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by Jacob B. Swadling

This thesis details work which employs classical simulation techniques to investigate the

interactions of nucleic acid molecules with various charged clay mineral environments.

There is a focus on the structure and stability of nucleic acids at mineral interfaces in

order to understand how geological settings aided in fostering the first biomolecules at

the time of the origins of life on Earth. A comparison of three nucleic acids, DNA,

RNA and PNA, shows a difference in preferential stability in bulk water over the corre-

sponding nucleic acid in a mineral environment. The comparative study showed that the

prevailing geochemistry preferentially favoured DNA over potentially competing genetic

candidates, such as RNA and PNA. This gives us a unique insight into how there may

have been a transition from a proto-DNA world (such as the RNA world) to the current

DNA/protein world. The structure and arrangement of single-stranded RNA on both

cationic and anionic charged surfaces showed marked differences. Both cationic and an-

ionic surfaces successfully adsorb on charged RNA oligonucleotides but show significant

differences in the adsorbed structure. Cationic surfaces are successful in mediating the

collapse of the RNA sequence from an elongated linear polymer into one that is capable

of exhibiting catalytic function. The anionic surface elongates the RNA polymer and

exposes the information carrying base sequence to the aqueous region allowing fidelity

in templating information and replicating sequences. Studies of single-stranded RNA

were extended to model a large biologically relevant RNA ribozyme using replica ex-

change sampling methods. The results elucidated the structure and arrangement of the

catalytic centre of the ribozyme. The results in this thesis show that mineral mediated

origins of life differ considerably from an aqueous one that is more commonly associated

with the origins of life.
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Chapter 1

Introduction

The subject of the origins of life is one that induces a great deal of interest in academia

as well as in the public imagination. Given the vast amount of time which separates

us from these events, the subject relies heavily on theoretical approaches in its under-

standing. The study of the chemical origins of life not only relies on a knowledge of

biomolecular structure and function but the geochemical aspects which are inherent in

prebiotic chemistry and important in mediating the chemical origins of life. This thesis

starts with a review of current theories in origins of life studies, with particular empha-

sis on prebiotic chemistry where the chemical species and the fundamental phenomena

defining life arose. Chapter 3 introduces the intricate structure of nucleic acids and the

chemical composition of clay minerals which are adopted in the latter research chapters.

Chapter 4 introduces the molecular simulation techniques which we have applied to the

biomolecular/inorganic systems.

The question “How and where did life arise on Earth?” is one which has always attracted

widespread attention, and increasingly so in recent years. Origins of life studies represent

an exciting and highly multidisciplinary research field that incorporate contributions

from many areas of research. Origins of life studies are an effort to understand the

transition from chemistry to biology. Attempts to define life are irrelevant to scientific

efforts; drawing an arbitrary line along the progression as the point at which life began

would be difficult, and more importantly would not further our understanding of the

transitions involved [6].

The uniformity of biochemistry in all living organisms indicates that life descended from

a single last universal common ancestor (LUCA) [7]. It is possible, in principal, to

compile a complete account of the origins of life if the stages in which LUCA evolved

from abiotic components on early Earth was known. Stages which have been the focus

of much attention in the origins of life community are concerned with finding what were

1
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the sources of the organic molecules that made up the first self-replicating molecules,

where was the source and how did biological organisation evolve from an abiotic source

of organic molecules? [8].

Modern origins (of life) theories can be traced back to Charles Darwin’s “warm lit-

tle pond”, often referred to as a “prebiotic soup”. The warm little pond falls short

due to a lack of any geological evidence and any apparent source of free energy. It is

known that for the self-condensation required to form the first biopolymer two things

are needed: energy and a sufficient concentration of precursor reactants; for RNA this

would be an ample supply of ribonucleotides. Moreover, all life processes are inherently

far from equilibrium whereas the prebiotic soup as normally conceived is in thermody-

namic equilibrium; as a result of any such equilibrium, nucleotides would be reluctant to

react further. To counter this a number of approaches where physical and/or chemical

gradients impose far from equilibrium conditions have been hypothesised and tested in-

cluding the use of minerals to concentrate monomers [9], salt induced peptide formation

reactions which mimic tidal pools [10], and the concentration of monomers in freezing

processes [11].

It is important when considering the formation of RNA strands during the origins of

life not to ignore the nonlinear nature of RNA dynamical self-assembly. Too often the

argument that the probability of synthesising a gram of the ‘one’ (or few) particular self

reproducing sequences by a random assembly process would need more mass of substance

than exists on Earth, has been echoed [12]. It is näıve to think that RNA sequences in a

soup form by random synthesis (i.e. as if at equilibrium). It does establish that not all

sequences have been made. Nature does not perform a global search for optimality over

all possible chemical species. There is a large element of chance in determining which

sequences have been produced. Life is indeed driven by a set of chemical processes

taking place far from equilibrium [13–15]. To maintain these processes, all organisms

are open systems; their complexity is founded on feedback involving autocatalytic and

crosscatalytic molecules that assist reactions without being destroyed in the process.

One metabolic or regulatory pathway may produce a molecule that accelerates other

pathways (cross-catalysis) which, through a vast amount of interlinked chemistry, may

end up indirectly catalysing the original pathway.

The shortcomings associated with the warm little pond idea were somewhat addressed

by the seminal work of Miller and Urey. They passed an electric discharge through

a mixture of methane, ammonia and hydrogen, producing amino acids, amongst other

products. This reaction demonstrated that an energy input could generate biochemicals.

Miller continued this research, showing that the major synthetic route to amino acids

is through the Strecker reaction [16], although now there is evidence to suggest that
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the early Earth did not have a strongly reducing atmosphere, making the Miller-Urey

experiments less pertinent than originally thought [17]. Haldane proposed, sometime

before the experiments of Miller that ultra-violet (UV) radiation provided the energy

to convert methane, ammonia and water into the first organic compounds in the early

ocean [18].

It was not until the 1970s that an alternative hypothesis was thought that provided a

possible solution to the atmospheric conditions of the early Earth: The discovery of deep

submarine hydrothermal vents and their subsequent implication as a possible geochem-

ically plausible prebiotic setting. “Black smokers” were the first type of hydrothermal

vent discovered. They arise in part from magma interacting with seawater at ocean

spreading zones. These vents are far from equilibrium with the surrounding seawater

[19]. Because of their extremely high temperatures, low pH, short lifetimes and a lack

of three-dimensional compartmentalisation that would conceivably lead to irretrievable

dilution of proto-biomolecules in the early ocean [20]. For these reasons, black smokers

are not ideal settings for the origins of life.

A second type of hydrothermal vent was discovered at the turn of the millennium [21].

Unlike black smokers, these “alkaline vents” are not volcanic but form through serpen-

tinisation. Serpentisation is the oxidation of olivine and consequent reduction of water

to hydrogen [22]. The process creates temperatures of around 150-200◦C and strongly

alkaline fluids of pH 9-11 rich in hydrogen. Russell et al. suggested the role of these

alkaline vent systems in prebiotic scenarios in 1993, before their eventual discovery at

the “Lost City” of the mid-Atlantic [23]. Russel and co-workers hypothesised alkaline

vents are potential candidates for producing life owing to their relatively benign tem-

perature and pressure, apparent ability to incubate proto-metabolism through proton

and redox potential gradients within emerging alkaline fluids, and the delicate internal

porous structure of FeS minerals acting as an early protocells.

Possibly the most widely adopted theory in origins of life studies is the “RNA World”

hypothesis, which states that at some point prior to the present deoxyribonucleic acid

(DNA)/protein world, ribonucleic acid (RNA) provided the molecular basis for catalysis

and replication [24]. The theory is attractive because it requires the synthesis of only

one type of biomolecule which solves many of the problems of complexity. Evidence to

support the RNA World hypothesis came from the work of Cech and Altman who won

the 1989 Nobel prize in chemistry for their independent discovery of a group of catalytic

RNA molecules known as ribozymes [25]; and further from the discovery, by Stietz and

Moore, of the structure of the ribosome, a cellular component which makes proteins [26]

that was shown to be a ribozyme. More recently, Sutherland and co-workers provided

an abiotic synthetic route to nucleotides, under near prebiotic conditions [27].
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In essence, there are many questions which remain unanswered in our quest to discover

the origins of life on Earth (and of course elsewhere in the Universe) but theory and

modelling are making a significant impact on our understanding of the stages in the

transition from chemistry to biology. I believe that the research detailed within this

thesis goes some way to answering various hitherto unanswered questions associated

with stages in the origins of life. And it is hoped that these answers will go on to

inspire new experiments and to enhance the reputation of modelling methods within

many sections of the experimental prebiotic chemistry community.

f



Chapter 2

Theory, Modelling and Simulation

in Origins of Life Studies

Origins of life studies represent an exciting and highly multidisciplinary research field.

Contributions made by theory, modelling and simulation to addressing fundamental

issues in the domain and the advances these approaches have helped to make in the field

are discussed in detail within this thesis chapter. Theoretical approaches will continue

to make a major impact at the “systems chemistry” level based on the analysis of the

remarkable properties of nonlinear catalytic chemical reaction networks, which arise due

to the auto-catalytic and cross-catalytic nature of so many of the putative processes

associated with self-replication and self-reproduction. Here we review a description

inter alia of nonlinear kinetic models of RNA replication within a primordial Darwinian

soup, and state-of-the-art computationally-based molecular modelling techniques that

are currently being deployed to investigate various related scenarios relevant to the

origins of life.

2.1 Theoretical nonlinear chemical kinetics

For a complex system of interlocking chemical reactions, the second law of thermody-

namics is a good place to start to guide us in setting parameters to limit the search for

the origin of life? It defines a set of thermodynamic potentials whose extrema specify

the equilibrium states of matter. In particular, under the usual conditions pertaining

in chemical reactions (fixed temperature and pressure, or fixed temperature and vol-

ume), the Gibbs and Helmholtz free energies serve as potentials whose global minima

completely define the equilibrium state [28].

5
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If the system is prevented from attaining thermodynamic equilibrium through the impo-

sition of external constraints (e.g. temperature or concentration gradients, etc.), but is

able to get sufficiently close to equilibrium (technically, the thermodynamic forces and

fluxes are linear in the displacement from their vanishing equilibrium values), then the

appropriate thermodynamic potential is the internal entropy production of the system

[29]. That is, its extrema (usually they are minima, but in some cases maxima) define

the stationary states of the system.

However, for systems far from equilibrium (that is, for which the thermodynamic forces

and fluxes are no longer linearly dependent on the distance from equilibrium), there

is no thermodynamic potential that guides the evolution of the system. Although this

result was established more than 35 years ago, remarkably little attention has been paid

to it [30, 31]. Beyond the overriding importance of irreversibility (that is, entropy is

always increasing) chemical thermodynamics in the conventional sense has very little to

say about the global behaviour of systems far from equilibrium, such as living states

of matter and those involved at the origins of life. Instead, a more quantitative insight

can be gained from the study of nonlinear dynamics, the formal mathematical domain

within which the theoretical basis of complex reaction kinetics resides, all compatible

with the second law.

Enormous progress has been made in the understanding of the behaviour of nonlinear

dynamical systems over the past forty years or so, much of it traceable to Turings sem-

inal paper on the chemical basis of morphogenesis [32]. Chemical reactions far from

equilibrium provide an example because many rate processes (including autocatalytic

and cross catalytic ones), based on the law of mass action, are nonlinear. Qualitatively,

what makes nonlinear systems so fascinating is that they exhibit “unexpected” prop-

erties from the standpoint of conventional linear, equilibrium, or steady-state theory.

Nonlinear systems are much more reminiscent of the world we inhabit: they can ex-

hibit multiple states for the same equations and parameters (such as multi-stability and

hysteresis), various forms of spatial, temporal and spatio-temporal organisation (often

referred to as dissipative structures or “self organisation”), chaos (in the technical sense)

and its corollary, sensitive dependence on initial conditions [30]. It is through the appli-

cation of the mathematics of nonlinear dynamical systems that a better understanding

of the origins of life can be gained.

2.1.1 Recent assessment of the RNA world hypotheses

Although the RNA world is in various ways conceptually attractive, no one has yet

produced experimental proof of its viability. As a result, various theoretical issues
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concerned with the scenario are often subject to analysis.

Szostak et al. highlight the potential and the aims of the field of synthetic life and the

RNA world in particular [33]. A central challenge is the discovery of a RNA replicase.

This problem is also noted by Ma and Wu, who suggest that self replicating RNA

molecules must be the forerunner of the RNA world, the information content coming

in later [34]. Even in the presence of a bountiful supply of substrate, the assembly of

RNA strands is inefficient; hence Szostak et al. suggest that activated nucleotides are

probably required. There are no naturally-occurring ribozymes which can catalyse the

necessary chemical reactions. A replicase has to function both as a ribozyme template

for replication, which suggests that it has a naturally open structure, and to act as an

active polymerase, suggesting that it has a stable folded structure.

These apparently contradictory statements can be reconciled by assuming that the en-

vironment undergoes some form of regular oscillatory behaviour; for example the tidal

cycling resulting in temperature cycling or periodic fluctuations in the concentrations of

monomers. The early impact which created the Moon also caused the Earth to undergo

rapid rotation, with a periodicity in the range 2–6 hours [35, 36]. This caused signifi-

cant tidal activity in coastal regions, the flooding and drying producing oscillations in

salinity and temperature permitting the interstrand interactions between DNA chains

to alternately promote association and dissociation. This would allow copying of the

templated information in strands. Since there is only a relatively short period of a few

hundred million years between the end of the late heavy bombardment and the origin

of life, this theory brings with it the concomitant need to explain the origin of life over

a rather short time scale of around 300,000 years.

Fernando et al. support the idea that systems with templating but no enzymatic catal-

ysis undergo chain lengthening, which causes a reduction in the total concentration of

chains and the overall reaction to slow down [37]. They construct a computer-based

model of this process and find that tidal cycling significantly increases the rate of elon-

gation.

Another model of replication was studied by Fernando and di Paolo, namely the Chemo-

ton [38]. A definition of life was proposed by Ganti as involving metabolism, regulation,

control, being stable and having an informational subsystem [39]. The Chemoton has au-

tocatalysis, a membrane, and an informational subsystem. This advocates the idea that

templated replication can occur without the need for enzymatic catalysis. Their model

combines replication of cell-like structures, double-stranded polymers and metabolism.

They find only rare elongation of the polymer and oscillations in the monomer concen-

tration throughout the cell-cycle.
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In addition to the replication of the information-carrying RNA, Szostak et al. also

note that in order to replicate successfully, cells need to be able to grow and divide

their cell membranes [33]. These membranes also need to satisfy key properties, namely

that small molecules should be able to diffuse across on a reasonable timescale, yet large

macromolecules should be generally confined to their interiors. Furthermore the chemical

environment inside the membrane should be simultaneously beneficial to membrane

growth and RNA replication.

The various potential mechanisms underlying the RNA world hypothesis are also dis-

cussed by Joyce [12]. In his view the main challenge in the RNA world hypothesis

is overcoming the clutter associated with prebiotic chemistry. He notes that although

replication is currently carried out in a residue-by-residue fashion, this need not be the

case in the prebiotic environment. As long as the production rate exceeds the decay rate,

a polymer or cell will proliferate. Furthermore, even had it existed, the RNA world was

not necessarily the starting point for life, as there could have been simpler genetic sys-

tems prior to it, for example TNA or PNA (threose nucleic acid or peptide nucleic acid;

see Figure 2.1), which then transformed into the RNA world. Alternatively, there could

have been other replicating mechanisms allowing templating, for example involving inor-

ganic clays [40]. Joyce considers more of the details of potential pathways for RNA and

protein synthesis catalysed by RNA. Again the issue of compartmentalisation is raised;

amongst the advantages of cell-like structures in which such reactions could occur are

the maintenance of sufficient concentrations of product species and the suitability of the

environment for reactions. Joyce notes that these compartments need not be the phos-

pholipid bilayers common to modern cells; they could be airborn aerosols, rock pores,

β-sheets of other polypeptides, or terpenoids [12]. A further unanswered question for the

RNA world is how the transition to the DNA-makes-RNA-makes-protein biochemistry

occurred.

The error threshold for the self-replication of a chemical species which acts as both an

enzyme and a substrate is analysed by Obermeyer and Frey [41] via a model system of

equations of the form

dXi

dt
=
∑
j

Mi,jRjXj −Xi

∑
j

RjXj , (2.1)

where Mi,j is a mutation probability, Xj(t) are the concentrations of chemical species j

and Rj = Aj+
∑

iBj,iXi is the replication rate of species j. They note that the potential

for nonenzymatic replication is questionable. They find that only weak specificity is

required in order for the distribution of species to be localised about the master sequence.
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Figure 2.1: Chemical structure of a) threose nucleic acid; b) peptide nucleic acid, where
B is a nucleotide base.

Stronger specificity constraints provide stronger localisation and so longer sequences can

be replicated, which also furnishes more tolerance against mutations.

