
 
 

1 
 

 
 
 
 
 
 

Mechanisms and functions of 
molecular interactions during plasmid 

rolling circle replication 
 
 
 

Thesis submitted in accordance with the requirements of the 

University College London, UCL 

 
 

Claudia Arbore 
Student No. 949843 

 

Degree of Doctor of Philosophy 

 

Division of Physical Biochemistry 

National Institute for Medical Research 

Mill Hill 

London 

NW7 1AA 

 
 



 
 

2 
 

I, Claudia Arbore, confirm that the work presented in this thesis is my own. 

Where information has been derived from other sources, I confirm that this has 

been indicated in the thesis. 
 

 



 
 

3 
 

Acknowledgements 

Foremost, I would like to thank my primary supervisor, Dr. Martin Webb, for his 
exceptional advice and support throughout my PhD. Also, I wish to thank Dr. 
Justin Molloy, for his support during my PhD and for teaching me how to use 
the AFM.  
I would like to thank the members of my thesis committee, Dr. Justin Molloy, Dr. 
John Offer and Dr. Ian Taylor, for their valuable advice and shared knowledge 
at different stages of my PhD. I would also like to thank the Webb lab group for 
their encouragement, and for making various reagents/biosensors that I have 
used in several experiments.  
I wish to thank my boyfriend, Emilio Pagliarulo, for his care, love and patience. 
Finally, I wish to thank my family for being very supportive and encouraging 
throughout the course of my studies.   
 
I dedicate this thesis to my beloved parents.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

4 
 

The work presented in Chapter 3 has been published in: 
 
 
Claudia Arbore, Lori M. Lewis, Martin R. Webb. Kinetic Mechanism of initiation 

by RepD as a Part of Asymmetric, Rolling Circle Plasmid Unwinding. 

Biochemistry. 2012; 51(17): 3684-3693. 

 
 
This work has also been presented at:  
 
2011: Poster presentation, Helicases and NTP-driven Nucleic Acid Motors: 

Structure, Function, Mechanism and Roles in Human Disease. FASEB Summer 

Research Conference, Colorado, USA. 

2012: Oral presentation, UCL-NIMR day, UCL, London, UK.  



 
 

5 
 

 
Abstract 
 

The system under investigation in this project is the replication of plasmid 

DNA belonging to the pT181 family from the Gram-positive Staphylococcus 

aureus. This plasmid replicates through an asymmetric rolling circle 

mechanism, initiated by a plasmid-encoded protein that nicks the supercoiled 

plasmid allowing unidirectional unwinding by the helicase and elongation by a 

polymerase. The proteins involved in this process are the replication initiator 

protein, Staphylococcus aureus RepD, the ATP-driven 3’ to 5’ helicase, 

Bacillus Stearothermophilus PcrA, and the S. aureus DNA polymerase III.  

The project is mainly focused on three different aspects of plasmid 

replication including the formation of the initiation complex, the involvement 

of DNA polymerase III during plasmid elongation and the analysis of plasmid 

replication dynamics using AFM imaging.  

The kinetic mechanism of RepD initiation is examined here. Plasmid 

nicking occurs at a rate > 25 s-1 (30 °C).  Without RepD, PcrA is a poor 

helicase as it is unable to unwind as short as 20 bp DNA junctions. The 

function of nicking is also investigated as requirement of PcrA processivity 

and Rep-PcrA translocation complex.  

The inclusion of DNA polymerase in these in vitro experiments generates 

a full in vitro plasmid replication system. The kinetics of PcrA-mediated 

unwinding has been studied previously, but the involvement of polymerase is 

little understood. PcrA is able to unwind plasmid DNA at a rate of ~30 bp s-1 

(30 °C), however the inclusion of polymerase increased the unwinding rate to 

~71 bp s-1 (30 °C). 

Using a fluorescence-based kinetic approach combined with rapid-mix 

techniques and AFM imaging, a variety of processes are investigated during 

RepD, PcrA and PolC mediated DNA replication. These in vitro data would 

provide an understanding of kinetics and dynamics of several complex 

processes during plasmid replication. 
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1.1. DNA replication mechanisms 
 

Genetic information of any organism ranging from single cells such as 

bacteria to higher eukaryotes is contained in DNA. The survival and proliferation 

of all organisms depends on the ability to duplicate the DNA molecule in an 

accurate and efficient way. 

DNA replication is a biological process in which a single parental DNA 

molecule is duplicated to form two daughter molecules. The DNA molecule is 

formed by two complementary strands of opposite polarity arranged in the form 

of a double helix through hydrogen bonding [1]. During replication one strand of 

the parent DNA is passed to each of the daughter molecules and is used for the 

synthesis of the newly generated strand.  

The process of replication is accomplished through the exquisite coordination 

of multiple proteins that collectively form the replisome. Despite the common 

replicative function in all organisms, the number, and the interactions of such 

macromolecules differ between species [2-5]. Generally, the formation of the 

replisome requires the coordinated assembly of motor proteins such as 

helicases and polymerases that guarantee a faithful transmission of the genetic 

information in living systems.  

  

1.1.1. Bacterial DNA replication 
 

The genetic material of bacteria is contained in nucleoids and located in the 

cytoplasm. During bacterial replication, the DNA is duplicated and equally 

distributed to the daughter cells. Generally, DNA replication begins on the 

bacterial chromosome at a specific sequence of nucleotides called the origin [6]. 

The latter contains peculiar DNA sequences that are recognized by initiator 

proteins, which recruit other replicative proteins. Initiation of replication is 

accomplished by the loading of the helicase on the origin. In order to generate 

the replication fork, such enzymes perform unwinding by breaking the hydrogen 

bonds that hold the DNA strands together using the energy of ATP hydrolysis. 

Reannealing of the DNA is prevented by the binding of the single-stranded 

binding protein (SSB) along the separated strands. The activity of a primase 
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generates the free 3’-OH to promote polymerase catalysis. At this stage, the 

free nucleoside triphosphates in the cytoplasm are paired up with their 

complementary base and joined to the growing strand by the DNA polymerase 

[2].  

 

In the Gram-negative E. coli organism, the replisome contains the replicative 

polymerase (Pol III holoenzyme), the hexameric DnaB helicase, DnaG primase, 

and SSB (Figure 1.1) [7]. Due to the antiparallel orientation of the DNA strands 

and the unidirectional synthesis of the DNA pol III, the leading strand and the 

lagging strand synthesis requires the coordinated use of two pol III molecules 

within the replisome. The synthesis of the lagging strand is discontinuous 

requires and occurs as synthesis of short RNA primed fragments, the Okazaki 

fragments. 

Gram-positive and Gram-negative bacteria share many of the replisome 

components (Table 1.1) [7, 8]. In the Gram-positive Bacillus subtilis organism, 

PolC is the replicative polymerase analogous to the E. coli DNA pol III α 

subunit. However, a second, less processive polymerase, DnaE has been 

shown to be involved in lagging strand synthesis [9].  

 

In this thesis, the replication of the pC221 plasmid from the Gram-positive 

Staphylococcus aureus was investigated. For many characterized plasmids, 

replication occurs in a bi-directional manner. However, some plasmids, 

including pC221, replicate with an alternative mechanism, termed asymmetric, 

rolling-circle replication [10, 11]. The sequential synthesis of the two DNA 

strands is the main feature of such replicating process. In view of this, the 

process of replicating an organism’s genomic material is complex and 

understanding how DNA replication is accomplished provides important 

information about potential control elements. 

Several biochemical mechanisms during plasmid replication have been 

studied in terms of DNA-protein and protein-protein interactions. Particularly, 

the initiation and elongation of replication were explored by measuring the 

activity of the replicative proteins.   
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Figure 1.1. General features of the E. coli replication fork. The DNA duplex 
unwinding is performed by a DNA helicase. SSB proteins bind the ssDNA 
generated by the helicase hereby preventing reannealing. A primase 
periodically synthetizes short RNA primers on the lagging strand to allow 
bidirectional DNA synthesis by the DNA polymerase III.  The DNA polymerase 
III catalyzes leading and lagging strands synthesis in the 3’ to 5’ direction. 
 
 
Function Gram-negative (E. 

coli) protein 
Gram-positive  
(B. subtilis) protein 

Leading strand 
synthesis 

DNA pol III  DNA pol III 

Lagging strand 
synthesis 

DNA pol III DnaE 

Primase DnaG DnaB 

Hexameric helicase DnaB DnaC 

Single stranded DNA 
binding  

SSB SSB 

 
Table 1.1. Proteins forming the E. coli and B. subtilis replisomes.  
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1.1.2. Asymmetric rolling circle replication 
 

Plasmids are circular genetic elements, made of either single or double 

stranded DNA, which are capable of replicating independently from the 

chromosomal DNA in a controlled way within the host. Therefore, they are good 

models to explore the mechanisms involved in DNA replication and control. 

Plasmids often carry genes that offer the host a selective advantage, such as 

antibiotic resistance, and so it is important to control their replication and spread 

[12].  

 

Plasmid replication can be conveniently divided into three stages: initiation, 

elongation, and termination. The first basic problem of any process of DNA 

replication is that of priming, since none of the replicative polymerases can start 

DNA synthesis without a primed DNA. Priming is achieved during initiation. 

Although, the replicative DNA polymerase is unable to initiate de novo 

replication of a circular plasmid, the latter is generally substrate of an initiator 

protein that cleaves one DNA strand to generate a free 3′-OH end. Therefore, 

initiation plays an additional role, as it forms a point of control for replication 

[13].  

 

Staphylococcal plasmid replication has been well studied as many of the 

plasmids encode antibiotic resistance genes [12]. As mentioned above, 

staphylococcal plasmids, belonging to the pT181 family, replicate by an 

asymmetrical rolling circle mechanism (Figure 1.2) [14]. In this process, the 

synthesis of the two DNA strands is not concurrent. According to the 

terminology being used to describe this process, the two DNA strands are 

named as (+)- and (-)-strand, and the (+)-strand is the first to be synthesized by 

the polymerase. The plasmids belonging to the pT181 family contain a Rep 

gene encoding an initiator protein, a double stranded origin (DSO or ori) 

containing a series of inverted complementary repeats (the ICR sequences), at 

least one single stranded origin (SSO) and other regulatory elements [14-16].  
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The asymmetric rolling circle replication starts with the interaction between 

the initiator protein, Rep, and the DSO sequence on the plasmid [15]. Origin 

sequences differ in the recognition site for a specific Rep protein. RepD is the 

replication initiator from the staphylococci plasmid pC221, member of the pT181 

plasmid family [17]. RepD binds as a dimer to the high affinity ICRIII site 

contained in the DSO, whilst allowing the cruciform structure containing ICRII 

into close proximity (Figure 1.2, step 1) [15, 18]. The protein nicks the DNA on 

the (+)-strand of the ICRII sequence resulting in a covalent phosphotyrosine 

bond between the tyrosine 188 within the active site of RepD and the 5′ end of 

the nicked DNA (Figure 1.2, step 2) [17]. It then remains part of the replication 

complex during the complete replication of the plasmid DNA.  

Strand elongation is initiated by recruitment of PcrA helicase and DNA 

polymerase III (Figure 1.2, step 3).  PcrA binds to the exposed single stranded 

DNA and unwinds the duplex in the 3′ to 5′ direction. The DNA polymerase III is 

then able to extend the free 3′ OH of the (+)-strand around the plasmid (Figure 

1.2, step 4).  RepD protein remains associated with PcrA during extension, 

resulting in displacement of a single stranded DNA loop. Reannealing of the 

ssDNA is prevented through (+)-strand synthesis by the polymerase and SSB 

binding on the displaced ssDNA.  DNA synthesis continues around the plasmid 

until the complex reaches the DSO again where termination starts.   

At this point, RepD performs a series of transesterfication (strand exchange) 

events in order to resolve the complex (Figure 1.2, step 5) [19, 20].  During 

strand exchange, the Rep protein is thought to use catalytic nicking sites on 

each subunit of the dimer to sequentially nick the newly synthesized strand and 

the single stranded loop. The details of this process remain to be elucidated.  

The complete double stranded plasmid is released, along with a circular 

single stranded plasmid and RepD as an inactive form (Figure 1.2, step 6) [20]. 

The displaced single stranded plasmid is able to initiate replication from a 

region of secondary structure, the single stranded origin (SSO) [21]. Finally, the 

new plasmid is substrate for a DNA gyrase, whose activity generates a 

supercoiled plasmid (Figure 1.2, step 7). The latter can then be substrate for a 

fresh RepD protein to start a new replication event. 
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The wealth of genetic information carried by plasmids and its impact on the 

environment and human health, have stimulated research into plasmid 

maintenance and antibiotic resistance.  

 
 

 
 
Figure 1.2. Schematic representation of asymmetric rolling-circle plasmid 
replication. RepD interacts with the oriD (step 1) and nicks the ICRII sequence 
(step 2). The replicative enzymes, DNA polymerase III and PcrA helicase, are 
loaded on the ssDNA formed by RepD activity (step 3). PcrA performs 
unwinding and the polymerase synthesizes the new (+)-strand (step 4). The 
SSB protein binds the displaced (+)-strand. Replication continues until 
termination occurs on the DSO (step 5). The newly synthesized plasmid is 
released (step 6). This is substrate for a DNA gyrase (step 7). 
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1.1.3. Replication initiator proteins of the pT181-like plasmids 
 

As mentioned, staphylococcal plasmids, which replicate by a rolling circle 

mechanism, encode a replication initiator protein (Rep). The first Rep protein to 

be identified, RepC, is a 38-kDa protein encoded by the tetracycline resistance 

pT181 plasmid [22, 23]. A number of Rep proteins homologous to RepC have 

since been identified. The Rep gene sequences of six pT181-like plasmids are 

currently known and they encode proteins sharing 62% amino acid sequence 

identity [24]. Such plasmids also contain the origin of replication (ori), which 

include specific inverted repeated sequences (ICR) that finely regulate 

replication being the substrate for the initiator proteins [17]. The ICRII 

sequences involved in nicking are highly conserved among the different plasmid 

groups, whereas an adjacent less conserved binding sequence (ICRIII) is found 

in different origins. A comparison between two different origins is shown in 

Figure 1.3A.  

 

The initiator proteins have origin-specific, nicking-closing activities that are 

responsible for their biological functions of initiation and termination of 

replication [25, 26]. Replication is started through Rep binding to the ICRIII 

sequence and nicking at a unique position within the (+)-strand of the ICRII 

sequence. Since the ICRII sequence is highly conserved, it is the interaction 

between Rep and ICRIII sequence, which confers specificity in plasmid 

replication [27]. Structure-function analyses have shown that the initiator 

proteins belonging to a particular family have highly conserved nicking domains 

but rather divergent DNA binding domains [28]. Hence, the DNA interaction site 

confers specificity and each Rep protein is active, in vivo, only at the cognate 

origin of replication of the encoding plasmid [17]. Mutational analysis of the Rep 

proteins showed that switching six specific amino acids between Rep proteins 

could switch their replication specificity. 

 

This study deals with the RepD initiator protein specified by the plasmid 

pC221. RepD binds as dimer on the oriD sequence. Such DNA-protein 

interaction can induce a cruciform structure in the origin (Figure 1.3B) [15, 19].  
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Previous studies showed that incubation of the pC221 plasmid with RepD 

caused a double-strand break. The precise location of the nicking on the (+)-

strand of the ICRII (shown with a red arrow in Figure 1.3B) was previously 

determined through sequencing electrophoresis [25].  

 

 

 
 
Figure 1.3. The origin of replication. (A) Sequence alignment of the origins, 
oriC and oriD, of the pT181 and pC221 plasmids. The nick site is shown in bold. 
The sequence identity is indicated with dots. (B) The sequence and predicted 
secondary structure of the oriD. RepD binds the supercoiled plasmid on ICRIII 
sequence at the oriD. RepD binding bends the DNA and promotes the ICRII 
extrusion. The nick site, indicated by the arrow, is located within a loop of the 
ICRII sequence. 
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1.1.3.1. Initiator protein activities and functions 
 

One of the main biological activities of the initiator proteins is the removal of 

supercoiling in the DNA plasmid [25]. The formation of a ‘relaxation complex’ is 

achieved through the nicking activity. As the final result is a change in the 

plasmid topology and loss of supercoiling, such proteins are closely related to 

relaxases like the topoisomerase enzymes. For this reason, RepD activity is 

also termed “topoisomerase I-like” [17, 22]. DNA relaxation promotes the 

loading of the replicative proteins and their activities. 

 

The chemistry of the nicking reaction is a transesterification, whose final 

product is a nicked double-stranded DNA with a sequestered 3’-OH and the 

covalently bound Rep protein to the 5’-end via a phosphotyrosine linkage [25]. 

The mechanism for a transesterification reaction catalysed by a relaxase is 

shown in Figure 1.4 [29]. A base catalyst acts abstracting a proton to the 

tyrosine residue that performs a nucleophilic attack to the phosphorus in the 

DNA backbone. Upon attack, a pentavalent phosphorane transition state is 

formed, accompanied by the buildup of negative charge on the non-bridging 

oxygens. A general acid resolves the transition state promoting the expulsion of 

the 3’ hydroxyl group. This results in DNA strand cleavage and opening of the 

helix. The overall reaction is isoenergetic and reversible as a second 

transesterification can religate the DNA. The reversibility is important for RepD 

biological function in termination.  

 

Cofactors are often required for full catalytic activity. Divalent metal ions are 

essential cofactors as they can perform both structural and catalytic functions 

[30]. In the transesterification reaction, Mg2+ would stabilize the negative 

transition state by neutralizing its charge, and/or assist the negative leaving 

group at the 3’-end [30]. However, there are still many open questions regarding 

the atomic mechanism of the catalysis. Such a mechanism of cleavage and 

religation might involve several basic or acidic amino acid residues within the 

protein. The manner in which the free 3′-end interacts with the protein during the 

reaction and the atomic mechanism of strand passage, as well as the function 
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of magnesium during several catalysis steps are some of the questions that 

remain to be answered. Structural information would be essential to address 

these questions. 

 

The Rep proteins support just one round of plasmid replication [31]. Once 

nicking is performed, RepD recruits PcrA helicase and assists unwinding up to 

the termination stage. At the end of one replication event, RepD is released as 

an inactive form having a short oligonucleotide (11 nucleotides) attached to its 

active site [20, 31]. RepD inactivation would be a potential mechanism to control 

replication, as the released inactive protein is unable to act on a new plasmid 

substrate [32]. Little is currently known about the molecular events of 

termination except that the initiator protein needs part of the ICRII including the 

nick site for strand exchange. The binding site, ICRIII, is dispensable in order to 

terminate replication [28]. There is also a lack of structural information for the 

pT181 family of initiator proteins. The acquisition of such information would 

elucidate the molecular mechanisms of the protein-DNA interactions, the 

position of the amino acids involved on a three-dimensional level and clarify 

previous mutational and functional studies. 
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Figure 1.4. Steps of a transesterification reaction catalysed by a relaxase. 
“A” and “B” are general acid or base catalysts. See text for details.  
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1.1.4. Helicases 
 

Helicases are a ubiquitous class of motor proteins that use the energy of 

nucleoside triphosphate hydrolysis to translocate along nucleic acids and 

separate the complementary strands of the duplex [33]. As consequence, 

helicases are a subgroup of translocases. They play essential roles in many 

cellular processes including DNA replication, repair, recombination, transcription 

and chromatin remodeling, and thus are involved in most aspects of DNA and 

RNA metabolism.  

 

The translocation rates of these enzymes can vary from a few to several 

thousand base pairs per second [34]. Most helicases are processive and some 

can catalyze several thousand base pair separations before dissociation. 

However, their activity can be modulated by the interaction with particular 

protein partners and accessory factors [35]. 

 

Different helicases can function as monomers, dimers or higher-order 

oligomers and they can either use DNA, RNA or DNA/RNA hybrids as 

substrates [34]. DNA helicases became prominent with the discovery that 

mutations in their genes are associated with numerous human syndromes 

including chromosomal instability and age-related diseases along with cancer 

[36, 37].  

 

1.1.4.1. Classification of helicases 
 

Helicases were originally classified into families, in 1993 by Gorbalenya and 

Koonin. In their work helicases were divided in 6 superfamilies (SF) on the basis 

of primary structure similarity and structure-function analysis. However, 

subsequent studies revealed that many helicases use the energy of NTP 

hydrolysis to move along nucleic acids rather than unwinding the duplex. With 

the discovery of new mechanistic functions became apparent that there were 

some deficiencies in the original classification. 
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Consequently, Singleton et al., made a new classification used to date, 

including new motifs and dividing the proteins into A and B type, according to 

their direction of movement (Figure 1.5) [34]. For the largest two groups, SF1 

and SF2, the seven motifs originally described were expanded to include new 

motifs, TxGx [38], TRG [39], Q-motif [40], motif 4a [41]. The six superfamilies 

and their motifs are shown in Figure 1.5A. Despite the diversity between the SF, 

there are a few common features. All enzymes retain the “core domains” formed 

by neighboring RecA-like folds. This domain couples NTP binding and 

hydrolysis to protein conformational changes as mechanism for energy 

transduction [42].  

The helicases belonging to the SF1 and 2 contain two RecA-like folds on a 

single polypeptide chain, the other superfamilies contain from 6 to 12 individual 

RecA folds. They are generally considered to act as monomers or dimers [34]. 

However, the oligomeric state of these two helicases groups is still disputed. 

Helicases belonging to SF3 to SF6 are ring-shaped hexamers or double-

hexamers [34, 43]. The nucleotide binding pockets are located between the 

subunits. Several models of ATP hydrolysis exist from alternate subunit to 

sequential ATP binding and hydrolysis, to stochastic and concerted models. 

Helicases can also be subdivided on the basis of the direction of 

translocation (Figure 1.5B) [34]. Of all the enzymes characterized to date, SF1, 

2 and 6 contain helicases with both type of directions of translocation, 3′ > 5′  

(type A) and 5′ > 3′  (type B). SF3 retain 3′ > 5′ translocation directionality, 

whereas SF 4 and 5 contain 5′ > 3′ helicases. According to the nature of the 

nucleic acid substrate, we can distinguish type α or β helicase whether they 

translocate on ssDNA or dsDNA (Figure 1.5B). To date, all SF1 enzymes 

appear to be type α whereas SF 2 contains both types of enzymes.  
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Figure 1.5. Helicase classification. (A) The six superfamilies of helicases 
sharing the universal motifs. Examples of helicase members of each family are 
also indicated. The core helicase domains are shown in red and blue. These 
regions are assigned to the SF based on conserved sequences/domains. 
Universal domains are shown in yellow, while the domains specific to each SF 
are shown in black. The location of these domains is arbitrary in these 
examples. (B) Helicase classification by direction of translocation and nucleic 
acid substrates (shown in schematic form). Helicases can bind to ssDNA or 
dsDNA and translocate 3 ́ > 5 ́ or 5 ́ > 3  ́directions. 
  

 
1.1.4.2. PcrA helicase 
 

PcrA is an ATP-driven 3′ > 5′ helicase, member of the SF1, and an essential 

enzyme in many Gram-positive bacteria. It is involved in several processes, 

such as rolling circle replication and DNA repair. This enzyme was first 

discovered in Staphylococcus aureus as conditional mutants of PcrA causing 
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reduced plasmid copy number, giving rise to the name of ‘plasmid copy number 

reduction A’ [44]. 

 

The crystal structure of the Bacillus Stearothermophilus PcrA has been 

solved at high resolution revealing two domains (1 and 2) that are further 

divided into two subdomains, A and B (Figure 1.6A) [45].  The ATP-binding site 

is situated in a cleft between domains 1A and 2A. Subsequent crystal structures 

of PcrA in complex with a 3' tailed DNA duplex and a nonhydrolyzable ATP 

analogue revealed the main conformational changes and the mechanism of 

PcrA-mediated DNA unwinding (Figure 1.6A). Conformational changes start 

with the interaction between the ssDNA and the helicase through the 2B 

domain. This causes the 2B subdomain to fold over the 1B domain. At this 

stage, another conformational change occurs upon nucleotide binding. This 

allows the 1A and 2A subdomains to close around the ATP (Figure 1.6B). The 

cleft closure has two main consequences:  it destabilizes the double strand by 

moving the duplex onto a negatively charged surface and it promotes the 

movement of the single-stranded region towards the core motor domain (1A, 

2A). These movements coupled with ATP hydrolysis and release result in 

translocation along the DNA and duplex destabilisation, leading to strand 

separation (Figure 1.6B).  

 

The amino acid residues of PcrA involved in ssDNA interaction during 

translocation are shown in Figure 1.6C. The DNA binding site is composed of a 

series of aromatic amino acids. Two phenylalanine residues, F64 and F626 

make alternating contacts with individual bases. Initially, F64 in domain 1A is 

tightly bound with the ssDNA. Upon ATP binding, the ssDNA interacts with 2A 

domain through F626, while it is released from F64. At the same time the two 

domains move closer together. ATP hydrolysis causes the ssDNA binding to the 

pockets in 1A and release from the pockets in 2A. The domains move apart, 

causing the ssDNA to be pulled along the DNA binding channel relative to 

domain 2A, translocating along the DNA. In this conformation a new cycle can 

start [45]. Thus, two independent processes occur, each dependent upon ATP: 



Chapter 1  Introduction 
 

 

31 
 

translocation along the ssDNA and destabilisation of duplex DNA leading to 

DNA unwinding [46]. 

In this model of translocation, it is assumed that the translocation step-size is 

one nucleotide and the ATP cost per base pair unwound is also one. It further 

presumes that dsDNA binding is an independent process from ssDNA 

translocation. These assumptions are supported by previous work measuring 

ATP hydrolysis during PcrA ssDNA translocation [47]. 

       

                                                                         
Figure 1.6. PcrA structure and function. (A) High resolution crystal structure 
of PcrA in complex with DNA and the ATP analogue (AMPPNP).  PcrA 1A, 2A, 
1B, 2B domains shown respectively in violet, green, pink and lime (B) Model of 
PcrA translocation on ssDNA. The diagram shows the action of these domains 
(by the curve arrows) in response to ATP binding and hydrolysis. The linear 
arrow shows the direction of movement along the DNA. (C) Amino acid residues 
involved in translocation. The aromatic residues involved in binding ssDNA are 
shown in green and the ssDNA bases in blue. The mechanism is described in 
the text. 
 



Chapter 1  Introduction 
 

 

32 
 

1.1.4.3. In vitro studies of PcrA activity 
 

The B. stearothermophilus PcrA activity has been well characterised in vitro. 

The main features of this motor enzyme are translocation on ssDNA and 

dsDNA unwinding through the energy generated from ATP hydrolysis [47]. The 

helicase is able to translocate along short stretches of ssDNA at a rate of ~80 

bases s-1 at 20°C [48]. PcrA binding affinities for different length 

oligonucleotides were determined in previous in vitro studies as Kd ~160 nM for 

dT16, and its ATPase activity during translocation was one ATP per base [47].  

 

The kinetics mechanism of the ATPase cycle of PcrA has been analysed 

previously [49].  The study showed that the chemical cleavage is the rate-

limiting step in the cycle and is greatly accelerated by bound DNA. The 

cleavage step, rather than Pi release, was proposed to be associated with a 

major transition in the helicase structure and possibly movement along DNA. 

 

PcrA is required for rolling circle replication of the S. aureus plasmid in vivo 

[50]. Previous studies performed in vitro have shown that PcrA requires Rep 

initiator protein for its recruitment on the origin [51, 52]. Although PcrA can 

efficiently translocate on ssDNA, it is not able to unwind short lenghts of DNA 

duplex on its own [52]. The helicase is unable to unwind DNA substrates as 

short as 30 bp on its own, but in the presence of RepD a single PcrA molecule 

can unwind a plasmid of over 6 kb at a rate of 30 bp s-1 (at 30° C) with a 

coupling ratio of one ATP per base pair in vitro [52]. It was suggested that PcrA 

and RepD interact to form a functional and processive translocation complex. 

However, the location of this interaction is not known yet.  

More recent single-molecule studies have shown that PcrA and RepD unwind 

plasmid lengths of DNA in a single run, and that PcrA is active as a monomer 

[53].  

 

Generally, a passive helicase relies on the transient fraying of the base pairs 

at the ssDNA–dsDNA fork for unwinding, whereas an active helicase directly 

interacts with the fork destabilizing it. A direct comparison between helicase 



Chapter 1  Introduction 
 

 

33 
 

activities when either moving along dsDNA or ssDNA can be made to determine 

whether unwinding occurs through an active or a passive mechanism. Hence, 

helicases that have similar rates of movement on dsDNA and ssDNA are 

considered active. Dda is an example of active helicase [54]. 

From recent studies it was shown that PcrA unwinding rate was several-fold 

slower than the translocation rate on single-stranded DNA, and so a partially 

passive mechanism of DNA unwinding was proposed for PcrA [53].  

 

The function of PcrA in DNA metabolism has been extended with previous 

studies showing that the helicase can displace proteins effectively from DNA 

[55]. This is the case of RecA protein that is typically found to trap ssDNA 

during recombination in order to facilitate repairs. RecA binds to ssDNA in the 

presence of ATP to form helical nucleoprotein filaments serving as scaffolds 

upon which homologous recombination occurs. A proposed mechanism for this 

activity is that PcrA can dismantle RecA filaments by reeling-in DNA [55]. Using 

single-molecule fluorescence approaches, another study showed that such a 

displacement by PcrA requires the RecA ATPase activity [56]. This would 

indicate a possible role of PcrA in DNA repair and recombination. In support of 

this hypothesis is the finding that deletion of PcrA is lethal to an organism, and 

that the PcrA homologue, E. coli UvrD helicase, was shown to perform RecA 

filament removal [57]. 

 

1.1.5. DNA polymerases 
 

DNA polymerases are involved in many DNA metabolic pathways such as 

DNA repair and replication. During DNA synthesis, such enzymes "read" an 

intact DNA strand and use it as a template to synthesize the new strand. The 

final product is a newly polymerized molecule complementary to the template 

strand and identical to the template's original partner strand. Despite the 

continuous substrate changes during subsequent incorporation events, DNA 

polymerases retain a remarkable degree of specificity and selectivity. They 

recognize and select the correct base pairing partners from four distinct bases 

[5, 58]. 
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Most replicative DNA polymerases also have an exonuclease activity in the 

opposite direction of DNA synthesis. This exonuclease activity provides the 

proofreading function and enables the enzyme to “erase” misinsertions and 

prevent mutation events. Structural resolution of DNA polymerases complexed 

with a DNA substrate has given insights about the principles that govern the 

transference of the 3′ terminus between both active sites [59-61]. Briefly, the 

exonuclease domain does not participate in the polymerization reaction itself. 

When an incorrect base is incorporated in the template strand, a greater 

structural fluctuation, permitted by the weaker hydrogen bonding of the non-

complementary base, frequently brings the newly synthesized strand to the 

exonuclease site, followed by excision of the incorrect base. This process 

further enhances the fidelity of replication of the replicative enzymes [59].  

 

Based on sequence homology as well as crystal structure studies, DNA 

polymerases can be divided into seven different families: A, B, C, D, X, Y, and 

RT [4]. Family A contains both replicative enzymes such as T7 DNA 

polymerase as well as repair members like E. coli DNA pol I and B. 

stearothermophilus pol I. Family B includes replicative polymerases encoded by 

some bacteria, bacteriophages and eukaryotic organisms.  An example of 

polymerase belonging to this family is the E. coli pol II. 

The primary bacterial replicative polymerases are included in family C. This 

comprises the α subunit of the DNA pol III in Gram-negative bacteria and the 

PolC in Gram-positive bacteria. C family polymerases are large multidomain 

proteins and have only recently been studied [62]. 

Polymerases belonging to the D family are still not well characterized and are 

thought to be replicative polymerases. Family X contains eukaryotic 

polymerases such as pol β, pol σ, and pol λ. These are mostly involved in DNA 

replication and repair. Members of the Y family are translesion synthesis (TLS) 

polymerases, which perform DNA synthesis across template lesions. Pol IV and 

Pol V also belong to this family. The reverse transcriptase (RT) family contains 

polymerases that use an RNA template for DNA synthesis. Members of this 
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family are the eukaryotic telomerases and polymerases encoded by 

retroviruses.  

The existence of different replicative DNA polymerases performing the same 

function suggests that DNA replication process experienced a complex 

evolution.  

 

1.1.5.1. C family of replicative polymerases 
 

The DNA polymerases involved in duplication of bacterial chromosomes are 

the DNA polymerase III in Gram-negative bacteria and the PolC in Gram-

positive pathogens [63, 64]. Such polymerases are also termed replicative 

enzymes as they catalyse the incorporation of mononucleotides into a growing 

primer using a DNA template to direct each incorporation event. They perform 

the repetitive cycle of nucleotide binding, base-pairing, phosphodiester bond 

formation, product release and movement to the next templating position.  

 

The chemistry required to elongate the DNA is a simple phosphoryl transfer 

reaction in which the α-phosphate of the incoming dNTP undergoes nucleophilic 

attack by the 3’-OH of the primer strand of the nucleic acid. The reaction is 

catalyzed with the participation of carboxylate residues that coordinate two 

metal ions (Mg2+) within the active site of the DNA polymerase. Typically, an 

aspartate residue serves as base to abstract the proton from the 3’-OH on the 

deoxyribose of the dNTP to form a more reactive nucleophile. The latter can 

now attack the α-phosphate, creating a transition state that is stabilized through 

metal ion coordination with the β-γ phosphate groups. This step results in the 

inversion of the α-phosphate stereochemistry and the release of the 

pyrophosphate group coordinated to another divalent metal ion (Figure 1.7).  

 

In vitro studies of several replicative polymerases revealed that the speed of 

synthesis (up to 1000 bp s-1), the fidelity (1 error every 106 incorporation events) 

and processivity (>50 kb) are remarkable features of these enzymes [58, 65]. 

However, the high speed of synthesis and the processivity of the replicative 
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subunit can be reduced in the absence of the accessory subunits, such as the β 

subunit (Table 1.2). 

 

 
Figure 1.7. Simplified scheme of the phosphoryl transfer reaction 
catalysed by a DNA polymerase. The arrows illustrate the movement of 
electrons. See text for details. 
 

The most studied polymerase belonging to the C family is the DNA 

polymerase III holoenzyme from E. coli. It is a multicomponent protein 

consisting of three assemblies: the pol III core, the clamp loader complex and 

the β sliding clamp [63]. The β clamp encircles the DNA duplex and binds the 

polymerase, tethering it to DNA for rapid and processive chain extension. The 

clamp loader uses energy derived from ATP hydrolysis to load the β clamp on 

the primer. The holoenzyme is made of 10 different subunits, which finely 

cooperate in order to load the enzyme on the DNA template, drive the 
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replication and make contacts with the whole replisome. Details of the 

holoenzyme subunits and their functions are listed in Table 1.2. 

 

 
Table 1.2. Components of the E.coli DNA polymerase III holoenzyme. The 
subunits forming the PolC core, clamp loader complex and the sliding clamp 
assemblies are highlighted in red, blue and green, respectively. The gamma 
subunit (highlighted in white) would not be required to form the initiation 
complex at the replication fork but it may play a role in forming clamp loader 
complexes that unload sliding clamps from the DNA after replication fork 
passage. However, such a mechanism is still unclear.  
 

 

PolIIIC is the polymerase responsible for the genomic replication in many 

Gram-positive bacteria and is the analog of the E. coli DNA pol III core. This 

thesis deals specifically with the replicative subsunit, PolC, of the PolIII-C type 

enzyme from the Gram-positive organism Staphylococcus aureus. The enzyme 

holds both synthesis and proofreading activities. It consists in a 162 kDa protein 

with unknown crystal structure, sharing around 54% of amino acid identity with 

the Geobacillus kaustophilus PolC protein [64]. 

 

A high-resolution crystal structure of the PolC from the G. kaustophilus, has 

been solved in a ternary complex with DNA and dGTP [62]. This is shown in 

Gene Subunit Mass (kDa) Protein function 

dnaE α 130 Replicative polymerase  

dnaQ ε 27.5 3’>5’ exonuclease activity 

holE θ 8.6 Stimulates exonuclease 

dnaX τ 71 Forms trimers 

dnaX γ 47.5 ATP dependent clamp loader 

holA δ 38.7 Interacts with β 

holB δ’ 3  6.9 Stimulates γ 

holC χ 16.6 Binds SSB 

holD ψ 15.2 High affinity for γ 

dnaN β 40.6 Sliding clamp protein 
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Figure 1.8 and it is the first structure of a replicative polymerase from a Gram-

positive bacterium.  

The overall shape of the enzyme can be compared with a right hand containing 

“thumb,” “palm,” and “fingers” domains. Such features are conserved in the 

replicative polymerases. The function of the palm domain appears to be 

catalysis of the phosphoryl transfer reaction whereas that of the fingers domain 

includes important interactions with the incoming nucleoside triphosphate as 

well as the template base to which it is paired. The thumb domain contacts the 

DNA minor groove and may play a role in positioning the DNA duplex in the 

correct position for the incoming nucleotide and in translocation along the 

template.                   
 

 
Figure 1.8. Crystal structure of the replicative DNA polymerase. PolC from 
G. kaustophilus in complex with DNA and dGTP. Ribbon representation of the 
hand-shaped PolC, showing the palm (pink), the fingers (in aquamarine) and 
the thumb (in red) domains. The exonuclease domain (ExoΔ) was deleted from 
the protein. See text for details.  
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1.1.6. Dynamic coupling between the motors of DNA replication 
 

During replication, the replicative helicase works closely with the other 

enzymes within the replisome. Generally, physical and functional couplings of 

the helicase with the primase as well as with the DNA polymerase can occur 

during their coordinated activity [35]. Such interactions might have different 

effects on the helicase enzymatic activities.  

