were cultured on 

ECM coated flasks (Figure 2.11A).  

Notch ICD protein expression markedly decreased with DAPT and bFGF 

treatment in the presence of ECM (Figure 2.12B). Hes1 protein levels also 

depleted significantly upon culture with DAPT and bFGF, in both the absence 

and presence of ECM (Figure 2.13B).  

 



87 
 

 

  

DMSO/Ctrl DAPT+bFGF 

Figure 2.9: Effect of Notch inhibition following culture with bFGF on Müller stem 
cell morphology. Phase-contrast imaging of Müller stem cells cultured with and 

without ECM under control conditions (no treatment), in the presence of DMSO 
(vehicle), and in the presence of DAPT and bFGF. DAPT and bFGF treatment induced 
morphological changes, with the development of phase-bright nuclei and outgrowth of 
neurite-like structures (white arrow), suggestive of neural morphology. The 
combination of these two factors appeared to have a synergistic effect on neurite 
elongation. Freehand measurement of the cellular projections, using a calibrated 
image J scale enabled analysis of  neurite length which was markedly increased in the 
presence of DAPT+bFGF in both the presence and absence of ECM. Scale 
bar=100μm  
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Figure 2.10: Transcription factors of neural development, following Notch 
inhibition in the presence of bFGF, in Müller stem cells. RT-PCR 

demonstrating the expression of genes involved in Notch signaling, specifically 
Notch-1, Hes1, and Hey2. This determined alterations in their expression profiling 
following Notch repression using DAPT and bFGF after 7 days culture, in the 
presence or absence of ECM coating. A) Notch-1 mRNA levels were not observed 
to change following cellular incubation with DAPT and bFGF, in the presence or 
absence of ECM. B) Hes1 was markedly reduced with DAPT and bFGF treatment 
in the presence and absence of ECM. C) Hey2 was also significantly reduced 
following treatment with DAPT and bFGF, with and without ECM. Beta actin was 
used as the housekeeping gene to normalise gene expression levels to. The 
results are the mean ±  SEM of 4 experiments 
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 Figure 2.11: Markers of RGC precursors following Notch inhibition of Müller 
stem cells, cultured in the presence of bFGF. RT-PCR demonstrating the 
expression of genes associated with RGC precursor development, namely, Brn3b 
and Islet-1. Alteration in their expression was determined following Notch inhibition 
in the presence of bFGF after 7 days culture in the presence or absence of ECM. 
A) Treatment with DAPT and bFGF induced significant increase in Brn3b gene 
expression in the absence and presence of ECM. B) DAPT and bFGF also caused 
marked elevation in Islet-1 mRNA expression in both the absence and presence of 
ECM. Both markers showed increased expression with ECM coating alone, 
suggesting the importance of growth matrix for differentiation. Beta actin was used 
as the housekeeping gene to normalise gene expression levels 

B 
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DAPI NOTCH 1 Merge 

Figure 2.12: Expression of Notch-1 by Müller stem cells undergoing Notch 
signaling inhibition with DAPT, in the presence of bFGF. (A) Immunostaining 

of control (untreated cells) with Notch-1 antibody showed widespread intracellular 
localization within the cells. Staining was observed in both the nuclei (white 
arrows) and cytoplasm. However, staining of cells treated with DAPT and bFGF 
showed a decreased intracellular expression of this protein. Notch-1 expression 
within the perinuclear domains and nuclei diminished with treatment (red arrows). 
(B) Western blotting detected the presence of Notch ICD protein within control and 
treated cells, although a marginally lower quantity was found in cells treated with 
DAPT and bFGF, although not significant. However, a significant reduction in ICD 
expression was observed when cells were grown on ECM and DAPT+bFGF. The 
results are the mean ±  SEM of 4 experiments.Scale bar=50um 
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Figure 2.13: The effect of Notch inhibition on Hes1 protein expression by 
Müller stem cells undergoing Notch signaling repression in the presence of 
bFGF. (A) Immunostaining of untreated cells with Hes1 antibody demonstrated the 
localization of the Hes1 transcription factor within the perinuclear and nuclear 
domains of the cells (white arrow). However, staining of cells treated with DAPT 
and bFGF showed a decreased cellular expression of this factor. There was a 
marked decrease in nuclear and perinuclear staining (red arrows). (B) Western 
blotting confirmed depletion of Hes1 protein expression following Notch inhibition. 
A significant reduction in Hes1 expression was observed cells treated with DAPT 
and bFGF with or without ECM. The results are the mean ± SEM of 4 experiments.  
Scale bar=50µm 
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Immunocytochemical staining of DAPT and bFGF treated cells showed that 

the localisation of Notch was prominent in the cytosol (Figure 2.12A). This 

suggests that the cleavage and subsequent translocation of the Notch ICD 

has been arrested by DAPT, promoting differentiation. The localisation of 

Hes1 also proved to be modified. It was predominantly found within the 

perinuclear regions of treated cells, compared to the nuclear presence in 

untreated cells (Figure 2.13A). These observations suggest that DAPT and 

bFGF treatment led to translational repression of the Notch pathway and the 

promotion of differentiation. 

2.3.3. Validation of Notch inhibition and differentiation protocols in 

various human Müller Stem Cell lines 

In order to further validate the ability of Müller stem cells to differentiate into 

RGC following Notch downregulation, different cell lines were examined. The 

Müller stem cell lines 6387, 6391 and 6426 were cultured for 7 days, in the 

presence of ECM and DAPT ± bFGF. Screening of the three cell lines under 

non-differentiated and differentiated conditions confirmed the changes in 

Notch associated targets, as well as the emergence of RGC development 

using the above differentiation protocols. Confocal microscopy of the Müller 

cell line 6387 (Figure 2.14) demonstrated reduced levels of Hes1 staining 

following Notch inhibition either with or without bFGF. I addition, treatment 

with DAPT alone or with the addition of bFGF resulted in depleted levels of 

Hes1 mRNA (Figure 2.15B). Levels of mRNA coding for Notch did not 

change in cells cultured with DAPT in the presence or absence of bFGF 

(Figure 2.15A). However, the RGC marker Brn3b increased with DAPT 

treatment in the absence of bFGF, in the presence of bFGF its expression 

was not modified (Figure 2.15C). Islet-1 increased with Notch inhibition in the 

absence of bFGF, although its expression was not altered in the presence of 

both DAPT and bFGF (Figure 2.15D). presence of bFGF, reduced nuclear 

expression of Hes1 was also observed  
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DAPI HES1 Merge 

Figure 2.14: Effect of Notch inhibition upon Hes1 localisation in the 6387 
Müller cell line. Confocal and phase-contrast imaging of the 6387 Müller cell line 
demonstrated changes in the morphological appearance and protein expression of 
Hes1. Following DAPT treatment in the presence and absence of bFGF phase-
contrast showed morphological changes towards a neural phenotype. The extent of 
Notch activity  is illustrated by a decrease in Hes1 staining of treated cells, although 
its presence remained located around and in the nucleus (confocal red arrows). 
Untreated cells had intense perinuclear and nuclear staining (confocal white arrows). 
Confocal scale bar=50µm, Phase-contrast scale bar=100µm 
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Figure 2.15: Notch inhibition in the 6387 Müller cell line cultured in the 
presence and absence of bFGF. RT-PCR was performed to examine the gene 
expression in the Muller cell line 6387 treated with DAPT in the presence and 
absence of bFGF, as compared with untreated cultures. A) Notch-1 expression was 
unaltered with treatment. B) Hes1 decreased marginally in cells cultured with DAPT 
in both the presence and absence of bFGF. C) Brn3b increased in cells treated with 
DAPT alone. D) Islet-1 expression increased following culture with DAPT alone. n=1 
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Immunocytochemical analysis of the Müller cell line 6391 showed reduced 

amounts of Hes1 in cells treated with DAPT in either the absence or 

presence of ECM (Figure 2.16). Cells cultured with DAPT either in the 

presence of bFGF showed a decrease in Notch mRNA, although DAPT 

alone did not alter the expression of Notch mRNA expression (Figure 2.17A). 

Similar to that seen with other cell lines, mRNA expression of Hes1 

decreased with DAPT in presence or absence of bFGF (Figure 2.17B). The 

RGC maturation marker Brn3b increased in cells cultured on ECM under all 

culture conditions, however the addition of DAPT and bFGF did not change 

its expression, as compared to untreated cells (Figure 2.17C). Islet-1 

expression remained unaltered with DAPT and bFGF treatment, however 

DAPT alone increased its expression (Figure 2.17D).  

Finally, confocal imaging of the Müller cell line 6426 demonstrated reduced 

intensity of Hes1 antibody staining following treatment with DAPT in both the 

presence and absence of bFGF (Figure 2.18). Notch mRNA expression was 

diminished in the presence of DAPT alone (Figure 2.19A) whilst Hes1 

expression remained unaltered with treatment with DAPT with bFGF (Figure 

2.19B). The expression of Brn3b decreased with DAPT in the presence and 

absence of bFGF (Figure2.19C) and islet-1 decreased in cells treated with 

DAPT alone (Figure 2.19D). Validation of mature RGC gene expression was 

not found in this single experiment. Morphological alterations of neurite 

outgrowths were observed with Notch inhibition with DAPT and RGC 

protocols by confocal and phase-contrast imaging for all three cell lines. 

2.3.4. MicroRNA Expression Profiles in Müller Stem Cells 

Following the in vitro validation of RGC differentiation protocols, microarray 

analysis was conducted on total cellular RNA samples obtained from Müller 

stem cells cultured in the presence or absence of RGC differentiation factors. 

Agilent miRNA probe slides (two in total) were used to detect differences in 

miRNA profiles between Müller stem cells cultured under differentiating and  
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Figure 2.16: Effect of Notch inhibition upon Hes1 localisation in the 6391 
Müller cell line. Confocal and phase-contrast imaging of the 6391 Müller cell line 

demonstrated changes in the morphological appearance and protein expression of 
Hes1. Following DAPT treatment in the presence and absence of bFGF phase-
contrast showed morphological changes towards a neural phenotype. The extent of 
Notch activity  is illustrated by a decrease in Hes1 staining of treated cells, although 
its presence remained located around and in the nucleus (confocal red arrows). 
Untreated cells had intense perinuclear and nuclear staining (confocal white arrows). 
Confocal scale bar=50µm, Phase-contrast scale bar=100µm 
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Figure 2.17: Notch inhibition in the 6391 Müller cell line cultured in the 
presence and absence of bFGF. RT-PCR was performed to examine the gene 
expression in the Muller cell line 6391 treated with DAPT in the presence and 
absence of bFGF, as compared with untreated cultures. A) Notch-1 expression 
decreased in cells treated with DAPT in the presence and absence of bFGF. B) 
Hes1 decreased with DAPT in both the presence and absence of bFGF, as well as 
with ECM alone. C) Brn3b expression increased with DAPT treatment alone. D) 
Islet-1 expression increased following culture with DAPT in the absence of bFGF. 
n=1 
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Figure 2.18: Effect of Notch inhibition upon Hes1 localisation in the 6426 
Müller cell line. Confocal and phase-contrast imaging of the 6426 Müller cell line 

demonstrated changes in the morphological appearance and protein expression of 
Hes1. Following DAPT treatment in the presence and absence of bFGF phase-
contrast showed morphological changes towards a neural phenotype. The extent of 
Notch activity is illustrated by a decrease in Hes1 staining of treated cells, although 
its presence remained located around and in the nucleus (confocal red arrows). 
Untreated cells had intense perinuclear and nuclear staining (confocal white arrows). 
Confocal scale bar=50µm, Phase-contrast scale bar=100µm 
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Figure 2.19: Notch inhibition in the 6426 Müller cell line cultured in the 
presence and absence of bFGF. RT-PCR was performed to examine the gene 
expression in the Müller  cell line 6426 treated with DAPT in the presence and 
absence of bFGF, as compared with untreated cultures. A) Notch-1 expression 
decreased in cells treated with DAPT and marginally increased with the addition of 
bFGF. B) Hes1 increased with DAPT treatment in both the presence and absence of 
bFGF. C) Brn3b expression increased with DAPT treatment alone. D) Islet-1 

expression increased following culture with DAPT in the presence of bFGF. n=1 
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untreated conditions. The quality of RNA samples collected and the 

robustness of the isolation process were assessed using an Agilent 2100 

bioanalyzer (Agilent Technologies, UK) which gave a quality read out of 

10/10 (Figure 2.20). The bioanalyser determined the degree of RNA 

degradation, summating and qualifying the different lengths of RNA. It 

distinguished the ribosomal, transfer, messenger and micro RNA amounts 

within the samples. This confirmed the quality of the miRNA within the 

samples and permitted yield efficient probing during the array analysis. 

2.3.4.1. Expression of microRNA by Müller stem cells undergoing 

Notch inhibition in the absence of bFGF 

The study involved comparing the expression of miRNA levels within Müller 

stem cell populations cultured on ECM in the presence of DAPT and 

untreated populations of Müller stem cells. The samples were studied for 

array quality to assure the array procedures produced comprehensive 

results, in order to infer from true representative data. A quality control heat 

map was produced to determine the robustness of the array procedure 

(Figure 2.21). The map shows details of the miRNA expression by cells 

cultured in the absence of ECM and in the presence of DMSO or on ECM in 

the presence of DAPT. The scale illustrates the relationship between the two 

separate treatments, red indicates a low level of correlation whilst yellow 

indicates a high level. The map demonstrates positive correlation between 

Müller populations cultured under the same treatment, whilst showing low 

levels of correlation within cultures grown under different conditions. This is 

indicative of the consistency of miRNA prevalence in the different culture 

groups, as well as the robustness of the processing procedures. The 

microarray heat map for the Müller populations gave an overview of the 

miRNAs upregulated following DAPT treatment (Figure 2.22). For each 

miRNA, the yellow colour indicates miRNAs with high expression; the blue  
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Figure 2.20: Quality Control of RNA samples: Examination of the total RNA 
was performed using the Agilent 2100 Bioanalyzer prior to labelling and 
hybridisation. The results of the analysis are displayed for the three 
experimental conditions, in the form of a gel image and electropherograms. 
Total RNA run on a denaturing agarose gel shows two distinct ribosomal 
peaks corresponding to the 18S (labelled pink) and 28S (labelled green) 
eukaryotic RNA. There are also smaller distinct peaks signifying the 
messenger and short sequence (micro) RNA. The Agilent 2100 expert 
software calculates a RNA Integrity Number (RIN). The readouts for (A) 
DMSO control, (B) DAPT and (C) DAPT with bFGF in the presence of ECM 
indicate stable RNA with high integrity, lacking molecular degradation. 
Samples were given RIN values of 10/10.  

 



102 
 

 

  

DMSO CTRL DAPT/ECM 

Figure 2.21: Quality control microarray heat map of Müller stem cells 
undergoing Notch inhibition. Each column represents microRNA isolated 

from Müller stem cells grown in the presence and absence of Notch 
inhibition. The map illustrates the association between treated and untreated 
control specimens, as well as the correlation between the two groups Yellow 
indicates strong correlation whilst red signifies a low correlation, n=4  
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Figure 2.22: miRNA profiles of Müller stem cells undergoing Notch 
inhibition. Hierarchical clustering analysis was performed on miRNAs, 

isolated from Müller stem cells cultured in the presence or absence of ECM 
and DAPT. miRNAs are listed in abundance on the  right hand side of the 
cluster, indicating the quantities of mature miRNA transcripts detected under 
both differentiating and untreated conditions. For each miRNA probe, data 
was median-centred, with the highest intensities in yellow. Scale= log2, n=4. 
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colour denotes miRNAs with low expression. Hierarchical clustering analysis 

identified the altered expression abundances of 27 different miRNAs 

following Notch inhibition. These miRNAs had significantly altered expression 

profiles between differentiating and untreated Müller populations. The data 

demonstrates large percentage increases that ranged from 21% to 107% 

(Table 2.1) following Notch inhibition with ECM treatment. The largest 

amplification induced by DAPT treatment was seen in the hsa-miR-204 and 

hsa-miR-30a levels, out of the all miRNAs detected. Figure 2.23 illustrates 

the relationship between inhibition of the Notch pathway in the presence of 

ECM coating, and the significant upregulation of miRNAs. The graphical 

representation of the top 27 transcripts found highlights the percentage 

increments within the miRNAs screened.  

2.3.4.2. Expression of microRNA by Müller stem cells undergoing 

Notch inhibition in the presence of bFGF 

The miRNA profile following treatment with DAPT to induce Notch inhibition 

in the presence of bFGF and ECM was also determined by microarray 

analysis. Quality of the array was assessed and determined the robustness 

and consistency of the data gathered (Figure 2.24). The quality control heat 

map indicated a strong correlation between Müller stem cells treated under 

the same culture regimes, whilst low correlation was observed between 

different treatment populations, confirming the efficiency of the array 

procedure, as well as the consistency of the results collated. Hierarchal 

clustering was performed and identified the enriched miRNAs generated by 

RGC differentiated cells as compared with untreated populations. This study 

identified 22 altered miRNA expression profiles and provided an overview of 

the miRNAs elevated with differentiation treatment (Figure 2.25). 

Examination of the percentage change of miRNAs enriched following 

treatment showed that DAPT alone caused hsa-miR-204 to increase by  
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Ascension 

number 
miRNA ID Percentage 

Change (%) 
P-value 

MIMAT0000265
 

hsa-miR-204-5p 107.81 0.023843 
MIMAT0000087 hsa-miR-30a-5p 89.35 0.023843 

MI0015893 hsa-miR-4284 83.06 0.043483 
MIMAT0004514

 

hsa-miR-29b-5p 77.51 0.025284 
MIMAT0000097 hsa-miR-99a-5p 72.89 0.025284 
MIMAT0000244 hsa-miR-30c-5p 72.37 0.023843 
MIMAT0004568 hsa-miR-221-5p 67.59 0.024982 
MIMAT0000088 hsa-miR-30a-3p 62.70 0.025284 
MIMAT0004569

 

hsa-miR-222-5p 58.52 0.015346 
MIMAT0004587 hsa-miR-23b-5p 57.62 0.035565 
MIMAT0004673 hsa-miR-29c-5p 55.93 0.043295 
MIMAT0004496 hsa-miR-23a-5p 55.53 0.048249 
MIMAT0000082 hsa-miR-26a-5p 47.52 0.043295 
MIMAT0000068 hsa-miR-15a-5p 43.74 0.043483 
MIMAT0000254 hsa-miR-10b-5p 41.57 0.025284 
MIMAT0000692 hsa-miR-30e-5p 38.81 0.039297 
MIMAT0000703 hsa-miR-361-5p 37.74 0.043483 
MIMAT0003385 hsa-miR-363-5p 37.32 0.035565 
MIMAT0004568 hsa-miR-221-3p 35.10 0.027823 
MIMAT0002820

 

hsa-miR-497-5p 31.05 0.043295 
MIMAT0004603 hsa-miR-125b-2-3p 30.84 0.023843 
MIMAT0000085 hsa-miR-28-5p 29.69 0.043483 
MIMAT0000245 hsa-miR-30d-5p 28.51 0.043483 
MIMAT0000693 hsa-miR-30e-3p 25.50 0.039297 
MIMAT0000431 hsa-miR-140-3p 23.99 0.043295 

MI0013907 hsv2-miR-H25 22.047 0.034151 
MI0016410 hsa-miR-3907-5p 21.03 0.028681 

Table 2.1: List of miRNAs upregulated in Müller stem cells undergoing 
Notch inhibition. Expression is presented as percentage change in cells 
treated with DAPT, compared to control cultures. miRNAs are listed in 
ascending order,  accession numbers taken from www.miRBase.org, n=4. 

http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000265
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000087
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004514
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000244
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004568
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004569
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004673
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004496
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000082
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000068
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000254
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000692
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0003385
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0002820
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000245
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000431


106 
 

 

   

Figure 2.23: The miRNA expression levels in Müller stem cells 
undergoing Notch inhibition in the presence of ECM, as determined by 
microarray analysis. Graphical depiction of the significantly upregulated 
miRNAs compared to untreated Müller stem cell cultures, following Notch 
inhibition with DAPT with comparison to control cell culture. miRNAs are 
organised in ascending order, left to right. n=4 ***p<0.001 **p<0.01; *p<0.05 
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Figure 2.24: Quality control microarray heat map of Müller stem cells 
undergoing Notch inhibition in the presence of bFGF. Each column 

represents microRNA isolated from Müller stem cells grown in the presence or 
absence of Notch inhibitor with bFGF. The map illustrates the association 
between treated and untreated control specimens, as well as the correlation 
within the two groups. Yellow indicates strong correlation whilst red signifies 
low correlation. n=4  
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DAPT+bFGF/ECM 

hsa-miR-204 
hsa-miR-222 
hsa-miR-199b-5p 
hsa-miR-155 
hsa-miR-151-5p 
hsv2-miR-H6 

hsa-miR-151-3p 
hsa-let-7i 
hsa-miR-221-3p 
hsa-miR-193a-3p 
hsa-miR-381 

hsa-miR-382 
hsa-miR-221 
hsa-miR-299-5p 
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Figure 2.25: miRNA profiles of Müller stem cells following Notch 
inhibition. Hierarchical clustering analysis was performed on miRNAs, 

isolated from Müller stem cells cultured in the presence and absence of DAPT 
and bFGF. microRNAs are listed in abundance on the  right hand side of the 
cluster, indicating the quantities of mature miRNA transcripts detected under 
both treated and untreated conditions. For each miRNA probe, data was 
median-centred, with the highest intensities in yellow. Scale= log2, n=4. 
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Ascension 
number 

miRNA ID Percentage 
Change 

(%) 

P-value 

MIMAT0000265
 

hsa-miR-204-5p 274.13 0.000287 
MIMAT0000098

 

hsa-miR-100-5p 114.99 0.0053273 
MI0000434 hsa-let-7i 106.45 0.0092618 

MIMAT0004697 hsa-miR-151-5p 106.24 0.0037050 
MIMAT0004569

 

hsa-miR-222-5p 70.14 0.0018665 
MIMAT0004568

 

hsa-miR-221-5p 66.37 0.0164166 
MIMAT0022861

 

hsa-miR-376c-5p 55.43 0.0289856 
MIMAT0000646

 

hsa-miR-155-5p 55.32 0.003705 
MIMAT0000263 hsa-miR-199b-5p 54.77 0.0023067 
MIMAT0003386

 

hsa-miR-376a-5p 53.81 0.0142089 
MIMAT0000459 hsa-miR-193a-3p 48.37 0.0108388 
MIMAT0004568 hsa-miR-221-3p 42.72 0.0108083 
MIMAT0000757 hsa-miR-151-3p 41.84 0.0078666 
MIMAT0022862

 

hsa-miR-381-5p 38.13 0.0117819 
MIMAT0004689

 

hsa-miR-377-5p 38.03 0.0249183 
MIMAT0000446 hsa-miR-127-3p 31.52 0.0307239 
MIMAT0001639 hsa-miR-409-3p 30.11 0.0234527 
MIMAT0000245

 

hsa-miR-30d-5p 28.01 0.0473656 
MIMAT0002890 hsa-miR-299-5p 26.41 0.0222157 
MIMAT0000737

 

hsa-miR-382-5p 23.28 0.0142089 
MIMAT0004814 hsa-miR-654-3p 22.63 0.0297285 
MIMAT0004695 hsa-miR-337-5p 20.58 0.0473656 

MI0013907 Hsv2-miR-H25 12.763 0.034151 

Table 2.2: List of miRNAupregulated in Müller stem cells undergoing Notch 
inhibition in the presence of bFGF. Expression is presented as percentage 

changes in cells treated with DAPT and bFGF, compared to untreated DMSO 
cultures. miRNAs are listed in ascending order alongside their respective p 

values. Accession numbers were taken from miRBase.org, n=4. 

http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000265
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000098
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004569
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004568
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0022861
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000646
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0003386
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0022862
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004689
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000245
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000737
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107%, whilst the addition of bFGF increased the levels of hsa-miR-204 by 

257% (Table 2.2). Illustration of the percentage changes, graphically, 

demonstrates the alteration within the miRNA profiles when ganglion 

maturation is favoured (Figure 2.26). These results have highlighted some 

potential targets that may contribute to developing protocols for RGC 

maturation of adult Müller stem cells, both in vitro and in vivo. The miRNAs 

enhanced using the RGC differentiation protocol included five miRNAs that 

were significantly upregulated in both conditions (Figure 2.27). These 

miRNAs included hsa-miR-204, hsa-miR-221, has-miR-222, hsa-221* and 

hsa-30d.  