2.1.2 The origin of the RNA world

Wattis and Coveney constructed and analysed a microscopic kinetic model for the emer-

gence of long chains of RNA from monomeric β-D-ribonucleotide precursors in prebiotic

circumstances [42]. Wattis and Coveney’s theory starts out from the general chemical

assumption that catalytic replication can lead to a large population of long chains. The

models incorporate the possibility of (i) direct chain growth (ii) template assisted synthe-

sis and (iii) catalysis by RNA replicase ribozyme, all with varying degrees of efficiency.

However, all chemical processes are “open”; they do not assume the existence of closed

hypercycles which sustain a population of long chains, rather it is the feasibility of the

initial emergence of a self-sustaining set of RNA chains from monomeric nucleotides that

is of concern. Detailed microscopic kinetic models lead to kinetic equations which are

generalisations of the Becker-Döring system for the stepwise growth of clusters or poly-

mer chains; they lie within a general theoretical framework which Coveney and Wattis

have successfully applied to a wide range of complex chemical problems [43].

The most detailed model Coveney and Wattis considered contains Becker-Döring aggre-

gation terms, together with a general Smoluchowski fragmentation term to model the

competing hydrolysis of RNA polymers [43]. This last process is a key one that enables

all chemical ingredients to be recycled and leads to the massive amplification of some
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self-replicating sequences over all others. The main reactions that such growing chains

undergo are (i) the basic Becker-Döring rate processes controlling chain growth

Cγr +Ni
slow−−−⇀↽−−− Cγ+Ni

r+1 . (2.2)

Here, the four nucleotide bases are denoted by Ni (with i =1, 2, 3 or 4) and oligomeric

ribonucleotide sequences by Cγr where r signifies the number of bases in the sequence

and γ denotes the particular order in which they occur. (ii) Template-based chain

synthesis (a form of catalysis mediated by Watson-Crick base pairing of ribonucleotides

on complementary chains)

Cγr +Ni + Cθs
fast−−⇀↽−− Cγ+Ni

r+1 + Cθs . (2.3)

(iii) Hydrolysis, whereby a long chain is split into two shorter chains. Chemically this

corresponds to the process

Cγ+θr+s −→Cγr + Cθs . (2.4)

This has the form of a general fragmentation process as modelled by the Smoluchowski

equations, a mechanism which increases the number of chains but reduces the average

chain length. (iv) Enzymatic replication (replicase ribozymal activity), where a third

chain aids the growth of a chain which is already in close contact with another chain

acting as a template is modelled by

Cγr +Ni + Cγ∗+θ∗r+k + Cξs −⇀↽−C
γ+Ni
r+1 + Cγ∗+θ∗r+k + Cξs . (2.5)

Here the combination of γ with Ni is a subsequence of the chain γ + θ, while Cξs plays

the part of a replicase ribozyme. Needless to say, some of these replicases will have much

higher efficiency than (most) of the others.

Wattis and Coveney demonstrated that it is possible to realise the selection of certain

self-replicating RNA polymer chains in a reasonable amount of time starting from plau-

sible assumptions about the chemistry and initial conditions that could have prevailed

within a putative prebiotic soup comprised of β-D-ribonucleotide monomers [42, 43].
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2.1.3 Modelling of elements of the RNA-world

All the models developed by Coveney and Wattis are based on deterministic nonlinear

dynamics, being derived from macroscopic laws of mass-action. For situations that may

frequently pertain at the cellular level, it is by no means clear that this “law” is always

valid. With small numbers of molecules involved, more inherently probabilistic models

have an important role to play. Thus, Hanel et al. consider the kinetics of stochastic

minimally nonlinear models, of the form ẋi =
∑

j Ai,jxj +Ji+νi, where the connectivity

matrix A has the form of an Erdos-Renyi network [44]. Whilst choosing A to be a

random matrix, they impose the constraint x > 0, which makes the system nonlinear,

hence the Lyapunov exponents may be positive, negative or zero. If all exponents are

negative, the system converges to a steady-state or equilibrium solution; if the largest

exponent is strictly positive then the system is chaotic and exhibits strong instabilities,

sensitive dependence on initial conditions and other ‘random’ behaviour not conducive

to the persistence of living systems. However, if the largest exponent is zero, then the

system is at criticality, where a greater range of states can be explored and nonlinear

effects are dominant, aiding the control of behaviour; this state is of great interest in the

modelling of living systems, wherein the types of behaviour exhibited include oscillations.

The average degree of the network 〈k〉 = L/N , where L is the number of links, and N is

the number of nodes. There is a considerable range of 〈k〉 where the largest eigenvalue

is close to zero, indicating applicability to living systems.

Lehman proposes that even in the early RNA world self-replication occurred via RNA

strands breaking into shorter strands which replicated the daughter strands, recombining

to form multiple copies of the original RNA molecule [45]. The reasons for this are many:

recombination is an energy-neutral process, so would have been common in prebiotic

conditions; an RNA replicase ribozyme would have to be long, typically in excess of 100

nucleotides. This is too long to replicate accurately via catalysis, whereas shorter RNA

strands could easily replicate. One consequence of this hypothesis is a lengthening of

RNA in the population over time; this is entirely consistent with the development from

simple prebiotic life to more advanced function.

As mentioned earlier, one problem in analysing models of the RNA world is the vast

(combinatorially large) number of possible species. In general there is not enough mass

for all to be explored, that is, for even one molecule of each to be created, so it is

not a question of which has the most stable structure theoretically, but which of those

that have been created is best at replicating. A simpler problem, advocated by many

authors instead, is to consider a reduced system of species, in which there are only two

species competing for a substrate. A good example of the two species are the left- and

right-handed chiral structures found in many living systems. Chemically, physically and
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thermodynamically they have the same stabilities, yet competition and other nonlinear

effects cause one to be eliminated and the other to become dominant.

2.1.4 Compartmentalisation: self-replicating micelles and vesicles

Experimental scenarios leading to self-reproducing vesicles have been successfully devel-

oped by Luisi’s group [46]. Walde et al. describe the conditions under which vesicles

formed by caprylic acid and oleic acid in water undergo autopoietic self-reproduction.

The increase in their population number is due to a reaction which takes place within

the spherical boundary of the vesicles themselves. This happens by letting caprylic

or oleic anhydride hydrolyze at alkaline pH. The initial increase of the concentration

of acid/carboxylate is slow, but the presence of vesicles above a critical concentration

brings about a rapid second phase leading to more vesicles being formed in an overall

autocatalytic process. The process of autopoietic self-reproduction of caprylic acid and

oleic acid vesicles was also studied as a function of temperature by Walde et al.. They

showed that by increasing temperature (up to 70◦C), the domain of rapid of vesicle

formation becomes steeper while the long initial slow phase is significantly shortened.

Models of self-replicating vesicles have been proposed and analysed by Coveney and

Wattis [47, 48]. They constructed a kinetic model based on a novel generalisation of the

Becker-Döring cluster equations which describe the stepwise growth and fragmentation

of vesicular structures. Their nonlinear kinetic model is complex and involves many

microscopic processes; however, by means of a systematic contraction of the complete

set of kinetic equations to the macroscopic limit, they showed that the model correctly

captures the experimentally observed behaviour of a long slow induction phase, a rapid

autocatalytic phase followed by slow convergence to equilibrium. This model was gen-

eralised further by Bolton and Wattis to account for the size templating effect observed

by Lonchin et al. and Berclaz et al. When the systems studied there were initiated with

no vesicles, a broad range of vesicle sizes developed slowly; whereas in a system with an

initial distribution of vesicles of one particular size (essentially monodisperse), vesicles

of the same size are produced more quickly [46, 49, 50].

2.1.5 Accumulation of nucleotides in hydrothermal pore systems

The RNA world requires high concentrations of small prebiotic molecules, whereas geo-

chemical extrapolations suggest the presence of a dilute prebiotic ocean with concentra-

tions comparable with modern day values [51]. Braun et al. proposed a potential solu-

tion to this discrepancy in concentrations using joint experiment and simulation [52, 53].

Combined solutions of the Navier-Stokes equations, molecular diffusion and heat transfer
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in two dimensions using a finite element solver in order to simulate molecular transport

in elongated hydrothermal pore systems influenced by a thermal gradient. They found

extreme accumulation of molecules in a wide variety of plugged pores. The authors state

that the mechanism is able to provide highly concentrated single nucleotides suitable for

operations of an RNA world at the origins of life [52]. Accumulation is driven by the

thermal gradient across a pore. The fluid is shuttled by thermal convection along the

pore, whereas the molecules drift across the pore driven by thermal diffusion. Baaske

et al. showed that millimetre-sized pores accumulate even single nucleotides more than

108-fold into micrometer-sized regions than would be the case without the thermal dif-

fusion. An enhanced concentration of molecules is found in the bulk water region near

the closed end of the pore. Because the accumulation depends exponentially on the pore

length and temperature difference, it is robust with respect to changes in cleft geome-

try and molecular dimensions. Baaske et al.’s findings suggest that, for life to evolve,

complicated active membrane transport is not required initially. Instead, interlinked

mineral pores in thermal gradients can provide a high concentration starting point for

the molecular evolution of life. A detailed overview of the simulation techniques used

in the various simulations, which are described in the following sections, is given in the

previous thesis chapter.

2.1.6 Free Energy

Free energy is the portion of energy that is available to perform thermodynamic work;

i.e., work mediated by thermal energy. Free energy is subject to irreversible loss in the

course of such work. The free energy is an indicator of the thermodynamic stability

of a system and it governs the direction of spontaneous change. The activated process

barrier, the change in free energy, can give us the kinetics of a system. The Gibbs free

energy is given by the equation:

∆G = ∆H − T∆S, (2.6)

where H is the enthalpy (H = U + pV, where p is the pressure and V is the volume), T

is the absolute temperature and S is the final entropy.

The Helmholtz free energy is given by:

∆F = ∆U − T∆S, (2.7)

where U is the internal energy of the system.
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In thermodynamics the chemical potential is a form of potential energy that can be

absorbed or released during a chemical reaction. The chemical potential of a species in

the mixture can be defined as the slope of the free energy of the system with respect to

a change in the number of moles of just that species. Thus, it is the partial derivative of

the free energy with respect to the amount of the species, all other species’ concentra-

tions in the mixture remaining constant, and at constant temperature. When pressure

is constant, chemical potential is the partial molar Gibbs free energy. At chemical equi-

librium or in phase equilibrium the total sum of chemical potentials is zero, as the free

energy is at a minimum.

µa = (
∂F

∂Na
)NV T = (

∂G

∂Na
)NPT , (2.8)

A partition function describes the statistical properties of a system in thermodynamic

equilibrium. They are functions of temperature and other parameters, such as the

volume enclosing a gas. Most of the thermodynamic properties of the system, such as

the total energy, free energy, entropy, and pressure, can be expressed in terms of the

partition function or its derivatives.

Q(N,V, T ) =
1

N !

1

h3N

∫
dpN exp[−p2/2mkT ]

∫
drN exp[−βU(rN )], (2.9)

Q(N,V, T ) =
1

Λ3NN !

∫
drN exp[−βU(rN )], (2.10)

where β = 1/kT and Λ = (h2/2πmkT )1/2.

F = −kT lnQ,S = kT
∆lnQ

∆T
+ klnQ,U = kT 2∆lnQ

∆T
, (2.11)

The challenge associated with calculating free energies is that a direct integration of the

partition function (sample the entire phase space) is not feasible. There are five broad

classes of methods which we can employ to calculate free energies. i) direct calculation

of the partition function, e.g., free energy of solids using lattice dynamics. ii) free energy

perturbation, e.g., umbrella sampling and expanded ensembles. iii) From the density of

states using the multi-canonical partition function. iv) Using potential of mean force

(free energy barriers) calculations. v) Thermodynamic integration.
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2.2 Molecular modelling

Previous sections have been concerned with studying the range of chemical kinetic mod-

els, based on the macroscopic law of mass action. Microscopic, molecular theory also

has much to say on origins of life. Origins of life studies have hitherto rarely used

computer simulation based molecular modelling techniques to understand the possible

chemical pathways to the formation of the first biomolecules. Simulation methods pro-

vide unlimited molecular information about systems that are difficult to characterise

experimentally because of a lack of measurement resolution and/or the extreme tem-

perature and pressure conditions associated with these origins of life systems. This

section considers the computational approaches used and the scientific insights gained

from these molecular simulation techniques in terms of origins of life studies.

2.2.1 Use of quantum mechanics simulations in origins of life research

Quantum mechanical (QM) treatments offer methods of simulating small numbers of

atoms at high levels of accuracy. QM studies are also known as ab initio, or first prin-

ciples, methods because, unlike molecular mechanics, they start by solving the ground

state electronic structure of the system of interest and, other than the electronic con-

figuration and atomic mass of the atoms present are essentially entirely, parameter free.

These methods offer unique insight into bond forming mechanisms, or detailed structural

and spectroscopic aspects that depend on small differences in local electronic structure.

As such, the primary places that QM is used in origins studies are within probing catal-

ysis (mainly mineral surface mediated) and chiral selectivity by minerals. In order to

make QM calculations tractable, and applicable to extended structures such as miner-

als, the periodic boundary conditions are often imposed in all three spatial directions

so that a small simulation cell is mathematically repeated in all space. By far the most

employed QM technique is the density functional theory (DFT) approach.

2.2.1.1 Reactivity at mineral surfaces

In contrast to other research areas within origins of life studies, much of the focus

of those involved in QM simulations has been in understanding the process of mineral

catalysed peptide bond formation with numerous groups electing to simulate this road to

a protein world as compared to those that favour the RNA world approach. One reason

for this bias is that the peptide forming reaction involves a relatively simple mechanism,

with small reactants, and hence is computationally tractable when compared to many

of the reactions involved in nucleic acid synthesis. A comprehensive review of peptide
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formation on minerals, including both experimental and molecular modelling studies,

is presented by Lambert [54], who identifies a range of simulation studies performed

between 1988 and 2007 on silicate, titania, clay and pyrites surfaces.

The peptide forming reaction requires a dehydration and condensation mechanism. It

can be readily appreciated that this would be highly disfavoured for amino acids in di-

lute solution. As such, mineral surfaces [9] and concentrated salt solutions (salt induced

peptide formation, SIPF [55]) have been postulated and experimentally shown to pro-

mote peptide bond formation, especially where these are coupled to wet/dry cycles as

is plausible in a putative tidal lagoon on the Hadean Earth. It is noteworthy that the

whole field of research into SIPF arose from Monte Carlo computer simulations of the

dehydration of sodium chloride solutions, which showed an unsaturated inner hydration

shell of sodium ions at above 3M concentration [56].

Mineral induced peptide formation also has a long research track record. Lahav and

co-workers experimented on various ways to activate amino acids from the mid-1970’s

onward [57, 58] and this was then investigated computationally by Loew et al. who used

QM (non-DFT) methods to look at the effect of these activating molecules (H3PO4,

H2SO4) and included clusters of atoms to represent clay edges (Al(OH)−4 and Si(OH)4)

[59].

Observing the dearth of mechanistic detail in many of the experimental reports on

clay mineral and alumina catalysed peptide bond formation, Aquino et al. looked

at amide bond formation using DFT, choosing to include explicit and implicit water

molecules, though approximating the amino acids in terms of the simpler species acetic

acid (CH3CO2H) and methylamine (CH3NH2) as the reactants [60]. The authors ex-

tended the earlier studies of Loew et al. by exploiting increasing computing power to

simulate a variety of Lewis and Brønsted acid sites, including Al(OH)3, [Al(H2O)5]
3+,

H+, H3O
+-H2O, and H2O and hence calculate activation energies with commensurate

thermodynamic outputs. A key conclusion was the importance of Lewis acid sites and

the effect of pH, which the authors saw as a challenge for future advances in the field.

Taking forward the seminal experimental work on SIPF of Rode et al. [61–64], which

showed that Cu2+ plays a key role in promoting abiotic peptide bond formation in wet-

ting and drying cycles, Rimola et al. [65] used DFT simulation methods to determine

that the solvated Cu2+ cation with explicit water molecules reduces the activation bar-

rier for peptide bond formation for di-glycine from 55 kcal.mol−1 to 20 kcal.mol−1 and

therefore favoured the forward dehydration reaction for peptide formation.
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2.2.1.2 Reactivity of amino acids in aqueous solution

In addition to the burgeoning literature on prebiotic peptide bond formation at a va-

riety of mineral surfaces, Nair et al. employed first principles molecular dynamics to

show that activating agents such as carbonyl sulphide (COS) in tandem with nonequi-

librium high pressure and temperature conditions just under the critical point for water

could also mediate peptide bond formation without needing to invoke additional min-

eral surfaces, though this does not fully address the concentration problem discussed

[66]. Experimental evidence for such processes had already been offered by Leman et

al. in the case of COS activation [67], and Huber and Wächtershäuser for hydrothermal

conditions [30]. The authors identified key constraints in this reaction, including that:

i) extreme conditions stabilise the required neutral forms of the reactants and as such

enhance potential reactivity under neutral pH conditions; ii) high temperatures ensure

increased thermal reactivity, and finally; iii) high pressure water changes the selectivity

to concerted rather than stepwise reaction pathways.