 

In vitro studies have revealed that DNA polymerases can modulate helicases 

with a direct effect on the helicase unwinding speed and processivity [66-69]. 

The interdependence of the helicase and the polymerase was observed from 

studies of T7, T4, E. coli, and human mithocondrial replication proteins [67, 70, 

71].  

The coupling between the helicase and DNA polymerase can either increase 

or decrease the speed of unwinding. It is commonly believed that the helicase is 

the leading motor and that the DNA polymerase either increases the helicase’s 

forward movement on DNA (push) or decreases its backward slips (brake). 

However, it is also possible that the polymerase or even both motors together 

lead the replication. The effects on the enzymatic rates that result from such 

interactions in different replication complexes are listed in Table 1.3.  

 

While we understand the function of the individual enzymes at the cellular 

and molecular levels, studies on the detailed mechanisms of interactions with 

other partners within the replisome to coordinate DNA replication still need to be 

extended in the future.    
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Activity E. coli  T4 T7 
Helicase translocation 
(nt s-1) 

 - 500 
(37 °C) 

130 (18 
°C) 

Helicase  
unwinding (bp s-1) 

35 
(30 °C) 

30 
(37 °C) 

50-10  
(18 °C) 

Polymerase synthesis 
(nt s-1) 

500 
(30 °C) 

160 
(30 °C) 

228  
(18 °C) 

Coupled strand 
synthesis (bp s-1) 

730 
(30 °C) 

250 
(37 °C) 

90 
(18 °C) 

 
Table 1.3. DNA unwinding and synthesis kinetics of the replicative 
proteins. The rates (bulk assays) of the motor proteins functioning as individual 
protein or in a complex [35]. 
 

1.2. Experimental Approach 
 
1.2.1. Fluorescence and fluorophores 
 

Fluorescence has been widely used in analytical chemistry and biochemistry 

to study a variety of processes in biological systems. With the recent 

development of fluorescent dyes and fluorescent imaging systems, 

fluorescence methodologies have extensively been used in place of 

radioactivity. The speed, the comparable sensitivity, the time resolution and the 

possibility to monitor reactions in real time are winning benefits of these 

approaches over methods that use hazardous radioisotopes. 

 

Fluorescence is a simple physical process and occurs when a molecule 

relaxes to its ground state (S0) by emitting a photon of light after being excited 

to a higher quantum state (S1). This is schematically shown in a simple way with 

the Jablonsky diagram in Figure 1.9A. The electronic transition due to light 

absorption is almost instantaneous (10-15 s), whereas the excited state lasts for 

10-9 sec and is known as the fluorescence lifetime [72]. After excitation from S0 

to S1, the molecule rapidly relaxes by means of internal conversion to the lowest 

energy level of the excited state S1.  
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According to the quantum theory, the amount of energy transported by the 

light through a quantum is expressed by the Planck’s law, which is given by: 

 

 E = hν  (1) 

 

Where h is the Planck’s constant and ν is the frequency. As frequency is 

related to the wavelength (λ) and the velocity (c), the equation (1) can also be 

written as: 

 

 E = h c/λ (2) 

 

Since h and c are constants, the E value varies inversely to λ. As mentioned 

above, some of the light energy initially absorbed is usually lost in transitions 

between vibrational energy levels therefore, from equation 2, the wavelength of 

the emitted fluorescence is longer than that of the absorbed light. This means 

that molecules that exhibit fluorescence, termed fluorophores, own a 

characteristic fluorescence or emission spectrum as well as a characteristic 

absorbance spectrum [72]. An example of excitation and emission spectral 

profiles is given in Figure 1.9B, the difference in wavelength between the peaks 

of these bands is referred to as the Stokes shift [73].  

 

Fluorophore compounds are usually aromatic or contain conjugated double 

bonds (i.e., alternating single and double bonds between atoms).  

The most important intrinsic fluorophores in proteins are tryptophan, tyrosine 

and phenylalanine residues, with tryptophan giving the strongest spectra. Many 

proteins may have only one or two of such residues being an advantage in 

order to carry out biochemical studies. The bases of DNA nucleotides and of 

some enzyme cofactors are also intrinsic fluorophores although they display 

very weak fluorescence spectra. In such cases, a protein or a macromolecule 

can be labelled with organic dyes and quantum dots in order to perform 

structural and functional studies.  
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The fluorescence intensity of a compound can be affected by several factors, 

such as concentration, temperature, pH and solvent. Due to these factors, 

fluorescence is only ever quoted in arbitrary values [74]. Lastly, there are 

photochemical reactions that cause the fluorescence of a dye to decrease with 

time, an effect called photobleaching. This is an irreversible reaction between 

an excited molecule and oxygen, and it is often a problem when using a high 

intensity light source. 

 

 
Figure 1.9. Physical basis of fluorescence. (A) Jablonsky diagram. the 
energy levels are represented by horizontal lines and the directions of energy 
transitions by arrows. Different vibrational levels (for example 0-3) exist in each 
energy level. See text for details. (B) Examples of excitation (green profile) and 
emission (red profile) spectra for a fluorescent probe. Because of their 
electronic configurations, fluorophores have unique and characteristic spectra. 
See text for details. 
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1.2.1.1. Fluorescence anisotropy 
 

Fluorescence emission is characterized by several parameters such as 

intensity, lifetime and polarization that are correlated to a multitude of factors 

including conformation, orientation, as well as environmental conditions like 

temperature and pH. The fluorescence anisotropy can give information about 

the molecular orientation, aggregation and rotational diffusion. A fluorescently 

labelled molecule will have a high fluorescence anisotropy (and polarisation) 

when bound to a macromolecule complex than when alone. For this reason 

polarization assays are widely used to study binding of proteins and 

macromolecules.  

 

The physical process behind this phenomenon is based on the use of the 

polarized light in a process termed photoselection (Figure 1.10) [72]. When light 

is transmitted through a polarizer it emerges with half of the intensity and with 

vibrations in a single plane having been plane polarized. If plane polarized light 

encounters a solution of absorbers, only those molecules whose excitation 

dipole is oriented in a direction parallel with the incident light path will be 

preferentially excited (Figure 1.10A). The excited molecules, which will be a 

small subset of the total population, may be able to rotate their axes before the 

fluorescence is emitted and the polarization of the emitted light can be 

determined based on their new positions (Figure 1.10B).  

Quantitatively, anisotropy (r) is defined as: 

  
 

                                   (3) 
 

Where I//  represents the intensity of the emitted light in the parallel plane, and II_ 

represents light emitted in the perpendicular plane. In practical terms, for a fully 

depolarized solution r = 0, as light is emitted equally in both planes [72]. 
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As mentioned above, fluorescence anisotropy is a useful tool to monitor 

macromolecule interactions. The main advantage of this approach is that it 

represents a real-time solution-based equilibrium technique. Since fluorescence 

anisotropy works particularly well for binding interactions that lead to a 

significant change in size of the fluorophore reporter, binding assay experiments 

use labelled substrate, usually DNA or a small molecule [75, 76]. Generally, 

such measurements are performed varying the ligand concentration in the 

molecular system. Additional information can also be gained if the system 

involves a substrate cleavage event with subsequent reduction of the molecular 

weight, as it occurs upon DNA nicking and release. The use of anisotropy to 

study the binding and nicking functions of RepD has been previously described 

[52]. In other studies, the technique was employed to monitor the unwinding 

activity of a helicase [77].  Here, fluorescence anisotropy is mainly used to 

investigate the activities of wild-type and an active mutant RepD during 

initiation.   

 

Fluorescence anisotropy can be influenced by the inherent properties of the 

sample. Fluorophores are frequently attached to molecules by a linker. The 

flexibility of the linkers can affect the mobility of the fluorophore and affect 

directly the observed fluorescence anisotropy, even when attached to large 

macromolecules.  

Fluorescence anisotropy is a versatile tool that can be used in a variety of 

sophisticated methods [75]. In alternative approaches, for example the 

interactions between biomolecules are monitored using anisotropy combined 

with microscopy in cells, such as in the study of the density distributions of 

membrane proteins or ligand-receptor binding [78]. 
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Figure 1.10. Fluorescence anisotropy in binding studies. (A) 
Photoselection. The incident light is separated in vertical and horizontal 
polarised light using a polarizer. Vertically polarised light then selectively excites 
the fluorophores with excitation transition dipoles which are oriented parallel to 
the excitation plane (as shown by the line in the diagram). (B) A sample 
containing fluorescently labeled species is excited with vertically polarized light. 
Fluorophores in the excited state tumble in solution within the fluorescence 
lifetime. The rate of tumbling is related to the size of the macromolecular 
complex. Emission is measured downstream through polarizers that are parallel 
and perpendicular to the plane of the excitation. 
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1.2.1.2. Förster Resonance Energy Transfer and fluorescence 
quenching  
 

Förster (or Fluorescence) Resonance Energy Transfer occurs when the 

emission spectrum of one fluorophore (donor) overlaps with the absorbance 

spectrum of another fluorophore (acceptor) [74]. The excited donor molecule 

transfers its energy to the acceptor molecule through dipole-dipole interactions 

(Figure 1.11A). The efficiency of the energy transfer (E) depends on the 

distance between the donor and acceptor and is described by: 

 

 
 
(4) 

 

 

Where R is the acceptor-donor distance and R0, the so-called Förster 

distance, is the distance at which transfer efficiency is 50%.  This represents a 

useful method to measure distances between biomolecules as well as 

conformational changes within a molecule. Thus, the extent of energy transfer 

depends on the distances between the two fluorophores on two different 

molecules or within the same molecule. The dipole-dipole interaction during 

energy transfer has an angular dependence, which is termed the orientation 

factor, K2. The latter is often assumed to be two thirds, when both dyes are 

freely rotating [79]. However, in some cases this is not a valid assumption, and 

so a precise measure of the molecules distance is impaired by the uncertainty 

of the orientation factor. 

 

In this thesis, FRET was used to detect binding of labelled deoxynucleotide 

to the polymerase, having the intrinsic protein tryptophan fluorescence as donor 

and a mant-labelled deoxynucleotide, mant-dATP, as acceptor.  

 

Quenching of fluorescence consists of a decrease in the fluorescence 

intensity resulting from radiationless de-excitation of the fluorophore [72]. 
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Environmental conditions extrinsic to the fluorophore can affect fluorescence 

and cause quenching. The latter can be achieved by static or dynamic collision 

(Figure 1.11B). The dynamic quenching occurs when a quencher molecule (Q) 

collides with the fluorophore (or reporter, R) while in its excited state, causing a 

rapid de-excitation without release of a photon. The dependence of 

fluorescence on Q is given by the Stern-Volmer equation: 

 

 
(5) 

 

Where F0 and F are the fluorescence intensity respectively in the absence and 

in the presence of a quencher, kq is the bimolecular quenching constant, τ0 the 

lifetime of the excited state and [Q] the concentration of the quencher molecule. 

Static quenching takes place when the reporter and quencher form a stable 

complex in the ground state before excitation can occur. The complex Q-R has 

its own properties, such as being non-fluorescent.   

An alternative form of quenching, based on the distances between Q and R, 

is achieved via energy transfer. In this mechanism, excitation energy is 

transferred from R to Q via coupling between the emission dipole of R and the 

absorption dipole of Q. 

 

The ability of fluorescent compounds to transfer absorbed energy to 

molecules in close proximity has been used to develop homogenous nucleic 

acid assays. A useful approach to monitor DNA helicase activity and DNA 

strand separation is the hybridization of two complementary oligonucleotide 

probes containing a pair of interactive labels located at their ends.  In this thesis 

and in previous studies [80], the Cy3 group was used as fluorophore and the 

Dabcyl as quencher on short DNA junctions (20-40 bp). Thus, the designed 

DNA shows either successful fluorescence quenching, permitting energy 

transfer to occur while Q and R are close to each other in the duplex state or 

fluorescence increase during strand separation. Quenching using non-

fluorescent dyes enables changes in the fluorescence intensity to be measured 
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more directly, rather than as an alteration in the shape of the emission 

spectrum.  

 

 
Figure 1.11. Schematic diagram of FRET and quenching. (A) Electronic 
transitions during dipole-dipole interaction and energy transfer between the 
donor in the excited state and an acceptor. (B) Quenching mechanisms 
between a quencher (Q) and a reporter (R). See text for details. 
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1.2.1.3. Fluorescent biosensors 
 

Monitoring biological events and a range of important target substances both 

in vivo and in vitro has been a great challenge in chemical biology and 

biotechnology. Quantitative information on the cellular and subcellular dynamics 

of ions, signaling molecules, and metabolites is critical for functional 

understanding of organisms. Mass spectrometry is for example used for this 

approach; however, its temporal and spatial resolutions are limited.  

A powerful tool has emerged to address these challenges with the design of 

fluorescent biosensors. These devices have high specificity for a particular 

process and can be developed from a wide range of compounds such as 

antibodies, nucleic acids, enzymes and other proteins [81, 82].   

Proteins are good candidates for the design of a fluorescence-based 

biosensor as they can report the dynamic distribution of specific reactions, 

protein interactions but also the kinetics of a reaction. The protein biosensors 

consist of a polypeptide component that recognizes selectively a target, and a 

fluorescent component that gives fluorescence signals upon environmental 

changes. The latter can be a label attached to the protein to give extrinsic 

fluorescence or another protein that is intrinsically fluorescent [81]. 

 

There are several important requirements that need to be considered to 

design a successful protein-based biosensor. One of these is the specificity for 

the substrate and the ability to discriminate against similar molecules. The 

binding should be tight and rapid in order to allow rapid real time 

measurements. Reporting properties are also important. A number of strategies 

have been described for site-specific protein labelling. In one approach, 

cysteine residues can be introduced at specific positions known to be 

allosterically linked to the active site. In this case, the fluorophore label is 

typically attached in close proximity of the protein active site in order to report 

protein-activity-dependent spatial rearrengements. This represents a relatively 

simple way to generate a signal. However, difficulties can arise in choosing the 

ideal aminoacid positions that report a significant signal change.  
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This strategy was used to generate a sensitive probe for DNA by modification 

of E. coli SSB with an extrinsic fluorophore [83]. Another strategy would be to 

insert two fluorophores on the same protein. In this case, the two labels are 

arranged such that they exhibit molecular stacking that is perturbed on 

changing conformations upon target binding. In this way, the fluorescence 

changes in relation to the relative positions of the two labels. This strategy can 

be used to insert labels in protein subdomains that undergo large 

conformational change or also in case of multimeric proteins. It was used to 

generate a ADP biosensor, the rhodamine-ParM [84]. In the absence of ADP 

the fluorescence is quenched by the two rhodamines in close proximity. 

Nucleotide binding causes a loss of the rhodamines interaction and an increase 

in fluorescence. 

 

Fluorescent-protein biosensors have been used in several assays in this 

investigation. A labeled phosphate binding protein, MDCC-PBP, was used as 

sensor for Pi production and the DCC-SSB to detect single stranded DNA [83, 

85]. MDCC-PBP, used for real-time measurements of rapid inorganic phosphate 

production, was developed from the E. coli periplasmatic phosphate binding 

protein. This probe is labelled with a coumarin derivative, MDCC and gives a 6-

fold change in fluorescence intensity upon Pi binding. Pi binds tightly (Kd 

approximately 70 nM, 5 °C) and causes a rapid conformational change (317 s-1, 

5 °C) [85]. MDCC-PBP has been used in real time ATP hydrolysis assays using 

DNA helicases as well as other ATP hydrolyzing motor proteins, such as 

myosin [49, 86]. 

DCC-SSB, used to detect single stranded DNA, is based on the tetrameric 

single-stranded-DNA binding protein from E. coli [83]. The exposure of ssDNA 

is a common event during replication, recombination and DNA repair and the 

SSB binding is essential to either protect the DNA from restriction enzyme 

activity and undesirable DNA reannealing. Binding is highly selective for ssDNA 

over dsDNA. It has also been shown that SSB can directly interact with 

numerous DNA replication proteins being crucial for successful DNA replication. 

The SSB sensor, labelled with a coumarin derivative on each monomer, DCC, 

provides a signal increase of ~ 6 fold when bound to the substrate. SSB binds 
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tightly and rapidly to ssDNA (Kd ~ 2.2 nM, 109 M-1 s-1 for dT70). However, the 

mechanism of binding is complex, as the binding is cooperative and the DNA 

interaction site size varies from 35 bases at low salt concentrations to 65 bases 

at high salt [87].  

Typically, the use of DCC-SSB works well to monitor unwinding of large DNA 

molecules, rather than oligonucleotides, and so it has been used to measure 

ssDNA release from highly processive helicases such as AddAB and PcrA [48, 

52, 83]. 

 

1.2.2. Rapid reaction techniques 
 

Many biological reactions occur on a time scale of milliseconds and need to 

be measured. Unfortunately, for operational and technical reasons, most 

conventional spectrophotometers cannot be used to study reactions that are 

complete within less than few seconds. To study such processes, it is essential 

the use of rapid reaction techniques.  

The methods used in this thesis to study rapid reactions include stopped-flow 

and quenched-flow techniques [88]. All flow techniques use a special mixing 

chamber designed to receive solutions being driven at high speed. Following 

rapid mixing, the solution can be monitored only after a certain time from 

mixing. The time taken to start monitoring the “aged” solution is called the “dead 

time” of the instrument.   

1.2.2.1. Stopped-flow 
 

Stopped-flow is a rapid mixing technique used to follow the kinetics of a 

reaction in solution, developed from the continuous flow method of Gibson 

(Figure 1.12) [89]. Reactants are rapidly and simultaneously injected in the 

mixing chamber where they start to react and then they quickly move to the 

spectrophotometer cell. The flow is stopped through a stopping syringe where 

the old mixture is displaced by the new solution. The instrument allows also the 

performance of double-mixing experiments in which two mixing reactions can 

be successively achieved. Firstly, two solutions are rapidly mixed and after a 
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defined time a third solution is mixed to the previous one. This approach is 

useful to study the formation of intermediates during enzyme reactions. The 

dead time of the stopped-flow is typically around 2-3 ms [88]. 

 

 

 
 
Figure 1.12. Schematic representation of a stopped-flow apparatus. 
Reactants A and B, incubated in the syringes, are rapidly mixed by a pneumatic 
cylinder and the flow is stopped using the stopper block.  The fluorescence of 
the solution is measured in the cell. Solution is excited by a white light from a 
Xenon –Mercury lamp through a monochromator. Emission is measured at 90˚ 
through an emission cut off filter (Fλ), at the appropriate wavelength, and the 
intensity measured using a photomultiplier tube. A software converts this signal 
to fluorescence units. 
  



Chapter 1  Introduction 
 

 

53 
 

1.2.2.2. Quenched-flow 
 

The second method used to measure rapid-reactions in this investigation is 

quenched-flow. Quenched-flow allows the rate of a chemical process to be 

measured and correlated to fluorescent signals.  

Similarly to the stopped-flow, the instrument consists of syringes containing 

the reactants of interest. The reaction under investigation is initiated by rapid 

mixing of two reactant solutions. The flow continues at a constant velocity 

through a delay line to a second mixer. At this point the reaction is quenched 

with chemicals. Prior to quenching, the reaction time can be controlled through 

the length of the delay loop and the speed of the stepper motor that mixes the 

solutions. The quenched reaction is then collected and analysed [88].  

Generally, the analysis of the final solution defines concentrations of 

substrate and product. This is determined using a variety of techniques, such as 

chromatography or gel assays, which depend on the nature of the reactants 

under investigation. In this thesis, quenched-flow was used to determine the 

nicking rate of RepD on DNA plasmid. Using quenched solutions from a range 

of time points, an overall time course of the reaction can be obtained. The final 

products were then physically separated on an agarose gel for analysis.  

 

1.2.3. Atomic force microscopy 
 

Atomic force microscopy, AFM, is a scanning tool that provides topographical 

images of a sample surface and allows the investigation of morphological 

features of a surface area [90]. 

Advanced single molecule microscopy techniques are advantageous to study 

self-assembled DNA structures due to their small size and complexity. Since the 

invention of AFM, when it was described for the first time by Binnig et al. in 

1986, it was clear that the strength of this method would rely in its resolution 

[91]. Since then AFM has enabled the imaging and analysis of a multitude of 

different biological samples ranging from single molecules such as proteins and 

nucleic acids to macromolecular assembly and cells (Figure 1.13) [90, 92, 93]. 

Its remarkable feature consists in “seeing” details at the molecular level, thus 
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increasing our understanding of how systems work and leading to new 

discoveries in many fields. Today, this versatile technique has been 

successfully applied in a variety of science branches including microbiology, 

DNA and RNA nanotechnology and even food science [94, 95].  

 

There are several benefits that AFM brings to biology with its ability to 

investigate structures and dynamics on a nanometer scale. Besides 

morphology, the physical and mechanical properties and the molecular 

interactions between macromolecules can also be addressed through force 

spectroscopy experiments [96].  

The applications of AFM instrument have extremely increased in recent years 

and a wide range of biological samples has been explored recently using AFM. 

The first biological samples imaged with AFM were bulk crystals of amino acids 

and polymers, followed by individual actin filaments in solution and soon after 

DNA samples at high resolution. Subsequently many studies have recently 

been conducted describing the organization of multi-protein assembly, living 

cells and nucleoprotein complexes. Currently AFM is routinely used to identify 

higher-order structures of DNA including supercoiling, formation of loops, as 

well as nucleosomes and chromatin [92]. 

 

Here, atomic force microscopy has been used to image distinctive steps of 

plasmid unwinding and replication by stopping the reaction at a desired time 

point and imaging the products. Topology changes in DNA, as well as protein-

DNA and protein-protein interactions have been investigated. Furthermore, the 

combination of the AFM with Total Internal reflection fluorescence microscopy 

(TIRFM) enabled the simultaneous visualisation of fluorescently labelled 

proteins in a scanned sample. This technique is described below. 
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Figure 1.13. AFM applicability on macromolecules and assemblies. 
 
 
1.2.3.1. Principles of AFM imaging 
 
 

AFM reveals the surface topography through the interactions between a 

sharp tip and the sample while scanning across it (Figure 1.14). The 

microscope is composed of a photodiode, a cantilever, a laser and a piezo 

transducer [90].  The tip used to scan over the surface is mounted on a flexible 

cantilever and can “feel” the sample through its bending. This occurs according 

to the Hooke’s Law: 

 

 F = ±ks  (6) 
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Where F is the force acting on the cantilever, k is the spring constant and s is 

the displacement. As the force F can be either attractive or repulsive, its value 

can be positive or negative, respectively.     

This force is translated in deflection of the cantilever detected by a laser 

beam (Figure 1.14A). The latter is reflected from the top of the cantilever onto a 

photodiode. The angular displacement of the laser is then converted into an 

electric signal by the photodiode. The piezo transducer allows the movement of 

the scanner along the x, y and z directions to scan over a pre-determined 

surface area.  

 

There are two main imaging modes that can be used with AFM, the contact 

and dynamic mode (Figure 1.14B). When using contact mode, the tip is 

constantly in contact with the sample surface and the cantilever is held at 

constant deflection through a feedback loop between the detector and the 

piezo. In the dynamic mode, the cantilever constantly oscillates at its resonance 

frequency during scanning.  In both modes, three-dimensional surface 

topographies are obtained. However, Contact AFM is also used for 

measurements of sample properties such as adhesion, chemical binding, and 

electrical properties. 

The dynamic mode is usually preferred for imaging very soft and fragile 

samples, because of the reduced frictional and adhesive forces of the cantilever 

during scanning [90].  
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Figure 1.14. AFM principles. (A) Simplified illustration of AFM principle of 
function. The deflection of the laser beam upon surface scanning is shown. (B) 
AFM operating modes. On the left is the contact mode, on the right the dynamic 
mode. See text for more details.   
 

 

1.2.3.2. Combining AFM with TIRFM 
 

AFM can be combined with other complementary techniques to obtain more 

comprehensive information from biological samples. One advantageous 

strategy is to combine AFM with total internal reflection fluorescence 

microscopy (TIRFM) in order to image a sample and examine different 

properties of the components simultaneously.  

 

Generally, molecules can be selectively labeled with fluorescent dyes to be 

seen by TIRFM. The advantages from the combination AFM with a fluorescence 

technique such as TIRFM are numerous. Whereas AFM provides high spatial 

resolution, fluorescence offers high temporal resolution, sensitivity to local 

physical chemistry and the possibility of functional imaging via specific labeling. 

Thus, this approach allows obtaining such data simultaneously. The combined 

information can then be used to identify and localize individual labelled species 

of interest in a complex system and characterize macromolecule interactions. 
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This combined approach was recently used to image fluorescently labelled actin 

filaments [97].   

 

In this work, a synchronized TIRF and AFM system was used to detect 

protein-DNA interactions during replication. Specifically, we investigated binding 

of the fluorescently labeled Cy3B-SSB on ssDNA upon PcrA-helicase 

unwinding.  

 

AFM-based measurements will continue to play an important role in the 

biological field and the possibility to combine AFM with other microscopy 

techniques is a powerful approach to understand structure-function 

relationships. 

 

1.3. Aims of this investigation 
 

The overall aim of the project is to study the protein interactions during 

asymmetric rolling circle replication of a staphylococcal plasmid. To achieve this 

goal, several questions are addressed concerning the mechanistic functions of 

the initiator protein RepD, the helicase PcrA and the replicative (α) subunit of 

the PolIIIC.  

 

In more detail, one aim of the project is to analyse the kinetic mechanism of 

RepD-DNA interaction during initiation. The latter can be studied with 

measurements of binding and nicking kinetics of DNA. An active mutant of 

RepD, N189K RepD, was generated to study its function further and directly 

compare the nicking activity with the wild-type protein.  

The interplay between DNA, RepD and PcrA will be further investigated in 

detail. It was previously shown that RepD is essential for PcrA processive 

unwinding [52]. Here, important factors relating to successful initiation and 

RepD-PcrA mediated unwinding will be examined. The use of N189K RepD-

PcrA complex on different DNA substrates revealed the PcrA requirements for 

functional DNA unwinding. 
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A second aim of the project focuses on the PolC activity and its effects on 

PcrA helicase activity during plasmid unwinding. As described in the 

Introduction, DNA helicase activity can be modulated by other replicative 

enzymes. The kinetics of PcrA-mediated DNA separation in vitro have been 

determined in previous studies. At 30º C, the rate of unwinding of PcrA is ~ 30 

bp s-1 and during translocation the coupling ratio is 1 ATP hydrolyzed per base 

pair separated by PcrA [47, 52]. Here, the PolC protein will be included in such 

assays to measure its effect on the PcrA unwinding rate. In addition, the 

polymerase activities including DNA template and nucleotide binding kinetics 

will be also investigated.  

 

Another aim of the project is to visualise distinctive steps of plasmid 

replication through Atomic Force Microscopy. The structural information derived 

by the AFM experiments will provide insights into the dynamics of plasmid 

replication including DNA local and global rearrangements during unwinding 

and replication, as well as the macromolecular interactions of the replicative 

proteins.  

 

A range of experimental techniques was used in this investigation, including 

quench-flow mixing, stopped-flow fluorescence, steady-state fluorescence 

measurements, atomic force microscopy and combined AFM-TIRFM.  

 

These data could provide useful information to improve our understanding on 

the replication mechanisms occurring in vivo and how these processes can be 

potentially regulated and controlled. Elucidating the mechanisms behind 

successful initiation of a plasmid carrying antibiotic resistance genes is of high 

interest in the field of antibiotic drug design to identify novel targets and develop 

new powerful agents.  
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2. Materials and Methods 
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2.1. Chemicals and reagents 

 
All chemicals were purchased from Sigma Aldrich Ltd. or Fisher unless 

specified. ATP (ultrapure) was dissolved in distilled-deionised water (ddH2O) 

and then quantified using the extinction coefficient of 15400 M-1 cm-1 at 260 nm. 

dNTPs were from Fermentas and 2 ́(3 ́)-O-N-methylanthraniloyl-3 ́deoxyATP, 

mant-dATP, from Jena Bioscience. Purity of mant-dATP was checked by HPLC 

analysis by Gordon Reid, NIMR (purity >97%). Restriction enzymes were 

purchased from New England Biolabs. Phosphate binding protein (PBP) labeled 

with N-[2-(1- maleimidyl)ethyl]-7-diethylaminocoumarin-3-carboxamide, MDCC, 

and Single stranded binding protein (SSB) labeled with N-[2-

(iodoacetamido)ethyl]-7-diethylaminocoumarin-3-carboxamide, IDCC, and 

Cy3B-SSB were made by colleagues (Colin Davis, and Lesley Southerden, 

NIMR) using the published protocols [83, 85].  

 
2.2. Assay buffers 

 
Assay buffers are indicated in figure legends for each experiment. Each 

assay buffer was used to match published assay conditions or particular 

reagent requirements.   

K200 buffer: 50 mM Tris.HCl (pH 7.5), 200 mM KCl, 10 mM MgCl2, 1 mM 

Ethylenediaminetetraacetic acid (EDTA), and 10% (v/v) Ethanediol. This buffer 

was used for all the unwinding experiments containing RepD, PcrA and DNA 

junctions. 

K100 buffer: 50 mM Tris.HCl (pH 7.5), 100 mM KCl, 10 mM MgCl2, 1 mM EDTA 

and 10% (v/v) Ethanediol.  

K10 buffer: 50 mM Tris.HCl (pH 7.5), 10 mM KCl, 10 mM MgCl2, 1 mM EDTA 

and 10% (v/v) Ethanediol. 

AFM buffer: 50 mM Tris.HCl (pH 7.5), 100 mM KCl, 10 mM MgCl2. This buffer 

was used for most AFM experiments. When a different buffer condition was 

used, this was stated in the figure legend. 
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2.3. DNA preparations 
 
2.3.1. Plasmid DNA transformation 
 

Different lengths of DNA plasmids, containing a single copy of oriD sequence 

(2437 bp, 3094 bp, 3650bp, 4907 bp, 6086 bp, 6642 bp), were used in this 

investigation. The DNA constructs were made by Andrew Slatter, NIMR [52]. 

Plasmid amplification was performed by transformation of the DNA into E.coli 

XL-1 Blue cells (Stratagene).  

For protein expression, plasmids were transformed into E.coli B834 (λDE3), 

B834 (λDE3) pLysS cells or BL21 (DE3) pLysS cells (Novagen). Small aliquots 

of competent cells (50 μl) were thawed and transferred into pre-chilled 1.5 ml 

microcentrifuge tubes. The addition of 1 μl of pure plasmid DNA was followed 

by incubation for 30 min on ice. Following incubation, cells were heat shocked 

at 42 ˚C for 45 s and incubated on ice for 2 min.  800 µl of pre-warmed NZY or 

SOC media was added and incubated at 37 ˚C for 1 hour whilst shaking at 225 

rpm.  200 μl of culture was plated on selective LB-Agar media with 100 µg/ml 

ampicillin, and 50 µg/ml ampicillin, and 34 µg/ml chloramphenicol for pLysS 

cells.  Plates were inverted and incubated overnight at 37 ˚C and single 

colonies were used for cultures.   

 

2.3.2. Plasmid DNA purification 
 

Small scale, high copy number plasmid preparations from E. coli cultures 

were performed using the Qiagen kits according to the manufacturer’s 

instructions. Plasmids were extracted from overnight cultures with the Qiaprep 

spin miniprep or maxiprep kit using a microcentrifuge, according to the Qiagen 

protocol. Supercoiled plasmid DNA was eluted in 30 µl of 10 mM Tris.HCl, pH 

8.5, (Elution Buffer from Qiagen kit), and stored at -20 ˚C. DNA was quantified 

by absorbance spectroscopy using the following conversion factor for double 

stranded DNA: A260 of 1 cm-1: 50 ng/µl DNA. 

The quality of the DNA preparations was usually checked on a 1% agarose 

gel, and is shown in Figure 2.1. 
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Figure 2.1. Agarose gel analysis of supercoiled pCERoriD plasmids. 100 
ng of purified plasmids (indicated in bp) were loaded on a 1 % agarose gel and 
electrophoresed (see below for details on agarose gel electrophoresis). 
Molecular mass markers are in order from top to bottom 10, 8, 6, 5, 4, 3, 2, 1.5, 
and 1 kb, respectively. Additional contaminating bands are likely to be nicked 
plasmids. 
 
 
2.3.3. Restriction digests  
 

Linear DNA substrates were generated for the study of PcrA unwinding 

kinetics and the AFM experiments. Restriction digest reactions were carried out 

using commercially available restriction endonucleases (New England Biolabs). 

DNA plasmids were digested in the appropriate recommended conditions and 

buffers, HindIII and NdeI digestions in 10 mM Tris.HCl, 50 mM NaCl, 10 mM 

MgCl2, 1 mM dithiothreitol DTT (pH 7.9, buffer 2, New England Biolabs) and 

NgoMIV in 10 mM Bis-Tris-Propane-HCl, 10 mM MgCl2, 1 mM DTT (pH 7.0, 

buffer 1, New England Biolabs). Reactions were incubated at 37 ˚C for 2 hours.  

The 3094 bp plasmid was digested with HindIII, whereas the 4907 bp 

plasmid was digested with NdeI, HindIII and NgoMIV. Digest reactions were 

mixed with 6 X loading buffer and ran on 1% agarose gels to separate the linear 

and supercoiled plasmids.  DNA fragments were visualised, and removed from 

the gel using a scalpel, and purified using the QIAquick gel extraction kit 

(Qiagen). 
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2.3.4. Site-directed mutagenesis 
 

Mutation of RepD gene was generated using QuikChange II site-directed 

mutagenesis kit and protocol (Stratagene). The primers containing the single 

mutation were designed in order to produce RepDN189K mutant (5′-

CGTGACAGTGATAGATTTATTTGAATTTATAAAAAAAAACAAGAACG-3′, and 

5′-GGCGTTATCTTTACGTTCTTGTTTTTTTTTATAAATTCTAATAAATC-3′, 

N189K reverse and N189K forward oligonucleotides, respectively).  

 

RepD gene was amplified by PCR using the genomic DNA from S. aureus. 

The two primers annealed on the site containing the desired mutation. The 

polymerase then extends the template starting from the primers resulting in a 

circular DNA that contains the mutation. For PCR reactions, 10 ng pET11a-

RepD was incubated with 125 ng N189K reverse and N189K forward primers, 1 

μl of 10 mM dNTPs mix, 2.5 U of Pfu hot start DNA polymerase, 10 μl 5X Pfu 

hot start buffer and 1.5 μl 100% DMSO. PCR reactions were performed using 

25 cycles consisting of a 20 s denaturation step at 98 °C, followed by a primer 

annealing step at 68 °C for 30 s and an extension step at 72 °C for 5 min. After 

25 cycles, the reaction was incubated at 4 °C.   

PCR final reactions were incubated with 10 U Dpn I at 37 °C for 2 h in order to 

eliminate the wild type DNA template. Reaction products were purified using the 

QIAquick PCR purification kit and the purified mutated vector was used to 

transform E. coli DH5α cells. The newly generated gene was sequenced by 

Geneservice, Ltd. 

 

2.3.5. Oligonucleotides and DNA junctions 
 

Oligonucleotides, either unlabelled or labelled with fluorescent dyes, were 

purchased from Eurofins MWG Operon, (Germany) or Sigma, Ltd. 

Oligonucleotides were dissolved in ddH2O at the desired concentration and 

quantified by measuring absorbance at 260 nm using the given extinction 

coefficient.   
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DNA junctions were made by mixing two oligonucleotides in 50 mM Tris.HCl 

pH 7.5, 150 mM NaCl, and 3 mM MgCl2 (1:2 ratio for Cy3:Dabcyl labeled 

oligonucleotides). DNA junctions were heated to 95 ˚C for 5 min and kept at 

room temperature for 2 h prior to storage at -20 ˚C. Oligonucleotides and DNA 

junctions used in this investigation are shown in Figures 2.2, 2.3, and 2.4. 

 

 
 
Figure 2.2. DNA junctions used for RepD and PcrA assays. 
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Figure 2.3. DNA junctions used for PolC experiments. 
 
 
 
 

 
 
Figure 2.4. DNA oligonucleotides used in this investigation. 
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2.4. Protein preparations 

 
2.4.1. Bacillus Stearothermophilus PcrA preparation 
 

The over-expression and purification of Bacillus Stearothermophilus PcrA 

helicase has been published previously [98]. The method used here to purify 

PcrA is similar. B. Stearothermophilus PcrA in a pET22 vector (pET22-BstPcrA, 

a gift from Dale Wigley, London Research Institute) was transformed into E. coli 

strain B834 (λDE3) (Novagen). A single colony from the plate was inoculated 

into the overnight culture of LB media (100 ml) with 100 µg/ml ampicillin, 

shaking at 225 rpm at 37 ˚C. 2 L of LB media (4 x 500 ml) with 100 µg/ml 

ampicillin were inoculated with 5 ml (1/100 dilution) of overnight culture, and 

grown shaking (220 rpm) at 37 ˚C. PcrA expression was induced with 1 mM 

Isopropyl-beta-D-thiogalactopyranoside, IPTG, when the optical density (OD595) 

reached 0.5. Cells were further grown for 3 hours post-induction. Cultures were 

centrifuged at 4 ˚C, at 4000 rpm, in a JS 4.2 swing bucket rotor (Beckman 

Coulter) for 30 min. Cell pellets (2 x 500 ml of culture) were resuspended in 20 

ml of buffer containing 50 mM Tris pH 7.5, 2mM EDTA, 1 mM DTT, and 200 

mM NaCl, 10% (w/v) sucrose.  Re-suspended cells were stored at -80 ˚C until 

purification. 