Notably these were highly expressed under both conditions, their differences 

between the treatment with DAPT in the presence or absence of bFGF was 

not significant and demonstrated only a marginal decline with the addition of 

bFGF, with exception to hsa-miR-204 which doubled in its expression (Figure 

2.28). 
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Figure 2.26: The miRNA expression levels in Müller stem cells undergoing 
Notch inhibition, following microarray analysis. Graphical depiction of the 

miRNAs that elevated significantly as compared with untreated Müller stem 
cells, following Notch inhibition with DAPT in the presence of bFGF. In 
ascending order, left to right. n=4 ***p<0.001 **p<0.01; *p<0.05 
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+DAPT/ECM +DAPT+FGF/ECM 

Figure 2.27: miRNA screen in Müller stem cells following Notch 
inhibition in the presence or absence of bFGF. Venn diagram showing 

the number of differentially expressed miRNAs between Müller stem cells 
cultured with DAPT in the presence or absence of bFGF. Five miRNAs 
overlap in significance between the two treatment regimens and include, 
hsa-miR-204, hsa-miR-221, hsa-miR-222, hsa-221-3p and hsa-30d. n=4 
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Figure 2.28: Comparison between miRNA prevalence in Müller stem cells 
undergoing Notch inhibition in the presence and absence of bFGF. hsa-miR-

204, hsa-miR-221, hsa-miR-222, hsa-221-3p and hsa-30d overlap in their 
expression between the different treatment groups however, only hsa-miR-204 is 
markedly altered following  Notch inhibition in the presence of bFGF. DAPT=red, 
DAPT and bFGF=black. n=4 
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2.4. Discussion 

The principal objective of this chapter was to investigate molecular 

mechanisms involved in RGC differentiation of Müller stem cells, following 

Notch inhibition with the γ-secretase inhibitor DAPT (Hayes et al., 2007) and 

the addition of bFGF to cultured cells. 

The initial results demonstrated the regulatory activity of Notch1 on Müller 

stem cells, where its baseline expression was relatively high. Notch was 

detected at the protein level and was found in and around the nucleus 

indicative of the stem cell character of the Müller glia cell lines examined. 

The results also suggested that, similar to that seen in ESCs and other 

progenitor populations, Müller stem cells are under the control of Notch 

signalling. This was inferred by observations that downregulation by DAPT 

led to decreased expression of Hes1 at both the mRNA transcript and protein 

levels. Brn3b, an early marker of RGC development, was also markedly 

upregulated following Notch inhibition, suggesting phenotypic alterations 

leading to expression of RGC markers. This effect was also seen with the 

addition of bFGF. Iselt-1 mRNA was also increased with DAPT treatment, 

providing further evidence of RGC differentiation. Neurite outgrowth was also 

seen upon Notch inhibition indicative of the morphological impact that DAPT 

treatment had on cellular cultures by promoting neurogenesis. 

Following initial experiments, the array data highlighted numerous miRNAs 

whose expression profiles had altered following Notch inhibition. The 

significant upregulation of miRNAs in DAPT treated Müller stem cells suggest 

the emergence of novel targets under the direction of the Notch pathway. A 

number of miRNAs were identified, and are discussed below in relation to the 

Notch pathway and their potential roles in Müller stem cell progenicity. 

hsa-miR-204, a tumor suppressor miRNA, has been reported to play a 

pivotal role in the differentiation of human cardiomyoyte progenitors, as it has 
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been shown to coordinate the beating action of mature cardiomyocytes. 

These cells, like human Müller stem cells, are unable to regenerate their 

native tissue in vivo following injury infarction of the myocardium. Forced 

inhibition of miR-204 in cardiac progenitors in culture promoted proliferation 

instead of differentiation. This suggests that miR-204 is a driving regulator of 

differentiation and proliferation in progenitor cells. The study also showed 

that activating the transcription factor 2 (ATF-2), a member of the CREB 

family and a basic leucine zipper, promotes proliferation of cardiomyocyte 

progenitors. One role of miR-204 was to target ATF-2, subsequently 

preventing cell cycling of cariomyocyte progenitors (Xiao et al., 2012). 

In the medaka fish miR-204 has been shown to regulate various aspects of 

ocular development. Inhibition of miR-204 during development resulted in 

microphthalmia, as well as irregular dorso-ventral retinal patterning. Studies 

also demonstrated that miR-204 targets Meis2 and indirectly Pax6, which are 

upregulated when miR-204 is ablated. This miRNA has also demonstrated its 

expression in mature RPE, cilliary body, lens and neural retina (Conte et al., 

2010).These studies suggest that miR-204 is an important differentiating 

factor in ocular development, with a similar role in cardio progenitors, and 

may provide a clue for its possible role within differentiating Müller stem cells. 

The relationship between Notch and miR-204 may stem from the possible 

involvement of ATF-2. Kalinichenko et al reported that haplo-insufficiency 

((+/-) morphants) of the fork head box f1 transcription factor (Foxf1) in 

embryonic mice led to depleted expression of Notch-2 and its downstream 

target Hes1 in pulmonary tissue. Moreover, other transcription factors were 

also diminished in these morphants including SP-3, B lymphoma Mo-MLV 

insertion region 1 homolog (BMI-1) and ATF-2.These all act on cell cycling 

factors which promote the inhibition of self-renewal, and have been shown to 

prevent ageing in neurons, as well as other tissue types, specifically acting 

on p53 and p21Cip1 (Chatoo et al., 2009). The action of Foxf1 appears to 

trigger and enrich the transcription of Notch2. It directly binds to the murine 
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Notch-2 promoter, which in turn maintains ATF-2 levels to promote an 

undifferentiated and proliferative state. However, this study poses the 

question of whether miR-204 mediates the convergence of the Notch 

pathway and ATF-2 transcription and hence its activity on cell cycling in 

Müller stem cells.  

Array analysis of lens epithelial cells found in opacified human posterior lens 

capsules identified mothers against decapentaplegic-4 (SMAD4) expression 

as a target for repression by hsa-204-5p. This miRNA also prevents 

transduction of the transformation growth factor-beta (TGF-β)/SMAD 

signalling pathway (Wang et al., 2013). This suppressive action prevented 

the progression of TGF-β induced epithelial-mesenchymal transition (EMT) 

and restoration of E-cadherin expression favouring an adherent and 

differentiated phenotype. This repressive molecule may impact on both 

signalling pathways to differentiate its role in different tissues. 

Five members of the miR-30 family were enriched in Müller stem cell cultures 

following Notch inhibition, specifically hsa-miR-30a, hsa-miR-30c, hsa-miR-

30e and hsa-miR-30d. The miR-30 family has been implicated in 

tumourogenesis and the progression of EMT in a number of cancers, and 

during development. The majority of research has found that this miRNA 

family is down regulated, permitting the expression of characteristic EMT 

factors including, Snail1, N-cadherin, vimentin and Beta-catenin. EMT within 

human pancreatic epithelial cells (Joglekar et al., 2009) and murine 

hepatocytes (Zhang et al., 2012) is mediated by different components of the 

miR-30 family. Hepatocyte TGF-β-1 induced EMT is prevented by the 

targeting of Snail1 by miR-30b. This suppression supports the expression of 

E-cadherin, promoting adherent and differentiated phenotypes. Alongside 

restoration of E-cadherin expression, mesenchymal bHLH transcription 

factors are repressed, and include Twist and Zinc finger E-box-binding 

homeobox (ZEB) 1 and ZEB2 factors. ZEB1 has been implicated in the 
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Notch pathway by mediating the transcription of mastermind-like proteins 

(MamL) and subsequent transduction of Notch ICD in pancreatic 

adenocarcinoma (Brabletz et al., 2011). The miR30 family also appears to 

modulate Notch via the Delta-like 4 (DLL4) ligand in lymphatic endothelial 

cells, inhibiting neovascularisation in sarcomas (Bridge et al., 2012). In this 

study, miR-30d was significantly elevated following DAPT treatment in the 

absence and presence of bFGF, suggesting that Müller stem cell 

differentiation into RGC may be controlled by 30d. This is further supported 

by a report that determined that miR-30d is upregulated through the 

repression of the PI3K/Akt pathway in renal cell carcinoma cells, and 

suggests that Notch inhibition is followed by suppression of this proliferative 

pathway (Wu et al., 2013). 

The miR-30 family is also closely associated with the miR-29 family which 

appears to regulate cellular senescence through their targeting of B-Myb, 

blocking its translation to Myb-related protein B2 (MYBL2). B-Myb is an 

oncogene, positively promoting proliferation and upregulating the expression 

of c-Myc. Senescence progresses at the G0/G1 boundary by repressing E2F 

binding to the promoter of B-Myb (Bennett et al., 1996). Its mRNA transcript 

is also disrupted by miR-29 and miR-30, hindering its translation (Martinez et 

al., 2011). These groups of miRNAs may therefore play a role in cell cycling 

in Müller stem cells and may be under the regulation of Notch. A possible 

association between these families and Notch may involve the 

Retinoblastoma-like protein 1 (p107).This factor is involved in the prevention 

of B-Myb transcription, through its association with E2F-4. p107 determines 

the number of proliferative neuron progenitors in the mouse brain. In vitro 

assessment of p107-null murine brain populations demonstrated elevated 

amounts of Notch-1 and exhibited an enhanced capacity to form 

neurospheres (Vanderluit et al., 2004). Inhibiting Notch signalling effectors in 

Müller stem cells may enhance mi-R-30 and miR-29 by mediating the 

production of p107.  
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The upregulation of both hsa-miR-99a and hsa-miR-125b in Müller stem cells 

undergoing Notch inhibition presents a novel chromosome cluster that may 

be under the regulation of the Notch cascade. The miR-125b cluster on 

chromosome 21 includes miR-125b, miR-99a and miR-letc. miR-125b was 

upregulated in differentiating B lymphocytes that were actively dividing within 

germinal centres. Furthermore, ectopic miR-125b expression prevented the 

terminal differentiation of B lymphocytes (Gururajan et al., 2010). This 

suggests that this miRNA is involved in diversification rather than 

differentiation, and may play a similar role in the maturation of Müller stem 

cells towards a ganglion fate. 

Like miR-204 and the miR-30 family, miR-99a is another miRNA upregulated 

in Müller stem cells following DAPT treatment, and appears to be related to 

EMT and TGF-β in cancer development. miR-99a acts in murine mammary 

cells promoting EMT and TGF- β expression. This miRNA has been also 

shown to  prevent cell cycling in human glioblastomas in vitro and in vivo. Its 

action inhibits the PI3k/Akt pathway arresting cell growth. This increased 

expression leads to apoptosis, suggesting that it has an anti-tumourgenic 

role in these cells (Chakrabarti et al., 2013). 

miR-99a has shown to inhibit proliferation in endometrioid cell carcinoma by 

negatively regulating the expression of mammalian target of rapamycin 

(mTOR) kinase. This factor acts to induce cell division but can lead to cancer 

if deregulated. miR-99a alongside miR-100 and miR-199b were 

downregulated in these cancer tissues, with miR-100 being identified as a 

biomarker for this type of malignancy (Torres et al., 2012). Moreover, miR-

99a/100 caused apoptosis in oesophageal squamous cell carcinoma by also 

targets mTOR (Sun et al., 2013). Upregulation of miR-99a was not enhanced 

by DAPT treatment in the presence of bFGF. However, miR-100 and miR-

199b were upregulated. It is therefore suggested that miR99a is initially 

promoted by Notch deregulation arresting cell cycling, although miR-100 and 
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miR-199b may be required for further mTOR ablation to provide a cell state 

suitable for Müller stem cell differentiation. 

miR-100 is another tumour suppressive factor which reduces cell proliferation 

in a number of human cancers including ovarian (Peng et al., 2012), bladder 

(Oliveira et al., 2011) and acute myoleid leukemia (Zheng et al., 2012).  The 

targets of this miRNA are predominantly factors involved in mitosis and one 

such agent is polo-like kinase 1 (PLK1) which is a serine/threonine kinase 

that controls the checkpoints in the cycling process. Though a regulatory role 

of Notch has yet to be demonstrated by miR-100, it can be suggested that 

the role of this miRNAs in Müller stem cells is one of  Notch pathway 

inhibition serving to reduce cell proliferation.  

Unlike some of the previous miRNAs, miR-199b-5p has been shown to 

negatively regulate Hes1 and the Notch signalling pathway by attenuating its 

activity in MB cells. It acts by suppressing their mitotic ability as well as their 

capacity to anchor together to promote paracrinal growth (Garzia et al., 

2009). Therefore the presence of high levels of this miRNA in Müller stem 

cells undergoing Notch inhibition supports the assumption that differentiation 

occurred and that Müller stem cells do in fact maintain their potency via the 

Notch pathway.  

miR-222 was enriched in Müller stem cells following Notch inhibition in the 

presence and absence of bFGF. This miRNA contributes to neural 

regeneration of dorsol root ganglia (DRG) neurons following injury and 

permits neurite branching and outgrowth by targeting the phosphatase and 

tensin homolog deleted on chromosome 10 (PTEN). It has been postulated, 

by the same study, that miR-222 may regulate the phosphorylation of the 

cAMP response element binding protein (CREB) through PTEN and c-Jun 

activation, which may enhance miR-222 expression and therefore disruption 

of PTEN lead to DRG regeneration (Zhou et al., 2012). The association 

between the Notch pathway and this miRNA may converge on the activity 
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between Notch-1 and PTEN. It has been reported that in murine thymocytes 

Notch-1 is able to regulate PTEN via the induction of Hes1 (Wong et al., 

2012). PTEN appears to prevent neural regeneration which is reversed by 

miR-222 action. However, Hes1 also prevents PTEN activity in thymocytes 

promoting proliferation rather than differentiation. This may suggest the 

activity of miR-222 within the Müller stem cell population following Notch 

downregulation, and therefore Hes1 may behave independently on PTEN 

from Notch. Downregulation of Notch and Hes1 may allow PTEN to repress 

the PI3K/Akt pathway in Müller stem cells. This could alter the cellular 

progenicity, favouring a non-proliferative state. Further investigations into the 

expression of PTEN and CREB by Müller stem cells following Notch 

repression, may identify novel pathways involved in Müller stem cell cycling 

and differentiation in humans. 

hsa-miR-100, hsa-miR-221, hsa-miR-222 and hsa-let-7i have been shown to 

be enriched in human umbilical vein endothelial cells (HUVECs) undergoing 

senescence, indicative of their potential role in maintaining an anti-

proliferative, differentiated state of these cells (Dellago et al., 2013). These 

miRNAs were consistently upreguated in Müller stem cells following 

treatment with DAPT. Depending on the tissue the miR-221 family appears to 

have an opposite activity on proliferation in different forms of cancer. 

Prostate cancer cells have reduced levels of cell cycling with elevated miR-

221 expression (Schaefer et al., 2010), while miR-221 acts by promoting 

cellular cycling in neck cancers (Nurul-Syakima et al., 2011). The importance 

of miR-221 in angiogenesis in zebrafish has been shown by its targeting of 

cyclin dependent kinase inhibitor 1b (CDKN1b) and phosphoinositide-3-kiase 

regulatory subunit-1 (pik33r1). It was also shown that Notch had a 

suppressive role on miR-221 activity during controlled angiogenic maturation 

in this species (Nicoli et al., 2012). The repressive action of Notch suggests 

that its inactivation would increase miR-221 presence, although its exact role 

in Müller stem cell differentiation is questionable. However it could be 
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suggested that its role may involve regulation of cell cycling and in this 

instance prevent proliferation.   

Another interesting miRNA that increased following Notch inhibition is hsa-

miR-23a. This miRNA has been found to target Hes1 and has demonstrated 

a high complementarity to the mRNA sequence upstream of the Hes1 STOP 

codon. This suppressive action in human NT2 cells leads to neural 

differentiation upon the addition of retinoic acid (Kawasaki and Taira, 2003). 

This activity may be important for the induction of Müller stem cells 

differentiation following Notch inhibition. 

Profiling miRNAs of Müller stem cells that have undergone standardised 

RGC differentiation by Notch downregulation and bFGF showed significant 

elevations for hsa-miR-204, hsa-miR-100, hsa-miR-151-5p, hsa-miR199b-5p 

and let-7i when compared to untreated Müller populations. Although the 

majority of the miRNAs enriched with this treatment are similar to DAPT 

expression levels, their amounts are considerably higher. The overlapping 

miRNAs expression levels between the two treatments are miRNAs involved 

in regulating proliferation. Crucially the induced increase of let-7i expression 

in Müller stem cells is indicative of RGC development, which has been 

reported to be present within mature murine RGC populations in vivo 

(Loscher et al., 2007).  

hsa-miR-151-5p has been investigated as a potential biomarker for 

metastatic form of breast cancer, where low expression signifies a reduction 

in metastatic ability (Krell et al., 2012). Treatment with DAPT in the presence 

of bFGF increased miR-151 expression in Müller stem cells. This suggests 

that its role in RGC maturation is negatively regulated by Notch, which may 

normally act to suppress its anti-proliferative action, similar to its role in 

breast cancer.  
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The addition bFGF did not increase the level of Notch activity as had been 

suggested by Faux et al, where bFGF encouraged Notch activity in 

neuroepithelium (Faux et al., 2001). This did not apply to Müller stem cells 

and in fact, at the mRNA and protein levels of Hes1 depletes while miRNAs 

associated with anti-proliferate roles are substantially upregulated with 

treatments involving bFGF. The role of bF6F on miRNAs and expression is 

not well understood and current research has been addressed to vascular 

development, in which it has been observed that  bFGF elevation is followed 

by  the subsequent promotion of mature miR-16 and miR-424 in endothelial 

cells (Chamorro-Jorganes et al., 2011).  

In conclusion, a number of miRNAs have been shown to be elevated 

following Notch inhibition. A number of these miRNAs are reported to be 

related to inhibition of proliferation in oncogenic cells. They may represent a 

novel cohort of RNA molecules which are regulated by Notch or converge on 

its signalling pathway at different points. This is represented in a schematic 

diagram suggesting the possible role of various miRNAs on the differentiation 

and/or maintenance of progenicity of Müller stem cells (Figure 2.29). 

Further studies are warranted to determine the possible targets of the 

miRNAs and their relationship to Müller stem cell plasticity to confirm their 

function within this population. This will aid their capacity to differentiate 

towards a ganglion cell fate. Investigations would involve ectopically 

expressing selective miRNAs, or downregulating these to study the 

phenotypic alterations induced. Evaluation of miRNAs contained within 

undifferentiated and differentiated Müller stem cells may also provide novel 

safer strategies for allographic transplantation. These molecules have the 

potential to alter the in vivo senescent state of Müller stem cells and to 

promote neural differentiation and retinal regeneration following damage. 
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Figure 2.29: Proposed association of the Notch signaling pathway 
and upregulated miRNAs in Müller stem cells, following Notch 
inhibition in the presence and absence of bFGF. A schematic 
illustration of Notch targeting by miRNAs, identified by microarray analysis 
of differentiated Müller stem cells, based on the current literature. 
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Chapter 3: Biomaterials and their Potential 

Application for Retinal Cell Transplantation 
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3.1. Introduction 

Biomaterials are defined as substances that interact with any biological 

matter. The science of biomaterials has developed rapidly and embodies a 

multidisciplinary field, which at present involves the interplay between 

biology, chemistry and medicine. Biomaterials can be sourced from nature or 

synthesised substances using a number of laboratory-based processes, and 

are frequently adapted for clinical use. Within the remit of medical research, 

biomaterials are often used for tissue engineering which aims to enhance or 

maintain the physiological function of cellular populations or tissue (Kumbar 

et al., 2006). In order to fulfil their regenerative role, biomaterials need to be 

completely biocompatible for their use within a clinical setting. Currently 

biomaterials are used to deliver drugs for internal therapeutic release into the 

body, prolonging their bioactivity (Ariga et al., 2006, Chavanpatil et al., 2006, 

Gunatillake et al., 2006).   

Research into the scope of biomaterial applications has led to identification 

of their potential use as transplantable materials, supporting the delivery of 

grafted cells into a large variety of tissues. Engineered biomaterials can also 

be made to support cells to enhance their growth, and in the case of stem 

cells their maturation in vitro. Both these supportive roles centre on the ability 

of biomaterials to mimic the native extracellular matrix (ECM). Understanding 

the nature of native cell-matrix interactions, equips bioengineers with clues 

as to how to design and process appropriate materials for cellular grafting 

approaches. The main focus of research in this field has been to model the 

innate ECM of different tissues, and to identify substances that permit the 

highest degree of synergy with the local tissue, yet remain immunologically 

inert (Morais et al., 2010). The biomaterials designed for such tasks include, 

decellularised ECMs, biohybrid blends and completely synthetic-based 

materials, all of which need to be tailored to ensure cellular homeostasis 

(Lutolf and Blau, 2009, Place et al., 2009).   
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Regeneration of ocular tissues would benefit from the use of biomaterials 

that are engineered to improve the function of residual dystrophic cells or to 

replace damaged cells. The loss of functional RGCs during glaucoma 

progression highlights a retinal dysfunction that would gain from the use of 

suitable materials for cell replacement. Based on the anatomy of the retina 

and the surrounding tissues, a scaffold to support grafted cells would 

facilitate their delivery uniformly across the inner retina, which cannot be 

achieved by injections of cellular suspensions. 

3.1.1. Types of Biomaterials 

3.1.1.1. Natural biomaterials 

Natural biomaterials have immense potential for biomedical application as 

they are sourced from natural materials and interact with cells in vitro in a 

similar manner as that occurring in vivo. Reconstituted ECM proteins have 

been used as 2D protein coats on culturing surfaces, and include collagens, 

fibronectin, laminin and Matrigel (Nojehdehian et al., 2010). These proteins 

are able to provide biocompatible artificial environments, supporting 

adherence, cellular growth and survival in vitro. However, in order to provide 

conditions for cellular grafting, these natural biomaterials need to be adapted 

into 3D topologies.  

Natural hydrogels for culture have been developed from ECM derivatives 

including, collagen, fibrin (Eyrich et al., 2007), hyaluronic acid (Masters et al., 

2004), Matrigel, chitosan, silk and alginate (Barralet et al., 2005). Some 

natural-based materials have been used to build scaffolds and include 

xenogenic proteins such as silk fibroin, chitosan, aliginate, cellulose and 

agarose (Prewitz et al., 2012). The commonality between these natural-

based materials is that they are similar to the native ECM, in structure and 

can be induced to form different structures, ranging from hydrogels to fibrous 

scaffolds. 
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Hydrogels of type I collagen appear to retain vital features attributed to the 

native structure of this molecule, and demonstrates the capacity to support 

the delivery of aortic interstitial cells (Saha et al., 2007, Butcher and Nerem, 

2004). Collagen hydrogels are also used regularly in wound healing studies 

and have shown their ability to support fibroblast survival and proliferation. 

Under culture conditions, fibroblasts have shown to remodel and adapt their 

3D collagen matrix, analogous to their in vivo action (Hadjipanayi et al., 

2009, Sethi et al., 2002). In addition, collagen-based hydrogels have been 

used to model different body environments in order to assess various 

treatments on cellular function. To that end fibroblasts embedded in collagen 

hydrogels have been examined for their ability to contract gels under 

different culture stimuli, including the presence of mitogens, drugs or other 

ECM additives (Nguyen and West, 2002).  

Natural biomaterials have also been used in electrospinning processes to 

produce 3D matrices. Materials used for this purpose have included collagen 

(Matthews et al., 2002), gelatine (Salifu et al., 2011), elastin (Buttafoco et al., 

2006), fibrinogen (McManus et al., 2006) and silk (Min et al., 2004). Silk 

fibroin has also been shown to possess some positive biomedical traits when 

electrospun, and has been found to promote cellular adhesion and 

proliferation (Wang, 2004, Venugopal et al., 2008), indicative of its potential 

for clinical use.  

Cellulose acetate (Zhang and Hsieh, 2008) and Hyaluronic acid (Ji et al., 

2006), are polysaccharides that can be electrospun to yield fibres for cellular 

scaffolds.  Hyaluronic acid (HA) has been widely used in biomedical 

therapies including ophthalmology, surgery and drug delivery.  HA has a very 

large volume to surface ratio making it ideal for incorporating therapeutic 

agents into its framework. 
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3.1.2. Collagen scaffolds 

Choosing an appropriate biomaterial to engineer cellular scaffolds for 

regenerative medicine requires the material to be readily available, easy to 

process and suitable for transplantation to human subjects. Collagens have 

been suggested to be suitable proteins to fulfil this strategy. Due to the good 

knowledge of their synthesis and function within the body, collagens 

constitute an excellent material for the manufacture of 3D scaffolds. They 

represent a group of naturally occurring proteins that impart support and 

mechanical strength to all cells and tissues in the body and are essential 

components of the connective tissue, to which cells adhere. The word 

collagen derives from the Greek word meaning glue, which is a suitable 

description for both its form and function (Bhattacharjee and Bansal, 2005).  

Collectively, collagens have a very complex molecular structure. Fibrillar 

collagens exhibit distinct hierarchical levels of amino acid organisation and 

association. These are similar in molecular structure although their 

configuration determines their ultimate structure and function. Type I, II, III, V 

and XI collagens are fibrillar in their arrangement and can assemble into 

fibrils based on their basic, primary structure. Fibrillar collagen structures are 

based on different combinations of 10 polypeptide chains; known as α-

chains. These chains fold, first into transient tight left-handed secondary α-

helices and finally into its triple helical tertiary structure, when secreted into 

the mature ECM (Ottani et al., 2002). The native structure of type I when 

extracted from tissue retains its tensile strength and has the ability to be 

remodelled ex vivo. Type I collagen therefore represents an attractive natural 

biomaterial to consider when investigating scaffold development for 

therapeutic cell delivery. 

