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Abstract This letter reports the results of a search for top
and bottom squarks from gluino pair production in 4.7 fb−1

of pp collisions at
√

s = 7 TeV using the ATLAS detector at
the LHC. The search is performed in events with large miss-
ing transverse momentum and at least three jets identified as
originating from a b-quark. Exclusion limits are presented
for a variety of gluino-mediated models with gluino masses
up to 1 TeV excluded.

Supersymmetry (SUSY) [1–9] provides an extension of the
Standard Model (SM) which resolves the hierarchy prob-
lem [10–13] by introducing supersymmetric partners of the
known bosons and fermions. In the framework of the R-
parity conserving minimal supersymmetric extension of the
SM (MSSM) [14–18], SUSY particles are produced in pairs
and the lightest supersymmetric particle (LSP) is stable, pro-
viding a possible candidate for dark matter. In a large vari-
ety of models, the LSP is the lightest neutralino (χ̃0

1 ). The
colored superpartners of quarks and gluons, the squarks (q̃)
and gluinos (g̃), if not too heavy, would be produced in
strong interaction processes at the Large Hadron Collider
(LHC) and decay via cascades ending with the LSP. The
undetected LSP results in missing transverse momentum—
whose magnitude is referred to as Emiss

T —while the rest of
the cascade yields final states with multiple jets and possi-
bly leptons. In the MSSM, the right-handed and left-handed
squarks, q̃R and q̃L, can mix to form two mass eigenstates
q̃1 and q̃2. The mixing effect is proportional to the masses
of the SM fermion partners and can therefore be large for
the third generation. This may lead to the lightest sbottom
(b̃1) and stop (t̃1) mass eigenstates being much lighter than
the other squarks. As a consequence, b̃1 and t̃1 could be pro-
duced with relatively large cross sections at the LHC, ei-
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ther directly in pairs, or through g̃g̃ production followed by
g̃ → b̃1b or g̃ → t̃1t decays.

This letter extends the search for gluino-mediated b̃1 and
t̃1 production at ATLAS reported earlier [19], which used
2.05 fb−1 of data collected in the first half of 2011 at a
center-of-mass energy of 7 TeV. The present analysis com-
prises the full 2011 dataset of 4.7 fb−1 and adopts an im-
proved selection that requires large Emiss

T , no electron or
muon and at least three jets identified as originating from
b-quarks (b-jets) in the final state. Results are interpreted in
four simplified models where sbottoms or stops are the only
squarks produced in the gluino decays, leading to final states
with four b-quarks. Searches in similar scenarios have also
been reported by the CMS Collaboration [20].

The ATLAS detector [21] consists of inner tracking de-
vices surrounded by a superconducting solenoid, electro-
magnetic and hadronic calorimeters and a muon spectrom-
eter with a toroidal magnetic field. The inner detector pro-
vides precision tracking of charged particles for |η| < 2.5.1

It is immersed in a 2 T magnetic field from the solenoid and
consists of a silicon pixel detector, a silicon strip detector
and a straw tube tracker that also provides transition radia-
tion measurements for electron identification. The calorime-
ter system covers the pseudorapidity range |η| < 4.9. It is
composed of sampling calorimeters with either liquid argon
(LAr) or scintillating tiles as the active medium. The muon
spectrometer has separate trigger and high-precision track-
ing chambers which provide muon identification and mo-
mentum measurement for |η| < 2.7.

1ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the center of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the center
of the LHC ring, and the y axis points upward. Cylindrical coordinates
(r,φ) are used in the transverse plane, φ being the azimuthal angle
around the beam pipe. The pseudorapidity is defined in terms of the
polar angle θ as η = − ln tan(θ/2). The distance �R in the η−φ space
is defined as �R = √

(�η)2 + (�φ)2.
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Samples of simulated events are used for the descrip-
tion of the background and to model the SUSY signal.
The dominant sources of background come from events
with b-quarks in the final state. Monte Carlo (MC) sam-
ples of t t̄ , W /Z and diboson events produced in associ-
ation with light- and heavy-flavor jets are generated with
ALPGEN [22] and the parton distribution function (PDF) set
CTEQ6L1 [23]. These samples are generated with differ-
ent maximum numbers of additional partons at the matrix-
element level. Diboson samples are generated with up to
three additional partons, t t̄ + jet and Z(→ �+�−) + jets
(� = e,μ, τ ) samples with up to five additional partons, and
W(→ �ν) + jets and Z(→ ν̄ν) + jet samples with up to six
additional partons. Single top quark production is simulated
with MC@NLO [24] using the next-to-leading-order (NLO)
PDF set CTEQ6.6 [25]. The fragmentation and hadroniza-
tion for the ALPGEN and MC@NLO samples are performed
with HERWIG [26, 27], using JIMMY [28] for the underly-
ing event. Samples of t t̄ +W , t t̄ +Z and t t̄ +WW events are
generated with MADGRAPH [29] interfaced to PYTHIA [30].
The signal samples are generated using Herwig++ [31].
The MC samples are processed through the ATLAS detector
simulation [32] based on GEANT4 [33] taking into account
the effect of multiple pp interactions per bunch crossing.
For the comparison with data, all SM background cross sec-
tions are normalized to the results of higher-order calcula-
tions when available, using the same values as in Ref. [19].

Jets are reconstructed from three-dimensional calori-
meter energy clusters using the anti-kt jet algorithm [34, 35]
with a radius parameter of 0.4. The measured jet energy is
corrected for inhomogeneities and for the non-compensating
nature of the calorimeter by using pT- and η-dependent cor-
rection factors, and additional corrections for pile-up are
applied [36]. Jets are required to have pT > 20 GeV, and
are reconstructed in the range |η| < 4.9. Events are rejected
if they include jets failing the quality criteria described in
Ref. [36], or if there is any selected jet with |η| < 2 for which
the scalar sum of the transverse momenta of its associated
tracks is less than 5 % of the jet pT. A neural-network-based
algorithm [37] is used to identify jets containing a b-hadron
decay. This uses as input the output weights of different
algorithms exploiting the impact parameter of the inner de-
tector tracks, the secondary vertex reconstruction and the
topology of b- and c-hadron decays inside the jet. Three
operating points are used, corresponding to efficiencies of
60 %, 70 % and 75 % for tagging b-jets in a MC sample
of t t̄ events. In all cases the tagging rate is less than 2 %
for light-quark and gluon jets, 10 % for τ leptons decaying
hadronically and 25 % for c-quark jets. The b-jets are iden-
tified within the nominal acceptance of the inner detector
(|η| < 2.5) and are required to have pT > 30 GeV. To com-
pensate for the differences between the b-tagging efficiency
and the mistag rates in data and MC simulation, b-tagging

Table 1 Definition of the five signal regions based on the number of
jets (NJ ), the Emiss

T , meff requirements and the b-tagging operating
point (OP)

SR NJ Emiss
T meff b-tag OP

SR4-L ≥4j >160 GeV >500 GeV 60 %

SR4-M ≥4j >160 GeV >700 GeV 60 %

SR4-T ≥4j >160 GeV >900 GeV 70 %

SR6-L ≥6j >160 GeV >700 GeV 70 %

SR6-T ≥6j >200 GeV >900 GeV 75 %

Common criteria: lepton veto, p
j1
T > 130 GeV, ≥3 b-jets,

Emiss
T /meff > 0.2, �φmin > 0.4

Table 2 Definition of the four control regions used to estimate the
t t̄ + jets background

CR NJ b-tag OP corresponding SR

CR4-60 ≥4j 60 % SR4-L, SR4-M

CR4-70 ≥4j 70 % SR4-T

CR6-70 ≥6j 70 % SR6-L

CR6-75 ≥6j 75 % SR6-T

Common criteria: lepton veto, p
j1
T > 130 GeV, =2 b-jets,

Emiss
T /meff > 0.2, �φmin > 0.4, Emiss

T > 160 GeV, meff > 500 GeV

scale factors are applied to each jet in the simulations, as
described in Refs. [37–39].