2.2.1.3 Chiral selectivity in minerals

A key area where DFT can add insight is that of understanding the specific binding

interactions of chiral proto-biomolecules and biomolecules at chiral surfaces in an effort

to elucidate where initial asymmetric imbalances may have seeded kinetic resolution

processes. One of the earlier studies using DFT, by Yu et al. [68], probed the structures

of the enantiomers of a model di-peptide interacting with the interlayer of nontronite,

an iron rich clay. The dipeptide of alanine (Ala) was found to exhibit different struc-

tures and different binding energies dependent on the enantiomer. The L-Ala-mineral

system was shown to be 6 kcal.mol−1 more stable than the corresponding D-Ala sys-

tem, with a readily identifiable conformational structural difference between the two

enantiomer-mineral systems. The authors report the compatibility of repeating motifs

of the clay structures with structural features of the di-peptides. Such motifs have also

been identified by Thyveetil as important in other layered mineral-biomolecule systems

[69].

2.2.2 Catalytic nature of mineral surfaces

Mathew and Luthey-Schulten used molecular dynamics, as described in the previous

chapter, to investigate a proposed origins of life scenario involving clay montmorillonite

and its catalytic role in forming oligonucleotides from activated nucleotides [70]. Their
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simulations provide atomic detail of reactant conformation prior to polynucleotide for-

mation, furnishing insight into reported experimental observations by Huang et al. [71].

The simulations clarify the catalytic role of metal ions, demonstrate that reactions lead-

ing to correct linkages take place primarily in the interlayer, and explain the observed

sequence selectivity in the elongation of the chain. Mathew et al. went further to com-

pare reaction probabilities involving L- and D-chiral forms of the reactants and found

enhancement of homochiral over heterochiral products when catalysed by montmoril-

lonite. The simulations confirmed the synthesis of oligonucleotides should proceed in the

3′-5′ direction when intercalated, just as in template directed synthesis in the RNA poly-

merase. Interestingly, in terms of origins of life studies, Mathew and Luthey-Schulten’s

simulations reveal increased regioselectivity for 3′-5′ over competing 2′-5′ linkage forma-

tion, as well as an overall increased catalytic effect when the reaction takes place in the

interlayer.

2.2.3 Stability of free and mineral-protected nucleic acids

Although deep ocean hydrothermal vents have generated particular interest as a possible

source of the first life forms, there remains the question of how biopolymers such as

RNA could have remained intact at the elevated temperatures and pressures around

these vents. One possible explanation is that clay-like particles may have acted as

structures which supported and protected nucleic acids once formed. Experimentally,

it has been shown that alkanes are formed when methanol reacts with smectites such

as montmorillonite under conditions similar to those at hydrothermal seafloor vents.

Although layered double hydroxides (LDHs) are not as naturally widespread in present

times, evidence suggests that during early ages of the Earth, called the Archean era,

minerals such as green rust, may have been much more common due to the lack of

oxygen in the atmosphere [72, 73].

Due to the nanoscale dimensions of the interlayer region of layered double hydroxides

(LDHs) (see Figure 2.2), the exact conformation of the intercalated DNA is difficult

to elucidate experimentally. Thyveetil et al. used molecular dynamics techniques per-

formed on supercomputing grids to carry out large scale simulations of double stranded,

linear and plasmid DNA up to 480 base pairs in length intercalated within a magnesium-

aluminium LDH [69].

Thyveetil et al.’s models were found to be in agreement with experimental observations,

according to which hydration is a crucial factor in determining the structural stability of

DNA. Phosphate backbone groups were shown to align with aluminium lattice positions.

At elevated temperatures and pressures, relevant to origins of life studies, some of which
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maintain that the earliest life forms originated around deep ocean hydrothermal vents,

the structural stability of LDH intercalated DNA is substantially enhanced as compared

to DNA in bulk water. Thyveetil et al.’s simulations use high temperatures and pressures

to observe how the structure and stability of DNA is altered under these conditions when

intercalated. The increasing temperature and pressure of the simulations confirmed the

DNA is stabilised once intercalated, since the number of Watson-Crick hydrogen bonds

rapidly degrades for DNA in bulk water under similar conditions.

2.2.4 The role of host layer flexibility in DNA guest intercalation

Another set of simulations performed by Thyveetil et al. used the same molecular dy-

namics techniques to investigate how layered double hydroxides can form staged inter-

mediate structures [72]. These staged intermediates have been observed experimentally,

although the mechanism of their formation has not been determined. Thyveetil et al.

showed that LDHs are flexible enough to corrugate around bulky intercalants such as

DNA. The simulations explore three possible intermediate structures that may form

during intercalation of DNA into Mg2Al–LDH and how the models differ energetically.

The results showed that when DNA strands are stacked directly on top of each other, the

LDH system has a higher potential energy than when they are stacked in a staggered

or interstratified manner. The simulations showed that, on average, greater diffusion

coefficients arise for DNA strands in the Daumas-Hérold configuration compared to a

Rüdorff model and Stage-1 structure - Figure 2.3 shows a schematic of the various staging

structures described.

Peristaltic modes were shown to be more prominent in the Daumas-Hérold structure

compared to the Rüdorff and Stage-1 structures and support a mechanism by means of

which bulky intercalated molecules such as DNA rapidly diffuse within interlayers.

2.3 Conclusions

This Chapter has reviewed chemical kinetic and molecular modelling approaches that

are now throwing very considerable light on numerous challenging issues associated with

the origin of life on Earth (and possibly elsewhere in the Universe). The methods avail-

able are powerful and wide ranging. They span a host of length and time scales, from

the quantum mechanical description of electron dynamics, through the atomistic and

molecular levels which are described most often by classical (Newtonian) mechanics, to

more mesoscopic and macroscopic levels which represent the collective kinetic behaviour
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Figure 2.2: Visualizations of molecular dynamics simulation snapshot of (a) 12 base-
pair DNA intercalated into an LDH; (b) 108bp DNA intercalated into a LDH; (c)
480bp plasmid intercalated into a LDH under ambient conditions (300 K and 1 atm).
Magnesium, aluminium, oxygen and hydrogen atoms in the LDH sheets are represented
as grey, pink, red and white spheres, respectively. The DNA strand has been coloured
yellow to represent the phosphate backbone and blue for the sugar groups and base
pairs. Water molecules have not been displayed and only one LDH sheet is visualised
for (b) and (c). Reproduced from [72] with permission.
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Figure 2.3: Schematic representation of the possible pathways by means of which lay-
ered materials could intercalate ionic species. LDHs are believed to form stage-2 in-
termediates through a Rüdorff model (a). More flexible materials such as graphite are
believed to follow a Daumas-Hérold pathway (b). Thyveetil et al.’s simulations show
that Mg2Al LDHs are able to distort due to the size difference between intercalated
DNA and chloride ions, supporting a Daumas-Hérold pathway for intercalation of large
biomolecules. The dashed lines indicate similarly staged areas in the two pathways.
Reproduced from [72] with permission.

of much larger assemblies of reacting and self-reproducing molecules. The research con-

tained in this thesis should help the subject of origins of life gain respectability from

within the scientific establishment and lead to stronger interactions between these the-

oretical approaches and related experimental research which can only serve to underpin

further advances in our understanding of the events which took place at the dawn of life

on Earth.

The intrinsic value of modelling approaches cannot be overestimated. Research by nu-

merous experimental groups has shown that many reactions of interest to prebiotic

chemists involve reactions between disordered pairs, or groups, of reactant molecules at

ordered mineral catalytic surfaces. Such reactions are not amenable to direct chemical

or physical analysis, not least as some occur within nanopore or micropore environments

deep within the catalytic mineral host. In this thesis, simulations using computational

chemistry methodology add insight into, amongst others, energetics at clay surfaces; the

properties of RNA within clay interlayers; and stability and folding kinetics of nucleic

acids at clay surfaces.
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The following chapter details the complex inorganic mineral, and bimolecular models

employed to investigate the various origins of life scenarios in the latter research chapters.



Chapter 3

Clay Mineral and Nucleic Acid

Structure

This chapter is concerned with outlining the structure of the cationic and anionic clay

minerals that are employed in our simulations in the following chapters. For both clay

types the two-dimensional sheet-like structure of the inorganic clay framework is dis-

cussed. Following the definition of the clay structures, details of the arrangement of

charge-balancing ions and associated water molecules within the interlayer region and

at the exposed aqueous mineral surface are given.

Following the classification of cationic and anionic clays in 3.1, the known structure and

conformation of nucleic acids in bulk water and intercalated within a mineral host is

addressed.

3.1 Structure of anionic and cationic clays

The clay minerals which are studied here are types of abundant, naturally occurring

materials formed by the weathering and decomposition of igneous rock and volcanic ash

[74]. Clays belong to a wider class of compounds known as layered materials which are

sometimes defined as “crystalline material wherein the atoms in the layers are cross-

linked by chemical bonds, while the atoms of adjacent layers interact by physical forces”

[75]. They usually comprise of the µm colloidal fraction of soil, sediment and rock. Both

clay layers and the interlayer space between layers have widths in the nanometer range.

By convention, types of clay are named by the charge of the interlayer species. For

example, naturally occurring cationic clay minerals have aluminosilicate sheets that

posses a negative charge, that dictates the interlayer species carry a positive charge

23
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(cationic). When the interlayer guest species is negatively charged (anionic) the mixed

metal hydroxide sheet is positively charged and is referred to as an anionic clay mineral.

It is uncommon that sufficiently large crystals of clay platelets are obtained for full

structural determination using single-crystal X-ray diffraction methods because of the

lack of any significant long range order. The distance between clay layers, the bulk

structure, can be inferred from the d-spacings gained from powder X-ray diffraction

(PXRD) methods, but generally clays are characterised by the lack of any significant

long range order.

It is possible to make the distinction between mono-layer and bilayer arrangements, and

to infer the orientation of anisotropic interlayer guests from the interlayer spacing, de-

termined by PXRD. The lateral arrangement of interlayer guest species however, cannot

be easily obtained using these methods. For this reason simulation is well suited to the

application of clay science for the resolution and accuracy available.

Neutron diffraction has been successfully used to ascertain the interlayer spacing of clay

minerals. It has also been demonstrated as a method for determining the positions and

self-diffusion dynamics of interlayer species that have been isotopically labeled [76, 77].

3.1.1 Layered double hydroxides

Layered double hydroxides (LDHs) are a family of compounds which have layers con-

sisting of divalent and trivalent cations octahedrally coordinated with hydroxide ions

(see Figure 3.1). LDHs are structurally similar to brucite whose general formula is

[Mg(OH)2]. The brucite sheets are neutral in charge but held together by a weak hy-

drogen bonding network which manifests in the material being soft and easy to cleave

apart. The difference between brucite and LDHs is that the regular divalent cation have

been isomorphically substituted with trivalent cations. This produces an overall posi-

tive charge which is compensated by the anionic interlayer guest species. The general

chemical formula of the main group of LDHs is:

[M2+
1−xM

3+
x (OH)2]A

n−
x/n·mH2O, (3.1)

where M2+ and M3+ are divalent and trivalent cations respectively, and A is an anion of

valence n. The various possibilities of divalent and trivalent cation identities and ratios

give rise to a wide variety of compositions and stoichiometry. M2+ can represent Mg,

Mn, Fe, Co, Ni, Cu and Zn, whereas M3+ can represent Al, Mn, Fe, Co, Ni, Cr and Ga

[78].
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M2+, M3+

OH- hydroxyl

Interlayer region
(An-)(x/n), mH2O

Hydrotalcite layer
(M2+)(1-x)(M3+)(x)(OH)2

Figure 3.1: Schematic of a simple LDH. Two cation layers are shown with one interlayer
region occupied by anionic species and water molecules.

It is not yet fully understood how the isomorphic substitution of divalent for trivalent

metal ions arrange within the LDH layers. It is thought that the repulsion between

ions could result in an ordered arrangement to minimise the energy. This is particularly

true when the MgAl ratio is low. Experiments using atomic force microscopy show

LDHs exhibit short range order [79]. Long range order within LDHs has only been

observed in Li/Al and Mg/Ga LDHs [80, 81]. Short range ordering was found to minimise

the cation/cation repulsion in anhydrous inorganic LDHs although the first principles

approach used suffers from finite size effects [82].

A characteristic property of anionic clays is their ability to possess a variety of different

stacking conformations. A layered compound which differs in stacking sequence can be

called a polytype. Two principal forms, or polytypes, of LDHs are known: the two-

layer repeat hexagonal structure, mannaseite, and the three-layer repeat rhombohedral

structure, hydrotalcite. It is after the latter naturally occurring mineral that the Mg-Al

LDHs are generically referred to as being hydrotalcite-like. Further polytypes appear

in this class of minerals depending on the way in which successive layers stack [83].

Hydroxyl groups above the mid-plane are labeled A, and below labelled C. Cations oc-

cupy octahedral positions, C. When the hydroxyl groups are stacked directly on top of

each other, this is called a prismatic arrangement (P-type). If the layers are offset by a

lattice translation of (1/3, 2/3) or (2/3, 1/3) then this forms an octahedral arrangement

(O-type). Naturally occurring hydrotalcite is an Al/Mg-LDH which has a 3R rhombo-

hedral unit cell, consisting of three layers with the hydroxyl groups aligned in a sequence

(BC-CA-AB-BC-...).
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Different polytypes are often found intergrown in mineral samples. The manasseite forms

the core with hydrotalcite forming the outer parts of the grain [84]. This indicates that

manasseite is produced at higher pressures than hydrotalcite. Calle et al. [84] suggested

that the reason for this is that 3R1 polytype can be constructed much more easily from

a stack of identical brucite layers. The translation needed to produce the 3R1 polytype

is (2a/3+b/3), whereas for a 2H1 polytype the same translation is needed followed by a

rotation of 60 degrees. It has also been shown that temperature has an effect on stacking

order. Hines and Solin demonstrated a transition from the 3R at 25oC to 2H at 150oC

for a Zn/Al-LDH [85].

The structure of the AlMg LDH has been investigated using a number of different

experimental approaches. Properties such as cation bond lengths, the stacking of layers

and cationic ordering have all been determined by Bellotto et al. using X-ray diffraction

(XRD) methods [81]. To perform accurate XRD analysis samples of LDHs must be

highly crystalline and have virtually no stacking faults. If they do it is difficult to

carry out Rietveld analysis on the structure. Stacking faults arise from the random

orientation of successively stacked layers and they prevent the ideal packing of the clay

sheets. In particular, (10l) reflections have a characteristic “shark fin” shape which is

most commonly associated with basal plane slippage. Rietveld analysis of LDHs have

often used the rhombohedral space group R3m. Bellotto et al. also tried to refine the

structure with a P3 space group to test for the presence of cationic ordering. There was

no improvement in the statistical indices, compared to the R3m space group, indicating

a lack of ordering.

The rigidity and bending modulus of clay platelets are difficult to measure experimentally

because of their small dimensions. Thorpe presented a way to measure the rigidity of clay

platelets which contain mixed intercalated ions [86]. The basal spacing surrounding large

ions will decrease smoothly away from the intercalate site as the LDH layer corrugates

around the ions. This area is known as the “catchment area” and is given the symbol

p which corresponds to the number of lattice sites in this region. Solin et al. altered

the composition of Ni/Al LDHs intercalated with CO2−
3 and found the resulting basal

spacings using XRD [87]. The number of lattice sites in the catchment area was found

to be p ∼ 5. This showed that LDHs are less rigid than smectites but more rigid than

graphite.

X-ray diffraction patterns are able to resolve the location and the bonding of interlayer

atoms, but they are insufficient at elucidating the subtle structural information such

as hydrogen bonding networks and inner sphere complexation. It is difficult to obtain

fine grained crystals of LDHs and as such it is difficult to obtain this data from XRD

experiments. The Rietveld technique is often used to refine the structural details like
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atomic coordinates and site dependencies, but only if the ideal structure is known. The

Rietveld refinement uses the observed powder X-ray diffraction pattern and compares it

to the calculated pattern derived from a space group.

Another feature of LDH minerals that make them difficult to study experimentally is the

lack of order in the arrangement of water molecules around the mineral interface. The

nature of water at the mineral interface is determined by the charge density which also

dictates whether the surface is hydrophobic or hydrophilic. Water associated with the

LDH mineral can be divided up into three types: external surface, inter-particle pore

and intercalated water. Constantino and Pinnavaia investigated the behaviour of water

in MgAl LDHs as a function of charge density [88]. They showed the water content

as a function of temperature using thermogravimetric analysis (TGA) revealing that

interfacial pore water was readily removed at around 60◦C. The results showed a step

function between 110 and 250◦C; evidence of the loss of interlayer water.