 

For PcrA purification, cells were thawed, pooled, and 

phenylmethanesulfonylfluoride (PMSF) was added to final concentration of 0.1 

mM. Cells were sonicated on ice for 4 x 30 second bursts using a probe 

sonicator, and centrifuged at 13200 rpm, at 4˚C for 20 min using a 45 Ti rotor 

(Beckman Coulter). The supernatant was measured and 0.7 times this volume 

of saturated (NH4)2SO4 was added to precipitate PcrA gradually (over 5 min) 

whilst stirring at room temperature.  Following (NH4)2SO4 precipitation, 

centrifugation was performed at 13200 rpm, at 4˚C for 20 min using a 45 Ti 

rotor. The supernatant was removed and the pellet was resuspended in 20 ml of 

low salt buffer (50 mM Tris.HCl pH 7.5, 2 mM EDTA, 1 mM DTT and 100 mM 

NaCl). The conductivity of the protein sample was measured with a conductivity 
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meter (Mettler Toledo), and adjusted to match that of the resuspension buffer by 

adding a buffer containing 50 mM Tris.HCl pH 7.5, 2 mM EDTA, and 1 mM 

DTT. This sample was loaded onto a 20 ml heparin sepharose column (GE 

healthcare) equilibrated in 50 mM Tris.HCl pH 7.5, 2 mM EDTA, 1 mM DTT, 

and 100 mM NaCl at 1 ml/min at 4˚C using AKTA FPLC (GE healthcare). 

Following loading, the column was washed in a buffer containing 50 mM 

Tris.HCl pH 7.5, 2 mM EDTA, 1 mM DTT, and 100 mM NaCl until a baseline 

was reached at 280 nm absorbance.  

PcrA was eluted in 50 mM Tris.HCl pH 7.5, 2 mM EDTA, and 1 mM DTT using 

a linear NaCl gradient starting from 100 mM NaCl to 700 mM NaCl, over a 

volume of 150 ml. PcrA elutes at ~350-400 mM NaCl, confirmed by SDS-PAGE 

analysis.   

 

Fractions were pooled and concentrated using 20 ml 10 000 molecular 

weight cut-off (MWCO) vivaspin concentrator (Millipore). Samples were spun 

down at 4000 rpm at 4 °C in JS 4.2 swing bucket rotor. PcrA was quantified 

using the molar extinction coefficient of 75875 M-1 cm-1 at 280 nm (Chris 

Toseland, personal communication). PcrA was stored in aliquots at -80˚C after 

the addition of 10% glycerol (v/v). Typically, ~100 mg of protein was purified 

from 3 L of culture volume. Purified PcrA is shown in Figure 2.5 (section 2.5.2). 

 
 
2.4.2. Staphylococcus aureus RepD preparation 
 

The over-expression and purification of Staphylococcus aureus RepD has 

been published previously [25]. S. aureus RepD in a pET11a expression vector 

(pET11a-SaRepD, a gift from Christopher D. Thomas, University of Leeds) was 

transformed into B834 (λDE3) pLysS. A single colony was inoculated into 100 

ml of 2YT media with 1% glucose (w/v), 50 µg/ml ampicillin, and 10 µg/ml 

chloramphenicol and grown overnight by shaking at 225 rpm at 30 ˚C.  2 L of 

2YT media (4 x 500 ml) with 50 µg/ml ampicillin, and 10 µg/ml chloramphenicol 

were inoculated with 5 mls (1/100 dilution) of overnight culture, and grown in 2L 

flasks at 30 ˚C in orbital shaker at 225 rpm until optical density (OD595) reached 

0.5. Cells were induced with 0.1 mM IPTG and grown further 6 hours.  Cultures 
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were centrifuged at 4 ˚C, at 4000 rpm, in a JS 4.2 swing bucket rotor for 30 min. 

Cell pellets were resuspended in ~50 ml of a buffer containing 50 mM Tris.HCl 

pH 7.5, 1 mM EDTA, 10% (v/v) ethanediol, 500 mM KCl, 1 mM DTT, and frozen 

at -80 ˚C until purification. 

 

Cell pellets were thawed adding 1 tablet of protease inhibitor cocktail (Santa 

Cruz biotechnology, complete).  Cells were sonicated in ~50 ml aliquots on ice 

for 2 x 15 s bursts using a probe sonicator. Sonicated cells were centrifuged at 

12000 rpm, at 15 ˚C for 30 min using a 45 Ti rotor (Beckman Coulter). The 

volume of the supernatant was measured and 2 times the volume of a buffer 

containing 50 mM Tris.HCl pH 7.5, 1 mM EDTA, 10% (v/v) ethanediol, and 3 M 

(NH4)2SO4  was added and incubated on ice for 30 min.  Following (NH4)2SO4 

precipitation, sample was centrifuged at 12000 rpm, at 4˚C for 30 min using a 

45 Ti rotor (Beckman Coulter). After centrifugation, the pellets were 

resuspended in a buffer containing 50 mM Tris.HCl pH 7.5, 1 mM EDTA, 10% 

(v/v) ethanediol, and 500 mM KCl (~4 mls for each pellet).  The conductivity of 

pooled resuspended pellets was measured and adjusted with a buffer 

containing 50 mM Tris.HCl pH 7.5, 1 mM EDTA, and 10% (v/v) ethanediol, to 

match that of a buffer containing 50 mM Tris.HCl pH 7.5, 200 mM KCl, 1 mM 

EDTA, and 10% (v/v) ethanediol. A further centrifugation step was done at 

12000 rpm, 15˚C, for 30 min in a 45Ti rotor (Beckman Coulter).  The soluble 

supernatant was first loaded on 6 ml Q-sepharose (GE healthcare), and then on 

a 20 ml heparin sepharose column (GE healthcare), both equilibrated in 50 mM 

Tris.HCl pH 7.5, 1 mM EDTA, 10% (v/v) ethanediol, and 200 mM KCl at 1 

ml/min using AKTA FPLC (GE healthcare). Columns were washed in ~200 mls 

of the equilibration buffer before removal of the Q-sepharose column. A linear 

KCl gradient from 200 mM KCl to 700 mM over 200 ml was performed to elute 

RepD from the heparin sepharose column.   

 

Fractions were analysed by SDS-PAGE analysis, and measured for 

absorbance at 260 nm, and 280 nm. Fractions with a 280/260 ratio of greater 

than 1.5 were pooled, and concentrated using 20 ml 10000 MWCO Vivaspin 

concentrator (Millipore) by centrifugation at 3000 rpm, at 4 °C in a JS 4.2 swing 
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bucket rotor. RepD dimer was quantified using an extinction coefficient of 

119514 M-1 cm-1 at 280 nm (Andrew Slatter, personal communication). 

Typically, ~90 mg of protein was purified from 3 L of culture volume. Purified 

RepD proteins are shown in Figure 2.5 (section 2.5.2). 

 
 
2.4.3. Staphylococcus aureus PolC preparation 
 

The over-expression and purification of Staphylococcus aureus PolC has 

been published previously [64]. The method of purification used during this 

investigation is largely similar, but has some alterations from this published 

procedure. Staphylococcus aureus PolC in pET11a vector (pET11a-SaPolC) 

was given by Andrew Slatter, NIMR. PolC was expressed and transformed into 

BL21 (DE3) pLysS cells. An overnight culture of M9ZB media with 50 µg/ml 

ampicillin and 10 µg/ml chloramphenicol, was grown shaking (225 rpm) at 29 

˚C, inoculated with a single colony from pET11a-SaPolC in BL21 (λDE3) pLysS 

cells.  3 L of M9ZB media with 50 µg/ml ampicillin, and 10 µg/ml 

chloramphenicol (6 x 500 ml) were inoculated with 5 mls (1/100 dilution) of 

overnight culture, and grown shaking (225 rpm) at 29 ˚C to an OD of 1.0. The 

cells were induced by adding 1 mM IPTG and grown for 3 hours. Cultures were 

centrifuged at 4 ˚C, at 4000 rpm, in a JS 4.2 swing bucket rotor for 30 min. Cell 

pellet was resuspended in 50 mM Tris.HCl, pH 7.5, 0.1 % Triton X100, 1 mM 

EDTA, 20% glycerol (v/v) (25 ml of buffer each liter of culture) and stored at -80 

˚C.  

 

Cell pellets were thawed adding 1 tablet of protease inhibitor cocktail (Santa 

Cruz biotechnology, complete).  Cells were sonicated on ice for 3 x 15 s bursts 

using a probe sonicator.  Sonicated cells were centrifuged at 12000 rpm, at 15 

˚C for 1 hour using a 45 Ti rotor (Beckman Coulter). 

The supernatant was loaded onto a HiTrapQ column (5 ml, GE healthcare) that 

was equilibrated in 50 mM Tris.HCl, pH 7.4, 10% glycerol (v/v) and 1 mM EDTA 

(No Salt buffer). Following loading, the column was washed with 20 column 

volumes of buffer. PolC was eluted in 50 mM Tris.HCl, pH 7.4, 10% glycerol 

(v/v), and 1 mM EDTA using a linear NaCl gradient from 0 to 0.5 M and the 
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peak between 0.3 and 0.4 M NaCl was loaded onto a HiTrap Blue column. 

Before loading, the column was equilibrated in No Salt buffer. Following loading, 

the column was washed again with 10 column volumes of No Salt buffer. A 

linear NaCl gradient from 20 mM to 2 M over 250 ml was performed to elute 

PolC.  

 

Fractions were analysed by SDS-PAGE analysis, and were pooled and 

concentrated using 10 ml 100 000 MWCO vivaspin concentrator (Millipore). 

Samples were spun down at 4000 rpm at 4 °C in JS 4.2 swing bucket rotor. 

PolC concentration was determined using an extinction coefficient of 112385 M-

1 cm-1 at 280 nm (Andrew Slatter, personal communication). Typically, ~10 mg 

of protein was purified from 3 L of culture volume. Purified PolC is shown in 

Figure 2.5 (section 2.5.2). 

 

2.5. DNA and protein gel electrophoresis 
 
2.5.1. Agarose gel electrophoresis 
 

Gel electrophoresis is used to separate molecules by size and topology. DNA 

was analysed by agarose gel electrophoresis. 1% agarose gels (w/v) were 

prepared by adding 1 g. agarose (Molecular biology grade-Biorad) to 100 ml of 

TAE buffer (40 mM Tris-acetate, and 1 mM EDTA).  The agarose was dissolved 

by heating the solution and 1 µg/ml ethidium bromide was added before pouring 

into a cast and allowed to set for ~30 min at room temperature.  

DNA samples, mixed with gel loading buffer (30 % (v/v) glycerol, 0.25 % 

(w/v) bromophenol blue), were loaded into gel wells and run in TAE buffer at 

120 volts for 1 to 1.5 hours depending on the DNA separation. Visualisation was 

achieved by illumination using a UVItech trans-illuminator.   

 

2.5.2. SDS-PAGE 
 

The purity of proteins (PcrA, RepD, RepD N189K, and PolC) during over-

expression and purification procedures was checked using a sodium dodecyl 
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sulfate polyacrylamide gel electrophoresis (SDS-PAGE, BioRad mini gel 

system, Figure 2.5).   

For PcrA, a 15% running gel was made with 7.5 ml of 30 % (w/v) acrylamide 

and bis-acrylamide mix (37.5:1), 3.8 ml of 1.5 M Tris.HCl pH 8.8, 3.4 ml of 

dH2O, and 150 µl 10 % SDS (w/v), setting was initiated by addition of 100 µl 10 

% (w/v) ammonium persulfate, and 5 µl TEMED, and ~45 min are needed at 

room temperature for polymerization (total volume: 4 gels).  5% stacking gel 

was done with 1.7 ml of 30 % (w/v) acrylamide and bis-acrylamide mix (37.5:1), 

1.25 ml of 1 M Tris.HCl pH 6.8, 6.8 ml of dH2O, and 150 µl of 10 % SDS (w/v), 

and set with 100 µl of 10 % (w/v) ammonium persulfate, and 5 µl TEMED. 

Stacking gel mix was poured on the main gel and the well comb was used to set 

for ~30 min before use.  For RepD and PolC, the running gel was made of 12 % 

(w/v) acrylamide/bis mix.  

 

Protein samples were mixed with sample buffer (125 mM Tris.HCl pH 6.8, 

4% SDS, 20 % (v/v) glycerol, 10% (v/v) 2-mercaptoethanol, and 0.25 mg/ml 

bromophenol blue), loaded onto wells, and ran in running buffer (25 mM Tris, 

1.44 % (w/v) glycine, and 0.1 % SDS) at 200 volts for ~1 hour.  Gels were 

stained with coomassie brilliant blue R-250 stain (BioRad) for ~20 min at room 

temperature, and destained with destain mix (10 % (v/v) acetic acid, 50 % (v/v) 

methanol) for 2-3 hours. 

 

SDS-PAGE was also used to analyse RepD nicking on DNA. Each reaction 

contained 1 µM RepD and 10 µM of DNA in a total volume of 20 µl of K200 

buffer. The reactions were incubated for 10 min at 30°C, prior mixing with 20 µl 

of sample buffer (see above), which stops the nicking reaction through protein 

denaturation. 20 μl reactions were loaded on a 12% SDS-PAGE gel, and run at 

200 volts for 1 h. Gel staining was performed as described above. The band 

sizes were quantified using UVIpro software. 
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Figure 2.5. SDS-PAGE analysis of protein purifications.  (A) 5 µg of RepD 
(37.3 kDa), wt (lane 2) and N189K RepD (lane 3). (B) 7 µg of PcrA (82.8 kDa). 
(C) 5 µg PolC (162 kDa). Proteins were purified according to protocols stated in 
the Methods (see above for details). Markers are indicated in kDa.  
 
 
2.5.3. Non-denaturating PAGE 
 

Non-denaturating PAGE was generally used to evaluate protein-DNA 

interactions, as well as the quality of DNA junctions. 

A gel shift assay was used to study the binding of RepD either to the oriD 

sequence (made by annealing OriD-(+) and OriD-(-) oligonucleotides, Figure 

2.3) or to DNA junctions (20bp-ICRII-A>T, 20bp-ICRII-ΔCTA, Figure 2.1), and 

PolC binding to a DNA template (Junction 4, Figure 2.2) (Eurogentec, Ltd.).  

Mini gels were done with the BioRad mini gel system (10 cm x 8 cm, and 0.75 

mm thickness). 6% polyacrilamide native gels were made with 3.5 ml of dH2O, 

0.5 ml TBE 10X, 1 ml Acrylamide/Bis solution (30 % (w/v) 29:1), 5 µl TEMED, 

and 50 µl of 10 % (w/v) ammonium persulfate.  

Binding reactions were carried out at 4 ˚C for 15 min. Reactants and 

concentrations are indicated in the figure legends. Binding reactions were 

loaded onto wells (typically 10 μl), and ran in TBE 1X buffer (89 mM Tris base, 

89 mM Boric acid, 2 mM EDTA) at 120 volts for ~30 min.  Gels were stained 

with SYBR-gold dye for ~30 min at room temperature and visualised using a 

UVItech trans-illuminator.   



Chapter 2  Materials and Methods 
 

 

74 
 

The DNA junctions used for PolC binding and polymerization assays were 

checked on a 20% polyacrylamide gel under non-denaturating conditions 

(Figure 2.6).  The gel was made with 0.5 ml of dH2O, 0.5 ml TBE 10X, 3.3 ml 

Acrylamide/Bis solution (30 % (w/v) 29:1), 5 µl TEMED, and 50 µl of 10 % (w/v) 

ammonium persulfate. 10 μl of a 1 μM DNA solution was loaded on the gel and 

ran in TBE 1X buffer (89 mM Tris base, 89 mM Boric acid, 2 mM EDTA) at 120 

volts for ~45 min. Staining and visualisation were performed with SYBR-gold 

dye, as described above.  

 

 

 
 
Figure 2.6. PAGE analysis of DNA junctions used in the DNA replication 
assay. The DNA junctions (see Figure 2.2 for sequences) were loaded on a 
20% polyacrylamide native gel and run in non-denaturating conditions. The 
Junction 6, formed by a stretch of dGNP had an additional band, corresponding 
to the residual template oligonucleotide. The position of the partial DNA junction 
and the bottom oligonucleotide shown with a cartoon, the arrow indicates DNA 
cross-linking, resulting from the inter- and intramolecular G-quadruplexes. 
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2.6. Fluorescence-based assays 
 
2.6.1. Fluorescence intensity measurements  
 

Fluorescence intensity measurements were performed at 30 °C using a 

CARY Eclipse fluorometer (Varien). For these measurements, a xenon light 

source was used with 2.5 mm slits on excitation and emission with an averaging 

time of 1 second. Solution volumes were 60 μl in a quartz cuvette (Hellma). The 

experimental conditions and further parameters are given in the text.  

MDCC-PBP biosensor (excitation wavelength 436 nm and emission 

wavelength 455 nm) was used as Pi biosensor in order to monitor PolC activity 

during synthesis of a DNA template (see details in section 2.6.2). The mant-

dATP (excitation wavelength 366 nm and emission wavelength 430 nm) was 

used to assess PolC binding to the substrate. 

 
 
2.6.2. DNA replication assay 
 

PolC activity was analysed using an inorganic pyrophosphatase, PPase 

(Sigma), and MDCC-PBP as biosensor to detect the Pi. The overall reaction can 

be described, with generation of PPi from PolC activity (step 1) and 

pyrophosphatase conversion (step 2), as follows: 

 
(1)   PolC + DNA template (n) + dNTPs → DNA template (n+1) + PPi + PolC     

(2)   PPi + Pyrophosphatase → Pi      

 
For this assay, partial DNA junctions have been used (Sigma-Aldrich) (Figure 

2.3, DNA junctions 4-7). Solutions (60 µl: total volume cuvette) were left to 

equilibrate for few min at the desired temperature prior to measurements. 

Reactions contained 10 nM PolC, 500 nM DNA (Eurogentec Ltd), 0.1 U 

inorganic pyrophosphatase, 20 µM of MDCC-PBP, and different concentrations 

of dNTPs (as indicated in the Figure legend), and were prepared in 10 mM 

Tris.HCl pH 7.5, 50 mM KCl, and 10 mM MgCl2, and 2 mM EDTA, pH 7.5. The 

fluorescence signal was calibrated using known concentrations of inorganic 
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phosphate (usually in the µM range, see Appendix for details). Vmax, km, and Kcat 

were determined from these measurements. 

 
2.6.3. Fluorescence anisotropy measurements 
 

Fluorescence anisotropy titration experiments were performed at 30 ̊C using 

an ISS PC1 Photon Counting Spectrofluorometer with a xenon light source. A 

solution of total volume 300 μl was prepared in a cuvette and left to equilibrate 

to 30 ̊C for 5 min prior to measurements. Fluorescence anisotropy 

measurements were taken every 30 sec, exciting with vertically polarized light; 

with emission read through both parallel and perpendicular polarisers in L-

format using 1 nm slit widths, and an averaging time of 3 sec. Fluorescein was 

used in these measurements with an excitation wavelength of 492 nm and 

emission of 512 nm. Anisotropy is calculated and fitted to data using equations 

outlined in the Appendix of this thesis. Solution conditions are described in 

individual figure legends. 

 
2.6.4. Stopped-flow measurements 
 

These measurements were performed using a Hi-Tech stopped-flow 

apparatus with a xenon-mercury lamp (TgK Scientific, UK). In all the 

experiments described, the stated concentrations are those in the mixing 

chamber, which are half the concentrations of the syringes solutions, and 

reactions were done at 30 °C unless stated. Solution conditions and 

concentrations for measurements are indicated in figure legends. 
Cy3 was excited at 548 nm, with a 570 nm cutoff filter (Schott glass) on the 

emission. 2-aminopurine was excited at 313 nm, with a 360-nm cutoff filter. 

Fluorescein was excited at 497 nm with a 515 nm cutoff filter. 

 
PcrA unwinding activity on DNA junctions was tested using a stopped-flow 

apparatus (TgK scientific Ltd, Figure 1.12), in which reactant solutions can be 

mixed rapidly in a flow in order to start measurement of the optical signal. 

Different length DNA junctions (20-30-40 bp-F, 20 bp-ICRIIA>T, 20 bp-ICRII-

ΔCTA; Eurogentec Ltd, Figure 2.2), labelled with Cy3 and Dabcyl, were used as 
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substrate for these reactions. Each reaction (typically 400 ul) had 100 nM PcrA, 

2.5 µM RepD, 500 nM DNA, rapidly mixed with 200 µM ATP in K200 buffer. 

RepD was manually incubated with DNA solution for 5 min at 30 ˚C. PcrA was 

then added to the reaction and incubated for further 5 min. The pre-formed 

complex was then mixed rapidly with ATP using the stopped-flow apparatus (at 

30 ˚C). Data were analysed with Grafit 6 software and unwinding rate for PcrA 

was calculated. 

 

PcrA, RepD, and PolC were also used to monitor the unwinding of different 

length DNA plasmids using a stopped-flow apparatus. Wt RepD was manually 

mixed with the supercoiled plasmid DNA substrate for 30 s, whereas N189K 

RepD for 10 min to allow nicking (at 30 ˚C). PcrA was then added in the same 

reaction and left for further 30 s before starting mixing with ATP using the 

stopped-flow instrument. For these experiments, DCC-SSB was used to 

measure the ssDNA production. For DCC-SSB fluorescence, the excitation 

wavelength used was 436 nm with a 455-nm cutoff filter (Schott glass). The 

experimental conditions and concentrations are given in the text. 

 

Fluorescence anisotropy measurements were performed in the stopped-flow 

instrument using additional polarisers for excitation and dual channel emission. 

Anisotropy was measured with the T format set-up of the instrument, allowing 

simultaneous acquisition of parallel (I//) and perpendicular (I┴) components. This 

enabled anisotropy (I// - I⊥)/(I// + 2I⊥), and intensity (I// + 2I⊥) to be calculated from 

the same reaction profile [88]. Anisotropy measurements are complicated by the 

different response of the detection systems to light of the same intensity but of 

different polarisation. Therefore, a correction has to be carried out in order to 

equalise the detection system which consists of two photomultipliers with 

parallel or perpendicular polarisation filters. This correction is carried out by first 

exciting the fluorophore with horizontally polarised light. Due to symmetry, there 

is an equal chance of the emitted light being polarised in parallel or 

perpendicular planes. Any difference between the parallel and perpendicular 

detectors can then be corrected by altering the photomultiplier voltage. This 

normalisation factor is often referred to as the G-factor.  
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Reaction conditions are indicated in the text. Fluorescence data were analysed 

on Kinetic studio (TgK Scientific, UK) or Grafit software. 

 

2.7. Quench-flow experiment 
 

Quench-flow experiments were performed using the Hi-Tech Rapid Quench 

Flow system RQF-63 (TgK Scientific, UK) to measure the nicking kinetics of 

plasmid DNA by RepD. 30 nM of 3650 bp pCERoriD was mixed with 150 nM 

RepD (concentrations after mixing) in 50 mM Tris⋅HCl pH 7.5, 100 mM KCl, 10 

mM MgCl2, 1 mM EDTA, and 10 % ethanediol and then reaction was quenched 

with 25 mM EDTA, pH 7.5, at 30 °C. Reaction products were collected and 

analysed on a 1% agarose gel. 

 
 
2.8. AFM imaging 
 

Imaging experiments were carried out at room temperature in contact mode 

using an atomic force microscope (NanoWizard, JPK Instruments, Germany). 

Silicon nitride cantilevers were employed for soft contact imaging (chipsize 3.4 x 

1.6 x 0.45 mm, gold/chromium coated 70 nm thickness, 100 × 200 μm 

cantilever length, 0.27 N m−1, tip radius < 15 nm, SiNi probes, BudgetSensors). 

Mica sheets (~2 x 2 cm large, SPI® supplies) were attached on a microscope 

glass slide of 3 x 40 mm using UV glue, and were used as substrates to attach 

the DNA.  

Reactions were typically prepared at 30 °C. A freshly cleaved mica surface 

was treated with 2 mM MgCl2, followed by washing with a solution containing 10 

% (v/v) PBS supplemented and 2 mM MgCl2 (washing is repeated three times). 

For samples containing only DNA plasmids, the DNA stock solution was diluted 

in either buffer or water, and deposited directly on the surface.  

For samples containing proteins and DNA, reactions were mixed manually, 

incubated at 30 °C, and after the desired incubation time was diluted (100X) in 2 

mM MgCl2. 10 μl of the DNA sample was deposited on the mica surface 

(typically ~ 20 ng of DNA), and left to adsorb for 1 minute. The surface was 
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rinsed with ddH2O water for three times. Following washing, the specimen was 

dried under compressed air prior imaging.  Solutions and conditions are 

indicated in the figure legend. 

To reduce binding of the AFM tip to the sample, new cantilevers were 

irradiated for 20 min by a 254 nm, 5 watt mercury lamp (UVP, Cambridge, UK) 

prior to the experiment. 

Image acquisition was performed using the JPK Nanowizard software. The 

scan line frequency was typically 2 Hz at 512 x 512 resolution. Contour lengths, 

height, and width were measured from the magnified images captured, using 

the tools of the nanoscope software (JPK, Nanowizard). 

 

For combined TIRF-AFM experiments, round borosilicate glass coverslips 

(12 mm dia, 0.13 - 0.17 mm thick, GE Healthcare) were used as surfaces in 

these experiments. The coverslips were coated with aminosilane groups. Glass 

surfaces were mounted in a slide holder (Teflon coverslip holder) and 

ultrasonicated in a glass bath for 5 min in a solution containing 15 g KOH, 20 ml 

ddH2O and 300 ml of ethanol. The surfaces were then washed in ddH2O and 

ultrasonicated for 5 min x 3. Following washing, glass surfaces were treated 

and ultrasonicated for 5 min with a solution containing 200 μl (3-(2-(2-

aminoethylamino)ethylamino)propyl trimethoxysilane (DETA), 20 μl glacial 

acetic acid, and 300 ml ddH2O. This was then followed by a further step of 

washing with ddH2O (ultrasonication for 5 min x 3). The excess of water is 

removed and the coverslips are dried in oven at 80 °C for 30 min. The 

procedure converts the glass surface from negative to positive, and so it allows 

DNA absorption. The glass coverslips were then mounted on a microscope 

specimen holder prior sample deposition.  

Samples were prepared as described above and allowed to adsorb for 1 min 

before washing (ddH2O X 3) and drying. Reactions and conditions are indicated 

in the figure legends.  

Fluorescently images were visualised using a digital camera (ORCA–FLASH 

4.0, C114440, Hamamatsu, Japan) with the use of the HCImage software 

(Hamamatsu, Japan). Images were taken with a resolution of 1024 x 1024 

pixels (binning 2), with an exposure time of 0.3 s. AFM images were taken at 



Chapter 2  Materials and Methods 
 

 

80 
 

regions of interest determined from the TIRF images based on the known tip 

location as shown from the brightfield imaging of the cantilever. 
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3. Formation of the Initiation Complex 
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3.1. Introduction 
 

The initial events of the replication process specifically require interactions 

between the supercoiled plasmid and the plasmid-encoded initiator protein, 

which is RepD for the pC221 plasmid. Initiation is achieved through RepD 

binding ICRIII and nicking ICRII sequence at the origin of the replication [25]. 

Through nicking a short ssDNA stretch is opened that allows the loading of the 

motor proteins, the helicase and polymerase.   

In this chapter, the initiation step was investigated in terms of RepD-DNA 

complex formation prior PcrA helicase recruitment on the oriD. An important 

approach towards the elucidation of the mechanism of initiation involves the 

determination of RepD nicking kinetics on DNA containing critical sequences for 

its recognition.  

Two main strategies were adopted to study the overall process of initiation 

and involve the use of two different DNA substrates (Figure 3.1). In one, 

synthetic, fluorescently labeled oligonucleotides with essential parts of oriD 

such as ICRII and ICRIII sequences are used. These junctions are designed to 

have a Y-shaped conformation with two short ssDNA arms given by annealing 

of two partially complementary oligonucleotides. Thus, their structures ensure 

RepD binding on the ICRII ssDNA arm and PcrA loading on a short ssDNA-tail. 

These junctions were previously used as synthetic DNA substrates to 

successfully monitor PcrA-RepD mediated unwinding in fluorescent-based 

assays [52]. Alternatively, DNA plasmids containing the oriD sequence are 

useful tools to investigate initiation and translocation by RepD and PcrA 

complex along DNA. In this case, the benefits of using these substrates are that 

a close comparison can be made to events occurring in vivo, and more events 

can be examined such as the religation step performed by RepD, which is an 

essential activity during the termination process.  On a practical point of view, 

these substrates are easily produced with a highly productive E. coli strain 

harboring the DNA and purification usually results in optimal yields for the use in 

biochemical assays.  

 

An additional approach to study initiation is to design RepD variants and 

compare the binding and nicking activities with the wild type protein. A variant of 
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RepD, N189K RepD, retaining a mutation within the active site of the protein 

was generated in order to study the effects of such modification on RepD 

nicking and binding activites. The crystal structure of RepD has not been solved 

yet, however several mutants of Rep proteins have been previously described 

delineating its activity. Such mutants were useful for the design of the N189K 

mutation. The reactive tyrosine (Y188 in RepD), involved in the covalent 

attachment to the DNA, was initially identified through isolation and amino acid 

sequence analysis of a labeled peptide-oligonucleotide fragment. This tyrosine 

residue is conserved in all Rep proteins, and its importance in Rep nicking was 

also confirmed through mutational analysis and the production of the Y188F 

variant [25]. Another variant RepD was described previously, R186K (published 

using a different numbering system as R189K), having the mutation at -2 from 

the active tyrosine. This mutant is able to nick the DNA but is not able to 

catalyze the reverse reaction of religation forming a more stable RepD-DNA 

complex [99]. Clearly, substitutions of an aminoacid in the active site have an 

effect on the RepD-mediated DNA cleavage. Based on the RepD mutations 

previously published and in the absence of any structural information for RepD, 

one mutation in the active site of RepD was attempted to study its activity. 

Similarly to the R186K mutant, a lysine was choosen to be inserted at position 

189, close to the active tyrosine. The mutation N189K is located at +1 from the 

tyrosine group involved in the RepD covalent attachment and may actively 

assist the transesterification reaction. A direct comparison of the two initiator 

proteins activity was made.  

Firstly, the RepD variant, N189K, was generated to study RepD nicking 

activity. The nicking kinetics of RepD on a supercoiled pCERoriD plasmid were 

determined, and the binding, nicking and translocation activities of the active 

mutant, N189K RepD, were investigated. The mutant showed similar DNA 

binding activity to the wild type but a rather different nicking activity. The latter 

was significantly affected by the DNA structure.  

Additional features of RepD were then studied such as its function of being 

part of the translocation complex with PcrA during unwinding. It was previously 

shown that RepD recruits and activates PcrA helicase by forming a stable 

complex at the origin that allows processive unwinding [52]. This function of 

RepD might be achieved through direct interactions with the helicase. However, 
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the exact molecular interactions between RepD and PcrA are still not 

completely clear. The ability to form a functional translocation complex with 

PcrA was further investigated here using the N189K RepD. Such studies were 

performed using a variety of fluorescent-based assays, gel assays combined 

with rapid-reaction techniques.  

 
 
       Supercoiled plasmid Synthetic junction 

Figure 3.1. Schematic models of RepD-mediated initiation. RepD dimer, 
ICRIII and ICRII sequences of the (+) strand are shown respectively in azure, 
red and blue. The nick site is indicated. RepD binds the ICRIII (step 1) and 
nicks the ICRII site forming a covalent bond with the 5’-end of the nicked DNA 
(step 2). In the supercoiled plasmid, the whole origin of replication can form a 
cruciform structure due to the inverted repeated sequences. Nicking activity by 
RepD induces release of supercoiling in the native plasmid. In the Y-junction 
model, the right arm of the ICRII sequence is used and nicking results in DNA 
cleavage and release of a small DNA.   
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3.2. RepD nicking activity on supercoiled plasmids 
 
3.2.1. Kinetics of RepD nicking and religation pCERoriD 
plasmid 
 

As previously mentioned, initiation of replication starts with RepD binding and 

nicking the plasmid. It has previously been shown that RepD is able to nick and 

religate pC221 and pCERoriD plasmids in vitro [25]. Here, the RepD nicking 

kinetics were studied to elucidate the mechanisms of the initial steps in 

replication. The nicking reaction catalyzed by RepD requires DNA containing its 

cognate oriD and Mg2+ ions. The overall reaction is a transesterification resulting 

in a phosphodiester bond between the 5’ of the (+)-strand at oriD and the active 

tyrosine of RepD.  The reaction is reversible and a second transesterification 

can occur resulting in resealing of the nicked DNA strand (for details of the 

nicking reaction see the Introduction).  

 

Considering the biological effects of RepD nicking activity, a change in the 

plasmid topology when using a supercoiled substrate (SC) occurred. Because 

of its ability to release the supercoiling of DNA, it has also been called 

topoisomerase I-like activity. The relaxation reaction is shown in Figure 3.2. 

RepD binding of SC is followed by nicking with conversion of the supercoiled 

plasmid into an open circular form (OC) having RepD covalently attached (steps 

1 and 2, Figure 3.2). From this OC intermediate, RepD can religate to produce a 

relaxed, covalently closed plasmid (CC) in step 3 (Figure 3.2). Following 

religation, RepD is released in an unaltered form (step 4, Figure 3.2). Release 

of supercoiling is irreversible and can be restored only upon the activity of a 

DNA gyrase. 

The assay used here to investigate RepD nicking kinetics is based on the 

analysis of these plasmid topological forms. The use of such assay was 

previously described to study the activity of several topoisomerase enzymes in 

vitro [100]. In this assay, the substrate (SC), the open circular (OC) and the 

closed circular product (CC) produced by the nicking/religation reaction 

between RepD and the plasmid run differently on an agarose gel and were 
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visualised as three discrete bands following electrophoresis. Thus, reactions 

were analysed for DNA topology. However, this approach has several 

limitations, because it does not allow a separate calculation for plasmid binding 

of RepD (step 1), or distinguish between the religation of the OC form (step 3) 

and RepD dissociation from the CC form (step 4, Figure 3.2).   

 

 

 
 

Figure 3.2. Relaxation activity of RepD on a supercoiled plasmid. Cartoon 
of the RepD nicking/closing activity and relative topology changes in a DNA 
plasmid, and reaction scheme of the DNA relaxation. RepD interacts with a 
supercoiled plasmid within the DSO (step 1) and then nicks the (+)-strand of the 
ICRII (step 2). Plasmid relaxation is concomitant with DNA cleavage. The latter 
can be followed by religation (step 3) and RepD dissociation (step 4).  

 

A negatively supercoiled plasmid containing the whole oriD sequence 

(pCERoriD, 3.6 kb) was used as substrate for RepD. Requirement of Mg2+ by 

RepD was a useful tool in order to control and preferentially stop the reaction at 

a desired time using a chelating agent such as EDTA. Thus, a time course 

reaction was performed to assess RepD nicking/closing activities and the final 

products of this reaction were analysed on an agarose gel (Figure 3.3).  

 The activity of wt RepD on pCERoriD was assayed over 30 min. The relative 

band intensities of the SC, OC and RC were measured at fixed time points. 

Manual mixing of the nicking reaction showed rapid and essentially complete 
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nicking to form the open relaxed structure. After only 5 s the complete plasmid 

reacted to form the open circular form. On a longer time scale (2-30 min) a new 

gel band appeared, corresponding to a closed circular plasmid (CC, Figure 3.3) 

formed by religation of the DNA ends. The closed circular plasmid form 

migrates ahead of the supercoiled plasmid under these electrophoretic 

conditions. This is due to the presence of ethidium bromide that can intercalate 

in the DNA and affect the overall topology of the circular close plasmid. Thus, 

positive superhelical twists can be introduced in the DNA by the intercalation of 

ethidium bromide in relaxed closed plasmid [101]. The religation resulted in 

23% closed, relaxed plasmid at apparent equilibrium with nicked, open DNA 

(Figure 3.3B). Quantitation of the gel bands as function of time gives a rate 

constant of 0.0037 s-1 for this religation (Figure 3.3B). 

As the shortest time analysed in the manual mixing experiment was 5 s, an 

accurate estimate of the nicking rate could not be achieved with this approach. 

So, a quench-flow mixing experiment was then designed and used to get higher 

time resolution (Figure 3.4A). Wt RepD and the supercoiled plasmid were 

rapidly mixed, and then quenched with EDTA at the defined times and the 

reaction products were analysed on an agarose gel (Figure 3.4B). 