Electrons are reconstructed from energy clusters in the
electromagnetic calorimeter matched to a track in the in-
ner detector. Electron candidates are required to have pT >

20 GeV and |η| < 2.47 and must satisfy the “medium” se-
lection criteria described in Ref. [40]. Muons candidates are
identified using a match between an extrapolated inner de-
tector track and one or more track segments in the muon
spectrometer, and are required to have pT > 10 GeV and
|η| < 2.4.

Since electrons are also reconstructed as jets, jets within
a distance of �R = 0.2 of an electron candidate are rejected.
Furthermore, any lepton candidate with a distance �R < 0.4
to the closest remaining jet is discarded. Events containing
any remaining electrons and muons are vetoed in the control
and signal regions defined in Tables 1 and 2.

The measurement of the missing transverse momentum
two-dimensional vector (and its magnitude Emiss

T ) is based
on the transverse momenta of all remaining jets with |η| <

4.9, all electron and muon candidates and all calorimeter
clusters not associated to such objects.

Events are selected using triggers requiring one high T

jet and Emiss
T . Different trigger thresholds were used to cope

with the increasing luminosity. These triggers are fully ef-
ficient for this analysis, which requires one jet with pT >

130 GeV and Emiss
T > 160 GeV at the offline reconstruction
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stage. Events must pass basic quality criteria to reject de-
tector noise and non-collision backgrounds. They are also
required to have a reconstructed primary vertex associated
with five or more tracks with T > 0.4 GeV; when more
than one such vertex is found, the vertex with the largest
summed 2

T of the associated tracks is chosen as the hard in-
teraction vertex. Events are required to have at least three
b-tagged jets, and two jet-multiplicity regions (NJ ≥ 4 and
NJ ≥ 6) are considered by selecting jets with |η| < 2.8 and

T > 50 GeV.
Two variables are calculated from the reconstructed ob-

jects to further select the events: meff and �φmin. The ef-
fective mass meff is defined as the scalar sum of the Emiss

T
and the pT of all selected jets in a given jet-multiplicity re-
gion. The �φmin is defined as the minimum azimuthal sep-
aration between the selected jets and the missing transverse
momentum direction. Placing the requirements �φmin > 0.4
and Emiss

T /meff > 0.2 reduces the amount of multi-jet back-
ground, where Emiss

T results from mis-reconstructed jets or
from neutrinos emitted close to the direction of the jet axis.

Two sets of signal regions are defined which yield good
signal sensitivity for the various models and parameter val-
ues studied here. They are characterized by having at least
four (SR4) or six (SR6) jet candidates, no electron or muon,
and are further classified as loose (L), medium (M) or tight
(T) depending on the Emiss

T and meff thresholds and on the b-
tagging operating point. The requirements that characterize
each signal region are summarized in Table 1.

The main source of reducible background is the pro-
duction of t t̄ events in association with additional jets fol-
lowed by the leptonic decay of one W boson, where the lep-
ton is not reconstructed or is misidentified as a jet (mainly
through the hadronic decays of a τ lepton). This background
is estimated by normalizing the MC event yield in the sig-
nal region to the extrapolated event yield observed in a t t̄-
dominated control region. Systematic uncertainties that are
correlated between the control and the signal regions largely
cancel out in this procedure. Additional sources of reducible
background are single top, t t̄ + W/Z and W/Z + heavy-
flavor jets. Their contributions are taken from MC simula-
tion and account for 10 % to 20 % of the total background
depending on the signal region. The irreducible background
t t̄ + bb̄ is also estimated from MC simulation and accounts
for about 10 % of the total background in all signal regions.
The reducible contribution from multi-jet events is estimated
with a data-driven method, based on a jet response smearing
technique [41], and is found to account for less than 5 % of
the total background in all signal regions.