Collagens within tendons form long string-like structures that provide tensile 

strength, collagens contained within the skin give elastic and mechanical 

strength, and collagen fibrils found in bone aid the calcification and 
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maintenance of this tissue. To date, 28 types of collagens have been 

characterised, each with distinct molecular similarities and diversities, 

containing 42 different sub-types of polypeptide chains (Gordon and Hahn, 

2010, Hulmes, 1992). 

Type I Collagen is the most ubiquitous form of collagen present in the human 

body and can be found in almost all tissue types. It constitutes the 

predominate ECM protein in tendons, bone, and dermis, illustrating the range 

of tissues and formations type I collagen undertakes within the human body 

(Di Lullo et al., 2002). In experimental in vitro studies, type I collagen is 

commonly used as a protein coating for culture flasks to promote cellular 

adhesion. It is also used in hydrogel form to support the formation of cell-cell 

interactions in vitro (Franke et al., 2007, Salchert et al., 2005).  

Collagen can be purified from various tissues types by means of enzymatic 

or acidic treatments. These agents act by removing the covalent crosslinks 

between collagen fibrils within the mature ECM. Purified forms of collagen 

may be remodelled into diverse forms with different properties, such as 

sponges, nanofibres and hydrogels, or can be blended with other polymers, 

either natural or synthetic (Rajan et al., 2006). Purified collagen can provide 

cellular support which allows collagen matrices to act as structural cellular 

scaffolds.  

The method of extraction and source of type I collagen, and collagens as a 

whole can influence the mode of processing. This can also modify the 

ultimate structure produced which can play a key role in the biocompatibility 

of the structure made. 

Collagen can be solubilised in acid (Kuznetsova and Leikin, 1999), neutral 

salt (Gross et al., 1955) or by proteolytic solutions (Abou Neel et al., 2013). 

These extraction methods alter the molecular structure of collagen in 

different ways. Proteolytic extraction cleaves the terminal peptides of the 

collagen fibrils, which modifies the rate at which fibrils form in vitro, however 
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this method does not remove the capacity for fibrils to form. In contrast, acid 

solubilisation does not cleave the terminal peptides from collagen fibrils, this 

ensures that stable covalent crosslinks are able to form in vitro, with better 

structural and mechanical integrity as compared to proteolytic extraction.  

All extraction methods of collagen break the bonds between the complex 

networks of fibrils within native tissue. Although some alter its structure 

differently, they all destroy the innate structure which prevents the 

remodelling in vitro to be completely comparable to native collagen and is in 

fact collagen in the form of gelatine. The self-assembly of reconstituted 

collagen can influence the morphology of the fibrils produced and in turn the 

hierarchy of fibrillular structure. Reconstituted collagen in solution is unlike 

the collagen found in tissue, which is completely insoluble. Where this 

chapter describes collagen in solution, the protein described is collagen in its 

soluble form (gelatine). 

3.1.3. Electrospinning 

Electrospinning has become a useful tool for manufacture cellular scaffolds 

and has been employed to remodel type I collagen fibres. This process has 

been used to enhance the functionality of various biomaterials through the 

addition of bioactive agents, either within or outside the fibrous network. 

Bioactive agents are aimed to facilitate cellular adhesion, maturation, 

proliferation and neurite outgrowth (Hodgkinson et al., 2007). Electrospinning 

involves the application of a strong external electrical field to a charged 

polymer solution, which is then fed to a grounded collecting target via a 

needle tip (Figure 3.1A) (Matthews et al., 2002). Electrospinning is widely 

used in tissue engineering and can be refined to produce fibres of diameters  
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Figure 3.1: The Electrospinning process A) Diagrammatic representation of 
the rig used for the electrospinning process illustrating the set up of the 
equipment where the polymer solution is drawn by a high voltage device, (HPV) 
to a grounded target. B) A slow-capture image of a Taylor cone jetted from a 

needle tip at the initiation of electrospinning, and an illustration of the 
entanglement phenomenon which enables fibres to be drawn onto a surface.  
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100nm or less (nanospinning), which can enhance its application in cell 

therapies to treat different tissue degenerations. Scaffolds developed by 

electrospinning have demonstrated a great potential in biomedical 

applications such as wound dressing, drug delivery and enzyme 

immobilisation (Sill and von Recum, 2008).  

During the spinning process, a stable electrospinning jet is formed at the tip 

of the needle and is termed Taylor cone (Figure 3.1B). The Taylor cone and 

subsequent fibre formation is driven by the application of a high electrical 

potential between the polymer solution and the grounded collector. This 

process was first described by Sir Geoffrey Taylor in his 1964 paper entitled 

‘Disintegration of Water Droplets’ in an Electric Field. The jet emerges from 

the charged surface of the needle and accelerates through the electrical field 

toward the grounded target. The fibres are bent whilst being drawn from the 

needle tip creating a web-like non-woven structure on the surface of the 

grounded collector. Deposition of fibres also relies on the rapid evaporation 

of solvent to enable the polymer to solidify efficiently (SL Shenoy, 2005). This 

network mimics a number of native visceral ECMs that have the potential to 

promote cell adherence and proliferation. The ECM supporting the nervous 

system ranges in dimensions depending on the tissue, however the retina 

contains fibres of 100-1000nm in width.  

Scaffolds built by electrospinning techniques can have different properties 

that result in a range of fibre thicknesses and morphologies. The structure 

and final thickness of fibres produced by this method is determined by 

several factors. The main parameters include the properties of the polymer 

solution, such as viscosity, elasticity, and the degree of surface tension. 

Additionally external factors can impose constraints on the spinning process 

and include the external electrical field strength, voltage, temperature and 

humidity. Collagen electrospinning creates a meshwork that resembles the 

physical structure of the innate ECM. The final structure of product, however, 
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can be influenced by extrinsic factors such as solvents and fixatives used to 

develop fibrous scaffolds. 

 Often studies focused on the production of collagen scaffolds for medical 

application have involved the development of gels or solid constructs such as 

powders or films, but these have failed to mimic the native in vivo properties 

of the ECM.  

3.1.3.1. Factors influencing the structure of collagen fibres 

produced by electrospinning 

Acetic and formic acid can be used as solvents for electrospinning collagen, 

although acidic environments can permanently destroy the topology of 

collagen fibres. Moreover, the slow evaporation rates of the acids and their 

strong affinity for collagen leads to the formation of wet, fused fibres which 

can eliminate the fibril structure impacting on its bioactivity. It is essential for 

some cell types to interact with matrices containing collagen fibre diameters 

akin to the native protein fibrils (20– 100nm in diameter) (Matthews et al., 

2002), to ensure adhesive cell-matrix properties. 

Collagen is also soluble in the chemical 1, 1, 1, 3, 3, 3 hexafluoro-2- 

isopropanol (HFIP) which can be used for electrospinning under similar 

parameters used with acid solvents. HFIP is extremely volatile and has a low 

affinity for collagen (J. A. Matthews, 2003), hence it is a suitable 

electrospinning solvent. Though very cytotoxic, cells have been shown to 

proliferate on scaffolds spun with HFIP and have been approved by the 

United States Food and Drug Administration (FDA). HFIP acts by partially 

denaturing the triple helix of native collagen but does not destroy its 

structure. HFIP itself, like collagen, has both highly hydrophobic and 

hydrophillic regions. It is thought that HFIP binds directly to collagen via 

hydrophobic and hydrophilic interactions, which act to support and divide the 

triple helices whilst in solution.  HFIP dissolves the crystalline structures 
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contained within the triple collagen helixes, and stabilises the collagen 

fibrillar structure (Doillon et al., 1997). This ultimately facilitates cellular 

affinity to the scaffold matrix.  

Naturally sourced biomaterials, including collagen, require stabilisation 

following spinning. This involves the formation of crosslinks between fibres to 

improve mechanical integrity. Collagen crosslinking occurs between two 

lysine residues, and can be induced by chemical or natural protein 

crosslinkers. 

Chemical crosslinking agents are widely used to cross link type Ι collagen 

are themselves very cytotoxic. This feature can lead to extensive 

inflammation within tissues, preventing the survival of grafted cells.  

Chemical agents used to crosslink collagen include aldehydes, epoxy 

compounds and isocyanates. They covalently couple neighbouring fibrils and 

target reactive moieties of collagen side chains.  The bonds formed may 

incorporate or retain derivatives of the agent used, for which degradation of 

the scaffolds may then lead to the release of agents that can be severely 

cytotoxic (Rothamel et al., 2005). 

Natural crosslinking agents have offered an alternative strategy for 

crosslinking collagen. Plant derived genipin and nordihydroguaiaretic acid 

are natural products that can be used as crosslinkers, and could pose no 

major concerns of inflammation, compared to other chemicals. Catalysts 

have also been explored as protein crosslinkers. An example of such an 

agent is 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), which 

associate with protein carboxylic groups to form o-isoacylurea structures. 

This results in the activated intermediate being attacked by a nucleophilic 

primary amino-group to form an amide crosslink. Isourea derivative of the 

applied carbodiimide is then eliminated and can be washed out (Everaerts et 

al., 2008). If washed sufficiently, carbodiimide-fixed scaffolds are non-

cytotoxic and are entirely permissive to cell attachment and survival. 
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Biomaterials crosslinked with carbodiimide are in general significantly more 

biocompatible than those crosslinked with agents such as glutaraldehyde 

(GTA). 

3.1.4. Plastic Compression 

Understanding and mimicking the spatial organisation of the native ECM is 

the ultimate aim of bioengineers when fabricating materials for potential 

transplantation. Hydrogels composed of type I collagen constitute a possible 

candidate for use in tissue regeneration techniques. However, in its 

gelatinous state they contain a large amount of water, making its use difficult 

in regenerative medicine. Whilst collagen gels do provide a meshwork of 

randomised fibrils, it lacks the essential tight packing of the fibres, making 

them inherently weak (Brown et al., 2005). Furthermore, cells grown within 

gels may react differently when compared to their native counterparts under 

in vivo conditions, and due to the stringent extraction processes, type I 

collagen can lose its native characteristics and form weaker and less 

extensive interactions with cells in vitro. Though modifications of 3D scaffolds 

have been made for culturing systems, they do not totally parallel the 

features of the original ECM (Tibbitt and Anseth, 2009). 

A novel method of hydrogel compression has been developed to overcome 

the above problems, which has been shown to improve the mechanical 

integrity and biomimicry of collagen. This process involves excluding the 

entire aqueous component of collagenous hydrogels. This results in the 

formation of randomised-tightly packed collagen fibrils reminiscent of the in 

vivo ECM. This process has been termed Plastic compression (PC) (Brown 

et al., 2005) (Figure 3.2). It involves applying a known weight to a collagen 

gel for a short period of time to remove aqueous components and avoiding 

the use of chemicals for crosslinking. The extent of crosslinking can be 

altered depending on the collagen concentration of the hydrogel. This 

protocol can be modified by creating a gradient between the mass applied,  
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Figure 3.2: Plastic compression of Collagen hydrogels. Following 
polymerisation of collagen hydrogels, 150g weight is applied to remove the 
aqueous component. This results in an extensive network of crosslinks between 
collagen fibres. The dehydration process involved collecting the gel between 
two nylon sheets supported on filter paper, and applying the mass onto the rat 
tail (RTT) type I collagen hydrogel for 5 minutes.  
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time for compression and the collagen concentration (Kureshi et al., 2010). 

This results in the formation of scaffolds with different properties that can be 

used for different applications. 

Factors affecting the PC process can alter the fibres created. The volume 

and spatial dynamics of the hydrogel at the start of polymerisation can 

change the density of collagen fibres within the final network. In addition, the 

temperature at the time of neutralisation can disrupt the rate of fibril 

polymerisation and lead to incomplete crosslinking. Compression weightsand 

time creates a dynamic gradient between scaffold elasticity and tensile 

strength. Specifically, longer periods and higher weight increase the number 

of crosslinks between collagen fibrils. Chemical factors influence the internal 

features of the hydrogel prior to neutralisation and centre on the 

concentration and the type of solvent used to dissolve the collagen. Acidic 

solutions of collagen can be made with acetic and hydrochloric acids which 

elicit different polymerisation features, and can ultimately alter the efficiency 

of neutralisation. Furthermore, the concentrations of collagen within the 

solutions also impact on the degree of polymerisation during neutralisation 

and crosslinking during compression procedures. Resulting fibres can be 

either extensively crosslinked, or weaker, with less stabilised fibrils, which 

can be appropriately adapted to target specific tissues.  

These modified collagen hydrogels have been widely used in translational 

research as platforms for cell or therapeutic agent delivery, tissue scaffolds 

for repair, and as in vitro models of disease. Compressed collagen gels have 

been used to culture human bladder smooth muscle cells within its structure 

whilst supporting urothelial cells on their surface (Engelhardt et al., 2010). 

The cell populations were able to thrive and form densely packed cell layers, 

suggesting that PC collagen is an adequate substrate for these cells and that 

it has potential for cell replacement therapy of diseased bladders. 

Furthermore, PC collagen structures have been used to culture corneal cell 
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populations. To date, limbal epithelial stem cells, taken from human corneal 

biopsies have been expanded on PC collagen substrates, where feeder 

fibroblasts have been directly seeded within the matrix (Levis et al., 2010). 

The compressed scaffolds are able to retain the population of fibroblasts and 

create a feeder layer of cells which is suitable for transplantation. This study 

revealed that collagen was able to support both types of cells whilst also 

developing the tissue architecture of the native cornea. 
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3.2. Objectives and Experimental outline 

This project aimed to determine the feasibility of constructing cellular 

substrates to deliver Müller stem cell-derived RGC precursors onto the inner 

retina. To create a biomaterial-based substrate for intraocular cell delivery, 

the scaffold would need to be able to withstand surgical manipulation, 

support migration of grafted cells to the site of degeneration, and allow cell 

integration and long-term survival. Lack of these features could heavily 

impact on the efficiency of successful transplantation. Furthermore 

understanding the development of cell-matrix synergy is key to develop 

suitable cellular scaffolds, and requires knowledge of the ultrastructural 

conformation of the matrix. This information can be used to determine the 

methods to prepare scaffolds using different biomaterials, enhancing the 

success of cell transplantation. On this basis, the following objectives were 

formulated: 

1. To develop protocols for constructing electrospun type I rat tail collagen 

scaffolds and to examine their physical properties. 

2. To develop protocols for constructing compressed type I rat tail collagen 

scaffolds and to explore their physical features. 

3. To compare the biological properties of electrospun and compressed 

collagen scaffolds. 

4. To compare the physical properties of electrospun and compressed 

scaffolds to facilitate in vivo transplantation. 

To fulfil the above objectives, the following experiments were performed: 

1. Investigation of the physical and chemical parameters needed for 

adequate formation of electrospun collagen scaffolds. This involved the 

use of different solvents, voltages, air gap distances and the use of 

different protein crosslinking agents. 
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2. Investigation of the physical and chemical parameters needed for 

adequate formation of compressed collagen scaffolds. This involved the 

use of different concentrations of collagen, volumes, and compression 

parameters. 

3. Assessment of the ability of electrospun and compressed collagen 

scaffolds to support cell adhesion, growth and differentiation in vitro. 

These experiments involved the investigation of scaffolds to promote cell 

viability, as determined by hexosaminidase assays, and by inducing RGC 

differentiation upon Notch inhibition and growth factor stimulation. 

4. Examination of the mechanical handling of scaffolds for transplantation 

purposes. These studies involved the physical handling of scaffolds, as 

well as the ability to pass them through a cannula for transplantation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 
 

3.3. Results 

3.3.1. Effect of different solvents on the formation of collagen fibres 

prepared by electrospinning methods 

Rat tail type I collagen was dissolved in either acetic acid or HFIP at a 

concentrations of 50mg/ml. The voltage used to draw fibres was 

standardised to ensure a continuous fibre was draw and collected. It was 

found that the voltage needed for this application ranged between 12-12.5kV, 

with an air gap distance to the grounded target of 15cm for the collagen 

solutions. The feed rate used for the electrospinning process of collagen 

ranged between 2 and 5 ml/hr. 

Under the above voltage conditions, fibres drawn from the solution 

containing acetic acid showed bleb formation (Figure 3.3). Fibres were drawn 

continuously and the ribbons formed were smooth, although large blebs were 

observed on the surface of the scaffolds, making them inappropriate for cell 

adherence. In contrast, collagen solutions made in HFIP, when electrospun 

under the same conditions used for spinning acetic acid solutions, produced 

smooth fibres without irregular blebbing on the scaffolds surface (Figure 3.3). 

3.3.2. Effect of Different Crosslinking Agents on the Maintenance 

of the Ultrastructure of Electrospun Collagen Fibres 

Crosslinking procedures were used to induce and maintain structural integrity 

of electrospun matrices. This investigation examined both physical and 

chemical methods of collagen crosslinking. Glutaraldehyde (GTA) vapour 

was used to chemically crosslink electrospun micro fibrils of collagen for 72 

hours in a sealed environment. Samples crosslinked with GTA vapour 

(Figure 3.4A ii) and EDC/NHS (Figure 3.64A iii) did alter in appearance, 

turning to a straw yellow colour from an initial brilliant white colour (Figure 

3.4A i), indicative of the fixative action of the  

A 
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Figure 3.3: Morphology of Electronspun collagen fibres using various 
solvents.  Triplicate phase-contrast images of rat tail type I collagen fibres 

electrospun from solutions containing 50mg/ml of collagen dissolved in either 
HFIP or acetic acid. The electrospinning parameters were 12kV and a 15cm 
air gap distance. Fibres drawn from a 22G needle for 1hr, HFIP solutions 
were continuous and smooth, whereas fibres produced from acetic acid 
solutions were irregular in morphology. Acetic acid also promoted bleb 
formation on the fibrillar surface possibly due to its slow evaporation rate, 
following fibre deposition on the grounded target. Scale bar= 50µm.  
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Figure 3.4: Effect of Crosslinkers on Electrospun collagen fibres: 
Scanning electron microscopy was used to examine the morphological 
structure of constructs produced by electrospinning. The micro-structures 
resulting from these crosslinking methods showed distinct fibre morphologies. 
A) Photographic images of the macroscopic features of electrospun collagen 
i) non-crosslinked ii) 15% GTA crosslinked and iii) EDC-NHS crosslinked 
collagen scaffolds. The fixation process with the different crosslinkers 
generated characteristic colour change in electrospun scaffolds. Scaffolds 
change from white (non-crossliked) to yellow (GTA) or yellow-brown (EDC-
NHS). This alteration in colour is typical of protein crosslinking and structural 
modification. B) Scanning electron micrographs of the microstructure of 
electrospun collagen matrices i) non-crosslinked, or crosslinked with ii) 15% 
GTA, iii) EDC and iv) EDC-NHS. GTA crosslinked collagen produced matrices 
with well-defined fibres, similar to those observed prior to crosslinking. 
However, EDC crosslinking treatments produced fibres that lacked porosity. 
EDC alone created matrices without well-defined fibrils, compared to non-
crosslinked and GTA treated collagen scaffolds. Fibres appeared to be fused 
when treated with EDC in both the presence and absence of NHS. Scale bar= 
10µm.  
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crosslinkers. Electron microscopic examination of the fibres obtained 

following GTA crosslinking indicated that on average, the fibres had a 

diameter of 1.03± 0.026µm and a thickness of approximately 128 microns 

(Figure 3.4B). 

The chemical 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) was 

used as a non-toxic substitute for GTA vapour. It acts as a benign catalyst 

and is generally used in combination with N-hydroxysuccinimide (NHS). This 

acts as an “amine-group” giving substrate and provides a reservoir of amine-

groups (-NH3) for protein crosslinking. However, use of EDC either alone or 

in combination with NHS caused solubilisation of collagen fibres when 

hydrated (Figure 3.4B iii and iv). Whilst with EDC alone some fibrous and 

porous structure remained (Figure 3.4B iii), addition of NHS caused total loss 

of the fibrous architecture (Figure 3.4B iv). This observation prevented the 

progression of this work onto scaled up culturing of Müller stem cell-derived 

RGCs for transplantation. 

3.3.3. Standardisation of methods to develop compressed collagen 

scaffolds 

Ultra-thin collagen scaffolds were produced by compression of collagen 

hydrogels. Acidic solutions of collagen were neutralised with sodium 

hydroxide. Neutralisation was performed at room temperature and was 

indicated by colorimetric alteration of the acidic solution, from straw yellow to 

indigo-pink with the addition of sodium hydroxide (Figure 3.5A). After 

neutralisation, hydrogels were poured into titanium moulds and incubated at 

37°C for 30 minutes to polymerise. Collagen hydrogels were then subjected 

to compression for 5 minutes under 150g/collagen hydrogel to remove their 

aqueous components. Scaffolds were then floated into PBS. To design 

suitable scaffolds for retinal transplantation, it was necessary to take into 

account various parameters required for safe and practical injection of 

cellular scaffolds into the eye. Delivery of ocular transplants would require  

C D C 
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Figure 3.5: Physical appearance of collagen hydrogels. The figures illustrate 
the distinctive appearance of collagen hydrogels prior to compression A) 
collagen suspensions following neutralisation with sodium hydroxide; acidic 
suspension (left) and alkaline suspension (right) as visualised with phenol red. 
B) polymerised hydrogels following incubation of neutralised solutions at 37ºC 
for 30 mins. Titanium rings were used to cast collagen hydrogels.  
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transplantation through conventional sclerotomies formed during vitreoretinal 

surgery, no larger than 18G in size (lumen size of 0.64mm). Parameters 

used to produce compressed collagen scaffolds were set in order to achieve 

their passage through an 18G cannula. These included the use of hydrogel 

volumes of 300μl, cast in 1 cm moulds and concentrations ranging from 

0.75mg/ml-2mg/ml. Both excessive and moderate neutralisation prevented 

polymerisation of hydrogels, giving the appearance of stable hydrogels. 

However, these hydrogels were structurally weak and rapidly lost stability 

when physically manipulated. It was therefore determined that a reduced 

amount of stable crosslinks had been formed between the collagen 

molecules. Compression of these gels resulted in thinner mats with larger 

diameters, suggesting low quantities of collagen fibres per unit of area of 

scaffold. 

The surface of the scaffolds observed under low magnification phase-

contrast microscopy showed the meso-structure with an imprint of the 

compression materials (Figure 3.6A). Microscopic examination using high 

magnification showed an ultrastructure composed of a closely packed 

network of collagen fibres (Figure 3.6B). Fibres produced by PC are on the 

nano-scale and exhibit native dimensions with an average diameter of 

0.75±0.042µm. Thicknesses of collagen fibres produced by compression of 

Hydrogels prepared at different collagen concentrations resulted in 

consistent widths of approximately 20μm (Figure 3.6B).  
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  Figure 3.6: The Macrostructure and Ultrastructure of Plastic Compressed 
(PC) Rat tail type I Collagen hydrogels. The structure of the collagen hydrogels 
following compression recorded under A) phase-contrast illumination in PBS, for 
three concentrations of collagen, with an aerial perspective (top three images) 
and  cross sections of scaffolds embedded in OCT (20 micron transverse 
sections) (bottom 3 images). Scale bar= 100µm. B) Scanning electron 

micrographs of decreasing, left to right, collagen concentrations depicting the 
ultrastructure within PC collagen constructs and the crosslinks formed between 
fibrils (white arrows). Scale bar 200nm. C) Transmission electrograph of native 
type I collagen, scale bar= 100run (taken from Bruns R et al, 2010). 
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3.3.4. Comparison between the Light Absorbent Properties and 

Porosity of Electrospun and Compressed Collagen Scaffolds 

Collagen fibres produced by either compression or electrospinning were 

studied for porosity or area fraction of the pores, and optical density. These 

features may help to establish the physiological functionally of the scaffolds. 