Quantification of the bands is shown in Figure 3.4C. Nicking kinetics was 

biphasic. So data were fitted with a double exponential. The time course of the 

nicking reaction show a rapid burst that occurs >25 s-1 with a 35% amplitude 

followed by a slower phase at 2.5 s-1 with a further 50% reaction. The initial 

burst was too fast to be measured precisely because the quenched-flow dead 

time.  Nicking experiments was also repeated in presence of PcrA to evaluate 

possible effects of the helicase on the nicking and religation rates. Results 

showed that PcrA does not have a significant effect on RepD nicking-closing 

activities (see the Appendix of this thesis). 
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Figure 3.3. RepD nicking/closing activities on a supercoiled pCERoriD 
plasmid. (A) Time course of RepD products generated from a manual mixing 
reaction analysed on a 1% agarose gel. 15 nM pCERoriD (3.6 kb), and 60 nM 
RepD were pre-incubated in K100 buffer at 30˚C. At the time points indicated (in 
s and min), samples were quenched by addition of 50 mM EDTA. Additional 
details can be found in Methods. Molecular weight markers are from top to 
bottom 10, 8, 6, 5, 4, 3, 2, 1.5 kb.  Plasmid topology indicated above relevant 
bands, in either supercoiled (SC), open circular (OC), and closed circular (CC) 
forms. (B) Kinetics of formation of the relaxed, closed plasmid (CC) from 
relaxed, open plasmid. The data points were obtained by integration of the gel 
bands. The line is the best fit exponential, giving a rate constant of ~0.0037 (± 
0.0006) s-1. Error bars indicate standard deviations among three independent 
experiments. 
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Figure 3.4. Kinetics of RepD nicking a supercoiled pCERoriD plasmid. (A) 
The quench-flow experimental set-up. (B) Time course of the nicking reaction 
analysed on a 1% agarose gel. 30 nM plasmid (pCERoriD, 3.6 kb) was mixed 
with 150 nM RepD (concentrations after mixing) and then the reaction was 
quenched with 25 mM EDTA (pH 7.5) at 30 °C as shown in (A). Additional 
details are in Methods. Molecular weight markers are as in Figure 3.3. (C) 
Agarose gel analysis of the plasmid substrate relaxed over time by RepD. The 
line is the best fit exponential for the slow phase that follows a burst. The burst 
at >25 s-1 

has ∼35% amplitude followed by a slow phase at ∼2.6 ± 0.4 s-1 with a 
further 50% reaction. Error bars indicate standard deviations among three 
independent experiments. Repeats are found in the Appendix of this thesis.  
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The same approach was undertaken with N189K RepD mutant in order to 

further investigate the RepD nicking reaction. In contrast to wt RepD, N189K 

RepD nicking of supercoiled plasmid was much slower. Thus, a manual mixing 

approach was used to measure its nicking kinetics. The activity of N189K RepD 

on pCERoriD was assayed over 30 min in order to get the nicking rate (Figure 

3.5A). The integration of the bands gives a nicking rate constant of 0.003 s-1 

(Figure 3.5C). In order to measure religation kinetics, reaction was assayed 

over a longer time scale (incubation time > 30 min, Figure 3.5B). A band was 

detected for the closed circular form after 30 min. The intensity of such a band 

increased at a rate of 0.00039 s-1 and remained constant reaching an 

equilibrium between the closed relaxed and the open nicked DNA, similar to wt 

RepD (24%, Figure 3.5D). N189K RepD showed nicking occurring at a rate ~ 

1000-fold slower than the wt protein and also slower religation (~ 10-fold). For 

both RepD proteins, the relief of supercoiling resulted in the high extend of 

product formation.  

In the progress of plasmid replication, the next step of plasmid replication is 

PcrA binding to the exposed ssDNA and this process is much faster than the 

religation and so it might affect the religation rate of plasmid [48]. However, 

when performing the nicking reaction in the presence of PcrA, the helicase had 

no measurable effect on nicking nor on re-ligation kinetics (data not shown).  
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Figure 3.5. N189K RepD nicking/closing activity on a supercoiled 
pCERoriD plasmid. (A-B) Manual mixing experiment and agarose gel analysis 
of the DNA topology. (C) Quantification over time of the bands corresponding to 
the supercoiled substrate. Data were fitted to a single exponential, giving a rate 
of 0.003 s-1. (D) Formation of the circular closed plasmid by N189K RepD 
religation activity. Data were fitted to a single exponential, giving a rate of 
0.00039 s-1.  For solutions and conditions see Figure 3.3. Error bars indicate 
standard deviations among three independent experiments. 
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3.2.2. The requirement of divalent cations for nicking 
 

Metal ion cofactors and especially divalent ions are important modulators of 

the catalytic activity of enzymes. They are involved in a wide range of chemical 

reactions such as redox and non-redox catalysis. In this perspective, a special 

case is represented by magnesium ion, which is largely utilized for electrostatic 

stabilization and for activaton of substrates. In vivo, magnesium represents an 

abundant species, as it is found in cells in the millimolar range. It is by far the 

most frequently found metal ion cofactor in the enzymatic systems due mainly 

to its ability to form stable complexes with phosphate-containing molecules.  

 

The DNA cleavage performed by RepD requires Mg2+ for full catalytic activity. 

The requirement seems to be crucial for the chemistry as the ions may actively 

participate to the reaction in several ways [102]. Mg2+ could activate the 

attacking tyrosine group, and stabilize the negatively charged transition state 

and/or interact with the leaving group (for details about the nicking reaction see 

Introduction). Thus, such ions can affect the catalytic protein activity during the 

reaction. It has been shown that the use of different divalent cations affected 

RepD nicking and religation activities. In particular, substitution of Mg2+ with 

Ba2+ ions permits RepD mediated cleavage but promotes neither a stable 

covalent linkage nor relegation [25].  

 

The effects of the interactions between three different divalent cations with 

RepD are further investigated here. The ability of Mn2+, Mg2+ or Ca2+ to support 

RepD-mediated nicking of a supercoiled plasmid was monitored. These ions 

possess distinctive chemical features such as ionic size, hardness and 

geometry. Within this series, Mn2+ is the softest metal. Generally, hard metal 

ions usually coordinate more readily with oxygen and soft metals often prefer 

sulfur. So, in the transesterification reaction less rapid DNA cleavage should be 

generated in reaction containing soft metals.  

DNA cleavage was measured upon incubation of wt or N189K RepD with the 

3.6 kb supercoiled plasmid and increasing concentrations of cofactors. Such 

measurements allow the investigation of a differential use of ions by RepD and 

can provide an idea of their overall affinities. Reactions were incubated for 1 
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min for the wild-type and 10 min for the mutant prior quenching, and then ran on 

a 1% agarose gel. The bands corresponding to the relaxed DNA plasmids were 

quantified (Figure 3.6). A positive relationship was found between the relaxation 

activity of RepD and the concentration of Mg2+, with near complete nicking at 

around 500 µM for wt RepD and 5 mM for N189K mutant (Figure 3.6A, D). For 

wt RepD, an initial burst phase occurred at the lowest concentrations of Mg2+ (in 

the nM range), where the level of DNA cleavage reached ~ 60%, implying an 

apparent Kapp value < 41 nM. Substitution of Mg2+ as catalytic cofactor had an 

effect on the extent of RepD nicking. Ca2+ supported efficient nicking of wt 

RepD with formation of the near complete relaxed product between 6-10 mM 

(Figure 3.6C). Unlike wt RepD, the mutant RepD did not nick the plasmid in the 

presence of Ca2+, even at high concentrations (Figure 3.6E). Lower levels of 

nicked plasmid over time were detected for both wt RepD and N189K when 

using Mn2+ (70% even at high concentrations of cofactor, 10 mM) and religation 

of the relaxed form was favoured (data not shown). So, it is likely that the ions 

affect the kinetics of nicking and religation, which were not determined here as 

only one time point of the reaction was examined.  

 

Clearly, wt RepD was able to use all the three ions and the highest level of 

DNA scission was observed when using the hard cations as cofactors (Mg2+ 

and Ca2+). However, the apparent affinity for such ions decreased in the 

following order Mg2+>Mn2+>Ca2+ (Table 3.1). Whereas, N189K RepD could 

support cleavage only with Mg2+ and Mn2+, with a lower affinity for these ions 

compared to the wt protein. 

 
 Kapp 

Mg2+ 
Kapp 
Mn2+ 

Kapp 
Ca2+ 

 
Wt RepD 

 
< 41 nM 

 
260 ± 39 μM 

 
1.0 ± 0.4 mM 

 
 

N189K RepD 
 
1.1 ± 0.3 mM 

 
316 ± 97μM 

 
- 

 
Table 3.1. RepD affinities to different divalent ions. 
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Figure 3.6. Effect of divalent ions on RepD catalysis. Agarose gel analysis 
of DNA cleavage by RepD upon increasing concentrations of divalent ions. 
Either wt (A-B-C) or N189K RepD (D-E) was incubated with a supercoiled 
plasmid and increasing concentration of ions and the relaxed plasmid formed 
was quantified by integration of the bands. Reactions were incubated for 1 min 
for wt RepD and 10 min for N189K prior EDTA mixing in order to allow complete 
nicking. Data were fitted to a hyperbola and values of Kapp obtained from these 
titration experiments are summarized in Table 3.1. Solutions and conditions are 
as Figure 3.3. Error bars indicate standard deviations among three independent 
experiments. 
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3.3. PcrA-RepD mediated plasmid unwinding 
 
3.3.1. Unwinding of supercoiled DNA plasmids 
 

Unwinding of plasmid performed by the PcrA-RepD complex follows initiation. 

The activity of N189K RepD with PcrA during unwinding was investigated here. 

Several methods have been reported previously in order to measure in real time 

helicase unwinding of long DNA substrates such as plasmids. A good approach 

to quantify the unwinding activity is measuring a fluorescence signal change 

over time correlated with the production of ssDNA or the disappearance of 

dsDNA from the helicase activity. Fluorescent dyes have been widely used as 

reporter molecules for DNA unwinding. Fluorescent probes for nucleic acids 

such as DAPI and Hoechst 33258, display high fluorescence when bound to the 

dsDNA and low fluorescence when the fluorophore is either in solution or bound 

to the ssDNA. The dyes mentioned above were used in fluorometric assay to 

monitor the activity of RecBCD helicase [103]. Several limitations are correlated 

with these assays such as the possibility of reannealing of the unwound ssDNA. 

The use of labeled SSB to measure unwinding overcomes several limitations 

of the assays described above. Firstly, the DNA length is virtually unconstrained 

allowing the study of processive helicases. In addition, SSB protein can trap the 

unwound ssDNA preventing reannealing.  Binding of SSB is rapid and tight and 

so it is suitable for a real-time kinetic assay.  SSB was labeled with a coumarin 

derivative (DCC-SSB) providing around 6-fold increase in fluorescence when 

bound to ssDNA. DCC-SSB has been successfully used in real-time to 

determine the kinetics of unwinding of AddAB and PcrA helicases [48, 52].   

The assay used here to measure PcrA unwinding was performed in the 

presence of DCC-SSB using a stopped-flow instrument (Figure 3.7). In this 

assay, RepD and PcrA were incubated with a pCERoriD plasmid to allow the 

formation of the initiation complex, and then the solution was rapidly mixed with 

ATP to start unwinding in a stopped-flow apparatus. The newly generated 

ssDNA was substrate for the labeled SSB, causing an increase in the 

fluorescence intensity (Figure 3.7).  
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Figure 3.7. Cartoon showing the dynamics of supercoiled plasmid 
unwinding monitored in real time with DCC-SSB assay. A supercoiled 
pCERoriD plasmid is incubated with RepD and PcrA, RepD nicks and relaxes 
the plasmid and PcrA is recruited on the generated ssDNA tail. This solution is 
then rapidly mixed on the stopped-flow with a solution containing ATP, in 
presence of DCC-SSB. PcrA can start DNA unwinding with the hydrolysis of 
ATP and the produced ssDNA is bound by the DCC-SSB causing an increase 
in fluorescence. 
 

 

Using the assay described above, it was previously shown that RepD activity 

is essential for processive unwinding by PcrA helicase [52]. Here, the assay is 

used to investigate the activity of the N189K RepD-PcrA unwinding complex.  

Different length pCERoriD plasmids were used in the DCC-SSB assay to 

monitor PcrA-unwinding and measure an average rate of unwinding. Unwinding 

of six plasmid lengths with the PcrA-N189K RepD complex is shown in Figure 

3.8. Qualitatively, traces were similar to those observed with wt RepD (see the 

Appendix of this thesis). For the majority of the plasmids, a small lag phase is 

followed by an increase in fluorescence intensity and then a final flat phase. The 

difference in DNA length does not affect the initial lag phase which might be 

caused by the initial DNA-protein interactions or initial competition between 

PcrA and the SSB for the the ssDNA generated through RepD-mediated 

nicking. The increase in fluorescence is consistent with SSB binding ssDNA 

during unwinding. The amplitude of the traces linearly increases with the 

plasmid length, which is consistent with a higher amount of SSB bound on 

longer DNA once unwinding is complete (Figure 3.8C). However, the 

amplitudes varied, as they’re proportional to the amount of supercoiled DNA in 

the solution and the efficiency of RepD nicking. The duration of unwinding also 

depends linearly on the size of the plasmid and the unwinding time (or break-
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point) of the traces is used for the analysis. The slope of the linear fit of the 

duration of the unwinding phase in function of the DNA length gives a rate of 

unwinding of 19 bp s-1 for N189K RepD-PcrA complex (Figure 3.8B). This is 

similar, although a little slower than the rate (30 bp s-1) observed with wt RepD 

(see the Appendix of this thesis). 

Despite the slow nicking kinetics on the supercoiled plasmid of the mutant 

RepD, a functional unwinding complex with N189K-PcrA could be made and 

successful and processive unwinding could be achieved. 

 

One feature of the plasmid unwinding assay is that a decrease in the 

amplitudes of the traces was observed for longer incubation times of the wt 

RepD-PcrA-DNA complex. Fluorescence traces of an aged complex using a 

2437 pCERoriD plasmid are shown in Figure 3.9. This is likely to be caused by 

RepD religation events of the nicked plasmids over time.  

However, when using N189K RepD the complete unwinding complex with this 

protein was normally incubated for 10 min before starting unwinding (wt RepD is 

incubated for only 60 s), because of a slower nicking activity of N189K RepD. 

This is the time taken by the mutant to achieve complete nicking of the 

supercoiled DNA. For incubation times >10 min the amplitudes of the traces 

were constant (Figure 3.9B, C). These observations suggest that a more stable 

RepD-DNA complex is formed with N189K over relatively long time. This is 

consistent with the slow religation kinetics of N189K RepD determined above.   
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Figure 3.8. Unwinding of different length supercoiled plasmids monitored 
in real time using the DCC-SSB fluorescence assay. (A) Fluorescence time 
course for unwinding of plasmids of different lengths (shown in base pairs) with 
PcrA and N189K RepD. The assay performed in a stopped-flow apparatus is 
shown in Figure 3.7. Final concentrations after mixing in K100 buffer at 30 °C 
were 0.5 nM plasmid, 95 nM PcrA, 2 nM RepD, 1 mM ATP, and 200 nM DCC-
SSB tetramers. The fluorescence has arbitrary units, normalized to start at 100. 
(B) Dependence of unwinding time on plasmid length, as described in the text. 
The linear fit gives a rate constant of 19 ± 2 bp s-1 for unwinding. (C) 
Dependence of the amplitude of the unwinding phases on the plasmid length. 
Error bars indicate standard deviations among three independent experiments. 
Examples of fitting are shown in the Appendix of this thesis.  
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Figure 3.9. Unwinding of a supercoiled pCERoriD plasmid as a function of 
pre-incubation time. Comparison of unwinding traces of an aged solution 
containing a pCERoriD plasmid (2.4 kb) and wt RepD (A), or N189K RepD (B). 
RepD was incubated with the plasmid at the time indicated, and then unwinding 
was monitored using the DCC-SSB fluorescence assay (as described in Figure 
3.7). The times taken to unwind were independent of the age time, but the 
amplitudes varied. The fluorescence has arbitrary units, normalized to start at 
100. (C) The amplitudes of fluorescence in function of the incubation time.  
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3.3.2. Unwinding of a linear DNA plasmid  
 
Unwinding was also measured on a linear DNA plasmid. The pCERoriD 

plasmids contain various sites for different restriction enzymes. Plasmid 

digestion was performed to generate linear DNA substrates. RepD nicking on 

the oriD is followed by PcrA helicase directional unwinding of the linear DNA 

substrate [51]. Unwinding traces for linear plasmid unwinding using the DCC-

SSB biosensor are shown in Figure 3.10. A 3094 pCERoriD plasmid was 

digested to produce linear DNA placing the oriD at the initial end of the plasmid 

(the HindIII-3094, Figure 3.10A).  

A direct comparison with a supercoiled substrate showed that the use of 

linear DNA had a negative effect on RepD nicking as the amplitudes of the 

traces were significantly reduced (Figure 3.10B). For this reason, the protein 

was incubated with this DNA substrate over several min prior unwinding. 

Fluorescence traces of linear DNA displayed an increase in signal for wt RepD 

but the phases were not distinctive and so the break point was not as well 

defined as when using supercoiling substrates (Figure 3.10B). A small increase 

in the amplitude was observed for longer incubation times of the RepD-DNA 

complex. This would be caused by slow nicking and an increase in the nicked 

linear DNA over longer time. These results suggested that supercoiling may 

play a significant role in RepD nicking activity.  

Unwinding of such linear plasmids was also monitored with N189K RepD-

PcrA complex (Figure 3.10C). Traces showed no change in fluorescence and 

similar results were observed with other linear plasmids (data not shown). 

These results indicated that N189K RepD-PcrA complex did not support 

unwinding of linear DNA. However, supercoiled plasmids are successful 

substrates for unwinding, so possibly one or more functions between binding, 

nicking and translocation activities were compromised in the RepD mutant.  

The functions of N189K RepD mentioned above will be further investigated in 

this chapter in order to elucidate this mechanism. 
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Figure 3.10. Unwinding of linear pCERoriD plasmid monitored in real time 
with the DCC-SSB assay. (A) Schematic of the linear pCERoriD plasmid 
(HindIII-cut 3094) used showing the location of the oriD sequence. (B) 
Comparison of the unwinding traces of a 3094 supercoiled plasmid (30 s 
incubation time) and the digested linear DNA (different incubation times) by wt 
RepD-PcrA complex. The effect of aging complex (30s, 10 and 20 min.) is 
shown for the linear plasmid. (C) Fluorescence traces of the HindIII 3094 
plasmid unwound by either wt or N189K RepD-PcrA complex. Complexes were 
aged for 20 min prior unwinding. Solutions and conditions were as Figure 3.8. 
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3.4. RepD binding activity on partial DNA junctions 
 
3.4.1. Anisotropy titrations of RepD binding partial DNA 
junction 
 

The difference in the unwinding activity of the N189K RepD-PcrA complex of 

linear plasmids stimulated a further investigation of the mutant RepD function in 

initiation using linear DNA. An initial approach represented the exploration of 

binding to short labeled DNA junctions through anisotropy experiments.  

Generally, a change in the fluorescence properties of a fluorophore 

accompanies binding and formation of macromolecular complexes and it can be 

used to quantitatively monitor such interactions. Fluorescence anisotropy can 

give useful information about the molecular mass of the probe in relation to its 

rotational correlation time (details on fluorescence anisotropy can be found in 

Chapter 1). Anisotropy measurements were described in a previous study with 

RepD and the Y-shaped junction [52]. These showed that wt RepD binds with 

high affinity to its recognition sites. Fluorescence anisotropy was used here to 

detect binding of wt RepD and N189K RepD variant to a partial DNA junction 

containing the right arm of the ICRII sequence and the complete ICRIII (junction 

1, Figure 2.2 for structure and sequence). The 5’-end of one oligonucleotide of 

the duplex was labeled with fluorescein in order to locate the probe on the 

terminal part of the DNA junction and opposite to the protein binding site. 

Fluorescein is a useful probe for anisotropy measurements because of its 

fluorescence lifetime (~ 4 ns).  

Titrations of wt RepD and N189K RepD in a solution containing the junction 1 

were performed by monitoring the anisotropy changes in real time. The 

anisotropy increases upon RepD addition to the solution as binding to the DNA 

substrate occurs until it reaches saturation (Figure 3.11). The increase in 

anisotropy is accompanied with a relatively small decrease in the fluorescence 

intensity. This can be caused by a direct effect on the fluorescein presumably 

by direct interaction with RepD or conformational changes during complex 

formation. The change in fluorescence intensity may well be caused by a 

change in the fluorescence lifetime of the fluorescein, and for this reason the 

observed anisotropy is therefore apparent.    
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The change in anisotropy was plotted versus protein concentration and the 

measurements were fitted for reversible binding, gaving an apparent equilibrium 

constant, Kapp, of 50 nM for wt RepD and 484 nM for N189K RepD (Figure 

3.11). These values represent an approximate assessment of affinity due to the 

sensitivity of the method and the nature of the experimental approach.   

Considering that these measurements were carried out in the presence of 

Mg2+, the values obtained do not distinguish between the non-covalent and 

covalent interactions for wt RepD. However, it is anticipated that N189K RepD 

is not able to nick linear DNA so its apparent affinity constant would reflect only 

the noncovalent binding step. 

In order to investigate the role of Mg2+ on DNA binding affinities, an 

alternative way to perform the measurements is to exclude Mg2+ from the buffer 

solution and include a chelating agent, such as EDTA, to remove any ion 

contamination. Under these conditions, the covalent linkage does not occur for 

wt RepD and the effect of Mg2+ on binding can be examined. Measurements of 

the Kapp values were 90 nM for wt RepD and 484 nM for N189K (Figure 3.11, 

insets). In the absence of the catalytic ion, the Kapp did not change significantly 

for either protein. These results suggest that mutation N189K may reduce RepD 

affinity to the DNA junction by ~6 fold.  

 

The affinities of wt and N189K RepD to partial duplex DNA are further 

investigated in this chapter. The change in fluorescence intensity observed in 

the anisotropy measurements will be useful for supplementary binding studies. 

The effects of magnesium and other divalent cations on RepD activities are 

further examined. Additional aspects of the formation of the initiation complex, 

and a more direct comparison of the activity of the two RepD proteins will be 

made in the Discussion section.  
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Figure 3.11. Fluorescence anisotropy analysis of DNA binding equilibrium 
by RepD. The structure of the Y-junction used in this assay and the position of 
the fluorescein (F) is shown in the top image (junction 1, Figure 2.2). 
Measurements were made in K200 buffer at 30 °C, exciting with vertically 
polarized light at 497 nm, and emission measured using a 515 nm cut off filter. 
Individual example titrations with wt RepD (B) and N189K RepD (B) giving a 
Kapp of 50 nM and 484 nM respectively (DNA concentration is 200 nM). 
Titrations performed in Mg2+ free buffer (K200 without Mg) are shown in the 
insets giving a Kapp of 90 nM for wt RepD and 484 nM for N189K RepD. Error 
bars indicate standard deviations among three independent experiments. 
Intensity changes are in the Appendix of this thesis. 
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3.4.2 RepD binding kinetics to a partial DNA junction 
 

The fluorescence intensity signal generated by the fluorescein junction was 

used to further investigate DNA binding by RepD. The signal generated upon 

complex formation with a labeled molecule enables the determination of 

association and dissociation rate constants. Thus, the association kinetics of wt 

and N189K RepD are examined here under pseudo-first-order conditions by 

monitoring in real-time the fluorescence intensity of the fluorescein-labeled 

junction (junction 1, Figure 2.2).  

The binding reaction is represented by scheme 1 with a single-step reversible 

model of binding.  

 

Scheme 1: 

 

 

 

 

In this model, the observed rate constant, kobs, is given by the equation 6, 

where k+1 and k-1 represent the association and dissociation rates respectively. 

These measurements enable the calculation of the dissociation constant for the 

overall reaction, Kd (overall), using equation 7: 

 

(6)  

 

 

(7) 

 

The binding experiment was performed by mixing the DNA junction with 

increasing concentration of wt and N189K RepD using a stopped-flow 

apparatus (Figure 3.12A). The DNA substrate provides a significant signal 

change when bound to RepD. Addition of either wt or N189K RepD to the DNA 

solution causes a decrease in fluorescein fluorescence intensity consistent with 

rapid binding (Figures 3.12B-C). The traces are fit to single exponentials and 
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there is a linear dependence between the observed rate constants and RepD 

concentration.  

Traces were fitted to single exponentials and linear data fitting give a slope 

(k+1) of 83 μM-1s-1 and intercept of 12 s-1 for wt RepD, and 77 μM-1s-1 and an 

intercept of 19 s-1 for N189K RepD (Figure 3.12D). The value for wt RepD is 

similar to that observed previously [52]. RepD proteins show similar association 

kinetics.  

 

Generally, the dissociation constant (Kd) may be estimated from the 

association kinetics experiments by using the intercept value (koff) of linear fit to 

kobs versus ligand concentration. The values of the intercepts obtained here are 

not accurate estimates of the dissociation rates as they are close to 0 and can 

be largely affected by fitting error. In this circumstance a more accurate 

measurement of koff was needed. The latter can be determined through a 

displacement experiment performed using a stopped-flow instrument (Figure 

3.13).  Initially, RepD was allowed to bind the fluorescein junction until 

equilibrium was reached. At that point, the RepD-DNA complex was rapidly 

mixed with an excess of unlabeled junction. The resulting trace has an opposite 

fluorescence signal to binding and in this experiment is observed as an increase 

in fluorescein fluorescence (Figure 3.13).  The traces were fitted to single 

exponential and the rate constants were independent from the unlabeled DNA 

concentration (2-50 μM). The dissociation rates were 1.3 s-1 for wt RepD and 6 

s-1 for N189K variant. 

The Kd values obtained from the k+1 and k-1 measurements are collected in 

Table 3.2. 
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Figure 3.12. Binding kinetics of RepD to a DNA junction. (A) Binding 
experiment on a stopped-flow apparatus showing the structure of the junction 1, 
labeled with fluorescein (Figure 2.2). (B) Examples of fluorescence intensity 
traces of a range of concentrations of wild-type, and N189K RepD (C), mixed 
with the junction 1 (100 nM) in K200 buffer. (D) Linear data fitting gives a slope 
of 83 (±3) μM–1s–1 and intercept of 12 (±2) s–1 for wt RepD. N189K RepD 
binding to the junction gave a slope of 77 (±5) μM–1s–1 and intercept of 19 (±3) 
s–1 (30 °C). Error bars indicate standard errors from each fit. Individual fits are 
shown in the Appendix of this thesis. 
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Figure 3.13. RepD dissociation kinetics from a DNA junction. 100 nM 
junction 1 and 200 nM RepD were rapidly mixed with 10 µM of unlabelled 
junction as shown in (A). Resulting dissociation traces of N189K RepD (B) and 
wt RepD (C) are fit to single exponentials giving rates of 1.9 s-1, and 6 s-1. 
Details of fits and errors can be found in the Appendix of this thesis. 
 
 
3.4.3. Effect of magnesium on RepD binding kinetics to a partial 
DNA junction 

 

Association and dissociation experiments were also performed in the 

absence of Mg2+ to evaluate its effect on RepD binding kinetics (Figure 3.14). 

Fluorescence traces were noisier compared to those observed in the presence 
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of Mg2+, as shown above (Figure 3.14A). The association rate for wt RepD was 

104 μM-1s-1 and 84 μM-1s-1 for N189K (Figure 3.14B, D). The koff were 2.3 s-1 

and 8.8 s-1 for wt and N189K, respectively (Figure 3.14C). There was no 

significant difference in RepD binding kinetics in the presence and the absence 

of Mg2+.  

The measurements of k+1 and k-1 enabled the calculation of Kd values for the 

RepD affinity to the junction 1 (equation 6) and are summarised in Table 3.2. 

These results indicated that the mutation N189K did not have a dramatic 

effect on RepD binding activity. However, the Kd values for the mutant RepD 

were slightly higher than the wild type. Thus, N189K RepD affinity to DNA was 

reduced by ~ 5-fold. Furthermore, removal of Mg2+ that is necessary for RepD 

catalytic reaction did not have a significant effect on the protein binding kinetics 

and affinity.  

These data are consistent with that obtained from the anisotropy 

measurements. The differences between wt and N189K binding affinity were 

confirmed, however more accurate estimates were obtained from the 

fluorescence intensity experiments.  

 
 
 
 

 Wt RepD  
(Mg2+) 

Wt RepD 
(No Mg2+) 

N189K RepD 
(Mg2+) 

N189K RepD  
(No Mg2+) 

 
kon (μM-1s-1) 

 
83 ± 3 

 
104 ± 5 

 
77 ± 5 

 

 
84 ± 6 

 
koff (s-1) 

 
1.3 ± 0.2 

 
2.3 ± 0.2 

 
6.0 ± 0.2 

 
8.8 ± 0.3 

 
Kd (nM) 

 
15 ± 2 

 
22 ± 1 

 
78 ± 3 

 
104 ± 5 

 
Table 3.2. RepD binding kinetics and affinity to a partial DNA junction. 
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Figure 3.14. RepD binding kinetics to a DNA junction in the absence of 
Mg2+. (A) Examples of fluorescence intensity traces mixing 500 nM RepD and 
100 nM DNA junction 1. Measurements were carried out in K200 buffer without 
magnesium. Traces are fit to single exponentials. (B) Linear data fitting gives a 
slope of 104 ± 5 μM–1s–1 and an intercept of 31 ± 9 s–1 for wt RepD. (D) N189K 
RepD binding to the Y-junction gave a slope of 84 ± 6 μM–1s–1 and an intercept 
of 47 ±12 s–1 (30 °C). Error bars indicate standard errors from each fit. (C) 
Dissociation kinetics for N189K RepD. Trace is fitted to a single exponential 
giving a rate constant of 8.8 s-1. For reactions and conditions see Figure 3.13.  
 
 
3.5. RepD nicking activity on linear DNA 
 
3.5.1. Kinetics of RepD binding/nicking a partial DNA junction 
 

Additional information on binding and nicking steps can be obtained with 

anisotropy. Fluorescence anisotropy was used to assess RepD binding and 

nicking a fluorescein-labeled junction with a rapid mixing experiment using the 

stopped-flow instrument. The partial DNA junction contained part of the ICRII 

sequence including the nick site as ssDNA arm, the fluorescein on the 5’ end of 
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this arm, and the ICRIII sequence within the duplex region (junction 2, Figure 

2.2).  

It has already been shown that the structure of this junction and the 

fluorescein label location are useful to gain information about RepD binding and 

nicking [52]. When RepD binds the DNA junction a change in the fluorescence 

anisotropy is expected as a higher molecular mass complex is formed. Upon 

RepD binding, nicking on ICRII occurs and the consequent release of the 

fluorescein with four bases attached causes a decrease in the observed 

anisotropy (Figure 3.15A).  

RepD was mixed with the fluorescein-labelled junction to get a time course of 

anisotropy (Figure 3.15). As expected, traces were biphasic when mixing wt 

RepD to the junction and the changes in fluorescence anisotropy were 

consistent with changes in the molecular mass of the fluorophore. The rapid 

increase (150 s-1) is followed by a slower phase occurring at a rate of 2.1 s-1 

which would represent the apparent rate of nicking for this junction. Although 

this measurement provides a good estimate of the RepD nicking rate, a 

quantitative analysis of the extent of nicked DNA by RepD cannot be achieved 

using anisotropy. The RepD mutant trace showed a rapid rise in anisotropy 

consistent with binding of the junction but no subsequent decrease (Figure 

3.15B). The lack of the second phase suggested that the DNA was not nicked 

and so the fluorescein was not released. The effect of Mg2+ on the anisotropy 

trace was also measured with wt RepD (Figure 3.15C). RepD was mixed with 

the junction 2 using a Mg2+ free buffer, and so nicking was prevented. Under 

these conditions, the wt RepD trace was qualitatively similar to that of the 

N189K RepD. 
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Figure 3.15. Anisotropy time-course following mixing of RepD with a DNA 
junction. (A) Binding/nicking experiment with RepD. See text for details. (B) 
Comparison of wt and N189K RepD anisotropy traces. Solutions contained 100 
nM of junction 2 (Figure 2.2) and 800 nM RepD (wt or N189K) in K200 buffer at 
30 °C. The control without RepD is also shown. (C) Effect of Mg2+ on the 
anisotropy signal. Wt RepD and the junction 1 were mixed as described in B. 
For the - Mg trace, magnesium was removed from the K200 buffer (in black).  
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Increasing concentrations of N189K RepD were used in order to measure the 

association kinetics to the DNA junction 2 (Figure 3.16A), and compare these 

results with the binding measurements described above. Individual traces were 

fitted well with single exponentials, and the average rate constants were fit to a 

linear relationship with the concentration of RepD with the slope giving a second 

order binding constant of 75 μM–1s–1 (Figure 3.16B). These results were 

consistent with the binding kinetics measured with the DNA junction 1 (Figure 

3.12). 

 

 
 
Figure 3.16. Anisotropy time-course following mixing a DNA junction over 
a range of N189K RepD concentrations. (A) Examples of anisotropy traces at 
three different concentration of RepD with 100 nM junction 2. Solutions and 
conditions were as Figure 3.15. Traces were fitted to single exponentials. (B) 
Linear data fitting gives a slope of 75 ± 4 μM–1s–1 and intercept of 7.4 ± 2 s–1 for 
the junction 2. Error bars indicate standard errors from each fit. Fits and errors 
are shown in the Appendix of this thesis. 
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3.5.2. RepD nicking activity analysis using a gel assay 
 

Anisotropy data indicated that nicking on linear DNA was abolished for 

N189K RepD. A further analysis of RepD nicking different DNA substrates was 

performed on SDS-PAGE to confirm the anisotropy results. In this assay, RepD 

subunits covalently bound to the DNA migrate behind the unbound monomers 

(cartoons in Figure 3.17).  RepD acts as dimer while nicking, however protein 

denaturation occurred upon incubation with SDS so that just one subunit of the 

active dimer was attached to the DNA. The separation of the two different 

subunits was then achieved through electrophoresis allowing separation of the 

different molecular weights.  

A range of different lengths oligonucleotides, including the oriD sequence 

and DNA junctions were used in the assay to assess N189K nicking ability 

(Figure 3.17). Gel analysis showed that wt RepD was able to nick all the 

different DNA structure used. The amount of free and bound RepD subunits (%) 

was calculated from the quantification of the bands (Figure 3.17B). Nicking 

efficiency of wt RepD in its dimeric active form is between 40% and 70% on the 

oligonucleotides used. N189K RepD did not show nicking on a variety range of 

DNA substrates (Figure 3.17A) being 100% inactive on such linear DNA (Figure 

3.17B). 

These results confirmed the anisotropy measurements and will be further 

reviewed in the Discussion section. 
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Figure 3.17. RepD nicking different DNA substrates, monitored by SDS-
PAGE. (A) SDS-PAGE gel of the nicking reactions done with wt RepD and with 
N189K RepD. OriD (+) represents the (+) strand of the oriD sequence, OriD ds 
is the double stranded origin made of equimolar OriD-(+) and OriD-(-). “30 bp” 
and “30 bp–F” are DNA junctions (see Figures 2.2 and 2.4 for DNA sequences). 
Reactions were incubated at 30 °C for 10 min. Additional details are in Methods. 
(B) SDS-PAGE analysis by quantification of the bands corresponding to the 
RepD subunits.  
 
 
3.6. PcrA-RepD mediated DNA junction unwinding 
 

From an initial characterization of N189K RepD activity presented above, a 

singular feature of the variant was revealed. Its nicking activity was strictly 

depending on the presence of supercoiling in DNA substrates and failed on 

linear DNA. The observation of a different nicking ability of N189K RepD 

compared to the wild-type protein led to a broader investigation of its function.  

As nicking was not observed on linear DNA, its ability to translocate with 

PcrA on such DNA substrates was monitored using the DNA junction unwinding 
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assay described in Figure 3.18. Such DNA, in this assay, is labeled with 

adjacent 5’-Cy3 and 3’-Dabcyl groups away from the initial DNA-protein 

complex interactions. In the duplex state, the Dabcyl group quenches Cy3 

fluorescence. Upon complete duplex unwinding by PcrA-RepD, the Cy3 group 

dissociates from Dabcyl and a fluorescence intensity increase is observed 

(Figure 3.18). The DNA junctions contained the right arm of the ICRII sequence 

for RepD binding, a ssDNA stretch for PcrA binding and then random sequence 

forming the duplex region to mimic translocation during pseudo-steady-state 

plasmid unwinding (junctions 20 bp-F, 30 bp-F, and 40 bp-F, Figure 2.2). The 

use of such junctions to study unwinding kinetics of RepD-PcrA complex was 

previously described [52]. This system has been shown to provide sufficient 

signal to measure duplex separation and so helicase unwinding activity. With 

this assay, it was also demonstrated that PcrA alone is not able to unwind short 

DNA duplexes and that needs an activator, which is the initiator protein RepD.  

 

 

 

 
Figure 3.18. Cartoon of the DNA junction unwinding by RepD-PcrA 
complex. Three different lengths of duplexes (20, 30 and 40 bp) containing the 
ICRII sequence are used to measure PcrA unwinding kinetics. Cy3 
fluorescence is quenched by the Dabcyl group until its dissociation occurs upon 
unwinding. See text for details. 
 

 

As described above, the linear plasmids were not unwound by the N189K 

RepD-PcrA complex. Here, the function of the RepD-PcrA unwinding complex 

was evaluated on DNA junctions having an opened structure so that a loading 

site was available for PcrA. The unwinding reaction was monitored in real time 

by rapid mixing the pre-formed complex RepD-DNA.PcrA with ATP using a 

stopped-flow apparatus, as shown in Figure 3.18. The DNA-RepD complex was 

assembled with either wt or N189K protein. In this assay, an excess of RepD 
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was used over the DNA to allow full loading of RepD on the DNA, and then the 

Rep-DNA complex was in excess of PcrA. Under these conditions, it is likely 

that the majority of DNA will have only one PcrA molecule bound. Mixing with 

ATP caused an increase in fluorescence signal due to unwinding and release of 

the Cy3-group (Figure 3.19). Qualitatively, fluorescence traces of N189K RepD-

PcrA complex were similar to that observed with wt RepD indicating that N189K 

supported unwinding of linear DNA junctions. An initial lag phase was followed 

by an increase in the fluorescence intensity. The rise in fluorescence was 

consistent with DNA unwinding (Figure 3.19A). There was a further increase in 

fluorescence that occurred at a slower rate that is likely to be caused by PcrA 

dissociating and then binding and unwinding other RepD-DNA complexes, 

which are present in solution in steady state conditions.  

