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Abstract 
 
 
There is a considerable need for treatments in MS for preventing progressive neurological 

disability. Assessment of the afferent visual pathway shows potential in investigating new 

therapies in MS. Mesenchymal Stem Cells exhibit properties of potential therapeutic 

relevance in progressive MS. 

 

A phase I/IIA trial of adult autologous mesenchymal stem cells as a potential therapy for 

Multiple Sclerosis [MSCIMS] was designed as an open label, pre (up to 20 months) vs. 

post treatment (up to 10 months) (single intravenous administration of autologous bone 

marrow derived mesenchymal stem cells) comparison study in ten secondary progressive 

MS patients. Primary end points were adverse events and secondary end points were 

efficacy measures. 

All 10 patients had previous history of clinical optic neuritis: this was in order to enable 

longitudinal structural and functional assessments of the disease-affected afferent visual 

pathway. Piecewise linear mixed models were used to assess the change in gradients over 

time at the point of intervention. 

 

All 10 patients tolerated the trial assessments and intervention. No significant or serious 

adverse events were seen. Improvement after treatment was seen in visual acuity and 

visual evoked response latency, along with an increase in optic nerve cross-sectional area. 

The results suggest that autologous mesenchymal stem cells are safe and could possibly 

promote endogenous repair mechanisms such as remyelination, although a definitive 

conclusion of this cannot be made from this small study.  
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While MSCIMS was a proof of concept study only, based on the encouraging experience 

derived from it, there would seem to be potential value in future, larger placebo 

controlled, double-blinded, randomised therapeutic phase IIb/III trials that could (i) more 

definitively investigate stem cells as a therapy and (ii) use the visual pathway disease 

model for investigating the efficacy of potential neuroprotective and reparative 

therapeutic agents. 
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Chapter 1: Testing neuroprotective and repair therapies in 

MS 

1.1 Introduction 
 

1.1.1 The problem of MS 

            
Multiple sclerosis (MS) is the commonest cause of neurological disability in young 

adults. It is a cause of significant morbidity and mortality in the industrialised world with 

prevalence estimates ranging from 110-175 per 100 000 in the UK. MS is a multifocal 

and multiphasic demyelinating disease of the central nervous system (CNS) with a 

variable clinical course and pathological manifestations. 

          

In majority of patients, the usual course of MS is characterized by recurrent relapses 

(relapsing-remitting phase) associated with the eventual onset of progression (secondary 

progressive phase). Relapses are defined as the first occurrence, recurrence or worsening 

of symptoms representing neurological dysfunction and marked by sub acute onset and a 

period of stability followed by partial or complete recovery – the whole process lasting 

for at least 24 hours.   In the relapsing-remitting (RR) phase, relapses alternate with 

periods of clinical inactivity (remission). The progressive phase of MS is characterized by 

a steady increase in neurological deficits, either from onset (primary progressive) or after 

a RR phase (secondary progressive). Patients do not necessarily convert to secondary 

progressive (SP) phase from RRMS, but when they do, the transition can sometimes be 
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hard to recognize, especially when the early SP phase is characterised by continuing 

relapses. 

         

MS is a chronic inflammatory demyelinating disease of the central nervous system and is 

characterised by destruction of myelin sheaths leading to the formation of plaques of 

demyelination. Inflammatory cells in an acute MS plaque are dominated by T 

lymphocytes and activated macrophages or microglia. Axons within the acute lesion are 

also affected, although to a lesser extent than the myelin sheaths. Demyelination within 

the plaque results in the impairment of nerve fibre conductivity. However this 

conductivity can be restored when the inflammatory mediators are cleared, when the 

sodium channels are redistributed along the demyelinated axons, or when the affected 

nerve fibres are repaired by remyelination. The symptoms of MS are believed to result 

from the failure of axonal conduction, and when the conduction is restored through the 

mechanisms described above, there is recovery of symptoms after a relapse. This 

recovery is incomplete sometimes resulting in residual neurological deficits or symptoms 

after a relapse in relapsing remitting MS – this is likely a reflection of axonal loss 

following acute inflammation. Inflammatory demyelinating focal white matter lesions 

dominate the pathology in acute MS and RRMS. 

           

In the progressive stage of MS, both in patients with PPMS and SPMS, the pathological 

picture is somewhat different. Although focal demyelinated lesions are still present, 

classical active demyelinating plaques are rare. Axonal density is reduced in most chronic 

MS plaques.(1) In addition the normal appearing white matter (NAWM) is also highly 

abnormal with diffuse axonal injury and loss and secondary demyelination.(2-4) Axonal 

loss in multiple sclerosis is a very important pathological feature because it is an 
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irreversible change that ultimately leads to severe neurological deficit.(5;6) Spinal cord 

atrophy showed a graded correlation with the Kurtzke EDSS(6) and cerebral atrophy 

correlated with  worsening disability.(7;8) N-acetyl aspartate (NAA) is an amino acid that 

is virtually confined in the adult to neurons (including axons). Reduction of NAA in 

proton MR spectroscopy is associated with neuronal loss. Studies in MS have shown a 

significant correlation of reduction in NAA with clinical disability.(9-11) 

           

In the acutely demyelinated plaque, the axons may be completely transected or there may 

be structural and functional alterations in them. In the chronic demyelinated plaque, the 

non transected demyelinated axons are vulnerable and may gradually degenerate as a 

result of loss of trophic factors from myelin and myelin forming cells.(1;12;13) In 

addition, abnormal patterns of sodium channel expression in demyelinated axons and 

their cell bodies may render the axons further vulnerable to degeneration. Furthermore, 

axons may also be lost secondary to neuronal apoptosis in cortical lesions.(14) PPMS and 

SPMS MRI studies show limited inflammation but considerable axonal loss in the lesions 

and also diffusely in the NAWM away from the lesions.(15) Also the immunosuppressant 

and immunomodulatory drugs have been effective only against early and relapsing stage 

of the disease, suggesting a relative dissociation between inflammation and 

neurodegeneration.  

          

There are two explanations to counter the argument that these two processes are 

dissociated. As explained above, an acute demyelinated plaque consists of axons which 

are completely transected. These transected axons undergo wallerian degeneration and 

hence the abnormality may extend beyond the boundary of the radiologically detectable 

lesion. The other explanation is that there may be a compartmentalised diffuse 
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inflammation in the central nervous system in progressive MS, but this may be trapped 

behind an intact or repaired blood brain barrier which is not detectable using conventional 

MRI methods. The relative dissociation between inflammation and neurodegeneration 

has also raised the question whether the neurodegenerative component is a primary 

phenomenon in MS.(16) There is still considerable on-going debate in this, but the 

evidence for a primary neurodegeneration that precedes inflammation in MS is still 

largely unconvincing. 

         

MS, due to its complexity and heterogeneity poses a considerable challenge in its 

management. Clinical manifestations, course and the response to the treatment of MS are 

unpredictable.  

           

1.1.2 The need for neuroprotective/repair therapy in MS 
          

Specific therapeutic treatments of MS have two aims: (i) to prevent damage (commonly 

referred to as disease modifying), and (ii) to repair damage that has already occurred. 

Although advances in treatment to reduce relapse rate have been made in the last decade, 

little has been achieved in terms of definitive treatments for preventing progressive 

irreversible disability or achieving repair. The lack of such therapies represents a 

substantial gap in the treatment of MS. There is a need to develop treatments that prevent 

axonal loss, the pathological substrate of irreversible clinical disability. The protean 

manifestations of multiple sclerosis and considerable intra and inter-individual variability 

make it challenging to tease out the effects of treatment on the underlying pathology in an 

unselected cohort of MS patients over the relatively short duration of a clinical trial. 
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1.1.3 The challenge of defining, detecting and measuring neuroprotection/repair 

          

Given that both pathogenesis and host responses in MS are complex and incompletely 

understood, current methods to detect neuroprotection and repair are limited to crude net 

assessments of overall response. These composite assessments (eg: EDSS) potentially 

mask specific effects of therapeutic intervention at multiple points in the disease process 

and host response(s) that are variously advantageous or deleterious. A major challenge to 

test neuroprotection and repair is to carefully design a trial with the right patient group 

and outcomes that are clinically meaningful as well as being able to illuminate potentially 

multiple effects on disease pathogenesis and host response(s). This twin-aim will likely 

require careful patient selection and a combination of clinical and paraclinical outcomes: 

clinical outcomes are essential to determine the net effect of treatment on function, 

however poor pathogenic specificity limits their utility to accurately measure 

neuroprotection/repair; paraclinical outcomes give more specific information on 

pathogenesis, but cannot be used in isolation to establish clinical efficacy. 

 

1.2 Neuroprotective/Repair therapy trial design in MS 

 

1.2.1 Trial design: 
         

Any potential drug or intervention in clinical studies will have to pass through rigorous 

systematic scrutiny in various phases before it can become established as a treatment. 

Initial phase (I/IIA) clinical studies will aim to establish safety of the intervention in a 

small group (10-20) of healthy volunteers (phase I) or patients (phase IIA). Although 

necessarily underpowered to determine efficacy, it is essential that phase IIA studies 
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(proof of concept studies) include efficacy outcomes in order to inform the design of 

subsequent studies in terms of power calculations and outcome relevance. Although a 

parallel two arm design with the investigational agent arm and a control (placebo or 

established treatment) arm where the patients are randomly allocated would be ideal to 

establish efficacy, in view of the primary objective of establishing safety of a potentially 

high risk investigational agent in phase IIA studies, and also to improve the power and 

efficiency, a single arm pre versus post intervention comparison design or a two arm 

crossover design are sometimes preferred. Phase IIB (n ~ 20-300) and phase III (n ~ 300-

3000) trials are designed to establish efficacy and parallel, two arm, randomised, double 

blind, controlled studies are always preferred.  

 

1.2.2 Endpoints: 
          

A  trial  “endpoint”  is  the  predefined  outcome  considered  to  be  worth  detecting.  This  can  

be expressed in terms of clinical measures for safety or efficacy. Decisions on endpoints 

are required prior to trial commencement as they inform power calculations and frame 

interpretation of the final result. Safety endpoints in phase I/IIA trials are a relatively 

standard combination of clinical adverse events, laboratory testing and other 

measurements collected from specific testing (such as electrocardiogram [ECG]). 

Efficacy endpoints in phase IIB/III trials of neuroprotective/repair therapies are more 

challenging to define due to the insensitivity of clinical outcomes for measuring 

disability, variability in the natural history of MS (necessitating large group sizes to 

achieve adequate statistical power), and the contribution of inflammatory activity 

(relapses) to reversible (although not necessarily brief) changes in disability distinct from 

the more insidious development of fixed disability reflecting pathological 
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neurodegeneration.(17) Clinical endpoints may be based on measures of disability such 

as EDSS (Expanded Disability Status Scale) or on time to progression milestones such as 

time to onset of progression in relapsing remitting MS cohort. Endpoints based on 

paraclinical evidence of efficacy may be suitable for proof of principle trials bridging 

phases IIA & IIB. Endpoints for neuroprotective/repair therapy trials might include 

changes in brain atrophy measures, tissue specific measures for myelination / axonal 

integrity etc. 

 

1.2.3 Patient selection: 
         

Appropriate patient selection is dependent upon the phase of the trial planned and the 

potential of the therapeutic intervention. All trials are dominated by the ethical 

requirement to provide an acceptable balance between potential risks and benefits. Phase 

I/IIA trials have more emphasis on investigating the former. Part of the aim of the phase 

IIA trial is also to form the reference upon which future phase IIB and phase III trials can 

be designed to prove efficacy, once the safety and feasibility are established to a 

reasonable extent. A challenging setting is the phase IIB trial charged with demonstrating 

efficacy in a trial limited by practical issues around resources, and an ethical requirement 

to minimise the number of participants exposed to a therapy-associated-risk that is only 

partially characterised by preceding (small cohort) phase I/IIA trial data.  

       

In this setting, the aim of eligibility criteria is to provide a phenotypically informative 

cohort of participants who share pathogenic activity relevant to the intervention. In a 

multifocal and multiphasic disease like MS, when considering a potential 

neuroprotective/repair therapeutic agent for which the long term adverse events are 
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unknown, it may be more ethically acceptable to investigate patients who have more 

advanced disease and limited therapeutic options in phase I/IIA studies. For phase IIB/III 

efficacy studies, which require a larger cohort and more sensitive efficacy outcome 

measures, it may be preferable to opt for a group of patients who are in a less advanced 

stage of the disease but have a clearly progressive disease process (established clinically 

by the disease course exhibiting a substantial rate of disability accrual) as a result of high 

rate of axonal/neuronal loss. Clinical and paraclinical assessments in such a cohort will 

have greater sensitivity in detecting a potential neuroprotective therapeutic agent. In the 

case of a potential reparative agent, from a statistical point of view, it may appear to be 

advantageous to have a cohort with less dynamic progressive disease course in turn with 

less on-going axonal/neuronal loss to maximise the power of detecting efficacy.  

However, there is some evidence that endogenous repair in MS is more prominent in 

early post inflammatory lesions than old burnt out sclerotic lesions, suggesting that some 

amount of inflammation may be necessary for repair to take place.(18;19) In evaluating a 

potential reparative therapy which is thought to improve endogenous repair mechanisms 

and/or to directly cause repair, it may be advantageous to have a cohort with more 

inflammation and less on-going neuroaxonal loss, such as early RRMS.  

 

1.2.4 Sentinel lesion approach: 
         

Another approach trying to improve detection of efficacy of a neuroprotective/repair 

therapeutic intervention in a multifocal condition such as MS is selection of patient 

cohorts   with   lesions   at   specific   “sentinel”   sites and follow them longitudinally with 

sensitive and site specific outcome measures. 
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Work in Brain Repair Centre, University of Cambridge by Dr. Brierley and colleagues, 

tested the feasibility of an approach where patients are selected on the basis of disease 

affecting  “sentinel”  CNS  sites   – optic nerve, spinal cord and cerebellar peduncle using 

clinical and paraclinical outcomes that are objective, clinically relevant, inform the 

underlying pathology, and might be extrapolated to the disease as a whole. The optic 

nerve was the favoured option (of those tested) because clinical and paraclinical 

assessments were well-tolerated, exhibited low test-retest variability, and there was 

validity of paraclinical outcomes for pathological demyelination or axonal loss. (20) 

 

1.2.5 Outcome measures: 
          

Outcome measures are parameters used to measure the effect(s) of intervention. This 

section subdivides clinical and paraclinical outcomes. Within these major divisions, 

outcomes can be further divided into physician-based (eg the EDSS) vs. patient-based (eg 

the MSIS-29) and uni-dimensional (where the concept can be measured directly – eg 

relapse rate) vs. multi-dimensional (where the concept cannot be measured directly, 

requiring a series of component measures – eg “quality  of  life”  or  “disability”  scales).  

        

In addition to the general requirement to measure therapeutic effect on disability and 

adverse events (safety) a further desirable goal in the setting of a neuroprotective or 

repair therapy clinical trial is to specifically measure effects on pathological processes. 

I. Clinical: 

 Multi-dimensional measures 

In a disease with such wide-ranging phenotypic complexity, multi-dimensional 

outcomes aim to capture a global representation of function that allows comparison 
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between individual patients, groups of patients and across trial populations. The 

challenge facing such scales is self-evident – consequently, all of the currently 

available instruments have varied strengths and weaknesses. 

i) Physician measured: 

 Expanded  Disability  Status  Scale   (EDSS):  Kurtzke’s EDSS is considered 

the gold standard among most MS clinical investigators for the assessment 

of disability in MS patients.(21) It is known to have some deficiencies in 

terms of weighing heavily on the motor system.(22;23) It is still one of the 

most widely used clinical outcome measure in MS clinical trials. 

 Multiple Sclerosis Functional Composite (MSFC): MSFC was developed 

to overcome the deficiencies of the EDSS.(24) It integrates scores on 25 

foot timed walk, nine hole peg test and paced auditory serial addition test 

(PASAT) to measure the function of the lower limbs, upper limbs and 

cognitive abilities quantitatively to give one integrated score. MSFC is 

considered to be a much more sensitive measure of disability than the 

standard EDSS with potential to detect treatment differences between 

treated patients and controls in therapeutic trials.(25) 

 Others (Disease specific):  

Numerous other disease specific, multidimensional, physician-measured 

scales have been developed aiming to measure global function. These 

include The Cambridge Multiple Sclerosis Basic Scale (CAMBS), The 

Scripps   Neurological   Rating   Scale,   The   UK   (previously   “Guys”)  

Neurological Disability Scale (which can also be administered in a patient 

measured format), and many others. These scales do not enjoy the same 

high profile as the EDSS and MSFC although their metric properties may 
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be favourable – particularly the UKNDS.(26) Their relative unfamiliarity 

to clinicians renders these scales less useful in communicating a result 

based upon them. 

ii) Patient measured: 

Patients and doctors differ in their perceptions of what constitutes important 

determinants to overall quality of life. Physical disabilities are important to clinicians 

whereas mental health, vitality and general health are more important to patients.(27) 

 The Multiple Sclerosis Impact Scale (MSIS-29) 

The MSIS-29 is a recently developed multi-dimensional patient-assessed 

scale. It comprises 29 items with each item assigned an ordinal score of 1-

5.(28) Robust methodological development and ease of application are key 

strengths of the MSIS-29. The MSIS-29 has been shown to achieve an 

acceptable level of objectivity and perform well in comparison with other 

instruments. (29;30) 

 Others (Disease specific) 

The MSIS-29 has several competitors including: the Functional 

Assessment of MS (FAMS), the Multiple Sclerosis Quality of Life-54 

(MSQOL-54), the Leeds MSQoL scale, and the health-related quality of 

life questionnaire for MS (HRQOL-MS). 

 

 Uni-dimensional (Function specific) measures 

The phenotypic heterogeneity of MS (and other multi-focal / diffuse CNS diseases) has 

resulted in the development of specific tools for the assessment of individual CNS 

functions.   These   clinical  measures   form   a   natural   adjunct   to   paraclinical   “site-specific”  

measures  in  trials  employing  a  “sentinel  lesion”  approach. 
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 Cognitive function: 

Cognitive difficulties is known to occur in MS and even in an early 

stage.(31;32) Detailed neuropsychological assessment is the gold standard 

for detection and monitoring of cognitive dysfunction, but may be less 

practical in the setting of a clinical trial. Numerous instruments have 

therefore been developed aiming to measure cognition in MS within a more 

practical framework. The generic Mini Mental State Examination (MMSE) 

offers advantages of brevity and clinical familiarity, but has poor 

sensitivity  and  specificity.  This  has  led  to  the  development  of  several  “brief  

screening  batteries”  such as the Neuropsychological Screening Battery for 

MS (NPSBMS) – which also has a serial version called the Brief 

Repeatable  Neuropsychological  Battery  (BRNB),  the  “Basso”  battery,  and  

the Screening Examination for Cognitive Impairment (SEFCI). (33) An 

international conference (of neuropsychologists) aimed at resolving this 

issue produced a consensus statement recommending a more 

comprehensive battery as the optimum instrument for cognitive assessment 

in MS. The Minimal Assessment of Cognitive Function in MS 

(MACFIMS) takes around 90 minutes to administer and has been partially 

validated to established psychometric principles (34) This currently 

represents the best available instrument for valid and comprehensive 

assessment of cognitive impairment in the setting of a clinical trial. 

However, administrator training is required, the time taken to administer 

may be impractical, and the familiarity of neurologists with the MACFIMS 

is limited. 
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 Affective Function 

Depression is common in MS and it correlates better with the degree of 

stress perceived by the patient than the extent of lesions on MRI.(35) 

Lifetime prevalence for major depression in multiple sclerosis is 25-

50%.(36) The most widely used assessment scale in MS research is the 

Beck Depression Inventory (BDI) – recently revised as the BDI-II. BDI-II 

is a 21 question multiple choice self reported inventory, which has shown 

good correlation with validated rating scales such as Hamilton depression 

rating scale.(37) This generic instrument offers strengths of clinical 

familiarity, the ability to make cross-disease comparisons, and an extensive 

existing literature. The BDI has also been endorsed by international 

consensus guidelines for the treatment of depression in MS.(38) However, 

the challenge of attributing physical symptoms to the syndrome of 

depression rather than manifestations of MS has led to a debate regarding 

the specific symptoms of depression in MS. This complicates the use of 

generic instruments such as the BDI and the Hospital Anxiety and 

Depression Scale (HADS). Two disease-specific instruments have 

therefore been developed to address these issues. The comprehensive 42-

item Chicago Multiscale Depression Inventory (CMDI) has been 

psychometrically validated in MS but lacks wide clinical use or 

familiarity.(39) The rival 7-Item Beck Fast Screen For Medically Ill 

Patients (B-FS) has also been validated in MS.(40) Comparative analysis of 

these two instruments, particularly with regards to responsiveness, is not 

yet available. Those designing a clinical trial at present have a difficult 
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choice between the attractive generic BDI-II, and the two psychometrically 

favourable but less familiar disease-specific scales available.  

Anxiety is widely neglected as an outcome in MS. There are no validated 

generic or disease-specific scales available. Generic instruments such as 

the Hamilton Anxiety Scale (HAMA) and Zung Self Rating Anxiety Scale 

(SAS) are available without copyright restrictions and have a degree of 

clinical familiarity.(41;42) 

 

 Visual function 

Visual function is commonly affected in MS due to involvement of the 

afferent visual pathway. Visual acuity, contrast sensitivity, colour vision 

and field of vision are amenable to detailed quantitative clinical 

assessment. These are dealt with in detail in chapter 2. 

 

 Cerebellar function: 

Cerebellar dysfunction is common in multiple sclerosis.(43) Assessment of 

tremor and/or dexterity forms the mainstay of available outcomes. The 

nine-hole peg test and finger-tapping test both provide objective and valid 

quantitative assessment of upper limb function but lack specificity for 

cerebellar dysfunction. Observer dependent rating scales such as the Scale 

for the Assessment and Rating of Ataxia (SARA) or the International 

Cooperative Ataxia Rating Scale (ICARS) are not validated for MS and 

have been shown to exhibit significant metric limitations.(44) The 

Composite Cerebellar Functional Score (CCFS) comprising a dominant 

hand   “nine-hole   peg   test”   and   “click   test”   (based   on   kinematic   data  
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regarding optimum assessment for upper limb goal directed multi-joint 

movement) represents a promising option for quantitative cerebellar 

assessment.(45) However, validation in MS patients is awaited. A further 

challenge to cerebellar assessment (in any disease) is the difficulty of a 

ceiling effect. Severe dysfunction makes assessment impossible with all 

currently available outcomes. This makes the use of cerebellar disease and 

dysfunction  unattractive  to  trials  adopting  a  “sentinel  lesion”  approach.(20) 

 

 Spinal function: 

Most commonly used scale for clinical assessment of motor disability in 

MS is the EDSS. However the EDSS is neither linear nor continuous and 

patients therefore do not spend equal amounts of time at each level.(46) 

Prevalent cohorts exhibit bimodal distribution with longer periods spent at 

levels 1 – 2 (abnormalities on the clinical examination only) and 6.0 – 7 

(ambulation difficulties). Limited reliability and responsiveness render the 

EDSS sub-optimal for the clinical assessment of spinal cord function and it 

should not be used in isolation for this purpose in clinical trials.  

Ambulation   assessment   as   a   “timed   walk”   (of   fixed   distance   – most 

frequently 25 feet) is attractive as a practical, quantitative, and reliable 

measure. However, it lacks specificity for spinal cord function. Indeed, 

limited site specificity of all currently available clinical outcome measures 

makes   the   spinal   cord   unattractive   to   trials   adopting   a      “sentinel   lesion”  

approach.(20)  
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All other (non-ambulatory) spinal cord functions lack standardised 

objective clinical outcomes: bladder EDSS functional scores show no 

correlation with objective measures of bladder function.(47)  

 

II. Paraclinical: 

         

Clinical assessments are prone to bias due to the subjective component. It also usually 

requires a large number of people to be studied over 2-3 years at least in order to 

demonstrate a treatment effect in a clinical trial using clinical endpoint (eg: relapse rate or 

disability). Paraclinical outcomes are useful in MS in giving an earlier indication of 

efficacy in phase IIb trials before larger phase III clinical efficacy trials.(48) 

        

Systemically delivered neuroprotective and repair therapies are likely to have their effects 

on the whole central nervous system rather than an isolated effect on a single pathway. 

Although a sentinel lesion approach as described earlier focuses on a single pathway with 

sensitive clinical and paraclinical outcome measures, brain MRI (which has potential to 

study many lesions) almost always form an essential part of the outcome measures in any 

clinical trial. In August 2008, there was a meeting of around 60 international experts in 

Amsterdam,  The  Netherlands,  on  ‘Imaging  Outcomes  for  Neuroprotection  and  Repair  in  

Multiple   Sclerosis’   which   resulted   in   appraisal   of   the   imaging   techniques   in   five  

categories of performance: pathological specificity, reproducibility, sensitivity to change, 

clinical relevance and response to treatment.(49) Quantitative MRI measures used in 

clinical trials which help in providing insights into potential efficacy of experimental 

neuroprotective and/or repair therapies are now discussed following which an example of 
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their application in an on-going experimental neuroprotective and repair therapy (the 

focus of my thesis) is described. 

   

 MRI Brain:  

       

Brain MRI measures, over the years, have proven to be one of the most useful surrogate 

outcomes in MS clinical trials. Several quantitative techniques have been developed in 

order to increase pathological specificity of the measures, albeit to a limited extent. 

Conventional MRI scanning is helpful in fulfilling the diagnostic criteria(50) for MS and 

quantitative MRI measures have the potential to be an integral part of all neuroprotective 

and repair therapeutic trials. 

         

Any repair that occurs in the central nervous system is likely to be helpful at all stages of 

MS, as there is evidence of damage very early on, even in the normal appearing white 

matter (NAWM) and normal appearing grey matter (NAGM), both pathologically and 

radiologically. There is evidence for a limited endogenous repair mechanism(51-54) and 

any experimental therapeutic measure with a potential to cause repair could act by 

augmenting the endogenous process or by causing direct repair. In MS, as described 

earlier, there seems to be a distinction between the two main pathological processes, one 

which is responsible for relapses and the other which seems to be responsible for 

accumulating disability. Neuroprotective and repair therapies are aimed at potentially 

slowing down and/or reversing the latter process respectively and hence the MR measures 

that are likely to be most useful are the ones which are sensitive for measuring 

myelination, neurodegeneration and axonal loss.  
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Conventional MRI techniques like T2-weighted, T1-weighted and T1-weighted with 

gadolinium enhancement, apart from being mainly used to provide diagnostic and 

prognostic information in MS, have also been used in clinical trials for monitoring disease 

activity. More complex MRI techniques such as magnetisation transfer ratio (MTR), 

diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS) are adding to 

our understanding of the disease pathogenesis as well as serving as biomarkers for 

evaluation of therapeutic effects including repair. 