The arrangement of organic molecules within the LDH interlayer region is dependant

on the structure of those molecules as well as the water content within the interlayer

gallery. Early studies of the arrangement of terephthalate ions intercalated within an

MgAl LDH used combined simulation and experiment to show that the water content

can greatly effect the basal spacing distance and consequently how the intercalated

molecules arrange themselves [89].

Newman et al. used molecular dynamics techniques to investigate the nonlinear varia-

tions in basal spacing as a function of hydration for LDH compounds [90]. They showed

that at higher levels of hydrations the terephthalate ions arrange perpendicular to the

mineral surface which gave a basal spacing of 14 Å whereas less hydrated systems forced

the ions parallel to the surface giving a spacing of 8.4 Å.

The ratio between Mg2+ and Al3+ ions is an important feature of LDH compounds.

Different ratios lead to a change in charge densities. Basal spacings have been shown

to be lower for LDHs with a low MgAl ratios, which can be attributed to the greater

energy of repulsion between layers.

3.1.2 Smectite clays

Smectite clays are a type of 2:1 layered compound which are built of an octahedral

layer sandwiched between two tetrahedral layers, denoted by the terminology T-O-T.

The central/inner layer consists of divalent or trivalent cations octahedrally coordinated

with hydroxyl groups. The exposed outer layers consists of silicon atoms tetrahedrally
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coordinated to oxygen. Smectites consist of negatively charged, crystalline aluminosili-

cate sheets. The montmorillonite type of smectite has a structure comprising stacks of

pyrophyllite-like layers, [Al2Si4O10(OH)2], each of which consists of an octahedral alu-

mina sheet sandwiched between two tetrahedral silica sheets. The negative charge arises

from partial substitution of metal ions in typically both the octahedral and tetrahedral

sheets.

Figure 3.2: Schematic of a simple smectite clay showing a layer composed of an octa-
hedral, Oh, alumina sheet between two tetrahedral silica sheets.

[MgxAl2−x(OH)2(Si4O10)](C
n+)x/n · nH2O, (3.2)

where C is a cation of valence n, commonly Na+, Ca2+ and Mg2+. Kaolinites have

no partial substitution of metal cations in the octahedral sheet and as such are charge

neutral. Smectites have variable basal spacing as a function of hydration and nature

of the intercalated species. Simulation and experiment have both recreated hysteresis

hydration curves of smectite clays. The function shows discrete steps that correspond to

the adsorption of one, two and three layers of water to the mineral surface. Experimen-

tally there are two types of water adsorption: intralayer swelling caused by hydration of

the exchangeable intercalated cations and the insertion of water between clay platelets
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[91]. The size and the charge of the saturating cations govern the adsorption of water

into the interlayer. Na+ clays are more likely to swell than K+ clays and less likely than

Li+, as they have the largest hydration energy which gives them a larger tendency to

swell [92].

Naturally occurring smectites tend to have inorganic species such as Li+, Na+ and K+,

adsorbed in the interlayer region. These can be exchanged for more complex charged

species such as alkyl ammonium cations. There are two specific region within the smec-

tite structure that are hydrophobic and hydrophilic. The structure and arrangement of

cations and water within the interlayer region of smectites has been studied by various

experimental techniques: neutron diffraction [93], XRD [91] and infrared spectroscopy

[94].

Due to various properties such as good biocompatibility and ion exchange capability,

smectite clays like montmorillonite have gained considerable interest in pharmaceutical

applications. The strong association between the mineral and species such as metal

oxides and silicates, as well as biological molecules like nucleic acids, proteins and sugars.

Adsorption pathways of biomolecules and organic species at the smectite interface has

gained much attention due to these applications [95, 96].

Experiments were carried out on montmorillonite interacting with the enzymes: lysozyme,

lactoglobulin, chymotrypsin, pepsin and haemoglobin [97]. The theoretically calculated

basal spacings were in agreement with those found experimentally, with the exception

of pepsin which is thought to unfold whilst intercalated. Haemoglobin has been shown

to be immobilised when intercalated within a Na+-montmorillonite. This allows direct

measurement of electrochemical properties of the haemoglobin in the native conforma-

tion.

The mechanism by which nucleic acids intercalate and adsorb on smectite surfaces is

not fully understood and it is one of the main scientific questions that is addressed in

this thesis. Pyrimidine and purine nucleotides are readily intercalated within montmo-

rillonite despite both carrying a negative charge but some intercalate more readily than

others, for example the purine, adenine adsorbs more readily than other nucleotides [98].

Several studies have shown that pyrimidine nucleotides are less likely to adsorb to the

surface of montmorillonite than purines [99].

Winter et al. have shown that montmorillonite surfaces promote cooperative bonding

whereby hydrogen bonds form between uracil purines which lay adjacent and parallel/flat

to the mineral surface [100].
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3.2 Structure of nucleic acids

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are linear polymers of nu-

cleotide monomers. The length of these polymers can range from 20 nucleotides for

small interfering RNA (siRNA) to 108 nucleotides for chromosomal DNA. In modern

biology, DNA is the carrier of genetic information. DNA is passed on from parent to

daughter cells and from progenitor to progeny. Messenger RNA (mRNA) is transcribed

from DNA and used as a template for the synthesis of proteins, a process known as

translation. Proteins carry out many essential tasks in the modern day cell including

enzyme catalysis, motor activity and information relay.

Figure 3.3: a) The basic constituent parts which make DNA and RNA: the phosphate
backbone, pentose sugar and heterocyclic base. b) the chemical structure of the 2-
deoxy-D-ribose sugar of DNA. RNA differs by an additional hydroxyl at the 2′ position
of the sugar.

3.2.1 Deoxyribonucleic acid

A simplistic view of DNA structure can be understood by viewing it as a constituent

phosphate backbone, a 2-deoxy-D-ribose sugar and a heterocyclic base (see Figure 3.3),

but this is now thought of as misleading. Sutherland et al. have demonstrated that

activated pyrimidine ribonucleotides can be formed in a short sequence that bypasses free

ribose and the nucleobases, and instead proceeds through arabinose amino-oxazoline and

anhydronucleoside intermediates [101]. The heterocyclic base can be a purine (adenine

or guanine) or a pyrimidine base (cytosine or thymine), as shown in Figure 3.4.

Throughout this thesis the terms ‘nucleosides’ and ‘nucleotides’ will be used. Nucleosides

are deoxyribose sugars linked to a heterocyclic base, e.g. Deoxyadenosine. Nucleotides

are phosphate esters of nucleosides, e.g. Deoxycytidine 3′-phosphate which can be ab-

breviated to 3′-dCMP, or dCp. The primary structure of DNA is a polymer strand

formed by joining nucleotide from the 3′ hydroxyl group to the 5′ hydroxyl of the next

nucleotide via a phosphate ester (see Figure 3.5). No 5′-5′ or 3′-3′ linkages are found

in biological nucleic acids (except the mRNA cap). The primary structure of nucleic

acids is only determined by the sequence of bases and is commonly written in the 5′-3′
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Figure 3.4: The four DNA bases: purine bases, adenine & guanine and the two pyrim-
idine bases, cytosine & thymine.

direction, e.g. the DNA shown in Figure 3.5 a) can be written like dpTpApT, or more

simply as TAT.

Figure 3.5: The secondary structure of DNA. a) A single strand of DNA of sequence
adenine-thymine-adenine shown in the 5′-3′ direction. b) A DNA duplex showing
Watson-Crick hydrogen bonding between CG, TA and AT base pairs. c) The tertiary
structure of DNA showing the orientation of bases relative to the phosphate backbone.

Hydrogen bonding between lone pairs of ring nitrogen or carbonyl oxygens with NH2 or

NH groups allow the formation of a duplex DNA helix. Figure 3.6 b) shows Watson-

Crick hydrogen bonding between complementary bases which make up the secondary

structure of DNA. The tertiary structure of DNA, shown in Figure 3.6 c), is made of two

DNA strands which form an anti-parallel helix. The base pairs arrange perpendicular

to the phosphate backbone. The minor and major grooves are a defining characteristic
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of the tertiary DNA structure. The tertiary structure is determined by the conforma-

tional preferences of the nucleotides. Minor perturbations in these conformations lead

to differently shaped DNA. DNA is most commonly found in the B-DNA form. B-DNA

forms in high humidity and low salt concentrations. It is a right handed helical structure

with 10 base pairs per turn with bases perpendicular to the helix axis (shown in Figure

3.5. A-DNA is right handed, like B-DNA, but there is an increase in the number of base

pairs per turn that gives a more compact structure. Z-DNA has a left handed helical

structure and is favoured for alternating guanine-cytosine sequences.

Figure 3.6: The tertiary structure of DNA showing A-, B- and Z-type DNA and their
differences in major and minor groove width.

3.2.2 Ribonucleic acid

RNA differs from DNA in that it has an additional hydroxyl group at the 2′ carbon

position of the ribose. This difference produces a chemical instability in RNA that is

absent in DNA. RNA is unstable to base cleavage at the 2′ -OH. The RNA bases are

adenine, guanine and cytosine which are the same as the DNA bases but RNA has a

uracil base (see Figure 3.7) in place of the DNA base thymine.

Unlike DNA, RNA is usually single stranded, but it can form elements of secondary

structure via hydrogen bonding networks with non adjacent bases.
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Figure 3.7: The four RNA bases, like those of DNA in Figure 3.4 but Thymine is
substituted for uracil.

Figure 3.8: The secondary structure of RNA. a) a single strand of RNA of sequence
CU. b) RNA duplex of sequence CU.

3.2.3 Peptide nucleic acid

Peptide nucleic acid is a synthetic nucleic acid first synthesised by Nielson et al. [102].

DNA and RNA have a charged phosphate backbone whereas PNA is composed of re-

peating N-(2-aminoethyl)-glycine units chemically linked via peptide bonds. Purine and

pyrimidine bases (shown if Figures 3.7 and 3.4) are attached to the PNA backbone via

methyl and carbonyl groups (see Figure 3.9).

It has been shown that the PNA:DNA binding is more energetically favourable than in

a DNA:DNA duplex due to the decreased electrostatic repulsion [103]. The secondary

structure of a PNA:DNA duplex is shown in Figure 3.9 b).
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Figure 3.9: a) A single strand of PNA with the monomer in square brackets. b)
PNA:DNA duplex strand.



Chapter 4

Biomolecular & Inorganic

Simulation Techniques

The focus of this chapter is on the physio-chemical theories which underpin molecular

simulation techniques. The development and selection of potentials used to describe

the molecular interactions and detail specific inorganic and biomolecular force fields

which we employ to run molecular dynamics simulations are discussed. The chapter

concludes by presenting the substantial computational resources needed to run modern

day molecular simulations.

4.1 Potential parameterisation

Potentials are algorithms that generate energy surfaces. In this respect, it is always

possible to tackle ground state problems in terms of potentials. Because potentials

are related to models of system behaviour, they often contain a number of physical

approximations. They can be generic to a class of compounds or molecules or they can

be specific to a material or molecule. Simulation potentials can be divided into three

categories: i) Model potentials are primarily used for testing theories; ii) Valence force

fields are intramolecular potentials for covalent systems. They are often used systems

where there is no interest in bond formation/breaking; iii) Central force potentials are

ionic; the pair interaction depends only on distances between atoms or ions e.g. rare

gases and ionic solids.

Valence force fields feature potential functions that describe the degrees of freedom of

the molecule. These components define the geometry: bonds, bond angles, torsions and

non-bonded contacts. One functional form for such an empirical force field is:

35
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U(rN ) = bonds + angles + torsions + non-bonded (4.1)

bonds =
∑
bonds

ki
2

(li − li,0)2

angles =
∑
angles

ki
2

(θi − θi,0)2

torsions =
∑

torsions

Vn
2

(1− cos(nω − γ))

non-bonded =
N∑
i=1

N∑
j=i+1

(4εij [(
σij
rij

)12 − (
σij
rij

)6] +
qiqj

4πε0rij
),

where U(rN ) denotes the potential energy as a function of the collective position r of

N atoms. The various contributions are schematically represented in Figure 4.1. The

first term in Equation 4.1 models the interaction between pairs of bonded atoms using

a harmonic potential that gives the increase in energy as the bond length li deviates

from the reference value li,0. The second term is a summation over all valance angles

using a harmonic potential. The third is a torsional term which describes how the

energy changes as the bonds rotate. The fourth term in Equation 4.1 is the non-bonded

term which describes the interaction between all pairs of atoms (i and j) that are in

different molecules or in the same molecule but separated by at least three bonds. It

is common in force fields to model the non-bonding term using a Coulomb potential

for the electrostatic interactions and a Lennard-Jones potential for the van der Waals

interactions.

4.1.1 Water models

There is a large number of water models for (bio)molecular simulation. These models are

classified by three types: Rigid models with a fixed geometry, flexible models that include

vibrational degrees of freedom and polarisable models which account explicitly for polar-

isation. The most widely used water models for biomolecular simulation are of the rigid

type. Two of the most popular models are the TIP (Transferable Interaction Potential)

[104] and SPC (Single Point Charge) [105]. These have been parameterised to reproduce

the properties of liquid water at ambient temperature and pressure conditions. All SPC

water models have three interaction sites centred on the atomic nuclei. The model con-

sists of positive partial charges on the hydrogen atoms and negative on the oxygen atom

with a non-zero Lennard-Jones parameter on the oxygen only. The extended SPC mod-

els (SPC/E) corrects for the interaction energy from the self-polarisation of water. The
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Figure 4.1: Schematic representation of the four key contributions to a molecular me-
chanics force field: bond stretching, angle bending, torsional terms and non-bonding
interactions.

SPC/E model accurately models the bulk behaviour of water. The SPC water model

reproduces many properties of bulk water, including radial distribution functions, dif-

fusion coefficients, rotational relaxation times, dielectric permiativity, Debye relaxation

time, heat capacity, excess Helmholtz energy and shear viscosity.

4.1.2 Biomolecular potentials

The AMBER (Assisted Model Building with Energy Refinement) biomolecular force

field has been in constant development since the 1980s under the leadership of Peter

Kollman at the University of California, San Francisco. The version termed ‘ff99’ is the

most widely adopted for nucleic acid moieties [106]. The ff99 version is an all-atom force

field with fixed partial charges centred on atoms. ff02 was developed as a polarisable

variant of the ff99 force field [107]. ff02 has polarisable dipoles at the atoms that can be

calculated iteratively at each step, or propagated with the atomic positions as additional

dynamical variables.

An alternative to the AMBER force field set is the CHARMM (Chemistry at HARvard

Molecular Mechanics) force fields developed by Martin Karplus at Harvard University.

The param force fields (of which param27 is the most recent) have fixed partial charges
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centred on atoms [108]. The charges are based on ab initio dimer energies and geometries.

The CHARMM force field set has a fluctuating charge force field that is polarisable and

allows the redistribution of atomic charges to yield equivalent electronegativity [109].

The CHARMM Drude force field is currently in development. It is based on the Drude

model; i.e. introduction of ‘massless’ virtual sites (Drude particles) carrying partial

electric charge and attached to individual atoms via a harmonic spring.

The final biomolecular force field set we will discuss is the GROMOS (GROningen

MOlecular Simulation) set developed under the leadership of Wilfred van Gunsteren

at ETH Zurich. The GROMOS force fields are normally used in conjunction with the

GROMACS molecular dynamics code. The major version is ‘53A6’ which is a united-

atom force field (implicit aliphatic hydrogen), with fixed partial charges centred on atoms

[110].

The cited force fields all have strengths and weaknesses. It would be difficult to demon-

strate that one of them is better or worse that the others in all circumstances. There

are a number of recent force field comparisons, mostly showing that there is still room

for improvement in all of them [111–113].

4.1.3 Inorganic potentials

Due to the complexities of the structure and composition of clay and other hydrated

minerals, and the inherent uncertainties of the experimental methods, it is important

to apply theoretical molecular models for a fundamental atomic-level understanding, in-

terpretation and prediction of these phenomena. The ClayFF force field was developed

by Cygan and co-workers at Sandia National Laboratories to address these concerns.

ClayFF is a general force field suitable for the simulation of hydrated and multicompo-

nent mineral systems and their interfaces with aqueous solutions [114]. The interatomic

potentials were derived from parameterisations incorporating structural and spectro-

scopic data for a wide variety of simple hydrated compounds. ClayFF adopts the SPC

model to describe the water and hydroxyl behaviour (see Section 4.1.1). The metal-

oxygen interactions are described by a Lennard-Jones function and a Coulombic term

with partial charges derived by Mulliken and electrostatic potential (ESP) analysis of

density functional theory (DFT) results. The force field was validated using experimen-

tal and spectroscopic data on bulk structure, relaxed surface structure and intercalation

processes. The interatomic interactions in the ClayFF force field are treated as non-

bonded which allows it to be applied to a wide range phases and accounts for the energy

and momentum transfer between the fluid phase and solid.
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4.1.4 Mixing rules

Ab initio, also known as first principals, calculations can calculate the energies and

geometries of a system to a great deal of accuracy. However, these methods are limited

by the size and length scales available, currently only tens of atoms for picoseconds.