Four control regions where the t t̄ + jets background ac-
counts for more than 80 % of the total yield are defined
by applying the same jet requirements and lepton veto as
in the signal regions, but requiring exactly two b-jets in-
stead of three or more. The requirements meff > 500 GeV

Table 3 Expected numbers of SM events and observed data events in
the four t t̄ control regions. The contribution from t t̄ + jets events is
taken directly from MC simulation. The column “others” includes the
contributions from single top, t t̄ + bb̄, t t̄ + W/Z and W/Z + jets pro-
cesses, also estimated from MC simulation, and the contribution from
multi-jet events which is estimated with the jet smearing technique and
accounts for less than 5 % of the total background. The column “SM”
shows the total expected background and is the sum of the columns
“t t̄ + jets” and “others”. The uncertainties include all detector-related
systematic uncertainties

CR t t̄ + jets others SM data

CR4-60 330 ± 90 65 ± 25 395 ± 115 402

CR4-70 490 ± 125 100 ± 35 590 ± 160 515

CR6-70 38 ± 11 7 ± 3 45 ± 13 46

CR6-75 40 ± 12 10 ± 4 50 ± 15 52

and Emiss
T > 160 GeV are applied to all control regions

to make them kinematically similar to the signal regions,
while reducing the contamination from possible SUSY sig-
nal events. The definition of the control regions is summa-
rized in Table 2. The numbers of expected SM events in the
four control regions, as predicted by the jet smearing tech-
nique for multi-jet events and by MC simulation for other
processes, are compared to those observed in data in Table 3.
The results agree within experimental errors.

The dominant detector-related systematic effects are due
to the jet energy scale (JES) and resolution (JER) uncer-
tainties, and the uncertainty on the b-tagging efficiency and
mistag rates. The JES uncertainty is derived from a combi-
nation of simulations, test beam data and in-situ measure-
ments [36], and includes additional uncertainties due to the
jet flavor and nearby jets. Uncertainties on the JER are ob-
tained with an in-situ measurement of the jet response asym-
metry in di-jet events. These uncertainties on jets are propa-
gated to the Emiss

T measurement, and additional uncertainties
on Emiss

T arising from energy deposits not associated with
any reconstructed objects are also included. The b-tagging
uncertainty is evaluated by varying the η-, T- and flavor-
dependent scale factors applied to each jet in the simulation
within a range that reflects the systematic uncertainty on the
measured tagging efficiency and mistag rates.

The systematic uncertainties in the modeling of the t t̄ +
jets background are assessed as follows: the uncertainty due
to the choice of the MC generator is estimated by comparing
the leading-order ALPGEN generator to the MC@NLO gen-
erator; the uncertainty due to the factorization and match-
ing scale ambiguities in ALPGEN are estimated by inde-
pendently varying their nominal settings by factors of one
half and two; the uncertainty due to the finite number of ad-
ditional partons at the matrix-element level is assessed by
comparing inclusive ALPGEN samples generated with up to
three and up to five extra partons. Finally the PDF uncer-
tainties are estimated using the MSTW2008NNLO PDF set.
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Table 4 Comparison between the results of the fits and the numbers
of observed events in the five signal regions. The t t̄ + jets event yield
predicted by the MC simulation is quoted in parentheses. The column
“others” includes the contributions from single top, t t̄ +bb̄, t t̄ +W/Z,
W/Z + jets and multi-jet processes. Multi-jet events contribute less
than 5 % of the total background. The column “SM” shows the total
expected background and is the sum of the columns “t t̄ + jets” and
“others”. The uncertainties include the statistical and systematic un-
certainties

SR t t̄ + jets
(MC)

others SM data

SR4-L 33.3 ± 7.9
(32.6 ± 15.4)