 

i) T2W: 

 

T2 weighted scans are sensitive in detecting focal MS white matter lesions although being 

pathologically nonspecific. In relapsing remitting MS, virtually all-new T2 lesions start as 

a region of gadolinium enhancement indicating BBB breakdown and an inflammatory 

phase in their evolution. (55;56)This differs in more advanced disease and primary 

progressive MS, where there is evidence that some of the T2W abnormalities may 

develop independently of BBB breakdown.(57) The T2 lesion load in the early stages of 

relapsing remitting MS provides an indication of the amount of inflammation that has 

occurred to date. T2 lesion load generally correlates poorly with clinical impairment in 

cross-sectional studies.(58) The reasons for this poor correlation could be due to low 

pathological specificity of the T2 abnormalities, limitations of the clinical rating systems 

like the EDSS and pathological involvement of areas that are normal appearing on 

conventional MRI.  
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Even so T2 lesion accumulation early in relapse onset MS has been shown to partly 

correlate with current and future disability.(59) T2 lesion load at the first clinical event 

suggesting relapse-onset MS (a clinically isolated syndrome) has a stronger predictive 

value in anticipating the subsequent short-term clinical course (in particular a further 

relapse leading to the diagnosis of clinically definite MS).(60) T2 lesion load as measured 

by T2 lesion volume has been used as a secondary or tertiary outcome measure in many 

clinical trials of disease modifying treatments in MS, where clinical endpoints have been 

primary outcome measures. This is because T2 lesion load has only a limited correlation 

with clinical outcome and has not been regarded as adequate to serve as primary outcome 

measures in definitive phase 3 clinical trials.(61) T2 lesion load as an outcome measure is 

likely to be more relevant in clinical trials in relapsing remitting MS and CIS rather than 

progressive MS.(62)  

 

ii) T1W: 

 

About 20-30%   of   T2   hyperintense   lesions   appear   hypointense   (“black   holes”)   on   T1-

weighted spin echo MRI on any single scan. While many of these lesions are chronic and 

persistent, at least some of the new T1 hypo intense lesions, which start as gadolinium 

enhancing lesions, will subsequently disappear over a few weeks to months to become 

iso-intense.  Persistent  chronic  “black  holes”  have  been  shown  to  have  greater  axonal  loss  

than those lesions which are T1 isointense.(63) The  “acute”  black  holes  which  appear  and  

resolve reflect initial oedema and demyelination with later resolution of oedema and 

remyelination.(64) T1 weighted scans are useful to monitor the treatment effect on 

evolution of Gd enhancing lesions into persistent black holes. If there is a reduction of 
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such evolution, it might reflect less residual axonal loss due to acute inflammation, 

possibly as a result of the therapeutic intervention under study.(65;66)  

 

There was significant correlation between T1 hypointense lesion load and clinical 

disability as measured by EDSS in a cohort of secondary progressive patients in one of 

the early studies,(67) whereas subsequent studies only showed weaker correlations.(68) 

Different T1 hypointense lesions may have different degrees of axonal loss depending on 

the degree of hypointensity, but this is difficult to assess visually. Persistent black holes 

along with lesion MTR are the most extensively studied measures (among lesion 

evolution tracking strategies) to infer the neuroprotective capacity of any new agent.(49) 

 

iii) Gadolinium enhancement:  

 

Gadolinium enhancement is often seen in new brain lesions in RRMS and SPMS and 

typically lasts for 2-6 weeks like a relapse. Post-mortem and biopsy studies have 

demonstrated that inflammatory features correlate with Gd enhancement in MS 

lesions.(69) Enhancing lesions are more likely to correlate with clinical relapse if they 

occur in clinically eloquent sites such as the spinal cord or optic nerves. Gadolinium 

enhancement correlates poorly with clinical disability.(70) In RRMS, monthly Gd-MRI 

reveals about 10 new enhancing lesions for every clinical relapse. This finding indicates 

that subclinical disease activity greatly exceeds clinical measures of activity.(71) The 

number of gadolinium enhanced lesions that are detected can be increased by more 

frequent scanning (weekly), use of triple dose Gd, an off resonance magnetisation transfer 

(MT) pulse, delayed scanning and thinner slices. These approaches do not have much 

impact on sample size requirements for trials because inter-patient variability also 
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increases.(72) As the enhancements reflect acute inflammatory activity, it is an attractive 

MRI measure to test the efficacy of a therapeutic agent in preventing new inflammation. 

The oft-reported weak correlation with clinical disability has lead to Gd enhancement 

being considered a poor predictor of long-term clinical benefits. However, recent meta-

analysis of treatment trials in RRMS has suggested a strong correlation between the 

treatment effect on relapses and the treatment effect on the MRI lesion activity at the 

treatment arm/group level.(73) Phase II trial designs based on enhancing lesions as a 

primary outcome are designed to determine if a therapeutic measure has the potential to 

proceed to a definitive phase 3 trial with clinical endpoints in relapsing MS. Gd 

enhancements in clinical trials can be measured as number of enhancements, presence or 

absence of enhancement or as enhanced tissue volume, with the required sample size 

increasing in that order.(74) Gd enhancement as an efficacy outcome measure is useful in 

the patient groups with active relapsing remitting disease and secondary progressive MS 

patients with superimposed relapses. Gd enhancement as a safety outcome measure is also 

useful especially in a group of patients who have low enhancement activity at baseline, so 

that a drug induced increase in disease activity may be detected. 

        

However, since the link between Gd administration in patients with renal disorder and 

Nephrogenic Systemic Fibrosis (NSF) has been established, there is a need for greater 

caution in using Gd in human studies and it has become imperative to ensure normal renal 

function before it is given.(75) 

  

iv) Atrophy: 

 



 42 

Atrophy or measurement of tissue loss has been the most robust and widely used imaging 

measure of the neurodegenerative component of MS in clinical trials. CNS atrophy is a 

moderate but significant predictor of neurologic impairment that is independent of 

conventional MRI lesions.(76)Axons form the bulk of white matter and along with 

neuronal cell bodies form the bulk of grey matter as well. Neuronal and axonal loss 

affects both white matter and grey matter. Axonal loss is not the sole cause of atrophy: 

myelin, tissue water content, variation in glial bulk and inflammation also affect the 

global and regional tissue volume measures in MS.  

       

Atrophy can be detected in CIS patients even before development of clinically definite 

MS.(77) Studies have shown that brain atrophy occurs in relapsing remitting MS even 

within 3 years of symptom onset in both white and grey matter. Atrophy is seen in both 

the brain and spinal cord in secondary and progressive MS. The most marked atrophy is 

seen in SPMS and correlates with disability. Measurable alterations in brain and spinal 

cord tissue volume has been demonstrated over periods as short as 6-12 months.(7) Spinal 

cord atrophy is more evident in patients with early PPMS versus early RRMS.(78) Spinal 

cord atrophy is particularly well correlated with motor disability(6;79) while brain 

atrophy has been well correlated with neuropsychological impairment.(80-83) 

         

Atrophy appears to be progressive from onset and increases with increasing disability; it 

only correlates modestly with inflammatory lesions and it is considered a more specific 

marker of neurodegeneration. This makes atrophy measures attractive as an outcome 

measure in neuroprotective treatment trials. A study of 16 patients with PPMS evaluated 

riluzole as a neuroprotective agent using change in cord area as a measure of axonal loss. 

During 1 year pre-treatment, there was a 2% reduction in mean cord area whereas on 1 
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year treatment, there was only a 0.2% reduction; although the difference was not 

statistically significant, the findings suggest a potential neuroprotective effect. (84) 

          

Diffuse grey matter atrophy is also evident in MS and may be a valuable endpoint in 

clinical studies while testing the efficacy of a potential neuroprotective or repair 

therapeutic agent in MS. GM atrophy occurs at nearly twice the rate of whole brain or 

white matter atrophy and correlates more strongly with disability in MS.(85) This makes 

it more potentially sensitive than global atrophy measures in short term studies. However 

lower sample sizes for showing an effect on atrophy are achieved using registration-based 

algorithms to detect change in serial images and currently these are applicable in whole 

brain but not grey matter alone.(86;87)  

Global brain atrophy measures remain one of the best studied imaging outcome measures 

for neuroprotection due to its multicentre applicability, sensitivity to change and relatively 

small sample sizes to determine treatment effects in a randomized trial setting.(49;86;88) 

  

v) Magnetisation Transfer Imaging: 

       

MTR can be measured globally within the whole brain and within large areas of the brain 

free from lesions (normal appearing white matter or grey matter) or within lesions and 

specific regions of interest.  

        

Post-mortem and animal studies have shown that a decrease in MTR reflects 

demyelination and axonal loss to a certain extent, whereas an increase in MTR from a 

previous low level is reflective of possible remyelination or resolution of oedema. (89;90) 

Studies have shown that, on average, MTR declines slightly for a few months before Gd 
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enhancing lesions appear and then decrease steeply when the lesion begins to enhance. 

The magnitude of this decline during the time of enhancement predicts whether the lesion 

will evolve into a T1 hypointense lesion, suggesting that MTR reduction may be a marker 

of pathological severity.(91-93) MTR is decreased in the whole brain, normal appearing 

white matter and grey matter in MS patients compared to controls. Spinal cord and optic 

nerve have also shown decreased MTR in MS. MTR decrease varies between disease 

phenotypes and is related to disease course. MTR reduction may occur very early in the 

disease even at the stage of a clinical isolated syndrome. MTR reduction is greater in 

patients with progressive MS, but changes are also seen in RRMS.(94) 

         

MT imaging was recommended to be used in large scale MS trials as an adjunctive 

measure to monitor disease evolution in a consensus by the White Matter Study Group of 

the International Society of Magnetic Resonance in Medicine in the year 2002.(95) In 

longitudinal studies, development of progression has been predicted by decrease in whole 

brain MTR. Whole brain MTR at baseline has shown a high specificity and positive 

predictive value for EDSS deterioration.(96) Whole brain MTR changes are not 

pathologically specific but significant changes in MTR have been found in secondary 

progressive MS over 12 months to be sensitive enough for use in monitoring 

treatments.(97) Chen et al demonstrated that MTR signal inhomogeneity may be a more 

useful method in quantifying the potential for demyelination and remyelination in 

individual lesions and hence may help predict the effect of myelin repair and 

neuroprotective treatments.(98) Lesion MTR has been studied widely for applicability in 

multicentre studies, sensitivity to change and treatment effects, and the changes 

pathologically reflect demyelination with axonal loss and remyelination. It seems to be 

sensitive to change over time and to treatment effects and can be applied in multiple 
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centres.(49) However, the changes in MTR are small and achieving stable and precise 

quantitation and standardization of the MTR sequences across different scanners is 

challenging. 

 

vi) Diffusion Tensor Imaging: 

 

PPMS patients have been found to have increased ADC in the normal appearing white 

matter.(99) Areas of NAWM that later developed overt lesions have shown a significant 

increase in mean diffusivity values beginning 6 weeks before Gd enhancement, 

suggesting that new inflammatory lesions are preceded by subtle dynamic alterations in 

diffusion, this being followed by a marked increase at the time of enhancement and a 

decrease after the resolution of enhancement.(100) Global diffusion abnormalities occur 

in the NAWM even at the earliest stages of disease (CIS).(101) The demonstration of 

longitudinal changes in diffusion in MS patients suggests the potential for the use of DTI 

as a treatment outcome measure in clinical trials. 

         

DTI parameters have limited pathological specificity (like MTI), but are sensitive 

biomarkers very early in the disease for myelin and axonal structural disruption. DTI is a 

promising technique for allowing reconstruction of major fibre bundles through 

tractography. Significant clinical correlations with disability scales have been observed 

using DTI parameters of single well defined tracts, but less so with global diffusion 

parameters. This limitation may be because MS causes focal as well as diffuse 

abnormalities to tissue integrity, and also the correlation will depend on individual tracts 

(eg: pyramidal tracts) studied and their reflection on the clinical disability scale.(102) DTI 

has much potential to be applied to study WM fibre bundles with high orientational 
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coherence and associated functional outcomes (eg: optic nerve DTI and visual function) in 

the context of neuroprotective and repair therapy trials. 

 

vii) Proton Magnetic Resonance Spectroscopy (MRS): 

 

Proton MR Spectroscopy has the potential to characterise the chemical pathology of brain 

lesions and normal appearing brain tissue. This information has been used to better define 

the natural history of the disease process, and to monitor metabolic responses to therapy. 

In MS, MRS has been particularly informative by providing evidence of 

neurodegeneration (based on the resonance intensity of N-acetyl aspartate [NAA], an 

amino acid derivative found almost exclusively in neurons and thought to be a marker of 

neuronal viability and axonal integrity) in both lesional and non lesional brain tissues 

from the earliest stages of the disease.(103) A reduction in NAA provides evidence of 

axonal dysfunction or loss and has been consistently reported in MS lesions and 

NAWM.(104) These changes have been confirmed pathologically and have led to the 

appreciation for the substantial role of axonal damage in determining clinical progression 

in MS.(1;12)  

          

By measuring metabolites such as choline containing compounds [marker of cell 

membrane integrity], myoinositol [glial cell marker], lipids [products of brain tissue 

(including myelin) disruption], lactate [product of anaerobic glycolysis], 

creatine/phospho-creatine [energy metabolism], proton MRS has provided information 

regarding damage and repair of neuronal and non neuronal brain tissue. Increases in 

lactate, choline and lipids probably reflect evidence of inflammation and demyelination. 

Elevated choline indicates increased cell membrane turnover that may be due to 
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demyelination, remyelination, inflammation or gliosis. Myoinositol is elevated in MS 

NAWM, (9;105)  and may reflect increased glial cell proliferation and activity. 

        

Partly as a result of technical reasons of low signal to noise ratio and modest 

reproducibility of the measured metabolite concentrations, use of proton MRS has been 

limited mainly to single centre trials. Whole brain NAA has been applied in trials and 

reproducible data obtained although it is methodologically challenging and has not been 

widely taken up.(106) Another limitation to this approach is that changes are not localised 

to lesions, NAWM or grey matter.  

       

Despite limitations, MR spectroscopy should be investigated further as a potential 

surrogate outcome in clinical trials of neuroprotection and repair, as the metabolite 

concentrations – in particular NAA - provide relatively specific information on axonal 

survival and function. 

 Spinal Cord MRI 

The potential for spinal cord MRI outcomes to be used in MS treatment trials has gained 

significant recent interest. Technically, the spinal cord is a more difficult structure to 

image than brain due to its smaller size, mobility, and proximity to the heart and great 

vessels. However, these difficulties are largely overcome by technical improvements such 

as cardiac gating, spatial pre-saturation slabs and the development of phased array coils 

enabling rapid imaging of the whole spinal cord. Serial assessment of atrophy has 

potential for use as a surrogate measure for clinical progression, and a marker of axonal 

loss. MTR and DTI of the cord have been used in exploratory studies, with DTI 

tractography representing a particularly promising option for trials employing a spinal 

cord sentinel lesion approach. 
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 Optic nerve MRI 

       

Clinical involvement of the optic nerve is common in MS (optic neuritis), and clinically 

silent lesions are also frequently found in the posterior afferent visual pathway. 

Assessment of the afferent visual pathway has provided insights in to the pathophysiology 

of the demyelinating lesion, and shows potential in investigating new therapies in both 

optic neuritis (ON) and MS (See chapter 2). 

 

 Retinal nerve fibre layer (RNFL) imaging  

 

The retinal nerve fibre layer (RNFL) consists of unmyelinated axons within the retina. 

Consequently, measurements of RNFL thickness in MS are not confounded by loss of 

myelin. The RNFL is therefore an attractive structure to visualize processes of 

neurodegeneration, neuroprotection and potentially neural repair. Optical Coherence 

Tomography (OCT) uses the echo time delay of low coherence light to delineate the 

RNFL. OCT measurements may therefore be useful in clinical trials to detect axonal loss 

and monitor neuroprotection. 

 Neurophysiological measures: Evoked Potential (EP): 

 

Central demyelination slows down conduction as in the peripheral nerve. This slowing is 

helpful in distinguishing the underlying pathological process from axonal degeneration. 

Conventional Visual EP (VEP) measures the cortical response to monocular stimulation 

in the central 30 degrees of the visual field (known as the P100). In MS the waveform of 

the P100 is characteristically delayed with a well-preserved amplitude. Response latency 

can be used as a measure of myelination in the afferent visual pathway (increased with 
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demyelination), and amplitude can be used as a measure of axonal conduction (reduced 

with axonal loss or with conduction block due to demyelination)(107). Shortening of the 

latency of the VEP response with increasing years following optic neuritis is compatible 

with remyelination.(108) The VEP may therefore be a useful outcome measure when 

testing a potential remyelination agent in a patient with previous optic neuritis (Chapter 

2). Somatosensory, auditory and motor evoked responses have also been used but less 

frequently than VEPs and mainly in clinical settings in MS. 

 

 Immuno/cytochemical biomarkers: 

       

A number of potential CSF biomarkers of axonal breakdown have been studied in MS.  

Phosphorylated forms of neurofilament are released during axonal injury and an increase 

in one such neurofilament has been noted to be related to increasing disability in 

MS.(109) S110b and 14-3-3 are other biomarkers which have been proposed as potential 

markers of glial proliferation and axonal damage respectively and are likely to be helpful 

in demonstrating abnormalities in a number of neurodegenerative disorders in which glial 

proliferation and axonal loss occur.(110;111)  

 

1.3      Summary 
         

The challenge to detect neuroprotection and repair in MS clinical trials is formidable. 

Only a comprehensive approach involving consideration of all elements in trial design is 

likely to achieve success. A traditional, randomised, parallel groups two-arm (control vs 

experimental treatment) design remains the gold standard although multi-interventional 

(adaptive and factorial) designs may become increasingly relevant in the near future.(112) 



 50 

In all trials, patient selection is crucial to maximising statistical power to detect efficacy, 

with  the  “sentinel  lesion”  approach  having  potential  as  a  novel  and  sensitive  paradigm  for 

phase IIa. Careful selection of outcome measures is also required to achieve the objectives 

of   neuroprotective   /   repair   therapy   trials.   A   “three   step”   approach   represents   a   useful  

model in this regard: (i) clinical outcomes to establish clinical efficacy, (ii) 

structural/imaging measures that directly monitor neuro/axonal degeneration and 

repair/remyelination, (iii) other biomarkers that are thought to reflect neurodegeneration 

and repair, eg: VEP, CSF and serum biomarkers. 
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Chapter 2: Afferent visual pathway assessment in MS and 

associated ON. 

2.1   Introduction 
 
 
Demyelinating lesions in MS have a predilection to occur in certain sites within the CNS 

as demonstrated by pathological(113;114) and MRI studies(115). The afferent visual 

pathway, which extends from the retina to the primary visual cortex, is often affected. 

Clinical involvement of the optic nerve is common in MS (optic neuritis), and clinically 

silent lesions are also frequently found in the posterior afferent visual pathway.(116) 

Assessment of the afferent visual pathway has provided insights in to the 

pathophysiology of the demyelinating lesion, and shows potential in investigating new 

therapies in optic neuritis (ON) and MS.  

 

Most patients with ON recover to normal or near normal visual acuity, although they will 

often continue to report visual symptoms. Imaging, neurophysiological and pathological 

studies indicate that despite persistent tissue loss, recovery continues long after the acute 

attack. This discrepancy between structure and function emphasises the need for sensitive 

methods of assessment of both these aspects in order to better understand the 

pathophysiology.  

 

This chapter is mainly focussed on imaging measures of structure and function of the 

afferent visual pathway in MS and associated ON. However, shorter sections will 
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consider anatomy, pathology, clinical manifestations, visual function and 

neurophysiological investigations, in order to provide an overall context when 

considering the imaging techniques and their applications in development of methods and 

protocol to test neuroprotective and/or repair therapeutic trials in MS.  

 

2.2   Normal structure and function of the afferent visual pathway:  

The afferent visual system is made up of four neuronal components: (i) Photoreceptor 

cells; (ii) Bipolar cells; (iii) Ganglion cells with their axonal processes forming the retinal 

nerve fibre layer (RNFL), optic nerve, chiasm and the optic tract; (iv) Cell bodies of the 

lateral geniculate nucleus (LGN) with their axonal processes forming the optic radiation 

and terminating at the visual cortex. 

 

The RNFL is unmyelinated within the retina in most individuals. As the axons of the 

ganglion cells form the optic nerve, they are myelinated. The optic nerve is covered by a 

sheath composed of dura and arachnoid mater with cerebrospinal fluid (CSF) in the 

subarachnoid space. The nerve itself is invested with pia mater and the three layers are 

continuous with the meninges of the CNS. The optic nerve axons are myelinated by 

oligodendrocytes rather than Schwann cells. Thus, the optic nerve is part of the CNS. 

More than half of the optic nerve axons decussate in the chiasm. The majority of fibres 

whose ganglion cells are located in the temporal hemi retina, carrying information from 

the nasal field of the ipsilateral eye, join with nasal fibres, carrying information from the 

temporal field of the contralateral eye at the chiasm to form the ipsilateral optic tract. 

This tract terminates in the respective LGN. Neurons from the LGN project to form the 

optic radiations and terminate in the primary visual cortex. A minority of fibres go into 

the superior colliculus for pupillary function.  
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2.3   Pathology: 
 

Thinning of the RNFL and ganglion cell layer occurs in MS.(117) Optic nerve and 

chiasm lesions exhibit inflammation, demyelination, gliosis, axonal injury and atrophy as 

do lesions in the brain and spinal cord in MS.(118) Optic nerve lesions are reported in 94-

99% of MS autopsy cases.(119;120) Involvement of the retrochiasmal pathways 

including the optic radiations is also frequently found in MS.(121;122)  

Transection of axons has been demonstrated in acute and to a lesser extent, chronic MS 

lesions in the brain and may lead to Wallerian degeneration.(123) 

Pathology in the LGN and visual cortex may occur as foci of primary demyelination, as a 

consequence of Wallerian degeneration secondary to lesions of the connecting white 

matter tracts(124) or as a result of trans-synaptic degeneration due to lesions in an 

anatomically linked remote region. Evangelou and colleagues investigated the anterior 

visual pathways of 8 post-mortem cases of MS and found that in addition to significant 

atrophy and axonal loss in the optic nerve and tract, there was also a relatively size 

selective atrophy of smaller neurones (parvocellular layer of LGN) consistent with trans-

synaptic degeneration and suggesting an increased susceptibility of smaller axons to MS 

related injury(125) as has also been suggested by studies of achromatic(126) and 

chromatic(127) contrast sensitivity, visual evoked potentials (VEP)(128), temporal 

frequency discrimination(129) and the pupil light reflex(130) 
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2.4   Clinical Features: 

   
Optic Neuritis:  

Optic nerve involvement in MS presents most commonly as acute demyelinating ON. 

The patient with typical demyelinating ON usually has a decline in vision over a 7-10 day 

period. Progression of visual loss beyond 2 weeks is unusual. Pain on eye movements is 

typical, reported in about 90% of cases. Some recovery of vision should start to occur 

within 30 days of onset and most recovery of acuity and field typically occurs within 6 

months. Disturbances in colour vision are common and field defects are also sometimes 

reported by patients.  Uhthoff’s   symptom  of  visual   loss   after   exercise  or   a  hot  bath   can  

occasionally be one of the presenting symptoms of optic nerve demyelination.  Patients 

also   occasionally   report   anomalous   perception   of   motion   in   depth   (Pulfrich’s  

phenomenon). 

Clinical features that suggest atypical ON include a markedly swollen nerve, retinal 

exudates and haemorrhages, absence of pain, severe visual loss to no light perception, 

and absence of any recovery within 30 days. 

Abnormalities commonly found on examination in the North American Optic Neuritis 

Treatment Trial (ONTT) were reduction in visual acuity (89.5%), visual field defects 

(97.5%), impairment of contrast sensitivity (98.2%) and colour vision defects (93.8%). 

Relative afferent pupillary defect (RAPD) is commonly seen and was an inclusion criteria 

in ONTT. On fundoscopy, optic disc swelling was seen initially (35.3%) followed by 

pallor and atrophy later.(131) Asymptomatic or subclinical involvement of optic nerves 

occurs in MS and is inferred by finding abnormal visual evoked responses in clinically 

unaffected eyes.(132;133) 

  Chiasm and Retrochiasmal lesions:  
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Any type of field defect may occur, depending on the location of the lesion. Symptomatic 

homonymous hemianopic defects are infrequent in MS, occurring in about 1%.(121) 

Asymptomatic defects are more common. In the ONTT, 13.2% of the patients had 

evidence of chiasmal (5.1%) and/or retrochiasmal (8.9%) field defects. RAPD in the 

contralateral eye can be seen in optic tract lesions due to a greater number of nasal fibres 

decussating to the contralateral side than the number of temporal fibres remaining 

ipsilateral.(134)  

  

2.5    Visual function assessment:     
 

While the most commonly used measure of visual acuity has been the Snellen chart, log 

MAR scoring using a retro-illuminated Early Treatment Diabetic Retinopathy Study 

(ETDRS) chart is now often preferred in research studies. This has an equal number of 

letters per row, more equal spacing, the letters on each row are balanced for difficulty, 

and the scoring system provides continuous statistical data. Sloan charts(135) are similar 

in style to the ETDRS, but consist of several charts with progressively lower contrast. 

They are reproducible(136) and more sensitive than standard acuity in detecting visual 

dysfunction in MS.(137) The visual dysfunction in MS measured using these charts has 

been correlated with Expanded Disability Status Scale (EDSS) and MS functional 

composite (MSFC) scores,(138) and MRI lesion load.(139)  

 

In research practice, the comprehensive Farnsworth-Munsell 100 hue test is often used in 

the assessment of colour vision. In this test, the subject places 85 coloured caps in 

perceived order of hue and an error score is calculated. Dyschromatopsia may be 
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quantified and the spectral location of deficits determined. No consistent pattern of colour 

deficit has been found in ON.(140)  

 

The visual field may be measured quantitatively with static targets with a Humphrey 

perimeter or qualitatively with kinetic targets using the Goldmann method. Both were 

applied to the ONTT cohort. These patients were shown to have more central than 

peripheral field abnormalities, and any peripheral deficits recovered more rapidly.(141) 

Recovery of visual field function was good overall and did not differ between diffuse and 

localised field defects.(142)  

 

2.6   Neurophysiological measures: 
 
VEP 

The conventional VEP measures the cortical response to monocular stimulation in the 

central 30 degrees of the visual field. In MS it is characteristically delayed, with well-

preserved amplitude, although during the acute phase of optic neuritis with visual loss 

this may be reduced. The observation that the cortically generated VEP (known as P100) 

was delayed following ON(143), and that this delay persisted after visual recovery(132) 

was of great importance. The delayed but well formed P100 waveform in ON and MS 

implying demyelination is a classical feature. The shortening of the latency post acute 

optic neuritis is considered to be due to remyelination and is known to occur for several 

months to years independent of functional recovery.(144) Abnormal VEPs in unaffected 

eyes provided evidence for clinically silent lesions that might help identify dissemination 

in space (DIS) and hence help with the diagnosis of MS (132) although they are only 

formally incorporated in the current McDonald criteria for primary progressive MS.(145)  
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Multifocal VEP 

The multifocal VEP (mfVEP) has been developed to examine conduction in the parts of 

the visual field that the full field VEP does not. The mfVEP uses a paradigm of sectorial 

stimulation with pseudo-stimulation at other sites, using the fellow eye and normal 

controls for comparison at each point.(146) The degree of latency is similar to that seen 

in full-field VEP(147), but mfVEP has the advantage that a particular sector of the visual 

field can be examined for abnormality, and compared with the results of other retinotopic 

tests (for example standard automated perimetry). Fraser et al found that the average 

delay of the mfVEP latency predicted progression to MS in a cohort of patients with 

McDonald   criteria   “possible  MS”,   but  whether  mfVEP  would   offer   an   advantage   over  

more conventional VEP was not clear, as conventional VEP was not performed in this 

study.(148) Grover and colleagues found that mfVEP was more sensitive in detecting 

abnormality than conventional VEP in patients with MS.(149) mfVEP amplitude and 

RNFL thickness was shown to have a high functional-topographic relationship in a study 

of post acute optic neuritis patients. (150) 

 

 2.7    Retinal nerve fibre layer imaging: 
 

The retinal nerve fibre layer (RNFL) consists of unmyelinated axons within the retina; 

therefore, measurements of RNFL thickness in MS are not confounded by loss of myelin 

per se.  

 

Frisen and Hoyt(151) noted retinal axonal loss on red-free photography in eyes both with 

and without a history of acute optic neuritis (AON). These defects were associated with 
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corresponding changes in the visual field. In larger surveys of MS patients, even those 

unaffected by clinically evident ON have visible RNFL defects on retinal 

photography.(152;153) However, approximately 50% of the RNFL needs to be lost in a 

sector for it to be visible(154), and gradations in loss cannot be quantified, limiting the 

use of this technique in assessing retinal structure. 