The duration of the lag phase represents the time required by PcrA to fully 

unwind the DNA junction (Figure 3.19A). This time increased with the duplex 

length and using different length of DNA duplexes allowed the calculation of an 

average of the unwinding rate (Figure 3.19B). The latter is given by the slope of 

the linear fit from the plot of the lag phase time in function of DNA lengths 

(Figure 3.19C). The amplitude of the traces varied between the different length 

junctions, and such a difference may be caused by the excess of Dabcyl 

oligonucleotide in the DNA solution which can be a potential binding substrate 

for PcrA. This results in less helicase available for the RepD-DNA complexes. 

However, a direct comparison cannot be easily made as differences may 

intrinsically arise from small errors in DNA stock concentrations.  

For N189K RepD-PcrA complex unwinding occurred at a rate of 47 bp s-1, 

similar to that of wt RepD-PcrA complex, 54 bp s-1, measured here and in a 

previous study (Figure 3.19C, Slatter et al). These data indicated that N189K 

RepD efficiently activated PcrA helicase in a similar way of wt RepD and that 

loss of nicking on these substrates does not have significant effects on its ability 

to efficiently translocate with PcrA during unwinding.  
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Figure 3.19. Unwinding kinetics of different length DNA junctions by 
RepD-PcrA complex. (A) Example of fluorescence trace for the 20 bp-F 
junction, showing the linear fits used to measure the duration of lag. (B) N189K 
RepD-PcrA mediated unwinding of three different lengths of DNA junctions. 
Traces were normalized to 1. 500 nM of junction, 100 nM PcrA, and 2.5 μM 
RepD were rapidly mixed with 200 μM ATP at 30 °C, in K200 buffer. The control 
reaction without RepD is also shown. (C) Dependence of the lag time on DNA 
lengths. The slope of the linear fit gives a rate of unwinding of 47 ± 4 bp s–1 for 
N189K RepD-PcrA and 54 ± 9 bp s-1 for wt RepD-PcrA complex. Error bars 
indicate standard deviation among two independent experiments. Fits and 
errors are in the Appendix of this thesis. 
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3.7. The PcrA-RepD translocation complex 
 

The functional studies previously described in this chapter using a 

fluorescent approach and gel assays have shown that N189K is not able to nick 

linear DNA but can promote unwinding by PcrA of such substrates.  This 

suggested that nicking per se was not needed for functional translocation. In 

order to confirm this hypothesis, the unwinding kinetics were further monitored 

here under conditions where nicking was prevented.  

One approach to limit nicking is to design mutations in the ICRII region that 

could abolish the cleavage reaction but preserve protein binding. Two main 

strategies were taken. One mutation deleted the 5′-side of the nicking site by 

removing 1-3 positions on the right arm of ICRII so that there is no 

phosphodiester in the correct position for transesterification by RepD. The 

others consisted in substitution of the adenine base involved in the covalent 

attachment with RepD. The activity of the RepD and the function of RepD-PcrA 

complex were investigated on such mutated DNA.   

 

The first set of experiments established the ability of wt RepD to nick short 

ICRII-mutated oligonucleotides (ICRII-A>T, A>C, ΔCTA, Figure 2.4 for 

sequences). Incubation of wt RepD with all mutated ICRII sequences showed 

loss of DNA nicking from an SDS-page gel analysis (Figure 3.20B). With this 

assay, binding could not be discriminated as it is performed in denaturating 

conditions. However, binding was assessed through a gel shift assay. In the 

latter, the DNA and the DNA-protein complex run differently on a gel according 

to their molecular weights in nondenaturating conditions. An excess of RepD 

was incubated with the DNA junctions containing the ICRII mutations (20bp-

ICRII-A>T, 20-bp-ICRII-ΔCTA, Figure 2.2), and the formed DNA-RepD complex 

was detected on the gel (Figure 3.20A). These results indicated that despite the 

lack of nicking caused by modifications in the ICRII sequence, protein binding 

was still preserved on such DNA.   

The ability to form a functional translocating complex by RepD-PcrA was then 

investigated on these mutated ICRII DNA junctions (Figure 3.21). This 

experiment is based on the Cy3-Dabcyl assay described above (Figure 3.18). 

As described for the gel shift assay above, the partial DNA junctions contained 
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either the ΔCTA deletion or the substitution A>T (20bp-ICRII-A>T, 20-bp-ICRII-

ΔCTA, Figure 2.2). Qualitatively, the unwinding traces for both DNA junctions 

were similar to those obtained with the wt ICRII sequence, a lag phase followed 

by a fluorescence increase consistent with PcrA unwinding. These data 

supported the idea that the nicking activity and the translocation activity are 

separate and a complete active translocation complex is possible in the 

absence of DNA nicking.   

 

 

 
Figure 3.20. RepD binding and nicking activities on ICRII mutated DNA. (A) 
Gel shift analysis of RepD binding ICRII-mutated DNA junctions. Solutions 
contained 1 μM of DNA (20bp-ICRII-A>T on the left, and 20-bp-ICRII-ΔCTA on 
the right) +/- 1 μM wt RepD, as indicated. (B) SDS-PAGE gel analysis of the 
nicking reaction following incubation of RepD with a range of ICRII 
oligonucleotides (see Figure 2.4 for sequences). The control without DNA is 
also shown (- DNA). Reactions and conditions were as in Figure 3.17. Cartoons 
on the left side of the gels represent the molecular interactions corresponding to 
the relative bands.  Details on the gel assays can be found in Methods. 
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Figure 3.21. Unwinding of ICRII mutated DNA junctions by RepD-PcrA 
complex monitored in real time by Cy3 fluorescence. (A) Unwinding of 
20bp-ICRII-A>T junction and (B) 20bp-ICRII-ΔCTA junction. Reactions, 
conditions and analysis are as Figure 3.19. The DNA junctions with the mutated 
ICRII sequence are schematically shown in the insets.  
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3.8. Discussion 
 

3.8.1. Formation of the initiation complex 
 

The work described in this chapter, addresses the factors that are involved in 

ensuring that RepD successfully initiates plasmid replication. In particular, this 

was achieved by examining the kinetics of the nicking reaction and how this is 

related to subsequent unwinding. The investigation of RepD function is also 

extended with the use of the active N189K RepD variant. 

Inverted complementary repeats are essential both for RepD recognition and 

for formation of the initiation complex [16, 17]. These elements were introduced 

into DNA junctions that were prepared from oligonucleotides and used in 

several biochemical assays. In particular, real-time measurements of nicking 

kinetics show how features of the DNA are important for different steps of 

formation of the initiation complex. In addition, some measurements were taken 

on the whole plasmid using discontinuous real-time assays, for example, using 

the quench-flow technique.  

The initiation events involving the formation of the RepD-DNA complex can 

be described considering elementary chemical steps by the simplified scheme:  

 

Scheme 2: 

 
 

In Scheme 2, the DNA is shown as A-B with A being the 3’-end and B the 5’-

end of the DNA nick site. Steps are shown with the relative rate constants of the 

forward and reverse reaction. RepD binding (step 1) is followed by the chemical 

step 2. The rapid nicking results in the covalent attachment of the protein to the 

5’-end of the cleaved DNA. This is an intermediate shown as a non-covalent 

complex between the RepD–DNA complex and the nicked DNA. There may be 

interactions of RepD with the nicked DNA as well as potential remnant base 
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pairing of the nicked DNA with the covalently bound part of ICRII. Finally, in 

step 3, the 3′-end of the nicked DNA dissociates to provide the structure with a 

stretch of ssDNA to which PcrA binds. This dissociation could be complete 

separation in the case of some oligonucleotide junctions, or just removal from 

the RepD binding site in the case with the complete oriD. Apart from 

inhomogeneities that may occur in any biochemical reactions, such as partially 

damaged proteins, further inhomogeneity could arise in this type of reaction 

because DNA with inverted complementary repeats might take up various 

structures, particularly hairpins. Such inhomogeneity could add to the 

complexity of the measured kinetic transients. 

 

The binding kinetics of RepD that were measured by fluorescence intensity 

(Figure 3.12) depend largely on the presence of ICRIII and vary little with the 

structure of the neighboring ICRII sequence. This binding (k+1) is fairly rapid 83 

μM–1s–1 (Table 3.2), and it is also independent of whether subsequent nicking 

occurs on the junction, as shown using N189K RepD (with a value of 77 μM–1s–

1). Nicking on ICRII then follows the binding step. The extent of nicking reaction 

was almost quantitative when a single-stranded ICRII is used as substrate, 

either as a ssDNA oligonucleotide or as part of a DNA junction (Figures 3.17). 

Note that only one RepD subunit becomes covalently linked via its active site 

tyrosine to the 5′-end of the DNA. The nicking kinetics with such DNA were not 

measured, but the reaction with a fluorescein-labelled DNA junction (junction 2) 

indicates that single-stranded ICRII is nicked slowly (~2 s–1, Figure 3.15). In this 

case, it is likely that nicking is followed by rapid dissociation of the small DNA 

product (step 3, Scheme 2).  

The direct measurement of nicking kinetics, using quench flow, suggests that 

both thermodynamic equilibria and kinetics play a part in the observed time 

courses (Figure 3.4). The nicking kinetics of the whole plasmid are complex 

because of the slow release of the nicked DNA end from RepD and reversibility 

of the nicking step. The plasmid nicking kinetics are multiphasic, and show a 

rapid phase (k+2: >25 s–1) with a 35% amplitude followed by a slow phase (k+3: 

~2.5 s–1, Figure 3.4). Gel analysis of plasmid nicking on a longer time scale 

shows the slow religation of the DNA to give a relaxed, closed plasmid at an 

observed rate constant of 0.0037 s–1 with an equilibrium constant of 0.3 (Figure 
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3.3). It seems likely that RepD remains bound to the relaxed, closed plasmid, 

based on the dissociation constant of RepD from the DNA junction, so this is a 

direct measurement of the equilibrium constant for the nicking reaction.  

The nicking reaction is formation and breakdown of a phosphodiester bond, 

and this equilibrium might be expected in the absence of other factors to be 

close to unity. Both the free energy of supercoiling in the intact plasmid and 

RepD binding could drive the formation of the cruciform extrusion of palindromic 

sequences contained within oriD [15, 16, 104].  

The formation of the cruciform has been shown to be dependent on 

superhelicity, as the torsional stress of supercoiling leads to a decrease in the 

activation energy of the reaction, followed by conformational changes in DNA 

structure that favor the formation of cruciform structures. In the absence of 

enzymes, this occurs only very slowly, even when thermodynamically favored 

[105]. However, RepD might enhance and stabilize the extrusion on the 

supercoiled plasmid through binding on supercoiled but not linear DNA. This 

then exposes the nick site as a single-stranded loop as the target site for RepD 

nicking activity. Supercoiling could also be the cause of a larger k+3, thereby 

shifting the equilibrium toward “product release” by physically separating the 3′-

end of the nicked DNA from the RepD active site resulting in the high extent of 

product formation. In this model, the supercoiling has little effect on step 2 

(Scheme 2). 

 

3.8.2. The activity of N189K RepD 
 

The site-specific nick results in a phosphodiester bond at Tyr188 [25]. N189K 

RepD activity was examined for its ability to nick DNA and support unwinding by 

PcrA. Position 189 is likely to be within the active site of RepD and as described 

above, its mutation has some effects on the protein functionality.  

Firstly, the mutation affects RepD ability to nick linear DNA (Figures 3.17, 

3.15). A range of linear constructs containing ICRIII and the nicking site were 

not substrates for this mutant (Figure 3.17). Secondly, nicking kinetics on a 

supercoiled plasmid were affected as this occurred at a rate 3 orders of 

magnitude slower than that of wt RepD (Figure 3.5). However, only the 

supercoiled plasmid showed significant nicking (Figures 3.5, 3.17). This again 
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illustrates the importance of supercoiling in driving the nicking to completion. 

The combined wild type data with the mutant RepD suggest that K2 and k+2 

(Scheme 2) are greatly reduced by the mutation. Only the effect of supercoiling 

is driving the reaction to completion.  

As conformational changes in the DNA–RepD complex are essential for 

nicking, it is possible that mutation N189 might reduce bending activity. One 

interpretation of such results is that the RepD mutant could not efficiently 

enhance the secondary structure causing a very slow nicking reaction for 

supercoiled plasmid and an absent nicking for linear DNA.  

A similar situation was reported previously for the RepC protein, a RepD 

homologue that acts on the oriC. The heterodimer, RepC·RepC–

oligonucleotide, in which one subunit has a short oligonucleotide bound to its 

tyrosine, is able to bind but not to induce melting of oriC [32]. Thus, this could 

also be the case of N189K RepD. However, this cannot be the complete effect, 

as the mutation reduces the rate of nicking of supercoiled substrates, 

suggesting that either the DNA at the nick site cannot assume the correct 

conformation or the nicking itself is impaired.  

According to the lack of nicking of linear substrates, linearized plasmids DNA 

did not support PcrA-mediated unwinding (Figure 3.10). However, unwinding 

was successful on short DNA junction containing ssDNA tail for PcrA loading 

(Figure 3.19). On such DNA structures nicking is not needed to open up a short 

stretch for the helicase binding, and so unwinding can be effectively performed. 

These data indicated that, despite nicking, N189K is able to form a functional 

unwinding complex and this activity does not depend on the DNA structures.       

 

3.8.3. The effect of divalent ions on RepD activity 
 

The nicking reaction performed by RepD consists in a transesterification in 

which Mg2+ plays an essential role. Binding to the DNA is not affected by the 

removal of this ion from the reaction. The absence of Mg2+ has not a significant 

effect on DNA binding kinetics and affinity (Figure 3.14). The requirement of 

Mg2+ is for catalysis (Figures 3.3, 3.6, 3.15). A titration of Mg2+ in a RepD-DNA 

solution shows complete plasmid nicking at a concentration of ~1 mM (Figure 

3.6). The high affinity for Mg2+ is translated in ~60% of cleaved DNA at a 
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concentration of only ~100 nM Mg2+. For N189K RepD almost complete nicking 

is reached at 10 mM Mg2+ (Figure 3.6). However, a single time point was 

performed in such measurements, and it is likely that nicking is slower at lower 

Mg2+ concentrations.  

The lower affinity to the ion compared to the wild type protein might be due to 

a different ability of the mutant to interact with the positively charged cofactor. 

The N189K mutation introduces a positive charge in the active site of RepD and 

might weaken this binding. In addition, substitution of Mg2+ with other divalent 

cations such as Mn2+ and Ca2+ has a significant effect on DNA relaxation. In 

particular, Ca2+ did not support DNA cleavage for N189K RepD (Figure 3.6). 

One possibility of this effect is the difference in their ionic radius, confirming the 

importance of the interactions between the cofactors and RepD during catalysis. 

These results would suggest a functional role of Mg2+ in binding the protein 

active site that possibly induces the conformational change required for 

catalysis and DNA relaxation. However, currently there is no crystal structure of 

RepD and so no available information of the specific contacts between RepD-

metal-DNA as well as the metal ion:enzyme stoichiometry. Also there is a lack 

of mechanistic details of the reaction and the specific roles of the ion during 

conformational changes and cleaving.  

 

3.8.4. Functionality of the unwinding complex  
 

RepD is essential for the initiation of asymmetric, rolling circle replication of 

plasmids containing the DSO, oriD. In this work, most of the data relate to the 

interaction of RepD with DNA, although there is also information about how 

such interaction affects the PcrA-driven unwinding.  

The ability to form a functional PcrA-RepD unwinding complex was 

investigated on supercoiled and linear DNA substrates. The data do not 

address directly the interactions of PcrA with RepD, although this remains an 

unclear aspect of RepD. Because of this, it remains valid to use B. 

stearothermophilus PcrA, although the RepD is from S. aureus. This PcrA 

allows comparison of unwinding with different RepD variants and different DNA 

constructs, even though it is possible that precise protein–protein interactions 

are not completely optimal. 
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The study of the N189K RepD activity led to the observation that DNA 

structures that had a ssDNA region in the appropriate place for PcrA binding 

were unwound with little or no modification of kinetics (Figure 3.19). Supercoiled 

plasmids were suitable substrates for nicking and so were unwound with 

kinetics very similar to those of wt RepD (Figure 3.8). Linearized plasmid DNA 

structures that did not provide a site for PcrA to bind, were not nicked by N189K 

RepD and also not unwound (Figure 3.10). Thus, loss of supercoiling in such 

DNA affects nicking and consequently unwinding.  

The use of linear DNA junction with an opened structure containing most of 

the ICRII for RepD binding and a ssDNA tail for PcrA loading would overcome 

the need of nicking to make the DNA accessible to PcrA. These DNA were 

unwound with similar kinetics to the wt RepD (Figure 3.19). This was suggesting 

that the function of nicking was not required for unwinding.  

Complementary data were obtained by introducing mutations into ICRII to 

prevent nicking. Again, when there is a site for PcrA and RepD (wt or N189K) to 

bind, then the DNA is unwound approximately as with unimpaired ICRII (Figures 

3.20, 3.21). The nicking activity per se and the presence of the covalent DNA 

bonding with RepD are not essential for the role of RepD in enhancing PcrA 

processivity in DNA unwinding (Figure 3.21).  

Acknowledging the above, the separate functions of RepD in plasmid 

replication will be further discussed in Chapter 6.    

 

3.9. Summary 
 

In summary, detailed examination of the kinetics of RepD binding and nicking 

for a variety of DNA structures has shown that, while binding is usually rapid, 

the nicking rate constant is very dependent on the way in which the nicking site 

is presented. Although the equilibrium constant for the nicking is close to unity, 

supercoiling favors product formation and increases the overall rate of nicking. 

The activity of the mutant N189K was investigated here and a direct comparison 

with wt RepD was made. In particular, mutation N189K had two main 

consequences on RepD function. The nicking/closing kinetics were slower and 

nicking was impaired with the supercoiled DNA being the only substrate for 



Chapter 3 Formation of the Initiation Complex 
 

128 
 

RepD. The use of different divalent ions showed a different preference between 

the ions suggesting active roles of such ions in protein interaction. 

Interestingly, the separation of nicking function of RepD from its role in 

assisting strand separation is clearly demonstrated by the measurement of 

translocation rates in situations where nicking does not occur. However, it is 

intriguing that RepD can increase the processivity of PcrA during unwinding, so 

it presumably must maintain interaction with the PcrA·DNA junction throughout. 

The fact that covalent attachment of DNA to RepD is not apparently essential 

means that this factor is not crucial in maintaining RepD at the junction. 

Furthermore, once unwinding is underway, RepD cannot be in contact with its 

tight-binding ICRIII site. The interactions of RepD with DNA and PcrA during 

unwinding remain to be elucidated as well as factors that maintain tight 

interaction of RepD with DNA once unwinding has progressed beyond ICRIII.

 
 
  



Chapter 4 DNA Polymerase III Function During Plasmid Replication 
 

129 
 

4. DNA Polymerase III Function During 
Plasmid Replication 
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4.1. Introduction 
 

Staphylococcal pC221 plasmid replication is a complex process that requires 

the coordination of the replicative proteins, which are the initiator protein RepD, 

the helicase PcrA, and the DNA polymerase III. The individual activities of these 

proteins have to be timely and orderly synchronized in order to succeed in each 

biochemical stages of initiation, elongation and termination of a successful 

replication event. It is important to elucidate the mechanism and dynamics of 

DNA synthesis and unwinding in order to understand how closely the replicative 

enzymes work in a plasmid replication system.  

The molecular details of initiation involving RepD and its cognate oriD are 

described in Chapter 3 with particular emphasis on the initiator binding and 

nicking activity, and its function of forming the translocation complex with PcrA 

helicase. Following initiation of replication, the elongation process begins with 

unwinding of the dsDNA by PcrA and DNA synthesis by the DNA polymerase III 

starting from the 3′ of the nicked DNA generated by RepD. The polymerase 

follows the helicase using the unwound (-)-strand as template for the synthesis 

of the (+) strand and incorporation of nucleotides occurs in the same direction of 

the helicase unwinding (3’ > 5’ direction) [10].  

 

In this chapter, the activity of the replicative subunit (α) of the DNA 

polymerase III from S. aureus, known as PolC, is presented and its effect in 

modulating PcrA kinetics during plasmid replication is studied using a variety of 

biochemical assays.  

The investigation starts with a general PolC characterization. In particular, 

the early binding events occuring before DNA polymerization are investigated 

using a fluorescence-based approach. Rapid-mixing experiments were 

designed to study the kinetics of DNA and nucleotide binding. In such 

experiments, fluorescent probes are ideally suited to report changes in their 

environment that result in complex formation or subsequent conformational 

changes upon binding. The fluorescent reporter, Cy3, was attached on the DNA 

template, to the 5’-end of the ssDNA tail to measure the PolC binding kinetics to 

the DNA template. Association and dissociation kinetics to a fluorescently 
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labelled nucleotide were also determined to further investigate PolC binding 

activity.  

In addition to the pre-chemistry studies, steady-state measurements were 

performed on a primed DNA in order to measure the rate of DNA extension with 

a fluorescence-based assay, using the MDCC-PBP biosensor. This assay 

allows the determination of the kcat and KM parameters for dNTPs. Steady-state 

measurements can also be useful to measure the kcat/KM ratio which estimates 

the specificity for each substrate.  

 

PolC activity was subsequently investigated in the plasmid replication 

process. The information provided by the initial PolC characterization were 

useful to generate optimal conditions in a more complex assay involving a set of 

proteins used to generate the complete replication system.  

Here, PolC effect on PcrA helicase activity was measured in the presence of 

the initiator protein RepD. There have been several studies demonstrating that 

the replicative helicases can work closely to the DNA polymerases and the 

other components of the replisome and their coordination generally modulate 

the unwiding or the synthesis kinetics of one of the enzymes. 

Studies of the monomeric PcrA helicase in the recent years have provided 

deeper insights into the mechanisms of unwinding as well as in determining its 

unwinding kinetics. Biochemical studies have also shown that PcrA requires its 

partner RepD for processive unwinding [52]. Here, the study of the helicase 

activity was extended with measurements of PcrA unwinding kinetics in the 

presence of PolC.  

Measurements of the activity of the helicase in a complete replicating system 

define more precisely their mechanisms and provide new insights into the 

complete replication process by revealing potential physical and/or functional 

couplings between motor proteins.  

 

4.2. DNA polymerase binding activity to DNA 
 

The first high-resolution crystal structure of a replicative DNA from a Gram-

positive bacterium was recently resolved (see also the Introduction of this 

thesis). This is the DNA polymerase III from the G. kaustophilus organism [62]. 
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The structure of the PolC bound to a primed DNA shows the residues and the 

protein domains involved in the DNA interaction. PolC interacts extensively with 

the DNA substrate further away from the active site making contacts with the 

duplex at -8 from the template base and reaching the +13 position from the 

nascent base in the ssDNA tail.  

This structural information was used to design potential DNA substrates for 

PolC. Partial DNA duplexes were made by annealing of two different lenght 

oligonucleotides to create a DNA template structure. The final product was a 

DNA with a free 3’-OH available for PolC activity (Figure 2.3). The use of such 

synthetic primed junctions allowed the analysis of protein activities such as 

binding and catalysis.  

 

4.2.1. DNA Polymerase binding activity to a partial DNA 
junction 
  

Firstly, PolC binding to a partial DNA junction (junction 4, Figure 2.3) was 

assessed through a gel shift assay (Figure 4.1). In this assay, the binding of 

PolC to the DNA is monitored on a gel under nondenaturating conditions. 

Increasing concentrations of PolC were incubated with the DNA and a faint, 

single-shifted band was detected, indicating binding. The retarded band was not 

detected in the absence of protein (Figure 4.1A). The appearing of the band 

was consistent with the formation of PolC-DNA complex of a higher molecular 

weight compared to the unbound DNA molecule. 

The DNA binding was also investigated incubating the complex in the 

absence of the divalent ion (Figure 4.1B). This experiment showed similar 

results to the reaction containing Mg2+. However, it should be noted that the 

electrophoresis buffer contained EDTA, which can bind the Mg2+ upon sample 

loading. This adds difficulties in the interpretation of the results obtained from 

the reactions prepared with 10 mM MgCl2 (Figure 4.1A). For these reasons, the 

effect of Mg2+ on DNA binding could not be investigated under these conditions. 

The increasing PolC concentrations generated different ionic strength 

conditions between the binding reactions, which in turn caused a slightly 

different migration of each sample on the gel. Such an effect was more evident 

when samples were prepared in the presence of 10 mM Mg2+ (Figure 4.1A), as 
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a result of an increased ionic strength. The low intensity of the bands 

corresponding to the DNA-protein complex indicated that PolC binding to the 

partial DNA junction occured with a relatively low affinity. Such a value could not 

be estimated with this assay due to the sensitivity of this approach and the need 

of high concentrations of PolC. However, this could be addressed with binding 

kinetics measurements (section 4.2.2). 

 

 

 
 

Figure 4.1. Gel mobility shift assay of PolC binding to a partial DNA 
junction. 15μL of binding reactions contained 1 μM of DNA junction 4 and 
increasing concentrations of PolC, in K100 buffer +/- 10 mM MgCl2 (as 
indicated). Reactants were incubated for 5 minutes at 4 °C. Solutions were ran 
on 6% native polyacrilamide gels. Detection of the bands was achieved with 
SYBR-gold staining. A new band appears, of higher molecular weight, when 
PolC interacted with the DNA template. However, the effect of Mg on binding 
could not be clarified because the samples were run in a EDTA containing 
buffer (TBE buffer), and so the reaction conditions change drammatically upon 
sample loading.  
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4.2.2. DNA polymerase association kinetics to a partial DNA 
junction  
 

A more sensitive approach to investigate binding was taken using 

fluorescently labelled DNA. A Cy3 probe was attached at the 5’ terminal end of 

a template strand, away from the free 3’-OH (junction 3, Figure 2.3). An initial 

assessment of binding was perfomed with the gel shift shown in Figure 4.1 

showing that the partial DNA junction would potentially be a good substrate to 

investigate the PolC binding kinetics.  

The association kinetics were investigated by rapid-mixing experiments, 

monitoring in real-time the fluorescence intensity produced by the Cy3 labelled 

DNA in a stopped-flow apparatus (Figure 4.2A). Using a single step binding 

model as in Scheme 3, the observed rate constants (kobs) is given by equation 

(8), with the second order rate constant (k+1), and the first order rate constant (k-

1) representing effective ‘on’ and ‘off’ rates for Polymerase (Pol) binding under 

pseudo first order conditions:    

 

Scheme 3: 

 
 

(8)  

 

An initial experiment was carried out using an excess of PolC over the DNA 

junction 3 (Figure 4.2A). Upon mixing, a rapid increase in the fluorescence 

intensity was detected on a millisecond time scale. This phase is likely to 

represent protein binding as the observed rate constants increased with the 

PolC concentration. The fluorescence rise was particularly fast at high PolC 

concentrations and the amplitudes of traces linearly increased with the protein 

concentration (Figure 4.2C). Fluorescence traces were fitted to single 

exponentials, and the resulting kobs are shown in function of the PolC 
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concentration. The linear fit gave a value of the second order rate constant (k+1) 

of 118 μM-1s-1 and an intercept of 37 s-1 (k-1) (Figure 4.2B).  

The measurements of the k-1 and k+1 values allowed the calculation of the Kd 

(using equation 6, Chapter 3). Such value was 313 nM for junction 3.  

 

The effects of Mg2+ and the dNTPs on DNA binding were also investigated. 

Firstly, an excess of PolC was rapidly mixed with the DNA junction in a free-

Mg2+ solution (Figure 4.3A). Similarly to the Mg2+ containing reaction, the rapid 

fluorescence increase is observed occuring at a similar rate. These results 

indicated that removal of the divalent ion from the reaction had no significant 

effect on DNA binding, consistent with the DNA binding analysis performed on 

the gel shift assay (Figure 4.1). On a longer time scale, the fluorescence traces 

showed a slow decrease occuring with a rate of 1 s-1. Such phase was 

independent on PolC concentrations (data not shown), and was not detected for 

the free Mg2+ reaction (Figure 4.3B).  

In a similar experiment, an excess of PolC was rapidly mixed with a solution 

containing the Cy3 labelled DNA and dNTPs in presence of Mg2+ (Figure 4.3B). 

Under these conditions, the increase in fluorescence was replaced by a more 

rapid decrease in signal with an amplitude of around 50% occuring at a rate of ~ 

3 s-1. The slow decreasing phase might be interpretated as possible interaction 

with the Cy3 probe as result of PolC catalytic-induced conformational changes. 

 

4.2.3. DNA polymerases dissociation kinetics to a partial DNA 
junction 
 

In order to measure the affinity of PolC to the DNA, the PolC dissociation 

kinetics (k-1) from the DNA junction 3 (Figure 2.3) were determined more 

accurately from the displacement assay performed using a stopped-flow 

apparatus. In this assay, the polymerase was loaded on the primed DNA and 

then rapidly mixed with high concentration of unlabelled DNA (Figure 4.4A). 

Dissociation was detected as a decrease in the fluorescence intensity (Figure 

4.4B). As expected, this phase anticorrelates with the fluorescence signal 

obtained from the association experiments (Figure 4.2). The fluorescence trace 

generated was fitted to a single exponential, giving a k-1 of 10 s-1 for PolC. The 
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observed rates were not dependent on the unlabelled DNA concentration 

(Figure 4.4C). 

From the measurements of the k+1 and k-1 and using the equation 6, the PolC 

Kd value for the junction 3 was 83 nM.  

 

 
Figure 4.2. PolC association kinetics to a partial DNA junction. (A) 
Examples of fluorescence intensity traces from rapid mixing in a stopped-flow 
apparatus the junction 3 (50 nM) with a range of PolC concentration (as 
indicated) in K100 buffer. Fluorescence traces (shown offset for clarity) were 
fitted to single exponentials. (B) Dependence of the observed rate constants on 
the polymerase concentration. The linear fit gives a slope of 118 ± 8 (S. e.) μM-

1s-1 and an intercept of 37 s-1. Error bars indicate standard errors from each fit.  
(C) Amplitudes of the fluorescence traces. Error bars indicate standard 
deviations from independent experiments. Details of fitting and errors are shown 
in the Appendix of this thesis.  
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Figure 4.3. Fluorescence traces upon mixing PolC with a partial DNA 
junction. The DNA junction 3 (50 nM) was mixed with 250 nM PolC in the 
stopped-flow apparatus in the same condition as Figure 4.2. (A) Effect of Mg2+ 
on the PolC binding (0.5 s. trace). Traces were fit to single exponentials giving 
rates of 52 s-1 (for the + Mg trace) and 54 s-1 (for the - Mg trace). (B) Effect of 
Mg2+ and dNTPs on the binding reaction monitored on a longer time scale. 
Reaction conditions for black and red traces were as in (A). The blue trace 
contained 1 mM dNTPs.   The decreasing phases were fit to single exponentials 
giving rates of 1 s-1 (black) and 3 s-1 (blue trace). 
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Figure 4.4. PolC dissociation kinetics from a partial DNA junction. (A) The 
competition assay performed in a stopped-flow apparatus by mixing a 
preformed complex of polymerase and junction 3 with an excess of unlabelled 
DNA junction 3. (B) Fluorescence trace generated by PolC dissociation from 
junction 3. Solutions contained 50 nM DNA, 250 nM PolC, 5 μM unlabeled DNA 
in K100 buffer. A single exponential fit of the fluorescence trace gives a rate of 
10 s-1 at 30 °C. Details of fitting and errors are shown in the Appendix of this 
thesis. (C) Dependence of the observed rates from the unlabelled DNA 
concentration. Error bars indicate standard errors from each fit. 
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4.3. PolC binding to a fluorescently labelled nucleotide 
 
4.3.1. Assessment of mant-dATP as ligand   
 

Generally, fluorescently labelled nucleotides can be modified with 

fluorophores and used to investigate kinetics of association and hydrolysis 

steps of enzymes. These allow the use of low concentration reagents in such 

experiments [106]. The use of fluorescently labelled  deoxyribonucleotides 

allows the investigation  of PolC binding activity to these substrates.  

 

Modifications can be placed at different locations on the structure of the 

nucleotide. Purine ring modifications can be made, as in the case of Cy3-dCTP, 

but these changes may affect the protein-nucleotide interactions due to 

selectivity of the base.  

 

Sugar modifications are often the most successful whereby the analogue 

closely mimics the unmodified nucleotide. Examples of such modifications are 

the ATP analogues, mant-ATP and mant-ADP, which enabled measurements of 

binding and release kinetics for PcrA helicase [49].  

 

Here, the fluorescent mant nucleotide, mant-dATP shown in Figure 4.5, was 

chosen to investigate PolC binding kinetics. The main reasons of selecting 

mant-dATP are the compact nature of the mant probe and its environmental 

sensitivity. However, such modifications interfere with the polymerization 

reaction as the mant is located at the 3’-OH position.  

 

Prior to measuring the binding and release kinetics, it is important to have a 

fluorescence change in response to nucleotide binding. In order to assess the 

fluorescence change, fluorescence spectra were measured with an excess of 

PolC over mant-dATP for mant fluorescence (Figure 4.6). A two-fold increase in 

mant fluorescence was observed upon mixing with polymerase. By monitoring 

the fluorescence of the nucleotide, the increase in the fluorescence signal 

directly relates to nucleotide binding rather than a conformation change in the 
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protein. The fluorescence enhancement obtained upon mant-dATP binding can 

provide a useful signal to study the association and dissociation kinetics of 

PolC.  

 

 

 
Figure 4.5. Mant-dATP fluorescence spectra. Fluorescence emission spectra 
of mant-dATP (structure shown in the top panel with the modification highlighted 
in red), with and without PolC, were recorded between 390 nm to 550 nm while 
exciting at 350 nm. Solutions contained 0.5 μM mant-dATP +/- 10 μM PolC in 
K100 buffer, at 30 °C. 
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4.3.2. PolC association kinetics to mant-dATP 
 

Once the ability of mant-dATP to bind PolC was assessed, the nucleotide 

substrate was then used in rapid mixing experiments to investigate the binding 

kinetics. For such measurements, PolC was used as a reactant rather than a 

catalyst. This is achieved performing the experiments in the absence of a DNA 

template. In this situation, the observed fluorescent changes and rate constants 

will not be affected by the step of nucleotide incorporation or any conformational 

changes due to the formation of a ternary complex.  

 

In an initial experiment, an excess of mant-dATP has been used in rapid 

mixing experiments (Figure 4.6A). Due to the excess of mant-dATP conditions, 

direct mant excitation gave a high background signal. Therefore, the 

fluorescence signal was monitored by exciting tryptophan at 290 nm and 

measuring FRET to mant, using a 400 nm cut-off filter. With the FRET assay, 

which is based on proximity between donor and acceptor, only the initial binding 

event is investigated and not a subsequent fluorescence change due to a local 

conformational change. Upon mixing, an increase in fluorescence was observed 

(Figure 4.6B). Fluorescence traces were fitted to single exponential and the kobs 

increased linearly with the substrate concentration (Figure 4.6C). Interpreting 

the increase in terms of single step binding, the slope of the linear fit gave a 

second order rate constant (k+1) of 0.44 μM-1s-1 and an intercept of 6.1 s-1 (k-1).  

 

The effect on the fluorescence signal was investigated by removing the free 

Mg2+. Binding measurements were performed adding EDTA in the reaction 

(Figure 4.7A). The trace showed no change in fluorescence. This suggested 

that nucleotide binding occurred in Mg2+-dependent manner, consistent with 

previous observation that the nucleotide binds to the polymerase as a Mg2+-

dNTP complex (Wang et al., 2009).  

 

In another experiment, PolC binding to mant-dATP was examined in 

presence of the DNA template (junction 5, Figure 2.3). MantFRET fluorescence 

was followed over time upon rapid mixing the PolC solution with an excess of 
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mant-dATP and DNA (Figure 4.7B). Similarly to the free DNA reaction, an 

increase in fluorescence was observed upon mixing and the single exponential 

fit gave a rate of 7.4 s-1, suggesting that the presence of DNA did not have a 

significant effect on the observed rate and so on nucleotide binding. Thus, the 

experiment was not performed using different concentrations of DNA.  

 

4.3.3. PolC dissociation kinetics to mant-dATP 
 

The FRET to mant was used to analyse PolC dissociation kinetics in a 

displacement assay. A solution containing a preformed complex of Polymerase 

and mant-dATP was rapidly mixed with an excess of unlabelled dATP (Figure 

4.8A). The traces showed a decrease in mant fluorescence over time, 

consistent with dissociation of the labelled specie.  

The fluorescence trace was fitted to a single exponential and gave a rate 

constant of 2 s-1 (k-1) (Figure 4.8B). Rate constants were independent of ATP 

concentration in the range of 200 – 1000 μM (Figure 4.8C).  