11.1 ± 4.9 44.4 ± 10.0 45

SR4-M 16.4 ± 4.1
(16.1 ± 8.4)

6.6 ± 2.9 23.0 ± 5.4 14

SR4-T 9.6 ± 2.1
(11.4 ± 5.4)

3.7 ± 1.6 13.3 ± 2.6 10

SR6-L 10.3 ± 3.3
(10.0 ± 6.2)

2.4 ± 1.4 12.7 ± 3.6 12

SR6-T 8.3 ± 2.4
(7.9 ± 5.3)

1.6 ± 1.1 9.9 ± 2.6 8

Uncertainties of 100 % are assumed for the multi-jet pre-
diction and for the cross section of t t̄ and W/Z production
in association with a bb̄ pair. For t t̄ + W/Z production, an
uncertainty of approximatively 70 % has been derived from
the variations of the factorization and renormalization scales
and from the PDF uncertainties [42].

The t t̄ + jets yield in each signal region is extrapolated
from the measured number of events in the corresponding
control region (as per Table 2) using a fit based on the pro-
file likelihood method [43]. Each pair of control and sig-
nal regions is fitted separately, assuming no signal events.
The free parameter in each fit is the t t̄ + jets overall nor-
malization scale, while the contributions from subdominant
background processes are fixed at the expected value. Sys-
tematic uncertainties are treated as nuisance parameters con-
strained with a Gaussian function and correlations are taken
into account where appropriate. The results of the fits and
the numbers of observed events for each signal region are
summarized in Table 4. The fitted values of the normaliza-
tion factors for t t̄ + jets are compatible with one and the
main impact of the data-driven estimate is a reduction in
the uncertainty by approximately a factor of two. Figure 1
shows the measured meff distributions and the MC predic-
tions for the SM backgrounds in each signal region. Also
shown are the prediction of two benchmark signal models
described below.

The reliability of the MC extrapolation of the t t̄ back-
ground to larger b-jet multiplicities has been checked in val-
idation regions defined with kinematic cuts similar to those
used in the control and signal regions, except that exactly
one isolated electron or muon is required. The transverse
mass of the lepton and the Emiss

T is required to be less than

Table 5 Observed (expected) 95 % CL upper limits on the non-SM
contributions to all signal regions. Limits are given on numbers of
events and in terms of visible cross sections defined by cross section
times kinematic acceptance times experimental efficiency. Systematic
uncertainties on the SM background estimation are included in the lim-
its

SR Obs (exp) 95 % CL upper limit

N events σvis(fb)

SR4-L 23.8 (23.4) 5.1 (5.0)

SR4-M 8.6 (12.8) 1.8 (2.7)

SR4-T 7.1 (9.2) 1.5 (2.0)

SR6-L 9.6 (10.1) 2.0 (2.1)

SR6-T 7.1 (8.3) 1.5 (1.8)

100 GeV in all validation regions to minimize the possible
contamination from stop production. The extrapolated event
yield in the validation regions with at least three b-jets from
the validation regions with exactly two b-jets is found to
be consistent with the number of observed events for all b-
tagging operating points.

The background predictions have been further validated
using a data-driven method that simultaneously estimates all
SM background contributions with at least one misidentified
b-jet. This method consists of predicting the number of jets
originating from b-quarks in each event by solving a system
of equations based on the number of b-tagged and non b-
tagged jets in the event, along with the b-tagging efficiency
and mistag rates. Consistent background predictions with re-
spect to the fit results have been found in all signal regions.

Limits for non-SM signal at 95 % confidence level (CL)
are derived by testing the signal plus background hypothesis
in each signal region with the CLs prescription [43]. These
limits are obtained with fits similar to those used to estimate
the background in each signal region, except that the num-
ber of observed events in the signal region is added as an
input to the fit and a second free parameter for the non-SM
signal strength, constrained to be non-negative, is adjusted
in the likelihood maximization. This additional free param-
eter ensures a proper treatment of the expected signal con-
tamination in the control regions when the results are inter-
preted in the framework of specific SUSY scenarios. Model-
independent upper limits at 95 % CL on the number of signal
events and on the visible cross section (defined as the cross
section times kinematic acceptance times experimental ef-
ficiency) for non-SM contributions derived for each signal
region are given in Table 5.