 

Three different techniques are able to quantify the thickness of the RNFL: optical 

coherence tomography (OCT), scanning laser polarimetry (SLP), and confocal scanning 

laser ophthalmoscopy (CSLO). Each uses slightly different techniques to estimate the 

thickness of the RNFL.  

Optical coherence tomography 

OCT uses the echo time delay of low coherence light to delineate the RNFL. The layers 

of the retina have different reflectivity, and can thus be distinguished and measured. The 

RNFL thickness (giving an estimate of axonal numbers), and the macular volume (giving 

an estimate of ganglion cell numbers) can be measured.  

Time domain OCT (td-OCT) used low coherence interferometry, using a Michelson type 

interferometer and a low coherence light source. The mirror in the reference arm in the 

interferometer in the td-OCT is mechanically scanned to measure interference. The 

development of fourier or spectral domain OCT (sd-OCT) uses a stationary reference arm 

and a spectrometer which detects all echoes simultaneously thus increasing the speed (50 

fold) and the resolution (2-3 fold) significantly.(155;156)  

 

The first observation with td-OCT in MS was made by Parisi et al(157), who found a 

reduction in RNFL thickness in eyes with a prior history of ON. This finding has been 

corroborated by Trip et al(158), in a cohort of patients with prior ON selected for a range 
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of visual loss including those with poor recovery, and Costello et al(159), in a 

prospectively acquired, unselected cohort of patients with unilateral ON (Fig 2.1). The 

loss of RNFL is in the range of 5-40 microns for eyes affected with optic neuritis, 

averaging 10-20 microns.(159) 

 

Several groups have found RNFL loss in the clinically asymptomatic eyes of MS 

patients.(160) RNFL thinning in eyes not previously affected by an attack of ON may be 

greater in SPMS than in PPMS, and least evident in RRMS group, particularly when the 

temporal quadrant of the RNFL is examined separately.(161;162) 

Follow up td-OCT measurements of the progressive MS cohort, median of ~2 years from 

baseline revealed no significant decrease in RNFL thickness. There was a significant 

decrease in the macular volume in both patient and the control group but no significant 

changes between the groups. This suggests that td-OCT only has limited ability to detect 

changes in progressive forms of MS over a 2 year period.(163) Longitudinal follow up of 

299 MS (84% RRMS) patients with or without previous optic neuritis for a mean of 

18months (range: 6 – 54 months) showed that progressive RNFL thinning occurred as a 

function of time.(164) 

 

Costello and colleagues presented longitudinal data for RNFL thickness during the first 

12 months after optic neuritis, which showed most thinning occurred in 6 months and 

there was continuing axonal loss in affected eye for at least 12 months.(165) Serial td-

OCT assessments of 23 patients with acute unilateral optic neuritis (AON) as CIS 

presentation showed that RNFL thickness increased significantly in the first few days and 

there was thinning thereafter. The thinning started to appear at mean of 1.6 months from 

symptom onset and the rate of thinning decreased thereafter. The initial increase in RNFL 
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thickness correlated with the baseline visual function (log MAR visual acuity, visual field 

and colour vision) and VEP latency significantly but was not associated with the 12-

month visual outcome. The RNFL thinning at 6 months and 12 months correlated with 

concurrent visual function suggesting that RNFL loss from 6 months after the AON onset 

is a suitable outcome measure for proof of concept trials of acute neuroprotection. 

However some visual function measures (log MAR high and low contrast visual acuity, 

visual field) and Gadolinium positive lesion length at baseline correlated weakly 

(univariate association), whereas impairment of colour vision and prolongation of VEP 

whole field latency at baseline correlated strongly and independently (multivariate 

association) with eventual RNFL loss. This suggests that visual function measures at the 

time of AON may help predict future axonal loss and that the extent of demyelination 

might be more strongly related to eventual axonal loss than the extent of inflammation. 

This may help select patients with a higher risk for axonal loss for experimental 

neuroprotection trials.(166;167) 

 

Reductions in RNFL thickness and macular volume are significantly correlated with 

reductions in visual function(158-162;168-173)  Several groups have found a relationship 

between measures of disability (EDSS and MSSS) and retinal OCT measures(160;174-

180), while others have not.(162;181-183) It is interesting to note that the strongest 

relationships have been found in cohorts of generally low EDSS, where visual 

impairment per se could make a greater contribution to the EDSS, and in a cohort of 

progressive patients studied, there was no apparent relationship.(160;162;173)  

RNFL thinning post optic neuritis has been found to be associated with reduced VEP 

amplitude and multifocal (mf) VEP amplitude.(147;158;171;172;184;185) VEP 

amplitude reduction represents functional axonal loss whereas RNFL thinning represents 
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structural axonal loss past the acute phase. VEP latency prolongation is representative of 

demyelination. Several studies have also identified correlation between VEP latencies 

and RNFL thickness thus suggesting an association of demyelination with axonal loss in 

the anterior visual pathway.(157;172;184;186)  

RNFL thickness correlated with brain global and regional atrophy measures in several 

studies.(176-178;187) MRI measures that are indicative of axonal integrity such as 

diffusion tensor and persistent hypointense T1 lesion volume have potential to be related 

to RNFL thickness. 

 

sd-OCT is increasingly being used to investigate retinal nerve fibre layer and macular 

thickness in MS and optic neuritis recently.(188-192) The measurements obtained by sd-

OCT machines of different manufacturers have been significantly different, although they 

are reproducible and valid for longitudinal assessments.(193;194) Direct comparison of 

td-OCT and sd-OCT in a study by Villoslada et al showed the sd-OCT was more 

sensitive than td-OCT in RNFL measurements.(191) Since several initial studies had 

been performed using the td-OCT of a single manufacturer, standardisation is required for 

cross sectional studies using sd-OCT of different manufacturers to be compared. As 

mentioned earlier, sd-OCT has better axial scan resolution (4-6 microns vs 8-10 microns) 

and much faster acquisition speeds (50 times faster) in comparison to td-OCT. This 

enables sd-OCT to segment (manual or automated) and quantitatively assess discrete 

axonal and neuronal retinal layers (ganglion cell layer (GCL), inner plexiform layer 

(IPL), outer plexiform layer (OPL), inner nuclear layer (INL), outer nuclear layer (ONL), 

photoreceptor layer (PRL) and RNFL) based on variability in tissue reflectivity resulting 

from differing layer compositions. (195-197) 
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Walter et al found that the GCL+IPL neuronal loss quantified by sdOCT strongly 

correlated with visual function and vision related quality of life (QOL) in MS eyes both 

with and without history of ON. This finding suggests that the ganglion cell layer 

thinning which is a neuronal cell marker analogous to grey matter involvement in the 

central nervous system may be a better predictor of neurologic disability than just axonal 

marker such as the peripapillary RNFL. IPL had to be included with GCL due to 

methodological difficulty in clearly separating the two layers using the current 

segmentation methods. (192) In a longitudinal study of 164 MS patients and 59 healthy 

controls, Ratchford and colleagues found that MS patients with clinical and/or 

radiological non ocular disease activity, particularly early in the disease course, exhibited 

accelerated GCL+IPL thinning, suggesting that this measure may reflect global CNS 

process and may be a potential outcome measure for assessing neuroprotective agents in 

early active MS. (198) 

Gelfand et al identified microcystic macular oedema (MMO) of the INL in about 5% of 

patients with MS. MMO is thought to represent breakdown of the blood retinal barrier 

and hence retinal inflammation. Presence of MMO was associated with greater disability 

and visual dysfunction. (199) A further retrospective study, on MS patients and healthy 

controls over 2 years follow up, by the same group found that MMO does not seem to 

occur in healthy controls. Baseline increased INL thickness (measured as INL + OPL) 

was associated with markers of disease activity such as development of contrast 

enhancing lesions, new T2 lesions and clinical relapses in RRMS patients apart from 

EDSS progression. This raises the possibility that inflammation in the retina could be 

directly neuronally targeted without the involvement of myelin and that increase in the 

INL thickness may be an earlier marker for presence of inflammation before MMO 

becomes visible. (200) 
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Scanning laser polarimetry 

 

The axons in the RNFL are birefringent, and retard polarised light. The degree of 

retardation is proportional to the RNFL thickness, and this characteristic is used by SLP. 

This approach has some theoretical advantages, because the measures are less affected by 

optic nerve head swelling, which is common in the early stages of ON. Theoretically this 

would mean that axonal loss could be detected earlier in the course of acute optic neuritis 

than with either of the other two retinal imaging methods that are affected by nerve head 

oedema.(201)  

Steel et al demonstrated that RNFL measures obtained by SLP were lower in eyes with a 

history of ON.(202) Other groups have found similar results.(203-205) 

Kupersmith et al assessed a group of 40 patients with acute retrobulbar optic neuritis at 

the time of presentation, 1 month and 3 months with SLP and td-OCT. OCT showed 

more thickening of RNFL than SLP at baseline, but SLP also showed some RNFL 

thickening at baseline which was thought to be due to increased axoplasmic flow of 

organelles in response to retrobulbar optic neuritis. SLP did not show RNFL thinning 

earlier than OCT in this study different to Garas et al comparing sd-OCT and SLP 

derived RNFL measurements in 9 AON eyes, which showed SLP measurements were 

significantly thinner than OCT at baseline.(188;206) Kupersmith et al tested 3 cohorts 

with optic head swelling due to papilloedema of raised intracranial pressure, acute optic 

neuritis and Non arteritic ischemic optic neuropathy (NAION) with OCT (td or sd OCT) 

and SLP. This study revealed a significant difference between OCT and SLP measures of 

NAION at baseline and at one month with OCT measures of RNFL significantly thicker 

than SLP. This reflects the difference in the principles of the two techniques and the 
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different pathological processes they provide insight into. OCT measurements include the 

intra and extra-axonal oedema in the RNFL thickness, whereas an SLP measurement 

reflects the birefringence properties of the parallel structures (axonal membranes and 

microtubular alignment) and thus reflects axonal integrity. This property of SLP makes it 

more attractive than OCT as a technique, which could provide useful prognostic 

information if further studies reveal that SLP is able to detect RNFL thinning earlier than 

OCT in AON. (207)  

Patients need to fixate well for accurate SLP measures to be obtained, making the 

reliability of measurements lower in patients with severe central visual loss. 

 

Confocal scanning laser ophthalmoscopy  

 

CSLO also known as Heidelberg Retinal Tomography (HRT) calculates the retinal 

topography by scanning the retinal surface to construct a three-dimensional map of the 

retina around the optic nerve head. Placing a reference plane posterior to the temporal 

portion of the peripapillary retina and calculating the distance from this plane to the 

retina-vitreous interface infer the RNFL thickness. Trip et al found reduction in mean 

RNFL thickness and neuro-retinal rim volume in their cohort of patients with poor visual 

recovery after ON.(208) These changes were related to measures of visual function.   

OCT measures have been shown to be superior to SLP and HRT in terms of strength of 

association between structure and function.(209) Incorporation of adaptive optics into 

retinal imaging has improved the lateral resolution significantly to the possibility of 

visualising individual nerve bundles in the RNFL, individual cells (single cone receptors) 

and already is being applied in studying several diseases including optic 

neuropathies.(210;211)
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Fig 2.1: OCT showing thinning of the right RNFL following unilateral 
acute optic neuritis. OD – Right, OS – Left.  (Reproduced from Kolappan et 
al 2008) 
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2.8    Optic nerve MRI :  
 

 MRI of the optic nerve is not routinely used in the diagnosis of ON, although brain MRI 

is used to detect clinically silent demyelinating lesions and clarify the risk for MS. Optic 

nerve MRI may be useful to rule out an alternative diagnosis in doubtful or atypical 

cases. Serial MRI of the optic nerve has enabled the study of the natural history of the 

acute ON lesion and, by inference, new MS lesions in vivo.  

 

Challenges associated with optic nerve MRI include its small size, mobility, surrounding 

fat and CSF and the presence of the bony optic canal and nasal cavities. Methods have 

been developed to overcome these challenges, e.g. suppression of fat(212) and CSF(213) 

signal, fast sequences, 3D acquisition methods, use of surface coils  and high field MR 

systems to allow high resolution imaging. 

One of the advantages of MRI is the ability to acquire images sensitive to different 

pathological changes, e.g. inflammation, axonal degeneration, blood brain barrier 

leakage, water molecule displacement, and macromolecular changes. A summary of the 

main applications of MRI to the study of ON now follows. 

 

Conventional T2 weighted (T2W) imaging:  

In ON, there is increased signal intensity within the optic nerve on T2W images. The 

surrounding fat gives relatively high signal on T2W images making it difficult to detect 

the optic nerve lesion clearly. To overcome this, several fat suppression sequences have 

been developed. Among these, the short-tau inversion recovery (STIR) sequences make 

use of an inversion technique. (214) In a study of 37 patients following an episode of ON, 

the lesion was detected in 84% of patients with symptomatic ON and in 20% of patients 
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without clinical symptoms of ON. Slow or poor visual recovery was associated with 

longer lesions. 73% of patients with involvement of the nerve in the optic canal had poor 

recovery which was thought to be due to swollen optic nerve being compressed in the  

narrow bony canal.(215)  

 

Another fat suppression sequence is based on frequency specific selective partial 

inversion recovery (SPIR).(216) Both STIR and SPIR have long acquisition times. Fat 

suppressed fast spin echo (fsFSE) T2W sequences have been developed to reduce 

acquisition times and to acquire high resolution images that minimise partial volume 

effects (Fig 2.2a). In a comparative study, 18/21 lesions were identified using STIR, 

whereas 20/21 lesions were identified using fsFSE from symptomatic optic nerves 

following AON.(212) In these sequences the surrounding CSF was bright and sometimes 

caused obscuration of the signal from the affected nerve. It is possible to suppress the 

signal from CSF using a fast fluid attenuated inversion recovery (fFLAIR) sequence in 

combination with SPIR sequence (SPIR-FLAIR). In a study comparing STIR, SPIR and 

SPIR-FLAIR sequences, SPIR-FLAIR was shown to be the most sensitive in detecting 

abnormal optic nerves.(213) Lesion length was also longest in SPIR-FLAIR, although it 

was not compared with an fsFSE sequence in this study. 

 

The studies mentioned above were all performed using 0.5T/1.5T scanners. Pilot studies 

using 3 Tesla scanner have been performed on healthy volunteers, whereby higher 

resolution images of normal optic nerves have been acquired.(217;218) Use of surface 

coils close to the course of the optic nerve may also improve the resolution.(219) 

 

Gadolinium enhancement:  
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Many small studies have demonstrated that with gadolinium administration, there is 

abnormal enhancement of the optic nerve in acute ON on fat suppressed T1W spin echo 

images.(220;221) The enhancement is thought to be due to disruption of the blood nerve 

barrier in the acute phase of ON causing leakage of the contrast between the endothelial 

cells of capillaries into the optic nerve in association with acute inflammation. Abnormal 

contrast enhancement of the optic nerve is a sensitive finding in acute ON (94%) and is 

no longer seen in previously affected optic nerves with chronic lesions only.(222) The 

sensitivity to detect an acute symptomatic lesion may be slightly increased further (96%) 

by using triple dose gadolinium chelates.(223) In a study by Youl et al on 18 patients 

with AON, contrast leakage (reduced signal on STIR) was associated with decreased 

visual acuity, colour vision, retroocular pain on eye movement, afferent pupillary defect 

and reduced P100 amplitude of the VEP. Repeat imaging of these patients a month later, 

showed leakage had ceased with improvement in vision and an increase in the VEP 

amplitude, suggesting that acute inflammation is associated with conduction block in the 

optic nerve and that resolution of inflammation plays a role in recovery.(224) The VEP 

latency was prolonged at follow up suggesting persistent demyelination: their visual 

recovery was associated with resolution of inflammation (enhancement) and not with 

remyelination. Kupersmith et al studied 107 patients with AON with contrast MRI and 

showed that the length of abnormal enhancement on T1W images (Fig 2.2b) within the 

optic nerve correlated significantly with the severity of visual impairment at baseline. 

Canalicular involvement was associated with poorer colour vision. However the location 

and length of the enhancing lesion did not correlate with the degree of visual recovery in 

the patients after six months follow up. The conclusion was that although enhancing 

lesions involving the canal or longer segments of optic nerve have worse baseline vision, 

the location and length of enhancement are not predictive of recovery.(222)  
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Atrophy:  

Atrophy of nervous tissue could potentially result from demyelination or axonal loss. As 

axons contribute more than myelin to the bulk of the white matter tissue, it is reasonable 

to deduce that axonal loss contributes more to atrophy than myelin loss.(7) Studies using 

MRI measures of brain and spinal cord atrophy have demonstrated correlation with 

disability in MS.(6) MRI techniques have been developed over the last ten years to allow 

reasonable and reproducible assessment of optic nerve atrophy in vivo. Youl et al first 

used   draftsman’s   callipers to show that following acute ON there was initial swelling 

followed by atrophy(225). Hickman et al described a short-echo fast fluid-attenuated 

inversion-recovery (sTE fFLAIR) sequence, with fat and CSF suppression allowing clear 

delineation of the optic nerve in its intra orbital course, where the nerve can be visualised 

almost orthogonal to the coronal plane allowing assessment of the cross sectional area 

using a semiautomatic threshold based contouring method.(226) In a cross sectional study 

of 17 patients with previous single episode of unilateral ON using this technique, the 

cross sectional area was 11.2 mm2 in diseased eyes, 12.9 mm2 in contralateral eyes and 

12.8 mm2 in control eyes. The degree of atrophy correlated with disease duration 

suggesting on-going axonal loss in a previously demyelinated lesion.(226) A subsequent 

serial study of previously affected ON patients with more residual visual impairment, 

showed correlation of the degree of atrophy with visual acuity, VEP amplitude and 

latencies.(227) Inglese et al calculated the volume of the optic nerve in 30 MS patients 

who have had previous optic neuritis. The atrophy was significantly worse for patients 

with worse visual acuity in comparison to patients with good recovery. The optic nerve 

volume also correlated moderately with VEP latency in this study.(228) 
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In a serial study of 29 patients with AON, 21 were followed up for a period of 1 year. The 

mean area of the diseased optic nerves at baseline was 20.1% higher compared with 

clinically unaffected contralateral nerves and controls. This declined over a year to being 

11.7% lower than unaffected contralateral and control nerves (Fig 2.2c). This 

demonstrates the initial swelling of the nerve is followed by atrophy later. Baseline area 

of the affected nerve was associated with log MAR visual acuity and visual field mean 

deviation at baseline, but the one year mean area did not correlate with visual outcome. 

This recovery of function despite structural loss may reflect that the loss of tissue was 

small and that a more substantial loss of tissue is required to be clinically significant. 

Functional recovery could have also been aided by cortical adaptation.(229)  

 

Trip et al studied the effect of optic nerve atrophy on a group of patients who had 

incomplete recovery from a previous unilateral ON [103]. Optic nerve area was found to 

be reduced by 30% compared to that of controls. This study included OCT to measure 

thinning of RNFL and loss of macular volume, both of which correlated significantly 

with optic nerve atrophy. In this group of patients, visual acuity and visual field mean 

deviation also correlated with optic nerve atrophy. Reduction of whole field VEP 

amplitude, which probably reflects axonal loss, correlated significantly with optic nerve 

atrophy, but VEP latency did not. These suggest that optic nerve atrophy on MRI reflects 

axonal loss.(230)                            
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Fig 2.2: T2W image showing increased signal from the left optic nerve (a) 
and T1W image showing contrast enhancement (b) following acute optic 
neuritis followed later by optic nerve atrophy seen in fFLAIR sequence(c). 
                            a)                                                                    b) 

            

                                                              c) 
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Magnetization Transfer Imaging (MTI):  

Apart from mobile protons, there is another pool of protons in tissues, which are bound to 

macromolecules such as proteins and lipid membranes (myelin and axonal membranes). 

Selectively saturating these bound protons, which are in rapid exchange with the free 

protons, interferes with the normally occurring transfer of magnetisation. The magnitude 

of this effect is called magnetisation transfer ratio (MTR) and this indirectly measures the 

amount of macromolecular structure (such as myelin) present in the tissue.(231) MTR is 

greater in white matter than grey matter and is reduced in MS lesions.(232-234) 

 

Thorpe et al measured MTR in a single 3 mm section within the optic nerve of 20 

patients with ON. The mean MTR was significantly reduced (42 pu) in affected nerves 

compared with clinically unaffected nerves (48 pu) and control nerves (49 pu). There was 

no correlation of MTR with visual acuity in this study, but there was negative correlation 

with VEP latency suggesting that MTR reduction might be, at least in part, an indicator of 

myelin loss.(235) Inglese et al showed there was a significant reduction in mean MTR 

values for the affected nerves in a subgroup of patients with poorer visual outcome, 

compared to a group with good recovery. The MTR values correlated with acuity but not 

with VEP latency. This may have been because in this study increase in VEP latency was 

also present in a substantial proportion of affected nerves with good recovery and 

clinically unaffected nerves whereas MTR in these groups were not significantly reduced 

in comparison with healthy controls, suggesting that MTR may not be entirely specific 

for myelin.(228)  
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Hickman et al used a 3D GE sequence to measure optic nerve MTR in AON patients 

serially for one year. The mean MTR value for the affected nerves during the acute phase 

was 47.3 pu, compared with 47.9 pu for healthy contralateral nerves. The mean MTR of 

the affected nerves reduced over 8 months (240 days) to reach a minimum value of 44.2 

pu and then started to increase slowly to 45.1 pu at 12 months. This slower reduction of 

the MTR in comparison with studies of acute MS brain lesions could have been due to 

slower clearance of the myelin debris from the optic nerve lesion. A slow but 

insignificant increasing trend of the MTR value after reaching the nadir was possibly due 

to remyelination. This study further supports MTR as an indicator of myelination in 

showing that there was a significant inverse correlation between time-linked MTR and 

VEP latency measures.(236)  

 

Trip et al acquired magnetization transfer images on a cohort of 25 patients with 

incomplete recovery following ON. The mean MTR of the whole nerve on the affected 

side and the mean MTR of the visible lesion were significantly reduced in comparison to 

the unaffected nerves and control nerves. The mean MTR of the clinically unaffected 

nerves in patients was also reduced compared to controls, suggesting subclinical 

abnormality in these patients. The mean MTR of the affected nerve correlated 

significantly with central field VEP latency, and the correlation improved with 

consideration of the lesion MTR rather than the whole nerve. In this study the MTR also 

correlated with the axonal loss quantified by thinning of the RNFL suggesting that MTR 

is also reduced due to axonal loss. The relative contributions of demyelination and axonal 

loss to reduction in MTR was not clear from this study.(237)   

Klistorner et al examined cross-sectionally 23 patients, who had unilateral acute optic 

neuritis atleast 6months before and measured MTR, RNFL and performed multifocal 
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VEP.  The average MTR of the affected eye was significantly reduced in comparison to 

the fellow unaffected eye and the healthy volunteer control eyes. MTR of the affected eye 

correlated significantly with measures of axonal loss (RNFL thinning and mfVEP 

amplitude reduction) independent of the level of demyelination. The authors concluded 

that the reduction of optic nerve MTR after an episode of ON has a strong association 

with degree of axonal damage, but not with demyelination.(238) 

Wang et al performed a 3T coronal 2D gradient echo MTR study longitudinally in 37 

acute optic neuritis patients and 11 controls. Patients were scanned at 2 weeks, 1, 3, 6 and 

12 months from the time of acute optic neuritis. Patients also underwent multifocal VEP, 

tdOCT, log MAR high and low contrast visual acuity assessments. The affected optic 

nerve MTR was significantly reduced compared to controls and unaffected nerves at 

3months and further reduced at 6months and stabilised between 6 and 12 months. MTR 

reductions at 3 months correlated with low contrast and high contrast acuities reduction at 

6 months and RNFL thinning and high contrast acuity reduction at 12 months. The 

authors concluded that these findings suggest that the MTR change early after AON is 

predictive of axonal degeneration and visual disability outcomes. Multifocal VEP 

amplitude reduction at 12 months for the subgroup of patients with more axonal loss 

showed a trend of correlation with the MTR reduction but was not significant. (239) 

Pathophysiological basis of MTR reduction is not completely clear. Both demyelination 

and axonal loss seem to contribute to the reduction in MTR. Further longer longitudinal 

studies of optic nerve MTR may help in clarifying this issue further.  

 

Diffusion Tensor Imaging (DTI):  

Diffusion weighted imaging (DWI) is a technique sensitive to tissue microstructure 

because of the diffusion properties of water molecules in the tissues. In white matter, 
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which is composed of packed nerve fibres, the diffusion mechanism is facilitated along 

the fibre tracts, while it is slower in the direction perpendicular to the main axis of the 

tract. This restriction and/or hindrance to the diffusion process is disturbed when there is 

a pathological process like demyelination causing increased diffusivity in the tissues; it 

also causes a disruption of the normal directional selectivity (anisotropy) of the fibres in 

allowing diffusion. 

 

As DWI is sensitive to molecular motion, it is also sensitive to macroscopic motion, 

hence it can be difficult to perform in the optic nerve because of its mobility.(240) 

Iwasawa et al measured the apparent diffusion coefficient (ADC) in patients with ON and 

found that ADC was increased in chronic ON but not in acute ON. This could have been 

due to restricted diffusion caused by infiltration of inflammatory cells during the acute 

phase.(241) A fat and CSF suppressed zonal oblique multi-slice echo planar imaging 

(ZOOM-EPI) technique was developed to acquire DWI of the optic nerve with better 

resolution, decreased artefacts and better delineation of the nerve.(242) Hickman et al 

used this technique on 18 patients who had ON a year previously and found that the mean 

ADC for diseased optic nerves was significantly higher than unaffected contralateral and 

control optic nerves. ADC was correlated with visual function, VEP whole and central 

field amplitude and latency. ADC values also correlated modestly with lesion length but 

not with optic nerve area. The scan acquisition time was 28 minutes. The ADC obtained 

in this study were only along three orthogonal directions and to calculate anisotropy 

indices which are rotationally invariant, such as fractional anisotropy (FA), a minimum of 

six non-collinear diffusion sensitizing directions must be acquired to sample the diffusion 

tensor (DT).(243)  
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Trip et al applied DTI measurements to a cohort with incomplete recovery following ON. 

Mean diffusivity (MD) was significantly increased and fractional anisotropy (FA) was 

significantly reduced in affected nerves compared to unaffected contralateral and healthy 

control nerves. This probably reflects axonal loss although demyelination and gliosis 

could have also contributed. There was no association with any of the visual functions. 

Increase in MD and decrease in FA also correlated significantly with decrease in VEP 

amplitude, which probably reflects axonal loss in this cohort. This further suggests that 

diffusion measurements are more indicative of axonal integrity.(244)   

Kolbe et al measured ON DTI on 16 unilateral optic neuritis patients at a mean of 4 years 

after the clinical episode. Reduction of FA of the affected nerves and optic nerve atrophy 

independently correlated significantly with multi focal VEP amplitude reduction but not 

with prolongation of latency.  FA reduction was associated with amplitude reduction 

more in the periphery compared to atrophy, which was associated with amplitude 

reduction in the central visual field.(245) 

Animal studies has demonstrated that axial and radial diffusivities correlate with axon 

and myelin pathologies respectively.(246;247) Naismith et al measured DTI parameters 

and visual function in 12 patients with isolated acute optic neuritis at baseline and visual 

function at 1 and 3 months to find if any of the diffusion parameters at baseline help 

predict visual outcome.  Axial diffusivity at baseline correlated significantly with visual 

function measured by Snellen’s  chart  visual  acuity  and  Sloan’s 5% low contrast acuity at 

1 and 3 months. This suggests that reduction of axial diffusivity which occurs acutely 

may help predict clinical outcome.(248) Further study by the same group on 25 patients 

with acute isolated optic neuritis demonstrated that AD at baseline correlated with visual 

acuity, contrast sensitivity, VEP amplitude and latency and RNFL thickness at 

6months.(249) Increased radial diffusivity (RD) was associated with poorer visual 
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outcome in a group with remote optic neuritis at least 6 months previously. RD correlated 

with visual acuity, contrast sensitivity, VEP latency, amplitude and OCT findings.(250) A 

future challenge is to develop DTI methods that image the entire optic nerve with high 

resolution and within an acceptable scan time.   