Scaffolds were examined for their suitability for cell adhesion, whilst 

determination of their optical density was used to assess light absorbance 

and their ability to facilitate light passage onto the retina. The porosities 

measured using threshold set (binary black and white) SEM images in 

imageJ, indicated a significant difference between EDC-based methods and 

GTA vapour (Figure 3.7 A-C) with none or very few pores being identifiable 

in EDC scaffolds, whilst GTA crosslinked scaffolds had an average pore size 

of 4.75µm (Figure 3.7 E). Whilst EDC produces matrices that are able to 

undergo culturing systems, it may be assumed the degree of cellular affinity 

would be lower in these systems. The degree of porosity observed in 

compressed scaffolds was on average 50% of the surface area, with pore 

size averaging 475nm signifying the degree of mesoporosity and the size of 

pores being markedly smaller and higher in occurrence compared to 

electrospun scaffolds (Figure 3.7 E and F). Scaffolds that are suitable for 

eventual transplantation into the eye ideally should be transparent. To this 

end, the optical density of the scaffolds was determined within a range of 

350nm-750nm using a spectrophotometer. The extent of visual light 

absorbance by the different scaffolds was negligible, indicating no hindrance 

of visual light transmission. No significant difference was observed between 

the different scaffolds (Figure 3.8 A and B). This finding suggests that both 

processes are able to create scaffolds which allow transmission of light and 

would promote light passage onto the retina, following transplantation. 
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Figure 3.7: Physical Properties of Electrospun and Compressed collagen 
fibres. Constructs that are suitable for eventual transplantation into the eye, need to 

allow cell adhesion, influenced by porosity and pore size (red arrow), as well as 
permitting the passage of light. Porosity was measured from electron micrographs 
and imageJ software, where average pore size and area fraction was determined 
over the whole surface area, through the conversion of SEM images to black and 
white binary figures. Porosity levels were measured for A) 15% GTA, B) EDC, C) 
EDC+NHS electrospun scaffolds and D) compressed collagen scaffolds. Pore 

numbers were sparse for scaffolds processed with EDC treatments. Analysis of 
pore E) number and F) volume showed that the size when present was greater in 

EDC matrices than GTA crosslinked scaffolds and compressed scaffolds. This 
suggests that the original distance between the fibres may have been large, prior to 
fusion. GTA and compressed collagen scaffolds generated small pores with high 
frequencies. However, compressed collagen matrices had markedly higher pore 
density, as well as smaller sizes. (Scale bar=10µl) 
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  A 

B 

Figure 3.8: Optical Properties of Electrospun and Compressed collagen fibres. 
Constructs that are suitable for eventual transplantation into the eye, need to permit 
the passage of light through, for which we assessed optical density as an indicator of 
this function. The optical density of the various collagen scaffolds was determined 
over a range of 350nm-750nm using a spectrophotometer. The extent of visual light 
absorbance by A) electrospun scaffolds was negligible, indicating no significant 

hindrance of visual light absorbance. However, the degree of absorbance observed by 
B) compressed collagen fibres did demonstrate an increased level of absorbance 

within the shorter wave lengths (between 350-575nm)which indicates some 
absorption in the blue-green range of the visible spectrum.  
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3.3.5. Ability of Collagen Scaffolds to Support Cell Adhesion, 

Growth and Differentiation 

Following examination of their physical characteristics, scaffolds were 

studied for their ability to support cells adhesion, growth and differentiation. 

Initially the extent of cellular adhesion on collagen scaffolds were examined 

by light microscopy for electrospun (Figure 3.9) and compressed (Figure 

3.10) collagen scaffolds, over a 7 day culture period. Phase-contrast 

microscopy showed the biological capabilities of the cellular scaffolds, as 

indicated by their ability to support cell adhesion. Larger numbers of cells 

were shown to adhere onto scaffolds prepared by electrospinning collagen 

for 2hours, as compared with 1 hour. This indicates that cell adherence is 

dependent on the number of fibres within the scaffolds structure (Figure 3.9). 

Distinct focal adhesions were observed under SEM by both electrospun 

(Figure 3.11 A and B) and compressed collagen scaffolds (Figure 3.11 C, D, 

c and d), where they appeared to form long processes along the fibres. The 

close matrix-cell relationship established by the different scaffolds suggests 

that collagen is a suitable material for cellular scaffolds as it promotes cell 

adhesion and growth. Both electrospun and compressed collagen scaffolds 

were then examined for their ability to support Müller stem cells 

differentiation into RGCs. For this purpose cells were cultured in the 

presence the Notch1 inhibitor DAPT and bFGF for one week. These 

conditions had been previously shown to induce RGC differentiation and had 

been refined in initial experiments presented in this thesis in our laboratory 

(Singhal et al., 2012). Cells cultured with DAPT and bFGF adhered to 

collagen scaffolds; with SEM illustrating the capacity of the different fibres 

assisting in the formation and maintenance of neurite projections (Figure 

3.11A, C and c). The adaptation to a neural morphology  
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Figure 3.9: Light microscopy appearance of Müller stem cells grown on 
electrospun collagen fibres. Cells adhered to collagen scaffolds, with fibres 

assisting in the cell adhesion, viability and maintenance of cellular viability, 
over the course of 7 days culture. Phase contrast images under light 
microscopy of cells cultured in the absence of collagen matrices. Phase 
contrast image under light microscopy of cells cultured in the presence of 
collagen fibres, electrospun for 1 hour. Phase contrast image of cells cultured 
in the presence of collagen fibres, electrospun for 2 hours. Scale bar= 100µm  
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Figure 3.10: Culturing of Müller stem cells on Compressed Collagen 
scaffolds over 7 days. Kholer illumination showed that cells were able to 

adhere to PC collagen constructs over a 7 day period coupled with a decreasing 
collagen concentration, under control treatments. Cells cultured on 0.75mg/ml 
collagen, on 1mg/ml and cultured on 2mg/ml collagen scaffolds. Cells firmly 
adhered to the collagen constructs, with a flattened morphology and maintained 
growth over the 7 day culture period. Scale bar =100µm  
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Figure 3.11: Matrix-cellular interaction between Müller stem cells and 
type I collagen scaffolds. Scanning electron-microscopy showed that cells 

developed long processes resembling axonal processes and neurites, which 
firmly attached to the collagen scaffolds cultured for 5 days. Cells cultured in 
the presence of DAPT and bFGF formed long cellular projections resembling 
axons and neurites, indicated by white arrows. In the absence of DAPT and 
bFGF, cells firmly adhered to the collagen constructs, but their morphology 
showed a characteristic flattened morphology (Figs B,D,d). A and B illustrate 
electrospun scaffolds crosslinked with 15% GTA. C,D,c and d illustrate 
compressed scaffolds. Figs c and d are magnifications of Figs C and D 
respectively to show adhesion details. Scale bar =A-B: 100µm: C-D:100µm; c 
and d:10µm  
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by the Müller stem cells is shown by the formation of long axonal processes 

into and along the fibres of compressed and electrospun scaffolds.  

Acquisition of neural morphology by Müller stem cells cultured on type I 

collagen scaffolds was also shown by immunocytochemistry (Figure 3.12-

3.16). GFP labelled Müller stem cells transfected with the lenti-viral GFP 

vector were seeded onto the scaffolds and cultured for 7 days (Figure 3.12). 

Cells were shown to adhere and form long cytoplasmic projections on 

electrospun collagen. Staining enabled labelled cells to be examined for any 

changes in morphology and phenotype. Müller stem cells cultured for 7 days 

on compressed and electrospun collagen scaffolds acquired neural-like 

morphologies, judged by their adoption of discrete and defined axonal 

projections. To determine whether cells cultured on the scaffolds 

differentiated into RGCs, they were stained with antibodies with mature RGC 

markers including HUD, ISLET-1, BRN3B and RT97. 

Whilst GFP labelled cells showed morphological changes characteristic of 

neural development (Figure 3.12). It was not possible to determine whether It 

was not possible to identify the expression of RGC markers by Müller stem 

cells cultured on electrospun collagen scaffolds in the presence of DAPT and 

bFGF due to the intense autofluorescence observed in these scaffolds 

(Figure 3.13). This was ascribed to the non-specific binding of antibodies to 

the electrospun scaffolds, combined with their underlying autofluorescence 

(Figure 3.13B). Moreover, collagen itself is autoflourescent and it is ionically 

charged, which causes binding of antibodies in a non-specific manner. The 

intensity of fluorescence observed in electrospun scaffolds could also be 

attributed to the chemical crosslinking agent GTA. A protocol was used to 

quench this autoflorecence, where scaffolds were crosslinked with the 

minimum concentration of GTA vapour possible (15%), followed by vigorous 

washing with deionised water for 24 hours to remove excess GTA. Glycine 

(0.1M) and sodium borohydride were then added to remove autoflorescence.  
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Figure 3.12: Morphological changes of Müller stem cells 
cultured on 15% GTA crosslinked electrospun collagen 
matrices in the presence of DAPT and bFGF. Acquisition of 

neural morphology by Müller stem cells cultured on type-I collagen 
scaffolds was shown by immunofluorescence analysis of GFP 
labelled Müller cells (green) seeded onto the scaffolds. Cells 
adhered and formed long cytoplasmic projections in the presence 
of bFGF (20ng/ml) and the Notch inhibitor DAPT (50ng/ml). DAPI 
staining (blue) positively identified the nuclei of florescent cells, 
whilst the green fluorescence showed the neuronal morphology of 
differentiated cells (white arrows). Scale bar=75µm  
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Figure 3.13: Immunofluorescence analysis of Müller stem cells cultured 
on electrospun collagen matrices in the presence of DAPT and bFGF. 
A) Müller stem cells cultured on electrospun collagen and stained for the 
RGC marker; Islet-1, wihich was not identified within cellular populations. 
Electrospun collagen crosslinked with 15% GTA exhibited non-specific 
secondary antibody binding. Identification of Müller stem cell differentiation 
into RGCs was not possible on these substrates due to autofluorescence. B) 
Sodium borohydride was used to quench the non-specific fluorescence 
observed by electrospun scaffolds. Glycine was used before quenching to 
bind any charged collagen molecules to prevent non-specific antibody 
binding. Quenching protocols had no significant effect. Scale bar= 100µm  
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However, this process only partially quenched the fluorescence but did not 

allow visualisation of specfic staining. Hence, to specifically show cellular 

expression of any protein marker in these scaffolds, the background of 

autofluorescence needs to be significantly reduced.  

In contrast to electrospun collagen scaffolds, Müller stem cells cultured on 

compressed collagen in the presence of DAPT and bFGF, showed significant 

morphological changes. GFP labelled Müller stem cells were cultured in the 

absence of PC collagen scaffolds, as well as in the absence of differentiation 

factors (DAPT and bFGF) (Figure 3.14). These controls enable the 

comparsion between the expression of cells cultured in the presence of 

collagen and differentiation conditions. They also made possible the 

identification of phenotypic changes. Differentiated cells showed positive 

staining for markers of RGC precursors, when compared to untreated 

controls in the presence of compressed collgen (Figure 3.15A). Confocal 

microscopy demonstrated the expression of RGC markers expressed by 

Müller stem cells cultured on 0.75mg/ml PC collagen in the presence of 

DAPT and bFGF. Müller stem cells transfected with a lenti virus GFP 

adhered to collagen substrates in the presence or absence of DAPT and 

bFGF.  Differentiation of cells into RGCs was confirmed by their co-

expression of GFP and mature RGC markers HUD and ISLET-1 and the 

RGC precursor marker BRN3B. Staining for BRN3B, HUD and ISLET-1 was 

localised to the nuclei of the cells (Figure 3.15B). Cells were also counted for 

RGC marker expression compared to controls without DAPT+bFGF and 

compressed collagen scaffolds (Figure 3.16).All the RGC markers were 

significantly increased compare to controls. β-3-TUBULLIN and RT97 

staining was localised within the cytosol along the length of the neurite 

outgrowth. Cellular projections were coupled with the enriched expression of 

both neural filament makers, signifying the development of axons. This 

suggests that compressed collagen substrates are able to support and 

maintain axonal growth and Müller stem cell differentiation (Figure 3.17).  
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Figure 3.14: Müller stem cell expression of RGC markers in the absence of PC 
collagen constructs. Confocal microscopy demonstrated the expression of RGC 

markers expressed by Müller stem cells cultured under control conditions for 7 days. 
Human Müller stem cells (hMSC) transfected with a lentivirus GFP (green) grew in the 
absence of DAPT/ bFGF and PC collagen. Control conditions were compared to 
differentiation of cells into RGC, in order to determine the extent of RGC maturation 
using the markers ISLET-1, HuD and the RGC precursor marker BRN3B. Scale 
bar=50μm.  
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Figure 3.15: Müller stem cell differentiation and expression of RGC markers on 
PC collagen constructs. Confocal microscopy  demonstrated the expression of RGC 

markers  expressed by Müller stem cells cultured on 0.75mg/ml PC collagen in the 
presence of DAPT+bFGF for 7 days. Human Müller stem cells (hMSC) transfected 
with a lentivirus GFP (green) readily adhered to collagen substrates in the presence or 
absence of DAPT and bFGF.  Differentiation of cells into RGC was confirmed by their 
co-expression of GFP, mature RGC markers HUD and ISLET-1 and the RGC 
precursor marker BRN3B when compared to controls.  A)  Müller stem cells cultured 
with bFGF and DAPT on compressed collagen constructs. B) Müller stem cells 
cultured in medium alone, without differentiation factors. Scale bar=50μm.  
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Figure 3.16: Graphic representation of Müller stem cell differentiation and 
expression of RGC markers on PC collagen constructs. The confocal microscopy  

demonstrated the expression of RGC markers  expressed by Müller stem cells 
cultured on 0.75mg/ml PC collagen in the presence of DAPT+bFGF for 7 days.  
Differentiation of cells into RGCs was confirmed by their co-expression of GFP, 
mature RGC markers HUD and ISLET-1 and the RGC precursor marker BRN3B when 
compared to controls. Cells which positively expressed the RGC markers were 
counted, in the presence of PC collagen with or without differentiating factors. 
Comparison to no treatment and absence of PC collagen RGC marker expression 
was markedly increased in the presence of PC collagen either in the presence or 

absence of DAPT+bFGF.  
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Figure 3.17: Müller stem cell differentiation and expression of neural markers 
upon culture on PC collagen scaffolds in the presence of DAPT and bFGF. 

Confocal microscopy demonstrated the upregulation in Müller stem cells of neural 
filament markers (ß-III Tubulin  and RT-97), associated with axonal development. A) 

GFP labelled Müller stem cells (green) cultured for 7 days, in the presence of 
compressed collagen scaffolds (0.75mg/ml) and DAPT+bFGF developed neurite 
outgrowths (white arrows), stemming from pronounced cell bodies. Cellular 
projections were coupled with the enriched expression of both neural filament 
makers, signifying the development of axons. This suggests that compressed 
collagen substrates are able to support and maintain axonal growth and Müller stem 
cell differentiation. These were compared to B) controls, which lacked pronounced 
cytoplasmic outgrowths and did not express ß-III Tubulin or stain for RT97. Scale 
bar=50μm.  
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These observations indicate that collagen scaffolds can support and help 

guide cellular differentiation and behaviour of Müller stem cells.  

Cellular toxicity of collagen scaffolds was examined over a seven day period. 

Cells were cultured on collagen scaffolds prepared under different protocols. 

These included electrospun scaffolds crosslinked by three different methods. 

Different concentrations of GTA vapours were used to crosslink the collagen 

microfibres for 72 hours, followed by thorough rinses with deionised water 

prior to seeding cells. A measure of cellular viability was obtained for each 

concentration of GTA using the Hexosaminidase assay to assess cell 

viability following collagen digestion.  

There were no significant differences in cell viability between cells cultured 

on scaffolds crosslinked with low GTA concentrations (5-10%) and cells 

cultured on ECM or non-ECM coated plates (no matrix controls) (Figure 

3.18A). This suggests that electrospun collagen scaffolds supports growth 

and viability of Müller stem cells. In contrast, cells grown on 25% GTA 

crosslinked scaffolds showed a marked decrease in cell viability as 

determined by Hexosaminidase assays readings. This suggests that GTA 

induces cell toxicity in Müller stem cells at concentrations above 10%. GTA 

has been repeatedly reported to be a toxic agent and deemed unsuitable for 

biomedical applications, including crosslinking proteins. On this basis, the 

study investigated other methods of collagen crosslinking. EDC in 

combination with NHS was assessed for their affect on cellular viability. The 

Hexosaminidase assay was again used to examine the amount of viable 

cells in the presence of EDC crosslinked collagen matrices (Figure 3.18B), 

where no differences were recorded. This data indicates that use of EDC 

does not modify cell growth and viability, suggesting that these agents are 

non-toxic to Müller stem cells in culture. Examination of cellular viability on 

collagen compressed scaffolds demonstrated a lack of toxicity indicating  
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Figure 3.18: Müller stem cell viability following culture on collagen-based 
scaffolds. Müller stem cells were cultured on A) GTA cross-linked scaffolds, B) 
EDC+NHS crosslinked scaffolds and C) compressed collagen scaffolds for one week. 
Viability was assessed using the Hexosaminidase assay, based on the uptake of the 
enzymatic substrate by the lysosomes of living cells. Absorbance readings were 
normalised to no matrix controls and ECM (extracellular matrix). Different 
concentrations of GTA vapours were used to cross-link the collagen fibres. A 
significant  decrease in cellular viability was observed with cells cultured on 25% GTA 
crosslinked collagen when compared to cells grown on no matrix controls following 
collagen degradation with collagenase D. Significant changes in cell viability were not 
detected in Müller stem cells cultured on 0.75mg/ml compressed collagen or 
electrospun EDC crosslinked collagen scaffolds.  
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these scaffolds support Müller stem cells for transplantation (Figure 3.18C). 

This study indicated that there was no alteration to cellular proliferation. 

3.3.6. Comparison between the Mechanical Handling of 

Electrospun and Compressed Collagen Scaffolds 

To ensure delivery of scaffolds, aimed at cell transplantation into the eye, scaffolds 

must be able to exhibit plasticity, to endure physical manipulation through cannulas 

used for retinal surgery. The relatively easy handling of GTA crosslinked scaffolds were 

shown to be comparable to human retinal explants. However, depending on the 

thickness of the collagen scaffolds resulting from different periods of electrospinning 

(up to 2 hours), scaffolds demonstrated different strengths when handled. Thin 

electrospun scaffolds did not withstand handling and were unable to pass through the 

lumen of an 18G cannula. These were fragile and became damaged by gentle 

mechanical manipulation. Moreover, the rigidity possessed by GTA crosslinked scaffolds 

made passage through an 18G cannula inconsistent and resulted in damage of the 

scaffold’s structure (Figure 3.19). 

EDC crosslinked electropspun scaffolds altered their macroscopic features 

when hydrated. They acquired a gelatinous consistency that changed their 

structural integrity. This gelatinous structure made cell culturing as wells as 

manipulation impossible and therefore they could not be considered as a tool 

for retinal transplantation. 
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Figure 3.19: Mechanical properties of collagen-based scaffolds. Vitrectomy 

surgeries were performed via 20G ports where PC collagen scaffolds require 
entry into the eye via 18G cannulas. Both compressed and GTA crosslinked 
electrospun scaffolds were examined for their ability to enter the lumen of an 18G 
cannula. GTA crosslinked scaffolds failed to enter the lumen, whilst 0.75mg/ml 
compressed collagen scaffolds were able to withstand entry and expulsion from 
the lumen. Compressed collagen matrices of 0.75mg/ml, were shown to endure 
physical manipulation through an 18G cannula.  

 



167 
 

3.3.7. Ability of compressed collagen scaffolds to retain adherent 

cells for transplantation following passage through an 18G 

cannula 

Compressed collagen scaffolds retained their shape and structural integrity 

through handling (Figure 3.20). Compressed collagen scaffolds 

demonstrated a suitable strength that can be modified in size, and were 

sufficiently elastic to return to its original shape following mechanical 

manipulation. This finding suggested that compressed collagen was a 

suitable candidate for in vivo cell transplantation on the inner retinal layer. 

3.4. Discussion  

The primary objective of this study was to examine the suitability of collagen-

based scaffolds for transplantation of Müller stem cell-derived RGC 

precursors onto the inner retina. The study involved the examination of the 

physical and biological attributes of the collagen scaffolds produced. 

Engineering tissues to support cells either within or on biocompatible 

matrices is currently being applied to design regenerative treatments for 

pathologies affecting a wide range of tissues. The use of natural proteins to 

mimic such tissues emphasises the importance not only of restoring tissue 

architecture but also function, and therefore the arrangement of cellular 

frameworks may help to guide cell behaviour. Topological variations between 

different mature ECM networks centre on the cellular population that it 

contains. It is therefore important to consider the native organisation of 

tissues in need of repair. It has been reported that fibre alignment, topology 

and hierarchical arrangement of fabricated biomaterials is distinctly related to 

cell attachment and growth (Kureshi et al., 2010). Since the level of function 

by a protein is defined at the molecular level, the understanding of collagen 

scaffold structure and plasticity were important for this study. Evaluation of 

the physical attributes of the collagen scaffolds designed demonstrated 

different properties imparted by electrospininning and crosslinking agents, as 
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Figure 3.20: Cell numbers following in vitro manipulation with an 18G 
cannula. Vitrectomy surgeries were performed via 20G ports where PC collagen 
scaffolds require entry into the eye via 18G cannulas. A) 20,000 GFP labelled 
Muller stem cells, were seeded onto 0.75mg/ml compressed collagen matrices 
(0.5cm diameter) for 2 hours. Compressed collagen scaffolds were examined for 
topology and cell presence under confocal microscopy i) transverse sections ii) 
and iii) whole mount preparations. Phase contrast was also used to assess cell 
numbers and scaffold topology prior to and following manipulation. B) The 

Hexosaminidase Assay was used to examine the extent of cell loss following 
mechanical manipulation. There was no significant difference in cell viability 

between the scaffolds that underwent manipulation and those that did not.  

B 
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well as plastic compression. GTA crosslinking procedures, as well as 

compression rendered the collagen fibrils insoluble in water, facilitating 

culturing regimes and manipulation in vitro.  

The electrospinning process used in this study showed to be an easy method 

for preparation of collagen scaffolds for retinal cell transplantation. Relatively 

high voltages were required to overcome the surface tension created by the 

high viscosity of the biomaterial solutions. To overcome blebbing and 

irregular surfaces on the electrospun fibres, HFIP was identified as the most 

appropriate solvent for electrospinning collagen. It is possible that acetic acid 

used to suspend collagen lead to destabilisation of the triple helix structure. 

Damage to this structure may have therefore changed the spinning 

properties needed for producing suitable fibres. HFIP did not appear to 

denature collagen from its native form, but instead stabilise its conformation 

in solution, hence preserving the natural fibrillar structure of the collagen 

molecules whilst being stretched, favouring a uniform, fluid stream of fibres 

(Figure 3.3). The parameters used to electrospin rat tail type I collagen in 

HFIP were consistently reproducible. This enables fibres to be continuously 

fabricated to exhibit similar physical dimensions, unlike collagen solutions 

made with acetic acid. This provided the important initial step in the 

standardisation of electrospun collagen fibre production. 

Following electrospinning, fibres required crosslinking to ensure their integrity 

upon hydration. Crosslinking acts to strengthen electrospun collagen fibres 

and facilitates the design of artificial 3D collagen matrices, suitable for 

maintaining cells in vitro and in vivo. For this study GTA was used as a 

crosslinking agent. This is a well-known fixative that produces insoluble 

crosslinked protein aggregates (Khadka and Haynie, 2010). It acts by 

creating cross bridges between protein molecules rather than producing 

weaker intramolecular (hydrogen) bonds, between the carboxyl groups of 

reactive side lysine residues. EDC was also examined for its crosslinking 
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efficiency either alone or in combination with NHS. However, subsequent 

generation of scaffolds using this agent proved inconsistent, as sufficient 

crosslinking was not always observed. Although EDC and NHS catalysed the 

formation of crosslinks within collagen scaffolds, the mechanism involved in 

this form of catalytic crosslinking is not fully understood. The links created 

originate from the catalytic activity of EDC, and its ability to crosslink free 

amine groups on proteins, specifically lysines, arginines and hydroxylysines. 

The lack of robustness observed with this crosslinker may be due to its 

limited interactions with the internal collagen fibrils of the scaffold. The initial 

incubation of spun fibres with EDC may have led to the crosslinking and 

fusion of fibrils on the surfaces of electrospun scaffolds. This may have 

created sealed matrices and prevented sufficient penetration of these 

agents, rendering scaffolds structurally weak. These crosslinked scaffolds 

may appear to have been sufficiently stable under dry conditions, however 

hydration lead to loss of fibre structure. Further work may be performed to 

crosslink fibrils with EDC as they are being drawn (Beachley, 2009). This 

could involve direct fibre submersion into an EDC solution, alongside the 

electrospinning process. Thinner scaffolds may also limit the generation of 

sealed scaffolds, which could compromise structural integrity and difficulty in 

handling the constructs for ocular implantation.  

Compression of collagen hydrogels allows formation of high collagen density 

fibrils without compromising the macroscopic structure. Hydrogels are readily 

modified by cells (Eastwood et al., 1996) demonstrating their inherent 

weakness. Expulsion of water from collagen hydrogels led to randomised 

crosslinks between collagen fibrils, and constitutes an alternative method for 

rapid preparation of collagen scaffolds. Compressed collagen scaffolds 

supported in vitro culture of Müller stem cells (Figure 3.9 and 3.10) as well as 

facilitated mechanical manipulation for transplantation (Figure 3.19). The 

physical crosslinks between polymerised fibrils following compression 

generated tightly packed fibres (Figure 3.6). The process created collagen 
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networks resembling the native ECMs, and revealed hierarchy of fibrillar 

organisation.  