These data have been used to derive limits in the param-
eter space of the following SUSY models.

Gluino–sbottom model MSSM scenarios where the b̃1 is
the lightest squark, all other squarks are heavier than the
gluino, and mg̃ > m

b̃1
> mχ̃0

1
, so the branching ratio for
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Fig. 1 Distribution of meff for SR4-L and SR4-T (top) and SR6-L and
SR6-T (bottom). The hatched band shows the systematic uncertainty
on the MC prediction, which includes both experimental uncertain-
ties (among which JES and b-tagging uncertainties are dominant) and
theoretical uncertainties on the background normalization and shape.
The label “others” includes the contributions from single top, t t̄ + bb̄,

t t̄ + W/Z, W/Z + jets and multi-jet processes. The lower plot in each
figure shows the ratio of the observed distribution to that expected for
the SM background. Two signal points (with small and large mass
splitting between the gluino and the LSP) for the Gbb and Gtt models
described in the text are overlaid

g̃ → b̃1b decays is 100 %. Sbottoms are produced via g̃g̃

or by b̃1b̃1 direct pair production and are assumed to decay
exclusively via b̃1 → bχ̃0

1 , where mχ̃0
1

is set to 60 GeV. Ex-
clusion limits are presented in the (mg̃,mb̃1

) plane.

Gbb model Simplified scenarios, where b̃1 is the lightest
squark but mg̃ < m

b̃1
. Pair production of gluinos is the only

process taken into account since the masses of all other
sparticles apart from the χ̃0

1 are set above the TeV scale.
A three-body decay via an off-shell sbottom is assumed for
the gluino, yielding a 100 % BR for the decay g̃ → bb̄χ̃0

1 .
The sbottom mass has no impact on the kinematics of the de-
cay and the exclusion limits are presented in the (mg̃,mχ̃0

1
)

plane.

Gluino–stop model MSSM scenarios where the t̃1 is the
lightest squark, all other squarks are heavier than the gluino,

and mg̃ > mt̃1
+ mt , so the branching ratio for g̃ → t̃1t de-

cays is 100 %. Stops are produced via g̃g̃ and t̃1 t̃1 and are
assumed to decay exclusively via t̃1 → bχ̃±

1 . The neutralino
mass is set to 60 GeV, the chargino mass to 120 GeV and
the latter is assumed to decay through a virtual W boson.
Exclusion limits are presented in the (mg̃,mt̃1

) plane.

Gtt model Simplified scenarios, where t̃1 is the lightest
squark but mg̃ < mt̃1

. Pair production of gluinos is the only
process taken into account since the mass of all other sparti-
cles apart from the χ̃0

1 are above the TeV scale. A three-body
decay via off-shell stop is assumed for the gluino, yielding
a 100 % BR for the decay g̃ → t t̄ χ̃0

1 . The stop mass has
no impact on the kinematics of the decay and the exclusion
limits are presented in the (mg̃,mχ̃0

1
) plane.

The SR4 regions are mostly sensitive to the SUSY mod-
els where sbottom production dominates, whilst the SR6