Investigation of the conformation and dynamics for complex biomolecules and mineral

surface structures in explicit aqueous solvent is only really feasible using classical sim-

ulation techniques that are dependant on the force field potentials used to describe the

interactions.

A common method for developing a force field starts with choosing an appropriate func-

tional form for the type of interaction to be modelled then fitting the free parameters to

a number of observable properties or ab initio calculations [96]. Force fields that describe

the interaction between biological and inorganic systems present additional challenges

to those used in systems that fall into a one category. Force fields typed for use with

biomolecules traditionally use covalent intramolecular interactions with intermolecular

interactions modelled with van der Waals and Coulomb descriptions between partial

charges. Force field models for the majority of ionic crystal, mineral systems are based

on the Born model for solids, with the interactions between the ions being dominated

by long-range electrostatic interactions between ions with formal charges, and short-

range potentials describing the van der Waals interactions and the Pauli repulsion [114].

Because each model uses a different charge model, there is no one way to derive the

cross-terms needed for a full description of the interactions. A possible method is to

use the organic potential parameters for the ions of the inorganic crystal, along with

the Lorentz-Berthelot mixing rules (See reference 126 in [96]) to generate the potentials

required. The Lorentz rule [115] is given by:

σij =
σii + σjj

2
, (4.2)

where sigma, σ, is the distance at which the intermolecular potential between the two

atoms is zero. The Lorentz rule is only valid for the hard sphere model. The Berthelot

rule [116] is given by:

εij =
√
εiiεjj , (4.3)

where epsilon, ε, is the well depth of the Lennard-Jones potential function.
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However, this approach often leads to high binding energies and short equilibrium in-

teratomic distances [117–120]. This is a clear example of the transferability problem

where the crystalline environment has a strong effect on interactions. A second prob-

lem encountered for interfaces is the lack of experimental data which can be used to fit

potentials. Relevant experimental data, such as immersion and desorption enthalpies,

are available for a limited number of systems, but there is insufficient data for fitting

purposes.

The description of divalent cations associated with large polarisation and charge transfer

still poses a challenge in molecular dynamics. Šponer et al. show the Mg2+-N7(guanine)

interaction energy term is 210 kcal/mol, while the force field accounts for only 150

kcal/mol [121]. Non-additivity in the first ligand shell of Mg2+ is 70 kcal/mol, mainly

due to inter-ligand polarisation repulsion [122]. In reality, the first-shell water molecules

are heavily polarised by the ion and their H-bonding properties are very different from

those of bulk water molecules [123]. The force fields can be biased towards direct (inner-

shell) binding of Mg2+ to solute. It is suggested that the sampling of divalent ions is

entirely insufficient in affordable simulations.

4.1.5 Chosen models

The Amber parm99 forcefield was used to describe the bonding interactions and to

provide the partial charges for RNA and DNA molecules [124] in Chapters 7 through

to 8. The parmbsc0 refinement was used to provide an improved description of the α/γ

concerted rotations within the RNA and DNA [125]. The Amber forcefield has been used

extensively to simulate nucleic acids and reproduces well the structure and dynamics of

nucleic acid moieties, including Watson-Crick base pairing [125–127]. We parameterised

the PNA (peptide nucleic acid) in Chapter 5 using the forcefield developed by Shields et

al. [128] which was found to reproduce PNA structural properties with good accuracy.

The ClayFF forcefield was used to provide parameters for atoms belonging to the in-

organic LDH and montmorillonite in Chapters 7 to 8 [114]. ClayFF produces good

agreement with experiment for layered double hydroxides in terms of lattice parameters,

water diffusion coefficients and far-infrared spectra [129, 130]. Recently a reparameteri-

sation of the ClayFF forcefield was performed using electrostatic potentials derived from

plane-wave density functional theory calculations to address certain thermodynamic is-

sues [131]. Because we are not concerned with clay “edges”, as we are only examining

the LDH basal surface, these thermodynamic issues do not arise in our work and Cygan

et al.’s original ClayFF forcefield parameterisation more than suffices [114].
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Both parm99 and ClayFF use a harmonic potential for bond terms, while ClayFF is

an ionic forcefield with no angle or dihedral terms, making the two forcefields simple

to combine. Lorentz-Berthelot mixing rules were used to supply the missing Lennard-

Jones parameters. These mixing rules estimate intermolecular potential parameters of

the Lennard-Jones potential using an arithmetic average for the collision diameter and a

geometric average for the well depth; they work well in situations in which the dominant

interactions are electrostatic, as is the case here [69, 72, 96, 132, 133].

Water molecules were described using the flexible single-point charge (SPC/E) model

[105]. The SPC/E water model reproduces the bulk structure of water accurately but

there are limitations of using non-polarizable water models compared with the compu-

tationally more expensive polarizable models. A review of various water models and

their associated advantages and disadvantages can be found in Chapter 4.1.1 and in the

following references [134, 135]. A cutoff of 10 Å was imposed on the Lennard-Jones

interactions. Periodic boundary conditions were imposed in all three spatial directions.

Coulombic interactions were computed using Ewald summation and the particle-particle,

particle-mesh method with a precision value of 0.001 and a grid order of 4 [136].

Because the ClayFF and Amber forcefields are parameterized at ambient temperatures

and pressures, the forcefields are likely to be less reliable at the higher temperatures

and pressures. Nevertheless, the higher temperature and pressure simulations within

Chapter 5 provide important qualitative comparisons between the different nucleic acid

models and furnish insight into the effects of temperature and pressure on these models,

as previously reported [137]. A discussion on the reliability of nucleic acid forcefields

under various conditions (as well as at long timescales) is given by [126].

4.2 Molecular dynamics techniques

Molecular Dynamics is the solution of the classical equations of motion for atoms and

molecules in order to obtain the time evolution of the system. The trajectories of the

molecular system are obtained by solving the differential equations embodied in Newton’s

second law:

d2xi
dt2

=
Fxi
mi

(4.4)

where the motion of a particle of mass mi along one coordinate (xi) has the force Fxi

in that direction. Finite difference techniques are used to generate molecular dynamics

trajectories with continuous potential models. The idea is that the integration is broken



Chapter 4. Simulation techniques 42

down into small stages, each separated in time by a fixed time step, δt. The total force

on each particle in the configuration at time t is calculated as the vector sum of its

interactions with other particles. From the force we can determine the accelerations of

the particles which can then be combined with the positions and velocities at a time

to calculate the positions and velocities at time t + δt. The force is assumed to be

constant during the time step. The force on the particle in their new positions are then

determined, leading to new positions and velocities at time t+ 2δt, and so on.

There are many algorithms for integrating the equations of motion using finite difference

methods for molecular dynamics simulations. All algorithms assume that the positions

and dynamic properties can be approximated as Taylor series expansions:

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) +

1

6
δt3b(t) +

1

24
δt4c(t), (4.5)

v(t+ δt) = v(t) + δta(t) +
1

2
δt2b(t) +

1

6
δt3c(t),

a(t+ δt) = a(t) + δtb(t) +
1

2
δt2c(t),

b(t+ δt) = b(t) + δtc(t),

where v is the velocity (the first derivative of the positions with respect to time), a is the

acceleration (second derivative), b the third derivative, and so on. The Verlet algorithm

is widely used to integrate the equations of motion [138]. The Verlet algorithm uses the

positions and accelerations at time t, and the position from the previous step, r(t− δt),
to calculate the new positions at t+ δt:

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) + ..., (4.6)

r(t− δt) = r(t)− δtv(t)− 1

2
δt2a(t)− ...,

the addition of the equations above gives:

r(t+ δt) = 2r(t)− r(t− δt) + δt2a(t), (4.7)

The velocities can be calculated by dividing the difference in positions at two times, on

the time step or alternatively at the half-step:

v(t) = [r(t+ δt)− r(t− δt)]/2δt,v(t+
1

2
δt) = [r(t+ δt)− r(t)]/δt, (4.8)
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The Verlet leapfrog algorithm is a development of the standard Verlet method that first

calculates the velocities v(t+ 1
2 t) from the velocities at time t− 1

2δt and the accelerations

at time t. The positions are then deduced from the velocities just calculated together

with the positions at time r(t) using this equation:

r(t+ δt) = [r(t) + δtv(t+
1

2
δt),v(t+

1

2
δt) = v(t− 1

2
δt) + δta(t), (4.9)

The velocities thus ‘leap frog’ over the positions. The leap frog approach is advantageous

because it explicitly includes the velocity and does not require the calculation of the

differences of large numbers. However, the positions and velocities are not synchronised.

This means that it is not possible to calculate the kinetic energy contribution to the

total energy at the same time as the positions are defined.

The Large-scale Atomistic/Molecular Massively Parallel Simulator (LAMMPS) [136] was

used to perform all the simulations reported in this thesis. LAMMPS was used because

of its highly scalable nature.

4.2.1 SHAKE

The integration time step in MD simulations is limited by the highest frequency motion

in the system. This is usually the hydroxyl bond vibration which occurs on the timescale

of approximately 50 fs. Treating bonds as a classical harmonic oscillator is not necessarily

a better approximation to the quantum-mechanical nature of the bond than using a

constraint. The SHAKE algorithm constrains the highest frequency motions [139]. As

a result, the time step can be increased and the range of frequencies is reduced, leading

to faster redistribution of energy between modes.

The iterative SHAKE method treats each constraint independently. The method may

fail if the atomic displacement is very large (e.g. due to a too long time step or a spurious

collision).

4.2.2 Improved sampling methods

Direct molecular dynamics can in principle simulate diffusion, but for many processes

the timescales are too long. Direct MD simulations have time scales on the order of

nanoseconds. Real time scales for processes such as protein folding are often of the

order of microseconds or more. The motivation for using the following so called improved

sampling methods is the enhanced configurational sampling they deliver. This section
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mentions a number of different sampling techniques but will focus mainly on the replica

exchange molecular dynamics (REMD) method.

4.2.2.1 Transition state theory

If the barrier between different states is large, the system spends most of the time explor-

ing a single energy basin. Transitions to neighbouring basins are very rapid compared

to this (the correlation time is much shorter than the residence time). The evolution

of such a system is a series of discrete hops. In this limit, it is possible to calculate

hopping rates without calculating trajectories. Transition state theory assumes a saddle

hypersurface such that a system, once it has crossed it, cannot return [140]. Transition

state theory gives us the Arrhenius expression:

k = ν0 exp(
Ea
kbT

), (4.10)

where the rate constant, k, is given by the exponential of the activation energy Ea

multiplied by the prefactor ν0. Vineyard’s formulation of the theory gives an expression

for the prefactor:

ν0 =
ΠN
i=1νi

ΠN−1
j=1 νj

, (4.11)

the frequencies are evaluated at the ground state and primed in the chosen saddle hy-

perplane (the plane of maximum flux between the two basins) then this expression gives

the upper bound to the hopping rate and the value of Ea the correct activation energy

for the process. This is why the search methods for saddle points are worthwhile. It

is possible to obtain correction terms (taking into account the true dynamics of the

system). When such terms are used, it is possible to use any convenient hyperplane to

obtain the hoping rate (although in practice it is sensible to get as close as possible to

the true saddle hyperplane).

4.2.2.2 Accelerated dynamics

Parallel replica dynamics methods replicate a basin across many processors [141]. The

system is run until one replica shows a transition then all replicas are stopped and the

simulation clock is advanced by the total time summed over all processors. The transition

replica is replicated over all processors and simulation is continued. The method assumes

that infrequent events obey first order kinetics: the probability distribution of the waiting
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time before the next jump (beyond the correlation time) is p(t) = k exp (−kt) where k

is the hopping rate. Parallel replica dynamics simulations begin with a dephasing stage

where the momenta is randomised in order to eliminate correlations between processors.

The parallel replica procedure does not assume transition state theory and so can account

for detailed correlated events (by letting the processor where an event occurred continue

for the correlation time. If replicas of the system are run on M processors, then the

escape time probability for the whole system (as a function of time on processor 1)

is p(ttotal) = Mk exp (−Mkt1) and the total simulation time is ttotal = Mt1. For any

probability distribution, (1/M)p(t/M) = p(t)dt; so p(ttotal) = k exp(−kttotal). Thus, the

total system of M processors, using the total simulation time, gives the same probability

distribution of escape times as the single processor.

Bias potential hyperdynamics methods add a bias potential [142]. Provided the potential

goes to zero at the saddle plane, the dynamics of the biased system has the same relative

escape probabilities as the real system, but has the advantage of running faster. It is

also possible to calculate the true simulation time from the biased simulation time. The

method assumes that system obeys transition state theory both on the original surface

and on the biased surface. The probability of observing a given sequence of events is the

same on the two surfaces. After n steps the times on the biased surface and the original

surface are related by:

thyper =
n∑
j=1

tMD exp(∆V [r(tj)]/kT ), (4.12)

Any form of bias potential that obeys the rules is possible. Complex methods of con-

structing potentials tend to be numerically stable; simpler models are more robust but

not efficient. The construction of good bias potentials is an active area of current re-

search.

Temperature accelerated dynamics (TAD) use high temperature simulation to construct

a faithful representation of a low temperature trajectory by extrapolating the individual

processes at high temperature back to low temperature and assuming that the escape

probabilities from a basin are governed by first order kinetics [143]. This method assumes

first order kinetics and harmonic transition state theory for the extrapolation to low

temperature. Simulation is run at high temperature in a single basin. When a transition

is found, the activation energy for the process is obtained using a nudged elastic band

method and the simulation continued in the original basin. This generates a list of

processes, activation energies and escape times. The TAD calculation is run as a high

temperature MD. The MD stage is used only to explore a single basin. When the system

tries to cross the dividing surface between states the velocities are reversed, reflecting
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the system back into the initial basin. This is called basin constrained dynamics. The

simplest method for detecting a transition is to minimise the structure produced when

the system evolves beyond an exclusion zone and test whether it is different from the

starting point.

4.2.3 Replica exchange molecular dynamics

Replica exchange molecular dynamics (REMD), sometimes called parallel tempering,

is a type of coupled ensemble high temperature molecular dynamics used to enhance

the configurational sampling [144]. The method uses a system of N atoms with M

non-interacting copies (replicas) in the canonical ensemble at M different temperatures,

TM . There is a one-to-one correspondence between replicas and temperatures: the label i

(i = 1, ...,M) for replicas is a permutation of the label m (m = 1, ...,M) for temperatures

and vice versa:

{
i = i(m) ≡ f(m)

m = m(i) ≡ f−1(i)
(4.13)

where f(m) is a permutation function of m and f−1(i) is its inverse. The microstate X

of the generalised ensemble is given by;

X = (x
[1]
m(1), ..., x

[M ]
m(M)) = (x

[i(1)]

1,...,x
[i(M)]
M

) (4.14)

x[i]m ≡ (r[i], p[i])m

r ≡ (r1, ..., rN ), p ≡ (p1, ..., pN )

for non-interacting replicas, the weight factor of the microstate X in the generalised

ensemble is given by the product of the Boltzmann factors:

W (X) = exp { −
M∑
i=1

βm(i)H(r[i], p[i])}= exp{−
M∑
m=1

βmH(r[i(m)], p[i(m)])}, (4.15)

βm = (kBTm)−1;H(r[i], p[i] = V (r[i]) +K(p[i])

we exchange replicas i at Tm and j and Tn, or we can exchange temperatures instead of

replicas. Convergence towards equilibrium distribution is ensured by imposing detailed

balance on the transition probability P (X → X ′). A detailed balance condition can be

satisfied by using the Metropolis criterion for the transition probabilities.
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Each replica in the generalised canonical ensemble is simulated for a given number of

MD steps. A pair of replicas at neighbouring temperatures are exchanged with the

probability P (x
[i]
m|x[j]m+1).

4.3 Analysis of simulations

The structure and arrangement of the various models were analysed using methods

reported in our previous studies [69, 72, 132, 145–147], including radial distribution

functions (RDF) and atomic density profiles. The radius of gyration, rG , estimates the

molecule’s effective size during the simulation:

rG =

√√√√ 1

N

N∑
i=1

(ri −< r >)2, (4.16)

where < r > is the mean position of all N atoms.

The end-to-end distances represent the average distance between the first and last sege-

ments of a linear polymer. The end-to-end distance of nucleic acid strands in this study

were calculated as the linear distance between phosphorus atoms at the exposed 3′ and

5′ ends of the nucleotide and averaged over simulation time. Changes in end-to-end

distance provide an indication of the extent of folding and unfolding the molecule has

undergone over time.

Root mean square deviations (RMSD) from the crystal structures were calculated by

removing the translational and rotational degrees of freedom through a least-squares fit

followed by rotation to the original reference frame of the molecule, using the relation:

rRMSD(r, r0) =

√√√√ 1

N

N∑
i=1

(ri − ri,0)
2, (4.17)

where r is the current position of atom i, and ri,0 is its initial position.