The porosity of the collagen scaffolds varied between methods used for their 

production. The physical porosity of electrospun scaffolds was dependent on 

the crosslinker used (Figure 3.7). EDC protocols reduced the amount and 

size of the pores on the electrospun scaffolds. The apparent low number and 

size of pores may be ascribed to the fusion of fibres on the surfaces of the 

scaffolds, which could impact on the adherence and survival of Müller stem 

cells during and after implantation. GTA crosslinked scaffolds conserved the 

porosity of the constructs suggesting that this is a suitable agent for retaining 

ECM-like structures that support cellular adhesion and proliferation. Pores 

have been shown to play a vital role in bioengineering, where specific cell 

populations tend to have increased affinities for porous scaffolds (Wray et al., 

2011, Guldberg et al., 2008, Lai et al., 2012). This feature also impacts on 

the diffusion of nutrients into and out of the scaffold matrices. Moreover, 

porous structures would favour drug or bioactive reagent release, as well as 

cellular support within the internal matrix of a scaffold. Low concentrations of 

GTA (<10%) did not prevent cell growth, as determined by the 

hexosaminidase assay to assess cell viability (Figure 3.18). This suggests 

that the porosity of scaffolds is not a determining factor for Müller cell 

adhesion and survival. Although, matrices supported normative growth of the 

Müller populations, without significant differences, increasing GTA 

concentration caused a decrease in cell growth. This suggests that GTA 

scaffolds may encourage immunogenic and inflammatory responses 

following implantation. It is possible that hydrolytic degradation of collagen 

constructs crosslinked with GTA may lead to the eventual release of residual 

cytotoxic chemical derivatives. This would induce cell toxicity within the 

microenvironment whether in situ or in vivo.  
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Optical density of the constructs indicated that they allow the passage of 

visible light through their matrices (Figure 3.8A and B), suggesting that spun 

fibres would not prevent light reaching the retina following scaffold 

implantation. Therefore photoreceptors would be able to transduce their 

sensory information to the brain without disruption. This attribute of collagen 

scaffolds is important when considering implantation onto the light sensitive 

retina, and demonstrates that these scaffolds exhibit appropriate features for 

transplanting retinal cells. 

Subsequently, the relationship between matrix and cellular populations was 

also analysed under SEM, which confirmed close matrix-cell interactions with 

GTA crosslinked and compressed collagen scaffolds. The ability of the 

collagen scaffolds to support cell growth and differentiation was determined 

by light (Figure 3.9 and 3.10), electron (Figure 3.11), confocal microscopy 

(Figure 3.12-3.17) and hexosaminidase assays (Figure 3.18). Both, GTA 

crosslinked and compressed collagen proved to promote adherence and 

growth, whereas RGC differentiation of Müller stem cells was well identified 

on compressed scaffolds. Compressed and GTA crosslinked collagen 

scaffolds facilitated the development of neurite outgrowths by Müller stem 

cells cultured under differentiating conditions. Long axonal processes were 

identified under SEM and confocal microscopy, with primary and secondary 

dendrites on these cells observed on the scaffolds (Figure 3.11).  

To examine the differentiation of Müller stem cells on collagen matrices, 

staining was performed. Confocal microscopy illustrated morphological 

changes as compared with untreated populations, as well as the expression 

of RGC markers. Proteins typical of RGCs were enriched in cultures 

undergoing Notch inhibition in the presence of bFGF on compressed 

substrates. In contrast the determination of RGC maturation of Müller cells 

grown on GTA matrices was not possible due to the autofluorescence 

exhibited by these scaffolds. Singhal et al designed a Brn3b reporter to 
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indicate the differentiation of Müller stem cell derived RGCs both in vitro and 

post transplantation in rodent ocular tissue (Singhal et al., 2012). This 

method could be used in the future to identify differentiation of Müller stem 

cells on GTA crosslinked scaffolds by highlighting cells that expressed Brn3b 

and had undergone neural differentiation. 

Collagenase D was used to fully degrade the collagen scaffolds to allow cell 

release for examination of viability. This study suggested that compressed 

collagen scaffolds supported cell adhesion for transplantation of Müller stem 

cells or neurons derived from these cells. The number of cells obtained after 

collagen digestion, were comparable to cultures on tissue plates. However, 

there is a need to examine the degradation rate of these types of collagen 

constructs in vivo in the absence of ECM degrading agents. The scaffolds 

prepared are therefore useful for differentiation of Müller stem cells and may 

potentially be used as temporary in vivo supports until grafted cells have 

migrated into the RGC layer. 

Thin GTA crosslinked scaffolds, prepared with low spinning times were 

fragile and did not achieve physical properties to allow mechanical handling, 

unlike their thicker equivalent samples. Furthermore, to assess their capacity 

for surgical handling, scaffolds were drawn into 18G cannulas. GTA 

crosslinked scaffolds failed to pass through the lumen of the cannula, 

possibly due to their rigidity and thickness. This would ultimately prevent the 

use of GTA crosslinked collagen scaffolds for surgical implantation.  

Further studies into the potential use of electrospun scaffolds may need 

polymeric enhancement of collagen prior to electrospinning. This may be 

potentially achieved by blending of collagen with other biomaterials to avoid 

the use of harsh crosslinking and prevent the formation of rigid scaffolds.  

Polyesters have been used to improve structural integrity of collagen 

scaffolds for tissue engineering. They come in many forms, some of which 
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are biodegradable such as poly (glycolic acid) PGA, poly(lactic acid) PLA 

and the co-polymer poly (lactic-co-glycolcolic) PLGA. The most common 

method of producing hybrid scaffolds is either to electrospin or freeze-dry a 

synthetic polymer and immerse it in a highly concentrated acidic solution of 

collagen to allow the deposition of the protein. An alternative method is to 

electrospin the collagen and polyester in a common solvent, usually with a 

low synthetic polymer concentration, to produce a matrix based on the 

molecular structure previously outlined. 

Natural polymers have also been used extensively to improve collagen 

scaffolds. Collagen has been spun with denatured collagen (gelatine) (Salifu 

et al., 2011), elastin (Buttafoco et al., 2006) and glycosaminoglycan (GAG) 

(Spilker et al., 2001), (O'Brien et al., 2004), which improve the in vitro cell-

matrix interactions, vital for in vivo therapies. However they require 

stabilisation through crosslinking which is a potential limitation as evidenced 

by the effects of GTA and EDC in this study. 

Our research entails cellular delivery supported on collagen-based scaffolds. 

However, the majority of research within this field is committed to producing 

tissue substitutes where the formulated tissue is incorporated into the body 

of an organ (Prewitz et al., 2012). Whilst we need to simply provide a 

substrate that can support cells for retinal delivery, ultimately the physical 

and biological features of the scaffolds used need to facilitate delivery, and 

support grafted cells temporarily. Scaffolds also need to be biocompatible, to 

remove any potential for long term immune reactivity (Ekdahl et al., 2011), 

which can cause damage to the retina. Degradation of matrices under in vitro 

conditions would not necessarily mimic in vivo degradation, which may alter 

the choice of substrate. In this instance short term stability would be favoured 

over long term durability. 

Collagen is an attractive candidate for the design of scaffolds for retinal 

transplantation, as it is a natural polymer with potentially low immunogenicity 
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as compared to other polymers. Collagen scaffolds can be potentially 

designed to comply with different mechanical requirements needed for cell 

replacement therapies. Macromolecules and other possible therapeutic 

agents such as chondroitinase ABC (ChABC) used to facilitate cell migration 

into the retina, and the precursors themselves can be included within the 

scaffold construct. 

In summary, compressed collagen scaffolds yielded a mechanically strong 

construct without the need for toxic crosslinking chemicals and facilitated cell 

proliferation. They are comparatively inexpensive and rapid to produce. 
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Chapter 4: Transplantation of RGC Precursors ex 

vivo and in vivo using Compressed 

Collagen Scaffolds 
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4.1. Introduction 

When considering the development of cell-based therapies for glaucoma, the 

aim of such research would be to restore and maintain vision by promoting 

the survival of partially damaged RGCs or replacing irreversibly damaged 

RGCs. However, it should be noted that prolonged raised IOP can not only 

damage RGCs leading to the clinical observation of optic disc cupping, but 

may also cause degeneration of other cell populations within the neural 

retina, primarily amacrine cells. (Kerrigan-Baumrind et al., 2000, Hernandez 

et al., 2009). Patients with advanced glaucoma that have not responded to 

conventional treatments may be suitable candidates for such cell-based 

therapies. The aim of this chapter was to study the ability to deliver Müller 

stem cell-derived RGCs onto the retina using compressed collagen scaffolds. 

This would enable assessment of the feasibility of translating such a 

therapeutic approach to a larger mammalian eye similar in size to that of 

humans. 

The majority of research undertaken for the development of stem cells into 

novel treatments for retinal disease has been focused upon identifying 

appropriate cell niches for transplantation and developing protocols to aid the 

differentiation of such cells. The majority of research in this field has 

concentrated on replacing photoreceptors and retinal pigment epithelial 

(RPE) cells, but very little work has been performed to treat RGC loss. 

Experimental studies have led to variable outcomes and further research is 

required before such therapies may be developed further for human 

application. 
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4.1.1. Stem Cell populations used for sourcing RGCs for retinal 

transplantation 

Protocols have been refined for several stem cell populations to induce RGC 

differentiation, with different degrees of differentiation achieved. The stage of 

differentiation has widely been assessed using the phenotypic expression 

profiles of RGCs as well as their functional outcomes evaluating their 

response to various stimuli. 

Murine ESCs have been cultured under a regime involving extrinsic factors 

which lead to elevated expression of RGC markers, including Ath5, Brn3b 

Thy-1 and Isl-1 (Jagatha et al., 2009). Human ESCs have an innate ability to 

spontaneously form neurons, which has facilitated the refinement of 

differentiating protocols. Neuronal precursors derived from such populations 

have been used in various animal models of retinal neuropathies (Aoki et al., 

2009). Intravitreal and sub-retinal injections of these cells in mice have 

shown that neural cells are able to integrate into the host retina and express 

photoreceptor markers over a prolonged period of time (Banin et al., 2006). 

Transplantation of human ESCs with neuronal morphology have been 

transplanted into murine models of NMDA depleted RGCs. Cells were 

observed to migrate and maintain ganglion cell expression profiles whilst 

residing within the host tissue (Aoki et al., 2008). Co-culture systems 

comprising explanted foetal rodent retina with the addition of adult rodent 

hippocampal progenitors have been used to promote the differentiation of 

these progenitors towards a retinal cell fate. These cells, when transplanted 

into the RGC depleted rat retina, successfully integrated into the host retina, 

where cells aligned along the RGC layer and sent out projections into the 

inner plexiform layer (Mellough et al., 2007).  

Cells have been isolated from mammalian adult tissues and re-programmed 

to create populations of iPS cells, forcing these to constitutively express stem 

cell markers. Cells isolated and re-programmed from mice somatic cells have 
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been induced to develop into retinal neurons in vitro, mainly of the RGCs and 

photoreceptors cell lineages (Parameswaran et al., 2010). This suggests that 

they may be used to develop stem cell approaches for treatments of retinal 

degenerative conditions. 

4.1.2. Experimental Models of Glaucoma used to Assess the 

Effect of RGC Transplantation 

Intravitreal transplantation of human mesenchymal stem cells into rodent 

models of optic nerve damage showed little evidence of cellular integration 

into the host tissue and demonstrated lack of RGC maturation of the 

transplanted cells (Hill et al., 2009). Bull et al studied the intravitreal 

transplantation of undifferentiated human Müller stem cells into the laser 

model of rodent glaucoma, which showed a lack of integration within host 

tissue as well as marked activation of microglia (Bull et al., 2008). However 

our laboratory has recently developed a robust protocol for differentiating 

adult human Müller stem cells, into RGC precursors, which have been used 

for transplantation. Differentiated cells exhibit an RGC phenotype, and adopt 

a characteristic neuronal morphology (Singhal et al., 2012). Following 

transplantation into a rodent model of NMDA induced RGC depletion, RGCs 

derived from human Müller stem cells integrated into host tissue and 

demonstrated functionality, as judged by improvement of the negative 

component of scotopic threshold response (nSTR) of the electroretinogram 

(ERG).  The nSTR is an indicator of RGC function and measures 

responsiveness to low light intensity below visual thresholds. These 

observations are to date the only evidence where transplantation of stem 

cells for glaucoma has been successful in achieving integration into host 

tissue whilst aligning within the target cell layer, as well as improving RGC 

function of the host animal. Research undertaken by MacLaren et al revealed 

that in order to achieve optimal integration in vivo; stem cells to be used for 

photoreceptor replacement require differentiation to a specific ontogenetic 
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stage prior to transplantation (MacLaren et al., 2006). The restoration of 

ganglion cell function following RGC-derived Müller stem cell transplantation 

further highlights the importance of differentiating stem cells prior to 

implantation. 

The anatomy of the retina also poses difficulties when transplanting cells 

onto the inner retinal surface. In order to facilitate integration into the RGC 

layer, it will be necessary to ensure widespread distribution of cells across 

the whole retina. In addition, the environment needs to be permissive for cell 

integration and be able to support development of neural connections with 

the transplanted cells (Bull and Martin, 2007). Like other neural replacement 

therapies, functional RGC replacement would entail the formation of 

numerous synapses between host and grafted cells, converging to direct 

new neurite outgrowths to the optic nerve. Therefore it is important to define 

efficient cellular differentiation protocols (MacLaren et al., 2006) prior to 

transplantation, and protocols to maintain cell survival and integration 

following transplantation.  

4.1.3. Barriers for Retinal Stem Cell Migration and Integration 

following Transplantation 

Trauma and progressive degeneration of nerve tissue initiates a cascade of 

events within the site of injury, and can be rapid (spinal cord injury (SCI)), or 

slow (glaucoma). All of these events involve elements of necrosis, apoptosis 

and scarring, leading to functional loss. Gliosis causes the formation of a glial 

scar embodying reactive glia and astrocytes, which upregulate their 

production of chondroitin sulphate proteoglycans (CSPGs) (Fawcett and 

Asher, 1999). This is of important relevance to cell transplantation, as 

CSPGs have been shown to inhibit migration of transplanted cells and 

formation of new synapses (Silver and Miller, 2004). Transplantation of stem 

cell based therapies for inner retinal degeneration in humans will face many 
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natural barriers, including the larger sized vitreous cavity and the presence of 

abnormal extracellular matrix within damaged retina. 

Chondroitin sulphate proteoglycans (CSPGs) belong to the aggrecan family 

of proteins (Yamaguchi, 2000). They regulate the development of the neural 

tube and associated neural crest cells by directing their out-growth patterns. 

The concentration of CSPGs around neurons is thought to underpin the loss 

of progenicity over time within the progenitor population, due to steric 

hindrance (Sharma et al., 2012). These molecules contribute to the lack of 

permissiveness of the neural ECM to respond to the regenerative plasticity of 

resident adult neurons and transplanted cells.  

Gliosis and neurodegeneration cause rapid CSPG up-regulation in reactive 

glia and astrocytes, and deposition within the site of neural damage (McKeon 

et al., 1995). Microglia are the resident inflammatory cells of the retina and 

also produce ECM molecules, specifically the regenerative inhibitors CSPG 

during retinal degeneration (Uhlin-Hansen and Kolset, 1988, Jones et al., 

2002, Ng and Streilein, 2001). CSPGs play a key role in suppressing axonal 

extension and regeneration of apoptotic cells within the site of injury (Silver 

and Miller, 2004, Smith-Thomas et al., 1995), suggesting that inhibition of 

these molecules may aid neural recovery and facilitate integration of grafted 

cells. 

Targeting CSPGs has mainly involved the cleavage of their reactive GAG, 

moieties, preventing their binding and anchorage to other components of 

cells and matrices. Digesting the GAG side chains into simple disaccharides 

promotes their catabolism and ECM permissiveness to regeneration. 

Chrondroitinase ABC (ChABC) is the main enzyme used to cleave GAG. Its 

application to repair spinal cord injury (SCI) (Bradbury et al., 2002) and 

similar CNS injuries have been examined using in vitro and in vivo models of 

neural damage. Such experiments demonstrated re-growth of damaged 

neurites within corticospinal, reticulospinal and nigrostriatal populations 
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following ChABC digestion (Garcia-Alias and Fawcett, 2012). Moreover 

studies assessing the migration of transplanted cells demonstrated that 

axonal integration was enhanced when the peripheral regions of the spinal 

ECM were treated with ChABC (Fouad et al., 2005, Karimi-Abdolrezaee et 

al., 2010, Tom et al., 2009, Garcia-Alias and Fawcett, 2012). Determining 

whether this regeneration was solely due to the breakdown of the ECM or to 

the activation of growth within healthy and damaged axons, was achieved by 

monitoring the regeneration of complete and semi-transected spinal cords 

(Fouad et al., 2005, Tom et al., 2009). Partially severed cords owed their 

regeneration to both transplanted and host cell populations, whilst complete 

transected spinal cords underwent rejuvenation by the regeneration of 

damaged axons. These tests were indicative of the importance of enhancing 

CNS regeneration by creating an environment free of inhibitory molecules. 

Studies of adult rat retina have also been carried out by Tropea et al, which 

involved partial denervation of the superior colliculus. Subsequent treatment 

with ChABC to the superior colliculus restored some damage caused to the 

RGC population (Tropea et al., 2003). Addition of brain-derived neurotrophic 

factor (BDNF) further enhanced sprouting of damaged RGCs. This evidence 

illustrates the synergistic interaction between these two agents, where the 

trophic factor has an improved effect in combination with the degradation of 

CSPGs.  

Inhibiting abnormal production of CSPGs within the degenerate retina may 

enable this tissue to become permissive to integration of transplanted Müller 

stem cells. Treatment with ChABC may also facilitate neural interactions 

between both undamaged and partially damaged ganglion cells in situ. 
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4.1.4. Vitrectomy as a tool for surgical delivery of cellular 

scaffolds onto the retina 

Methods used for intravitreal injection of therapeutic agents, including cells, 

into small rodent eyes may not be appropriate for the human eye due to 

differences in anatomical features amongst species. The lens contained 

within rodent eyes occupies over 70% of the spatial capacity of the optic 

cavity (Powers and Green, 1978). This feature means that when cells are 

injected into the vitreous, the lens may serve as a scaffold to facilitate cell 

migration into the host retina. Higher order mammals such as rabbits, 

primates and cats have dimensions closer to that of the human eye, where 

the nature of tissue arrangement is significantly different to that of rodents. 

Higher mammals have evolved to have smaller lenses occupying only 10-

20% of the spatial capacity (Coleman, 1979) (Figure 4.1). The lack of a large 

lens means that transplantation of cells into the vitreous of a higher mammal 

would lead to their dispersion and/or pooling within the inferior part of the 

vitreous. There is therefore a need to develop methods to deliver cells to the 

inner retina in higher mammals with this anatomical configuration.  

The design of a scaffold for cell transplantation is determined by the 

anatomical structure and accessibility of the tissues undergoing 

transplantation. In order to provide sufficient cellular integration into the inner 

retina, the implant must align along the inner retinal surface. However to 

facilitate this process, the vitreous would require removal. Vitrectomy, a 

procedure routinely undertaken for treatment of retinal detachment in human 

patients, therefore constitutes a feasible option for implantation of cellular 

scaffolds onto the retina. 

The human eye contains 3.5-4ml of vitreous humour (Coleman, 1979), the 

translucent gelatinous mass that fills the eye cavity. Vitreous is primarily 

composed of water, with a loosely compact network of type II collagen 
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associated with proteins such as hyaluronic acid and glycosaminoglycans 

(Swann, 1980, Itakura et al., 2009).  

The vitreous is loosely attached to the neural retina except at the peripheral 

vitreous base and optic nerve head. The vitreous body functions to maintain 

the structure of the eye whilst also contributing to maintaining a stable 

intraocular pressure.  
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Figure 4.1: Anatomical drawings of A) rat and B) 
human illustrating the major differences in the geometric 
dimensions of these two mammalian ocular structures. 
Images taken from http://www.ratbehavior.org/Eyes.htm  

 

http://www.ratbehavior.org/Eyes.htm
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Pars plana vitrectomy involves the partial or total removal of the vitreous and 

has been developed over the last 35 years (Aguni et al., 2009, Wallenten et 

al., 2008). A 20 or 23 gauge MVR blade is then used to create three pars 

plana sclerotomies (Aguni et al., 2009, Wimpissinger and Binder, 2007), 

avoiding injuring the neural retina, as well as avoiding touching the lens in 

phakic patients (Figure 4.2). One port is for a suture infusion line to maintain 

globe pressure during the operation and the other two ports allow 

instrumentation to facilitate the removal of the vitreous and manipulation of 

the retina under fluid, followed by fluid-air exchange at the end of the 

procedure. 
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Figure 4.2: Illustration of Vitrectomy surgery. A)  Image of vitreous removal 
following port creation via MVR blade. B) Cross sectional representation of 
instrument placement during vitrectomy, adapted from 
http://www.valleyretina.com/info-surg/info-surg-pars.html  

 

http://www.valleyretina.com/info-surg/info-surg-pars.html
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4.2. Objectives and Experimental Outline 

Having previously developed protocols to obtain RGCs derived from human 

Müller stem cells, as well as to produce suitable compressed collagen 

scaffolds to support cell delivery, it was a natural progression for research to 

transplant cellular scaffolds onto the retina in vivo. The aim of this chapter 

was therefore to investigate the ability of cellular scaffolds prepared with 

compressed collagen type I to support migration of transplanted cells onto 

the retina ex vivo and in vivo. 

The general objectives of this chapter were: 

1. To examine the ability of cellular scaffolds to support migration 

and integration of RGC precursors onto the RGC layer of 

explanted human retina ex vivo. 

2. To determine the ability of cellular scaffolds to support migration 

and integration of RGC precursors into the RGC layer of rabbit 

retina in vivo.  

The experiments performed to achieve these objectives were as follows:   

1. Cadaveric human retina obtained from Moorfields eye bank, was 

explanted in vitro and transplanted with RGC-derived Müller stem 

cells attached to compressed collagen scaffolds. This was 

facilitated by incubation with ChABC. Following fixation, retinal 

tissue was analysed for transplanted cell integration into the inner 

retina. 

2. For the in vivo studies, transplantation was performed in 

vitrectomised eyes of female pigmented Chinchilla bastard rabbits. 

Efficiency of cell delivery from collagen scaffolds was examined 

using immunohistological techniques 2-3 weeks post 

transplantation. 
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To assess the efficiency of cell delivery using scaffolds, Müller stem cells 

were induced to differentiate into RGCs by culturing with DAPT and bFGF for 

one week, akin to previous studies performed in rat by our laboratory. 

Enriched RGC populations derived from Müller stem cells were prepared for 

transplantation onto explanted human retina, as well as for surgical 

implantation into 2.5-3kg female Chinchilla rabbits, in the presence of 

ChABC (see below). Explanted retinas from the adult human eye were 

cultured for a maximum of 7 days, following in vitro transplantation of cellular 

scaffolds. Rabbit eyes were analysed after 2-3 weeks post transplantation. 

Specimens were analysed for survival and migration of grafted cells into the 

retina using confocal microscopy.  

Vitreoretinal surgery was undertaken by two surgeons from Moorfields Eye 

Hospital, collaborating in this study, Mr DG Charteris and Mr H Jayaram. 

During this investigation I was responsible for the preparation of cellular 

scaffolds and therapeutic agents (ChABC), animal husbandry, sterilisation 

and preparation of surgical instruments, as well as providing technical 

assistance with vitrectomy equipment during surgery. The rabbit eye has an 

axial length of 18-21mm comparable to the adult human eye of 22-23mm, 

indicating that the dimensions of the globe in both species are similar 

(Hughes, 1972). However, the equatorial length of the human lens is 16mm 

with a depth value between 4-5mm (Taylor et al., 1996), 18% of the spatial 

cavity. In contrast, the rabbit contains a relative large lens of 5-7mm depth in 

adults which accounts for 28% of the ocular cavity (Hughes, 1972). The 

rabbit eye has a lower volume of vitreous (2ml) compared to the human (4ml) 

due to the larger lens and smaller outer radius and axial length (Friedrich et 

al., 1997a, Friedrich et al., 1997b). Rabbits have been used extensively to 

study the mode of systemic drug delivery and release within the eye for 

human models of ocular degenerations (Heller, 2005). The rabbit eye has 

more similar anatomical features to the human eye compared to rodents, 

which makes the rabbit an attractive model to examine the feasibility of 



190 
 

cellular scaffold transplantation. In this study, this mode of transplantation 

aimed to achieve direct contact between the scaffold and the RGC layer, 

following vitrectomy. 