 

2.9   Optic Radiation MRI: 

  
Although any MRI technique can be used to study the optic radiations, diffusion-based 

tractography is particularly suitable for assessing the integrity of this white matter tract.  

 

 

Diffusion Tensor Imaging: 

Tractography is a recently developed analysis technique that allows inferences to be 

made   about   connectivity   between   adjacent   voxels   based   on   the   tissue’s  DT   properties,  

and therefore anatomical tracts such as the optic radiations can be reconstructed. (Fig 2.3) 

Quantitative measures reflecting the overall connectivity and integrity of the tract may 

then be derived, such as voxel scale connectivity (VSC) values, mean FA and MD. 

Whilst DTI has been applied extensively to other tracts in MS, such as the corpus 

callosum and pyramidal tract, there are only few studies to have applied DTI to optic 

radiations in MS and ON.(251;252) 

 

Roosendaal et al applied DTI and used tract based spatial statistics(253) on 30 MS 

patients with low lesion loads and found that fractional anisotropy was reduced in 12 

regions in the brain including the optic radiations in comparison with healthy controls. 

Radial diffusivities were significantly increased in patients compared to controls whereas 
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axial diffusivities were not.(252)   Ciccarelli et al(251) used fast marching 

tractography(254) in patients 1 year after a clinically isolated attack of optic neuritis. 

They found the posterior part of the radiations to be located more infero-laterally than in 

controls. In addition, VSC values were reduced in patients. The authors hypothesized that 

the VSC changes might reflect trans-synaptic degeneration, reported in pathological 

studies(125) and showed that they were not correlated with incidental lesions in the optic 

radiations, which are well recognized in ON.(116) It was suggested that the altered 

location of the radiations might be related to cortical reorganization, a phenomenon that 

has been suggested in several other studies of optic neuritis patients using functional 

MRI.(255-257) A structure-function relationship between optic radiation FA and 

functional MRI data has been reported in healthy controls, suggesting that occipital 

functional responses are constrained by the subserving optic radiations. (258) 

Reich et al investigated the relationship between OR DTI and RNFL as well as visual 

function in a cohort of MS patients. In this study, it was found that all OR DTI 

parameters (both lesions and NAWM within the OR) were significantly abnormal than 

controls. There was a significant but moderate correlation between RNFL and OR 

fractional anisotropy and radial diffusivity independent of MRI abnormalities in the non-

visual pathway, suggesting a possibility of trans-synaptic anterograde or retrograde 

changes. Low contrast acuity was associated with low FA and higher radial diffusivity in 

the OR NAWM and OR lesion fraction independent of RNFL thickness suggesting that 

visual dysfunction in MS may also be contributed by posterior visual pathway 

damage.(259)                                                  
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Fig 2.3: Probabilistic tracking of the optic radiations using DTI 
tractography 
Figure 1 
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2.10   Visual Cortex and association areas MRI: 
 

Visual cortex MTR 

Abnormalities in MTR have been found in normal appearing cortical grey matter (GM) 

and white matter (WM) in MS.(260-264) The relationship between MS lesions in white 

matter tracts and the specific grey matter areas of the brain they project to have been 

studied using MTI.(263) Audoin et al investigated 80 patients presenting with clinically 

isolated ON within 6 months and looked specifically for regional abnormality using a 

voxel based analysis of the grey matter MTR maps. There was a selective and significant 

reduction in GM MTR in the visual cortex bilaterally in patients compared with controls. 

This   reduction   correlated   significantly   with   the   patients’   baseline   and   3   month   visual 

acuity. These findings suggest that the specific MTR reduction in the visual cortex 

following ON may be due to a mechanism of trans-synaptic morphological changes 

occurring in the corresponding grey matter specifically due to a remote white matter tract 

lesion.(265)    

Functional MRI 

Functional MRI is a method of measuring brain activity in vivo, based on the principle of 

the blood-oxygenation level dependent (BOLD) effect.(266) This takes advantage of the 

fact that haemoglobin has a different MRI signal depending on whether it is oxygenated 

or not, and activated brain regions have greater blood flow that outweighs their greater 

oxygen requirements. (Fig 2.4) Functional MRI may be used to study brain 

reorganisation, or plasticity, which is thought to be important in minimising the impact of 

damage to the CNS in various diseases.  
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Functional MRI has been used extensively to study MS, and evidence for cortical 

plasticity has been found in the motor, cognitive and visual systems.(267)Less activation 

of visual cortex is seen in patients with both acute and previous ON than in controls, 

which probably represents reduced neuronal input due to acute pathological changes in 

the nerve such as oedema, inflammation, and later demyelination and axonal 

loss.(255;256;268-272) Higher BOLD signal in the visual cortex correlated significantly 

with  both  Snellen’s  visual  acuity  and  contrast  sensitivity  measurements.(270)  

The first evidence for reorganisation of the visual system after ON came from Werring et 

al, who reported activation in areas outside the visual cortex, normally involved in higher 

level multi-modal sensory processing.(255) The volume of extra-occipital activation was 

correlated with VEP latency, suggesting that it might be a response to persistent 

demyelination in the optic nerve. Toosy et al subsequently localised reorganisation to the 

lateral occipital complexes (LOCs) in a longitudinal study, and found that the changes 

were correlated with visual outcome, after taking structural factors into account, which 

suggested that it was a genuine adaptive phenomenon.(257) 

Since then, there have been conflicting results from studies looking at how hierarchical 

visual areas respond to ON. Some have concluded that the higher visual areas might be 

robust to disruption of input,(273) whilst others have reported that they are not.(274) In 

addition, further evidence of brain reorganisation has been found in the LOCs(273) and 

probably the lateral geniculate nucleus.(274) 

  

Jenkins et al performed structural MRI of both the anterior and posterior visual pathway 

and also visual functional MRI in a group of 28 patients presenting with acute unilateral 
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optic neuritis as a clinical isolated syndrome, within a month of symptom onset and 10 

healthy controls. Visual assessments were also performed in the same day for most of the 

patients. Severity of acute visual loss in ON was associated with measures of the extent 

of optic nerve inflammation (lesion length) and conduction block (VEP amplitude). There 

was an association between increased fMRI activity in the cuneus and better vision in the 

patients affected eye, when corrected for optic nerve inflammation and conduction block, 

suggesting a possible adaptive neuroplasticity even in the acute stage. 25 of the 28 

patients and 8 controls were studied longitudinally for a period of 12 months. Greater 

baseline fMRI responses in the LOCs (both affected and unaffected eye stimulation) were 

associated with better visual outcome at 12 months, independent of tissue damage in the 

anterior or posterior visual pathway, including neuroaxonal loss (as measured by MRI, 

VEP amplitude and OCT) and demyelination (as measured by VEP). Cuneus activation at 

baseline, which was associated with visual outcome in the acute stage, was not associated 

with the visual outcome at 12 months. This suggests that early neuroplasticity in higher 

visual areas appears to be an important determinant of recovery from ON and that 

different regions play a role in adaptive plasticity during different stages of 

injury.(275;276)      

 

However despite the heterogeneity of the patient cohorts studied and other 

methodological differences, recent studies agree that there is increasing evidence for 

compensatory brain plasticity in optic neuritis.(269;270;272;274;276) 
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Fig 2.4: Statistical parametric map demonstrating activation of the 
occipital cortex following visual stimulation in a control subject using 
fMRI  
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2.11   Applications 
 
 
Most of the assessment techniques described above are predominantly used in research 

and have a limited role in clinical practice.  

(a) Diagnosis: 

The diagnosis of ON is predominantly clinical and orbital MRI has a limited role other 

than in atypical presentations, when it is especially used to rule out compressive lesions. 

Conventional brain MRI in ON has an important role in predicting the risk of MS and in 

making the diagnosis.(277;278) VEP played a role in the diagnosis of primary 

progressive multiple sclerosis (PPMS) according  to  the  2005  revised  McDonald’s  criteria, 

(4-8 brain T2 lesions with positive VEP had the  same  diagnostic  value  as  ≥9  T2  lesions  

without positive VEP).(145)(This was one of 3 supportive laboratory criteria for PPMS, 

the other two were positive spinal cord MRI with 2 focal T2W lesions and positive 

intrathecal oligoclonal bands in CSF) VEP has been excluded from the revised diagnostic 

criteria by Swanton et al 2010. According to 2010 revision of the criteria, positive brain 

MRI requires just one or more T2W lesions in atleast 1 of periventricular, juxtacortical, 

infratentorial or spinal cord regions characteristic for MS. The other two supportive 

criterions remain the same. This revision simplifies the requirements while maintaining 

the sensitivity and specificity and allow an earlier diagnosis without the need for 

VEPs.(279-281) The changes seen on retinal imaging are not specific to MS or ON, and 

there is wide inter-individual variability, which will probably limit utility in the 

diagnostic setting. 

 

(b) Understanding pathophysiology: 
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The optic nerve MRI techniques (Table 2.1) have been used in combination with visual 

function, visual evoked potential, retinal and retrochiasmal imaging measures to probe 

pathophysiological mechanisms, particularly the temporal profile of axonal loss and 

demyelination in the anterior visual pathway, and adaptive cortical responses to tissue 

injury in the visual pathway. The different MRI techniques and VEPs provide 

complementary but not fully specific information on the relative contributions of axonal 

and myelin damage and repair. Measurements of the RNFL provide a direct estimation of 

axonal quantity, albeit at a restricted anatomical site. Taken together, these imaging and 

electrophysiological techniques have provided considerable insights into mechanisms of 

damage and repair involved in MS and associated ON (Table 2.2).   
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Table 2.1: Optic nerve imaging techniques used in various observational 
studies with references, number of patients and controls and diagnosis. 
 

S.No Techniques Reference Sequences Pts Ctrls 
(Healthy) 

Diagnosis 

1  T2W (Lesion detection) Miller et al 1988 (47) 
 
 
 
Gass et al 1996 (44) 
 
 
Jackson et al 1996 
(45) 

STIR (Short– Tau 
Inversion Recovery) 0.5 
Tesla 
 
fsFSE(fat saturated Fast 
Spin Echo) 1.5T 
 
SPIR-FLAIR 1.5T 
(Selective Partial 
Inversion Recovery-Fluid 
Attenuated Inversion 
Recovery)  

37 
 
 
 
21 
 
 
18 

ND 
 
 
 
10 
 
 
5 

ON 
 
 
 
ON 
 
 
ON 

2 Gadolinium 
leakage/enhancement 

Youl et al 1991 (56) 
 
 
Kupersmith et al 2002 
(54) 
 
 
Hickman et al 2004 
(55) 

STIR sequence followed 
by single dose Gd 
admin.; 0.5 Tesla 
 
Fat suppressed T1W post 
single dose Gd; 1.5 T 
 
Fat saturated T1W spin 
echo post triple dose (td) 
Gd; 1.5 T 

18 
 
 
107 
 
 
28 

ND 
 
 
ND 
 
 
ND 

Acute ON 
 
 
AON & MS 
 
 
Acute 
unilateral ON 
(longitudinal 
study) 

3  Atrophy Measurements Inglese et al 2002 (62) 
 
 
Hickman et al 2001 
(60) 
 
 
Hickman et al 2002 
(61) 
 
 
 
Hickman et al 2004 
(63) 
 
 
 
Trip et al 2006 (64) 

T1W spin echo images 
15 noncontiguous 3mm 
slices;  
 
sTE fFLAIR (short echo 
fast fluid attenuated 
inversion recovery) 
 
sTE fFLAIR 
 
 
 
sTE fFLAIR 
 
 
 
sTE fFLAIR 

30 
 
 
17 
 
 
10 
 
 
 
21 
 
 
 
25 

18(healthy) 
10(LHON) 
 
16 
 
 
ND 
 
 
 
32 
 
 
 
15 

MS with ON 
 
 
Previous 
unilateral ON 
 
Previous ON 
and MS; 
(Serial study 
for 1 year) 
 
First episode 
unilateral 
AON (serial 
study) 
 
Previous ON 
with poor 
recovery 
 

4 Magnetisation Transfer 
Imaging 

Thorpe et al 1995 (69) 
 
 
 
Inglese et al 2002 (62) 
 
 
Hickman et al 2004 
(70) 

2D Gradient Echo (GE) 
sequence with & without 
off resonance pulse  
 
2D GE with & without 
off resonance pulse 
 
3D GE with & without 
off resonance pre-pulse 

20 
 
 
 
30 
 
 
21 
 

6 
 
 
 
18(healthy) 
10(LHON) 
 
27 
 

ON 
 
 
 
MS with ON 
 
 
First episode 
unilateral 
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Trip et al 2007 (71) 
 
 
Klistorner et al 2011 
(153) 
 
Wang et al 2012 (296) 

 
 
3D GE with & without 
off resonance pre-pulse 
 
3T 2D GE 
 
3T 2D GE 

 
 
 
25 
 
23 
 
37 

 
 
 
15 
 
10 
 
11 

AON (serial 
study) 
 
Previous ON 
with poor 
recovery 
 
Previous ON  
 
Unilateral 
AON 

5 Diffusion Weighted 
Imaging 

Iwasawa et al 1997 
(73) 
 
 
 
Hickman et al 2005 
(75) 
 
 
 
Trip et al 2007 (76) 
 
 
Kolbe et al 2009 (152) 
 
 
 
 
 
Naismith et al 2009 
(192) 
 
 
 
 
 
Naismith et al 2010 
(193) 
 
 
 
Naismith et al 2012 
(191) 

Diffusion Weighted SE 
images with diffusion 
gradients in 3 directions 
(X,Y,Z) 
 
Zonal Oblique Multislice 
Echo Planar Imaging – 
DWI (ZOOM-DWI) 
 
ZOOM-Diffusion Tensor 
Imaging (DTI) 
 
3T coronal oblique 
orthogonal fat and csf 
suppressed EPI-DTI 
sequence 
 
 
 
3T single shot spin echo 
EPI-DTI trans axial slice 
 
 
 
  
3T single shot spin echo 
EPI-DTI trans axial slice 
 
 
3T single shot spin echo 
EPI-DTI trans axial slice 
 
 

8 
 
 
 
18 
 
 
 
25 
 
 
16 
 
 
 
 
 
12  
 
28 
 
 
 
102 
nerves 
(70 
pts) 
 
31 
nerves 
(25 
pts) 

7 
 
 
 
11 
 
 
 
15 
 
 
10 
 
 
 
 
 
12 
 
12 
 
 
 
 

MS with ON 
(4 acute ON, 9 
chronic ON) 
 
Previous single 
episode ON 
 
 
Previous ON 
with poor 
recovery 
 
Previous single 
episode of 
unilateral acute 
optic neuritis 
(mean: 4 
years) 
 
AON 
 
Previous ON  
(Atleast 1 year 
previously) 
 
Remote ON, 
mean: 4years. 
(MS, CIS, 
NMO) 
 
AON 
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Table 2.2: Imaging & Evoked Potential techniques reflecting pathophysiology in 
Optic Neuritis. 
 
Clinical 
status 

Pathophysiological 
mechanism 

Imaging & Evoked Potential 
techniques that reflect 
mechanism 

Acute 
Optic 
Neuritis 
(relapse) 

Inflammation 
 
 
 
Demyelination 

Gadolinium enhancing lesion 
Optic nerve area on T1W 
FLAIR 
RNFL thickness 
 
MTR, delayed response with 
well formed waveform in VEP 

Recovery  Resolution of 
inflammation 
 
Remyelination 
 
Adaptation 

Cessation of enhancement 
 
MTR, shortening of latency in 
VEP 
 
Functional activation of lateral 
occipital cortices and possibly 
other extra-striate regions 

Persistent 
deficits 

Persistent demyelination 
 
 
Axonal loss 

Low MTR 
MD, FA 
 
optic nerve area on T1W 
FLAIR 
RNFL thickness,Macular 
volume 
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(c) Therapeutic monitoring: 

Acute ON is a good model of the acute demyelinating lesion in MS in vivo. 

Quantification of axonal damage using OCT is likely to be very useful in the evaluation 

of neuroprotective therapies. The various imaging and electrophysiological techniques 

available are sensitive to pathophysiological processes, which allows exploration of 

therapeutic strategies and mechanisms, for example neuroprotection using RNFL 

thickness, or repair using optic nerve MTR, VEP latency and functional MRI.  Proof-of-

concept trials may be possible with smaller groups of patients than required with clinical 

endpoints. Sample size estimates were calculated for RNFL thickness measurements in 

placebo controlled neuroprotection trials by Henderson et al, which indicated that the 

numbers needed to show similar treatment effect in 6 months after acute optic neuritis 

was much less than 3 months follow up and similar to those of 12 months follow up.(167) 

    An area of interest for potential neuroprotection and repair is stem cell therapeutics. 

The sentinel lesion approach (ON) was used in an exploratory trial of autologous 

mesenchymal stem cells in MS (MSCIMS); most of the visual, imaging and 

electrophysiological assessment techniques described above were used to study the 

effects that this experimental therapy has on anterior visual pathway structure and 

function and is described in subsequent chapters. (282)  

 

2.12    Future challenges: 
 
 
Optic nerve MRI using the parameters mentioned in earlier sections, presents 

methodological challenges. Future imaging the optic nerve on higher magnetic field 

scanners and using surface coils should improve resolution and signal-to-noise. 
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Development of fast acquisition methods will further help minimise movement effects to 

improve the accuracy of the measures obtained. There have been pilot studies on 3T to 

obtain reliable measurements of intraorbital optic nerve(218) and diffusion trace analysis 

of the visual pathways(217). The MSCIMS study uses a 3T scanner to obtain quantitative 

optic nerve MR measures longitudinally, which will also allow assessment of 

reproducibility and stability of these measures. MR spectroscopy of the brain has been 

very helpful in providing cell specific measures of neuronal damage and glial activation 

or proliferation(283). Further development is required to apply this technique to localised 

areas within the CNS including the visual pathways, with considerable technical 

challenges involved in applying it to the optic nerve. 

 

High   speed   OCT   using   a   “fourier   or   spectral”   detection technique is also a recent 

advancement. This technique is approximately 50 times faster and has a superior 

sensitivity compared to the standard time domain OCT. Fourier domain OCT also helps 

in reducing eye movement artefacts(284). 

In summary, imaging the afferent visual pathway provides an attractive approach when 

investigating potential experimental therapeutic strategies in MS. Further studies will 

reveal if this becomes a regular part of MS and optic neuritis treatment trials in the near 

future.   
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Chapter 3: Stem cells in MS. 
 
 

3.1   Role of Stem Cells as repair/neuroprotective therapies for MS 

3.1.1 Definitions 
 
Stem cells are defined by the property of asymmetric division; specifically the capacity to 

divide producing identical (self-renewal) and specialised cell progeny. The number of 

types  of  specialised  progeny  able  to  be  produced  defines  the  “potency”  of  a  specific  stem  

cell. Embryonic Stem (ES) Cells derived in early development (inner cell mass of the 

blastocyst) are pluripotent (able to produce progeny from all 3 germ cell layers), whereas 

those derived at later stages of development (fetal or adult stem cells) are more restricted 

in the progeny they produce to recognisable groups of related cell types eg. blood cells 

(erythrocytes, leucocytes, platelets) are progeny of haematopoietic stem cells. This 

restriction defines multipotency. Stem cells capable of producing only one type of 

specialised progeny are unipotent and  more  commonly  referred  to  as  “progenitor”  cells 

3.2   Source of Stem Cell as relevant to rationale for reparative/neuroprotective 

potential 

In humans, stem cells can be obtained at all stages in development. In the adult they are 

located in tissue specific niches. The stage of development at which they are derived, and 

for adult stem cells the specific tissue and lineage from which they are derived, defines 

the potential mechanisms of relevance to potential repair or neuroprotection.  

Exogenous repair strategies rely on the stem cell being capable of generating 

remyelinating cells and neurons. The options in this regard therefore include embryonic 
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stem (ES) Cells and adult neural stem cells (NSC). Significant practical challenges 

remain to be met in human ES work regarding reliable and measurable neuronal/glial 

differentiation in addition to challenges of safety and ethical acceptability. Issues of scale 

and directed differentiation are equally relevant to adult NSC work, however a more 

pressing difficulty is the challenge of acquiring adequate material in order to address any 

such questions. For these reasons, exogenous repair of the CNS is not currently an 

achievable objective. The recent discovery of a technique to induce pluripotency in adult 

somatic (non-stem) cells offers the future promise of an alternative source of cells 

capable of exogenous CNS repair which could avoid several of the current ethical and 

acquisition problems.(285)  

Adult non-neural stem cells are an attractive candidate for clinical translation because 

they are readily obtained, potentially autologous and therefore ethically acceptable to 

patients. The rationale for their use as repair or neuroprotective therapies is not 

necessarily dependent of their ability to generate remyelinating cells or neurons. This 

may include promotion of endogenous repair or neuroprotection. Evidence that stem cells 

exhibit properties of relevance to these aims independent of their directed differentiation 

has been increasing over recent years.(286-288) One such cell of interest is the 

Mesenchymal Stem Cell (MSC), these are introduced below and the evidence is also 

reviewed relevant to the hypothesis that they are capable of promoting endogenous repair 

and/or neuroprotective in progressive MS. 

3.3    Mesenchymal Stem Cells 
 
 
Mesenchymal Stem Cells (MSCs) can be extracted from the bone marrow and other 

embryonic mesoderm lineage tissues of humans throughout life. The physiological role of 
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MSCs is to give rise to the supportive stroma of the haematopoeitic microenvironment, 

and facilitate haematopoiesis via interactions with haematopoietic stem cells (HSCs). 

 

Mesenchymal Stem Cells exhibit properties of potential therapeutic relevance to 

application as a repair and/or neuroprotective therapy in progressive MS. 

(i) Exogenous repair through neuronal/glial differentiation 

The ability to generate CNS tissue from non-neural adult stem cells is highly contentious. 

There are no convincing reports of neuronal transdifferentiation in vivo however a 

number of groups have described in vitro transdifferentiation.(289;290) Artefacts such as 

cell fusion, poorly defined initial cell populations containing a mixture of stem and 

progenitor types, and cytotoxic cell changes are all potentially relevant factors to account 

for the observation.  

(ii) Neuroprotection / facilitation of endogenous repair through mechanisms 

independent of directed differentiation 

Immunomodulatory properties of MSCs are diverse and well established. Effects on all 

aspects of innate and adaptive immunity have been described, including effects on cell 

mediated and humoral immune mechanisms relevant in the pathogenesis of MS.(291) 

None of these properties have been tested in MSCs derived from patients with MS. 

Evidence for the production of neurotrophic factors is less well established, however 

production of BDNF and NGF has been reported. This has not yet been tested in MSCs 

derived from patients with MS. 

(iii) Pathotropism 

The ability of MSCs to migrate to the site of pathology may be crucial to their application 

in a widespread multifocal disease such as MS. There is evidence to support this 
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property, although the evidence that MSCs can penetrate an intact blood brain barrier is 

limited.(292) 

(iv) Blood-brain-barrier penetrance 

The evidence for BBB penetrance is reviewed below for the varying states of BBB 

integrity. This has implications for the treatment of MS patients who are not experiencing 

a relapse at the time of treatment (unless the BBB is breached by the chosen delivery 

method or additional intervention). 

 Intact 

The evidence that MSCs can then penetrate the intact BBB is limited. In 

rodent models MSCs have been observed in low numbers within the CNS 

compartment of controls.(293) Specific large animal experiments designed 

to address this question cannot be interpreted in the context of BBB 

compromise due to pre-treatment whole body irradiation.(294) 

 Active CNS inflammation 

In EAE models, MSCs are observed in low numbers sub-pially but not 

within the CNS parenchyma.(286) 

 Between attacks of MS 

The BBB is known to be dysfunctional between attacks of MS and in the 

progressive phase.(295) However, it is not known if this is permissive to 

MSC traffic.  

 (v) Engraftment  

In order for therapeutic effects to be sustained, MSC transplants must engraft into host 

tissue and persist. Proof of principle was established by Liechty transplanting adult 

human MSCs into a sheep embryo with intra-peritoneal delivery.(296) Widespread 

mesodermal tissue engraftment with relevant differentiation and functional integration 
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was observed. Engraftment without differentiation was seen in tissues from all 3 germ 

cell layers, with MSCs detected sub-pially in the CNS but not within the parenchyma. 

 

(vi) Evidence of effect on functional outcomes in MS Models (proof of principle) 

There has been some evidence of functional improvement in EAE mice with 

intravenously administered MSCs.(297) 

 

(vii) Evidence of effect in human autoimmune disease and MS 

The first report of human MSC therapy was published in 1995. More than 150 patients 

have been treated for a diverse group of clinical conditions. Proof in principle of 

therapeutic efficacy in human autoimmune disease was demonstrated by case reports in 

Grade IV graft-versus-host disease – a prototypic T cell mediated autoimmune 

condition.(291;297-299)  (Table: 3.2) 

Three reports (Table: 3.1) have been published of MSCs being administered to patients 

with MS. Mohyeddin et al. report a phase I open-label study to address the feasibility and 

safety of administering autologous MSCs intrathecally to patients with progressive 

MS.(300) Ten patients were treated in this study (eight with SPMS, two with PPMS; aged 

22 – 40) with a mean of 8.73 x 106cells/patient (range 2.5 x 106 to 18.0 x 106; one patient 

receiving two injections). Mean follow up was nineteen months. Iatrogenic meningitis 

was seen in two patients, and headache in nine. Global disability measured by expanded 

disability status scale (EDSS) was unchanged in four patients, worsened in five patients, 

and improved in one. No significant change was seen on MRI outcome measures. 

 

Yamout et al. report a phase I open-label study to address the feasibility and safety of 

administering autologous MSCs intrathecally to patients with progressive MS. Seven 
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patients were treated in this study (all with SPMS, aged 34 – 56) with a range of 32 x 106 

to 100 x 106cells per patient. Three further patients were not treated due to failure of 

MSC expansion. Follow up was for twelve months. Transient encephalopathy with 

seizures was seen in the patient receiving the highest dose of MSCs. Global disability 

measured by expanded disability status scale (EDSS) was unchanged in one patient, 

worsened in one, and improved in five. No significant change was seen on MRI outcome 

measures. Visual function including low contrast acuity was assessed and was found to 

be improved in 3 out of the 4 patients who had 12 month follow up. Foveal thickness was 

measured using time domain OCT showed no change from baseline. (301) 

 

Karussis et al. report a phase I open-label study to address the feasibility and safety of 

administering autologous MSCs intrathecally ± intravenously to patients with MS not 

responding to conventional disease modifying therapy. Fifteen patients were treated in 

this study (MS course not reported, aged 25 – 65) with a mean of 63.2 x 106cells per 

patient for intrathecal injection (fifteen patients) and 24.5 x 106cells per patient for 

intravenous infusion (five patients). Follow up was for six months. Fever and headache 

were seen in ten patients and aseptic meningitis in one. Global disability measured by 

expanded disability status scale (EDSS) showed no change in 4/15 patients and slight 

improvements in 11/15 patients at 6 months compared to baseline. There was no change 

in MRI outcome measures.(302) 
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            Table 3.1: Published studies using mesenchymal stem cells in multiple sclerosis 
 

 

 

 

 

 

REFERENCE  DESCRIPTION 
   
(Mohyeddin Bonab et al. 
2007) 

 Ten patients with RRMS were administered autologous MSCs intrathecally, and followed for a mean of 19 
months by clinical and imaging assessment. No significant changes were seen in clinical or imaging 
outcomes. 