Detailed structural information regarding the Watson-Crick hydrogen bonds in nu-

cleotide models was gleaned using the 3DNA software analysis tool [148] by least-squares

comparison with crystal structures of model nucleic acids. In order to identify a Watson-

Crick base pair, the following geometric criteria must be met: the distance between the

origins of two bases must be less than 15 Å, the vertical separation must be less than

2.5 Å, the normal vectors of the base-pairs must be rotated less than 65.0◦ with respect

to each other and there must be at least one pair of nitrogen/oxygen base atoms that
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are within 4.05 Å of each other. The interlayer structure was also analysed using radial

distribution functions as described in our previous work [137, 149]. The radial distribu-

tion function describes how the atomic density varies as a function of the distance from

a central atom.

In order to compare the mobility of the nucleic acid strands within mineral interlayer

galleries, the self-diffusion coefficients of all nucleic acid duplex strands were calculated

and averaged over the number of duplexes in each model. The diffusion coefficient is

calculated from the slope of the mean square displacement (δr2) vs. time graph. The

MSD was computed from the centre of mass of each molecule in order to include only

translational motion in the calculation. Graphs were constructed using multiple time

origins in order to improve the statistics of the calculation.

The MSD was calculated using:

< r2(t) >=
1

N

N∑
i=1

(ri − ri,0)
2, (4.18)

where r is the current position of atom i, and ri,0 is its initial position. The diffusion

was subsequently estimated from the diffusion coefficient using:

< r2(t) >= 6Dt+ C, (4.19)

where C and D are constants; D is the diffusion coefficient and defines the rate of

diffusion of the molecule, and t is time. The diffusion coefficient can be found from the

gradient of the mean-squared displacement as a function of time.

As the molecules are constrained to move within the interlayer planes the diffusion is

confined to the xy-plane. Therefore, we compute values for the two dimensional diffusion

coefficient, which is given by 4Dxy = d
dtδr

2 where δr2 = (δx2 + δy2)/2. The slope of the

δr2 vs. time plot exhibits a linear region of slope D, and the error on the least square

fit estimates the error of the diffusion coefficient.

Visualisation is an essential tool for examining and analyzing the structure and behav-

ior of molecular systems. The systems were visualised using the AtomEye atomistic

configuration viewer [150] and the Visual Molecular Dynamics program (VMD) [151].

AtomEye and VMD are both freely available visualisation software packages. AtomEye

treats atoms as spheres and bonds as cylinders. These images are rendered as primitive

objects rather than composites of polygons. AtomEye was employed for its fast rendering

qualities. VMD was used for its excellent representation of nucleic acid structures.
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4.4 Scientific, parallel and grid computing

Simulating biological and inorganic systems using MD methods is computationally very

expensive due to the sheer number of calculations the classical MD code has to iterate

through. In order to get the most out of modern day MD codes in terms of simulation

time and number of atoms simulated, it is necessary to employ the large scale supercom-

puting resources that are available to the scientific community. It is the parallelisation of

modern MD codes which lend them so well to supercomputers. The near-linear scaling

relationship between simulation time and the number of processors used shown by some

MD codes means that large atomic/molecular systems can be simulated using MD in

realistic wall-clock times.

Grid supercomputing, defined as “distributed computing performed transparently across

multiple administrative domains” [152], is one of the more appealing methods in modern

high performance computing. It aims to provide a framework for scientists to run sim-

ulations on machines ranging in size from small local clusters to massive international

supercomputers. Just as the electrical grid seamlessly delivers electrical power to our

homes, the dream behind the original computing grid was to deliver uniform methods

of transparent access to supercomputing resources. There are a number of grid projects

which aim to unite the resources to this end. These include The US XSEDE 1 grid and

PRACE 2.

XSEDE (Extreme Science and Engineering Discovery Environment) in particular sup-

ports 16 supercomputers and high-end visualisation and data analysis resources across

the US. Currently the largest resource on XSEDE is Stampede at the Texas Advanced

Computing Center. Stampede is a Dell PowerEdge C8220 Cluster with Intel Xeon

Phi coprocessors. The 102,400 processors are capable of 2.66 PetaFlops (2.66×1015

floating-point operations per second). Machines such as Stampede allows the simulate

fully atomistic biological and inorganic systems on the scale of millions of atoms for

microseconds, as well as performing computationally expensive sampling and ensemble

simulations.

There has been a trend in recent times to employ GPUs (Graphics Processing Unit)

for parallel computing because of their relatively low cost. The UK’s most powerful

GPU/CPU machine resides at the Center for Innovation in High Performance Com-

puting at the STFC Rutherford Appleton Laboratory 3. The Emerald system is an

84-node cluster equipped with 372 NVIDIA Tesla M2090 GPUs, delivering more than

114 teraflops of performance.

1https://www.xsede.org/
2http://www.prace-ri.eu/
3http://www.einfrastructuresouth.ac.uk/cfi/emerald/



Chapter 5

Stability of Free and

Mineral-Protected Nucleic Acids

This chapter investigates the structural stability of three different nucleic acids inter-

calated within a magnesium aluminium layered double hydroxide (LDH) mineral, at

varying degrees of hydration, and free in aqueous solution using molecular dynamics

techniques. The nucleotides investigated are ribose nucleic acid (RNA), deoxyribose nu-

cleic acid (DNA), and peptide nucleic acid (PNA), all in duplex form. This study is used

to gain insight into which candidate genetic material arising at the time of the origin of

life on Earth may have been preferentially favoured by the prevailing geochemistry, in

particular when interacting with anionic clays.

5.1 Introduction

Identifying the nature of the chemical processes that led to the origin of life on Earth

poses a major intellectual challenge to modern science. The complete absence of a “fossil

record” for the type of proto-biomolecules present in this era means that there is no way

any hypothesis can be proven to be correct. However, it is possible to make reasonable

proposals and then experimentally investigate the processes that may have led to the

emergence of the first biomolecules, including the first genetic material and the first

living organisms [153, 154].

The RNA World view is one hypothesis that has attracted widespread support amongst

those investigating the origin of life [155]. The RNA World hypothesis asserts that the

first life forms on Earth were based on RNA molecules, which were able to self-replicate,

50
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preceding the appearance of proteins and subsequent protein-based (bio)chemistry [155–

157]. The essence of the RNA World hypothesis is that the transfer of genetic information

relied solely upon the self-replication of RNA, for which Watson-Crick base-pairing pro-

vided the key mechanism [158]. The hypothesis concurs with the doctrine of biopoiesis,

which asserts that life originated from simple organic molecules already present on Earth

[159]. However, a gap exists in the process of biopoesis in that it relies on there being a

pre-biological route to an initial source of nucleotides for the formation of RNA. Though

there is evidence showing that RNA could have catalysed most of the steps involved in

the synthesis of nucleotides [160], and possibly the coupling of redox reactions to the

synthesis of phosphodiesters and peptides, no complete abiotic synthetic pathways for

all of the nucleotides have hitherto been reported. Recent work has suggested poten-

tially plausible prebiotic routes to RNA synthesis, including from activated pyrimidine

ribonucleotides [27, 161], whilst layered minerals have also been shown to be catalyti-

cally active in RNA elongation [162]. Notwithstanding these problems, it is conjectured

that the transition to the DNA genetic apparatus came at a later time, possibly via an

RNA-protein intermediate stage [163, 164].

Although it is conceivable that the first forms of living organism were comprised of RNA,

oligomers of RNA are highly sensitive to hydrolysis, making it challenging to explain

how such species may have survived long enough to create more complex forms of proto-

life. Moreover, it has been proposed that RNA’s arrival on the scene may have been

preceded by simpler organic genetic materials. One such molecule is peptide nucleic

acid (PNA) which differs from RNA and DNA in its backbone structure; PNA has an

uncharged protein backbone unlike the charged phosphorus backbone of RNA and DNA

[165] (see Figure 5.1). Unlike RNA and DNA, PNA has not been observed in Nature;

PNA was originally designed using computer modelling and subsequently synthesised in

a laboratory.

Experiments have shown that PNA is able to displace complementary oligonucleotide

strands from existing DNA duplexes, indicating that PNA·DNA hybrids are more stable

than duplex DNA. Other enhanced structural features include faster rates of reformation

of the duplex upon denaturation and comparatively higher melting temperatures [102].

These properties and its similarities with DNA have led to PNA being proposed as a

possible proto-RNA [166] in origin of life scenarios [167, 168]. But which nucleic acid

arose first and how? To answer these questions we must consider the conditions present

on the early prebiotic Earth [169].

Assuming that the initial prebiotic synthesis of proto-biomolecules took place in aqueous

solution and arose within the oceans of the Archean Earth (3.5Ga ago), it is likely that

the chemical and temperature gradients at early hydrothermal vents may have provided
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(a) (b) (c)

Figure 5.1: The structural formulae of (a) ribonucleic acid (RNA), (b) deoxyribonucleic
acid (DNA) and (c) peptide nucleic acid (PNA). PNA is an artificially synthesized
nucleic acid. PNA has an uncharged backbone which is composed of repeating N-(2-
aminoethyl)-glycine units linked by peptide bonds.

the necessary driving forces for chemical reactions to occur [170]. The production of

simple organic molecules has been observed in present day vents [171] and replicated

in laboratory studies [172]. For organic macromolecules to have been generated, small

abiotic substances had to be concentrated to the extent that reactive centres came within

sufficient proximity for further chemistry to have occurred, while the products would

have needed to be protected from degradation. One way to realise these conditions is

at the surfaces and within the internal pores of minerals present at such vent systems

[173]. A recent theory, by Hansma, suggests that layered clay minerals may have acted

as the first proto-cells [174].

Layered double hydroxides (LDHs) are a class of layered mineral, sometimes known as

anionic clays (the sheets are positively charged and take up anions), which have been

the focus of origins of life studies for a number of years [175–178]. It is thought that in

the reducing conditions present on the early Earth, green rust (Fe2+/Fe3+) LDHs may

have been prevalent [73]. LDH minerals have structures that are conceptually derived

from the layered mineral brucite (Mg(OH)2), which has divalent Mg2+ metal cations

octahedrally coordinated with hydroxide ions. In LDHs, the isomorphic substitution of

trivalent in place of divalent cations causes a net positive charge which is counterbalanced

by the introduction of anions within the interlayer region. Anions of particular interest to

organic molecular evolution include Cl−, SO2−
4 , CO2−

3 , PO3−
4 and linear oligophosphates

[177]. In the LDH interlayer, anions can be readily exchanged with other anionic species

so that carbonates, cyanide, oligomeric phosphates and amino acid guests may all be

intercalated into the LDH host structure.

Glyco-aldehyde phosphate (GAP) has been postulated as a candidate for a primitive
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building block en route to nucleic acids [179]. These molecules become highly concen-

trated through intercalation into LDHs from a dilute external solution [175]. Experi-

mental results by Pitsch et al. [175] show that LDHs are able to adsorb GAP anions

from concentrations of a few µM to yield a ∼10M confined environment within the LDH

interlayer. Subsequent condensation reactions of GAP ions in LDHs give a high yield of

sugar phosphates [178].

Owing to interest in LDH-DNA compounds for drug delivery [180–185] and molecular

code systems [186], several experimental studies have been undertaken reporting inter-

calation of DNA into LDHs. Experimental studies in these areas have provided some un-

derstanding of DNA-LDH systems; powder X-ray diffraction (PXRD) has demonstrated

the changes in interlayer spacing in these materials [187], while circular dichroism and

infrared spectroscopy have been used to study the intercalated nucleic acids [188]. Al-

though all forms of polyanionic DNA have been found to intercalate into LDHs [187], to

the best of our knowledge no evidence of RNA or PNA intercalation into LDHs yet exists

in the literature. Greenwell and Coveney further pointed out that, conceptually, LDHs

might represent idealised information storage and transfer systems and that the sepa-

ration distance of intralayer charge sites is remarkably similar to the distance between

phosphate groups in nucleic acid structures [189].

Origins of life studies have hitherto rarely used computer simulation techniques to un-

derstand the possible chemical pathways to the formation of the first biomolecules. How-

ever, computational methods provide powerful molecular level insights into the struc-

ture and properties of cationic and anionic clay based systems which are difficult to

characterise experimentally [190]. As a result, interest has begun to grow in the use of

computational modelling to investigate systems of possible relevance to the origins of life

[70, 132, 137, 191]. Furthermore, computer simulation can rapidly access environmental

conditions difficult to attain by experiment.

This study employs large-scale molecular dynamics simulation techniques, similar to

those previously performed [132, 137, 191], to compare the relative structural stability

of DNA, RNA and PNA all within layered double hydroxides and free in bulk aqueous

solution. Double stranded RNA was used to investigate the potential for prebiotic LDH-

RNA systems to protect early forms of these nucleotides from extreme environmental

conditions. The results of double stranded DNA and PNA structures were compared

to RNA thus providing insight into the comparative properties of these nucleic acids in

mineral and bulk aqueous environments.



Chapter 5. Stability of Free and Mineral-Protected Nucleic Acids 54

5.2 Methods

This section discusses the approach employed to simulate the LDH-nucleic acid-water

models. The choice of forcefield needed to describe the interaction between the nucleic

acids and LDH is given in Chapter 4. The models simulated contain up to around a

quarter of a million atoms that can be classed as large-scale molecular dynamics. A

range of powerful supercomputing resources were invoked to perform the simulations in

as short a wallclock time as possible.

The layered double hydroxide which forms the basis for the mineral models employed

in this study has unit formula [Mg2Al(OH)6]·nH2O.Cl and is the same as that used in

recent studies [137, 149, 191]. Chloride ions are present to counter the positive LDH

charge. The LDH models were replicated from a unit cell with dimensions 16.34 Å×18.82

Å×25.34 Å, which was obtained by the refinement of powder X-ray diffraction data on

hydrotalcite using Rietveld methods [81]. In this work, models containing either 3 or 6

interlayer regions were simulated.

The sizes and sequences of the nucleic acid molecules used in this study are given in

Table 5.1. Three different forms of double stranded nucleic acid were constructed, as

shown in Figure 7.6. The first structure was that of a dodecamer duplex of A-DNA

assembled using the Nucleic Acid Builder, which is part of AmberTools [127], with

base-pair sequence d(5′-CTTTTGCAAAAG-3′) [192]. The DNA sequence was chosen

as it has been well characterised in past molecular dynamics simulations [137, 192].

The second structure was a dodecamer of A-RNA also built using the Nucleic Acid

Builder with corresponding base-pair sequence d(5′-CUUUUGCAAAAG-3′) (the RNA

sequence corresponds to the DNA sequence with thymine groups substituted by uracil).

All phosphate groups have an unprotonated hydroxyl group and carry a -1 negative

charge, as a pH of ≥ 7 is assumed where all phosphate groups are known to be ionised.

The third structure was a dodecamer of PNA, in the P-form, with the same base-pair

sequence as the DNA dodecamer. The PNA strand’s peptide backbone was terminated

with N-terminus and C-terminus end-groups, as reported by Shields et al. [128] and

Soliva et al. [193] in their MD studies of PNA:DNA and PNA:RNA molecules.

Nucleic acids RNA and DNA can adopt two different right-handed double helix struc-

tures, A and B. The A-form has a shorter more compact helical structure which has an

increase in the number of base-pairs per rotation over the B-form. The A-form of DNA

was chosen to allow a direct comparison with the A-form used for RNA. The A-form of
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(a) (b) (c)

Figure 5.2: A schematic three dimensional ball-and-stick representation of (a) A-RNA
in Models I, IV and VII, (b) A-DNA in Models II, V and VIII and (c) PNA in
Models III, VI and IX. All models are described in more detail in Table 5.1. Carbon,
nitrogen, hydrogen, oxygen and phosphorus atoms are represented as grey, blue, red
and yellow spheres respectively. The structure of RNA differs from the structure of
DNA by the additional hydroxyl group at the C2 position on the nucleotide ribose.

DNA is known to undergo a transition to the B-form (or something closely approximat-

ing it) in bulk water. The A-form is known to be the preferred structure for DNA under

conditions of high salinity and low hydration. The P-form of PNA, which is the name

given to its native structure in aqueous solution (shown in 7.6), appears structurally

different to the A-form of DNA and RNA in Figure 7.6 because of the difference in

composition of the peptide backbone in PNA from the phosphate backbone in DNA and

RNA. The P-form can be characterised by the wide helix (28 Å) with almost twice the

pitch (18 base-pairs per turn) of an A- or B-form helix (10-11 base-pairs per turn) [194].

In order to make comparisons between the nucleic acids in water and when intercalated,

simulations of the three types of nucleic acid were also performed solvated in water

(Models VII-IX, see Table 5.1); the nucleic acids within these bulk water simulations

were charge-balanced by sodium ions.