4.2.1. Transplantation protocol 

Compressed type I rat tail collagen scaffolds were prepared as follows: 300µl 

of 0.75mg/ml collagen were cast in 1cm diameter rings, followed by 

compression under 150g weight for 5 minutes. Human Müller stem cells 

stably transfected with the human immunodeficiency virus type 1 (HIV-1 

based lentiviral vector) expressing human recombinant GFP were used for 

this study to determine the localisation of transplanted cells within the host 

tissue. GFP transfected Müller stem cells were differentiate in RGCs by 

culture on ECM in the presence of bFGF and DAPT. Cells were then 

dissociated from culture surfaces and assessed for their viability. Harvested 

cells were then added to prepared collagen scaffolds at a concentration of 

4x10
5 

per scaffold side. Cellular scaffolds were incubated at 37°C for a 

maximum of 2 hours per side, in DMEM containing 10% FCS, to aid 

adhesion. Scaffolds loaded with cells were then rinsed and washed 3 times 

for 10 minutes in sterile PBS, to remove serum. Scaffolds were stored in 

PBS at room temperature for up to 1 hour prior transplantation. Prior to in 

vitro transplantation, 0.4U/10µl of ChABC were placed onto the retina and 

incubated at 37°C for 10 minutes. When applied onto the retina in vivo, the 

enzyme was left for 5 minutes, prior to implantation of cellular scaffolds.  

Following removal of the lens by phacoemulsification (Figure 4.2) the 

vitreous body was removed using a high frequency pneumatic cutter which 

was inserted into the posterior segment through the pars plana sclerotomy. 

Delivery of both ChABC and cellular scaffolds was achieved using a 18G 

cannula directed towards the medullary raphe. Following scaffold 

implantation local injections of gentamicin and triamcinolone (washed and 

reconstituted in sterile water to 80µg/ml) were given subconjunctivally to 
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prevent post-operative infection and to reduce post-operative inflammation. 

Furthermore, in order to reduce the risk of the xenogeneic transplanted cells 

being rejected by the host, animals were orally immunosuppressed daily with 

cyclosporine (0.15mg/kg/day), three days prior to and following 

transplantation throughout the duration of the experiment, to prevent 

xenographic rejection of the transplanted cells. To control inflammation, 

operated eyes also were given topical drops of dexamethasone 0.1% and 

chloramphenicol daily following surgery until sacrifice. 
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4.3. Results 

4.3.1. Transplantation of RGCs onto explanted human retina 

using compressed collagen scaffolds 

Müller stem cell-derived RGCs were obtained by standardised protocols, and 

were seeded onto one side of compressed collagen scaffolds and incubated 

for 1-2 hours to allow cell attachment. Cellular scaffolds were placed onto 

explanted cadaveric human retina and cultured up to 7 days at 37ºC. The 

cellular scaffolds did not align onto the explanted retina, possibly due to the 

lack of pressure on the construct, permitting it to float. However, in the 

absence of Chondroitinase ABC, cells were observed to detach from the 

scaffolds but did not migrate onto the retina (Figure: 4.3). Following 

incubation in the presence of Chondroitinase ABC, although scaffolds did not 

attach to the retina, cells detached from the scaffolds migrated into the 

retina, possibly aided by this enzyme. This indicates that scaffolds can be 

used as a tool for cellular delivery onto the retina (Figure 4.3B).  

4.3.2. Delivery of RGCs using compressed collagen scaffolds 

onto the inner rabbit retina 

4.3.2.1. Histological assessment of rabbit transplantation without 

lens removal 

Haematoxylin and eosin (H&E) staining, as well as confocal microscopy was 

used to determine the histological features of transplanted rabbit eyes. This 

assessment confirmed that cellular scaffolds were located adjacent to the 

posterior retina. However, microscopic imaging of transplanted retina in 

rabbits where the crystalline lens was left in place, demonstrated severe 

disruption of the retinal architecture when compared to normal non-

transplanted eyes (Figure 4.5). It was thought that the damage caused to the 

retina was induced during surgery for scaffold implantation, due to breaks 

caused at port placement. 
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Figure 4.3: In vitro transplantation onto human retinal explants. GFP-labelled 
Muller stem cell-derived RGCs were differentiated for 7 days prior to in vitro 
transplantation. Cellular scaffolds were incubated for 2 hours at 37ºC, to aid cell 
adhesion. Confocal images and H&E image of cryosections of retina transplanted 
in vitro with collagen constructs supporting GFP-labelled Müller-derived RGCs, 
incubated with and without ChABC prior to transplantation. The upper image 
represents the migration of GFP-labeled cells onto retinal explant in the absence 
of Chondroitinase ABC (-ChABC). The lower image represents incubation of 
retinal explants with ChABC (+ChABC) prior to transplantation. Imaging with the 
addition of ChABC shows migration of cells from the cellular scaffold (cs) (open 
arrow) into or onto the retina (arrowhead). H & E. Yellow arrows correspond to the 
cs (open arrow) and retina (arrowhead). Scale bar=50µm.  
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Ports were introduced at the posterior pars plana to minimise the risk of lens 

touch and retinal breaks. However sclerotomies created in this region were 

associated with retinal detachment and widespread bleeding (Figure 

4.5).This made implantation of the cellular scaffolds onto the medullary raphe 

difficult (Figure 4.6). Due to this complication, a new approach was 

undertaken to perform a lensectomy (surgical lens removal) to allow the port 

entry sites to be placed more anteriorly within the pars plana. 

4.3.2.2. Macroscopic features of the in vivo transplanted rabbit 

with lens removal 

Macroscopic imaging using an inverted florescent microscope, of 

transplanted rabbit eyes, revealed that transplantation of scaffolds onto 

lensectomised and vitrectomised eye resulted in cell delivery onto the retinal 

macula. This was determined by the presence of GFP-positive cells in this 

region (Figure 4.7). Following 14 days after transplantation, scaffolds 

appeared to remain posteriorly in direct contact with the neural retina, within 

regions adjacent to the original delivery site. 

4.3.2.3. Histological examination of the rabbit retina following in 

vivo transplantation 

Initial investigations for transplantation of cellular scaffolds were undertaken 

without lens removal, following the surgical complications lenses were 

removed and examined by Haematoxylin and eosin (H&E) staining and 

confocal microscopy. Cellular scaffolds were found within anterior regions of 

the eye, adjacent to the ciliary body and port site (Figure 4.8). This suggests 

that there are other components involved in the delivery of cellular scaffolds, 

distinct from lens removal and port site location. This also indicated that 

delivery of scaffolds to the anterior part of the eye did not allow scaffold 

alignment along the neural retina preventing cells from attaching and 

migrating into the inner retina.  
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Figure 4.5: Histological examination of vitrectomised rabbit eyes, following in 
vivo transplantation of compressed collagen scaffolds without lens removal. 

Cryosections of a vitrectomy transplanted eye 14 days post surgery, showed retinal 
detachment within the posterior region of the eye and the onset of choroidial and 
vascular bleeding. A) H&E staining of the posterior region of the rabbit eye, proximal 
to the compressed collagen scaffold (yellow arrow). B) Confocal imaging identified a 
minimal amount of GFP-labelled cells within the sites of retinal detachment Confocal 
showed expression of the microglia marker lectin (red), within the regions of 
detached retina. Scale bar=100µm. 
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Figure 4.6: Histological examination of vitrectomised rabbit eyes, following in 
vivo transplantation of compressed collagen scaffolds without lens removal. 

Cryosections of a vitrectomy transplanted eye 14 days post-surgery demonstrated 
retinal detachment within the posterior region of the eye and the onset of choroidal 
and vascular bleeding. B) H&E staining of the posterior and anterior regions of a 
rabbit eye, as well as B) confocal microscopy of the posterior retina. H&E staining 
identified the presence of the cellular scaffold within the anterior segment of the eye, 
adjacent to the iris (yellow arrow). Confocal analysis of a posterior section, showed 
elevated expression of the microglia marker lectin (red), within the retina. Scale 
bar=100µm. 
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  Figure 4.7: Macroscopic imaging of In vivo transplantation of PC 
cellular scaffolds into lensectomised and vitrectomised rabbit eyes. A) 

Images depicting the vitrectomy stages for cellular scaffold transplantation:  
a) lensectomy b) vitrectomy c) insertion of cellular scaffold by cannula 
injection (white arrow). B) fundus imaging of (a) control eyes and eyes (b) 
transplanted with cellular scaffolds to which GFP-labelled Müller stem cell-
derived RGCs had been adhered. Images were taken under FITC 
illumination with cornea and lens removed (control eyes only) to identify 
GFP presence within the transplanted eyes. Imaging confirmed the 
presence of GFP in the posterior portion of the eye. 
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Figure 4.8: Histological examination of vitrectomised rabbit eyes, following in 
vivo transplantation of compressed collagen scaffolds following lensectomy. 

Globes of transplanted rabbit eyes were removed and sectioned 14 days post 
surgery. Cryosectioning and staining demonstrated aggregation of cellular scaffolds 
adjacent and proximal to the vitrectomy port sites. H&E showed the macroscsopic 
location of the cellular mass. Whilst confocal microscopy identified the mass as 
GFP-labelled Müller stem cells, which was also coupled with microglial mobilisation 
to the site of aggregation. Microglia was identified by lectin staining (red). Scale 
bar=100µm. 

 

 

H&E 

Anterior 

DAPI GFP Merge Lectin 



199 
 

Conversely, there was evidence that cellular scaffolds place on the medullary 

raphe allowed migration of cells onto the retina (Figure 4.9). Although, 

cellular scaffolds were observed adjacent to the neural retina, GFP-positive 

cells were not found to have integrated into host retina within this region. 

However, cells were seen to have migrated into host retina in regions located 

close to the scaffold, where the scaffolds had not attached. 

There was no evidence, in any of the experiments, of conventional RGC 

morphology adopted by transplanted cells. There was a lack of synaptic 

connections made with host cells, as well as a lack of neurite outgrowth 

observed by transplanted cells. 

4.3.3. Examination of the rabbit inflammatory response following 

cellular scaffold transplantation  

Determination of the inflammatory response in rabbit ocular tissues following 

scaffold transplantation was achieved by examining the presence of 

microglia. Immunohistochemistry was carried out by staining histological 

sections of rabbit retinae with the protein lectin. Microscopy of retinal tissue 

revealed that transplanted eyes had accumulation of cells staining for lectin 

at the site of the transplant (Figures 4.5, 4.6, 4.8 and 4.9). Similar 

accumulation of microglia was observed in all retinae, where cellular 

scaffolds had been delivered either posteriorly or anteriorly. Activation of 

microglia within host tissue was also evident when retinal detachment and 

haemorrhaging occurred, even in the absence of grafted cells (4.5 and 4.6).   
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Figure 4.9: Histological examination of vitrectomised rabbit eyes, following in 
vivo transplantation of compressed collagen scaffolds following lensectomy. 

A) H&E stained cryosections of a rabbit eye transplanted with a cellular scaffold. 
This showed the scaffold in the posterior retina (yellow arrow). The cellular scaffold 
appears to attach to the retina at some points without disrupting the retinal 
morphology. B) Confocal imaging of cryosections of the vitrectomised and 
transplanted eye showed migration of cells from the scaffold (open arrow) onto the 
retinal tissue (medullary raphe; arrowhead). Adjacent sections were also stained for 
lectin to identify microglia activity within the transplanted globe, and confirmed 
activation of microglia in the ganglion layer proximal to the GFP-labelled cells, 
highlighted by enhanced view (yellow box). Scale bar=100µm. 
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4.4. Discussion 

Observations from these experiments illustrate the need for vitrectomy 

surgery for adequate cellular scaffold delivery into a large eye. The study 

aimed to transplant appropriately differentiated Müller stem cells supported 

on compressed collagen scaffolds onto the inner retina.  This process was 

clearly facilitated by having direct access to the inner retinal surface. 

Previous work by our laboratory has demonstrated the migratory capabilities 

of Müller stem cells. Their ability to migrate into dystrophic RCS rat retina 

has been shown, as well as their ability to integrate into the RGC layer. This 

was facilitated by breakdown of the inner limiting membrane (ILM) with 

Chondroitinase ABC and anti-inflammatory treatment with Triamcinolone 

(Singhal et al., 2008, Singhal et al., 2012). Moreover, further work carried out 

within our lab demonstrated the migratory ability of Müller stem cell-derived 

photoreceptors when transplanted into the sub-retinal space of dystrophic 

rats. However, transplantation of differentiated Müller stem cell-derived 

photoreceptors displayed the capacity to orientate themselves within the 

photoreceptor lamina whilst maintaining their expression profiles of 

photoreceptors (Jayaram et al, submitted). Importantly, transplantation of 

RGCs and photoreceptors-derived from Müller stem cells also resulted in 

functional improvement in vivo, using experimental models of retinal 

degeneration. 

These findings highlighted the fact that integration within the correct retinal 

laminations cause functional improvement. Integration into respective retinal 

layers centred on appropriate differentiation protocols, in addition to creating 

permissive retinal environments for cells to migrate. Secretion of CSPGs 

following neural degeneration is an inhibitory factor for regeneration of 

nervous tissue. These molecules prevent the re-growth of damaged axons 

and the integration of grafted cells (Bradbury et al., 2002, Diaz-Martinez and 

Velasco, 2009). Activation and proliferation of microglia has been found in 
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degenerated RCS rat retina and this is an important cause of damage to 

grafted cells (de Kozak et al., 1997, Roque et al., 1996, Thanos and Richter, 

1993).  

The current study aimed to develop protocols for Müller stem cell derived 

RGCs transplantation into the larger eye, analogous to that of humans, to 

examine if similar Müller stem cell migratory capacities were evident. 

Scaffold development aimed to encourage uniform distribution of grafted 

cells onto the retina, preventing their aggregation on the inferior retina. 

Uniformity of grafted cell migration into rodent retinae was aided by the small 

vitreous cavity, allowing direct placement and cell support by the large lens in 

this species. Differentiated RGCs were seen to attach well to compressed 

scaffolds and endured invasive surgical manipulation via an 18 gauge 

cannula (Chapter 3).  

Delivery of cellular scaffolds appeared to be dependent on the surgical 

procedures used. Procedures that did not include removal of the lens 

demonstrated widespread retinal trauma, including detachments alongside 

extensive choroidal and retinal bleeding (Figure 4.5 and 4.6). Cellular 

scaffolds were found within the anterior (Figure 4.5) or posterior (Figure 4.6) 

regions of the retina. Removal of lens prior to transplantation permitted 

revision of port entry sites which prevented the trauma observed in 

procedures without lensectomy. Although the dimensions of the human and 

rabbit eyes are similar, the difference is lens morphology necessitated the 

use of surgical lensectomy which would most likely be unnecessary in 

human subjects. The rabbit lens created a physical barrier for appropriate 

port placement and since the pars plana is smaller in the rabbit, ports were 

subsequently positioned more anteriorly, following lensectomy. As with 

previous surgeries, the delivery sites of the cellular scaffolds varied in 

location following lensectomy. Cellular scaffolds were found within anterior 

(Figure 4.8) and posterior (Figure 4.9) regions of the eye. This suggests that 
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apart from port sites and lens geometry other physical factors are involved in 

surgical delivery. Angulation of cannulas within the ports may have 

contributed to the aggregation of cellular scaffolds within the anterior regions 

adjacent to the entry at the neural retinal-ciliary body junction. Steeper 

angles of the cannulas may promote directed placement of scaffolds onto the 

retina. The rate and/or force used to eject scaffolds from cannulas may have 

also determined the final site of delivery. Visualisation of original scaffold 

delivery positions were not always determined during surgery, but it is likely 

that they remain in the same position throughout the experiment. 

Cellular scaffold transplantation into rabbit eyes, when delivered onto the 

inner retinal surface were subsequently held in place against the retina, 

enabling proximal attachment (Figure 4.9). Attachments between host tissue 

and scaffolds failed to induce migration of RGC precursors into host tissue, 

possibly due to the lack of breakdown of the ECM by insufficient levels of 

ChABC. Limited integration faced in these studies could be improved by 

efficient sustained ChABC release to prolong its activity. In vitro human 

retinal explants demonstrated cell integration by scaffold transplantation of 

RGCs following incubation with ChABC (Figure 4.3). Lack of ChABC 

presence failed to support cellular migration and appeared to induce cellular 

dispersion into the local media, suggesting that ChABC is vital for cellular 

integration (Figure 4.3). The in vivo state of degenerated retina would be 

vastly different to normal ex vivo tissues and in vivo eyes. Dystrophic and 

glaucomatous eyes would contain abnormal amounts of CSPG molecules, 

as well as cellular debris due to retinal degeneration (Zhang et al., 2003). 

Hence the modulation of the normal retinal ECM is a key factor to consider 

for cellular transplantation into degenerated retina. CSPG rich matrices 

treated with active ChABC have been shown to improve integration of 

transplanted photoreceptors (Inatani and Tanihara, 2002). Experiments 

carried out during this study have positively identified cellular migration onto 

host retina, although in many cases these regions were not proximal to the 
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scaffolds. This may indicate that temporary support by cellular scaffolds is 

sufficient for migration onto the retina.  

Where migration was observed, classical axonal organisation was not 

adopted by transplanted cells. The extension of neurite and dendritic 

outgrowths within the RGC population embodies a feature where the 

orientation and direction of axons converge collectively towards the optic 

nerve. In some cases axons do not synapse until they extend into the visual 

cortex. This feature, to date has not been observed following transplantation 

of other stem cells. However, our lab has shown that synapses can form 

between transplanted Müller stem cell-derived RGCs and their local rat host 

neurons (Singhal et al., 2012). This transplantation caused functional 

recovery of a RGC depleted population, suggesting that limited integration 

may be sufficient to improve retinal function rather than having to completely 

replace and mimic the native retinal ganglion cell layer. 

In summary, this chapter demonstrates that Müller stem cell derived RGC 

can be delivered into larger eyes via compressed scaffolds. However, the 

mechanical process of surgery needs to be standardised for further 

investigations. The physical manipulations during operative procedures need 

to comply with stringent parameters for the rabbit. Barriers to surgical 

transplantation include the presence of the lens, cannula angulation and port 

placement. Biological barriers were also highlighted by this investigation. 

Promotion of cellular integration into host tissue requires adequate 

modulation of the adjacent retinal environment using ChABC (Singhal et al., 

2012). Stabilisation and prolonged activity of ChABC would provide a 

permissive retinal microenvironment amenable to cellular integration. At 

present, frequent and numerous injection of the enzyme is the most common 

mode of delivery (Coumans et al., 2001), which can be a lengthy and 

invasive process. Thermal instability and leeching limits the activity of 

ChABC. There is a need to improve the delivery of ChABC by generating a 
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slow-release mechanism that is able to maintain therapeutic dosage of 

ChABC in the retina. Fabricated matrices have been designed to incorporate 

ChABC as well as other agents which aid neural regeneration. Hydrogels 

consisting of fibrin (Taylor and Sakiyama-Elbert, 2006, Hyatt et al., 2010) and 

agarose (Lee et al., 2010) have been used to assess in vivo use and delivery 

of ChABC, and they merit investigation into their suitability for retinal delivery. 

Electrospun collagen has also been nominated as a suitable substrate by 

impregnation with NT-3 and ChABC via microbial transglutaminase (Liu et 

al., 2012). Further investigations would determine the feasibility of sustaining 

ChABC delivery by collagen-based scaffolds for ocular use. Stabilising 

ChABC could improve the integration and survival of transplanted cells over 

an extended period.  

Further determination of compressed cellular scaffolds suitability would 

involve studies in larger mammalian glaucomatous eyes such as hereditary 

animal models, including Siamese cats with primary congenital glaucoma 

(Sigle et al., 2011). 
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Chapter 5: General Discussion 
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5.1. Introduction 

Müller stem cells within the retina of zebrafish and Xenopus have the innate 

capacity to regenerate retina throughout life. Early post natal chicks have 

also shown limited retinal regeneration ascribed to the unique abilities 

possessed by Müller stem cells (Fischer and Reh, 2001). The human retina 

also contains a population of Müller glia with stem cell characteristics. These 

cells express markers of multipotency (Lawrence et al., 2007) specifically 

restricted to retinal neurons. However, unlike zebrafish and amphibians 

these cells are unable to repopulate neural cells endogenously following 

damage. Müller glia like other glial cells can re-enter the cell cycle in order 

to proliferate, forming glial scars and propagating within the spaces of 

apoptotic cells and disconnected synapses (Lewis et al., 2010). This feature 

to de-differentiate and proliferate is harboured by all Müller glia of different 

species, which therefore represent a cellular source to generate new 

neurons. Isolating this population from human retina has led to the 

emergence of stem cell research for human retinal diseases and the 

development of cell-based therapies.  

Degeneration within the retinal ganglion cell population is one of the 

pathological features of glaucoma which accounts for 15% of all registered 

blind in England (Bunce et al., 2010). Current therapies to treat glaucoma 

involve either pharmacological such as Lumican or surgical interventions, 

such as filtration surgery, to reduce ocular pressure by improving the 

drainage of excess aqueous. These aim to delay the onset of neuronal and 

eventual visual loss. Glaucoma, as well as other retinal dystrophies, may 

benefit from Müller stem cell transplantation. These cells can be easily 

isolated from cadaveric tissue and can be grown extensively for allogeneic 

transplantation. Moreover, understanding the pathways involved in the 

differentiation processes of Müller stem cells would enhance the technology 

of cell-based therapies. Patients would also benefit by developing regimes 
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that involve activating the regenerative capabilities of endogenous Müller 

stem cells, possibly via small molecule or gene therapies. 

The main objectives of this thesis were to further study the potential use of 

Müller stem cell-based therapies to treat glaucoma. The present study 

therefore investigated the molecular aspects of Notch signalling in the 

differentiation of Müller stem cells into RGCs. This involved assessing RGC 

markers and miRNA expression of cells undergoing differentiation. This 

study also aimed to examine practical transplantation of Müller stem cell-

derived RGCs onto the retina by determining the suitability of type I collagen 

to engineer a transplantable cellular scaffold. 

5.2. miRNA regulation of RGC development in Müller stem cells 

Studies into the molecular regulation of the Notch pathway in human Müller 

stem cells involved the examination of the presence of mature microRNAs. 

The Notch pathway appears to control the development of RGCs derived 

from human Müller stem cells (Singhal et al., 2012). Inhibition of the Notch 

pathway with a gamma secretase inhibitor (DAPT) prevents the 

translocation of the Notch intracellular domain (ICD) to the nucleus. This 

prevents the transcription of bHLH genes which operate to prevent 

differentiation and promote progenicity of neural stem cells (Kageyama et 

al., 2005).   

Microarray data highlighted the presence of several upregulated miRNAs in 

Müller stem cells following Notch inhibition in the presence and absence of 

bFGF. These findings suggest the emergence of novel targets of the Notch 

pathway, which may promote neural development within Müller stem cell 

populations.  

Treatment with DAPT alone in Müller stem cells generated significant 

upregulation of miRNAs involved in cell cycling, with some being linked to 
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Notch signalling. Others have also been shown to enhance differentiation or 

establish a cellular state which is needed to promote diversification prior to 

terminal differentiation.   

Interestingly, the miR-30 family of miRNAs was enriched in DAPT treated 

Müller stem cells. This family has been implicated in the repression of the 

bHLH transcription factors involved in epithelial-mesenchymal transition 

(EMT), and indirectly on the Notch pathway. One of these targets has been 

linked to Notch, preventing the binding of its intracellular domain to nuclear 

targets. ZEB1 has been reported as a target of miR30, which prevents ZEB1 

promoting the transcription of MamL and the transduction of the Notch-ICD 

(Brabletz et al., 2011). miR-30 members also appear to mediate the 

triggering of Notch by repressing DLL4 in sarcomas, preventing cell cycling 

(Bridge et al., 2012).  A closely related family to miR-30 also demonstrated 

elevated expression in treated Müller stem cells, and is involved in cell 

cycling. The miR-29 family was also upregulated and presents a new target 

of the Notch pathway and may converge on its action on p107 in the 

proliferation of neurons (Vanderluit et al., 2004).  

The mTOR kinase proliferative action was highlighted in this study by the 

markedly enriched expression of miR-99a in Müller stem cells undergoing 

Notch inhibition. This factor is deregulated in oncogenic cells causing 

abnormal rapid proliferation, and may be repressed during Notch inhibition 

in Müller stem cells by miR-99a. Another proliferative cascade implicated by 

this study was the PI3K/Akt pathway. This can be inferred by the 

observation that miR-221 and miR-222 were elevated in cultures undergoing 

Notch inhibition, miR-222 has been associated with preventing cell cycling 

by repressing the expression of factors involved in PTEN, which in turn acts 

to prevent PI3K/Akt signalling (Wong et al., 2012, Zhou et al., 2012), and 

miR221 is known to act by preventing the phosphorylation of a PI3K subunit 
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(Nicoli et al., 2012). Therefore they may play a role in the activation of the 

PI3K/Akt pathway. 