(Yamout et al. 2010)  Ten patients with SPMS were administered autologous MSCs intrathecally, and followed for 12 months by 
clinical and imaging assessment. Clinical assessment suggested possible improvement but no significant 
change was seen on imaging outcomes. 

(Karussis et al. 2010)  Fifteen patients with MS were administered autologous MSCs both intrathecally and intravenously, and 
followed for 6 months by clinical and imaging assessments. No significant adverse events, or changes on 
clinical or imaging outcomes were seen. 

(Mohyeddin Bonab et al. 
2012) 

 Twenty-five progressive MS patients were administered autologous MSCs intrathecally, and followed up for 
12 months by clinical and imaging assessment. No significant adverse events, with possible stabilisation on 
clinical and imaging outcomes were seen.  
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Table 3.2: Trials & case-reports of intravenous MSC therapy in man 
Year of 

Publication Reference MSC 
Source 

Underlying disease Number 
treated 

1995 Bone Marrow 
Transplantation 16: 557-64 Autologous Haematological 

malignancy 15 

 
2000 

Journal of Clinical Oncology 
18: 307-316 Autologous Breast Cancer (Stage 

IV) 28 

2002 
Proceedings of the National 
Academy of Science USA 
99: 8932-7 

Allogemeic OsteogenesisImperfect
a 6 

2002 Bone Marrow 
Transplantation 30: 215-22 Allogeneic 

Hurlers syndrome (5), 
Metachromicleucodystr
ophy (6) 

11 

2002 
 

British Journal of 
Haematology118: 1128-31 Allogeneic Acute myeloid 

leukaemia 1 

2003 Leukaemia17; 474-6 Allogeneic Aplastic anaemia 1 

2004 Lancet 363: 1439-41 Allogeneic Graft versus host 
disease 1 

2005 Annals of Neurology 57: 
874-82 Autologous Ischaemic stroke 5 

2005 
Biology of Blood and 
Marrow Transplantation 11: 
389-98 

Allogeneic Haematological 
malignancy 46 

2005 Transplantation 79: 1607-14 Allogeneic OsteogenesisImperfect
a 1 

2006 
 

Stem Cells and 
Development 15: 349-57 Autologous Healthy volunteers 12 

2006 Transplantation 81: 1390-7 Allogeneic Graft versus host 
disease 12 

2007 Leukaemia21: 568-70 Allogeneic Primary haematopoietic 
stem cell graft failure 1 

2007 Leukaemia. 21:2271-6 Allogeneic 

Haemorrhagic cystitis 
(7), Pneumo-
mediastinum (2), 
Colonic perforation (1) 

10 

2007 Leukaemia 21: 1733-8 Allogeneic 
Adjunct to 
haematopoietic stem 
cell graft 

7 

2008 
ClinPharmacolTher.83:723-
30.  Autologous Multi-system atrophy 11 

2009 
J Am CollCardiol.54:2277-
86. Allogeneic Acute myocardial 

infarction 53 

2010 Stem Cells. 28:1099-106. Autologous Ischaemic stroke 16 

2010 Biol Blood Marrow 
Transplant. 16:1293-301. Allogeneic Graft versus host 

disease (paediatric) 11 

2010 Ann Intern Med. 153:650-4. Allogeneic Systemic sclerosis 1 

2011 Nucl Med Biol. 38:961-7. Autologous Liver cirrhosis 4 

2011 Brain.134:1790-807. Autologous Ischaemic stroke 12 

2012 Ann Neurology.72(1):32-40 Autologous Multi-system atrophy  14 

2013 Cytotherapy. 15(2): 185-91 Umbilical 
cord Spinal cord injury 22 
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Chapter 4: An exploratory trial of Mesenchymal Stem 

Cells In Multiple Sclerosis (MSCIMS). 

4.1 Study design: 

4.1.1 Introduction 
 
 A phase I/IIA trial of adult autologous mesenchymal stem cells as a potential 

neuroprotective/repair therapy for Multiple Sclerosis (The Mesenchymal Stem Cells in 

Multiple Sclerosis [MSCIMS] Trial) was designed as an eighteen-month pre vs post 

treatment (single intervention of autologous bone marrow derived mesenchymal stem 

cells) comparison study in a small group of 10 patients. An approach based on detailed 

assessment of participants with disease involving the anterior visual pathways was chosen. 

The MSCIMS trial was conducted in the context of a wider need to develop therapies, 

which prevent progression, and/or repair existing fixed disability in MS.  

4.1.2    Trial objective and purpose 
 

Trial aim: 

To establish the methodology, infrastructure and protocols for phase IIB/III trials of cell 

based and other repair therapies in multiple sclerosis. 

Primary objective: 

To describe the safety profile over six months of intravenously administered autologous 

MSCs at a dose of 1 - 2 x 106 cells / kg in patients with multiple sclerosis. 

Secondary objectives: 

To explore the potential efficacy over six months of intravenously administered 

autologous MSCs at a dose of 1 - 2 x 106 cells / kg by clinical, neurophysiological and 

imaging assessments in patients with multiple sclerosis. 
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4.1.3 Trial components 
The trial was conducted in five parts. These are described below. All patients recruited 

followed this path. 

  - Referral to trial clinic.    

  - Review of trial eligibility at first visit.  

  - Pre-treatment assessment phase (12 months). 

  - Treatment (single administration). 

  - Post treatment assessment phase (6 months). 

4.1.4    Patient selection 
 
MSCIMS Eligibility Criteria 
 

 Clinically definite multiple sclerosis 

 Age 18 – 65 inclusive 

 Expanded Kurtzke Disability Status Score 2.0 – 6.5 inclusive 

 Clinical evidence of optic nerve involvement 

 Abnormal visual evoked potential from either eye or both eyes suggestive of 

demyelination 

 Retinal nerve fibre layer not less than 45 microns on optical coherence 

tomography in either eye. 

 Lesion seen on T2W MRI of optic nerve 

 Capacity to give own consent 

 No serious underlying bleeding disorder 

 Women – Not pregnant at entry, not planning pregnancy during trial.  
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 Men – Not planning to father a child for 6 months after treatment. 

 Not on Beta interferon or Glatiramer acetate within 6 months of trial entry, and 

not previously on other disease modifying therapies at any point. 

4.1.5   Rationale for MSCIMS eligibility criteria: 
 
As an experimental therapy, it was appropriate to consider patients who had established 

disease with a poor prognosis and few or no established treatment options.  

This defines: 

 Clinically definite MS                                                                                            

(not CIS meeting MacDonald criteria) 

 Established disease progression (fixed disability present)                                 

The degree of fixed disability at which it is ethically acceptable to invite 

patients to participate in an experimental (cellular) therapy trial is a question 

of judgement. Theoretical long-term risks of neoplasia and infection are 

unquantified. 

There is therefore a tension between the drive to limit the exposure of 

treatment associated risk to those patients with severe disability and a 

competing drive to treat patients in the early phase of progression based on 

the likelihood of efficacy from the pre-clinical work.  

A lower Expanded Kurtzke Disability Status Score (EDSS of 2) limit was 

specified to ensure that recruited patients had acquired sufficient disability 

to merit experimental therapeutic approaches. 

An upper Expanded Kurtzke Disability Status Score (EDSS of 6.5) limit 

was specified to ensure that recruited patients were able to tolerate the trial 

procedures and assessments. 

 Not currently receiving disease modifying therapy 
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The number of patients receiving active therapy in a phase IIA trial of 

experimental (cellular) therapy is necessarily limited. It was therefore 

considered to be prudent to maximise the data on safety and efficacy that 

could be unequivocally be attributable to the intervention. 

4.1.6      Methods: 
Centres: Cambridge Centre for Brain Repair (BRC) and UCL Institute of Neurology 

(ION), London were the centres involved. Ethical approval for the trial protocol was 

obtained from the NRES (National Research Ethics Service) Cambridgeshire 2 REC 

(Regional Ethics Committee) at Cambridge and approval was also obtained from research 

and development department at both centres involved.  

Patient Recruitment: Referrals were invited from multiple sources in East Anglia and 

London Regions. These included MS specialist clinics, general neurology clinics, MS 

Nurse patient lists, and existing databases where available. Recruitment was done 

through a MS research clinic setup at Wellcome Clinical Research Facility at 

Addenbrooke’s  hospital  in  Cambridge.   

Patient Screening: At the initial screening clinic at Addenbrookes, a detailed history was 

obtained and a clinical examination was performed including assessment of EDSS. If the 

patients satisfied the first four eligibility criteria  (of MS, within the age and EDSS range 

and evidence of previous optic neuritis as assessed from clinical exam and history), they 

were given a detailed explanation about the trial and provided with information packs. 

Further screening tests, including visual evoked potential test at Addenbrookes and MRI 

scan and OCT at the Institute of Neurology, London, were arranged within the next two 

weeks. 14 patients were screened at Cambridge and were scanned in London. All were 

found eligible. After at least a week to consider participation and for longer when 

required, informed consent was obtained from 11 out of the 14 patients for the trial. The 3 

patients declined to participate had milder disability and relapsing remitting MS, this was 

at least partly because they still had other established treatment options to consider. One 
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out of the 11 patients who had consented withdrew consent after the first pre-treatment 

assessment visit due to a change of mind. The remaining 10 Patients progressed through 

the trial. (Fig: 4.1) 
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Figure 4.1: Recruitment and retention of trial participants 
 

 

 

Patient Assessments: The 10 trial patients underwent 5 visits each to Cambridge (EDSS, 

MSFC, ACE-R, BDI-II, MSIS, VEP) and London (MRI, OCT and visual function), over 

a period of 12-15 months with a visit each to the two centres in 3-month intervals.  

Isolation, expansion, characterization and administration of MSCs: 

During the first 3 months all 10 patients also underwent bone marrow aspiration 

performed by Dr.   Charles   Crawley   (Dept.   of   Haematology,   Addenbrooke’s   Hospital,  

Cambridge, UK) as a day-case procedure using standard aseptic methods. MSCs were 

successfully isolated and cultured to the target dose from all bone marrow aspirates 

(mean total cultured dose 2·0 x106 cells / kg; range 1·1 to 3·7 x106 cells / kg). Mean 
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culture duration was 24 days (min–max range 20–30). Clinical-grade MSC preparations 

were generated under Good Manufacturing Practice conditions by Dr. Mike Scott (Blood 

&  Marrow   Transplant   Unit,   Addenbrooke’s   Hospital,   Cambridge,   UK),   using   standard  

operating procedures based on those previously described.(298) Briefly, bone-marrow 

mononuclear cells were separated by density gradient centrifugation in Ficoll-PaqueTM 

PREMIUM (GE Healthcare UK Ltd, UK). Washed cells were re-suspended in 

PBS/EDTA (MiltenyiBiotec Ltd, UK) and cultured in Dulbecco's modified Eagle's 

medium–low glucose (Invitrogen, UK) supplemented with 10% foetal bovine serum 

(Hyclone, Perbio Science, UK) and plated at a density of 1 x 108 cells per cell-factory 

(Nunc, Thermo Scientific, UK). Near confluent cultures (>80%), were treated with 

0·25% trypsin-EDTA (Invitrogen, UK) and re-plated at 3·5 x 106 cells per cell factory. 

MSCs were harvested and cryopreserved in 4·5% human albumin solution (BPL, UK) 

with dimethyl sulphoxide (Origen Biomedical Inc.) at a final concentration of 10%. 

MSCs were then characterised in accordance with International Society for Cellular 

Therapy (ISCT) minimal criteria for definition.(303). Briefly, this included evidence of 

tri-lineage differentiation potential (adipocyte, chondrocyte, osteocyte) and flow 

cytometry assessment confirming expression of CD73, CD90, and CD105 surface 

molecules (>95%) and absence of CD34, CD45, CD14, and CD3 (<2%). Release criteria 

for clinical use included absence of contamination by pathogens (as documented by 

aerobic and anaerobic cultures, and mycoplasma testing), and lack of any genomic copy 

number changes by 1Mb resolution BAC array comparative genomic hybridization 

(aCGH) as previously described.(304) This was performed by Dr. Shi-Lu Luan & 

Professor Ming-Quing Du (Dept. of Pathology, University of Cambridge). 

 

Administration of MSCs was performed as a day-case procedure following pre-

medication with chlorpheniramine 10 mg, hydrocortisone 100 mg, and metoclopramide 

10  mg.  Cryopreserved  MSCs  were   thawed   (≤  4  minutes)  and   immediately   infused  over  
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15 minutes through a peripheral venous cannula. Administration of cell suspensions was 

followed by infusion of normal saline (500 ml) over 4 hours.  

Controls: 8 Healthy volunteers were also recruited to undergo MRI and OCT 

assessments   only,   three   times   over   the   same   period   as   patients’   five   assessments   to  

provide normal control measures to compare with patients, and to adjust for normal 

variation of imaging measures over time.  
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      4.2  Outcome measures 
 Primary: 

Adverse events 
 
     

Secondary: 
 

(i) Clinical: 
 

      MS functional Composite Score 
      Expanded Disability Status Score 
      MS Impact Scale-29 
      Beck’s  Depression  Inventory 
      Addenbrooke’s  Cognitive  Examination - Revised 

  
(ii) Neuro-opthalmological: 
 

          Visual function (acuity and colour) 
          Visual fields 

       VEP latency 
    

(iii) MRI Optic Nerve and Brain: 
 
Optic Atrophy 
Optic Nerve MTR 
Fractional anisotropy and diffusivity parameters in the optic nerve 
Brain atrophy 
T2 Lesion volume 

     T1 Lesion volume 
     Whole brain and regional MTR 
     Brain lesion MTR 
     Functional activation 
     

(iv) Optical Coherence Tomography: 
 

      Retinal Nerve Fibre Layer thickness 
      Macular volume 
 

(v) Immunological: 
 

      Common antibody titre 
      T cell subset counts
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4.2.1    Primary: Adverse events 
 
 
As a phase I/IIA trial, MSCIMS seeks to establish the safety of the intervention and detect 

relevant outcomes to inform design of phase IIB (and beyond) efficacy trials. The MSCIMS 

trialists have completed a systematic literature review of the current clinical experience 

(Table 3.2). However, over 150 patients have undergone MSC based transplantation for other 

indications (including stroke) with no reports of significant graft related complications. 

Significantly there is no need for immunosuppression. The procedure is simple, cheap, 

potentially widely applicable and ethically acceptable to most patients. In MSCIMS, the 

autologous mesenchymal stem cells that were acquired were characterised (International 

Stem Cell Society guidelines) and safety checked (bacterial, fungal, viral cultures and 

karyotyping) pre-administration. 

Patients were screened for antibody titres to common viral infections within four weeks 

before treatment. Informed consent was obtained on the day of the infusion. Pre-infusion 

bloods were obtained on the day for full blood count, electrolytes, liver and renal function 

tests. Additional blood was also obtained and sent to immunology for T cell subsets. These 

blood tests were repeated every week for four weeks following the MSC infusion. Patients 

were also administered 100 mg of iv Hydrocortisone and 10mg of iv anti-histamine 

Pheneramine Maleate prior to the infusion as a prophylaxis against any hypersensitivity 

reactions.  

Any adverse symptoms and vital signs were recorded at baseline and every half hour 

following the infusion for four hours. Any adverse symptoms were also recorded every week 

for four weeks when they had their bloods taken. Patients were also advised to contact us in 

the interim if they had noticed any untoward symptoms. 

4.2.2     Secondary: Efficacy 
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Clinical: 

EDSS: Kurtzke’s EDSS is considered the gold standard among clinicians for the assessment 

of disability in MS patients.(21)  EDSS was assessed and functional system scores recorded 

on all patients at Addenbrookes hospital, Cambridge by the same observer for all the five 

visits. 

MSFC: Multiple Sclerosis Functional Composite: MSFC integrates scores on 25 foot timed 

walk, nine hole peg test and paced auditory serial addition test (PASAT) to measure the 

function of the lower limbs, upper limbs and cognitive abilities quantitatively to give one 

integrated score. All three components of MSFC was administered to all patients by single 

observer and a composite z score calculated for all the five visits to Cambridge. 

MSIS-29: Multiple Sclerosis Impact Scale – 29: This is a patient based scale whereby patients 

are asked 29 standard objective questions about their perceptions of the impact of MS on 

quality of life. (29;30) 

ACE:  Addenbrooke’s  Cognitive  Examination:   

Cognitive difficulties occur in MS even at an early stage.(305;306) ACE is a brief cognitive 

test battery, which has been validated for dementia, and the individual components of ACE, 

such as memory recall, verbal fluency, language and visuo-spatial abilities have been 

validated against standard neuropsychometric tests in controls.(307) ACE was administered 

to all patients by single observer at all five visits to minimize inter-observer variation. 

BDI-II:  Beck’s  Depression  Inventory  II: 

Depression is common in MS and it correlates better with the degree of stress perceived by 

the patient than the extent of lesions on MRI.(308) BDI-II is a 21 question multiple choice 

self reported inventory, administered by patients themselves in MSCIMS at 3 monthly 

intervals during clinical examination sessions to measure the changes in the mood before and 

after the treatment.  

Visual Function: 

Visual acuity: 
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(i) Normal contrast acuity: Visual acuity was tested using a retro-illuminated Bailey-Lovie 

chart at a distance of 4 m and measured using logmar scores. For patients who could not read 

any letters at 4 m, the distance was reduced to 1 m and a correction of 0.6 was added to the 

log mar value at 4 m. If unable to identify any letters correctly at a distance of 1 m, a value of 

1.70 was assigned.  

(ii) Low contrast acuity: Sloan charts are similar to Bailey-Lovie chart but consists of several 

charts with progressively lower contrasts.(309) In MSCIMS, three Sloan contrast charts 

(25%, 5% and 1.25%) were used and the assessments were performed in each eye for all 

patients. A similar log mar scoring method as described above for normal contrast acuity was 

used.  

Colour vision: 

The comprehensive Fansworth-Munsell (F-M) 100 Hue colour vision was used in MSCIMS 

to assess colour vision. In this test the subject places 85 coloured caps in the perceived order 

of hue and a square root of error score was used for data analysis. Each eye assessed 

separately. A score of 36.6 was assigned when vision was too poor to perform the test. 

Visual field: 

The threshold sensitivity of the central 30o of vision was measured using the full threshold 

central 30-2 program on a Humphrey visual field analyzer (Carl Zeiss Meditec, Dublin, CA, 

USA). The visual field mean deviation (MD), a measure of overall field loss was calculated 

by comparison with a reference field provided by the manufacturer. 

Paraclinical: 

Electrophysiology: 

Visual Evoked Potential: VEP: 

Recordings to monocular stimuli comprising of reversal of checkerboard pattern in the whole 

field and central field were taken using skin surface EEG electrodes attached over the 

occiput. All ten patients were screened for eligibility and were further assessed during the 
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other assessment points, as per the protocol, at the clinical neurophysiology department at 

Addenbrookes hospital, Cambridge. 

MRI: 

Images were acquired on a Siemens MAGNETOM 3.0T Tim Trio scanner (Siemens, 

Erlangen, Germany) at UCL Institute of Neurology, using a twelve-element receiver head 

coil. Total time of acquisition for patients during baseline MRI assessment was 

approximately 130 minutes. Breaks were given between optic nerve and brain MRI scans and 

as required. Optic nerve DTI and fMRI was done only once pre and post treatment, this 

reduced the MRI assessment time during the other three assessment periods to 75 minutes. 

Controls had 8 minutes less scanning than patients as their optic nerve PD and T2W sequence 

was not done. 

Optic nerve: 

(i) Lesion identification:  

Patients had a fat saturated turbo spin echo sequence performed with two echoes 

separately to give two different contrast images to better confirm the presence of the optic 

nerve lesion that was required for eligibility for the trial participation and also to measure 

the lesion length. (coronal, TR 2960ms, TE1 71ms,TE2 12ms, 4 averages, matrix size 512 

x 384, field of view 24 x 18 cm, in plane resolution 0.5 x 0.5 mm, 16 x 3.0 mm slices for 

each, acquisition time of 4minutes for each). A neuroradiologist (KAM) blinded to the 

clinical status, identified and measured lesion length by multiplying the number of slices 

with abnormal signal by 3 mm.  

(ii) Optic nerve area: 

The   subjects’   optic   nerves   were   scanned   using   fat   saturated   short   echo   fast   fluid  

attenuated inversion recovery (sTE fFLAIR) sequence: coronal, TR: 1830ms; TE: 13ms; 

TI: 800ms; Matrix size: 306 x 384; 22 x 18 cm field of view; 0.60 x 0.60 mm inplane 

resolution; 16 x 3 mm contiguous slices; 7 averages; acquisition time 13 minutes. The 

mean cross sectional intra-orbital optic nerve area was calculated on averaging at least 4 
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sections (mean: 4.85 sections per optic nerve for patients, range: 4 – 7, mean: 5.25 

sections per optic nerve for controls, range: 4 – 6) of the intraorbital nerve from the apex 

of the orbit forwards, which was contoured using a threshold based semi-automatic 

contouring method and manually edited as required, as previously described.(226) The 

observer  was  blinded   to   subject   identity   and  all   10  patients’   and  8   controls’  mean   intra  

orbital optic nerve area was calculated.  

(iii) Optic nerve MTR:  

The   subjects’   optic   nerves   were   scanned   using   3D   gradient   echo   sequence   with   and  

without prepulse that saturates the less mobile (bound) macromolecular proton pool. 

Sequence details: coronal 3D, TR: 36ms, TE: 3.0ms, number of averages: 4, flip angle: 

12, Matrix: 256 x 192, field of view: 19 x 14.25 cm, in plane resolution 0.7 x 0.7 mm, 

1.5mm x 60 contiguous slices, acquisition time: 16mins.(236) The observer blinded to the 

subject identity contoured the optic nerves from the chiasm to the globe on each side, 

using a semiautomatic threshold method with manual correction if required, on the image 

without the magnetization prepulse. The optic nerve maps were then transferred to the 

registered MTR maps (generated from the two images on a voxel-by-voxel basis from the 

expression: 100 x (M0 - MS)/M0 percentage units (pu) where MS and M0 represent signal 

intensities with and without saturation pulse respectively) and the MTR was calculated, 

after manual correction for any mis-registration due to movement between off and on 

sequences. Only the slices in the MTR map in which the optic nerves could be confidently 

identified  were  included  for  measurement  of  MTR.  All  10  patients’  and  8  controls’  MTR  

were measured.  

(iv) Optic nerve diffusion tensor imaging: 

The subjects optic nerves were scanned with a coronal oblique 3D, fat and fluid 

attenuated spin echo single shot echo planar sequence: TR: 6seconds, TE: 84 ms, TI: 1.2 

seconds, matrix: 128 x 64, field of view: 15cm x 7.5cm, in plane resolution: 1.17mm x 

1.17mm, 16 x 4mm contiguous slices, six diffusion directions with b = 600 s/mm2 and one 
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direction with b = 0  averaged 40 times, taking approximately 28 mins for acquisition. The 

diffusion data were then averaged to give 7 diffusion-weighted volumes (one b0 and 6 

b=600s/mm2), then the data were eddy current corrected using the FSL software library 

(http://www.fmrib.ox.ac.uk/fsl) and the DT was fitted to the eddy-corrected data using the 

Camino software package (http://www.cs.ucl.ac.uk/research/medic/camino/guide.htm). 

 

Square regions of interest (ROIs) of fixed size (2 x 2 voxels or 5.5mm2) were placed on 

the b0 averaged coronal oblique images using DispImage, and the maximum signal 

intensity and minimum standard deviation (SD) to guide the positioning of ROIs. The 

ROIs were then applied to the calculated parameter maps to determine diffusion-related 

indices. Mean diffusivities (MD), Axial and Radial diffusivities (AD and RD) and 

fractional anisotropy (FA) was calculated for all optic nerves by averaging at least 3 

contiguous slices in each optic nerve.      

 

Brain: 

(i) PD-T2: 

Axial Proton density (PD)-T2 weighted dual echo, turbo spin echo imaging was acquired 

on all subjects: Axial, TR: 3seconds; TE1 and 2: 11ms and 101ms; Matrix: 192 x 256; 

field of view: 24cm x 18cm; flip angle: 150; In plane resolution 0.9mm x 0.9mm; 48 x 

3mm   contiguous   slices   for   each   echo   to   give   96   slices   in   4minutes.   Patients’   PD-T2W 

spin echo sequence was displayed in dispimage and hyperintense lesions were contoured 

on the PD image using a semi-automated threshold based contouring method. This was 

performed on the PD image, as the contrast between the lesions and CSF is clearer 

especially for periventricular lesions. The T2W (longer TE) image was referred to for 

each lesion to confirm its presence. Once all the lesions in a patient had been contoured, 

the area of the lesions in each slice were added up and multiplied by 3 mm (slice 

thickness) to give the lesion volume. 



 114 

(ii) T1spin echo (SE): 

T1 weighted spin echo images were acquired for all subjects and the T1 hypointense 

lesions were contoured in patients: Axial, TR: 710ms, TE: 8.5ms, 2 averages, Matrix: 233 

x 256, field of view: 22cm x 22cm, in plane resolution: 0.9mm x 0.9mm, 48 x 3mm slices 

acquired in under 5 minutes. A similar approach as described above for T2 lesions was 

applied to the T1hypointense lesions in patients to measure the T1 hypointense lesion 

volume. 

(iii) Brain atrophy: 

A 3D T1 weighted Modified Driven Equilibrium Fourier Transform (MDEFT) gradient 

echo sequence(310;311) was acquired on all subjects: Sagittal acquisition; TR: 7.13ms; 

TE: 2.33ms; Matrix: 224 x 256; field of view: 256mm x 224mm; in plane resolution 

1.0mm x 1.0mm; 176 x 1mm slices acquired in 12 minutes. This high spatial resolution 

image with good tissue contrast is used to quantify brain volume and atrophy. Fully 

automated method of segmentation is used to measure atrophy (between two time points) 

known as Structural Image Evaluation using Normalisation of Atrophy (SIENA), and 

normalized brain volume is measured in a single time point with SIENA cross sectional 

(SIENAX) which makes use of brain and skull to normalize to standard space and a sub 

voxel segmentation is carried out to get tissue classification.(312) 

(iv) Brain Magnetization Transfer Ratio: 

The  subjects’  brains  were  scanned  using  3D  gradient  echo  sequence  to  acquire  two  sets  of  

images of the same volume one with and one without MT-prepulse: coronal 3D, TR: 

26ms, TE: 3.0ms, flip angle: 10, Matrix: 256 x 160, field of view: 26cm x 16.25cm, 

inplane resolution 0.7 x 0.7 mm, 1.0mm x 208 contiguous slices, acquisition time: 20mins 

in total. In the analysis, the two MT images (with and without MT pulse) and T1 

structural image (MDEFT described above) were first oriented to that of the T1SE (spin 

echo) image. Then the images were resliced and registered to PD-T2 image set.  
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The brain extraction tool (BET) was used to extract the brain from the registered T1 

structural image. The output was manually corrected if necessary using the Jim image 

analysis software, Version 5.0 (Xinapse Systems Ltd., Northants, UK, 

www.xinapse.com). MTR maps were produced, and then the T1 structural image was 

segmented into grey and white matter using SIENAX. The extracted brain was used to 

mask the MTR maps and a 75% threshold was applied to the segments to create GM and 

WM segments. These were then thresholded with 10 percentage units and then eroded 

with 1 voxel for WB (Whole Brain) and GM (Grey Matter) and 2 voxels for WM (White 

Matter). ROI (region of interest files where the lesions were marked on PD and 

T1images) files were included for patients to get histograms of WB, GM, WM, NA 

(normal appearing) GM, NAWM, T2lesions and T1hypointense lesions MTR, and for 

controls WB, WM and GM MTR histogram values (peak height, peak location and mean) 

were obtained. 