Calculation of the association and dissociation constants allowed the 

measurement of the binding affinity, Kd, which was 4.5 μM for mant-dATP. 
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Figure 4.6. PolC association kinetics with an excess of mant-dATP. (A) 
FRET mant-dATP binding assay was performed by rapid mixing an excess of 
the labelled nucleotide with the PolC in the stopped flow apparatus. (B) 
Increasing concentrations of mant-dATP were mixed with 0.5 μM PolC in K100 
buffer at 30 °C. The fluorescence signal was measured by exciting tryptophan 
at 290 nm and measuring the FRET to mant using a 400 nm cut-off filter. 
Traces shown are offset for clarity. Individual traces were fit to single 
exponentials. (C) Linear relationship between the rate constants and mant-
dATP concentration gives a slope of 0.44 ± 0.03 (S. e.) μM-1s-1 and an intercept 
of 6.1 s-1. Error bars indicate standard errors from each fit. Fits are shown in the 
Appendix of this thesis.  
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Figure 4.7. PolC association to mant-dATP under different conditions. (A) 
Effect of MgCl2 removal on the FRET fluorescence signal to mant. 500 nM PolC 
with a solution containing an excess of mant-dATP (10 μM). Solutions contained 
either Mg2+ (K100 buffer for the red trace) or EDTA (K100 -  MgCl2 buffer for the 
black trace). The red trace (+ Mg) was fitted to a single exponential. (B) 
MantFRET signal upon mixing 500 nM PolC with a solution containing an 
excess of mant-dATP (10 μM) and DNA (10 μM). Traces were fitted to single 
exponentials, giving rates of ~7.4 s-1. Solution conditions were as Figure 4.6. 
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Figure 4.8. PolC dissociation kinetics from mant-dATP. (A) The 
displacement assay. A preformed mant-dATP-PolC complex was mixed with an 
excess of unlabelled dATP in the stopped-flow apparatus. (B) Example of 
fluorescence trace obtained from pre-mixing 0.5 μM with 10 μM mantATP 
before rapid mixing with 250 μM ATP under the same conditions as Figure 4.6. 
The resulting curves were fitted to single exponentials for different 
concentrations of ATP. (B) Rate constants (~2 s-1) were independent of ATP 
concentration in the range of 250 μM – 5 mM. Error bars indicate standard 
errors from each fit.  Details of fitting are shown in the Appendix of this thesis.  
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4.4. Steady-state kinetics of the DNA polymerase reaction 
 

Early non-covalent transitions and conformational changes occuring upon 

PolC binding to its DNA and dNTP substrates are followed by the chemistry of 

nucleotide insertion (see Introduction for more details). One approach to 

investigate the DNA polymerase activity is based on measuring the rate of 

extension on a 3’-OH primed DNA in vitro.  

The main strategy used here to assay PolC activity is given by the possibility 

to detect the inorganic pyrophosphate produced upon dNTP incorporation in a 

continous enzyme-coupled assay in vitro (Figure 4.9). This uses a fluorescently 

labelled PBP, the MDCC-PBP, as biosensor for phosphate to determine the rate 

of Pi production. The incorporation of dNTP into a primer DNA generates PPi 

that can be hydrolyzed into phosphate by a pyrophosphatase. As PPi does not 

induce a significant change in PBP fluorescence, fluorescence is monitored as 

Pi production by the pyrophosphatase using the MDCC-PBP. 

 

Previous studies showed that the PPase and PBP were efficiently coupled to 

monitor PPi production for a real-time assay [107].  

Here, the overall experiment was designed so that the concentrations of 

PPase and PBP are in excess over the expected concentration of the PPi 

produced form the total reaction. The activity of the PPase was first assessed in 

presence of inorganic pyrophosphate before its use (see the Appendix of this 

thesis). The PPi hydrolysis was rapid and phosphate binding reflected the 

amount of PPi providing an accurate assessment of real time activity of PolC.  

 

Measurements were performed under steady-state conditions to gain 

information of the overall synthesis reaction and determine the affinities of 

various PolC substrates by measuring the kcat and KM parameters. 

Such measurements have the advantage of being simple to carry out as the 

DNA substrate is present in large excess over the polymerase and so precious 

material is conserved. In addition, the assay is sensitive and allows working 

even at relatively low concentrations of dNTPs. As multiple enzyme turnovers 

occur during the reaction these experiments do not require the use of rapid 

kinetics instrumentation. Conversely, the main disadvantage of the assay is that 
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the steady-state rate, kcat, is an overall rate and is dominated by the slowest 

step of the reaction cycle. The ratio kcat/KM is a useful measure of the enzyme 

specificity for the substrates.  

 

The polymerase activity was assayed over a range of substrate 

concentrations. The Michaelis-Menten equation was used to determine the kcat 

and Km values for the reactions. In this assay, the short ssDNA tail of the primed 

DNA was made of either just one type of deoxyribonucleotide or all the four 

dNTPs (junctions 4-7, Figure 2.3). Figure 4.10 shows the rate of Pi production 

as a function of dNTP concentrations. The best fit of these data gave Km values 

of 3.4 μM for dATP, 7.2 μM for dGTP, 45 μM for dTTP and 7.4 μM for a mixture 

of dNTPs. Results are collected in Table 4.1.  

Measurements with the dCTP could not be performed because the DNA 

template for these measurements showed formation of secondary structures 

through a polyacrylamide gel analysis (see Methods, Figure 2.6). This was 

possibly caused by the ability of dGTP stretches to form G-quadruplexes. The 

Km value for dATP was similar to the affinity obtained for mant-dATP (Kd: 4.5 

μM). The parameter kcat/Km is the apparent second order rate constant for 

nucleotide incorporation when dNTP is bound in the Pol.DNA complex (Table 

4.1). 

 

The assay was also performed by varying the DNA template concentration 

(junction 4, Figure 2.3) in presence of an excess of dNTPs. This experiment 

gave a Km value of 250 nM and a kcat of 7 s-1 (Table 4.1). The Km value was 

higher than that obtained with the binding kinetics measurements (~80 nM).  
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Figure 4.9. DNA polymerase synthesis assay using a pyrophosphatase 
and the MDCC-PBP. See text for details. 
 

 
Figure 4.10. Steady-state measurements of PolC DNA synthesis activity. 
Data show the Pi produced as a function of substrate concentration. The lines 
are best fits to the Michaelis-Menten equation to give Km and kcat values (Table 
4.1). Measurements were carried out at 30 °C in K10 buffer. 500 nM DNA (see 
junctions 4-7, Figure 2.3), 0.001 U/μL Inorganic Pyrophosphatase and 20 μM 
MDCC-PBP and the nucleotides at the indicated concentrations. Pi biosensor 
was calibrated in same reaction mix using known phosphate concentration. 
Error bars indicate standard deviations among three independent experiments. 
Examples of raw data and fits are in the Appendix of this thesis.  



Chapter 4 DNA Polymerase III Function During Plasmid Replication 
 

149 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.1. Steady-state kinetic parameters of PolC for various substrates. 
Errors and repeats are in the Appendix of this thesis. 
 

4.5. DNA polymerase exonuclease activity 
 

The abilitity of DNA polymerases to hydrolyze DNA by removing nucleotides 

is termed exonuclease activity. It is an instrinsic property of several DNA 

polymerases and plays a primary role in removing “errors” in a DNA template .  

From structural analysis, native PolC shows an intrinsic exonuclease domain, 

which is conserved among the PolC type DNA polymerases [62]. From analysis 

of the aminoacid sequence alignment, a segment of around 163 amino acids in 

the PolC enzyme displays homology with the exonuclease domain of the G. 

kaustiphylus PolC. 

 

Gel assays were used to investigate the PolC exonuclease activity. In this 

assay, the enzyme was incubated with a primed DNA (junction 4, Figure 2.3) 

and the final products were analysed on a native polyacrylamide gel (Figure 

4.12). Upon PolC incubation, the intensity of the band corresponding to the 

intact DNA duplex decreased over time and a new band appears of lower 

molecular weight (Figure 4.12A). This corresponded to the template strand 

forming the annealed primed DNA template as shown from the oligo control. 

This result clearly confirmed that the purified PolC protein retains 3′-

exonuclease activity. Similar to other nucleases, this activity was dependent 

upon a divalent cation. In this case, when Mg2+ was removed from the solution 

 

Substrate 

Parameter 

Km 
(µM) 

kcat 
(s-1) 

kcat/Km  
(µM-1s-1) 

dNTPs 7.4 ± 0.6 11.6 ± 0.2 1.6 ± 0.1 

dATP 3.4 ± 0.7 10.9 ± 0.5 3.2 ± 0.5 

dGTP 7.2 ± 1.2 12.2 ± 0.6 1.7 ± 0.2 

dTTP 45.0 ± 9.2 7.5 ± 0.5 0.2 ± 0.3 

DNA 0.25 ± 0.07 7.0 ± 0.7 28.0 ± 5 
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(in presence of a EDTA-buffer), the exonuclease activity was inhibited (Figure 

4.12B). 

 

The polymerase exonuclease activity would be modulated by the 

concentration of dNTPs, since an abundance of dNTPs would favour DNA 

synthesis over hydrolysis (Figure 4.11) [108]. In this model, decreasing the 

availability of dNTPs should stabilize single-stranded gaps and favor DNA 

repair. An experiment was conceived to investigate potential inhibitory effects 

on the exonuclease activity due to the presence of dNTP pools in solution. The 

PolC and the primed DNA were incubated with increasing concentrations of 

dNTPs (Figure 4.12C). The gel showed that the intensity of the DNA band did 

not decrease and additional bands of digested products were not detected for 

dNTPs concentrations between 0.5 – 50 μM.  

 

These results suggested that in the absence of dNTPs or under limiting 

concentration, the exonuclease/sunthesis balance of PolC is strongly shifted 

towards exonucleolytic hydrolysis instead of DNA polymerization and a gradual 

increase of dNTP concentration in the reaction mixture altered the balance in 

favor of DNA polymerization.  

 

 

 
Figure 4.11. Schematic illustration of synthesis and exonuclease activities 
of PolC. PolC switches from the synthesis to the exonuclease activity according 
to the abundance of dNTPs. See text for details. 
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Figure 4.12. Exonuclease activity assay on a PAGE gel. (A) 0.5 μM junction 
4 was loaded on a gel. The bands corresponds to the bottom oligonucleotide 
(lane 1, bottom oligo) of the primed DNA (lane 2, ds DNA) as showed by the 
cartoon. (B) Time course of the nuclease digestion. The no Mg2+ reaction is also 
shown. (C) Effect of dNTPs concentration (shown in μM) on DNA digestion. 
Reactions contained 1 μM junction 4 and 50 nM PolC in K10 buffer, and were 
quenched with 50 mM EDTA at the desired time points. Incubation times were 5 
minutes unless stated.  
 

 

4.6. PcrA helicase activity on DNA 
 

Experiments performed in Chapter 3 explored the activity of PcrA helicase in 

complex with RepD in terms of PcrA unwinding speed using different dsDNA 

structures. Prior to investigating the effect of PolC on PcrA activity, the helicase 

translocation rate on ssDNA was measured in order to allow the comparison of 

a complete set of the kinetics data. 
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PcrA translocation was measured using an oligonucleotide having a 

fluorescent base analogue 2-aminopurine (2AP) at its 5’-end (dT10-2AP, Figure 

2.4). Upon rapid mixing the preformed PcrA-DNA complex with ATP using a 

stopped-flow apparatus, the fluorescence trace consisted of two main phases, 

an initial rise in the fluorescence up to a maximum followed by an exponential 

decrease (Figure 4.14A). The initial increasing phase represents PcrA 

translocating to the 5’-end of the oligonucleotides with a maximum signal when 

the helicase interacts with the 2AP group (step 1, and 2, Figure 4.13). PcrA then 

dissociates causing the decrease in fluorescence (step 3, Figure 4.13).  

Following the first translocation event, the helicase enters a steady-state of 

multiple binding and translocation cycles (Figure 4.13). The time taken to reach 

maximum fluorescence gives a measure of the translocation speed. As control, 

removal of ATP caused no changes in fluorescence (Figure 4.14A).   

 

 

 
Figure 4.13. PcrA translocation assay on ssDNA.  See text for details 

 

 

To calculate an average of PcrA translocation rate, the experiment was also 

performed using different length oligonucleotides from 10 to 30 bases (dT10-

2AP, dT16-2AP, and dT30-2AP, Figure 2.3). The time taken to reach the 

maximum of fluorescence increased with the DNA length (Figure 4.14B). These 

results are consistent with the increase in the time taken by PcrA to reach the 

5’-end for longer DNA. The slope of the linear relationship between the DNA 

length and the time required to reach the maximum fluorescence gives an 

average of translocation rate of 227 nucleotides s-1 on single stranded DNA 
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(Figure 4.14C). The data also indicate that PcrA translocates unidirectionally 

from 3′ to 5′.  

 

These observations were consistent with the proposed mechanism of PcrA 

translocation [48]. The PcrA translocation rate determined here was higher due 

to a different temperature condition (20 °C), but rather similar to that observed 

in a recent study using a labeled PcrA helicase, MDCC-PcrA (30 °C) [53].  

 

The PcrA ssDNA translocation rate was significantly higher than the 

measured DNA unwinding rate for PcrA-RepD complex (Chapter 3). Such a 

difference will be further examined in the Discussion section.  
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Figure 4.14. PcrA translocation activity on ssDNA monitored in a stopped-
flow instrument. (A) Fluorescence traces of the ATP-dependent PcrA 
translocation along a dT16-2AP oligo (Figure 2.3). (B) Fluorescence traces 
upon PcrA translocation along different length oligonucleotides (dt10-2AP, 
dT16-2AP, dT30-2AP). (C) Relationship between the time of maximum 
fluorescence and ssDNA length. The linear fit gives a slope of 227 ntd s-1 at 30 
°C. Error bars indicate standard deviations among three independent 
experiments. Solutions contained 500 nM PcrA, 2.5 μM DNA and 500 μM ATP 
in K100 buffer. Further details are in the Methods. Rapid mixing was performed 
at 30 °C as described in Figure 4.13. 
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4.7. PolC activity during staphylococcal plasmid replication 
 
4.7.1. Effect of PolC on RepD nicking activity  
 

A key step in measuring the kinetics of plasmid replication is to re-constitute 

the complete set of purified proteins involved. The investigation started with the 

analysis of the PolC effects on RepD binding/nicking activities on a supercoiled 

plasmid.  

This was achieved performing the RepD nicking assay (described in Chapter 

3) in a solution containing the PolC enzyme (Figure 4.15). Firstly, the 

supercoiled pCERoriD plasmid was incubated with RepD in the presence of 

PolC and the nicking reaction was followed over time (Figure 4.15A). The 

agarose gel analysis of the final products showed formation of the OC (open 

circular) band gel indicating rapid RepD-mediated nicking. However, a second 

band of lower molecular weight was also detected. The intensity of such band 

increases over time and with concomitant decrease of the OC band intensity. 

This was likely to be a DNA intermediated produced by the PolC exonuclease 

activity on the nicked plasmid.  

 

In order to assess this hypothesis, a second experiment was designed 

investigating the effects of dNTPs on PolC activity. From experiments described 

above, it was shown that PolC exonuclease activity is inhibited by high 

concentrations of dNTPs substrates. The nicking reactions were incubated with 

increasing concentrations of dNTPs (Figure 4.15B). At low dNTPs 

concentrations or in their absence, the agarose gel showed formation of the two 

bands. At higher dNTPs concentrations only the OC band of maximum intensity 

was detected.  

 

These results confirmed that PolC retains exonuclease activity on a nicked 

plasmid. The data are consistent with exonuclease inhibition by dNTPs as 

observed on a primed DNA junction. 
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Figure 4.15. PolC effect on RepD nicking a supercoiled pCERoriD plasmid. 
Reactions contained 15 nM pCERoriD, 60 nM RepD, 100 nM PolC and +/- 
dNTPs. Solutions were incubated at 30 °C in K100 buffer and quenched with 
EDTA at the time indicated. (A) Time course of RepD nicking a supercoiled 
substrate in presence of PolC. (B) Effect of increasing concentrations of dNTPs 
(as indicated in nM) during RepD-mediated nicking in presence of PolC. 
Reactions were incubated for 5 minutes prior quenching with EDTA unless 
stated. 
 

 

4.7.2. Effect of PolC on PcrA-RepD mediated plasmid 
unwinding 
 

The kinetics of RepD-PcrA mediated unwinding DNA plasmids were 

examined here, as described in Chapter 3. The investigation of PolC role and 

effect on PcrA unwinding activity requires the inclusion of the polymerase in the 

plasmid unwinding assay described in Chapter 3. In such assay, the 

fluorescence signal is monitored in real time in a stopped-flow apparatus with 

the use of the DCC-SSB ssDNA biosensor. In a complete unwinding reaction of 

an intact DNA plasmid, PcrA helicase generates two ssDNA strands that are 

trapped by the fluorescently labelled SSB.  

Upon PolC introduction in the assay, the strand having the free 3’-OH 

generated by RepD nicking and used by PcrA for translocation is the substrate 

for PolC-mediated synthesis (Figure 4.16). Under these conditions, only one 
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single stranded DNA strand would be available for the SSB binding and so the 

fluorescence intensity increase generated by the DCC-SSB is expected to be 

around half compared to that without PolC.  

 

 
Figure 4.16. Cartoon showing the dynamics of plasmid unwinding and 
replication monitored in real time with DCC-SSB assay. The supercoiled 
pCERoriD plasmid is manually incubated with RepD and PcrA. RepD nicks and 
relaxes the plasmid and PcrA is recruited on the generated ssDNA tail. This 
solution is then rapidly mixed with a solution containing ATP, dNTPs, PolC and 
DCC-SSB using a stopped-flow apparatus. PcrA starts DNA unwinding with the 
hydrolysis of ATP and the PolC elongates the nicked strand behind PcrA. The 
displaced ssDNA is bound by the DCC-SSB causing an increase in 
fluorescence. 
 

 

The PolC data obtained in previous assays were used to generate the 

optimal conditions in the plasmid unwinding assay.  As described above, PolC 

retains exonuclease activity in the absence of dNTPs. This activity was also 

exhibited on a nicked DNA plasmid. Thus, in the stopped-flow experiments 

described below PolC was incubated with the dNTPs pool separately from the 

RepD-DNA solution to prevent digestion of the nicked DNA plasmid.  

An initial experiment was performed to assess the effect of increasing 

concentrations of PolC on the fluorescence traces (Figure 4.17). The 2437 bp 

plasmid was preincubated with RepD and PcrA and then rapidly mixed with a 

range of PolC concentrations to examine whether the plasmid was saturated. 

Similarly to the PcrA traces, the one obtained in the presence of Polymerase 

showed a rapid increase in fluorescence followed by a small decreasing phase 

(Figure 4.17A). The initial lag phase varied between different measurements.  

Qualitatively, PolC inclusion in the plasmid unwinding reaction had two major 

effects on the fluorescence trace. Both the amplitudes of the fluorescence 
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increase phase and the apparent unwinding durations were affected by PolC 

concentration (Figure 4.17B-C).  

In the absence of PolC, the amplitude of the trace was at its maximum as the 

whole ssDNA generated by PcrA was available for SSB binding. PolC caused a 

reduction of the amplititude, expecially at high PolC concentrations (250 nM), 

suggesting that in this range the plasmid was saturated. The linear decrease in 

the amplitude with PolC concentration is consistent with less ssDNA available 

for DCC-SSB binding as a result of PolC-mediated strand synthesis. The break 

point of the trace was also affected by increasing PolC concentrations (Figure 

4.17C). The shift in the break-point from ~ 80 s to ~ 45 s for the 2kb plasmid 

suggested that PolC had a positive effect on PcrA unwinding speed.  For PolC 

concentrations > 250 nM no further changes in the traces were observed 

confirming that plasmid substrate saturation was reached. 

 

The effect of PolC on PcrA activity was further investigated by measuring an 

avarage of unwinding rate using different lenght DNA plasmids in the DCC-SSB 

assay. Unwinding of four plasmid lengths is shown in Figure 4.18. Qualitatively, 

fluorescence traces were similar for the majority of the plasmids. The rapid 

increase in fluorescence was consistent with SSB binding ssDNA during PcrA-

mediated unwinding. The amplitude of the increase linearly increased with the 

DNA length (Figure 4.18C). This phase was then followed by a slow decrease in 

signal. The final phase could be interpretated as interaction of the free PcrA 

molecules with the SSB-coated-strand following complete uwinding and 

replication. 

The duration of unwinding linearly depended on the plasmid size and the 

unwinding times were measured as described in Chapter 3. The slope of the 

linear fit of the duration of the unwinding phase in function of the DNA length 

gives a rate of unwinding of 71 bp s-1 for PcrA (Figure 4.18B).  

These data showed that PcrA activity was modulated by the presence of other 

replicative proteins. A complete set of PcrA kinetic data determined in this 

investigation is collected in Table 4.2. 
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Figure 4.17. Effect of PolC on PcrA-mediated plasmid unwinding. The 
plasmid was preincubated with RepD, PcrA and then rapidly mixed with PolC as 
illustrated in Figure 4.17. (A) Examples of fluorescence time course for 
unwinding traces with (black) and without PolC (red). The fluorescence has 
arbitrary units, normalized to start at 100. Traces were analysed as described 
previously. (B) Dependence of the amplitudes on PolC concentrations. (C) 
Dependence of the break point on PolC concentrations. Reactions contained 
0.5 nM pCERoriD plasmid (2437 bp), 2 nM RepD, 95 nM PcrA, 200 nM DCC-
SSB (tetramers), ± PolC, 500 µM ATP and ± 500 µM dNTPs in K100 buffer at 
30 °C. Error bars indicate standard deviations among two experiments. 
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Figure 4.18. Unwinding traces of different length supercoiled plasmids by 
PcrA in presence of PolC. (A) Fluorescence time course for unwinding of 
different plasmid lengths (shown in base pairs). Reactions were made of 0.5 nM 
plasmid (size in bp), 2 nM RepD, 100 nM PcrA, 200 nM DCC-SSB (tetramers), 
250 nM PolC, 500 µM ATP and 500 µM dNTPs in K100 buffer. The assay 
performed on a stopped-flow apparatus is shown in Figure 4.17. Traces were 
analysed as described previously. (B) Dependence of unwinding time on 
plasmid length. The linear fit gives a rate constant of 71 ± 3 bp s-1 for 
unwinding. (C) Dependence of the amplitude of the unwinding phases on the 
plasmid length. Error bars indicate standard deviations among three 
independent experiments. Examples of fitting are shown in the Appendix of this 
thesis. 
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PcrA activity 
 

 PcrA 
helicase 

RepD-
PcrA  

N189K 
RepD-
PcrA 

RepD-
PcrA-
PolC 

Translocation on 
ssDNA  
(nt s-1) 

227 ± 31 - - - 

Plasmid 
unwinding  
(bp s-1) 

- 
 

27 ± 2  
 

19 ± 2 71 ± 3 
 

DNA junction 
unwinding  
(bp s-1) 

- 
 

54 ± 9 
 

47 ± 4 - 
 

 

Table 4.2. PcrA activities and interactions with replicative proteins in vitro. 
The rates of PcrA translocation on ssDNA and DNA unwinding were measured 
at 30 °C in solution. 
 

 

4.8. Discussion 
 
4.8.1. DNA polymerase activity  
 

The analysis of the staphylococcal replicative DNA polymerase activities was 

presented in this chapter, providing information on both the kinetics of early 

non-covalent and covalent chemistry. This was achieved combining a 

fluorescence-based approach with gel assays. 

Structural and functional studies of a number of DNA polymerases have been 

previously performed to improve our understanding of the mechanisms 

underlying their novel properties. Collectively, data from kinetic, mutational and 

structural studies of high-fidelity DNA polymerases have been used to describe  

a common ordered multi-step kinetic mechanism for an incorporation event of a 

correct nucleotide (Figure 4.19) [65]. This is based on the general assumption 

that the DNA polymerase initially binds the DNA template and then the correct 

dNTP substrate. The formed ternary complex then undergoes to a 

conformational change to allow a correct alignment of the template with the 

incoming dNTP. This is followed by the catalytic step of incorporation and PPi 

release.  
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Figure 4.19. Overall kinetic scheme of an incorporation event of a correct 
incoming dNTP catalysed by a polymerase. The DNA polymerase binds a 
primed DNA (step 1). A complementary dNTP is then recruited in the active site 
to form a ternary complex (step 2). After nucleotide binding, a conformational 
change occurs (step 3) that leads to the optimal alignment of the catalytic 
residues in a precise conformation to promote incorporation (step 4). This is 
followed by subsequent PPi release (step 5).  At this stage, the polymerase can 
continue the synthesis by moving on the next template position or dissociate 
from the DNA to act on another substrate.  
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Stopped-flow rapid mixing experiments allowed measurements of PolC 

binding kinetics to the substrates and the determination of the binding affinities. 

In the kinetic scheme proposed above, DNA.PolC complex formation is the first 

event. PolC binding to DNA was relatively rapid (k+1: ~1.2 ×108 M-1s-1, Figure 

4.2), and such binding was Mg2+-independent and did not show DNA sequence 

specificity (Figures 4.1, 4.3). Measurements of the k-1 allowed the calculation of 

the dissociation constant for such primed DNA (~10 s-1, Figure 4.4). Most DNA 

polymerases show Kd values varying from 5 to 70 nM) [109-111], and PolC 

displayed a slightly weaker affinity for DNA (Kd: 83 nM).  

The following event in the kinetic scheme is nucleotide binding. The 

fluorescently labelled mant-dATP was used as main nucleotide to investigate 

binding kinetics and, for simplicity, PolC binding was initially monitored in the 

absence of DNA template. However, the observed rate constant upon mant-

dATP association was independent on whether or not DNA was present (Figure 

4.7). In its absence, the Kd value from binding kinetics experiments was 4.5 μM 

for mant-dATP. The latter was similar to the affinity value obtained for dATP 

incorporation in steady-state measurements (Km: 3.4, Figure 4.10). The similar 

affinity values for mant-dATP and dATP suggested that mant-dATP is an 

excellent ATP analogue as the mant modification had no significant effects on 

PolC binding.  

The overall kinetic data obtained with the nucleotide and DNA substrates 

indicated that PolC binds tighter and faster to the DNA. These results supported 

the idea that the DNA is the first PolC substrate according to the sequential 

binding proposed for the high-fidelity polymerases.  

 

The kinetic parameters, kcat and Km, governing nucleotide incorporation were 

determined in steady-state experiments (Table 4.1). The values of the Km are 

an overall guide to nucleotide affinities of the PolC.DNA complex for the 

incoming substrate and ranged between 3.5-45 μM for the dNTPs. PolC binding 

was tighter for the purine bases in the following order dATP > dGTP > dTTP 

(Figure 4.10). Similarly to PolC, Km values for replicative polymerases 

incorporating a correct dNTP in a DNA template are ~10 μM [109-111]. 

The maximal rate, kcat, representing the rate of polymerization, kpol, was 

measured as a function of dNTP concentration and a gave value of ~12 s-1 for 



Chapter 4 DNA Polymerase III Function During Plasmid Replication 
 

164 
 

dNTPs (at 30 °C). Such value was independent on the type of nucleotide and 

ssDNA template used (Figure 4.10).  In such experiments, the interpetration of 

the  synthesis rate is complex as it is an estimate of the overall reaction cycle 

and depends strongly by one or more elementary steps. In this case, the kpol 

might be dominated by the rate-limiting step of PolC dissociation (k-1) from DNA 

product that takes place to process many DNA molecules and so the value 

might not reflect the “true” rate of synthesis.  

Using a gel-based approach, it has been previously shown that S. aureus 

PolC fully extends a primed site around a circular ssDNA plasmid at a speed of 

80–120 nucleotides s-1 (at 37 °C) [112]. This rate is ~10 fold faster than the 

value determined here, albeit in different temperature conditions and 

experimental approach, such as the presence of SSB, and the use of a long 

DNA template (~7 kb). 

 

4.8.2. PcrA helicase activity 
 

The kinetics of PcrA DNA unwinding and translocation were investigated 

here and in Chapter 3 using a fluorescence-based approach. The main sets of 

rate constants from rapid mixing experiments are summarized in Table 4.2. 

PcrA helicase showed different rates depending on the nature of the DNA and 

the effect of the initiator protein RepD. 

As previously shown, PcrA alone is not a processive helicase and requires 

the activation of its partner, RepD, which enables PcrA to processively unwind 

DNA. Unwinding occurs at a relatively slow rate for the RepD-PcrA complex 

(~30 bp s-1 at 30 °C).  

The kinetics of PcrA translocation along ssDNA were measured here using 

labelled DNA. This process was much faster than dsDNA unwinding and gave 

an average rate of 223 bases s−1 (Figure 4.15). PcrA translocation rate on 

single stranded DNA was measured in previous studies. Such rate was 80 

bases s-1 using the assay described here at 20 ˚C [48]. In a more recent study, 

MDCC-PcrA, a labelled cysteine mutant of PcrA with identical catalytic activity 

to the wild type was used to measure translocation. With this approach, a 

similar rate was obtained at 20 ˚C (99 bases s-1) and increased to 299 bases s-1 

for measurements done at 30 °C, which is similar to the rate reported here [53]. 
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It is clear that PcrA average rate of unwinding was several-fold slower than the 

PcrA translocation rate on ssDNA. One interpretation of such activity was that 

PcrA-mediated DNA unwinding could occur with a partially passive mechanism 

[53]. However, despite the different rates observed, it has been shown that the 

coupling between the ATP hydrolysis reaction and PcrA base translocation is 

one ATP per base for both ssDNA translocation and dsDNA unwinding [48].  

Measurements of DNA unwinding can only be performed in presence of 

RepD protein. The functional interaction between RepD and PcrA occurring 

during initiation and unwinding has no significant effect on PcrA ATPase activity 

[48]. As described in Chapter 3, PcrA in complex with the mutant N189K RepD 

unwinds DNA plasmids at a speed of 19 bp s-1 and short DNA duplexes at a 

rate of 47 bp s-1. The values are slightly reduced than that obtained with wt 

RepD-PcrA complex (Table 4.2).  

There have also been evidences of a physical interaction between the two 

proteins as they remain associated forming a functional unwinding complex until 

termination, and so it is possible that RepD might also play a role in modulating 

PcrA motor activity.  

 

4.8.3. Polymerase interaction with PcrA?  
 

So far studies of the staphylococcal plasmid replication mechanisms have 

been mainly focused on the activity of the PcrA helicase and RepD protein. The 

activity of PolC in a complete replicating system was investigated here. There 

have been several examples in the literature of helicase activity regulation by 

other proteins such as polymerases (see Introduction for details on the coupled 

activity of the motor proteins).   

Efforts were made here to characterize the activities of the α-subunit of the 

Staphylococcus aureus polymerase, in order to insert the enzyme in a full 

plasmid replication system in vitro. In such a complex scenario, there are 

multiple replicative proteins processing a single DNA plasmid molecule in a 

coordinated manner including RepD, PcrA, PolIII and the SSB.  

 

Firstly, the activity of RepD was investigated to assess the extent of plasmid 

nicking in presence of polymerase (Figure 4.16). RepD relaxation activity was 
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found to be unaffected by PolC. This means that plasmid initiation can 

successfully occur under these conditions. However, PolC retained 

exonuclease activity on DNA and so on the nicked plasmid (Figure 4.16). DNA 

digestion occurred as long as a primed DNA was present in solution. 

Exonuclease inhibition was achieved using a high excess nucleotide 

concentration (Figures 4.13, 4.16).  

The unwinding activity of PcrA was then measured including PolC in the 

plasmid unwinding assay. Upon mixing increasing concentrations of PolC the 

fluorescence signal decreased (Figure 4.17), which was consistent with 

unwinding followed by synthesis of the (+)-strand and less ssDNA available for 

SSB binding. The extent of DNA synthesis was highest at 250 nM PolC where 

the amplitude was around half compared to that in the absence of PolC. At such 

PolC concentration, the plasmid substrate reached saturation. This was in 

agreement with the DNA affinity value Km (250 nM) determined in steady-state 

measurements, albeit ~3 fold lower than the measured Kd (~ 80 nM).  

Another interesting observation was that the ‘break-point’ of the traces 

occurred earlier with the PolC, giving a PcrA average rate of unwinding of 71 bp 

s-1 (30 ˚C) (Figure 4.19). This was few fold faster than the rate observed with 

PcrA alone (30 bp s-1, 30 ˚C), and the PolC synthesis rate (12 ntd s-1, 30 °C, 

Table 4.1), albeit the latter was measured under different assay conditions and 

in the absence of other replicative proteins. The increase in PcrA unwinding 

speed might result from interactions between the two motor proteins during 

nucleic acid unwinding/replication. One interpretation of the different 

unwinding/translocation/synthesis rates might be that PolC could activate PcrA 

to perform unwinding at a rate more close to its translocation speed (~200 ntd s-

1), albeit limited by the slow PolC synthesis rate. When both motors are moving 

around the plasmid during replication, PcrA would pull the PolC and dictate the 

overall speed of DNA unwinding-synthesis. However, proteins used in this 

investigation are from different bacteria (B. stearothermophilus PcrA and S. 

aureus RepD is from S. aureus), and only the replicative polymerase subunit of 

the holoenzyme was used and so protein–protein interactions might not 

completely reflect the in vivo scenario. 

Currently, there are no structural studies of the initiator protein in complex 

with the oriD and or PcrA helicase. The length of the ssDNA stretch formed by 
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RepD nicking as well as the motor proteins disposition on the oriD during 

initiation would provide insights into how such enzymes are assembled during 

replication. 

There have been several studies reporting functional coupling between 

helicases and polymerases showing that their interaction resulted in a faster 

helicase movement through the dsDNA, as occurs for the phage T7 replication 

system [70]. However, the exact mechanisms of functional coupling between 

the motor proteins are yet to be elucidated.  

 

4.9. Summary 
 

In this chapter, the activities of the S. aureus PolC were analysed using 

rapid-mixing experiments combined with gel assays. Kinetic rate constants have 

been measured for various steps in the formation of PolC, DNA and dNTP 

complexes. The complete kinetic scheme of the PolC incorpotation reaction for 

a correct dNTP in a DNA template has not been fully characterised here, but 

important steps have been determined. Fluorescently labelled substrates have 

been used to determine the PolC binding kinetics. Kinetic analysis showed that 

PolC rapidly binds DNA in a Mg2+-independent way and this is followed by a 

more slow Mg2+-dependent nucleotide interaction. These observations were in 

agreement with the model of sequential substrate binding proposed for the high-

fidelity polymerases, such as T7 DNA polymerase.  

From the prospective of understanding how the activity of the replicative 

proteins is coordinated during replication, PcrA activitiy on DNA was 

investigated as single motor and in association with other proteins. Kinetic 

measurements showed that the helicase moved on DNA at higher speed 

compared to DNA duplex unwinding. The latter, occuring only in presence of the 

RepD initiator protein, was few fold faster in the presence of PolC. These 

results indicated that PcrA properties such as processivity and unwinding speed 

were different modulated by partner proteins. The unwinding data also 

suggested a functional interaction between PcrA and PolC during coordinate 

plasmid unwinding and replication.    
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Studies of the protein interactions within the replisome need to be extended 

in the future with structural determinations to provide the greatest understanding 

of these molecular machines. 
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5.  Observing DNA Replication Using Atomic 
Force Microscopy 
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5.1. Introduction 
 

Atomic Force Microscopy has been extensively used in the study of the 

biomolecular structures, as it can provide a deeper understanding into several 

biological processes like DNA-protein interactions and enzymatic activities 

through their direct visualisation on a surface (see Introduction for details on 

AFM). Previously studies reported AFM images of fundamental processes of 

DNA metabolism, such as rolling circle synthesis of E. coli phage φX174 viral 

DNA, interactions between the protein-DNA complexes, and the movement of 

RNA polymerases on DNA [113, 114].  

 

In this chapter, AFM imaging was used to visualise directly the events of the 

asymmetric rolling circle plasmid replication of a Gram-positive system. Events 

relating unwinding and synthesis of the plasmid pCERoriD have been 

investigated by AFM using the initiatior protein RepD, B. stearothermophilus 

PcrA, S. aureus PolC, and E. coli SSB. Previous work described the directional 

unwinding of a pCERoriD plasmid by AFM [51]. Here, a more detailed structural 

analysis of biomolecular complexes is reported. In addition, the whole 

replication system, with the inclusion of the polymerase, is also investigated.  

The overall process is characterised by a series of defined events that can be 

investigated including protein-induced changes to the local and the global 

structure of DNA that were both quantitatively and qualitatively recorded with 

AFM. In these experiments the plasmid pCERoriD was used in the supercoiled 

or in linear form, and different length plasmids were employed in some 

measurements. The 3.6 kb DNA plasmid was used throughout the various steps 

of replication, as its relative short size was convenient for imaging a relatively 

small area on the surface, and also the analysis was easier for the reduced 

intramolecular crossings. 

 Firstly, the DNA plasmid could be visualised in its native state, and its 

topological changes caused by RepD nicking activity were also analysed. 

Accordingly to the results shown in Chapter 3, RepD was able to relax the 

majority of negatively supercoiled plasmids. Such an event allows the plasmid 

to be accessible to the replicative proteins. Following initiation, PcrA-mediated 

unwinding of linear and supercoiled DNA substrates was monitored with and 
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without SSB. Strong evidences supporting a physical interaction and dynamic 

coupling between PcrA helicase and RepD during plasmid unwinding were 

found through the analysis of the macromolecule complexes.  

PolC inclusion in the unwinding reaction allowed imaging of the final products 

generated by a complete replication system. Upon complete replication, newly 

synthethised circular plasmids were found along ssDNA molecules.   

 

To better understand the morphology of molecules, a quantitative description 

of the surface topography must be carried out, and this was achieved extending 

the two-dimensional data analysis by measuring the heights of the surface 

features. A simultaneous analysis of the initiation stage products was also 

performed using gel assays. However, the gel approach was used only for a 

plasmid topology analysis because transient states and intermediates that may 

form during a reaction as well as structural information of protein and DNA are 

not detectable. 

 

The use of AFM for imaging has several advantages. The DNA preparation 

and deposition on the surface does not require special treatments such as 

contrasting agents and staining mainly used in other types of microscopy.  