A cluster on chromosome 21 was enriched in DAPT treated Müller cell 

populations, namely the miR-125b cluster, which contains miRNAs that are 

involved in diversification rather than terminal differentiation (Gururajan et 

al., 2010). This suggests that Notch prevents this cluster from promoting this 

initial diversification step in Müller stem cell differentiation.  

miRNAs profiles of Müller stem cells cultured with DAPT and bFGF showed 

enriched expression of hsa-miR-204, hsa-miR-100, hsa-miR-151-5p, hsa-

miR199b-5p and let-7i. These RNA molecules are involved in proliferation, 

whilst miR-199b is linked to Hes1 regulation (Andolfo et al., 2012, Garzia et 

al., 2009) and let-7i indicates the development of RGC within Müller stem 

cell populations (Loscher et al., 2007).  

Five miRNAs were found to be significantly upregulated in Müller 

populations, undergoing Notch inhibition in both the presence and absence 

of bFGF. Although miR-204-5p was significantly enriched following the 

addition of bFGF, this miRNA doubled in expression following DAPT 

treatment and constituted the highest elevation for the array. Subsequent 

addition of bFGF to cultures further enhanced the expression of miR-204-

5p, which was the only miRNA that was common to both treatment groups. 

miR-204 in the eye appears to target Pax6 indirectly, impacting on the final 

size and organisation of the ocular tissue in the medaka fish (Conte et al., 

2010).  This miRNA is also expressed in the mature neural retina. The 

interplay between RGC development and Notch inhibition may converge 

mainly on miR-204 in Müller stem cells.  This relationship presents a novel 

target of the Notch pathway, and possible involvement of miR-204 in the 

maturation of human RGCs derived for Müller stem cells.  
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In conclusion, miRNAs that appear to be under the regulation of the Notch 

pathway were upregulated following DAPT treatment of Müller stem cells. 

This not only demonstrates the impact of Notch inhibition in the 

development of RGCs, but also identifies targets that may be used to induce 

regeneration of the ganglion cell population by quiescent Müller stem cells in 

vivo.       

5.3. Investigations into the potential use of Electrospun Collagen 

scaffolds as a tool for Müller stem cell transplantation 

Investigations into scaffolds produced by electrospinning type I collagen 

suggested that the 3D matrices obtained were able to support cellular 

attachment and growth. However, the need for crosslinking with cytotoxic 

chemicals makes them unsuitable for translation to human therapies. 

Culturing of Müller stem cells was possible on electrospun collagen, with the 

degree of cell recovery being dependent on the crosslinking process. 

Crosslinking involved using agents that propagated the formation of 

crosslinks between lysine groups of adjacent collagen fibres. Those agents 

were then washed from the scaffolds, resulting in a construct able to 

maintain its 3D structure under culture conditions. EDC coupled with the 

amine group donator NHS provided a catalyst for crosslinking, ensuring 

complete leaching of the chemicals following incubation. Cells were 

observed to adhere and proliferate at a normal rate when supported on 

these matrices although the degree of crosslinking was not consistently 

reproducible with the same experimental parameters. The use of 

glutaraldehyde vapour to crosslink proved to induce cell death at high 

concentrations, possibly due to remnants of the chemical remaining within 

the matrix network. GTA forms protein crosslinks through incorporation of its 

reactive moiety into the link. This creates a potential chemical reservoir that 

releases its contents when the matrix is either disrupted or remodelled. It 

was therefore expected that lower concentrations would provide culture 
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systems more conducive to maintain cell viability. However, very low 

concentrations of GTA led to a lack of crosslinks within the fibrillar 

framework resulting in instability and rapid structural deterioration when 

placed into culture media. GTA also prevented the identification of inherent 

and mature markers of both retinal stem cells and RGCs due to the high 

charge on the collagen surface; causing non-specific binding of secondary 

antibodies. Additional experiments using electrospun collagen could assess 

the use of alternative crosslinkers such as genipin or vitamin B. However, 

the extent of crosslinking by these agents has been reported as being 

insufficient for in vivo application. Further investigations could examine the 

use of different polymers; natural or synthetic, and their competencies for 

physical implantation into the body as well as their biocompatibility. 

Synthetic polymers are currently being investigated by tissue engineers for 

dermal grafts as well as internal visceral enhancers or supports. Many of the 

proposed materials are easily produced within finite parameters and can be 

modelled under different conditions generating fibrous, gelatinous structures 

or sheets. An additional factor which limited the use of electrospun collagen 

scaffolds for transplantation was the lack of biodegradability under culture 

conditions. The removal of such cellular supports following transplantation 

would not be desirable in those patients with damaged retinal tissue. Further 

surgery may lead to increased risk of inflammation and damage to residual 

functional retina, hence it would be preferable to design a substrate which is 

able to degrade under physiological conditions.  

Although the scaffolds produced by electrospinning were stable when 

crosslinked with GTA, the therapy proposed for cell transplantation using an 

engineered support is primarily dependent on the biocompatibility of the 

substrate. Collagen, being a natural polymer, would be suited to the 

physiological conditions of the human body, and would potentially be more 

appropriate than those scaffolds composed of synthetic materials. However, 
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chemical processing of the fabricated collagen is a limiting factor when 

designing an electrospun scaffold and would also be the limiting factor to 

produce cellular scaffolds for human application. 

5.4. Plastic compressed collagen scaffolds as a potential tool for 

Müller stem cell transplantation 

The present results indicated that Müller stem cells readily adhered to 

collagen substrates that had undergone crosslinking via plastic 

compression. Collagen is innately strong and is the main protein found in 

the body which provides a variety of cells with mechanical support. Collagen 

is sourced from dermal mammalian tissues and is extracted for in vitro 

culturing; being a naturally occurring polymer, the degree of biocompatibility 

of the protein is thought to be much greater than that of synthetic sources. 

The various extraction methods used denature the collagen, weakening the 

original framework of the proteins ultrastructure. Unlike other chemical 

measures taken to crosslink extracted collagen samples, plastic 

compression involves physical crosslinking by removing the water 

component of hydrogels (Brown et al., 2005).   

Müller stem cells are able to firmly attach to compressed collagen 

substrates and are able to grow at normal rates when compared to no 

matrix controls. Müller stem cells subjected to differentiation protocols 

involving culture with DAPT and bFGF were also observed to adhere firmly 

to constructs. Examination of the presence of RGC markers in Müller cell-

derived RGCs demonstrated that these cells positively stained for proteins 

of mature retinal ganglion cells and early neural precursors in vitro. 

Constructs were also stable when subjected to physical manipulation for 

surgical processing, although at low concentrations of the protein, 

constructs were easily damaged through handling.  
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Further studies on the preparation of these constructs would entail exploring 

the extent of their degradation under both in vitro and in vivo conditions. Like 

electrospun collagen, compressed substrates were not seen to degrade 

over extended periods of time (up to 3 months) at any concentration.  The 

degree of protein breakdown could be determined by ELISA analysis in 

order to quantify the amount of collagen present within the supernatants. 

Furthermore, in order for the structure of the constructs to be suitable for 

transplantation the structure must be temporary. Although the scaffolds 

designed during this investigation were not found to biodegrade, future 

studies could be aimed at designing protocols to create a transplantable 

construct which can deliver cells and therapeutic agents to the ganglion 

layer and later degrade without releasing products that activate local 

microglia. Tailoring the structure of collagen constructs may aid their 

degradation by creating weak junctions within the collagens fibres. Blends of 

polymers; natural, synthetic or a mixture of both could also be employed to 

yield a construct suitable for in vivo use. The rationale behind blends is to 

merge favourable traits of the different materials that could potentially yield a 

biodegradeable and biocompatible scaffold for Müller stem cell 

transplantation. This may also help overcome the contraction processes 

imposed on the collagen substrates by cells. Further understanding of the 

extent of crosslinks created via physical compression could also lead to 

possible modifications of the constructs. 

The evidence presented in this study suggests that compressed collagen 

creates matrices support Müller stem cells in culture as well as their 

differentiation towards a retinal ganglion cell fate. Following modifications of 

these constructs, they may constitute a potential tool for cell transplantation 

onto the inner retina.  
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5.5. Transplantation of RGC precursors ex vivo and in vivo using 

compressed collagen scaffolds 

Vitrectomy followed by intraocular transplantation of human Müller stem cell 

derived RGCs led to delivery of cells onto the inner retinal surface. Although 

alignment of scaffolds was observed within some subjects, aggregation was 

also observed within anterior segments of the ocular cavity, adjacent to port 

entry sites.      

Supporting Müller stem cells on compressed collagen for transplantation 

aimed to prevent cell aggregation following a single bolus injection. While 

Müller stem cells were supported on PC scaffolds, the extent of uniform 

migration onto the retina was dependent on surgical parameters, as well as 

modulation of the local retinal ECM. Transplantation of stem cells for cell-

based therapies encounter many barriers, where the mode of 

transplantation, locality of the region undergoing transplantation and the 

source of cells used are all relevant to the choice and design of cellular 

scaffolds. However, one major limitation of functional integration of stem 

cells into host tissue is the microenvironment condition, created by abnormal 

deposition of ECM and the presence of inflammatory microglia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

(Gehrmann et al., 1995, Singhal et al., 2008).   

Cellular scaffolds delivered directly onto the inner retinal surface, were seen 

to facilitate alignment of cells uniformly along the inner retina. However, 

integration into host tissue was not observed. The lack of migration 

observed in regions of close contact between the scaffold and retina may be 

ascribed to insufficient delivery of ChABC. This enzyme acts by targeting 

the neural ECM which acts to direct neural tissue during development, and 

is present within adult tissue. Following neurodegeneration in the CNS, 

including the retina, these proteins are known to accumulate (Steinmetz et 

al., 2005, Zhang et al., 2003). ChABC digests the reactive 

glycosaminoglycan (GAG) side chains into simple disaccharides, from their 
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CSPG core. The application of ChABC to treat spinal cord injury (Bradbury 

et al., 2002) and similar CNS injuries have been extensively examined both  

in vitro and in vivo, and have been shown to have a positive impact upon the 

extent of axonal regeneration. Such experiments demonstrated re-growth of 

damaged neurites within corticospinal, reticulospinal and nigrostriatal 

populations following ChABC treatment (Garcia-Alias and Fawcett, 2012). 

Moreover, studies assessing the migration of transplanted cells illustrated 

that generation of axons was enhanced when the peripheral regions of the 

spinal ECM, interfacing the graft, had undergone treatment with ChABC 

(Fouad et al., 2005, Karimi-Abdolrezaee et al., 2010, Tom et al., 2009, 

Garcia-Alias and Fawcett, 2012). 

Therefore, and as previously described (Singhal et al., 2012, Singhal et al., 

2008), injection of ChABC onto retinal tissue prior to transplantation is 

important for providing optimal conditions for integration of transplanted 

Müller stem cell derived RGCs into the retinal ganglion cell layer.  

Entry sites made for surgical instruments and the infusion line were directed 

into the pars plana which is the junction between the neural retina and ciliary 

body. This region measures between 2-3mm in humans, but the rabbit 

equivalent is smaller and more vascular in nature. In addition, the rabbit eye 

also houses a larger lens within the anterior chamber. These anatomical 

differences required modification of the surgical technique. Therefore, 

rabbits underwent lensectomy (lens removal) in order to correct the 

limitation of spatial placement of portals. However, cellular scaffolds were 

observed to remain proximal to the site of entry. This localisation of 

scaffolds may have been due to their insufficient expulsion from the cannula 

or due to the angulation and depth of the cannula which may have 

contributed to cellular aggregation, cell death, changing the properties of the 

original scaffolds. To that end, extensive repopulation of the ganglion layer 

was not observed. Cells tended to integrate within the region close to the 
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scaffolds if aligned along the retina. Extensive microglial mobilisation was 

also seen within regions of cellular aggregation, indicating a local immune 

response to grafted cells. This could be prevented in future studies by 

ensuring administration of sufficient anti-inflammatory drugs prior and 

throughout the experiment.  

The application of Müller stem cell derived RGCs for human glaucoma 

therapies would require implantation into degenerated retina where the 

structure and microenvironment would be abnormal, posing difficulties for 

cells to integrate into the retina. Future studies would need to identify 

whether transplanted Müller stem cells are able to integrate into diseased 

tissue where the architecture is deteriorated. This would entail creating a 

model of retinal ganglion depletion or glaucoma in a large mammal. 

Furthermore, functional assessment by ERGs, alongside histological 

analysis would determine the extent of retinal repair by these cells. The 

degree of migration and cell replacement is likely to be coupled with the 

efficiency of ILM and local ECM modulation achieved by ChABC, hence 

effective delivery would entail stabilising this proteolytic enzyme.     

5.6. Conclusions 

This work demonstrated that miRNA profiles alter following Notch inhibition 

in Müller stem cells, suggesting that the maturation of RGCs in vitro can be 

modulated by small molecules. This work also demonstrated that although it 

is possible to generate collagen-based scaffolds that support cell growth 

and adhesion, there are still many factors that need to be assessed for 

appropriate fabrication and delivery. Preparation of cellular scaffolds for 

retinal transplantation require emphasis upon their structural integrity and 

the biocompatibility of the biomaterials used. Müller stem cells could be 

cultured in vitro with type I collagen, however plastic compressed collagen 

scaffolds generated the most suitable constructs for transplantation. 

Implantation of these scaffolds demonstrated that Müller stem cells could be 
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supported during the grafting process, and could be positioned in close 

proximity to the retina during surgery. Therefore, it can be proposed that PC 

collagen scaffolds may constitute a viable source of material to support 

inner retinal cell grafting, but further studies are needed to evaluate and 

refine the optimal conditions and modifications required to produce 

biodegradable and non-contractile scaffolds. A final limitation to cellular 

integration in vivo following scaffold delivery is the efficiency of modulation 

to the local retinal ECM. In order to restore function to the ganglion layer, 

grafted cells need to migrate and synapse with host neurons to promote 

residual cell survival or cell replacement, and appropriate degradation of the 

ECM in vivo by ChABC needs to be established. 

Müller stem cells from human retina constitute a potential source of cells 

that may be used to produce RGCs in vitro, for delivery onto the inner retina 

in vivo. However, the alterations of miRNAs following Notch inhibition 

suggest that these cells house intrinsic regulatory molecules for RGC 

maturation and have the potential to be modified in vivo. This would remove 

the financial and regulatory implications of stem cell transplantation, and 

merit further studies to induce their endogenous regeneration without the 

need for transplantation.   
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Chapter 6: Materials and Methods 
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6.1. Construction of type I collagen scaffolds using  Electrospinning 

methods 

Electrospinning was performed within an interlocked extraction cabinet. Rat 

tail type I collagen (First link UK) was dissolved in either acetic acid or 

hexafluoroisopropanol; HFIP, (Appollo scientific Ltd), at a concentration of 

50mg/ml. Solutions were brought up to room temperature before transferring 

to a syringe attached to a 22 gage cannula. Under appropriate voltages 

ranging between 12kV-15kV, using a HPV power supply, collagen fibres 

were drawn onto a grounded target enclosed within aluminium foil. The 

grounded targets were set at a range of distances between 10cm-20cm. 

Fibres were drawn for a maximum of two hours. The infuse rates ranging 

between 2-5ml/hr were applied via a Harvard 4400 syringe pump. 

6.1.1. Crosslinking of electrospun collagen scaffolds 

6.1.1.1. Glutaraldehyde vapour crosslinking 

Air dried non-crosslinked collagen scaffolds supported on foil were 

crosslinked within a sealed desiccator. Collagen scaffolds were placed onto 

a perforated ceramic tray within the desiccator and, exposed to 

glutaraldehyde (GTA) vapours (Sigma-Alrich). The presence of aqueous 

solutions of 5-25% glutaraldehyde within the desiccator, contained in a glass 

Petri dish under the perforated tray, ensured the release of glutaraldehyde 

fumes and the progression of chemical crosslinking. Collagen scaffolds were 

allowed to crosslink for 72 hours at room temperature, followed by washes 

over 24 hours with deionised water. Matrices were then air dried in a fume 

cupboard at room temperature. 
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6.1.1.2. EDC crosslinking 

Collagen scaffolds were crosslinked within a sealed glass dish containing 

aqueous solutions of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) 

(Appollo Scientific), alone or supplemented with N-hydroxylsucinimide (NHS) 

(Sigma-Aldrich). A solution of 30wt% EDC alone or EDC in combination with 

NHS at a ratio of 1:1 (w/w), in a 9:1 (v/v) mixture of acetone and water was 

used to induce the crosslinking process. Scaffolds were fully immersed in the 

solutions for 2 hours at room temperature on a slow shaker. Collagen 

scaffolds were then air dried overnight in a fume cupboard and repeatedly 

rinsed and washed with deionised water several times, in order to remove 

any residual reagents. 

6.2. Construction of type I collagen scaffolds by plastic compression 

Rat tail type I collagen (FirstLink UK) solutions were made in 0.06% acetic 

acid  at a stock concentration of 2mg/ml. Solutions were subsequently diluted 

to 1-0.75 mg/ml in 0.06% acetic acid. One part of Minimum essential medium 

10x (Invitrogen Ltd, UK) was added to 8 parts of collagen solution to aid 

neutralisation. Under sterile culture conditions, solutions underwent 

neutralisation by the addition of 5M sodium hydroxide (Sigma-Aldrich, 

Dorset, UK) drop-wise, to ensure collagen polymerisation. This was 

monitored by colorimetric change from straw yellow to pale pink (neutral pH). 

The solutions were left on ice for 20 minutes to disperse bubbles formed 

during neutralisation. Volumes of these solutions, 300µl-1ml were then 

added to titanium circular moulds ranging from 0.5cm-2cm diameters and 

subsequently incubated at 37°C in 5% CO₂ for up to 30 minutes to induce 

fibrillogenesis. Hydrogels were removed from incubation and placed between 

two nylon meshes. Hydrogels were then compressed under 150g loads for 5 

minutes. Compressed collagen scaffolds were floated off the nylon into 

Phosphate Buffered Saline (PBS) before cell culture procedures. 
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6.3. Cell culture 

6.3.1. Müller Stem Cell Culture  

Established Müller stem cell lines at the Institute of Ophthalmology were 

used in this study. To passage these cells, monolayers of cultured cells were 

dissociated using TryplE
TM 

x1 (Life technologies), followed by 5 minute 

incubation at 37°C, 5% CO₂. Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with FCS (5mls per T-175) was added to the flasks to collect 

the dissociated the cells. Cell suspensions were centrifuged at 1400 rpm at 

15°C for 5 minutes. Supernatants were aspirated, whilst cell pellets were 

resuspended in fresh media and added to new culture flasks. Fully confluent 

monolayers formed after 7 days and were maintained through passaging in a 

1/5 dilution. 

Cell stocks were maintained by cryopreservation of cultured cells and was 

performed by resuspending cell pellets from T-25 culture flasks in 1ml of 

freezing mix composed of; 40% FCS and 10% Dimethyl Sulfoxide (DMSO) 

(Sigma-Aldrich, UK) in DMEM. Cell suspensions were transferred to 

cryovials that were placed within an isopropanol freezing cassette at -80°C 

for 24 hours, this ensured controlled cryopreservation. Frozen suspensions 

were then transferred to -150°C for long term storage. 

All cells were grown and passaged in DMEM containing L-Glutamax without 

pyruvate (PAA, UK), 10% FCS (Biosera), 5ml mixture of penicillin 

(2,000U/ml) and streptomycin (2,000µl/ml) (Life technologies) in 500mls of 

DMEM. Incubated at 37°C in 5% CO₂ air atmosphere. 

6.3.2. Use of extracellular matrix substrates and growth factors to 

culture Müller stem cells 

For differentiation Müller stem cells were cultured on polystyrene tissue 

culture plates or flasks (Nunc, Thermo Scientific) coated with ECM Gel from 
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Engelbreth-Holm-Swarm murine sarcoma (ECM) (cat no: E1270, Sigma-

Aldrich, UK), reconstituted to stock concentrations as per company 

instructions and subsequently aliquoted and stored at -20°C. Aliquots were 

diluted in sodium bicarbonate buffer; 15mM Na2CO3, 35mM NaHCO3, pH 9.6 

to a working concentration of 50ng/ml. They were also stored at -20°C until 

use. To coat the surfaces of culture plastics, it was ensured that the matrix 

solution covered the entire area (a minimum of 1ml/ T-25 flask). Flasks or 

plates were incubated at 4°C overnight or at 37°C for 2 hours. Prior to cell 

culture, ECM solutions were fully aspirated and flasks were washed with 

sterile PBS. 

Recombinant Human Fibroblast Growth Factor-2 (bFGF; cat no: F0291, 

Sigma-Aldrich, UK) and N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-

phenylglycine t-butyl ester (DAPT; cat no: D5942, Sigma Aldrich, UK) were 

reconstituted according to the manufacturer’s instructions and stored in 

aliquots at -20°C prior to use. bFGF was diluted in culture medium to yield a 

final concentration of 20ng/ml, whilst DAPT was diluted to a concentration of 

50ng/ml. These factors and their concentrations were determined by 

previous studies performed in the laboratory (Singhal et al., 2012). There 

was no subsequent replenishment of factors during the progression of the 

experiments. For differentiation studies the FCS content of culture media 

was reduced to 5% in order to reduce Müller stem cell proliferation. 

6.3.3. Use of collagen-based scaffolds for Müller Stem Cell Culture 

Electrospun collagen scaffolds were sterilised by immersion in 70% ethanol 

for two hours at room temperature. Under cell culture conditions the ethanol 

solutions were removed and scaffolds were rinsed with sterile PBS. Scaffolds 

were then repeatedly washed three times for 10 minutes with sterile PBS. 

DMEM containing 10% FCS and Penicillin Streptomycin was added to 

scaffolds and incubated for 8hrs, or overnight, at 37°C in 5% CO₂. Media 

was then removed and cells seeded onto “wet” scaffolds. Compressed 
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collagen scaffolds were transferred from PBS into 2.5cm tissue culture 

dishes prior to DMEM and Müller stem cells addition. 

100% GFP lenti-viral labelled MIO-M1 were grown to a confluent layer in a T-

25 tissue culture flasks, using DMEM containing 10% FCS (as above). Once 

a confluent layer was formed, cells were detached by trypsinisation, following 

subsequent pelleting and resuspension cells were counted using a 

haematocytometer. Cell viability and number were determined by dilution 

with trypan blue (1:1 ratio, 10µl) and added to the haemotocytometer. 

Unstained viable cells were counted within the squares of the central grid; 

the inner and four corner squares. Following counting cells were suspended 

at a concentration of 12,500 cells/ml. 2ml of this suspension was added to 

scaffolds, which were incubated at 37ºC until a subconfluent layer was 

obtained after 7 days. 

6.3.4. In vitro transplantation of cellular scaffolds onto explanted 

retina 

Donor human eyes from Moorfields eye bank were obtained under ethical 

approval for ex vivo explant culture. Anterior portions of the globes were 

removed 4mm from the Limbus. The vitreal body was then gently removed 

and the globe dissected into quadrants down to the optic nerve head. The 

retina was carefully separated from the RPE layer by folding the retinal 

quadrants towards the centre; the optic nerve was then cut to detach the 

retina. Retinas were then placed on 0.4 µM pore PTFE hydrophilic cell 

culture insert 30 mm diameter filter (Millipore, USA) contained in a 6-well 

plate. Müller stem cell derived RGCs were placed onto 1cm, 300µl-

0.75mg/ml compressed collagen scaffolds at a concentration of 11.25x10
4
 

cells/ml for 2 hours prior to placing onto retinal explants. Explants were 

cultured for a maximum of 7 days. The culture medium comprised 48.5 ml 

Neurobasal A-Medium (cat no: 12349, Life Technologies, UK) and 1.5 ml 

mixture of media supplements (Wang et al., 2002). Supplements were made 
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of 500 µl of 2% B-27 (cat no: 17504-044, Life Technologies), 200 µl of 

0.8mM L-Glutamine (cat no: 25-005-CI, Cellgro), 250 µl of 1% N-2 (cat no: 

17502048, Life Technologies) and 500 µl of 100U/ml Penicillin/Streptomycin 

(cat no: 15140122, Life technologies). Ex vivo tissues were then prepared for 

cryosectioning and confocal microscopy. 

6.4. Cell Viability Assay 

Cell viability was assessed using the hexosaminidase assay which evaluates 

the number of living cells by colorimetric determination of hexosaminidase 

levels within lysomes. 96 well plates were seeded with 5,000 cells/well (in 

accordance with growth rate analysis) and cultured for 7 days at 37°C in 5% 

CO₂. Examination of hexosaminidase levels involved initial centrifugation of 

the plates at 1400rpm for 3 minutes. Culture media was subsequently 

removed from the plates and rinsed with PBS to remove residual serum. 

Plates were then centrifuged again prior to substrate addition. 60µl per of 

hexosaminidase substrate was transferred to each well and incubated at 

37°C for 4 hours. The reaction was blocked by the addition of 90 µl of 0.1M 

glycine-sodium hydroxide buffer, pH 10.4. The absorbance was read at 

405nm with a blank reading taken at 620nm. Control readings were also 

collected for substrate and buffer alone at the time of recording. 