(v) Visual functional MRI (fMRI): 

Adaptive cortical plasticity may contribute to functional recovery in MS and optic 

neuritis.(255;256) Visual functional MRI measures certain aspects of this phenomenon 

and have been previously applied in MS and optic neuritis patients.(313-315) In 

MSCIMS, fMRI was performed on all subjects before treatment once and performed 

again 6 months post treatment. A total of 69 volumes of T2* weighted echo-planar images 

depicting blood oxygen level dependent (BOLD) contrast were acquired in each 5 minutes 

experiment with 52 near axial slices of the whole brain (TR: 3940ms, TE: 30ms, field of 

view: 192mm, Matrix: 64 x 64, slice thickness of 3mm) which was performed 4 times 

(total ~ 20 minutes acquisition time) with a different pattern of visual stimulation each 

time.  

The visual stimulation paradigm comprised of eight epochs, each of 16 seconds, of 

flickering checkerboard stimulation, alternated with eight epochs, each of 16 seconds, of 

grey background, presented on a projection screen. Subjects wore transparent plano 
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chromatic filter goggles, with one green and one red filter (Haag-Streit, UK). The 

checkerboard was also green and red, so that the green checkerboard was invisible 

through the red filter, and vice versa. This was to allow monocular stimulation while 

testing both eyes within the same run. To facilitate attention and fixation of a central 

cross, Subjects  were  instructed  to  fixate  a  central  ‘  +  ’,  and  asked  to  press  a  button  when  it  

changed to a  ‘  #  ’  symbol.  Each  experiment  consisted  of  4  sessions,  and  the  orientation  of  

the goggles was reversed in between, to swap the red and green filters. The analysis and 

results are further described in chapter 8.(316) 

 Optical Coherence Tomography (OCT) 

OCT is a non invasive technique, that allows quantitative cross sectional measurement of 

the retinal nerve fibre layer (RNFL) thickness.(317) RNFL is predominantly of 

unmyelinated axons of retinal ganglionic cells, hence OCT provides an in vivo method of 

measuring axonal loss following optic nerve damage in MS or optic neuritis.(157;158) 

OCT makes use of the echo time delay of back-scattered infrared light using an 

interferometer and a low coherence light source. OCT images were acquired with a 

Stratus OCT 3000 (Carl Zeiss Meditec, Dublin, CA, USA), by a single observer (MK). 

Images from the OCT device are given a signal strength by the device up to a maximum 

value of 10. Images were rejected if the signal strength value was < 7 or if the inter eye 

signal strength difference was greater than 2.  

Retinal Nerve Fibre Layer thickness: 

RNFL thickness was measured by taking three circular scans of 3.4mm diameter centred 

on the optic disc for each eye. The mean of the whole 360 degrees was used to express 

RNFL thickness (fast RNFL scanning protocol). The thickness of each quadrant of the 

RNFL was calculated by the device automatically. 

Macular volume: 
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Macular thickness maps were acquired by six linear radial scans centred on the fovea (fast 

macular thickness map scanning protocol). All subjects (10 patients and 8 controls) had 

their RNFL thickness and macular volume measured. 
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Chapter 5: MSCIMS: baseline findings. 
 

5.1 Introduction 
 
 
MSCIMS aims to primarily test safety and secondarily aims to establish the methodology 

and infrastructure for future larger studies. It is not powered to establish efficacy although 

sensitive efficacy outcome measures were employed in the trial to test for any hint of 

potential efficacy. In this chapter, the baseline characteristics and findings are described. 

5.2 Subjects: 
 
 
Patients 

All 10 patients fulfilled revised McDonald criteria for the diagnosis of MS(318) and were 

classified as secondary progressive MS according to Lublin and Reingold criteria(319). 

There were 7 males and 3 females, mean age: 48.5 (40-54); their demographic and 

clinical characteristics are provided in table 5.1. 
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Table 5.1:  Patient characteristics at baseline. 
 
 

 Age 
(yrs) 

Gender MS 
subtype 

EDSS Disease 
duration 

ON 
Side 
affected 

ON 
duration 
(years) 

Pt01 44 M SP 6.5 19 yrs R 19 
Pt02 51 M SP 6 26 yrs Both L-26, R-9 
Pt03 40 F SP 6.5 9 yrs Both L-6, R-7 
Pt04 48 M SP 6 14 yrs L 5  
Pt05 48 M SP 6.5 11 yrs Both R-11, L-10 
Pt06 52 M SP 6 18 yrs R 15 
Pt07 54 F SP 6.5 8 yrs L 7 
Pt08 41 M SP 5.5 6 yrs Both R-7, L-6 
Pt09 46 F SP 6.5 11 yrs Both R-7, L-6 
Pt10 50 M SP 6.5 6 yrs Both R-6, L-5 
 

All ten participants had secondary progressive MS, with clinical and electrophysiological 

evidence of optic nerve involvement.  Nine patients had history of clinical optic neuritis 

and   one   of   Uhthoff’s   phenomenon,   occurring   between   two   and   twenty-six years before 

recruitment. Two patients described a single clinical relapse event in the pre-treatment 

phase, neither of which involved the anterior visual pathway. One patient had been 

previously treated with disease modifying therapy (beta-interferon for one year, with 

treatment discontinued due to disease progression two years before recruitment). 

 Mean EDSS of the patients was 6.25 (5.5 – 6.5). Disease duration of patients as calculated 

from the time of diagnosis ranged between 6 years and 26 years. 6 out of ten patients had 

optic neuritis clinically in both the eyes; the remaining four had one clinically affected eye. 

The total number of clinically affected eyes was 16 and of unaffected eyes was 4. Six 

(Three patients with bilateral and 3 with unilateral involvement; 9 affected eyes and 3 

unaffected eyes) out of 10 patients had experienced almost complete recovery of their 

vision scoring close to 0.0 in log MAR normal contrast acuity (100%) chart which is 

equivalent  to  6/6  vision  in  Snellen’s  chart.  Four patients out of ten had incomplete visual 

recovery. Six out of the eight eyes in this cohort had incomplete recovery. Ten eyes out of 
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16 affected had recovered almost completely. The Log MAR score ranged between 0.20 to 

0.66 in the eyes with incomplete recovery.  

Controls: 

Eight age and sex matched controls (Six males and 2 females, mean age: 43, range: 30 – 

55), who were healthy volunteers with no pre-existing history of neurological and 

ophthalmological problems were recruited. They underwent 3 MRI and OCT assessments, 

over the same period of 12 months as patients, to serve as control results to adjust for inter 

assessment session variability for the MRI and OCT measurements.  

5.3 Results 
 
 
Visual assessments were done on all 10 patients and the results are summarized in table 

5.2, along with other clinical  and electrophysiological measures. Log MAR visual acuity 

and low contrast acuities with Sloan charts were assessed monocularly. For 5 eyes in 3 

patients, a recording was not possible for the 1.25% contrast chart due to the subject being 

unable to identify any letter correctly even at the distance of 1 metre; these eyes were 

assigned a standard value of 1.7. Log MAR acuity mean for patients at baseline was 0.138, 

SD: 0.183; 25% contrast chart, mean: 0.279, SD: 0.230; 5% chart, mean: 0.617, SD: 0.299; 

1.25% chart, mean: 1.014, SD: 0.420; FM 100 hue colour vision mean: 15.28, SD: 4.0; 

Mean deviation for Humphreys automated perimetry was -3.59dB, SD: 1.989. Visual 

evoked potentials were measured for all 10 patients and an abnormal latency was found in 

one of the eyes for all 10 patients. There was no recordable waveform for both central and 

full field measurement for one of the eyes. Central field latency was not measurable in a 

further 4 eyes. Mean VER full field latency for the 19 eyes measured was 129.52 with SD: 

16.50; Mean VER full field amplitude for the 19 eyes was 4.689 with SD: 1.975; Mean full 

field latency for the affected 15 eyes was 133.2 with SD: 16.41, amplitude was 4.473 with 

SD: 2.033; Unaffected eyes mean full field latency was 115.75 with SD: 7.5 and amplitude 
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was 5.5 with SD: 1.732. There was a significant difference between affected and 

unaffected eyes with p value of 0.0288. 
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Table 5.2: Clinical outcomes at baseline 
 
 

  Number Mean SD Range 

Age (yrs) 10 48.5 4.22 (40 – 54) 

EDSS 10 6.25 0.35 (5.5 – 6.5) 

MSFC z score 10 -0.457 1.678 (-4.963 – 0.821) 

ACE (%) 10 93.5 6.24 (79 – 100) 
BDI-II  10 7.4 9.48 (0 – 25) 

MSIS-29 10 76.4 16.48 (51 – 102) 

Log MAR 
acuity 

20 0.138 0.183 (-0.14 – 0.66) 

Sloan 25% 20 0.279 0.230 (0 – 0.8) 

Sloan 5% 20 0.617 .299 (0.3 – 1.66) 

Sloan 1.25% 20 1.014  0.42  (0.54-1.7)  

F-M 100 hue 
(error score) 

20 15.28 4.007 (9.38 – 25.92) 

Visual field 
(mean 

deviation) 

20 -3.59 1.98 (-6.75 -  -0.07) 

VEP latency 
(ms) 

19 129.52 16.50 (106 – 164) 

VEP amplitude 
(v) 

19 4.689 1.975 (0.9 – 9) 
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Imaging 

Imaging measures are summarized in table 5.3 and 5.4. There was no significant difference 

between the age distribution of the patients and controls (p = 0.13).  

Mean optic nerve area for patients (n=20) was 8.93 sq mm, SD: 1.542; which was 

significantly different to controls (n=16): 10.25 sq mm, SD: 0.764, (p = 0.003).                       

Mean MTR of optic nerve for patients was (n=20): 29.29pu, SD: 3.011 which was 

significantly different to controls optic nerve MTR (n=16): mean 32.91pu, SD: 3.357, (p = 

0.001).  

Mean fractional anisotropy (FA) of the patient optic nerves was 0.314 + 0.091 and was less 

than the mean for controls which was 0.530 + 0.099 which was significant at p<0.00001.  

Mean diffusivity (MD) for patient optic nerves was 1195 x 10-6 mm2/s + 281, Mean 

diffusivity for control optic nerves was 972 x 10-6 mm2/s + 134, p=0.006.  

Axial diffusivity (AD) for patients, mean: 1585 x 10-6 mm2/s, SD: 396 was not 

significantly different to controls, mean: 1588 x 10-6 mm2/s, SD: 234, p = 0.97.  

Radial diffusivity (RD) for patients was 1000 x 10-6 mm2/s, SD: 246, and was 

significantly different to controls, mean: 664 x 10-6 mm2/s, SD: 126, p < 0.00001.  

Brain volume of patients (mean: 1485 cc, SD: 74) was significantly lesser than that of 

controls (mean: 1671 cc, SD: 53), p<0.00001.  

Whole brain MTR for patients (mean: 44.51pu, SD: 6.58) was slightly lower than 

controls (mean: 46pu, SD: 5.04) but the difference was not statistically significant, p 

= 0.60.  

GM MTR for patients (mean: 35.19pu, SD: 7.33) was also very slightly lower than 

controls (mean: 36.90pu, SD: 5.60) but not significant, p = 0.59.  

WM MTR for patients (mean: 46.37pu, SD: 6.92) was also slightly lower than 

controls (mean: 47.55pu, SD: 5.14) but not significant, p = 0.65. 
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RNFL thickness (mean: 76.19 microns, SD: 13.4) and macular volume (mean: 6.264 

cubic microns, SD: 0.453) for patients were significantly lower than the controls’ 

RNFL thickness (mean: 101.5 microns, SD: 12) and macular volume (mean: 6.857 

cubic microns, SD: 0.372). Both p < 0.00001. 

 

Spearman rank correlation between structural and functional measures of optic nerve, 

RNFL and brain revealed, significant correlation between RNFL thickness and 1.25% 

contrast acuity (r=0.52, p=0.0175). RNFL did not correlate with any other visual 

functional measures in the patient cohort. There was a moderate correlation between 

optic nerve area and Log MAR visual acuity at r=0.4263 with a p value at 0.06. There 

was slightly lesser correlation of this measure with other visual function measures. 

With regard to brain measures, the brain volume correlated significantly with 

cognitive function measures such as 3 second PASAT and ACE-R but not so much 

with  global  measures  such  as  EDSS  and  full  MSFC  ‘z’  score. 
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Table 5.3: MRI optic nerve measures for patients and controls at 
baseline. 
 
 

 
 
 
 
 
SD: standard deviation; ON A: optic nerve area; (a): affected; (ua): unaffected; MTR: magnetisation 
transfer ratio; DTI: Diffusion transfer imaging; FA: fractional anisotropy; MD: mean diffusivity; RD: 
radial diffusivity; AD: axial diffusivity. 
 

 

 

 

 

 Patients Controls P < 
 n Mean SD Range n Mean                   SD Range  

Optic nerve 
ON LL 
(mm) 

16 20.25 9.262 3.0-39.0  

ON A 
(mm2)  

20 8.939 1.542 6.66-12.2 16 10.26 0.764 8.49-11.41 <0.003 

ON A (a) 16 8.696 1.491 6.66-11.6  
ON A 
(ua) 

4 9.91 1.539 8.9-12.2 

ON MTR 20 29.29 3.011 24.82-34.8 16 32.91 3.357 25.02-38.6 <0.001 
ON MTR 
(a) 

16 28.87 2.988 24.82-32.5  

ON MTR 
(ua) 

4 30.99 2.818 27.99-34.8 

ON DTI 
FA 20 314.73 91.794 174.5-466.5 16 530.63 109.3 259.56-665.85 <0.00001 
MD 20 1.195 0.2813 0.727-1.571 16 0.9725 0.0557 0.7429-1.272 <0.006 
RD 20 1.0003 0.2467 0.535-1.343 16 0.6649 0.0699 0.4307-0.8743 <0.00001 
AD 20 1.585 0.3964 0.891-2.186 16 1.5881 0.1819 1.1762-2.067 0.97 
Clinically Affected (a) 
FA (a) 16 294.09 87.34 174.5-459.6  
MD (a) 16 1.1784 0.2849 0.715-1.507 
RD (a) 16 0.9999 0.2525 0.535-1.303 
AD (a) 16 1.5334 0.3942 0.891-2.16 
Clinically Unaffected (ua) 
FA (ua) 4 397.27 62.19 329-466.5  

 
 
 

MD (ua) 4 1.265 0.295 0.896-1.571 
RD (ua) 4 1.002 0.258 0.655-1.264 
AD (ua) 4 1.7915 0.3833 1.376-2.186 
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Table 5.4: MRI brain and OCT measures of patients and controls at 
baseline. 
 
 

 
 
 
 
SD: standard deviation; LV: lesion volume; (a): affected; (ua): unaffected; MTR: magnetisation 
transfer ratio; WB: whole brain; GM: grey matter; WM: white matter; RNFL: retinal nerve fibre layer; 
MV: macular volume. 
 
 

 

 

 

 

 

 

 

 

 Patients Controls p < 
 n Mean SD Range n Mean SD Range  

Brain 
Volume 10 1.4856 0.0746 1.361-1.586 8 1.6712 0.0534 1.591-1.735 <0.00001 
T2 LV 10 40.532 30.111 3.44-81.10 

 T1 LV 10 10.235 9.491 0.63-19.11 
MTR (percentage units; pu) 
WB MTR 10 44.516 6.585 28.82-52.42 8 46.003 5.047 38.5-50.76 0.6 
GM MTR 10 35.197 7.335 20.31-48.24 8 36.903 5.608 27.82-42.61 0.59 
WM MTR 10 46.372 6.924 30.16-55.75 8 47.558 5.144 40.29-52.56 0.65 
T2 L MTR 10 32.566 7.13 21.5-43.64 

 T1 L MTR 10 24.187 7.487 17.26-35.15 
 

Retina 
RNFL 
(mic) 20 76.195 13.4 49.52-99.49 16 101.5675 12.071 82.48-117.74 <0.00001 
RNFL (a) 16 72.814 12.12 49.52-96.16 

 RNFL (ua) 4 89.72 9.908 80.94-99.49 
MV (cu. 
mic) 20 6.264 0.453 5.393-7.049 16 6.857 0.372 6.106-7.349 <0.00001 
MV (a) 16 6.181 0.436 5.393-6.608 

 MV (ua) 4 6.596 0.405 6.136-7.049 
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5.4     Discussion: 
 

 
 

The sex ratio in the recruited treatment cohort differs from the expected sex ratio for 

unselected MS. This finding most likely reflects bias in referral patterns to the screening 

clinic (46 female referrals / 98 total referrals). Potential reasons for biased referral include 

factors relating to the referring clinicians, and factors relating to the potential participant 

such as sex-based differences in attitudes to experimental therapy trials.  

The treatment cohort in this trial is typical of patients with established progressive MS in 

terms of: disability levels at recruitment and low relapse frequency (two participants in 

the treatment group experienced episodic clinical disease activity). While this group is 

appropriate for safety-assessment of novel therapies, they may be sub-optimal for 

assessment of therapeutic efficacy in later phase trials. In order to establish efficacy, a 

group showing dynamic (active) progression and/or relapsing disease may be preferable. 

Alternatively, in cohorts showing modest rate of progression/neurodegeneration, longer 

follow up may be required to achieve sufficient power to achieve statistical significant 

evidence for efficacy. 

All 10 patients with secondary progressive MS had abnormal afferent visual pathway and 

global brain imaging parameters such as brain volume, which were also significantly 

different to that of age and sex matched controls at baseline. Having comparative control 

data is important in a longitudinal parallel arm study to adjust for scanner related inter 

session variations. 

The treatment cohort EDSS range was narrow and all had established secondary 

progression with one or both optic nerves affected previously. In a proof of concept early 

phase small trial in a clinically heterogeneous condition such as MS, a group with 

minimal phenotypic differences will be helpful in attributing the changes observed during 

follow up to be more likely due to the intervention rather than to heterogeneity. However, 
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other clinical measures such as visual function, MSFC, ACE-R in the treatment cohort 

had large standard deviations suggesting considerable clinical heterogeneity.  

 

A mean RNFL thickness of 72 microns for clinically affected eyes versus 89 microns for 

clinically unaffected patient eyes and 101 microns for normal control eyes are in 

accordance with previous studies in MS patients with previous optic neuritis. This suggests 

moderate to severe axonal loss in this cohort of patients. A RNFL thickness of at least 45 

microns was the inclusion criteria to exclude patients with very severe axonal loss to avoid 

a floor effect while testing neuro-axonal protection.  

Optic nerve MTR for patients (29.29 pu) were significantly lower than healthy controls 

(32.91 pu). This suggests that there may also be significant demyelination in the optic 

nerves of patients. Optic nerve DTI findings were interesting in that, the FA of patients’ 

optic nerves were significantly lower than controls. Correspondingly, there was also a 

higher mean diffusivity for patients than controls. This suggests disruption of structural 

integrity of the optic nerves in patients. . Animal models suggest that DTI-derived axial 

and radial diffusivity reflect axonal loss and demyelination respectively. [260] In our 

study, mean radial diffusivity but not axial diffusivity was increased in nerves affected by 

previous optic neuritis compared to controls. This finding would thus be consistent with 

limited axonal loss and predominant demyelination in the affected nerves, and is also 

consistent with the findings in previous DTI studies of optic neuritis. This is in 

discrepancy with RNFL findings mentioned above, which suggests moderate to severe 

axonal loss. This may be because RNFL is a more specific and sensitive measure of 

axonal loss than axial diffusivity. Other pathophysiological processes such as 

remyelination, gliosis apart from axonal loss and demyelination may affect DTI 

parameters. Taken together, prolonged VER latency and reduced amplitude, the optic 

nerve cross sectional area, optic nerve MTR & DTI measures and RNFL thickness, 

suggests both significant demyelination and axonal loss in the patient optic nerves at 
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baseline. However, most patients had good visual functional recovery. This may be 

explained by the considerable  redundancy of the optic nerve fibres or another mechanism 

such as adaptive plasticity in the brain at baseline as described in chapter 2.  

Due to the small number of the patient cohort, most of the structural and functional 

measures did not show significant correlations. However, this is baseline data of a 

longitudinal study with pre vs. post intervention comparison method and one is mainly 

interested in any longitudinal change to patients that could be attributed to the 

intervention. 
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Chapter 6: MSCIMS: Clinical and safety results 
 

6.1: Introduction: 

  
MSCIMS is a phase IIa study with safety as the primary outcome. In this chapter the 

results of the safety measures are described followed by results of clinical outcome 

measures. 

Various non-visual and visual clinical assessments were performed serially on patients as 

per schedule given in table 6.1. Non-visual clinical measures included EDSS, MSFC, 

ACE-R, BDI-II, MSIS. Visual clinical measures include high and low contrast acuities 

using log MAR charts (100%, 25%, 5% and 1.25%), colour vision using Fansworth-

Munsell  100  hue  test,  visual  fields  using  Humphrey’s  automated  perimetry.   

6.2: Safety results: 
 
 
All patients received a single infusion of autologous MSCs after monitoring during the 

pre-treatment phase for a mean of 17·3 months (min–max range 14·1–20·9). The mean 

administered dose was 1·6 x 106 cells per kg bodyweight (min–max range 1·1–2·0). No 

adverse events were observed during infusion. One patient developed a macular rash over 

the anterior chest at approximately 3 hours that resolved spontaneously over 12 hours; a 

further patient described scalp pruritus beginning one week after treatment and resolving 

spontaneously two weeks later. Two patients had infections: a self-limiting upper 

respiratory tract infection three weeks after infusion (not requiring treatment); and an E. 

Coli urinary tract infection four weeks after infusion (treated with oral antibiotics).  

Weekly (x4) blood testing of clinical chemistry, haematology, and immunology was 

unremarkable. Compared to pre-treatment levels, no changes were seen in the post-
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treatment period for T-cell subset counts (CD3, CD4, CD8, CD19, and CD56), or 

humoral immunity assessed by total serum immunoglobulin (IgG, IgM, IgA) levels 

(figure 6.1) and titres to common antigens (mumps, measles, rubella, varicella zoster, 

tetanus, haemophilus influenza type B, and pneumococcal antigens 1, 3, 4, 5, 6B, 7F, 8, 

14, 18C, 19A, 19F, and 23F). No delayed adverse events were observed during post-

treatment phase (mean 7·0 months; min–max range 5·8–10·2)  
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Figure 6.1: Change in mean lymphocyte subset counts and serum 
immunoglobulin levels following treatment 
 

 

 

Percent change in mean lymphocyte subset counts (upper panel) and serum 
immunoglobulin levels (lower panel) are shown for the four weeks following infusion 
of autologous MSCs. Comparison is made to levels at the time of infusion. Vertical 
lines indicate 95% confidence intervals. 
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6.3: Clinical assessment results: 
 

6.3.1: Statistical methods: 
 
The MSCIMS trial methodology has been described in detail in chapter 4. Statistical 

advice from a senior statistician  (DA) was obtained from the time of the design of the 

protocol up to publication of results. Statistical analysis was performed using the software 

STATA SE (version 9.2 and 11). The assessment schedule is illustrated in Table: 6.1. 

 

 For  ‘whole-patient’  data,  in  order  to  assess  the  change in gradient over time for a given 

measure at the point of intervention, piecewise linear mixed models were used with the 

measure as response variable, and with predictors: time from intervention and a time X 

after interaction term (where after is a binary indicator taking value 1 for data points 

occurring after the intervention, 0 for those before).  The coefficient on time is then 

interpreted as the estimated gradient before intervention, the coefficient on the interaction 

term is the estimated change in gradient after minus before; and the sum of the two 

coefficients estimates the gradient after intervention. Tables: 6.2, 6.3, 7.1 and 7.2. 

 

For the corresponding analyses of optic data involving a separate set of measures over 

time for each eye, an indicator term identifying the eye was included as a fixed effect in 

models otherwise as used above. Note that evidence for a change in gradient following 

intervention must come from a test of this change, not from observing a difference in the 

separate gradients before and after: comparison of the before and after p-values, for 

example, although interesting and potentially worth noting, does not provide statistical 

evidence of a change, which can only come from the single p-value testing of the change. 
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The design of this study is a before/after treatment comparison, without a randomised 

parallel arm of patients who do not experience the intervention.  It is extremely important 

to bear in mind that any effect apparently due to intervention in this type of design cannot 

be attributed causally to the intervention itself; and therefore that any observed 

before/after changes, however promising, should be treated with caution.  With this 

understood, however, it is worth noting changes which approach but do not reach 

significance, because of the inherent lack of power in the present context: although the 

analysis method used above are powerful, and allowed use of all available data points, 

nevertheless with such a small number of patients there was only power to detect 

substantial change, and in the less noisy measures. 
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  Table 6.1: Assessment schedule 
 Pre-treatment Post-treatment 

Time-line  -12 months  -9 months  -6 months  0 months 1   
week 

2 
weeks 

3  
weeks 

4  
weeks  3 months  6 months 

Visit 
number  1  2  3  4  5  6  7  8 9 10 11 12  13  14  15  16 

                             
EDSS  X    X    X    X        X    X   
MSFC  X    X    X    X        X    X   

MSIS-29  X    X    X    X        X    X   
BDI-II  X    X    X    X        X    X   

ACE-R  X    X    X    X        X    X   
VER  X    X    X    X        X    X   

                             
Log MAR 

visual acuity 
 

 
 

X 
 

 
 

X 
 

 
 

X 
 

 
 

X 
     

  X 
 

 
 

X 

FM-100    X    X    X    X        X    X 
Visual field    X    X    X    X        X    X 

OCT    X    X    X    X        X    X 
MRI ON    X    X    X    X        X    X 

MRI Brain    X    X    X    X        X    X 
MRI Brain 

(DTI) 
 

 
 

 
 

 
 

X 
 

 
                 

X 

                             
Clinical 

chemistry 
 

X 
 

 
 

 
 

 
     

X 
  

X X X X 
        

FBC, ESR  X            X   X X X X         
Immune 

panel 
 

 
 

 
 

 
 

 
     

X 
  

X X X X 
        

PT & APTT  X            X   X X X X         

 
EDSS = expanded disability status scale; MSFC = multiple sclerosis functional composite; BDI-II = Beck depression inventory II; ACE-R  =  Addenbrooke’s  cognitive  examination  (revised);;  FM-100 = Farnsworth Munsell 100 Hue test; VER = visual 
evoked responses; OCT = optical coherence tomography; MRI ON = MRI of optic nerve; DTI = diffusion tensor imaging; Clinical chemistry = serum urea and electrolytes, liver function tests, serum calcium, glucose, &thyroid function; FBC = full 
blood count; ESR = erythrocyte sedimentation rate; Immune panel = serum complement, immunoglobulins, common antigen titres, and lymphocyte subset counts; PT = prothrombin time; APTT = accelerated partial thromboplastin time.
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6.3.2: Non visual clinical measures: 
 
 

6.3.2.1: EDSS: EDSS was measured using functional systems scoring objectively by 

a single observer (MK) for a patient throughout the study to minimise observer bias. 

There was a significant increase in EDSS in the pre treatment phase, this halted 

during the post treatment phase and the gradient of change at the point of intervention 

was statistically significant. Fig: 6.2 & Table: 6.2 

 

Figure: 6.2 EDSS (Patients) 
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6.3.2.2: MSFC (Multiple Sclerosis Functional Composite): 

All three components of MSFC (25ft timed walk, 9 hole peg test and 3second 

PASAT) were performed by the same observer (PC) for all time points. There was a 

gradient change especially in the timed walk component of the MSFC. However this 

did not achieve statistical significance also the result is a bit skewed due to a single 

subject in whom the pre treatment deterioration was substantial. Figures 6.3 (a-d) & 

Table: 6.2. 