The surface used here is the muscovite mica that was freshly cleaved to 

allow a straightforward deposition of the sample. The mica surface has a 

layered structure of aluminum silicate sheets weakly bonded together by layers 

of potassium ions. The potassium ions occupy large holes between oxygen 

atoms. The electrostatic interaction between potassium and oxygen is rather 

weak allowing ceavage along the basal plane of the surface. Upon cleavage, 

potassium ions are evenly distributed along the two surfaces. In aqueous 

solution the potassium ions will dissociate and the surface acquires a negative 

charge. The absorption of negatively charged molecules like DNA is promoted 

through Mg2+ surface treatment for an efficient interaction with the negatively 

charged phosphates of the nucleic acid backbone. This strategy is necessary to 

prevent the movement of DNA molecules upon interaction with the tip whilst 

scanning, which would result in a severely distorted image. 

Reactions in this investigation were carried out in solution and samples were 

deposited on mica, dried onto the surface and imaged. This is less demanding 
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than imaging with an aqueous layer on the mica, which requires buffer 

conditions optimization and functionalized surfaces for sample immobilization. 

AFM images presented here have been generated using the contact mode.  

In addition, a combined Total Internal Reflection Fluorescence and Atomic 

Force Microscopy (TIRF-AFM) approach was used here in order to identify 

labeled SSB proteins on DNA (see Introduction for details on TIRF-AFM). In this 

experiment, the fluorescently labelled Cy3B-SSB was used in the unwinding 

reaction and the ssDNA produced by PcrA helicase was substrate for the 

labelled SSB protein allowing the visualisation of fluorescence images from the 

TIRFM. Such fluorescence images were combined with the topography analysis 

obtained from AFM to identify the DNA-protein complexes. 

 

The study presented here provides a comprehensive set of information in the 

general mechanisms of a complete plasmid replication system, including low-

resolution structural data of the initiation complex, and the interactions occurring 

during unwinding and replication.  

 

5.2. Supercoiled pCERoriD plasmids 
 

The first step in the study of the dynamics of plasmid replication events was 

given by the acquisition of the purified plasmid substrate images in its native 

state. An initial experiment was performed to analyse the surface used in these 

measurements. The freshly cleaved mica surface was imaged in the absence of 

any solution (see the Appendix of this thesis). The topography analysis showed 

a clean surface with no detectable structures and an exceptional smooth 

surface. These properties make the mica a valuable substrate to examine 

nucleic acid and proteins.  

 

A solution containing the pCERoriD plasmid was immobilized on the mica 

surface previously treated with Mg2+, followed by drying and scanning. A typical 

image of the DNA plasmid molecules absorbed on the surface is shown in 

Figure 5.1. It has been previously shown that imaging supercoiled DNA 

samples in air gives similar images to those in liquid [112]. The scanned DNA 

plasmid molecules clearly showed basic features of DNA supercoiling known as 
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plectonemic superhelices. In such a DNA geometry, the DNA molecule winds 

helically up and back down in an imaginary cylinder (Figure 5.1). These results 

were consistent with the geometry of bacterial plasmid DNA in vivo, where the 

dominant DNA form is a plectoneme [115]. The three-dimensional analysis of 

the molecules, shown in Figure 5.1C, revealed that the height of the DNA 

molecule varied from 1.2 to 2.5 nm depending on the superhelical twist 

superimposed on the secondary helical winding.  

The topology analysis performed over 50 DNA molecules from AFM imaging 

is shown in Figure 5.2A. The stock solution contained a tiny population of 

relaxed DNA form. This indicated that a freshly purified DNA sample contained 

~ 97% of intact supercoiled molecules. An agarose gel analysis of the DNA 

sample confirmed the high purity of the DNA (Figure 5.2B). The presence of 

circular structure is possibly caused either by degradation during the DNA 

purification process or by the sample storage conditions. Agarose gel analysis 

of DNA showed variability of the amount of relaxed plasmid between different 

DNA preparations (data not shown).  
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Figure 5.1. AFM images of the supercoiled pCERoriD plasmids. DNA (3.6 
kb) was deposited in a solution containing 50 mM Tris.HCl, and 100 mM KCl. 
(A) Typical AFM image of the pCERoriD plasmid (2 x 2 μm field of view). The 
purified plasmids were in a negatively supercoiled form. (B-C) Software zooms 
of two individual molecules from (A). (C) Rainbow color scale indicating the 
heights measured from black (minimum height) to white (maximum height) of 
three supercoiled plasmids. The white scale bars represent 0.12 μm. 
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Figure 5.2. DNA topology analysis of a supercoiled plasmid sample. (A) 
Single plasmid DNA molecules imaged with AFM imaging, as shown in Figure 
5.1, were analysed for their conformations. Analysis was performed over 100 
DNA molecules. 97 DNA plasmids were negatively supercoiled (SC), 3 
plasmids were closed circular (CC) and no linear DNA was detected. (B) 
Agarose gel analysis of plasmid topology. The DNA plasmid used in AFM 
experiments (Figure 5.1) was run on a 1% agarose gel. The gel band (DNA 
lane) indicates the supercoiled pCERoriD plasmid.  
 
 
5.2.1. Effect of ionic conditions on DNA topology 
 

The DNA samples described in the previous experiment were prepared in the 

absence of MgCl2 and in moderate salt conditions. However, in the following 

experiments Mg2+ was introduced in the buffer as cofactor for the proteins. As 

previous works have shown that DNA conformation depends on environmental 

conditions and in particular on the ionic strength [116], another experiment was 

performed to investigate the effect of ionic conditions on the DNA conformation.  

The DNA plasmids were prepared and absorbed on the mica at different salt 

conditions (Figure 5.3). In no salt condition, an obvious change in the 

supercoiled DNA geometry was observed, since the molecules became almost 

invariably irregular and folded with no defined superhelix axis (Figure 5.3A). 

This change is likely to be caused by the inhibition of spatial re-arrangements. 

The tightly twisted geometry typical of a conventional supercoiled DNA, seen at 
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higher salt conditions (Figure 5.3B-C, 100 mM KCl), was less evident compared 

to the DNA prepared at no salt conditions. Addition of Mg2+ in the high salt 

buffer sample improved the absorption of the supercoiled DNA on mica (Figure 

5.3C). The axis of the supercoiled molecule was more defined and the DNA 

was tightly underwound. Typically, molecules assumed a branched “Y” shape, 

and the length of each branch randomly varied between molecules. 

 

These results showed that the geometry of supercoiled DNA molecules was 

different depending on the environmental ionic strength. The high salt condition 

favored interhelical and intramolecular interactions. These observations were 

consistent with previous systematic theoretical studies, and with AFM studies 

showing that DNA conformations depend on the ionic conditions [116, 117].  

The reaction buffer for the following AFM experiments reported in this 

investigation contained both KCl and MgCl2 for an optimal activity of RepD. 

Accordingly with these results, the supercoiled DNA typically adopted the 

conformations showed in Figure 5.3C. 
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Figure 5.3. Effect of ionic strength on the plasmid DNA conformation. (A) 
DNA molecules absorbed on the surface in the presence of ddH2O (no salt). 
The sample was then dried and scanned. Molecules appeared irregular, with 
random coiling and the presence of loose loops. (B) DNA sample prepared in 
same buffer conditions as shown in Figure 5.1. (C) DNA molecules absorbed on 
the surface in the presence of 50 mM Tris.HCl, 100 mM KCl and 10 mM MgCl2. 
Larger field of view for each reaction are shown in the Appendix of this thesis. 

 

5.3. RepD-mediated relaxation of supercoiled plasmids 

 

As previously described, the supercoiled plasmid is the main substrate for 

RepD nicking activity. The initiator protein binds to the oriD sequence and 

relaxes the DNA plasmid through its topoisomerase-like activity (Figure 5.4A).  

Here, the change in DNA topology caused by RepD activity was observed by 

imaging the final products of the relaxation reaction (Figure 5.4B). In this 
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experiment, an excess of RepD protein was incubated with a 3.6 kb supercoiled 

plasmid for 2 min to allow complete nicking. The reaction was then deposited on 

the mica surface for 30 s for absorption. The excess solution was removed, 

followed by washing with water and drying prior imaging. AFM images revealed 

the presence of relaxed plasmid DNA as extended circular molecules on the 

mica surface (Figure 5.4B). This was consistent with a previous study showing 

the relaxation products of the RepD-mediated reaction [51].  

 

The RepD reaction products of a relaxation reaction were analysed for the 

DNA topology, and a frequency histogram was obtained from 100 plasmids as 

shown in Figure 5.5. The majority of the DNA molecules, ~96%, adopted the 

shape of unconstrained freely fluctuating rings without any intramolecular 

crossings (Figures 5.4B and 5.5). Some relaxed plasmids presented an “eight” 

shape. This alternative DNA conformation was likely to be produced during 

sample deposition and/or surface drying. The majority of the relaxed circular 

plasmids showed a single, high globular feature at a unique location on the 

DNA (Figures 5.5A2, 5.6A1). This was interpreted as the RepD protein 

covalently attached on the oriD (Figures 5.4B, B1).  A small amount of 

unreacted plasmids, ~ 4%, could also be seen in their supercoiling state 

(Figures 5.4B, B2 and 5.5). The reaction also contained partially relaxed DNA 

molecules with local supercoiling (Figures 5.4B, B3). These molecules were 

interpreted as circular closed products (CC), as nicking and relegation events 

might also occur after sample deposition and/or during washing. Following 

deposition, the release of DNA supercoiling in such molecules might be limited 

by the interactions with the charged surface inhibiting a global relaxation of the 

DNA. Alternatively, RepD might partially relax the DNA as result of nicking and 

rapid religation. Such an activity might result from the buffer switching on the 

surface during sample preparation. Non-covalent binding of RepD on these 

molecules could not be distinguished due to the presence of coiling. Upon 

RepD incubation for 2 min, the amount of CC plasmids detected was ~ 36% 

(Figure 5.5B). However, DNA topology analysis of this reaction on a gel assay 

showed that the CC form was ~ 7% (Figure 5.5C). It is likely that sample 

preparation on the surface affect the RepD religation activity.  
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5.3.1. The RepD-DNA complex 
 

In the previous section the effect of RepD on DNA topology was clearly 

demonstrated. As expected from a nicking reaction, RepD protein could be 

found attached on the relaxed DNA molecules (Figure 5.5A2). A rainbow color 

scale for height analysis allows a more clear visualisation of the RepD-DNA 

complex formation during a nicking reaction (Figure 5.6). The differences in 

heights between the dsDNA and RepD allowed a straightforward detection of 

the protein on the relaxed molecules.  

The height analysis of the protein complex gave a value of ~ 2 nm (Figures 

5.6B2-B3). Rarely, more than one RepD protein could be found attached on the 

plasmid (Figure 5.6A4). This was likely to be caused by the presence of 

potentially three RepD-binding sites (ICR I–III) within oriD. The binding of 

multiple RepD molecules at the oriD was also confirmed with a gel shift assay 

(see Appendix of this thesis).  

These results are consistent with previous studies showing that RepD is able 

to bind at the different ICR sequences, albeit with different specificity [99]. 
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Figure 5.4. AFM images of the RepD-mediated relaxation of supercoiled 
pCERoriD plasmids. (A) The supercoiled pCERoriD plasmid is the native 
RepD substrate for nicking. The reaction causes release of supercoiling and so 
formation of a relaxed circular DNA. (B) A typical AFM image of plasmids 
products from a 2 min incubation with RepD. (B1-B3) Zooms of individual 
plasmids shown in (B) showing the different DNA topology.  10 μl of a solution 
containing 10 nM pCERoriD plasmid (3.6 kb) and 30 nM RepD, in 50 mM 
Tris.HCl, 10 mM MgCl2 and 100 mM KCl, was deposited on a freshly cleaved 
mica surface following 2 min incubation of the reaction. 

 



Chapter 5 Observing DNA Replication Using Atomic Force Microscopy 
 

181 
 

 

 

Figure 5.5. DNA topology analysis of a nicking reaction performed by 
RepD on supercoiled pCERoriD plasmids. (A) Typical images of the plasmid 
topology of the RepD-mediated relaxation products. (B) Histogram 
representation of the DNA topology analysis performed over 100 DNA 
molecules imaged by AFM. SC: residual unreacted supercoiled plasmids as 
shown in (A1); OC: open circular relaxed plasmid with a visible RepD molecule 
attached as shown in (A2); CC: circular closed relaxed plasmids as shown in 
(A3). (C) Agarose gel analysis of the nicking reaction. Upon RepD incubation for 
2 min, ~91% of OC plasmid is produced (+ RepD lane). The SC plasmid 
substrate used as RepD substrate is also shown (- RepD lane).  
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Figure 5.6. Visualisation of the RepD-DNA initiation complex by AFM. (A1-
A3) Colour scale representation of RepD (in red) bound to relaxed pCERoriD 
plasmids (3.6 kb). Individual red dots represent RepD dimers. (B1-B2) Cross 
section and corresponding height profile and three-dimensional representation 
(B3) of the RepD-DNA complex. The height was 1.8 ± 0.3 nm (width: ~ 20 nm 
for one RepD dimer). Reactions were prepared as described in Figure 5.4. The 
scale bar represents 200 nm. 
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5.4. Different length DNA plasmids   
 

Two different lengths of pCERoriD plasmid, the 3.6 kb and 6 kb plasmids, 

have been imaged in order to calculate an average of the DNA length and 

compare their geometrical conformations. A direct comparison of the plasmid 

images in their supercoiled and relaxed forms is shown in Figure 5.7. Despite 

their difference in the DNA size, the plasmids presented a similar conformation 

on the surface. As described previously for the 3.6 kb plasmid, the 6 kb 

supercoiled plasmid also showed a “Y” shape with three main arms and a 

central knot (Figure 5.7 A), whereas the relaxed plasmids formed random rings 

(Figure 5.7 B-C).  

The length of the DNA axis was relatively uniform between the DNA 

molecules of a plasmid population of a certain length. The average lengths 

calculated from 50 molecules were 0.36 µm for the 3.6 kb and 0.6 µm for the 6 

kb in their supercoiled form (Figure 5.8A-B), and 0.95 µm for the 3.6 kb and 

1.87 µm for the 6 kb in their relaxed form (Figure 5.8C-D).  

Some DNA binding proteins can change the contour length of DNA. For 

example, the RecA protein elongates a DNA molecule by 50% when it is 

completely covered [118]. However, only up to three RepD dimers can bind the 

oriD, so protein binding should not affect significantly the DNA length. To 

investigate this, the contour length of circular DNA molecules with attached 

RepD proteins was measured. There was no significant change in the DNA 

contour length between the open (+ RepD) and closed (- RepD) circular 

plasmids, and so binding of RepD does not have a major effect (Figures 5.7B1, 

C1)  

 

Such measurements allowed the calculation of the base spacing values, 

which gave similar results for both plasmid DNA lengths with a value 0.1 nm bp-

1 for supercoiled DNA and of 0.3 nm bp-1 from relaxed double-helical molecules. 

The latter value is similar to that measured in previous studies (0.28–0.34 nm 

bp-1, and is consistent with the expected value of the B-form DNA, which is the 

most common physiological form of DNA [113]. The reduced value of the base 

spacing in the supercoiled DNA compared to the relaxed molecule is consistent 

with the packaging role of supercoiling. 
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For both plasmids, the height and the width were fairly uniform along the 

DNA fibre. The height of the dsDNA fibre had a value of 1.2 ± 0.2 nm, which is 

smaller than the theoretical value of the B-form DNA (~2 nm). Such a difference 

is likely to be caused by the tip-sample interactions and the force applied by the 

tip during scanning that can compress the molecules.  

 

 

 
Figure 5.7. Direct comparison of different length pCERoriD plasmids 
visualised by AFM. (A1-B1) 3.6 kb plasmid in its supercoiled and relaxed 
circular form respectively. (A2-B2) 6 kb plasmid in its supercoiled and relaxed 
form respectively. Colour scale representation of the RepD protein (red dot) on 
the 3.6 kb plasmid (C1) and the 6 kb plasmid (C2). Solutions were prepared as 
described in Figures 5.3C and 5.4. 
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Figure 5.8. Histograms of DNA contour length measured from two 
different length plasmids with or without supercoiling. All DNA length 
measurements were from images collected from one deposition of molecules 
from one reaction mixture. Measurements of contour length of a 3.6 kb (A and 
C) and 6 kb plasmid (B and D). The average lengths calculated from 50 
molecules (mean value ± standard deviation) were 0.36 ± 0.02 µm for the 3.6 kb 
and 0.6 ± 0.01 µm for the 6 kb in their supercoiled form, and 0.95 ± 0.03 µm for 
the 3.6 kb and 1.87 ± 0.03 µm for the 6 kb in their relaxed form. In these 
measurements, the contour length is referred as a measure of the linear 
distance between the two endpoints of a DNA molecule, and it differs by the 
standard definition of the contour length which defines the distance along the 
curved DNA backbone. 

 

5.5. Unwinding of supercoiled pCERoriD plasmids by PcrA and 
RepD 
 

5.5.1. Unwinding of supercoiled plasmids without SSB 
 

Following RepD-mediated nicking, the supercoiled plasmid is converted in its 

relaxed form, which is the accessible to the replicative helicase, PcrA.  
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In an effort to explore the dynamics of PcrA-mediated plasmid unwinding, the 

pCERoriD plasmid was incubated with RepD, PcrA, and ATP, in the absence of 

SSB, and the reaction products were imaged by AFM.  

Unwinding reactions were initiated in solution and then two different time 

points (~30 s and 2 min) were quickly collected and stopped by dilution in 

buffer. These were than deposited onto a mica surface and dried. With this 

procedure, partial and complete unwinding events could be visualised in order 

to monitor the progress of DNA unwinding catalyzed by PcrA.  

Upon a relatively short incubation time of the reaction (~ 30 s), two main 

populations of plasmids were imaged (Figures 5.9 and 5.10). Some relaxed 

circular plasmids showed a single globular feature at a unique location (Figure 

5.9). The three-dimensional analysis of this structure revealed a double peak 

with a main height at 3.5 nm with a shoulder at ~ 2 nm. This is likely to 

represent the PcrA-RepD initiation complex since RepD alone on DNA has a 

similar height of the shoulder (~ 1.8 nm, Figure 5.6). The latter was a usual 

feature detected for the complexes found on DNA plasmids and analysis of 

additional complexes is found in the Appendix of this thesis. 

In addition, various plasmids were found at early stages of unwinding. 

Recruitment of PcrA by RepD as shown in Figure 5.9 is then followed by DNA 

unwinding (Figure 5.10). DNA plasmids had globular structures of various 

dimensions flanking the DNA axis. These represented the partially coiled 

ssDNA produced by PcrA, and their measured heights were ~1.5 nm. On such 

plasmids, the PcrA-RepD complex was also visible (indicated by the yellow 

arrows in Figure 5.10B-C). These had comparable height profiles to those 

observed in Figure 5.9.  

These results indicated that PcrA helicase could be loaded onto a nicked 

relaxed plasmid and most interestingly the RepD-PcrA complexes were formed 

during initiation and early unwinding.  

 

As mentioned above, a longer reaction incubation time was also analysed in 

order to image the final unwinding products (~2 min., Figure 5.11). Interestingly, 

PcrA-mediated unwinding produced plasmids with “web-like” shapes. As shown 

from the heights analysis, the PcrA-RepD complex could be detected on some 

plasmids (Figure 5.11). In some occasions, molecules had loops emerging out 
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of a central condensed knot representing RepD-PcrA complex (Figures 5.11A1 

and C1). Other plasmid molecules had loops randomly alternated with ssDNA 

(Figure 5.11C2-C3), and occasionally the unwinding complex could be found 

freely along the DNA axis of such plasmids (Figure 5.11C2). The number of 

loops and their distribution along the DNA varied between molecules. These 

structures are likely to be generated, in the absence of SSB, by PcrA-mediated 

unwinding and partial reannealing occurring randomly after passage of the 

helicase. Thus, the DNA structures were caused by the topological constraints 

of the (-)-strand of the circular plasmids, which, upon unwinding, had to rotate in 

order to reanneal. This could also explain the different DNA conformations 

assumed around the RepD-PcrA complex at different stages of unwinding. The 

RepD-PcrA complex was found at the condensed center of the plasmid 

molecule for uncompleted unwinding events. Plasmid unwinding resulted in 

either dissociation of the complex (Figure 5.11B2-C3), or its location on a 

stretch of dsDNA at termination (Figure 5.11B1-C2). More rarely, the formation 

of condensed ssDNA irregular structures was evident (Figure 5.11A1). These 

were possibly produced by inhibition of DNA reannealing through extra PcrA 

molecules binding and/or translocating along ssDNA stretches produced upon 

unwinding. 

These results indicated that helicase-mediated plasmid unwinding could be 

performed in the absence of SSB. Thus, SSB is not an absolute requirement for 

efficient unwinding and stimulation of PcrA by RepD occurs independently by 

the presence of SSB protein. However, it is still unclear whether the presence of 

SSB could affect PcrA unwinding speed and/or the helicase forward movement 

along DNA. 

 

From a direct comparison between the two unwinding times analysed above, 

it is clear that early deposition of the DNA on the surface inhibited the formation 

of loops favoring the appearance of ssDNA condensed structures along the 

DNA (Figures 5.10 and 5.11). The presence of ssDNA could be caused by 

unwinding events occurring on partially immobilized molecules over the surface, 

and so the ssDNA formed in situ would be locally trapped by interactions with 

the surface whilst inhibiting reannealing.  
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Figure 5.9. Visualisation of the RepD-DNA-PcrA complex by AFM. (A1-A3) 
Colour scale representation of the complex, in red, bound to a relaxed 
pCERoriD plasmid (3.6 kb), formed in a 30 s incubation time reaction. (B1-B2) 
Cross section and corresponding height profile and three-dimensional 
representation (B3) of the PcrA-RepD complex. The height measurement 
showed a peak of maximum height at 3.5 nm with a shoulder ~ 2 nm was 
observed for the complex (width: ~40 nm). The scale bar represents 200 nm.  
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Figure 5.10. Visualisation of early plasmid unwinding events by RepD-
PcrA complex. Reaction contained 10 nM plasmid (pCERoriD, 3.6 kb), 60 nM 
RepD, 90 nM PcrA, and 1 mM ATP, and was incubated for 30 s prior sample 
deposition. (A1) AFM topographical image of the unwinding reaction products. 
(B1-B2) Zooms of two DNA plasmids having the PcrA-RepD complex. (C1-C2) 
Colour scale representation of the plasmids showed in (B). In red, indicated by 
the arrows, is the RepD-PcrA complexes bound to the pCERoriD plasmids (3.6 
kb). The condensed structures represent ssDNA wrapped along the circular 
plasmid. The scale bar represents 200 nm. 
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Figure 5.11. Visualisation of late plasmid unwinding events by RepD-PcrA 
complex. Reaction contained 10 nM plasmid (pCERoriD, 3.6 kb), 60 nM RepD, 
90 nM PcrA, and 1 mM ATP, and was incubated for 2 min prior sample 
deposition on mica. (A1) AFM topographical image of the unwinding reaction 
products. (B1-B2) Zooms of two DNA plasmids having the typical “web-like” 
conformation. (C1-C3) Colour scale representation of the unwound plasmids. In 
white, indicated by the arrows, is the RepD-PcrA unwinding complex. The 
condensed structures represent wrapped ssDNA along the circular plasmids. 
The scale bar represents 200 nm. 
 

 

5.5.2. Unwinding of supercoiled plasmids with SSB 
 

The AFM experiments described above were performed in the absence of 

SSB. In vivo, the SSB participates in the replication event by sequestering the 

ssDNA produced through the helicase activity. In order to simulate the in vivo 
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conditions, the intermediates of DNA unwinding in the presence of SSB were 

visualised by AFM. Thus, pCERoriD was treated with RepD and incubated with 

PcrA and ATP, in the presence of SSB. Reaction products from two time points 

were then scanned (30 s and 2 min). With this strategy, early PcrA unwinding 

should occur by the first time point (30 s) and be near to completion for the 

second time point were expected as expected from the PcrA unwinding speed 

measurements described in Chapter 3.  

 

Typical AFM images obtained from such reactions are shown in Figures 5.12 

and 5.13. Upon incubation of the reaction for 30 s, PcrA-RepD-mediated 

unwinding of DNA plasmids was detected and SSB coating of the ssDNA 

produced was clearly visible (Figure 5.12A). The analysis of the SSB coated 

regions of DNA displayed divergent heights depending on the amount of SSB 

bound to the region (from 4 nm, Figure 5.12C). This was caused by poor 

absorption of the complexes on the mica possibly due to interactions between 

adjacent SSB tetramers. There was some heterogeneity in the extent of dsDNA 

unwound between molecules (Figure 5.12C). However, the majority of the DNA 

molecules presented the conformation showed in Figure 5.12B. The presence 

of DNA plasmids at slightly different stages of unwinding is possibly caused 

either by late nicking events or complex pausing during unwinding.  

On a longer incubation time (2 min), complete plasmid unwinding should 

occur, and this was detected as disappearance of dsDNA and presence of 

condensed structures representing SSB molecules on ssDNA (Figure 5.13). 

Only a small fraction of plasmids had some residual dsDNA due to late 

unwinding events (Figures 5.13B1-C1-C2).  In the presence of SSB, the RepD-

PcrA complex could not be detected on the plasmids.  

These results showed that rapid SSB binding follows unwinding and ssDNA 

production by PcrA. The presence of SSB promoted progressive unwinding and 

release of the two single stranded DNA molecules.  
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Figure 5.12. Visualisation of early plasmid unwinding events by RepD-
PcrA complex in the presence of SSB. Reaction contained 10 nM plasmid 
(pCERoriD, 3.6 kb), 60nM RepD, 90nM PcrA, 500 nM SSB, and 1 mM ATP, 
and was incubated for 30 s prior sample deposition. (A1) AFM image of the 
unwinding reaction products. (B1-B2) Zooms of two DNA plasmids with the SSB 
bound. (C1-C3) Colour scale representation of the unwound plasmids. In white 
and red, indicated by the arrows, are the SSB-DNA complexes on the 
pCERoriD plasmids.  
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Figure 5.13. Visualisation of late plasmid unwinding events by RepD-PcrA 
complex with SSB. Reaction contained 10 nM plasmid (pCERoriD, 3.6 kb), 
60nM RepD, 90nM PcrA, 500 nM SSB, and 1 mM ATP, and was incubated for 2 
min prior sample deposition. (A1) AFM image of the unwinding reaction 
products. (B1-B2) Zooms of two DNA plasmids with the SSB bound. (C1-C3) 
Colour scale representation of the unwound plasmids. In white and red, 
indicated by the arrows, are the SSB-DNA complexes on the pCERoriD 
plasmids. The scale bar represents 200 nm.  
 

 

5.6. PcrA-RepD mediated unwinding of linear plasmids  
 

AFM experiments using linear DNA substrates were carried out to study PcrA 

ability to perform unidirectional unwinding. A supercoiled 4.9 kb pCERoriD 

plasmid was used as substrate to produce linear DNA by restriction enzyme 

digestion.  
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Typically, linear DNA molecules were generally rope-like in shape with 

random conformations when absorbed on the surface (Figure 5.14A1). The 

average length of the molecules was 1.38 ± 0.02 μm, consistent with 

measurements of the DNA duplex length showed in section 5.4.  

Linearising the DNA plasmid with HindIII placed the oriD at the 5′ -end of the 

(+)-strand (Figure 5.15). Formation of the RepD-PcrA complex on the HindIII-cut 

plasmid was observed from detection of a distinctive feature at this location 

(Figures 5.14A2-A3). The height analysis showed similar results to those 

measured on circular plasmids (section 5.5.1). Upon ATP-dependent unwinding 

and in the absence of SSB, a loop was detected on the linear DNA. The linear 

DNA decreased in length as the loop increased (Figures 5.14B2-B3). A simple 

interpretation of these results is that the loop structure resulted from the forward 

movement of the helicase along DNA upon duplex unwinding and subsequent 

reannealing (Figure 5.15B).  A condensed globular feature was found on the 

linear DNA axis and it is believed to be the RepD-PcrA complex with condensed 

newly generated ssDNA located at the unwinding fork (Figure 5.15B).  

 

Unwinding of the linear DNA was also monitored in a reaction containing 

SSB (Figure 5.15C). AFM images showed relatively large condensed structures 

representing ssDNA molecules, products of complete plasmid unwinding from 

the origin.  The overall conformation and the heights of such molecules were 

similar to those formed during unwinding of circular plasmids described above. 

Several unreacted linear plasmids were detected in the unwinding solutions 

(~36%). The presence of such a significant plasmid population was possibly 

caused by a lower extent of the RepD-mediated nicking on linear DNA 

substrates. This is consistent with the unwinding measurements performed with 

linear DNA and described in Chapter 3.  

 

Previous work has established that PcrA displays unwinding only in the 3′  > 

5′ direction [51, 98]. Here, linear DNA plasmids having the oriD placed at 

different positions along the DNA were generated in order to investigate further 

PcrA directional loading and unwinding. The three linear pCERoriD plasmid 

substrates used in this experiment and the final unwound products are shown in 

Figure 5.15. AFM images of the HindIII-cut plasmid are already shown in Figure 
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5.14. Linearising the plasmid with NdeI and NgoMVI places the oriD at around 

half and a close position relative to the 3′ -end of the (+)-strand, respectively.  

AFM images of the unwinding reactions of such substrates are shown in Figure 

5.16. On some plasmids, the RepD-PcrA complex was evident and was found 

at the oriD (indicated by yellow arrows, Figures 5.16A2-B2-C2). The amount of 

ssDNA produced was consistent with the distance between the oriD and the 3′-

end of the (+)-strand. The NgoMVI-digested plasmid was mainly detected in its 

double stranded form with an apparent short unwound tail (Figures 5.16A1-A3). 

The NdeI-cut plasmid was around half of its length unwound (Figures 5.16B1-

B3). The HindIII-digested plasmid was fully unwound, as described above 

(Figure 5.16C1-C3). 

These results confirmed the unidirectional (3′  > 5′) unwinding mechanism of 

PcrA helicase, and were consistent with previous observations [51].  
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Figure 5.14. AFM visualisation of RepD-PcrA-mediated unwinding of 
HindIII-cut pCERoriD. (A1) Linearised pCERoriD 4.9 kb plasmid molecules. 
(A2-3) Formation of the RepD-PcrA initiation complex on linear DNA. (B1-B3) 
PcrA-mediated partial unwinding of linear plasmids in the absence of SSB. 10 
nM plasmid, 60 nM RepD, 90 nM PcrA, were incubated for 10 min prior starting 
the reaction with 1 mM ATP. Reaction were taken and deposited on the surface 
after ~ 10 s. of unwinding reaction. (C) PcrA-mediated unwinding of linear 
plasmids in the presence of SSB. The scale bars represent 500 nm. Unwinding 
reaction contained 10 nM plasmid, 60nM RepD, 90nM PcrA, 100 nM SSB, 1 
mM ATP, and was incubated for 10 min prior sample deposition and scanning. 
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Figure 5.15. Unidirectional RepD-PcrA mediated unwinding of linear 
pCERoriD plasmids. Schematic representation of the 4.9 kb pCERoriD 
plasmid used to generate the linear DNA substrates. Digestion of the plasmid 
with different restriction enzymes placed the oriD at different positions in respect 
to the 3′ -end of the (+)-strand. This strategy allows monitoring unidirectional 
unwinding (3′  > 5′) from the oriD by PcrA helicase. 
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Figure 5.16. AFM visualisation of RepD-PcrA-mediated unwinding of linear 
pCERoriD plasmids. The 4.9 kb pCERoriD plasmid was digested with NgoMVI 
(A), NdeI (B), or HindIII (C). Field (A-C1) and zooms images (A-C-3) of the final 
unwinding products. (A-C2) Images showing the RepD-PcrA unwinding complex 
on linear DNA at the oriD located at different positions (yellow arrows).  
Formation of the unwound condensed ssDNA was detected. Samples were 
prepared as described in Figure 5.14C. The scale bars represent 500 nm. 
 

 
5.7. Replication of supercoiled pCERoriD plasmid  
 

Plasmid replication requires the activity of a high-fidelity DNA polymerase in 

order to produce a copy of the template strand. Experiments described above 

were performed in the absence of DNA polymerase in order to investigate the 

unwinding mechanisms and the helicase interactions. Presently, only few AFM 
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studies have shown the final products of DNA replication. In such studies, DNA 

polymerases were assayed via replication of the single-stranded ϕX-174 [113, 

114]. Here, the intermediates of pCERoriD plasmid replication were 

investigated.  

 

As described in the Introduction, in such a replication mechanism, PolC 

extends the (+)-strand using the (-)-strand as template for DNA synthesis. At the 

end of the process, a circular ssDNA and a new dsDNA plasmid molecule are 

produced. To investigate this process directly, the supercoiled plasmid (3.6 kb 

pCERoriD) was treated with RepD, PcrA, PolC, and SSB, and then the reaction 

was taken at two different incubation times (~10 s. and 1 min.) and imaged. 

Imaging the replication intermediates was demanding as large condensed 

complexes could be found in close proximity of the DNA, and so low PolC and 

SSB protein concentrations were used in this experiment to improve imaging.  

 

Typical AFM images of the reaction products are shown in Figures 5.17 and 

5.18. Upon a short incubation time, the majority of plasmids had a relatively 

large feature at a unique location along the DNA (Figure 5.17A). This structure 

had a maximum height of 9 nm, and presented two adjacent peaks of 6 and 2.5 

nm (Figure 5.17C). The presence of several peaks suggested that this structure 

was a multiprotein complex. This was interpreted as the replisome complex, 

with the PolC neighbouring the RepD-PcrA complex at the replication fork. In 

some occasions, additional structures were found in close proximity of the big 

complex (Figure 5.17B). The simplest interpretation of such structures was that, 

as DNA unwinding and replication proceeded; the SSB protein trapped the 

displaced (+)-strand behind the replisome. However, the details of such an 

intermediate could not be clearly imaged as the large protein complex could 

partially “hide” the DNA structure, leading to lower-quality images.   

 

A longer incubation time of the reaction was also analysed in order to 

visualise the final DNA products following synthesis (Figure 5.18). Two main 

populations of DNA were detected on the surface: circular DNA plasmids and 

ssDNA molecule were evident. These products were consistent with complete 

replication of the plasmid and release of the parental (+)-strand, in agreement 
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with the asymmetric model of synthesis. In some occasions, a large complex 

could be seen on the DNA plasmid (Figures 5.18B2-C2). This had a height 

value similar to those observed in Figure 5.17, and was thought to be the 

replisome complex. A globular structure was found in the close proximitiy of few 

circular DNA molecules, as shown in Figure 5.18C3. Its height was ~8 nm, and 

was interpreted as a released PolC protein following complete replication.  

 

The overall reaction contained a similar number of ssDNA and circular 

molecules, albeit with few more ssDNA molecules. The increased amount of 

ssDNA compared to relaxed DNA was possibly caused by the non-saturating 

concentration of PolC used in this experiment in order to control the sample 

heterogeneity conditions and prevent the sticking of giant messy 

macromolecular complexes on the surface.  
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Figure 5.17. AFM visualisation of plasmids during the initial stages of 
replication. 10 nM plasmid, 60 nM RepD, 90 nM PcrA, 200 nM PolC, 100 nM 
SSB, 1 mM ATP, 1 mM dNTPs were incubated for 10 s. prior sample deposition 
and scanning. (A1-A2) AFM images of plasmids with a condensed structure 
bound on the DNA duplex (yellow arrows). (B1-B2) Colour scale representation 
of the plasmids displayed in A showing the relative heights of the surface. (C) 
3D surface plot of A1 (C1) and the height profile of the complex (C2) of the 
cross section shown in A1. This had typically three adjacent peaks with a 
maximum height value of 9 ± 0.5 nm (width: ~90 nm). This was thougth to be 
the multiprotein replisome complex formed by RepD-PcrA and PolC. The scale 
bar represents 200 nm. 
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Figure 5.18. AFM visualisation of pCERoriD plasmid replication products. 
10 nM plasmid (pCERoriD, 3.6 kb), 60nM RepD, 90nM PcrA, 200nM PolC, 100 
nM SSB, 1mM ATP, 1mM dNTPs were incubated for 1 minute prior sample 
deposition and scanning. (A1) Typical field of view of the DNA products 
following replication. (B1-B2)  Zoom images of two synthesized plasmids. The 
yellow arrow indicates the big complex on the DNA duplex. (C1-C3) Colour 
scale representation of the plasmids. The heights reached a value of 9.5 ± 0.5 
nm for the complex indicated by the yellow arrow in C2 and 8 ± 0.3 nm for that 
in C3. The scale bar represents 500 nm. Supplementary data and heights 
analysis are shown in the Appendix of this thesis. 
 

 

5.8. Identification of Cy3B-SSB by TIRF-AFM 
 

As mentioned in the Introduction, single molecule imaging by fluorescence 

has been achieved with a number of systems and there have been several 

attempts to combine the AFM with fluorescence imaging [97, 119]. In this 
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approach, individual fluorescently labelled molecules can be visualised by 

fluorescence and their morphology can be imaged with AFM.  The combination 

of these two techniques allows the identification and localization of 

biomolecules. Myosin filaments have been analysed by cross-correlation of 

TIRF and AFM previously [120].  

Here, a spatially and temporally synchronized TIRF and AFM approach was 

validated and used to correlate topography and fluorescence images produced 

by Cy3B-SSB bound to unwound DNA.  