Many studies have shown that water plays a vital role in the structure of nucleic acids

in aqueous solution; the role of water also governs the structural stability of nucleic

acids once intercalated into layered double hydroxides [137, 182, 187]. The first part

of our study therefore aims to investigate the impact of hydration on Models I, II and

III, which consist of a nucleic acid intercalated within a LDH as shown in Figure 5.3,

by varying their water content. Models of varying degrees of hydration were created
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by changing the water content only in the interlayer containing the nucleic acid, while

keeping the other interlayer at two water molecules per unit formula Mg2Al(OH)6. Pre-

vious studies of MgAl-LDH produced simulated hydration curves in general agreement

with experimental data using the ClayFF forcefield when intercalated with chloride ions

[129, 149], and with DNA [137]. In order to create hydration curves for the RNA, DNA

and PNA models, sixteen different LDH-nucleic acid models were built with an increas-

ing number of water molecules, from 2 water molecules per Al atom up to 16 water

molecules per Al atom. In cases where nucleic acids are included in adjacent interlayers,

the molecules were offset with respect to each other. Our previous simulations of DNA-

LDH have shown that the model adopts the lowest potential energy when the nucleic

acids in adjacent interlayers are not stacked directly on top of each other [137, 191].

Figure 5.3: Initial structure of the LDH-RNA Model I at the start of the simulation.
Model I consists of three Mg2Al LDH sheets with a 12 base pair RNA duplex placed
within one of the interlayers. For clarity, water molecules and chloride ions are not
displayed. Magnesium, aluminium, oxygen, hydrogen, nitrogen, carbon and phosphorus
are displayed as green, silver, red, white, blue, grey and orange spheres respectively.
The x, y and z axes are displayed as red, green and blue arrows respectively.

Small LDH models suffer from finite size effects which cause the suppression of thermal

undulations. The collective thermal motion of atoms in the LDH sheets causes undula-

tory modes. The largest wavelength of thermal undulations was found to be 40 Å [149].

The lateral dimensions of the largest models used in this Chapter were more than twice
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this distance. Model IV contained an RNA dodecamer duplex while Model VI con-

tained a PNA duplex of similar length; the hydration level which yielded basal spacings

comparable with experimental findings for analogous DNA-LDH models are 21.1 - 23.9

Å. Experimental results were taken from the variation in the d -spacing as a function of

the number of water molecules calculated from the thermogravimetric analyses recorded

in a static air atmosphere with a heating rate of 278 K/min, in the temperature range of

298-1073 K. [182, 187]. Larger models based on this experimental hydration state were

created containing six LDH interlayers for the RNA, DNA and PNA duplex models

(Model IV-VI, Figure 5.4), with four RNA/DNA/PNA duplices in each interlayer, in

order to simulate the nucleic acid-LDH models at higher temperatures and pressures.

Models IV-IX were simulated at five different conditions: 300 K at 1 atm, 350 K at 1

atm, 400 K at 50 atm, 450 K at 100 atm and 500 K at 100 atm, in order to study the

stability of nucleic acids intercalated and free in bulk water under different conditions

associated with possible origins of life environments [137]. The various temperature and

pressure conditions were selected to span mild and extreme conditions associated with

hydrothermal vent models and mineral mediated origins [169].

The models were energy-minimized using the steepest descent method before carrying

out the MD simulations using the NPT ensemble (which means the number of particles

(N), the pressure (P) and the temperature (T) are kept at a constant value), using

techniques discussed in our previous studies [132, 137, 149] and in Chapter 4. After

equilibration was deemed to have been established, production runs were performed for

30 ns to provide enough statistics to capture diffusion data for the nucleic acid molecules

[149]. The models were deemed to have reached equilibrium before 500 ps by monitoring

the model potential energy and the cell parameters. The data show that all models are

at equilibrium (or at least in long lasting steady states) as adjudged by the figures of

merit, including potential energy and cell parameters, and that any further simulation

beyond 30 ns is not necessary. A Nosé-Hoover thermostat/barostat was used to regulate

the temperature and pressure of each simulation.

5.3 Results

As reported in our previous work on DNA-LDH models [137], the nucleic acids studied

here do not exhibit large changes in position and conformation within the interlayer over

the duration of the simulation; conversely the LDH sheets themselves show evidence of

their flexibility around bulky intercalants [137, 191]. Visualisation of the final structures

of the larger models (Models IV, V and VI) at ambient conditions are shown in Figure

5.5.
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Figure 5.4: Initial structure of the large LDH-RNA Model IV at the start of the
simulation. The model consists of 6 Mg2Al interlayers with four 12 base pair RNA
double strands per interlayer. See Table 5.1 for more details of sequence and structure.
For clarity, water molecules and chloride ions are not displayed. Colour scheme is the
same as that used in Figure 5.3.
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Section 5.3.2 describes in detail the hydration behaviour of LDH models containing

RNA, DNA and PNA, and compares these properties to our previous results for similar

sized DNA-LDH models [137]. In Section 5.3.3 the behaviour of RNA, DNA and PNA

intercalated in larger LDH structures, which eliminate finite size effects and capture

emergent thermal undulations within the LDH sheets [149] is reported. Previous exper-

imental work and simulations of DNA, RNA and PNA in bulk aqueous solution were

used to validate the nucleic acid models reported.

5.3.1 Validation of models for nucleic acids in bulk water

In order to provide confidence in the nucleic acid models, various parameters describing

Watson-Crick base-pair geometry were calculated for each nucleic acid system (models

VII, VIII and IX) and compared with previously reported parameters found experi-

mentally as well as those derived from simulation (see Table 5.2). Parameters obtained

from the nucleic acids in our systems are in good agreement with values obtained from

both experiment and simulation and therefore provide confidence in properties reported

for both free nucleic acids and nucleic acids within clay galleries.

As reported in previous MD simulations of DNA in bulk water using the parm99 force-

field [201, 202], DNA undergoes a spontaneous conformational change from the A-form

to the B-form in simulation times of less than 3 ns. Simulation of DNA in bulk water

(model VIII) displays the transition from the A to the B form of DNA, as shown in

Figure 5.6 and as a movie in Appendix A. Simulation over longer timescales of 30 ns did

not show any back-transition to the A-form.

5.3.2 Effect of hydration on nucleic acid-LDH models

The swelling/hydration curves were produced by simulating Models I-III with an in-

creasing amount of water molecules per nucleic acid containing interlayer, beginning with

a dehydrated model and adding two water molecules per LDH unit formula ([Mg2Al(OH)2])

up to sixteen water molecules per LDH unit. The variable n refers to the number of

water molecules per unit formula. Each hydrated model was simulated for 3 ns once

equilibrium was deemed to have been established.

Computing the hydration curves (clay layer separation as a function of water content)

gives insight into how the nucleic acid structures change with varying amounts of water.

Figure 5.7 shows the direct comparison between the change in basal spacing, RMSD from

the crystal structure and disruption of Watson-Crick hydrogen bonded base-pairs, with

increasing water content for DNA, RNA and PNA intercalated in LDH. Some similarity



Chapter 5. Stability of Free and Mineral-Protected Nucleic Acids 60

exists in basal spacings between DNA and PNA, whereas on average RNA has generally

lower basal spacings, especially when the number of water molecules per unit formula

ranges between n = 6− 15.

At low hydration states, below 10 water molecules per Al atom, significant structural

deformation can be seen as evidenced by the relatively high RMSD and correspondingly

low percentage of Watson-Crick hydrogen bonds remaining intact, but as the water

content of the interlayer reaches similar values to bulk water, at 16 water atoms per Al,

the nucleic acids return to their bulk-water solvated double helix structures (see Figure

5.8). Plots of RMSD vs. hydration in Figure 5.7 show that the structures of both RNA

and PNA become increasingly similar to that of the same nucleic acid in bulk water as

the interlayer water content increases. However, the RMSD values of RNA and PNA

are significantly greater than DNA after n = 8. In addition, the RMSD between the

intercalated and reference structures does not decay monotomically, but rather exhibits

numerous local minima and maxima. These “steps” are also observed in Figure 5.7 (a)

for the basal spacing and are attributed to hydrogen bonding networks formed between

water and the clay surfaces, which only allow expansion of the interlayer once distinct

hydration layers are fully filled [129, 149, 203, 204]. This “step” behaviour is prominently

seen in Figure 5.7, where the percentage of intact Watson-Crick hydrogen bonds is

reported, and is particularly obvious for PNA. From the results for RMSD values, it

can be inferred that intercalated PNA strands show lower structural stability, in terms

of number of Watson-Crick base-pairs, at higher hydration states (n > 8) compared to

RNA and DNA.

Presently, there are no experimental results which describe the basal spacing of RNA-

LDH or PNA-LDH models as a function of water content; instead, the results from our

DNA-LDH models are used to give a rough estimate as to which hydration state to use

[181, 187, 205], when building larger simulation models. The experimental value of the

basal spacing under ambient conditions for DNA-LDH models is reported to be between

21.1 - 23.9 Å [182, 187], which corresponds to a water content, n, between 10 - 13 water

molecules per unit formula for RNA-LDH models and 8 - 11 for PNA-LDH. As RNA-

LDH models have lower basal spacings compared to PNA-LDH and DNA-LDH models

(Figure 5.7), these LDH-nucleic acid models were built with n = 10 water molecules per

unit formula [Mg2Al(OH)6]·nH2O. As the PNA double strand is less easily compressed,

the number of water molecules per unit formula chosen was n = 9, to ensure values

are comparable with experimental basal spacings for DNA-LDH models. The following

sections describe the results obtained for larger LDH models (Models IV, V and VI),

each in turn containing a different nucleic acid moiety, at different temperatures and

pressures.
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5.3.3 RNA, DNA and PNA intercalants

Model IV was used to study the properties of RNA strands intercalated within a six layer

LDH supercell, with four double strands per interlayer. Under ambient conditions (300

K and 1 atm) Table 5.3 shows that, on average, base-pairing is substantially less than for

RNA in bulk water, indicating that the environment within the LDH interlayers causes

the Watson-Crick hydrogen bonding to be significantly disrupted. Table 5.3 provides

structural information for a DNA-LDH model; the intercalated DNA strands retain

∼60% of all base-pairing up to 450 K and 100 atm, while that for RNA strands decreases

monotonically from a maximum of 25% with increasing temperatures and pressures.

RNA within bulk water appears to have better retention of Watson-Crick base-pairing

than DNA and PNA in bulk water, but the RMSD values are greater above 400 K and

50 atm than for the intercalated RNA, indicating that the LDH sheets constrain the

structure of intercalated RNA molecules at elevated temperature and pressure, albeit at

the expense of Watson-Crick pairing.

Figure 5.9(a) shows the RMSD of RNA intercalated within the LDH, as a function of

simulation time, relative to the A-form and B-form crystal structures of RNA. The RNA

is found to deviate only by a few Ångstroms from the A-form crystal structure at the

highest hydration level investigated. At all other lower levels of hydration the RNA

structure deviates much more (5-6 Å) from the A-form crystal structure, and even more

so from the B-form.

Figure 5.9(b) shows the RMSD of DNA intercalated within the LDH, as a function

of simulation time, relative to the A-form and B-form crystal structures of RNA. The

findings indicate that the DNA in a fully hydrated LDH clay adopts a structure interme-

diate between those of the crystalline A- and B-forms. At lower levels of hydration, the

confinement and the clay environment lead to a greater distortion of the nucleic acid;

the equilibrated structures are closer to the A-form than the B-form.

Figure 5.9(c) shows the RMSD of PNA whilst intercalated within an LDH, as a function

of simulation time, from the crystal structure of PNA, which is refered to as the P-form,

at various levels of hydrations. The intercalated PNA most resembles the initial P-

form when simulated with 16 water molecules per unit formula (i.e. at higher hydration

levels). At lower hydration levels the structure is considerably distorted from the P-form.

The radii of gyration for all three duplex nucleotides intercalated in a LDH and in

bulk water at ambient conditions, shown in Figure 5.10, demonstrate that PNA has

the largest relative size both when free in bulk water and intercalated within the LDH.

There is a change in the relative order of size between the three different nucleic acids

at ambient conditions when intercalated within the LDH compared to the nucleic acids
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in bulk water; DNA has the smallest relative size when intercalated (Model V) whilst

RNA has the smallest size when free in bulk aqueous solution (Model VII). At elevated

temperatures and pressures RNA, DNA and PNA within the LDH (Models IV-VI)

take on the same order of size as at ambient conditions, whilst the nucleic acids free

in bulk aqueous solution at elevated temperatures and pressures have a reversed order

of size compared to the order at ambient conditions. At 450 K and 100 atm PNA has

the smallest size in bulk water relative to RNA and DNA, while they all show increased

fluctuations in size in bulk water compared to that under ambient conditions, indicating

that the extreme conditions alter the size and structure of the nucleic acid in bulk

water. The relative duplex nucleotide size shown by the radius of gyration at elevated

temperatures and pressures further indicates that the LDH protects the structure and

conformation of the nucleic acid from changes caused by extreme environments.

The RDF plots in Figure 5.3.3 provide insight into the overall structure of the RNA-LDH

model and how it varies with increasing temperature. Under ambient conditions, the

RDF plots show that, as expected, LDH surface hydrogen atoms are closest to phospho-

rus atoms in negatively charged phosphate groups [137]. Although the peak intensity

of the RDF curves for aluminium and magnesium ions are very similar, the intensities

corresponding to the closest surfaces, r = 5.3 Å for Al3+ ions and r = 5.4 Å for Mg2+

ions, manifest a slight preference for proximity to aluminium compared with magnesium

ions. At higher temperatures and pressures, this behaviour in the RDF plots is en-

hanced, suggesting greater interaction of the phosphorus and LDH atoms. Conversely,

peak intensities for RDF plots of water surrounding phosphorus atoms diminish with

increasing temperature and pressure.

RDF plots in Figure 5.12, centred on the phosphorous atoms within the nucleic acids,

except for PNA which is centred on the sp2 hybridised amide carbonyl carbon atom in

the PNA backbone (see Figure 5.1) show the peak intensities for the RDF plots between

phosphate group P atoms and selected LDH atoms increase with increasing tempera-

ture, suggesting that the phosphate groups in PNA have stronger interactions with the

LDH surface at higher temperatures and pressures. By contrast, the peak intensities in

the RDF plots for phosphate group P atoms and water O and H atoms decrease with

increasing temperatures and pressures. This indicates that hydrogen bonding between

phosphate groups and water molecules is disrupted with increasing temperature. This

behaviour is also seen in Model IV. However, the principal component analysis (PCA)

plots shown in Figure 5.13 reveal a much more well defined structure and show little

difference to the behaviour obtained for PNA in bulk water (see Figure 5.14). This

figure shows that the amplitude of motion along the first eigenvector is ∼ 8 orders of

magnitude larger for PNA in bulk water compared to PNA intercalated within LDH,

reflecting the heavily constrained motion of PNA inside LDH sheets.
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Figure 5.15 shows that the main contribution to the dynamics for intercalated RNA and

DNA arises from the motion of the phosphate groups furthest away from the LDH. These

phosphate groups oscillate towards/away from the central axis, tensioned by opposing

forces of attraction towards the LDH surface and hydrogen bonds between intra-strand

base-pairs. The main contribution to the dynamics of the PNA strand differs from

DNA/RNA, as the PNA has an uncharged peptide backbone which does not interact so

strongly with the LDH surface. The peptide backbone oscillates on both sides toward-

s/away from the central axis.

As seen in previous studies [137, 146, 149, 191], thermal undulations of LDH sheets are

evident in large scale molecular dynamics simulations. These are found to significantly

affect the motion of intercalated DNA strands [137, 191] due to strong electrostatic

interactions between the intercalant and the LDH sheet. PCA provides clear evidence

that RNA strands are also greatly affected by the thermal motion of LDH sheets. Figure

5.16 and 5.17 compares PCA results for intercalated RNA and RNA within bulk water.

Under ambient conditions, RNA intercalated within LDH as well as within bulk water

has a unimodal probability distribution along the first eigenvector, suggesting that a

well defined equilibrium structure has been reached. Figures 5.16 and 5.17 shows the

subspace spanned by the first two principal components (the first principal component

is shown in Figure 5.15) for Models IV and VII at ambient temperatures and pressures.

At higher temperatures and pressures, it becomes increasingly evident that projections

along the first two eigenvector pairs are coupled, which is most likely due to thermal

motion in the LDH sheets increasingly influencing the motion of intercalated RNA [137].

The main contribution to the dynamics at this hydration level is seen at the ends of the

nucleic-acid molecules.

PNA intercalants are composed of an uncharged PNA protein backbone. In turn, this

causes the dynamics of PNA to be different from duplex strands of RNA and DNA

each of which possesses two charged complementary strands. At temperatures and pres-

sures above ambient conditions, the number of retained Watson-Crick hydrogen bonds

is larger than those found in intercalated 12 base-pair RNA, suggesting stronger base-

pair interactions within the PNA strand. Basal spacing values for PNA-LDH are on the

whole larger than RNA-LDH in Model IV, suggesting that the 12 base-pair RNA strand

has less resilience to the LDH sheet dynamics and distorts more readily. The RMSD

values for the PNA-LDH Model VI in Table 5.3 are larger than those for RNA-LDH

in Model IV indicating that, overall, the PNA double strand deviates more from its

starting structure at all temperatures and pressures compared to RNA, whilst retaining

a higher proportion of Watson-Crick bonding. By contrast, the structural parameters

of intercalated DNA with the same base-pair sequence, as detailed in Table 5.3, shows

that the DNA double helix retains its own integrity more than the PNA duplex, relative
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to their individual starting structures. Table 5.3 shows that the LDH confers a different

relative preferential stability on the three nucleic-acid duplexes compared to their ho-

mologues in bulk water. The relative trend in stability in terms of intact Watson-Crick

base-pairs when intercalated is PNA<RNA<DNA. The reverse trend is observed for

nucleic acids free in aqueous solution.