 

Figure	  6.3	  (a)	  MSFC	  ‘z’	  score	  (Patients) 
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Figure: 6.3 (b) Inverted timed walk (Patients) 

 

 

Figure 6.3 (c) Nine hole peg test (z score for arm function) (Patients) 
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Figure 6.3 (d) PASAT (cognitive function z score) (Patients) 
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6.3.2.3: ACE-R:  Addenbrooke’s Cognitive Examination – Revised:  

ACE-R was performed by the same observer (PC) for the patients across all time 

points to minimise observer bias. There was a borderline significant change in the 

post treatment phase. But there was no significant change in the gradient at the point 

of intervention. Figure: 6.4 & Table: 6.2 

 

 

Fig	  6.4:	  Addenbrooke’s	  cognitive	  examination	  (Patients) 
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6.3.2.4: Becks depression inventory II score: BDI-II score was obtained with the self 

scoring questionnaire. There was no significant change of gradient at the point of 

intervention. Fig: 6.5 & Table: 6.2. 

 

Figure 6.5: BDI-II (Becks depression inventory) 
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6.3.2.5: MSIS (Multiple Sclerosis Impact Scale): This is another self reported score 

which was obtained for all time points pre and post intervention. As described earlier 

it contains questions about both physical and psychological aspects, which could be 

affected by MS. There was no change of gradient across the point of intervention for 

either the physical or the psychological aspects of MSIS scores. Figure 6.6 (a-c) & 

Table: 6.2. 

 

Figure 6.6 (a): MSIS (physical) 
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Figure 6.6 (b): MSIS (psychological) 

 

 

Figure 6.6 (c) MSIS total 
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Table 6.2: Change in non-visual clinical outcomes before and after treatment  
Outcome Measure                                  Rate of change                                         Difference in rate of change following treatment          p 
(Units)                                                            (Units per month) 
Non-visual clinical measures         Before treatment              After treatment                                                                   95% CI 

EDSS                                                     0·0257                                -0.0012                                    -0.0269                 -0.0431   to   -0.0107                                        0.001 

MSFC (z score)                                     -0·0217                               0.0141                                      0.0359                 -0.0275   to    0.0992                                         0.267 

ACE-R                                                   0·0492                                0.2690                                      0.2198                  -0.1343   to   0.5739                                         0.224 

BDI-II                                                    0·0965                               -0.2663                                    -0.3628                 -0.9378   to    0.2121                                          0.216 

MSIS-29                                               -0·3710                              -0.5152                                     -0.1443                  -2.0865  to   1.7979                                           0.884 
 

Piecewise linear mixed model regression is shown for non-visual clinical outcomes, with confidence intervals and significance tests for a change in 
gradient at the time of treatment. EDSS: Expanded Disability Status Scale; MSFC: Multiple Sclerosis Functional Composite; ACE-R:  Addenbrooke’s  
Cognitive Examination – Revised; BDI-II: Becks Depression Inventory – II; MSIS: Multiple Sclerosis Impact Scale - 29
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6.3.3: Visual function: 
 
 

6.3.3.1: Contrast acuity: 

High and low contrast acuity: Log MAR visual acuity: 

Visual acuity assessments were performed using retro illuminated log MAR charts 

and Sloan charts for low contrast (25%, 5%, 1.25%) at a distance of 4m by the same 

observer (MK).  

While there was no significant change for all four values pre treatment, there was 

significant decline (improved vision) post treatment. This was highly significant for 

the gradient change across the time of intervention. Figure: 6.7 (a-d) & Table: 6.3. 
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Figure 6.7 (a): Log MAR acuity: 

 

 

Figure 6.7 (b): Sloan 25% contrast acuity: 
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Figure 6.7 (c): Sloan 5% contrast acuity: 

 

Figure 6.7 (d): Sloan 1.25% contrast acuity: 
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6.3.3.2: Colour vision: Fansworth-Munsell 100 Hue colour vision test: 

FM 100 hue test was performed at all time points by the same observer (MK). Total 

error score was calculated using the accompanying software and the square root of the 

total error score was plotted for each time point. There was a significant increase in 

the error score pre intervention phase and this was stopped post intervention and the 

gradient across the point of intervention was borderline significant. Fig 6.8 & Table 

6.3. 

 

Figure 6.8: FM100hue (square root total error score): 

 

 

6.3.3.3: Humphreys automated perimetry (Visual fields): Objective automated 

measurement of visual perimetry was obtained for each time point using the SITA 30-2 

protocol as described in chapter 4. There was no significant change in the gradient across 

the point of intervention. Figure 6.9 & Table 6.3. 
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Figure 6.9: Humphreys automated perimetry 
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6.3.4: Visual evoked potentials: 
 
 

Visual evoked potentials were recorded for each time point for patients and were 

analysed by single observer (AWM) blinded to time points. Both central (cf) and full 

field (ff) latencies and amplitudes were measured. There was a significant increase in 

latencies in both the central and full field measurements only during the pre treatment 

phase with the gradient of change across the period of intervention being significant. 

Similarly there was also a significant decrease in the amplitudes (both cf and ff) in the 

pre treatment phase alone with an increase post treatment with significant change in 

gradient across the intervention. Figure: 6.10 (a-d) & Table: 6.3. 

 

 

 

 

 

 

 

 



 151 

Figure 6.10 (a): VER cf latency: 

 

 

 

 

Figure 6.10 (b): VER ff latency: 
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Figure 6.10 (c): VER cf amplitude: 

 

 

Figure 6.10 (d): VER ff amplitude: 

 



 153 

 

Table 6.3: Change in visual function and VER outcomes before and after treatment  
Outcome Measure                                  Rate of change                                         Difference in rate of change following treatment          p 
                                                                     (Units per month) 
Visual outcome measures             Before treatment              After treatment                                                                   95% CI 

Visual acuity (LogMAR)                     0·0050                                -0.0207                                    -0.0205                 -0.0325   to   -0.0085                                          0.006 

25% contrast acuity (logMAR)            0·0022                                -0.0207                                   -0.0202                  -0.0330   to   -0.0073                                          0.023 

5% contrast acuity (logMAR)              0·0083                                -0.0372                                   -0.0371                  -0.0560   to   -0.0181                                          0.001 

1.25% contrast acuity (logMAR)         0·0063                                -0.0370                                   -0.0369                  -0.0552   to   -0.0185                                          0.002 

Colour vision                                        0·1017                               -0.0975                                    -0.1011                  -0.2567   to   0.0544                                           0.095 
(FM-100  √total  error  score) 

Visual field (mean deviance)               0·0395                                0.00311                                    0.0192                  -0.1062   to   0.1445                                           0.396 

Full field VER latency (ms)                 0.4843                                -0.8438                                    -1.3280                 -2.4447   to   0.2114                                           0.010 

Full field VER amplitude  (μV)         - 0·1084                                  0.1503                                     0.2587                   0.0705   to    0.4469                                           0.001 

Piecewise linear mixed model regression is shown for visual outcomes, with confidence intervals and significance tests for a change in gradient at the 
time of treatment. FM-100 = Farnsworth Munsell 100 Hue test; VER = visual evoked response.
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6.4: Discussion: 
 

The absence of significant adverse events in the short-term follow up suggests that the 

use of autologous mesenchymal stem cells intravenously in patients with MS is 

feasible and probably safe. The questions about the safe dose, safety of other routes of 

administration (eg: intrathecal), whether any adverse events that may arise on 

repeated administration and long term adverse effects have not been answered in 

MSCIMS. Studies specifically designed to answer these questions would provide 

further valuable information in the path towards clinical translation of stem cell 

therapeutics in multiple sclerosis. 

    

Clinical measurements unlike imaging are influenced by both observer bias and 

anticipation bias from the subject as they could try harder post intervention. There is 

also a learning effect for some of these measurements especially cognitive 

assessments. These biases can be minimised by blinding and randomising. However 

MSCIMS was an open label trial and blinding can be difficult to obtain in a clinical 

examination where the tests require direct contact and are not automated. In 

MSCIMS, a single observer obtained the measurements for the subjects across time 

points to minimise inter-observer variations. 

  

EDSS is a global clinical scale that is also less sensitive to change. The significant 

increase in EDSS pre treatment phase was halted post treatment with the change in 

gradient at the point of intervention was statistically significant. In a small study of 

only 10 patients, any significant change in one or two patients can significantly affect 

the outcome. However, the inference with caution that can be made from this finding 
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is that stem cells treatment may have clinically slowed down accumulation of 

disability. 

 

MSFC, which has 3 components showed similar trends of improvement without 

achieving statistical significance.  PASAT improvement across the time points was 

linear suggesting learning and practice could have been the reason. 

 

ACE measurements showed improvement post treatment without significant effect 

across the gradient. This could again be due to a learning effect. 

 

BDI II and MSIS are self reported scores by the patients themselves. Although such 

self reported measures are validated, any inference made from changes in these 

measures has to be taken with lot of caution. Both these measures did not however 

change significantly across the treatment point. 

 

Visual function outcomes are interesting in that there was a significant improvement 

across all four contrast acuity measurements post treatment. The colour vision also 

showed a borderline significant change in gradient across the treatment point. 

Humphrey’s   automated   perimetry, which is the most objective of the three visual 

assessments, did not change significantly. Fatigue and false positives and negatives can 

affect   Humphrey’s. Despite of no significant change in the perimetry, the visual 

functional improvement in acuity and colour vision may reflect a treatment effect of 

mesenchymal stem cells considering the corresponding improvements in objective and 

blinded measurements such as imaging (an increase in optic nerve area) and VERs 

(function). 
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An examiner blinded to the time point of the subjects objectively examined vERs. 

There was a significant improvement in both the amplitudes (generally a measure of 

axonal function) and the latencies (generally a measure of myelin function) at the 

point of treatment. The potential mechanism could be remyelination or adaptive 

plasticity. Neuroprotection itself could prevent worsening but cannot be accounted for 

improvement of conduction and/or function.  

 

As discussed earlier the potential mechanisms through which these mesenchymal 

stem cells could act are many. With objective measurements of structure, function 

and physiological measures although helpful in speculating the potential mechanisms, 

it is difficult to make significant inferences from a small study of ten patients. 

MSCIMS has safety as the primary outcome measure and any hint of efficacy would 

be helpful information in designing future larger studies.  
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Chapter 7: MSCIMS: Imaging results 

 
 

7.1: Retinal imaging results: 
 
Retinal nerve fibre layer thickness around the peripapillary retina and the macular 

volumes were measured for both pre vs. post treatment phases as described in chapter 4. 

There was no change in both the measures gradients across the time of intervention. (Fig: 

7.1a and b) (Table: 7.1). 

 

 

Fig: 7.1 (a) RNFL thickness (microns) patients 
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Figure 7.1 (b) Macular volume (mm3) patients 
 
 

 
 

7.2: Optic nerve imaging results: 
 

7.2.1: Optic nerve area: 
 
 Optic nerve fat saturated short echo fast FLAIR images (chapter 4) for the patients and 

controls were analysed and the mean cross-sectional intra-orbital optic nerve area was 

calculated by a single observer blinded to the subject status and the time points. The 

FLAIR images were renamed randomly using a five-digit number generated by the 

computer with the key stored separately. The images of all subjects for all time points 

were contoured and optic nerve area was calculated. Then they were matched with keys 

and unblinded.  

Fig. 7.2 shows the graph representing the change pre vs. post intervention.  

There is a slight but non-significant decline over time in this measure during (and only 

during) the pre-intervention period, followed by a statistically significant increase post 

intervention, with also a significant change in gradient. There was an increase following 
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treatment in optic nerve area with difference in monthly rates of change +0·1262 mm2 

[95% CI 0·0368 to 0·2155], p = 0·006.  Table: 7.1. 

The healthy volunteer controls during the same time did not show any significant change 

of optic nerve area with intra-individual SD of 0.85 and p = 0.815.  

 
 

Fig: 7.2 Optic nerve area (Patients) 
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7.2.2: Optic nerve MTR 
 
Optic nerve MTR were calculated as described in chapter 4, over the entire optic nerve 

(cross-sectional) and chiasm with the observer blinded to the time points of the subjects. 

Fig: 7.3 shows the change over time for the patients pre and post intervention. There was 

a slight increase in the MTR through the study but there was no significant change in the 

gradient between pre and post intervention measures. The rate of change was 0·0529 pu 

per month [95% CI -0.1271 to 0·2328], p = 0·565.   

The healthy volunteer controls during the same time did not show any significant change 

of optic nerve area with intra-individual SD of 2.66pu and p = 0.5930. Table: 7.1. 

Fig: 7.3 Optic nerve MTR (Patients)  
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7.2.3: Optic nerve DTI 
 
 
Optic nerve DTI parameters were calculated for patients and controls twice (once before 

and once after intervention for patients) during the MSCIMS study. The MR protocol and 

analysis method has been described in chapter 4. The parameters measured were optic 

nerve fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial 

diffusivity (RD). To take into account of the varying time interval, a fixed effects 

regression was used with each optic nerve as the unit analysis, regressing the measure on 

time with side as a fixed effect.  This estimates the within optic-nerve gradient of change.  

The results are shown on the following graphs (Fig 7.4 a-d), giving non-significant P-

values of 0.192, 0.739, 0.873 and 0.716 respectively for the four measures, optic nerve 

FA, MD, RD and AD. Table: 7.1. 
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Fig 7.4(a) Fractional anisotropy (patients) 

 

 

 
 

(b) Mean Diffusivity (patients) 
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(c) Radial diffusivity (patients) 
 

 
 
 
 
 
 

(d) Axial diffusivity (patients) 
 

 
 

60
0

80
0

10
00

12
00

14
00

16
00

on
rd

-20 -10 0 10
months from intervention

Intervention occurs at months 0 (vertical dashed line)
P=0.873 for change before vs after
Side as fixed effect

onrd over time with fitted slope
individual eyes

10
00

15
00

20
00

25
00

on
ad

-20 -10 0 10
months from intervention

Intervention occurs at months 0 (vertical dashed line)
P=0.716 for change before vs after
Side as fixed effect

onad over time with fitted slope
individual eyes



 164 

Table 7.1: Change in optic nerve and retinal imaging before and after treatment  
Outcome Measure                                          Rate of change                                         Difference in rate of change following treatment          p 
(Units)                                                            (Units per month) 
Visual pathway imaging measures         Before treatment              After treatment                                                                   95% CI 

Macular volume (mm3)                                    0·0002                                0.0041                                    0.0040                    -0.0135   to   0.0214                                       0.654              

RNFL thickness (m)                                     -0·0052                               0.0474                                     0.0527                    -0.3533   to   0.4586                                       0.799 

Optic nerve area (mm2)                                   -0·0216                               0.1046                                     0.1262                     0.0368   to   0.2155                                       0.006 

Optic nerve MTR (%)                                      0·0656                               0.0529                                    -0.0127                   -0.1271    to   0.2328                                       0.565 

Optic nerve FA (x 103)                                                         1.6543                                                                                         -0.4140    to   3.7226                                        0.192 

Optic nerve MD (x 10-3 mm2/s)                                            2.8488                                                                                        -7.3204     to   13.0180                                     0.739 

Optic nerve AD (x 10-3 mm2/s)                                            2.6089                                                                                         -10.4445   to   15.6623                                     0.716 

Optic nerve RD (x 10-3 mm2/s)                                            1.6064                                                                                         -7.1370     to   10.3498                                     0.873 

 

 

 

Piecewise linear mixed model regression is shown for optic nerve and retinal imaging outcomes, with confidence intervals and significance tests for a 
change in gradient at the time of treatment. Optic nerve diffusion tensor imaging (DTI) measures (FA: fractional anisotropy, MD: mean diffusivity, 
AD: axial diffusivity, RD: radial diffusivity) were measured once before and once after treatment: a single gradient is therefore shown for each with 
corresponding confidence interval and significance test. RNFL: Retinal nerve fibre layer; MTR: magnetization transfer ratio. 
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7.3: Brain MRI results: 
 
7.3.1: T2 Lesion volume: 
 
T2 lesion volume was contoured on all patients for all time points after the data collection 

was completed to minimise substantial time gap between measurements to reduce any 

systematic observer bias. There was a borderline significant increase in the T2 lesion 

volume in the pre-treatment phase (p = 0.071). However there was no statistical evidence 

of change in the gradient at the point of intervention. (P = 0.552). Fig: 7.5 & Table: 7.2 

Fig 7.5: T2 lesion volume  
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7.3.2: T1 hypo-intense lesion volume 
 
T1 hypo-intense lesions were contoured for all time points clustered together at the end 

similar to T2 hyper-intense lesions. There was a statistically significant increase in the T1 

hypo-intense lesion volume pre treatment (p = 0.005) and in the post treatment phase, this 

significance had disappeared (p = 0.614). The gradient of change at the point of 

intervention itself was borderline significant (p = 0.094). Fig: 7.6 & Table: 7.2. 

Fig 7.6: T1 hypo-intense lesion volume 
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7.3.3: Brain volume 
 
Brain atrophy between time points for patients and controls were measured. For the 

patient group: the rate of change of brain volume pre-treatment phase was – 0.0880 % per 

month and after intervention the rate was – 0.1470 % per month. This gradient change 

however was not significant (p = 0.171). For the control group: the rate of change 

between time points corresponding to the pre-treatment phase for patients was -0.0199 % 

per month and for the period corresponding to the post-treatment phase was -0.0634 %. 

The change was not significant (p = 0.3389)  

7.3.4: Brain MTR 
 
Magnetisation transfer ratio for the whole brain, normal appearing white matter, normal 

appearing grey matter, T2 lesions and T1 hypointense lesions were measured for patients 

and whole brain, grey matter and white matter MTR were measured for controls. For the 

patients, the pre-intervention MTR for all parameters were decreasing and the post-

treatment mtr were increasing. However this change of gradient only achieved borderline 

significance for T1 hypointense lesion MTR. Fig: 7.7 (a-e) 
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Fig: 7.7 (a) Normal appearing white matter (NAWM) MTR (pu) 

 

 
 
 
 
 

7.7 (b) Normal appearing grey matter (NAGM) MTR (pu) 
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7.7 (c) Whole brain MTR 
 

 
 
 
 
 

7.7 (d) T2W lesion MTR 
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7.7 (e) T1 hypointense lesion MTR 
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Table 7.2: Change in brain imaging before and after treatment  
Outcome Measure                                          Rate of change                                         Difference in rate of change following treatment          p 
(Units)                                                                    (Units per month) 
Brain imaging measures                           Before treatment              After treatment                                                                   95% CI 

T2 Lesion Volume  (mm3)                                  155.89                              20.90                                    -134.98                     -579.64   to   309.67                                      0.552              

T1 Lesion Volume (mm3)                                    204.35                            -60.73                                    -265.08                    -574.85    to   44.69                                       0.094 

Brain volume (%)                                               -0.0880                            -0.1470                                   -0.0590                   -0.1434   to   0.254                                         0.171 

Whole Brain MTR (%)                                       -0.1409                             0.3605                                    0.5014                   -0.2166    to   1.2195                                      0.171 

Grey Matter MTR (%)                                        -0.1148                             0.3116                                   0.4264                    -0.3362    to   1.1891                                      0.273 

White Matter MTR (%)                                      -0.1417                             0.4093                                   0.5510                     -0.1845   to   1.2865                                      0.142 

NAGM MTR (%)                                                -0.1222                             0.3334                                   0.4556                     -0.03087 to   1.22                                         0.243 

NAWM MTR (%)                                               -0.1321                            0.4023                                    0.5344                     -0.1874   to   1.2562                                     0.147 

T2 Lesion MTR (%)                                            -0.1738                            0.3859                                    0.5597                     -0.2703   to   1.3896                                     0.186 

T1 Lesion MTR (%)                                            -0.1867                            0.5791                                    0.7659                     -0.1389   to   1.6706                                     0.097 

 

Piecewise linear mixed model regression is shown for brain imaging outcomes, with confidence intervals and significance tests for a change in 
gradient at the time of treatment. MTR: magnetization transfer ratio; NAGM: Normal Appearing Grey Matter; NAWM: Normal Appearing 
White Matter. 
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7.5: Discussion: 
 

Before discussing the imaging results of the study, it is important to re-emphasise that the 

MSCIMS   study   is   a   phase   IIa   “proof   of   concept”   study   with   safety   as   the   primary   outcome  

measure. It is also important to realise that the study is only on 10 patients with 20 optic nerves 

and 16 of them affected.  

 

Optic nerve area (atrophy) was assessed with the operator blinded to both to subject status 

(patient or control) and to their time points. This is the only imaging measure in the study in 

which this was possible as the remaining measures had to be done unblinded to the status of the 

subject. This was because of the various registration and pre-processing steps undertaken before 

doing the final analysis. Some measures were fully automated during analysis such as baseline 

brain volume using SIENAX and the brain volume change using SIENA. Blinding was not an 

issue with such measures. 

 

Optic nerve area showed a significant change in gradient at the time of intervention for the 

patients. This being the most robust of measures in the study due to the blinding mentioned 

above, suggests there may be a hint of treatment effect. There was actually an increase in the 

optic nerve area of the patients at the point of intervention. If it was just neuroprotection, it 

would have shown just the change in the slope without actual increase. This could have been 

possibly due to remyelination effect. 

 

Optic nerve MTR did not show any significant change between pre and post intervention time 

periods. This may be because the sensitivity to detect change using MTR is inadequate in a small 

number of optic nerves or it may simply be that there was no effect on this measure. It should 

also be acknowledged that the image quality in 3T sequence was affected due to the noise and 

several slices of optic nerves had to be excluded during the process of analysis. These missed 
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segments have included the segments of the nerve affected by optic neuritis and this further 

reduces the sensitivity. The sequence itself is 20minutes long and when registering two images, 

the ones with and without the MT pulse, although automated, presumes that there is no 

significant change in position of the optic nerves. This is a difficulty with imaging an 

independently mobile structure in life such as the optic nerve. Giving considerations to all these 

drawbacks, it may be that the number of subjects and the duration of follow up could have been 

small to detect a change in MTR which is more a marker of myelin than axons. This patient 

group have had remote optic neuritis and not acute, and the change in myelin would be a much 

more dynamic factor in the latter than the former. 

 

Optic nerve DTI measures also did not show any significant change in gradient between pre and 

post intervention. The technical difficulties discussed for MTR also apply for DTI. In addition, 

there were only two time points of DTI measures and it included only part of the optic nerves (4 

slices max). DTI is a measure that is more specific towards neuroaxonal loss and if the technical 

difficulties are overcome and applied in a larger group of patients with sufficient power to detect 

change, then it could be very useful potentially. 

 

Brain T2 lesion volume increased significantly in the pre treatment phase and the increase in 

lesion volume was not significant in the post treatment phase. However the change in gradient at 

the point of intervention is not significant. It is possible that there is some effect in slowing down 

the rate of accrual of lesions by the intervention but the finding was not significant. T1 lesion 

volume showed the same trend as T2W lesion volume, however the p value of the gradient at the 

point of intervention was borderline significant. As we know that persistent T1 hypointense 

lesions correlate with axonal loss, it may again hint at the potential neuroprotective effect of the 

intervention. It may be that these values would reach significance in a bigger cohort and/or a 

longer follow up. 

 



 174 

Brain volume changes in patients were slightly different between pre and post intervention in 

that there was a slightly increased rate of atrophy post treatment. However the gradient of change 

was not statistically significant at the point of intervention. Again, this needs further exploration 

in a larger group of patients and in a longer follow up to draw any definite conclusion. We know 

from some disease modifying therapy studies that there is an accelerated rate of atrophy in the 

initial few months after commencing treatment and a reduction of atrophy with longer term 

follow up. This has been explained to be due to a selection bias of patients having a more active 

disease receiving DMTs in these studies and also the anti-inflammatory effect of resolution of 

oedema with DMTs could have contributed to the increased rate of atrophy. Both these 

explanations may not be applicable to MSCIMS cohort, as most of the patients did not have a 

clinically active disease and all 10 patients had secondary progressive MS. However, one cannot 

completely rule out the possibility of an anti-inflammatory effect.  

 

Brain MTR measures of whole brain, NAGM, NAWM, T2 hyperintense lesions and T1 

hypointense lesions showed a similar trend of an increase at the point of intervention. However 

only for the T1lesion MTR did the gradient change approach statistical significance. T1 

hypointense lesions have the least MTR values suggesting that although MTR may be more 

weighted towards myelin, axonal loss also affects MTR. With the gradient of the change in MTR 

at the point of intervention for the T1 hypointense lesions reaching borderline significance, it is 

possible that this is a reflection of a potential neuroprotective effect of the stem cells being 

slightly more obvious in the lesions with the most axonal loss. As the MTR of T1 hypointense 

lesions tended to increase in the post treatment phase (p=0.093), there is a hint that 

remyelination was taking place in the lesions. 

 

Retinal imaging including peripapillary RNFL thickness and macular volume gradients did not 

change significantly at the point of intervention. The changes in these measures are substantial 

and dynamic in the first 6-12 months after an acute episode of optic neuritis. It may be that the 
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changes in the values over time in patients with secondary progressive MS with remote optic 

neuritis are very minimal and hence it is possible that any axonal protective effect of the 

intervention is too small in the small group in a limited follow up time. It is also biologically 

implausible that axonal regeneration would occur: thus it is not surprising that an increase in 

RNFL thickness was not observed. As mentioned above, the findings of shortening of VER 

latency together with an increase in optic nerve area with a trend in improvement of T1 lesion 

volume and MTR indicates that the principle effect of MSC may be due to promotion of myelin 

repair and this may be why there was no change observed in the RNFL. 

 

In summary, the imaging investigations in MSCIMS have revealed a hint of neuroprotective – 

and possibly remyelinating - effect as secondary outcome, which needs further exploration using 

longer and larger studies. Study of a cohort of patients with a dynamic change in both the 

inflammatory as well as neurodegenerative component in their disease process may be most 

useful in terms of the ability to detect the potentially multiple effector mechanisms of action of 

MSC. This means a cohort of patients with an active MS with relapses and at the same time 

progressing between relapses. However, MSCIMS was not designed to specifically address the 

effects of intervention on MRI markers of inflammation, accordingly no change was seen 

following treatment in the rate of T2 lesion accumulation. 
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Chapter 8: Visual functional MRI results 
 

8.1: Introduction: 

  
As described in chapter 4, visual functional MRI sequences were obtained for 10 patients 

and 6 controls at two time points during the study, one before and one after the 

intervention for the patients. Controls were scanned around the corresponding time points 

for patients as far as possible. Two of the 8 controls could not tolerate the visual 

stimulation and did not undergo this sequence. 

8.2: Method: 
 
 
8.2.1: MRI protocol: A total of 69 volumes of T2* weighted echo-planar images 

depicting blood oxygen level dependent (BOLD) contrast were acquired in each 5 

minutes experiment with 52 near axial slices of the whole brain (TR: 3940ms, TE: 30ms, 

field of view: 192mm, Matrix: 64 x 64, slice thickness of 3mm) which was performed 4 

times (total ~ 20 minutes acquisition time) for each experiment.  

8.2.2: Experiment: The visual stimulation paradigm comprised of eight epochs, each of 

16 seconds, of flickering checkerboard stimulation, alternated with eight epochs, each of 

16 seconds, of gray background, presented on a projection screen. Subjects wore 

transparent plano chromatic filter goggles, with one green and one red filter (Haag-Streit, 

UK). The checker board was also green and red, so that the green checker board was 

invisible through the red filter, and vice versa. This was to allow monocular stimulation 

while testing both eyes within the same run. To facilitate attention and fixation of a 

central cross, subjects  were  instructed  to  fixate  a  central  ‘  +  ’,  and  asked  to  press  a  button  

when   it   changed   to   a   ‘   #   ’   symbol.   Each   experiment   consisted of 4 sessions, and the 

orientation of the goggles was reversed in between, to swap the red and green filters.  