The hexosaminidase substrate was made by adding 200mg of p-nitrophenyl-

N-acetyl-β-D-glucosaminide to 78ml of 0.1M Tris sodium citrate, adjusted to 

pH 5.0 and 78ml of 0.5% Triton X-100 in water.  

6.5. Collagen digestion of scaffolds 

Stock solutions of 0.5% collagenase D (Roche) in PBS containing calcium 

and magnesium were diluted 1:10(v/v) with PBS. Media was removed from 

the collagen scaffolds and 90µl of diluted collagenase D was added to each 

scaffold. The collagen scaffolds were then incubated for 30 minutes at 37°C. 
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The digestion system was disrupted at 10 minute intervals by severe 

pipetting. The plates were centrifuged at 9,000rpm for 5minutes to separate 

the cells and collagen from the enzyme solution. The collagenase D was 

then removed and the cell viability assessed by trypan blue exclusion and 

hexosaminidase assay. 

6.6. Measurement of optical density of collagen scaffolds 

Ocular densities of collagen scaffolds were analysed using absorption 

spectra and the Safire software. For the assay, collagen scaffolds were place 

onto the culture surfaces of 96 or 24 well plates (Nunc) in PBS and 

measured, without lids, for light absorption over the visual range (350nm-

750nm) with 10 averaged readings taken per well.  

6.7. Electron microscopy analysis of collagen scaffolds 

The adhesion and cellular-matrix behaviour were assessed by scanning and 

transmission electron-microsopy (SEM and TEM) respectively. The collagen 

scaffolds were fixed in Karnovsky’s fixative for 2 hours and then rinsed and 

washed with 0.1M sodium cacodylate at pH 7.4, 3 times for 10 minutes.  

Secondary fixation was achieved by submerging scaffolds in 1% (w/v) 

aqueous osmium tetroxide for 2 hours in the dark. The scaffolds were rinsed 

repeatedly with deionised water to remove excess secondary fix. The 

specimens were then dehydrated by ascending alcohol concentrations; 50%, 

70%, 90% and 100% ethanol solutions, with 4 changes for each ethanol 

concentration. Specimens for SEM analysis were air dried for 8 hours and 

subsequently mounted onto carbon stubs. The specimens underwent 

vacuum gold coating before examination under scanning electron 

microscopy (JEOL JSM 5500 LV). ImageJ was used to measure the area 

fraction of SEM mcrographs to determine both the pore size and the number 

of pores per surface area. 
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6.8. Western Blotting 

6.8.1. Protein Isolation from cultured cells 

Following culture under varying conditions, whole cell lysates from 

dissociated monolayers of Müller stem cells were processed to study their 

protein expression profiles. Radio immunoprecipitation Assay Buffer (RIPA, 

Sigma-Aldrich) was used to isolate nuclear and cytoplasmic proteins. To 1ml 

of cold RIPA buffer; 10µl of protease inhibitor cocktail (P8340, Sigma-Aldrich, 

UK), 0.05mM Dithiothreitol (DTT), 1mM Phenylmethylsulphonyl Fluoride 

(PMSF) and 3mM Sodium Orthovanadate were added. Cells were detached 

by scraping, and washed with cold PBS to remove residual FCS. 

Subsequent to centrifugation, supernatants were removed and pellets were 

disrupted with cold RIPA containing protease inhibitors (100µl/ T75 pellet). 

Pellets were homeogenised, vortexed briefly and left on ice for 5 minutes for 

cells to complete lysis. Suspensions were then centrifuged at 9000rpm to 

remove cellular debris. The supernatants containing the cellular proteins 

were collected and placed at -20°C for short-term storage or -80°C for long-

term storage. 

Protein levels were measured using the Bio-Rad Protein Assay Dye Reagent 

(cat no: 500-0006, Bio-Rad Labs, UK) and the colorimetric Bradford Assay. 

The assay dye, consisting of coomassie brilliant blue G-20 was diluted 1 in 4 

with 50µl of this reagent added to 2.5µl of protein sample. The mixture was 

vigorously pipetted and incubated at room temperature for 5 minutes. The 

dye binds to proteins altering the conformation of the dye’s structure 

changing its colour from brown to blue. The absorbance was measured at 

450nm to 595nm, against a blank reading consisting of the diluted reagent 

with 2.5µl of molecular grade water (Roche). Protein levels were determined 

by extrapolation of absorbance onto standard curves prepared with bovine 

serum albumin of known concentrations. 
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6.8.2. Protein Gel Electrophoresis 

The NuPAGE system was used to perform gel electrophoresis (Life 

Technologies, UK). To detect proteins with molecular weights between 14-

55kDa, 4-12% Bis-Tris gels were run with MES SDS running buffer (cat no: 

B0002, Life technologies, UK). For proteins larger than 55KDa, 12% Bis-Tris 

gels with MOPS SDS running buffer (cat no: NP0001, Life Technologies, UK) 

were used. The gels used contained 15 wells of 1.5mm size. Preparation of 

protein for gel loading involved denaturing the complex structures into linear 

conformations that could be resolved as separate bands and thus their 

molecular weights. The total volume run for each sample was 30µl. This was 

prepared by mixing 3µl of 10x reducing agent (cat no: NP0009, Life 

technologies, UK), 7.5µl of NuPAGE loading buffer (cat no: NP0007, Life 

Technologies, UK) and a maximum volume of 19.5µl of protein lysate. The 

volume 19.5µl for the protein was adjusted based on the lowest protein 

concentration yielded for each set of control and test samples and brought 

up to this volume with water. Samples were then heated for 10 minutes at 

80°C to denature the proteins. 

Gels were placed into the internal chambers of XCell Surelock Mini-Cell Gel 

Electrophoresis cassettes (cat no: EI0001, Life Technologies, UK) and 200ml 

of running buffer were added to this chamber (200ml containing 500µl of 

antioxidant) (cat no: NP0005, Life Technologies, UK). The external chamber 

was filled with water to keep the system cool during running. Gels combs 

were removed gently and loaded with protein sample solutions (15µl) and 

protein ladder (5µl, cat no: P7709L, Biolabs, UK) and run at 180V for 1 hour. 

6.8.3. Protein transfer onto PVDF membranes 

Polyvinylidene fluoride (PDVF) membranes (Immobilon-FL PVDF, 0.45 µm; 

cat no: IPFL00010, Millipore) were prepared for wet transfer and involved 

cutting membranes to size and submersion into methanol for 2 minutes, 
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washed in distilled water and placed into NuPAGE transfer buffer containing 

(cat no: NP0006-1, Life Technologies, UK) 15% methanol v/v for a minimum 

of 10 minutes. Wet transfer was conducted using the XCell Surelock Mini-

Cell Gel Electrophoresis cassette at 35V for 90 minutes.  

6.8.4. Protein immunodetection  

Subsequent to protein transfer onto PDVF membranes, these were blocked 

at 37°C for 1 hour with 5% FCS in 1x TBS and containing 0.1% Tween20. 

Following blocking, relevant antibodies were diluted in the blocking solution, 

and added to the membranes, which were placed in plastic casing and 

sealed to avoid dehydration. Membranes were incubated overnight at 4°C on 

a slow shaker, then washed 3 times with 1x TBS and 0.1% Tween20 for an 

hour. The membranes were incubated at room temperature on a slow shaker 

with appropriate horseradish peroxidise secondary antibody (HRP) for 2 

hours and washed again as previously described. These were X-rayed 

following rapid incubation (maximum of 5 minutes) with Pierce ECL Western 

Blotting Substrate (cat no: 32209, Thermo Scientific Intl) where substrate A 

and B were diluted at a ratio of 40:1 (v/v).   

6.9. Reverse- transcription polymerase chain reaction 

6.9.1. RNA Isolation 

Müller stem cells cultured under various conditions were analysed for mRNA 

and miRNA expression levels. Cells were detached and centrifuged to obtain 

a cell pellet which was then washed with 1 ml of cold PBS and spun at 

4000rpm for 5 minutes. Pellets were resuspended in QIAzol lysis Reagent to 

extract RNA in accordance with the manufacturer’s instructions. Total RNA 

from T-75 cell monolayers was isolated using the miRNeasy Mini Kit (cat no: 

217004, Qiagen). This enabled purification of total RNA using a column 

isolation system which includes RNA from 18 nucleotides (nt) upwards. Total 

RNA was eluted with 22µl of RNase free water and the concentrations 
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measured using a spectrophotometer (Nanodrop-1000, Thermo Scientific). 

Samples were stored at -80°C and thawed prior to use for both array 

analysis and RT-PCR processing.  

6.9.2. Reverse Transcription (RT) 

SuperScript III Reverse Transcriptase kit for RT-PCR (cat no: 18080-093, 

Life Technologies, UK) was used to generate cDNA from isolated RNA 

samples. Each RT preparation contained 500ng of RNA to ensure 

comparative results were obtained for the various conditions examined. A 

20µl mixture was made as per manufacturer’s instructions where RNA/water 

samples were made up to 11µl containing 500ng of RNA. Samples were 

initially incubated at 65°C for 5 minutes, with 25µM of oligo-d(T)
20

 primer and 

10mM of dNTP
12-18

. Following this initial incubation, the solution was then 

mixed with 4µl of 5x reaction buffer, 2µl of 0.1M Dithiothreitol (DTT), 2µl 

RNase Inhibitor (40U/µl) and 2µl SuperScript III reagent. The solution was 

vortexed and transferred to a gradient thermo cycler (Eppendorf, UK). The 

incubations were carried out at 25°C for 10 minutes, 42°C for 1 hour, 99°C 

for 5 minutes and then held at 4°C. The cDNA produced was stored at -20°C 

until processed for PCR. 

 

6.9.3. Polymerase Chain reaction (PCR) 

Gotaq x2 Master mix (Promega, UK) was used to process cDNA synthesised 

from RNA samples in order to perform PCR. A 25µl solution was prepared 

per PCR reaction over ice, using 1-2µl of cDNA according to the 

manufacturer’s instructions. Solutions contained 13µl of GoTaq x2 Master 

Mix, forward and reverse primers of the genes of interest and molecular 

grade water. Primers were obtained in desalted forms from Life technologies 

Custom primer service and resuspended to a working dilution of 50µM in 
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molecular grade water. Final primer concentrations were adjusted at 

concentrations between 0.2-0.4µM/ml. PCR mixtures were then transferred 

to a thermocycler where they were subjected to an initial denaturation step at 

94°C for 2 minutes, 94°C for 30 seconds, primer annealing temperature for 

30 seconds, 72°C for extension for 1 minute. Steps 2-4 were then repeated 

between 28-35 cycles followed by a final extension at 72°C for 7 minutes and 

finally held at 4°C. PCR products were analysed by electrophoresis on a 2% 

agarose gel containing 1:15000 Gel Red nucleic acid gel stain. Each well 

was loaded with 10µl of PCR product. In each gel had at least one well was 

loaded with 1 kb DNA ladder (TrackIt, cat no: 10488-072, Life Technologies, 

UK) to enable band size identification for specific genes. Gels were cast and 

run at 110V for 45 minutes and subsequently imaged under UV light using 

the Genesnap Image Acquisition program. Densitometry measurements of 

autoexposed images were used to analyse the relative levels of gene 

expression using Image J software. All genes were normalised to the 

respective β-Actin levels. 

6.9.4. microRNA Analysis  

Total RNA was isolated as described previously. Each sample was eluted 

into 22µl of RNAse free water. A 2µl volume was examined for degradation 

using the Agilent 2100 Bioanalyzer RNA 6000 Nano LabChip Kit (Agilent 

Technologies, USA). The quality of each sample was assigned an arbitrary 

unit based on a graphical read-out of nucleotide size against fluorescence.  

The RNA was then assessed for miRNA levels using Aligent miRNA 

Microarray system with miRNA Complete Labelling and Hyb kit (Agilent  
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Figure 6.1: Microarray work flow. Total RNA samples were isolated from Müller 
stem cultures, after one week and processed for array analysis.  Microarray 
analysis techniques enabled miRNA profiling of Müller stem cell cultures. Protocol 
follows the Agilent methods for miRNA detection.  
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Technologies, USA) (Figure 6.1), in which dephosphorylation of 100ng RNA 

was performed. Samples were then labelled with Cyanine3-pCp and 

incubated for 2 hours at 16°C. Labelled RNA was desalted and dried under 

vacuum for 3 hours at 55°C. RNA samples were then loaded onto a SureHyb 

8-well chamber and hybridised for 20 hours at 55°C under agitation at 

20rpm. Slides were scanned under FITC fluorescence and emission profiles 

recorded. 

6.10. Immunostaining 

6.10.1. Immunostainning of cells and retinae 

Cells were cultured as described previously on 13 mm glass coverslips 

coated with ECM in 24 well plates for a maximum of 7 days, without factor or 

medium replenishment.  

Following culture media was aspirated and cells fixed with 4% 

paraformaldehyde for 10 minutes. Wells were then rinsed and washed twice 

for 5 minutes, with PBS. Cryropreservation was achieved by incubating the 

wells with 30% sucrose for 10 minutes at room temperature, followed by 

removal of sucrose. Aired dried specimens were stored at -20°C for later 

use. 

Blocking solution was prepared by adding 5% Donkey serum (cat no: 017-

00-121, Jackson Labs) and 0.3% triton X-100 to 1xTBS. Cells were 

incubated for 1 hour at room temperature with freshly made blocking 

solution. Primary antibodies were diluted in the same solution and added to 

the wells overnight at 4°C or 2 hours at room temperature. Wells were 

subsequently washed three times with TBS for 5 minutes. Secondary 

antibodies labelled with Alexa Fluoros fluorescent dyes (Life Technologies, 

UK) were diluted 1:500 in block solution. Cells were then incubated in the 

dark for 2 hours at room temperature with the secondary antibodies. Wells 

were rinsed and washed with TBS as before. Nuclei were stained with 4,6-



 
 

235 
 

diamidino-2-phenylindole, DAPI (Sigma-Aldrich) 5mg/ml, diluted 1 in 5000 in 

PBS for 1 minute at room temperature. Cells were rinsed again and washed 

once for 5 minutes with TBS. Buffer was then aspirated and coverslips were 

mounted on glass slides using Vectashield Mounting Medium (cat no: H-

1000, Vector labs, USA). Edges were sealed with nail vanish, air dried under 

darkness and stored at 4°C prior to microscopical analysis. 

Cryostat tissue sections were obtained between 15-20µm thickness and air 

dried overnight at room temperature before processing as described above, 

although tissues were fixed in 4% PFA, overnight at 4°C and placed in 30% 

sucrose for 48 hours at 4°C. Prior to sectioning tissue was embedded in OCT 

medium (cat no: SURG08609E, VWR, UK) over dry ice. Images were 

captured using a Zeiss LSM 710 confocal microscope and Zen Lite software. 

6.10.2. Quenching auotofluorescence of glutaraldehyde 

crosslinked collagen scaffolds 

To quench the autofluorescence of the chemically crosslinked constructs a 

1% solution of sodium borohydride in PBS was added. The scaffolds were 

incubated in the actively bubbling solution for 40 minutes and then rinsed 

twice with PBS. 

6.10.3. Wholemount Immunostaining of Müller stem cells on 

collagen scaffolds 

Scaffolds were incubated for 10min with 4% paraformaldehyde and washed 

with PBS for 5 minutes prior to staining. Scaffolds were then incubated with 

blocking solutions (0.3% triton X-100, 5% donkey serum and 2% BSA in 

TBS) for 1 hour at room temperature.  200µl of primary antibodies diluted in 

blocking solution were added, and incubated overnight at 4ºC. Primary 

antibodies were then removed and scaffolds were washed with TBS 3 times 

for 5 minutes.  500µl of Alexa-fluor secondary antibodies diluted 1:500 in 
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blocking solution were then added, and scaffolds were incubated for 1 hour 

at room temperature, covered in foil to preserve fluorescence.  Scaffolds 

were washed as before, and stained with 4,6-diamidino-2-phenylindole, DAPI 

(Sigma-Aldrich) 5mg/ml, diluted 1:5000 in PBS for two minutes at room 

temperature. Finally they were washed as before, and rinsed with distilled 

water.  Collagen scaffolds were gently removed, placed onto slides and left 

to dry at room temperature. Subsequently the scaffolds were mounted with 

vector shield (Vectalabs). Coverslips were placed over scaffolds and sealed 

with clear vanish.  Slides were imaged using the Leica DM  IRE2 confocal or 

the Zeiss LSM 710 microscope and images obtained by over-lay snapshots 

taken at different wavelengths. Images were analysed using the LSM Zeiss 

browser or Leica confocal software. 

6.11. In vivo transplantation of cellular scaffolds onto the rabbit 

retina  

6.11.1. Cellular and scaffold preparation 

Müller stem cells were transfected with an immunodeficiency virus type 1 

(HIV-1) based lentiviral vector which expresses low toxicity hrGFP (Yanez-

Munoz et al., 2006). Transfection was undertaken by the molecular therapy 

laboratory at the Institute of Ophthalmology, where transfection efficiency 

was 90%. Cells were expanded and later stored at -150°C for future work. 

Preceding transplantation GFP-lentiviral transfected Müller stem cells were 

placed in culture and differentiated into RGC precursor for a maximum of 7 

days. For the duration of the experiment cells were examined under light 

microscopy to observe morphology and viability. Prior to transplantation, 

compressed collagen scaffolds were made as follows: 0.75mg/ml collagen 

with a volume of 300µl were added to a 1cm diameter casting ring which 

underwent compression under 150g for 5 minutes. Scaffolds were removed 

from nylons and placed onto 1cm coverslips contained within 2.2cm diameter 

MaTek dishes and flattened. Cells were added dropwise onto the scaffolds at 
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a density of 4x10
5
/250µl per side and incubated at 37°C at for a maximum of 

2 hours in DMEM containing 10% FCS to aid adhesion. Scaffolds loaded 

with cells were then rinsed and washed 3 times for 10 minutes with sterile 

PBS (PAA) to remove residual serum. Scaffolds were stored in PBS at room 

temperature prior to transplantation.  

6.11.2. Rabbit Husbandry 

Chinchilla bastard female rabbits between 2.5-3kg were maintained 

according to Home Office regulations for the care and use of laboratory-

based animals in the UK (Scientific Procedures Act). This species was 

chosen to examine the applicability of collagen scaffolds for Müller stem cell 

derived RGC transplantation. Scaffold transplantation was made after 

surgical removal of the vitreous body via 18G Pars Plana vitrectomy 

performed by Mr David G Charteris and Mr Hari Jayaram, surgeons from 

Moorfields Eye Hospital. 

Animals were immunosuppressed with oral Ciclosporin A (Sandimmun, 

Novartis, UK) administered orally once a day in water; 150ml/kg/day together 

with Prednisolone. The steroid Prednisolone was given for the duration of the 

experiment but dosages were lowered weekly as follows: week 1- 

2.1mg/kg/day; week 2- 1.4mg/kg/day; and week 3- 0.7mg/kg/day. Rabbits 

were immunosuppressed 3 days prior to transplantation, and 

immunosuppression was continued for the duration of the study.  

6.11.3. Vitrectomy 

Rabbits were anaesthetised with an intramuscular injection of Ketamine; 

50mg/kg (Ketaset, Fort Dodge Animal Health, UK) and 20mg/ml of Xylazine 

(Rompun, Bayer). The pupils of the eye to be vitrectomised were dilated with 

15 tropicamide and 2.5% Phenylephrine (Chauvin Pharmaceuticals, UK). 

Following dilation, rabbits were placed under the surgical microscope. The 
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animals were then draped, leaving the operated eye exposed. The eye was 

then disinfected with povidone iodine eye drops (Moorfields 

Pharmaceuticals, UK). An adolescent speculum was placed within the ocular 

cavity to fix the globe in a firm position. The conjunctiva was then dissected 

equatorially down to the sclera for vitrectomy port entry. To maintain ocular 

pressure during surgery a Lewicky infusion line was placed anteriorly at the 

cornea-iris junction and screwed into the cornea. Two entry ports were made 

2mm posteriorly from the limbus via 20G MVR blade. Port sites were located 

generally at 4 and 8 o’clock on the limbal circumference; inferotemporally. 

Bleeding at port entry sites was controlled using bipolar diathermy. 

Lensectomy was undertaken via one port with a phacoemulsification probe. 

Its action involved disrupting the lens structure using ultrasound, whilst 

simultaneously aspirating the debris. The second entry site was used to 

insert a subsidiary infusion line with saline, to maintain pressure within the 

eye. Upon completion of lensectomy, the probe was removed and a 

vitrectomy cutter inserted with the alternative port used for insertion of a 

fiberoptic instrument set to 100% illumination. This was to visualise the retina 

for the duration of the vitrectomy. This apparatus simultaneously cuts and 

aspirates the vitreous and was set at 750cpm (cuts per minute) with a 

maximum aspiration of 250mmHg. Total removal of the vitreous was 

conducted to ensure direct access to the retinal inner surface. Once 

achieved, the intraocular infusion was exchanged to air in order to remove 

the fluid contained within the posterior chamber of the eye, to maintain the 

ocular pressure. ChABC (0.4U/10µl) was injected prior to delivery of the 

scaffolds, via a 18G cannula and incubated at body temperature for 5 

minutes. Prepared cellular scaffolds were then drawn up into an 18G cannula 

attached to 1ml syringe and inserted via an existing entry port. The cannula 

was angled down towards the medullary raphe and subsequently injected, 

delivering the cellular scaffolds supported onto the inner retinal surface. 
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Ports were sequentially sutured, with the conjunctiva being sewn back into 

place at the limbus. A subconjunctival injection of gentamicin and 

triamcinolone was given at the end of the procedure (washed and 

reconstituted in sterile water at a concentration of 80µg/ml); (Kenalog, 

Squibb Pharmaceuticals). Operated eyes were given topical drops of 

Dexamethasone 0.1% (Alcon Laboratories, UK) to control post-operative 

inflammation. Procedures lasted no more than 90 minutes.    

6.11.4. Tissue Acquisition 

Upon completion of in vivo studies, rabbits were sacrificed via ear 

cannulation and sodium pentobarbitone injection (1ml/kg), to achieve rapid 

terminal anaesthesia. Both eyes were then removed via excision of the distal 

ocular tissues and optic nerve. Globes were fixed overnight in 4% PFA at 

4°C and transferred to 30% sucrose for 48 hours for cryopreservation. Eyes 

were embedded into OCT medium (cat no: SURG08609E, VWR, UK) over 

dry ice and subsequently sectioned and processed as outlined previously for 

immunohistochemistry.
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8.1. Tables 

8.1.1. Antibodies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antibody Raised in Supplier Catalogue no. Dilution 

B-actin mouse Sigma A5316 
(clone-AC-74) 

1/5000  

Β-III-Tubulin mouse Millipore MAB1637 1/100 

BRN3B goat Santa Cruz N-15 sc-31987 1/200  

HUD rabbit Santa Cruz sc-2536 1/500 

ISLET-1 mouse DSHB 39.4D5 1/50 

Neurofilament 200 mouse DSHB RT97 1in 10 

Notch 1 AND NICD rabbit Santa Cruz C-20 sc-6014 1/100  
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8.1.2. Primers 

 

 

Gene Accession no. Sequence 

cDNA 

position 

Annealing 

Temp. 

Product 

size Source 

B-ACTIN 

F NM_001101 

CATGTACGTTGCTATCCAGG

C 393 60 

  B-ACTIN 

R 

 

CTCCTTAATGTCACGCACGA

T 642 60 250 

primer bank 

(id:4501885a1) 

BRN3B F NM_004575 CAGGTTCGAGTCCCTCACAC 903 60 

  

BRN3B R 

 

ATGGCAAAGTAGGCTTCGAG

C 1100 60 198 

primer bank 

(id:4758948a2) 

HES1 F NM_005524.2 

AAGATAGCTCGCGGCATTCC

A 200 60 

  HES1 R 

 

CGTTCATGCACTCGCTGAAG 358 60 160 self 

HES5 F 

NM_001010926

.2  AAGCTGGAGAAGGCCGACAT 244 60 

  HES5 R 

 

CGAGTAGCCTTCGCTGTAGT 360 60 116 self 

HEY2F NM_012259 CAACCCCTTGTCGCCTCTC 620 60 

  

HEY2R 

 

CCG TGG ATG GCA TTC GGA 

G 730 60 111 

primer bank 

(id:6912414a3) 

HUD F NM_021952.2 

GAAACTGTCCTTCTCCCATG

C 310 64 

  

HUD R 

 

GATTGAGGCAGAGCTCGGA

C 611 64 301 self 

ISL1 F NM_002202 

CAGGTTGTACGGGATCAAAT

GC 207 60 

  

ISL1 R 

 

CACACAGCGGAAACACTCGA

T 315 60 109 

primer bank 

(id:4504737a2) 

NOTCH1 

F NM_017617 GCTGGACTGGTGAGGACTG 977 60 

  

NOTCH1 

R 

 

AGCCCTCGTTACAGGGGTT 1153 60 180 

primer bank 

(id:27894368a3

) 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_001101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_004575
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_001010926.2
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_001010926.2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_012259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_002202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_017617
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