Page 6 of 19 Eur. Phys. J. C (2012) 72:2174

Fig. 2 Exclusion limits in the (mg̃,m
b̃1

) plane for the gluino–sbottom
model (top left), in the (mg̃,mt̃1

) plane for the gluino–stop model (top
right) and in the (mg̃,mχ̃0

1
) plane for the Gbb (bottom left) and Gtt (bot-

tom right) models. The dashed black and solid bold red lines show the
95 % CL expected and observed limits, respectively, including all un-
certainties except the theoretical signal cross-section uncertainty. The

shaded (yellow) bands around the expected limits show the impact of
the experimental uncertainties while the dotted red lines show the im-
pact on the observed limit of the variation of the nominal signal cross
section by 1σ theoretical uncertainty. Also shown for reference are the
previous CDF [44, 45], D0 [46] and ATLAS [19, 42, 47, 48] analyses
(Color figure online)

regions are used to set exclusion limits in models charac-
terized by on-shell or off-shell stop production, where top-
enriched final states are expected. The signal region with
the best expected sensitivity at each point in the param-
eter space is used to derive the limits at 95 % CL. Sig-
nal cross sections are calculated to next-to-leading order
in the strong coupling constant, including the resummation
of soft gluon emission at next-to-leading-logarithmic accu-
racy (NLO + NLL) [49–53]. The nominal cross section and
the uncertainty σ SUSY

Theory are taken from an envelope of cross-
section predictions using different PDF sets and factoriza-
tion and renormalization scales, as described in Ref. [54].
All detector-related systematic uncertainties are treated as
fully correlated between signal and backgrounds. In the Gbb
scenario, the impact of initial-state radiation (ISR) is ex-
pected to be large in the region with low mg̃ − mχ̃0

1
due to

the small signal acceptance. Therefore, an uncertainty on the
modeling of ISR is assessed by comparing the signal accep-

tance obtained with the Herwig++ samples to the one ob-
tained with dedicated MADGRAPH samples generated with
additional jets. This uncertainty varies from 4 % to 35 %
as a function of mg̃ − mχ̃0

1
and is included in the ±1σ SUSY

Theory
band.

The expected and observed 95 % CL exclusion limits in
the four models considered above are shown in Fig. 2. In
the gluino–sbottom model, gluino masses below 1000 GeV
are excluded for sbottom masses up to about 870 GeV using
the most conservative −1σ SUSY

Theory hypothesis. This extends
by approximatively 100 GeV the limits derived in the same
scenario by the previous ATLAS analysis performed with
2 fb−1 [19] and is complementary to the ATLAS search
for direct sbottom pair production, also carried out with
2 fb−1 [47]. The exclusion is less stringent in the region
with low mg̃ − m

b̃1
, where softer jets are expected. Because

of the kinematic cuts applied, the limits depend on the neu-
tralino mass assumption for low mass splitting between the
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sbottom and the neutralino as shown for the Gbb model
where gluino masses below 1020 GeV are excluded for neu-
tralino masses up to about 400 GeV, improving the previ-
ous ATLAS limits [19] by approximatively 100 GeV. In the
gluino–stop model, gluino masses below 820 GeV are ex-
cluded for stop masses up to 640 GeV, extending the previ-
ous ATLAS limits [19, 42] by approximatively 150 GeV. In
the Gtt model, gluino masses below 940 GeV are excluded
for mχ̃0

1
< 50 GeV while neutralino masses below 320 GeV

are excluded for mg̃ = 800 GeV. This search extends the
exclusion limits on the gluino mass from the ATLAS multi-
jet analysis carried out with the same data set [48] and
from the CMS same-sign dilepton analysis performed with
5 fb−1 [20] by approximatively 60 GeV and 130 GeV, re-
spectively, for neutralino masses below 100 GeV. In the re-
gion with low mg̃ − mχ̃0

1
, the limits obtained with the CMS

analysis are most stringent due to the softer kinematic cuts.
In summary, this letter presents results from a search for

top and bottom squarks in the decay of gluino pairs pro-
duced in pp collisions at

√
s = 7 TeV, based on 4.7 fb−1 of

ATLAS data. The events are selected with large Emiss
T , four

or six jets and at least three jets originating from b-quarks
in the final state. The results are in agreement with the SM
background prediction and translate into 95 % CL upper
limits on excluded masses for a variety of SUSY benchmark
scenarios. Gluino masses up to 1 TeV are excluded, depend-
ing on the model, which significantly extends the previous
results.
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