 177 

8.3: Analysis and Results: 
 

Pre-processing: Statistical Parametric Mapping software (SPM8; Wellcome Trust Centre 

for Neuroimaging, London, UK) was used for analysis. Each fMRI series was realigned, 

coregistered and normalized to the T1 volumetric image of the same subject acquired at 

the same time point. The images were then smoothed, using an 8mm isotropic Gaussian 

kernel. Realignment parameters and time derivatives were entered as covariates into the 

general linear model, together with the time-points at which the subjects pressed the 

button during the task to maintain attention. 

First level analysis: For each subject, first level fixed effect contrasts were specified, for 

right and left eyes individually (1 0 and 0 1, respectively), combining epochs of 

stimulation through the red and green filters. The subsequent contrast images, 

representing the main effect of stimulation for each eye, were entered into the second 

level regression models. 

Second level analysis: Fixed effect analysis resulted in two contrasts (one for each eye) 

for each subject at each time point. These contrasts were then grouped as right eye 

patients baseline, left eye patients baseline, right eye controls baseline, left eye controls 

baseline, right eye patients follow up, left eye patients follow up, right eye controls 

follow up and left eye controls follow up using second level analysis.  

Analysis 1: Main Group Effects: One  sample  ‘t’  tests: In second level group analysis, one 

sample t tests were performed to obtain group effects for each of the eight groups. The 

MNI coordinates for the maximum activation cluster, spatial extent (k) in terms of 

number  of  voxels,  with  the  voxel  level  ‘t’  score  and  voxel  &  cluster  level  ‘p’  values are 

shown in Figure: 8.1 (a-h). 
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Fig: 8.1(a) Baseline controls: right eye activation 

 

Significant cluster:  

MNI coordinates: (-8 80 0) 

Spatial extent in voxels: (K): 15878 

Voxel level T score: 8.71 

Voxel level p value: (Pv): <0.001 

Cluster level p value: (Pc): <0.001 

Analysis: Contrasts obtained from 1st level analysis for the right eye in controls at baseline time 

point were specified in the second level and one sample t test was performed. There was 

significant activation in the occipital cortex bilaterally. 
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 (b) Baseline controls: left eye activation 

 

Significant cluster 

MNI coordinates: (-44 -66 4) 

Spatial extent in voxels: (K): 12118 

Voxel level T score: 7.3 

Voxel level p value: (Pv): 0.003 

Cluster level p value: (Pc): <0.001 

Analysis: Contrasts obtained from 1st level analysis for the left eye at baseline time point in 

controls were specified in the second level and one sample t test was performed. There was 

significant activation in the occipital cortex bilaterally. 
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(c) Follow up controls: right eye activation 

 

Significant cluster 

MNI coordinates: (-44 -64 2) 

Spatial extent in voxels: (K): 11015 

Voxel level T score: 7.54 

Voxel level p value: (Pv): 0.002 

Cluster level p value: (Pc): <0.001 

Analysis: Contrasts obtained from 1st level analysis for the right eye at follow-up time point in 

controls were specified in the second level and one sample t test was performed. There was 

significant activation in the occipital cortex bilaterally. 
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(d) Follow up controls: left eye activation 

 

Significant cluster 

MNI coordinates: (-8 -100 2) 

Spatial extent in voxels: (K): 6905 

Voxel level T score: 6.34 

Voxel level p value: (Pv): 0.023 

Cluster level p value: (Pc): <0.001 

Analysis: Contrasts obtained from 1st level analysis for the left eye at follow-up time point in 

controls were specified in the second level and one sample t test was performed. There was 

significant activation in the occipital cortex bilaterally. 
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(e) Baseline patients: right eye activation 

 

Significant cluster 

MNI coordinates: (24 -74 6) 

Spatial extent in voxels: (K): 9543 

Voxel level T score: 9.06 

Voxel level p value: (Pv): <0.001 

Cluster level p value: (Pc): <0.001 

Analysis: Contrasts obtained from 1st level analysis for the right eye at baseline time point in 

patients were specified in the second level and one sample t test was performed. There was 

significant activation in the occipital cortex bilaterally. 
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(f) Baseline patients: left eye activation 

 

Significant cluster 

MNI coordinates: (12 -84 6) 

Spatial extent in voxels: (K): 13309 

Voxel level T score: 7.20 

Voxel level p value: (Pv): 0.004 

Cluster level p value: (Pc): <0.001 

Analysis: Contrasts obtained from 1st level analysis for the left eye at baseline time point in 

patients were specified in the second level and one sample t test was performed. There was 

significant activation in the occipital cortex bilaterally. 
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(g) Follow up patients: right eye activation 

 

Significant cluster 

MNI coordinates: (24 -76 -6) 

Spatial extent in voxels: (K): 7256 

Voxel level T score: 8.93 

Voxel level p value: (Pv): <0.001 

Cluster level p value: (Pc): <0.001 

  

Analysis: Contrasts obtained from 1st level analysis for the right eye at follow-up time point in 

patients were specified in the second level and one sample t test was performed. There was 

significant activation in the occipital cortex bilaterally. 
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(h) Follow up patients: left eye activation 

 

Significant cluster 

MNI coordinates: (16 -84 6) 

Spatial extent in voxels: (K): 9871 

Voxel level T score: 6.74 

Voxel level p value: (Pv): 0.01 

Cluster level p value: (Pc): <0.001 

Analysis: Contrasts obtained from 1st level analysis for the left eye at follow-up time point in 

patients were specified in the second level and one sample t test was performed. There was 

significant activation in the occipital cortex bilaterally. 
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Analysis 2: Patients vs Controls: (Two  sample  ‘t’  tests): A second-level two-sample t-test 

model was used to identify any regions where patients activated more than controls 

(contrast  1  −1),  or  vice  versa   (−1  1). [Fig: 8.2 (a-d)]. Only controls showed significant 

activation more than patients in the occipital lobes. There was no significant occipital or 

extra-occipital activation found in patients over that of controls in this study. Only 

significant activation (controls > patients) are shown below: 
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Fig: 8.2: 

(a) Baseline (right) controls > Patients 

 

Significant cluster 

MNI coordinates: (-8 -78 0) 

Spatial extent in voxels: (K): 975 

Voxel level T score: 6.78 

Voxel level p value: (Pv): 0.193 

Cluster level p value: (Pc): 0.025 

Analysis: Contrasts obtained from 1st level analysis for the right eye for controls (specified 

contrast 1) and right eye patients (specified contrast -1) for baseline time points were specified in 

second level analysis using two sample t test in SPM 8, to get controls > patients. The significant 

cluster in occipital cortex is shown. 
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(b) Baseline (left) controls > Patients 

 

Significant cluster 

MNI coordinates: (-28 -66 -10) 

Spatial extent in voxels: (K): 1906 

Voxel level T score: 7.11 

Voxel level p value: (Pv): 0.143 

Cluster level p value: (Pc): <0.001 

Analysis: Contrasts obtained from 1st level analysis for the left eye for controls (specified contrast 

1) and left eye patients (specified contrast -1) for baseline time points were specified in second 

level analysis using two sample t test in SPM 8, to get controls > patients. The significant cluster 

in occipital cortex is shown. 
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(c) Follow up (right) controls > Patients 

 

Significant cluster(s) 

MNI coordinates: (-40 -60 -2); (-38 -32 46) 

Spatial extent in voxels: (K): 3262; 741  

Voxel level T score: 6.78; 5.40 

Voxel level p value: (Pv): 0.232; 0.767 

Cluster level p value: (Pc): <0.001; 0.039 

Analysis: Contrasts obtained from 1st level analysis for the right eye for controls (specified 

contrast 1) and right eye patients (specified contrast -1) for follow-up time points were specified 

in second level analysis using two sample t test in SPM 8, to get controls > patients. The 

significant cluster is shown. 
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(d) Follow up (left) controls > Patients 

 

Significant cluster 

MNI coordinates: (2 -94 6) 

Spatial extent in voxels: (K): 1007 

Voxel level T score: 5.91 

Voxel level p value: (Pv): 0.593 

Cluster level p value: (Pc): 0.003 

Analysis: Contrasts obtained from 1st level analysis for the left eye for controls (specified contrast 

1) and left eye patients (specified contrast -1) for follow-up time points were specified in second 

level analysis using two sample t test in SPM 8, to get controls > patients. The significant cluster  

is shown. 
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Analysis 3:  Followup  vs  Baseline:  Paired  ‘t’  tests: Then paired t tests were performed to 

obtain comparison statistics between baseline and follow up for patients and controls for 

right and left eye groups separately. 

Figure 8.3 shows the design matrix for the paired t tests to compare follow up and 

baseline   activation   for   left   eye   stimulation   for   patient   group.   Each   patient’s   baseline  

contrast is paired with the follow up contrast as demonstrated by the white rectangular 

blocks in the first 10 columns. The 11th and 12th columns demonstrate the two conditions 

which are baseline and follow up respectively. This matrix enables a determination of the 

group comparison for repeated measures in SPM 8.  

There were no significant differences to activation on comparison either way for both 

patient and controls between baseline and follow up.  
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Fig: 8.3 Patients (Follow up vs Baseline) design matrix: 

 

 

 

Design for paired t tests in SPM8 to compare left follow up vs baseline for the 

patient group. The 10 initial columns represent the 10 patients with the 11th and 

12th column representing conditions 1 and 2, which are time points baseline and 

follow up respectively. The rows represent the twenty contrast images (obtained 

from SPM8 using first level analysis as described in chapter 4) for the left eyes of 

patients with pairing between baseline and follow up for the patients. 
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Analysis 4: Group interaction: Flexible factorial: The flexible factorial design enables 

creation of a design matrix one block at a time by specifying which main effects of 

groups or interactions between groups, one would like to include. [Fig: 8.4]  

Three factors were specified: subject, group (patients vs. controls) and time-point 

(baseline vs. follow-up). Gender and age were entered as covariates of no interest. In Fig 

8.4, the first two columns are groups (controls and patients), 3rd and 4th columns are time 

points (baseline and follow-up), 5th to 8th columns specify interaction between the two 

factors, group x time points such that 5th column specifies baseline controls, 6th column 

for follow-up controls, 7th column for baseline patients and 8th column for follow-up 

patients. 9th and 10th columns specify age and gender as covariates of no interest. The 

imbalance between number of patients and controls was taken into account in the flexible 

factorial design by specifying the appropriate contrast, in which the sum of the contrasts 

in each group was 1, and in the comparison between groups the total sum was 0. For 

example, for the group interaction, the contrast was specified as: 0 0 0 0 -1/2 1/2 1/2 -1/2 

0 0. Again there was no significant interaction effects found. 



 194 

Fig: 8.4 

Group interaction using flexible factorial design matrix: 
Group 1 – controls 

Group 2 – patients 

Time point 1 – baseline 

Time point 2 – follow up 

Columns 9 & 10: Age and Gender are covariates of no interest. 

32 rows represent control and patient left eye contrasts for baseline and follow-up time points. 
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Analysis 5: Voxel of interest: MarsBaR  (MARSeille  Boîte  À  Région  d’Intérêt),  which  is  a  

region of interest (ROI) toolbox in SPM 8, was used to extract effect sizes (parameter 

estimates) from predefined regions/voxels of interest (VOI) for the patient groups 

mentioned above. The VOIs were defined as right and left visual cortices (VC), lateral 

occipital complexes (LOC) and cuneus. The MNI (Montreal Neurological Institute) 

coordinates were used for LOC and cuneus. For the visual cortex (V1), the contrast 

images for the baseline controls were used to define the coordinates, which were as 

follows: Left VC: (-20 -88 28), Right VC: (28 -78 2); LOC: (+ 43 -70 -13); Cuneus: (+ 10 

-84 32). Activation parameters for the four patient groups (right and left X baseline and 

follow up) in these specified regions of interest were extracted to check the correlation 

with structural and visual functional data. The extraction parameters from the right and 

left side of the brain were averaged for the three regions as there is bilateral 

representation for each eye. 
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Table: 8.1: Voxel of interest activation parameters extracted using MarsBaR tool in SPM for the 10 patients 
 

Patient FURPcuneus FURPLOC FURPVC FULPcuneus FULPLOC FULPVC BLRPcuneus BLRPLOC BLRPVC BLLPcuneus BLLPLOC BLLPVC 
1 1.9889 1.486 7.8301 3.6832 2.2744 7.6338 0.8194 1.5583 8.3513 2.7642 2.8692 7.4403 
2 -0.6534 -1.5711 4.9343 0.76 0.269 7.0154 4.8553 1.0786 7.5113 2.7575 2.2759 6.8312 
3 1.9752 1.378 6.7099 3.0064 1.192 5.933 1.8838 1.4013 5.9623 0.8761 0.8361 5.8617 
4 2.2639 0.1951 3.0823 2.3598 0.0546 2.302 2.5569 1.1562 2.6518 2.6431 0.2153 2.2821 
5 -0.9835 0.297 4.5738 -1.0604 0.9854 5.158 0.5295 0.3802 4.3489 -0.5627 0.2067 5.1258 
6 0.1849 -0.0656 1.771 0.6372 -0.4582 1.1189 0.852 0.5143 1.2715 0.404 0.4806 1.07 
7 -0.3204 0.0713 0.9123 -0.0411 0.6085 1.1836 0.3421 1.1843 1.0977 0.1431 0.6063 1.2091 
8 0.5424 0.623 0.6506 -2.1776 -0.1509 0.8188 1.646 0.8867 0.7171 0.738 0.7926 0.7937 
9 0.6793 1.4172 5.0284 0.0266 0.3092 4.604 1.0965 1.1082 4.3091 1.1469 1.0915 4.6012 

10 0.518 0.3599 6.3418 3.1214 2.6434 7.7825 1.0544 1.3658 8.0912 0.7484 1.0385 7.505 
             
             
             
 BL is baseline time point          
 FU is follow-up time point          
 FURP is follow-up right eye patients         
 FULP is follow-up left eye patients          
 BLLP is baseline left eye patients         
 BLRP is baseline right eye patients         
 VC is visual cortex           
 LOC is lateral occipital complexes          
 cuneus is cuneus           
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Region of interest analysis: The activation parameters for the three specified region of 

interests shown in table 8.1 was statistically analysed (by Dr Daniel Altmann, the NMR 

Unit’s   statistician) using a bivariate model that models both eyes of the individual 

patients simultaneously. This model was used because there was no a priori reason to 

distinguish right from left eye in the study and if one is interested in the change between 

the follow-up and baseline time points, it is convenient and more robust to model as ten 

pairs of eyes than 20 separate eyes.  

Table 8.2 shows the changes between baseline and follow-up activation parameters for 

the three specified regions of interest (cuneus, LOC and VC). It gives the change in either 

side stimulation (right eye and left eye) separately with separate p values and the joint test 

(which in effect combines both L and R sides to get a single p-value: this would 

correspond to the single p-value we would get if we made the eye, the unit of the analysis 

and assessed the change in the 20 eyes, ignoring the side.) for significance using the 

bivariate analysis. A negative value for change indicates a reduction in activation 

parameter between baseline and follow-up, and a positive value indicates an increase.  
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                       Table 8.2: fMRI activation parameter changes between baseline and follow-up for the three regions of interest 

 
               
 

 

 

 

 
                       LOC – Lateral Occipital Complexes; VC – Visual cortex; ROI – region of interest; 
 

Activation parameter changes for the three ROI between baseline and follow-up  for  10  patients’  eyes  are shown. The right 
and left eye changes and their ‘p’  values are represented separately.  The  joint  test  ‘p’  values that combine right and left eyes 
of  individual  patients  are  shown.  The  significant  ‘p’  values  are  shown  in  red.  These  results  are  discussed  below. 

 

 Right eye Left eye Joint 

ROI Change P value Change P value P value 

Cuneus - 0.944 0.073 -0.134 0.78 0.142 

LOC -0.64 0.012 -0.268 0.38 0.042 

VC -0.247 0.454 0.082 0.006 0.002 
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8.4: Discussion: 
 
 
Control (healthy volunteer) eyes and patient eyes (both affected and unaffected) were 

stimulated monocularly, so that the activation patterns for right and left eyes of subjects 

were obtained separately. Affected and unaffected eyes were not separately analysed, as 

there were 16 affected and only 4 unaffected eyes. All 8 groups, as shown above (Fig: 

8.1a-h), showed significant visual cortex activation.  

 

There was significantly more VC activation for controls when compared with patients 

corresponding eye and time-point groups. This is shown in Fig 8.2(a-d). This is expected 

to  be  the  case  with  the  patients’  afferent  visual  pathway  being  affected  with  optic  neuritis.  

However, there was no significant extra visual area activation in patients when compared 

to controls as had been previously noted by various groups as mentioned in chapter 2. 

[70, 91, 135, 157, 166] This may be because of inadequate power in MSCIMS (i.e., the 

small sample size). Also, the patients had a remote history of optic neuritis and some of 

them had poor visual outcome, which could have resulted in poor stimulation due to 

difficulties in fixation. In a cohort with secondary progressive MS, there may also be 

significant grey matter atrophy in the cortex including lateral occipital complexes and 

cuneus where previous studies in acute or recent optic neuritis had demonstrated 

activation. [134, 135] Such a global structural loss could have contributed to reduction in 

sensitivity to detect reorganisation in the brain. 

 

There was no significant difference in activation between the global baseline and follow 

up time points in patients or controls. However, region of interest (ROI) analysis with 

extraction of activation parameters for visual cortex, lateral occipital complexes and 

cuneus in MSCIMS showed slightly different results. There were some significant 
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changes detected between baseline and follow-up activation in these regions for patients. 

As described above, the joint test, which combines right, and left eye activations of 

individual patients showed significant reduction in activation (negative change) in LOC 

and a significant increase (positive change) in visual cortex (Table: 8.2). The cuneus 

change was negative but did not achieve significance.  

The cuneus and LOC are extra visual cortex activations thought to be an adaptive 

response in a situation where there is reduced input into visual cortex due to pathology in 

the afferent visual pathway in MS. [134, 135] If the increased activation seen in the visual 

cortex following treatment was due to improved visual pathway nerve conduction 

resulting from remyelination or repair in the optic nerve, then the extra-occipital adaptive 

response (from LOC in particular) might reduce as its contribution is not required by the 

brain. The ROI findings may therefore support evidence of re-organisation of the brain. 

However, the changes in the right eye and left eye for the visual cortex were in opposite 

directions (see Table 8.2) and although the joint eye ROI change was significant as was 

the positive change in the left eye, the actual value of the positive change is very small 

compared to the bigger negative change in the right eye. The right eye change did not 

achieve significance because of the large standard deviation. Overall, these not entirely 

consistent findings urge caution in the interpretation of the ROI extraction results. Results 

may possibly be more consistent in a future study of a larger cohort. 

 

It could be speculated that the improvement in the visual function and shortening of 

latency of the   visual   evoked   potentials  were   “placebo”   effects   with   the patients trying 

harder and achieving greater attention during the visual assessment and visual evoked 

potential tests in the post treatment phase. However, there was a significant increase in 

optic nerve area, which was analysed blinded to the treatment arm status of subjects and 

time points. This would be difficult to explain as a “placebo” effect. There was also a 

trend towards reduction in T1 hypointense lesion volume and increase in T1 lesion MTR, 
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which would both be compatible with remyelination as a potential mechanism. If indeed 

the improved vision was due to remyelination, the absence of consistent change in 

cortical activation may simply mean that there was no change in cortical adaptive 

plasticity due to the intervention and that the functional MRI measures were not sensitive 

enough in our small cohort to reflect the functional improvement seen in the visual 

functional measures and VEP. 
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Chapter 9: Conclusions: 
 

9.1 Need for repair therapies and trials to detect them:  
 
 

MS poses a considerable challenge in management due to its clinical and pathological 

heterogeneity. Clinical, MRI and pathological studies suggest relative dissociation 

between inflammation and neurodegeneration. While there has been considerable 

progress made in therapeutic options for the inflammatory component of the disease, 

very little progress has been achieved in countering neurodegeneration. There is a 

need to develop treatments that prevent axonal loss, the pathological substrate of 

irreversible clinical disability. Designing clinical trials to detect neuroprotection and 

repair  in  MS  is  challenging.  A  “sentinel  lesion”  approach  with  longitudinal follow up 

of  lesions  at  “sentinel”  sites  such  as  the  optic  nerve,  using  sensitive  and  site-specific 

outcome measures is promising in that regard.  

 

The afferent visual pathway is commonly affected in MS. Following an optic nerve 

lesion or other visual pathway lesions longitudinally -using sensitive structural and 

functional outcome measures - can be a useful approach in testing potential repair 

therapies. 

 

9.2 Afferent visual pathway assessment: 
 
 

Visual function can be assessed using sensitive and quantitative clinical measures 

such as visual acuity, contrast acuity, colour vision and visual field. Optic nerve, tract, 

radiation and visual cortex can be specifically assessed using qualitative and 
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quantitative MRI acquisition sequences and analysis measures, such as are derived 

from T2W, FLAIR, MTR and DT imaging. Optic nerve lesion length, optic nerve 

cross-sectional area, optic nerve MTR, optic nerve DTI, optic radiation DTI and 

visual cortex MTR provide information on the structural integrity of the afferent 

visual pathway. In addition, significant recent advances in retinal imaging using OCT 

have helped in studying neuro-axonal loss in vivo non-invasively without 

confounding from loss of myelin. RNFL and macular volume measurements provide 

insight into neuro-axonal loss in MS, especially the measure of RNFL thickness. 

Further recent advances have enabled segmentation of different layers of the retina. 

The recent discovery of microcystic macular oedema in the inner nuclear layer of the 

retina in patients with MS recently has suggested that inflammation may occur in the 

central nervous system without the need for myelin. [94, 238] Visual functional MRI 

helps in assessing the contribution of adaptive plasticity to functional improvement. 

Visual evoked potential measurements and recently multi focal VEPs further help 

characterising structure/function relationships in the afferent visual pathway.  

 

When all these measures were applied longitudinally in a repair therapeutic trial 

cohort of secondary progressive MS patients with a previous history of optic neuritis 

indicating the presence of a sentinel lesion, the structure-function relationship can be 

studied in detail. The potential pathophysiological factors and their clinical 

correlations were analysed and the hypotheses underlying the effect of potential repair 

therapy in question (stem cells) were investigated. 
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9.3 Mesenchymal stem cells as potential therapeutic agent in MS: 

 
 

Stem cells with the potential to replicate and differentiate into various different cell 

types are very attractive as a potential repair therapy especially in neurodegenerative 

disorders. Specifically, mesenchymal stem cells have shown immuno-modulatory, 

anti-inflammatory, remyelinating properties in animal, in vitro and human studies. 

With the evidence in EAE mice and other autoimmune conditions in humans, the 

potential of their use as a therapeutic option in MS is worth exploring. As with any 

therapeutic agent, it is imperative to test the safety before judging its efficacy in MS 

patients. It means that the initial clinical studies, with the primary outcome measure 

being safety, could only be done in a small number of patients.  

 

While such studies will not be sufficiently powered to investigate questions about 

efficacy, they provide a unique opportunity to test the safety and feasibility of the 

treatment approach, and they can also provide information on the utility of a proof-of-

concept trial design, whilst also obtaining preliminary insight in to the potential for 

efficacy (through analysis of exploratory outcome measures). This approach may also 

provide valuable information to help in designing future larger trials with efficacy 

measures as the primary outcomes.  
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9.4 MSCIMS - An exploratory phase IIa trial of autologous mesenchymal stem 

cells in MS: 

 
Mesenchymal stem cells were successfully isolated, expanded, and administered 

intravenously to all trial participants with MS. Karyotypic stability was demonstrated 

by array Comparative Genomic Hybridisation (CGH). No significant immediate or 

delayed adverse reactions were observed. Of the visual pathway efficacy outcomes, 

improvement was seen following treatment in visual acuity and contrast sensitivity, 

together with a reduction in VER latency, increase in VER amplitude, and an increase 

in optic nerve cross-sectional area. Although it is not possible to definitively determine 

the biological mechanism of these effects, taken together they are consistent with the 

promotion of endogenous remyelination following treatment. A post-treatment 

cessation of the progressive rise in EDSS seen in the pre-treatment phase, together 

with the trends observed towards a reduction in brain T1 hypointense lesion volume 

and an increase in brain T1 hypointense lesion MTR, suggest that the effects of 

treatment were widely distributed throughout the CNS rather than specific to the 

anterior visual pathway.  

 

The concept of longitudinal follow up of a single “sentinel” lesion, with objective and 

quantitative imaging biomarkers which provided insight into the pathophysiological 

processes, was successfully applied in a small cohort of secondary progressive MS 

patients in the MSCIMS trial. The structural integrity of the whole afferent visual 

pathway is responsible for visual function. Any disruption to this structure in MS leads 

to abnormal visual function. There are endogenous recovery processes that help 

recover both structure and function to some extent. In MS-associated optic neuritis, 
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functional recovery is often relatively good, even though there is typically significant 

permanent structural damage (e.g., retinal nerve fibre layer thinning) after optic 

neuritis. This discrepancy is analogous to the clinical radiological paradox that is 

sometimes seen in MS. This may be due to the redundancy of the optic nerve fibres in 

addition to cortical reorganisation of the brain where extra visual cortical areas may be 

recruited to help with visual function. Functional MRI helps understanding this 

concept. However, we did not see clear evidence for such an adaptive response in the 

MSCIMS trial. Regional analysis for fMRI activation did show differential activation 

changes between visual cortex and lateral occipital complexes. However, the 

directions of change were inconsistent between right and left eyes making their 

interpretation difficult. 

 

Structural imaging, which includes MRI and OCT provides information about various 

pathological processes in MS such as break down of blood brain barrier, oedema, 

inflammation, demyelination, axonal loss, gliosis, remyelination. In the MSCIMS trial, 

these imaging measures provided a unique opportunity to study the effect of a stem 

cell therapeutic intervention on the structural integrity of a sentinel lesion (in the optic 

nerve) and also – to some extent hence extrapolate this information on - lesions 

elsewhere in the brain.   

However, there are a few limitations in the MSCIMS study, one has to bear in mind 

while interpreting the findings. Firstly, it was an open label study with no placebo 

controls. Also there was no blinding apart from only a few efficacy measures (VEP, 

Optic nerve area). These factors could mean that, the placebo effect and observer bias 

have both affected the results. The small sample size and multiple assessments with 

multiple statistical analyses increases the risk of type II and type I error respectively. 

MSCIMS  is  a   ‘proof  of  concept’  study  and  further   larger   trials – phase IIb and III – 

must incorporate essential elements in the study design (e.g., double-blinding, placebo 
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control, and a sample size that is powered to demonstrate unequivocal efficacy using 

biologically and/or clinically meaningful outcome measures) that overcome the 

limitations of our phase IIa trial. 

 

9.5 Summary: 
 

In summary, this thesis discusses the need for neuroprotective and repair therapies in 

MS   and   the   concept   of   a   “sentinel   lesion”   approach. Afferent visual pathway 

assessment in a clinical phase IIa trial of mesenchymal stem cells in multiple sclerosis 

has been described as a proof of this concept. Isolation, expansion, and infusion of 

MSC were demonstrated to be feasible and safe. Following treatment, patients 

improved on clinical, physiological, and structural measures, hinting at the potential 

for diffuse or multifocal remyelination due to the promotion of endogenous tissue 

repair.  

 

Although MSCIMS was a small proof of concept study with safety as the primary 

outcome, the intriguing results that arise from it provide a rationale for larger double-

blinded and placebo-controlled trials of this therapeutic approach in the future with 

measures of efficacy being the   primary outcomes. 
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