 

In a first experiment, fluorescently labeled nanoparticles were analysed with 

both microscopes in order to test the simultaneous acquisition of topography 

and fluorescence information and validate the effective functionality of the 

assembled setup. The beads were absorbed on a borosilicate glass surface 

treated with bovine serum albumin (BSA) prior imaging. Their use offered strong 

and stable fluorescence, and a convenient size for AFM scanning (less than 30 

nm in diameter). Fluorescence and AFM images of the fluorescent particles 

showed spots at matching positions (Figure 5.19). Differences in the spot 

locations could be detected only rarely (indicated by arrows, Figure 5.19), as 

result of poor absorption of the beads on the surface and thus displacement by 

the tip movement. Nevertheless, the agreement between the two methods was 

clear and the experiment confirmed that this method could be extended to the 

detection of fluorescent biomolecules. 

 

Following the control experiment, full unwinding of a pCERoriD plasmid was 

imaged using the fluorescently labeled Cy3B-SSB. Such a protein has been 

recently employed to monitor real-time unwinding of plasmids by RepD-PcrA 

complex using a TIRFM [49]. SSB binds ssDNA as tetramer and each protein 

has 4 Cy3B fluorophores attached allowing the generation of bright 

fluorescence images. A supercoiled pCERoriD plasmid (3.6 kb) was first 

incubated with RepD and PcrA and an excess of Cy3B-SSB, allowing complete 

unwinding. The DNA was then allowed to adhere to a clean amino silane 

treated glass surface, and then dried prior imaging.  

Typical AFM and TIRF images of a surface area are shown in Figure 5.20. 

Upon PcrA-mediated unwinding, bright spots could be observed by TIRF 



Chapter 5 Observing DNA Replication Using Atomic Force Microscopy 
 

204 
 

(Figure 5.20C). When the same region was imaged with AFM, condensed 

structures were detected on the surface (Figures 5.20A, B). These represented 

Cy3B-SSB bound to the ssDNA molecules and were similar to the images 

observed with wt SSB. The shape of such structures could overlay with the 

bright spots observed by TIRF. Thus, these were confirmed to be the 

nucleoprotein complexes. AFM data analysis revealed a distribution of heights 

for these features (Figure 5.20B), in agreement with fluorescence intensities of 

the different spot observed by TIRF (Figure 5.20C). This was likely to be caused 

by their ability to form clusters along the DNA and so a relatively high level of 

packaging of the Cy3B-SSB molecules on ssDNA, in agreement with previous 

observations of highly clustered SSB binding to long ssDNA as visualised by 

electron microscopy and by AFM [121, 122].   

 

 

 
 
Figure 5.19. Images of fluorescent nanoparticles acquired with 
synchronized TIRF-AFM. (A) AFM topography of beads deposited on a glass 
surface. (B) Fluorescence image generated with TIRFM. Scale bars represent 
10 μm. The majority of spots (~98%) matched between the AFM and TIRF 
images, with only few differences (indicated by the yellow arrows). The latter 
may well be caused by the tip displacement or sample degradation effects while 
scanning. 
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Figure 5.20. Zoom images of Cy3B-SSB-ssDNA complexes acquired with 
synchronized TIRF-AFM. Reactions were prepared as described in Figure 
5.13. (A-B) AFM topographical images of unwound plasmids coated with SSB. 
Heights of the SSB-DNA varied along the ssDNA molecule. (C) Fluorescence 
images generated with TIRFM. Scale bars represent 2 μm. 
 
5.9. Discussion 
 
5.9.1. AFM imaging of plasmid replication 

As stated above, protein-DNA interactions can be visualised with the AFM, 

which makes it a key tool in elucidating the role of various proteins in numerous 

biological processes. Here, AFM was mainly employed to visualise intermediate 

stages of plasmid replication performed by the initiator protein RepD, PcrA 

helicase, PolC and SSB.  
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Firstly, the pCERoriD plasmid substrate in its supercoiled state was imaged 

revealing the characteristic negative twisting of the DNA (Figure 5.1). This was 

consistent with the undertwisted plasmid conformation found in vivo [123]. In 

bacteria, the negative supercoiling is directly introduced into a relaxed DNA by 

the ATP-hydrolysis-driven action of the DNA gyrase. However, the level of 

supercoiling of a plasmid preparation in vitro may differ from that in vivo. As the 

DNA is a highly negatively charged polymer, contacts between DNA regions are 

inhibited by the electrostatic repulsion of the helices. Hence, the cations can 

have an effect on such interactions. This was directly observed here by imaging 

the DNA plasmid in a range of environmental conditions. In particular, the DNA 

conformation was affected by the ionic conditions (Figure 5.3). Condensed 

superhelical DNA molecules with close helix-helix contacts were found at high 

salt conditions (Figure 5.3C). These observations were consistent with previous 

AFM studies on DNA topology [112].  

The supercoiled plasmid conformations in close to physiological salt 

concentrations (100 mM KCl) also displayed local bending resulting in a Y-

shaped plasmid with variable arm lengths (Figures 5.3C and 5.7A). DNA 

branching is an important structural feature of supercoiled DNA involved 

interactions between distantly separated DNA regions. A previous study 

suggested that the interaction between such sites could be regulated via DNA 

branching, which could depend on the cruciform structure formation as well 

[104].  

The DNA supercoiling itself plays a key role in a number of biological 

processes. Firstly, it reduces the number of base pairs per DNA turn allowing 

DNA packaging. Secondly, it can regulate DNA-protein interactions by bringing 

two distant sites into proximity. The latter function represents a first level of 

control for downstream pathways like DNA replication.  

To initiate replication, the supercoiling must be resolved to make the DNA 

accessible to the replicative enzymes. This is achieved through the activity of 

the initiator protein. Incubation of the native pCERoriD plasmid with RepD 

induces a drastic shift of DNA conformation from a supercoiled to a relaxed 

state (Figures 5.4 and 5.5). The local binding of RepD to the origin of replication 

could also be observed, and the complex had a height of ~ 2nm (Figure 5.6). 

Relaxed molecules without RepD and/or with local coiling were also found, and 
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these represented the circular closed molecules. These results were in 

agreement with our understanding of RepD role in vivo, and the nicking/closing 

activities of RepD observed in vitro (see Chapter 3) [47]. A topology analysis of 

the relaxation reaction was performed from the AFM images and simultaneously 

on an agarose gel assay (Figure 5.5). Both assays showed a similar degree of 

DNA relaxation (~90% of circular plasmids), albeit a higher number of circular 

closed plasmids were found in the AFM approach. This was possibly caused by 

a different stability of the RepD-DNA complex on the surface due to buffer 

switching and washing steps during the sample preparation.  

From the data reported in this investigation, it is clear that supercoiling can 

promote RepD protein interaction (Chapter 3), this phenomenon would also 

explain the optimal nicking activity of RepD in moderate-high salt condition as 

result of increased coiling in the DNA substrate and formation of an ideal DNA 

conformation (Figure 5.3). 

Plasmid relaxation allowed the measurements of DNA contour length using 

different DNA plasmid lengths (Figure 5.7). The base spacing values (0.3 nm 

bp-1) were similar to that previously reported in AFM studies (0.28–0.34 nm bp-

1), in agreement with the expected value of the B-form DNA [113]. However, 

heights measured smaller than 2 nm, which is the helix diameter of B-DNA. 

Although, DNA heights reported in previous AFM studies are almost always <2 

nm, and vary from 0.5 to 1.9 nm in air and propanol, which are similar to the 

value measured here (0.8 nm ± 0.2, Figure 5.6) [113] . 

Upon plasmid nicking and relaxation, RepD produces a short ssDNA stretch, 

which is the recruitment site for PcrA helicase. Loading of PcrA by RepD onto 

the (-)-strand of oriD has been previously demonstrated [47]. Here, PcrA and 

RepD were detected as a single complex binding at a unique position on the 

relaxed DNA molecules (Figure 5.9). From the 3D analysis, the complex 

showed a maximum height at 3.5 nm and a shoulder at 2 nm (Figure 5.9). Such 

a complex could also be found on both linear and relaxed DNA plasmids during 

initiation and unwinding, indicating that the proteins remain associated and co-

translocate along the DNA during unwinding (Figures 5.10, 5.11, and 5.16). 

Previous studies have suggested that RepD and PcrA might physically interact 

forming a complex [48, 47]. The AFM results reported here provide the first low-

resolution structural data of the RepD-PcrA complex.   
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Recruitment of the helicase by RepD at the oriD is followed by directional 

DNA unwinding (Figure 5.16). In the absence of the SSB protein, unwinding by 

PcrA-RepD resulted in formation of loops due to reannealing of the unwound 

strands (Figures 5.11 and 5.14B,). In some occasions, the unwinding complex 

could be found at a central condensed knot retaining the loops, representing 

incomplete unwinding (Figure 5.11C2). Alternatively the complex was on a 

duplex stretch of a loop or released (Figure 5.11C2, C3). RepD-PcrA complex 

position could reflect different unwinding stages.  

The observation of ssDNA structures and loop formation upon helicase-

mediated unwinding indicated that the SSB protein is not required for DNA 

strand separation per se (Figures 5.10 and 5.11). This is consistent with the 

unwinding measurements of labeled DNA junctions performed in the absence of 

SSB (Chapter 3). However, in vivo SSB is expected to bind the displaced (+)-

strand during asymmetric replication. Presently, several studies showed that 

SSB can physically interact with the replicative proteins, and such an interaction 

can have an effect in modulating the helicase activity. One example is the 

stimulation of PriA-catalysed unwinding by contact with the E.coli SSB [124]. 

Currently, potential functional and/or physical interactions between PcrA and 

SSB still need to be investigated.   

The inclusion of SSB in the unwinding reaction revealed formation of 

nucleoprotein complexes, consistent with binding of the emerging ssDNA 

produced by PcrA (Figure 5.12). At moderate salt conditions (100 mM KCl) 

collapsed, wrapped SSB–DNA complexes were detected, reflecting formation of 

the SSB-dT65 binding mode (Figure 5.13). Such behaviour was previously 

visualised by electron microscopy [121, 122]. The excess of SSB led to the 

formation of highly condensed structures possibly caused by ssDNA coating 

and interactions between neighboring tetramers. However, alternative 

rearrangements of the SSB binding mode could potentially occur during sample 

preparation on the surface. 

 

A complete replication system could be achieved by the addition of PolC. 

This caused the formation of a big condensed globular feature on the DNA 

plasmid (~ 9 nm in height, Figure 5.17). Such an assembly contained three 

spherical structures of different heights (2, 6 and 9 nm, Figure 5.17C), which 
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were interpreted as the RepD, PcrA and PolC proteins at the replication fork. 

Measurements of PcrA unwinding kinetics reported in Chapter 4, showed that 

PolC increases PcrA unwinding speed. Thus, such a functional coupling might 

be achieved through a direct interaction. In the AFM images reported here, the 

proteins were found in close proximity during DNA replication and the low-

resolution structural data indicated the formation of a multiprotein assembly.   

Upon complete unwinding and replication, circular DNA plasmids and ssDNA 

molecules were observed (Figure 5.18). Such a result is consistent with plasmid 

product release following coordinated asymmetric DNA synthesis.   

The structural analysis of the protein complexes formed at various stages of 

the plasmid replication showed formation of bigger structures when all the 

proteins where bound to the DNA. The heights and volumes increased 

progressively. However, while the height analysis is generally more accurate, 

the estimates of the complex width can be affected by the tip-sample 

convolution effect.   

 
5.9.2. Identification of labelled proteins by combined TIRF-AFM  
 

A cross-correlated TIRF-AFM provided complementary information for 

sample characterization. The combined TIRF-AFM has been used only recently 

to identify labeled proteins and cells. Here, the SSB-ssDNA complexes were 

specifically identified through TIRF-AFM. The unwinding reaction contained 

Cy3B-SSB protein, and the final products of unwinding were imaged with both 

techniques (Figure 5.20). The results confirmed the structural and morphology 

data initially observed with the wt SSB-ssDNA complexes (Figure 5.13).  

Although performing the experiment with Cy3B-SSB was relatively 

straitghforward, initial efforts to identify the labeled PcrA helicase along the 

plasmids were unsuccessful. There were two main limits: the lower resolution of 

TIRF compared to the AFM and a relatively rapid photobleaching of the single 

fluophores during scanning. Further attempts are required to accomplish this 

task and perform a successful experiment. Nevertheless, this method could be 

employed in future with other fluorescently labeled macromolecular structures. 
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5.10. Summary 
 

AFM is a powerful imaging tool for the analysis of biological structures. The 

AFM studies reported here represent the first complete investigation of the 

intermediates formed during asymmetric replication of a staphylococcal 

plasmid. Many aspects of such a process were uncovered; including the 

biomolecular interactions like the formation of the initiation complex, as well as 

the stages of RepD-PcrA-mediated unwinding and replisome-mediated 

replication.  

In addition, a synchronized TIRF-AFM system was successfully tested and 

validated by imaging fluorescently labelled SSB proteins.  
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6.1. Introduction 
 

This thesis has been based on the investigation of several aspects of the 

asymmetric rolling circle replication of the pC221 plasmid. The work has 

centered on the function of the interactions during replication between a 

replication plasmid initiator protein, S. aureus RepD, with PcrA from B. 

stearothermophilus and the S. aureus PolC. A model plasmid, the pCERoriD, 

has been used in these in vitro studies. There are a number of conclusions that 

can be drawn from the data presented in this thesis and this is further discussed 

below. 

 

6.2. RepD functions in plasmid replication 
 

As previously described, RepD is essential for the initiation of asymmetric, 

rolling circle plasmid replication of plasmids containing the DSO, oriD, prior to 

PcrA helicase binding.  The role of RepD and similar proteins in replication can 

be considered in several distinct but related parts. First, it ensures that copying 

the (−)-strand starts and ends at the DSO. This is achieved by specific 

interaction with the inverted complementary repeat sequence, ICRIII, carried by 

the plasmid within the DSO. Other pairs of Rep initiators and ICRIII provide their 

own specificity for this family of plasmids. The kinetics of RepD binding to a 

DNA containing the ICRII and ICRIII sequences showed relatively rapid binding 

with high affinity to such oriD elements (section 3.4). The RepD was found at a 

unique location on the DNA plasmids through AFM imaging (section 5.3). 

The second part of the function of RepD is to nick one strand within ICRII 

[25], which causes a change in the DNA topology with relief of supercoiling. 

RepD-mediated nicking and plasmid relaxation was visualised through AFM, 

and the kinetics of nicking were measured here (sections 5.3, 3.2). Plasmid 

nicking occurred with a rate constant of > 25 s–1 at 30 °C (section 3.2). Once the 

covalent attachment is rapidly formed, the transesterification is reversible 

leading to DNA resealing and the formation of a relaxed closed DNA molecule 

(section 3.2). Such DNA products were visualised by AFM. Upon a short 

incubation time of RepD with the supercoiled plasmid (~ 30 s), most plasmids (~ 
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93%) were imaged in their relaxed circular forms. These AFM data were in 

agreement with the plasmid nicking kinetics and the observation of complete 

DNA relaxation after only few s of reaction (section 3.2). The reaction catalysed 

by RepD requires a supercoiled plasmid, which is the main substrate in vivo, 

and divalent ions as cofactors for catalysis, like many proteins that break and 

rejoin nucleic acids (sections 3.2, 3.2.2). However, the cofactors are not 

essential for non-covalent DNA binding (section 3.4.3). Mg2+ appears to be the 

physiological metal ion used. However, other metal ions, such as Ca2+ and 

Mn2+, also supported nicking (section 3.2.2). The nicked DNA-protein complex 

exhibits a relatively long half-life, which is likely to be of biological significance in 

terms of control of replication. RepD does not efficiently nick relaxed circular 

plasmids in vitro (personal communication Dr. Gerard Lynch, unpublished data), 

so it is likely that a supercoiled plasmid has only a single chance to enter in 

replication. The latter also needs to be coordinated with the activity of the host 

replicative proteins for a successful replication event.  

It is clear from the results reported here that factors such as the DNA 

structure or the use of a specific cofactor can affect the nicking kinetics and the 

formation of a functional initiation complex. Firstly, the extent of the nicking 

reaction is highly dependent on the DNA topology and the relief of supercoiling 

results in a high extent of relaxed DNA formation. Both the free energy of 

supercoiling in the intact plasmid and RepD binding could drive the formation of 

the cruciform extrusion of palindromic sequences contained within oriD. The 

formation of the cruciform has been shown to be dependent on superhelicity: 

the torsional stress of supercoiling leads to a decrease in the activation energy 

of the reaction followed by conformational changes in DNA structure that favor 

the formation of cruciform structures. In the absence of proteins, this occurs 

only very slowly, even when thermodynamically favored. However, RepD might 

enhance and stabilize the extrusion on the supercoiled plasmid through binding 

on supercoiled but not linear DNA. This then exposes the nick site as a single-

stranded loop as the target site for RepD nicking activity. DNA supercoiling is 

also dependent on the environmental conditions such as ionic strength (section 

5.2.1), and previous studies showed that RepD has maximal nicking activity at 

high salt, condition at which the DNA presents a high level of superhelicity [25]. 

These observations are in agreement with the indication that DNA supercoiling 
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favours RepD nicking function. 

 

Another important effect of the nicking activity, in addition to the removal of 

the negative supercoiling, is the opening of a ssDNA stretch on the (−)-strand of 

the plasmid, which allows the plasmid to be accessible to the replicative 

enzymes. RepD recruits PcrA at the origin and the formation of the RepD-PcrA 

complex on the DNA plasmids was visualised by AFM (section 5.5). It was 

previously shown that RepD increases PcrA binding affinity to the DNA [48]. At 

this stage, RepD promotes processive unwinding by PcrA, allowing unwinding 

of plasmids > 6 kb in length (sections 3.3, 5.5). Unwinding by PcrA is 

unidirectional (3′ > 5′), as also confirmed from AFM imaging of unwound linear 

DNA plasmids, having the oriD at different locations along the DNA (section 5.6) 

[47]. The covalent attachment of RepD to the 5′-end of the nicked strand is 

carried around the plasmid with the protein, and so is already in position to take 

part in the strand exchanges to form the closed, circular parental (+)-strand.   

 

Finally, RepD modulates more chemistry to terminate replication by 

processes including strand exchange. However, the detailed molecular events 

of this process still need to be elucidated. After termination, RepD is released 

as inactive heterodimer with a short oligonucleotide attached (11 nucleotides) to 

the active site of one subunit, also known as RepD* [31]. This inactivation, upon 

a complete replication cycle, appears to be common among plasmids of the 

pT181 family. These plasmids maintain a low, rate-limiting level of the active 

initiator protein, and any increase in initiator concentration is followed by an 

increase in plasmid replication [125]. Therefore, the RepD inactivation is likely 

to represent another level of regulation in order to stably maintain the plasmid 

copy number. Furthermore, previous studies with the RepD homologue, 

RepC/RepC*, showed that the inactive heterodimer displays DNA binding at the 

ori [32]. Thus, RepC/RepC* may act as a competitive inhibitor by binding to the 

free origins and inhibiting initiation by the active RepC in vivo. 
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6.3. Regulation of PcrA helicase activity  
 

PcrA plays a prominent role in plasmid rolling circle replication in Gram-

positive bacteria. Part of this investigation was focused on PcrA helicase and 

the effect of regulatory proteins on its activity during unwinding, such as RepD 

and PolC protein. Accordingly to previous studies, PcrA is ‘inactive’ for 

processive duplex separation in the absence of RepD. As demonstrated here, 

an interesting feature is that RepD nicking activity is not related to the ability of 

PcrA to perform unwinding, although the nick is needed to initiate a plasmid and 

create a DNA site for the helicase recruitment and loading onto origin (section 

3.10). In RepD presence, PcrA is able to processively unwind plasmid DNA 

substrates at a rate of ~ 30 bp s-1 (30 ˚C, see the Appendix of this thesis). The 

coordinated activity of a RepD mutant, N189K, with PcrA leads to complete 

unwinding of plasmids, albeit at a slightly reduced speed (19 bp s-1, 30 °C, 

section 3.3.1). These observations suggest that the RepD-mediated activation 

of PcrA helicase might also regulate its unwinding kinetics. The evidence of 

complex formation imaged through AFM supports the idea that PcrA and RepD 

physically interact during unwinding (section 5.5). It is more likely that the 

interaction with RepD results in a conformational change in PcrA that stimulates 

the helicase. A potential location of RepD interaction is proposed to be the PcrA 

2B domain. It has been previously shown that the 2B domain of the E.coli Rep 

helicase, a PcrA structural homologue, is an important regulatory domain for its 

unwinding activity [126]. Deletion of the domain increased the helicase 

unwinding activity in multiple turnover assays. As described in the Introduction, 

a large conformational change of domain 2B occurs when PcrA binds the DNA 

duplex. The location of RepD on the duplex would be in the correct orientation 

to have an interaction with the 2B domain of PcrA. However, this still needs to 

be examined in detail and is continuing to be investigated. 

 

As shown in this investigation and in previous studies, the PcrA unwinding 

rate was significantly slower than the translocation rate along ssDNA in the 

presence of RepD (sections 4.6, 3.3). Furthermore, PolC increased the speed 

of RepD-PcrA-mediated unwinding (up to 71 bp s-1; section 4.7.2). It is likely 

that when the polymerase and the helicase move through dsDNA, PcrA 
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unwinding occurs at a rate closer to the ssDNA translocation. This suggested 

that the replicative protein might interact during coordinated DNA replication 

and unwinding. Evidences of formation of a multi-assembly complex were 

obtained with AFM (section 5.7). Such images showed that the replicative 

proteins work closely during plasmid replication. Whether and how the helicase 

and polymerase in this situation physically interact is currently not known, as 

well as the periodic changes in protein-DNA and protein-protein interactions 

during movement of the complex. This would be necessary to unreveal the 

timing of events during normal replication and to predict the consequences 

when replication stalls.   

 

6.4. Comparison with other replicative systems 
 

Because of the conserved functions of the replicative proteins, it is important 

to make comparison with other replicative systems. Similar observations of 

protein-protein interactions and coordinated replication have been made in 

other replication complexes.  

There are examples in the literature of helicase activity regulation by 

accessory proteins. A PcrA homologue, UvrD helicase has been shown to have 

an increased activity in the presence of the accessory protein MutL, an 

important component involved in methyl directed mismatch DNA repair [127]. 
UvrD becomes a more processive helicase in the presence of MutL unwinding 

more base pairs of DNA per ATP hydrolysis event than in the absence of MutL. 

Such a functional coupling is similar to that observed with RepD and PcrA.  

In phage T7, the primase and helicase enzymes are fused into the T7 gp4 

protein and remain physically associated within the replisome. Such a direct 

interaction has been shown to enhance the helicase processivity by stabilizing 

DNA binding. In the pT181 system, RepD resembles the activity of a “primase” 

as it generates through nicking the DNA substrate for the polymerase. In 

addition, it is a key partner of PcrA, leading to functional and physical 

interactions, similarly to the T7 system.  

 

There are several proteins within the replisome that can interact with the 

helicase. As reported in the Introduction, helicases can also be regulated by 
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DNA polymerases. In the presence of the T7 DNA polymerase, the T7 helicase 

moves through the duplex with a speed ~ 10 times faster than the helicase 

alone [67]. A similar effect was seen in the T4 system, where the unwinding rate 

of the T4 helicase, gp41 (30 bp s-1), is accelerated ~3 times in the coupled 

helicase-polymerase system [35]. Similarly, a functional coupling between PcrA 

and PolC was observed here (section 4.7); the PcrA helicase unwinding rate 

was increased 2-fold by PolC activation. In turn, PcrA helicase increased PolC 

synthesis rate (sections 4.7, 4.4). 

Another example is given by the E. coli replisome. However, compared to the 

T7 and the Staphylococcus plasmid, that of E. coli is more complex as it 

requires a larger number of replicative proteins (see the Introduction of this 

thesis). The primary replicative hexameric helicase, DnaB, is able to interact 

with the primase, the DNA polymerase III and the SSB protein during 

coordinated synthesis. In particular, the holoenzyme DNA pol III physically 

associates with DnaB through the τ subunit, and increases the helicase 

unwinding rate so that the replisome moves at the speed dictated by the 

polymerase [69].  

 

The SSB protein has an important role in recruiting genome maintenance 

proteins to the ssDNA through a physical interaction. Although previous and 

recent studies have elucidated interesting features about the interplay between 

RepD and PcrA, the potential interactions of SSB with the replicative proteins 

still need to be investigated.  

 

Despite the differences in replication mechanisms and the number and type 

of proteins, similarity in protein functions and coordination can be found among 

the DNA replication machineries suggesting some evolutionary connection 

between DNA replication systems. Recruitment and stimulation of a DNA 

helicase by other proteins allows for control and regulation of replication.  The 

presence of an active DNA helicase in the cell might cause undesirable DNA 

unwinding. Thus, the activator factor, such as RepD, allows for the plasmid 

replication to be finely regulated.  
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6.5. Potential targets for antibiotic development 
 

As previously mentioned, antibiotic resistance usually evolves via transfer of 

resistance genes located on mobile DNA elements like the self-replicating 

plasmid. Understanding the mechanisms of DNA replication it is of importance 

in the design and development of new antibiotic compounds to impede the 

spread of such genetic elements. The recent increase in bacterial strains that 

are resistant to conventional antibacterial therapies has prompted the 

development of alternative strategies to treat bacterial diseases.  

Currently, a number of antibiotics that interfere with the DNA gyrase and 

topoisomerase IV activities have been developed. The bacterial DNA gyrase is 

an attractive target for inhibitors that either regulate or disrupt the DNA binding 

and cleavage. Novel inhibitors have also been reported for the PolC of gram-

positive bacteria [128]. Both the RepD and PcrA proteins, as well as their binary 

interaction, are essential for the bacterial survival. Thus, these proteins should 

be legitimate targets for development of new molecules. Specific nucleotide 

analogues that target the helicase activity have been reported [129].  

Our increasing understanding of the molecular interactions and the protein-

protein interfaces during replication makes protein complexes feasible targets 

for the development of novel small molecule inhibitors in the future.  

 

6.6. Future perspectives 
 

Since the discovery of the rolling circle replication plasmids, progress have 

been made in our understanding of the events and general mechanisms of 

plasmid replication [28]. However, there are still gaps and opened questions 

concerning the protein-DNA and protein-protein interactions.  

The formation of the initiation complex and the kinetics of the interaction of 

RepD with DNA as well as information about RepD-PcrA complex were 

described in this thesis. However, an interesting aspect that needs to be defined 

is how RepD and PcrA form the unwinding complex on the DNA and which 

types of protein-protein interactions lead to their functional coupling [52, 99]. We 

are currently lacking of high-resolution structural data of RepD in complex with 
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DNA and/or with PcrA. A major step in understanding this function is the 

determination of the three-dimensional structures by crystallographic methods. 

This determination would allow the identification of protein-protein interfaces 

and greatly enhance our understanding of the ternary complex with the DNA.  

Further studies are also necessary to elucidate the function of RepD protein 

during termination. The role of RepD and the sequence of the molecular events, 

such as the movement and the dissociation of the helicase and polymerase 

during termination and strand exchange are poorly understood and should be 

the subject of future investigations.  

Another interesting aspect that needs to be investigated is the function of 

SSB during plasmid unwinding. There might be possible interactions between 

SSB and PcrA while the helicase moves along the DNA. SSB is not required for 

duplex separation and PcrA translocation, although it might stimulate the 

helicase during processive unwinding [48, 52]. Any potential functional and 

physical interaction between PcrA and SSB should be proved and addressed in 

the future. 

Biochemical and structural studies of PcrA helicase in the past years 

provided deeper insights into the mechanistic details of its activity [50, 52, 53]. 

However, such studies need to be extended in order to understand how the 

helicase interacts with the replicative proteins during replication. RepD and 

PolC regulate PcrA helicase activity during coordinated replication, and the 

details of such functional interaction need to be further elucidated.  

Evidences of interactions between the replicative proteins and formation of 

the replisome complex during replication were provided here through AFM 

experiments. Although, the dynamic nature of such interactions needs to be 

defined in order to elucidate the periodic changes that might occur as the 

proteins move along the DNA.  

In addition, single molecule studies and the visualisation of labelled proteins on 

DNA with the combined TIRF-AFM approach could provide further 

characterisation of the DNA replication system and elucidate crucial 

macromolecular interactions occurring during replication.
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8.1. Anisotropy titrations 

Anisotropy (r) was calculated using the equation: 

 

Where I║, and I┴ are the fluorescence intensity of the emitted light in the parallel, 

and perpendicular planes respectively, both with respect to the excitation plane.  

Raw anisotropy measurements were averaged for each RepD concentration 

used and fitted to the following equations: 

 

Where AL and APL represent the anisotropy of the ligand (DNA) and 

ligand.protein complexes (DNA.protein) respectively. [L] is the total 

concentration of ligand, and [PL] is the total concentration of protein.ligand 

complex, calculated using the equation: 

 

Where [P] represents the total protein concentration, and Kd represents the 

equilibrium dissociation constant.  To account for the change in total 

fluorescence intensity between free and bound DNA, the following equation was 

used to calculate constant Q: 

 

Where IL and IPL represent the fluorescence intensity of the free ligand (DNA) 

and bound ligand respectively.   
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8.2. Michaelis Menten kinetics 

The Km and Vmax values from steady state measurements performed with PolC 

on primed DNA junctions were calculated with the equation: 

 

 
 

Where v is the observed rate (i.e. Pi/PolC), Vmax is the maximum rate, [S] is the 

variable substrate concentration (i.e. dNTPs), and Km is the determined 

Michaelis-Menten constant (expressed as a concentration). 

 

8.3. Single exponential analysis 
The rate constant of a particular reaction wasdetermined by fitting the raw data 

(i.e. fluorescence from a stopped flow trace) to the following single exponential 

equation: 

 

 
 

Where y is the observed signal (i.e. raw fluorescence units), A is the amplitude 

of the exponential, k is the rate constant, T is time (i.e. seconds), and C is the 

final value of y.   

Where stopped flow fluorescence anisotropy data is used, raw fluorescence 

data from two collected channels representing the parallel and perpendicular 

planes to the excitation plane is converted into anisotropy units using the 

equation above.  The anisotropy can then be fitted to the following equation 

representing a single exponential: 

 

 
 



Chapter 8  Appendix 
 

 

230 
 

Where k represents the rate constant, T represents the time (i.e. seconds) AS 

represents the anisotropy at the start of the exponential, and AE represents the 

anisotropy at the end of the exponential.  D represents the fluorescence 

intensity change between AS and AE and is calculated using the following 

equation: 

 

 
Where IS represents the fluorescence intensity at the start of the exponential, 

and IE represents the fluorescence intensity at the end of the exponential. 

 
8.4. Online applications 
Swiss Institute of Bioinformatics: ExPASy proteomics server: 

http://ca.expasy.org/ 

 

For sequence alignment: 

http://pbil.univ-lyon1.fr/cgi-bin/acnuc-link-
ac2aln?db=Hogenprot&query=Q9WY48 
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8.5. Supplementary data 
Supplementary data for Figure 3.4: 
Plasmid nicking by wt RepD. The initial burst (>25 s-1) had amplitudes of ~30% 
(green data) and 35% (white data); the second slow phase (~ 2 s-1) had 
amplitues of ~45% (green data) and  ~40% (white data). 
 

 
 
 
Supplementary data for Figure 3.8: 
Plasmid unwinding assay by wt RepD-PcrA complex. 
(A-D) Examples of raw data and linear fits. For each plasmid length, indicated in 
bp, linear fits were made to determine the duration of the observed unwinding 
phase (shown in the insets). Unwinding rates are collected in Tables for wt and 
N189K RepD. 
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Supplementary data for Figure 3.11: 
Raw fluorescence intensity data calculated according to:  
Fluorescence intensity =  I║+ 2I┴, where I║is the fluorescence in the parallel 
plane, and I┴ is the fluorescence in the perpendicular plane. 
Example of fluorescence intensity changes during individual titrations: 
 

 
 
 
 
 
Supplementary data for Figure 3.12:  
Each individual trace was fit to a single exponential using Kinetasyst (Hi-tech 
scientific) software. 
Example fits for single traces for each RepD concentration.  Rate constants 
(kobs) and standard errors (S. e.) from each fit are shown with each fit.  Y-axis 
scale is shown in % which represents raw fluorescence units from stopped flow 
instrument. Data from two separate experiments are collected in Tables for wt 
and N189K RepD. 
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Supplementary data for Figure 3.13: 
Example of fits for fluorescence traces for N189K RepD with and without Mg2+.  
Each individual trace was fit to a single exponential using Kinetasyst (Hi-tech 
scientific) software. 
Dissociation rate constants and standard errors from each fit are shown. 
Results from two separate experiments are in Tables.   
Y-axis scale is shown in % which represents raw fluorescence units from 
stopped flow instrument 
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Supplementary data for Figure 3.15: 
Examples of Fluorescence intensity change and anisotropy (800 nM RepD).  
Fluorescence intensity =  I║+ 2I┴, where I║is the fluorescence in the parallel 
plane, and I┴ is the fluorescence in the perpendicular plane, calculated by 
Kinetasyst software.  Y-axis is fluorescence intensity. 
 

 
Supplementary data for Figure 3.16: 
Individual traces were fit to single exponentials using Kinetasyst (Hi-tech 
scientific) software.  Y-axis is anisotropy, calculated by Kinetasyst software. 
Rate constants and standard errors from each fit are shown. 
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Supplementary data for Figure 3.19: 
For each DNA junction, linear fits were made to determine the duration of the 
observed lag phase as shown.  Lag phase duration (inidicated) was calculated 
from the intercept of the two linear fits. Ata frm two separate experiments are 
collected in Tables below. 
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Supplementary data for Figure 4.2: 
Individual traces were fit to single exponentials using Kinetasyst (Hi-tech 
scientific) software.  Y-axis is intensity, calculated by Kinetasyst software. Rate 
constants and standard errors from each fit are shown. Results from two 
separate experiments are in listed in the Table. 
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Supplementary data for Figure 4.6: 
Individual traces were fit to single exponentials using Kinetasyst (Hi-tech 
scientific) software.  Y-axis is intensity, calculated by Kinetasyst software. Rate 
constants and standard errors from each fit are shown. The rates and the S. e. 
are shown. Results from two separate experiments are listed in the Table. 
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Supplementary data for Figures 4.4 and 4.8: 
Dissociation kinetics of PolC from DNA (top panel) and from mant-dATP 
(bottom panel). Individual traces were fit to single exponentials using Kinetasyst 
(Hi-tech scientific) software.  Y-axis is intensity, calculated by Kinetasyst 
software. Rate constants and standard errors from each fit are shown. The 
rates and the S. e. are shown. Results from two separate experiments are in 
listed in the Table. 
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Supplementary data for Figure 4.10:  

Steady-state measuremnts with PolC. (A-B) Examples of raw data and linear 
fits of two concentrations of dATP. Sequential addition of MDCC-PBP, DNA, 
Pyrophosphatase, dNTPs and PolC. The increase in intensity corresponds to 
the PolC addition in the complete solution. C and D show an example 
phosphate calibration. Known concentrations of Pi are added to the reaction 
mixture. The slope from the Pi calibration gives the fluorescence change per 
micromolar Pi. This is then used to convert the rate of fluorescence change in 
to rate of Pi release. 
 
 

 
 

 

Pyrophospatase activity test 

The activity of the PPase was assessed in presence of inorganic 
pyrophosphate. In this assay, a known concentration of PPi is mixed with the 
PPase. The Pi production rate was too fast to be measured at a concentration 
of pyrophosphatase of 0.001U/µL (concentration used for the PolC activity 
assay, Figure 4.10). A lower concentration of PPase (~ 100-fold) was used in 
order to allow measurements of the PPi hydrolysis kinetics. Increasing 
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concentrations of PPi were added to a solution containing 0.00001 U/µL 
pyrophosphatase and 20 µM MDCC-PBP. Solution conditions were as in Figure 
4.10.  The Michaelis-Menten equation was used to determine the kcat and Km 
values for the reaction. The best fit of the data gave a Km value of 0.78 μM for 
PPi and a kcat of 80 nM s-1. 
 

 
 

 

Supplementary data for Figure 4.18:  

Examples of raw data and linear fits of two different length of plasmids. Data 
analysis was performed as described above (Supplementary data for Figure 
3.8). 
 

 
Break point: 48 s  Break point: 57 s 
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Supplementary data for Figure 5.1:  

Typical AFM image of a freshly cleaved mica surface used for sample 
deposition and imaging. The surface appeared regular and plain. 
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Supplementary data for Figure 5.3  

AFM images of supercoiled plasmids upon incubation at different ionic strength.  
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Supplementary data for Figure 5.6  

Gel shift assay showing extent of binding of RepD to the OriD, at various 
concentrations of RepD. RepD, at the concentrations shown (in μM), was 
incubated with the DNA (10 μl of 1 μM DNA) before loading on a native 
polyacrylamide gel (see Methods for details). Upon incubation with RepD, a 
second shifted band was detected as result of interaction with the oriD. At 
higher RepD concentrations (> 1 μM), a supershift was observed caused by 
multiple RepD proteins bound on the DNA.  

 
 

Supplementary data for Figure 5.9. 

PcrA helicase bound to a short ssDNA oligonucleotide (oligo dT10). (A) The 
helicase was incubated with ssDNA for 5 minutes, prior sample deposition and 
imaging.  (B) Height analysis of the helicase showing a single peak of ~ 3.5 nm. 
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Supplementary data for Figure 5.11. 

Fields of view of the “web-like” structures created by RepD-PcrA mediated 
unwinding in the absence of SSB.  
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Supplementary data for Figure 5.18. 

Heights analysis of the complex showed in Figure 5.18C2 (A) and Figure 
5.18C3 (B). 
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