Although the structure of RNA is perturbed whilst intercalated, the RMSD and PCA

data indicate that overall structure retention, at high temperatures and pressures, is

similar to that exhibited at ambient conditions.

At ambient temperatures of 300 K PNA is found to have the smallest self-diffusion

coefficient of the three intercalated nucleotides whilst RNA has the largest (shown in

Table 5.4). The trend in diffusion coefficients is altered at elevated temperatures of 500

K where PNA has the highest and DNA the lowest self-diffusion coefficient.

5.4 Conclusions

A comparative study of the structure, properties and stability of selected double-stranded

sequences of RNA, DNA and PNA has been undertaken In this chapter. The intention

was to gain insight into which candidate genetic material arising at the time of the origin

of life on Earth may have been preferentially favoured by the prevailing geochemistry,

in particular when interacting with anionic clays.

Study of the root-mean-squared deviation relative to the starting structures together

with principal component analysis of the double-stranded nucleic acids indicate that

the intercalated RNA, DNA and PNA molecules all have significantly reduced motion

relative to the nucleic acids in bulk water. However, the relative similarity between

starting and end-point structures does not offer the best insight into structure retention

of each double stranded nucleotide. A more important measure of retention of structural

integrity from a genetic information-transfer perspective is the number of Watson-Crick

bonds maintained.

The simulations demonstrate that hydration plays an important role in determining the

structural stability of all three intercalated nucleic acids. This is in agreement with our

previous findings on DNA moieties within LDH [137]. The results show that the three

nucleic acids are affected differently by the degree of hydration of the LDH. While RNA

continues to adopt a structure closer to the crystalline A-form at all levels of hydration,

at lower hydration levels there is also a tendency for DNA to adopt structures closer

to the A-form than the B-form found in bulk water. With regard to Watson-Crick

hydrogen-bonding, the DNA duplexes retain a greater structural integrity as compared
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to the intercalated RNA and PNA double strands which manifest significant degradation

in base-pairing.

Having examined the properties of selected 12-mer duplexes of RNA, DNA and PNA in

bulk water and when intercalated in the interlayer of LDH minerals, together with the

hydration properties of the nucleic acid-LDH complexes, a conclusion can be reached

that the properties of the DNA, RNA and PNA duplexes are strongly dependent on the

state of hydration of the LDH interlayers. For the assembly and maintenance of the first

double strand genetic system, a hydrated environment is necessary and, therefore, it is

vital for there to be water within the LDH interlayers.

All of the nucleic acids retain some degree of structural integrity when intercalated in

LDH minerals, even at elevated temperatures and pressures. This supports the notion

that such anionic clays, possibly present within early Archean hydrothermal systems

as Fe(II)/Fe(III) green rusts, may have played a significant role in concentrating and

catalysing early prebiotic chemistry, as proposed by Arrhenius [73].

LDH-intercalated 12 base-pair double-stranded RNA oligomers were generally found to

deform from their initial structure more readily compared to DNA and PNA. In addition,

the 12 base-pair RNA and PNA strands are more easily deformed from their initial

starting structure in bulk water compared to DNA; significantly more water is needed

within LDH sheets to retain the double helix shape of ds-RNA and ds-PNA compared to

the situation in bulk water, while there is a noticeable preference for intercalated DNA

to retain an A-form, especially at lower levels of hydration.

To get a proper handle on the behaviour of these nucleotides within clays, a range of

analysis tools needs to be brought to bear on the molecular dynamics trajectory data.

Though the nucleic acid strands may lose their Watson-Crick base pairing in layered

double hydroxides, the root-mean-squared deviation relative to the initial nucleic acid

structure is invariably smaller for the intercalated nucleic acid than for the nucleic acids

in bulk water. The intercalated species, stabilised through strong Coulombic interac-

tions with the layered double hydroxides sheets, is unable to distort much from its initial

coordinates; instead the Watson-Crick base-pairing becomes disrupted at increased tem-

perature and pressure, assisted by the thermal motions of the layered double hydroxides

sheets.

Of the three nucleic acids under investigation, DNA is observed to be the most stable

when intercalated within an LDH, with respect to the percentage of Watson-Crick base-

pairs. The opposite is found in bulk water where both PNA and RNA are more stable

than DNA. The uncharged protein backbone of PNA has a detrimental effect on the

overall stability of the polymer when intercalated as a duplex, as it experiences a greatly
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reduced electrostatic interaction with the charged layered double hydroxides sheets.

These results indicate that a mineral based origin of life may well have been rather

different from the aqueous, bulk water based one more commonly considered in origins

of life scenarios, DNA being the most stable genetic material within the simulations.

The findings further suggest that a mineral mediated origin of life may have favoured

DNA as the informational storage biomolecule over competing RNA and PNA, providing

a route to modern biology from the RNA world.
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(a) IV RNA

(b) V DNA

(c) VI PNA

Figure 5.5: Final structures of the large LDH-nucleic acid models: (a) Model IV, (b)
Model V and (c) Model VI after the 30ns production phase of each simulation. The
colouring scheme used is the same as that of Figure 5.3, with water and chloride ions not
displayed to aid viewing. All nucleotide motion within the LDH sheets is significantly
restricted compared to that in bulk water. In addition, visualisation reveals properties
such as thermal undulations in the LDH sheet, as well as corrugation of the sheets
around the nucleotides.
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Property Model VII Experimentα Simulationβ

Propeller (degrees) -5.738 -4.688 -5.443
Roll (degrees) 3.103 6.881 2.800

Rise(Å) 2.991 3.349 2.600
Twist (degrees) 31.301 30.842 31.3

slide (Å) 2.391 1.990 2.3

Property Model VIII Experimentγ Simulationδ

Propeller (degrees) -15.001 -14.824 -14.750
Roll (degrees) 2.166 2.278 1.955

Groove width (Å) 6.290 6.827 6.188
Rise(Å) 2.619 3.250 2.5

Twist (degrees) 33.102 32.948 35.8
slide (Å) 0.712 0.583 -1.0

Property Model IX Experimentε Simulationζ

Propeller (degrees) -10.876 -7.223 -
Roll (degrees) 2.665 3.772 0.588

Groove width (Å) 9.725 - 10.1
Rise(Å) 3.101 3.344 2.9

Table 5.2: Comparison of experimental and simulated parameters describing Watson-
Crick base-pair geometry in different aqueous nucleic acid duplexes: RNA (model VII),
DNA (model VIII) and PNA (model IX). α) Experimental values reported for RNA
duplexes taken from the X-ray crystal structure at 2Å resolution [195]. β) Comparative
simulation data for RNA duplexes taken from molecular dynamics using the AMBER
forcefield [196]. γ) Experimental values reported for DNA duplexes from solution NMR
[197]. δ) Simulation of DNA duplex using the AMBER forcefield [198]. ε) Experimental
values for PNA from X-ray crystal structure at 1.70Å resolution [199]. ζ) Molecular
dynamics study of a PNA duplex [200].
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Figure 5.6: Root Mean-Squared deviation (RMSD) of the A-form of DNA in bulk water,
with respect to time, from the crystal structure of the A-form (red) and of the B-form
(blue). The two lines intersect at 1 ns; the interception shows that the DNA is deviates
away from the A-form towards the B-form.
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(a) RNA, n=14 (b) DNA, n=14 (c) PNA, n=14

(d) RNA, n=8 (e) DNA, n=8 (f) PNA, n=8

(g) RNA, n=0 (h) DNA, n=0 (i) PNA, n=0

Figure 5.8: Cross section in the xz plane of Models I - III for various hydration states
at 300 K and 1 atm, taken from the final snapshot of the simulation. Black circles
correspond to positions of aluminium ions in the LDH sheets. Periodic boundaries
cause some aluminium ions to reside at the top of the simulation cell. Red, yellow and
blue circles correspond to phosphate groups, nitrogen atoms in the ribose sugar and
the nitrogen atoms belonging to the PNA peptide backbone respectively. The variable
n refers to the number of water molecules per unit formula [Mg2Al(OH)6]·nH2O. (a),
(b) and (c) show RNA, DNA and PNA respectively, hydrated with n=16; (d), (e)
and (f) show RNA, DNA and PNA respectively, hydrated with n=8 and (g), (h) and
(i) show dehydrated RNA, DNA and PNA respectively. The cross section for the
full hydrated PNA model, which is shown in subfigure (c), shows the PNA adopting
a different conformation to the circular tube-like structure of RNA and DNA. This
observed difference may be due to Cl− ions assembling near to the LDH sheet surface.
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Model Temp. Press. Mean RMSD ( Å) Mean % of intact Max. basal
(K) (atm) per duplex Watson-Crick bonds spacing ( Å)

per duplex

IV 300K 1 atm 4.7 ± 0.9 Å 26.3 ± 1% 22.9 ± 0.03
(RNA-LDH) 350K 1 atm 6.2 ± 0.3 Å 21.2 ± 1% 22.7 ± 0.03

400K 50 atm 6.7 ± 0.5 Å 17.1 ± 1% 22.8 ± 0.03
450K 100 atm 7.0 ± 0.5 Å 13.7 ± 2% 24.0 ± 0.07
500K 100 atm 8.1 ± 0.8 Å 5.1 ± 0.7% 27.2 ± 0.7

VII 300K 1 atm 2.5 ± 0.5 Å 89.7 ± 4% -
(RNA in bulk 350K 1 atm 6.9 ± 1.5 Å 82.6 ± 7% -

water) 400K 50 atm 9.3 ± 1.8 Å 68.2 ± 7% -
450K 100 atm 13.3± 0.5 Å 55.2 ± 5% -
500K 100 atm 11.2± 1.0 Å 14.7 ± 14% -

V 300K 1 atm 4.3 ± 0.1 Å 62.1 ± 3% 19.2 ± 0.02
(DNA-LDH) 350K 1 atm 4.3 ± 0.1 Å 54.8 ± 6% 20.3 ± 0.02

400K 50 atm 4.4 ± 0.1 Å 57.8 ± 4% 19.6 ± 0.02
450K 100 atm 4.4 ± 0.1 Å 39.0 ± 2% 21.0 ± 0.02
500K 100 atm 4.4 ± 0.1 Å 18.5 ± 8% 22.2 ± 0.03

VIII 300K 1 atm 4.8 ± 0.3 Å 82.0 ± 1.0 % -
(DNA in bulk 350K 1 atm 5.5 ± 0.4 Å 74.1 ± 1.9 % -

water) 400K 50 atm 4.8 ± 0.5 Å 40.5 ± 1.9 % -
450K 100 atm 5.7 ± 0.2 Å 25.1 ± 2.5 % -
500K 100 atm 4.9 ± 1.0 Å 14.7 ± 3.3 % -

VI 300K 1 atm 6.9 ± 0.2 Å 23.3 ± 2.1% 23.0 ± 0.03
(PNA-LDH) 350K 1 atm 7.4 ± 0.2 Å 26.1 ± 2.2% 23.9 ± 0.3

400K 50 atm 7.6 ± 0.2 Å 28.0 ± 2.1% 25.0 ± 0.04
450K 100 atm 7.9 ± 0.2 Å 19.7 ± 1.5% 25.0 ± 0.05
500K 100 atm 9.2 ± 0.3 Å 14.4 ± 3.9% 27.7 ± 0.10

IX 300K 1 atm 1.5 ± 0.4 Å 99.9 ± 0.4% -
(PNA in bulk 350K 1 atm 6.3 ± 3.0 Å 99.9 ± 1.1% -

water) 400K 50 atm 2.7 ± 0.5 Å 99.8 ± 1.2% -
450K 100 atm 9.9 ± 1.7 Å 49.2 ± 1.1% -
500K 100 atm 10.5± 1.3 Å 1 4.9 ± 4.3% -

Table 5.3: Comparison of structural parameters for RNA, DNA and PNA duplexes
intercalated in LDH and free in aqueous solution (Models IV - IX). The mean RMSD
is calculated by comparing, from the initial structure, the coordinates of the nucleic
acid over 30ns of MD with that of the original structure; the error is computed from
the standard deviation. Of the three nucleic acids under investigation, DNA is observed
to be the most stable when intercalated within an LDH, with respect to the percent
of Watson-Crick base-pairs. The opposite is found in bulk water where both PNA and
RNA are shown to be more stable than DNA. These trends suggest that clay minerals
could have played a major role in mediating the transition from RNA to DNA as the
main informational biomolecule.
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(a) model I, RNA

(b) model II, DNA

(c) model III, PNA

Figure 5.9: Root mean squared deviation (RMSD) of nucleic acids, RNA and DNA,
intercalated within the interlayer of an LDH, from their respective crystal structures
in the A-form (shown in Red) and in the B-form (shown in Blue), at various levels of
hydration. Figure (c) shows the RMSD of PNA, intercalated within the interlayer of an
LDH, from the initial P-form. The variable n refers to the number of water molecules
per unit formula.
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Figure 5.10: Radii of gyration of nucleic acids intercalated within an LDH for (a)
Model IV (solid red), Model V (solid blue) and VI (solid black) at 300 K and 1 atm.
Radii of gyration of nucleic acids in bulk water for (b) Model VII (dashed red), Model
VIII (dashed blue) and IX (dashed black) at 300 K and 1 atm. Compared to RNA
and DNA, the relative size of PNA is the largest both when free in bulk water and
intercalated within the LDH. There is a change in the relative order of size between
the three different nucleic acids at ambient conditions when intercalated within the
LDH compared to the nucleic acids in bulk water; DNA has the smallest relative size
when intercalated whilst RNA has the smallest relative size when free in bulk aqueous
solution.
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(a) RNA-LDH (b) DNA-LDH (c) PNA-LDH

(d) RNA-Water (e) DNA-Water (f) PNA-Water

Figure 5.15: Superposition of configurations obtained by projecting the motion of all
atoms onto the first eigenvector using principal component analysis for (a) Model I; (b)
Model II; (c) Model III; (d) Model VII; (e) Model VIII; and (f) Model IX. The con-
figurations are averaged over the last nanosecond of simulation for the studied models.
The colour scheme is the same as that used in Figure 5.3. Intercalated nucleic acids
show reduced motion compared to the corresponding bulk water models for the domi-
nant mode of motion. DNA displays less motion, with respect to the first eigenvector,
than all other models indicating that this is the most structurally stable of the models
tested.
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Temperature PNA Diffusion RNA Diffusion DNA Diffusion
Coefficient ( Å2ns−1) Coefficient ( Å2ns−1) Coefficient ( Å2ns−1)

300K 0.20 ± 0.000 0.33 ± 0.00 0.28 ± 0.01
350K 0.90 ± 0.001 0.48 ± 0.00 0.55 ± 0.02
400K 1.40 ± 0.002 0.83 ± 0.00 0.58 ± 0.03
450K 2.60 ± 0.002 1.45 ± 0.00 1.80 ± 0.09
500K 4.00 ± 0.004 2.34 ± 0.01 2.11 ± 0.12

Table 5.4: Diffusion coefficients for 12 base pair PNA oligomers in Model VI, RNA
oligomers in Model IV and DNA oligomers in Model V calculated from the production
phase of the simulations. Error bars are obtained from the least squares error fit on
the gradient of the mean square displacement vs. time graph. As the temperature
increases, the average diffusion within the basal plane increases.



Chapter 6

Clay Minerals Mediate Collapse

and Regioselective Interactions of

RNA

In this chapter molecular dynamics techniques are used to carry out large-scale simu-

lations of various 25 mer sequences of ribonucleic acid (RNA), in bulk water and with

aqueous montmorillonite clay over many tens of nanoseconds. The motivation of this

was to elucidate the nucleic acid–clay interactions that have been observed in previous

experimental studies, but have hitherto remained unexplained at a molecular level.

6.1 Introduction

Montmorillonite clay is a principal alteration product of volcanic ash, and it is relatively

widespread within bentonite deposits in the Earths crust. It is postulated that similar

processes would also have occurred on the early Earth [206], with interpetation of the

oxygen isotopes of Hadean zicrons indicating the oceanic conditions needed for sodium

montmorillonite at up to 4.4 billion years ago [207, 208]. Under laboratory conditions,

montmorillonite has been shown to catalyse the formation of long ribonucleic acid (RNA)

oligomers, along with a large number of other organic reactions [209]. Montmorillonite

is a 2:1 clay consisting of an octahedral alumina (AlO6) sheet sandwiched between two

tetrahedral silica (SiO4) sheets. Naturally occurring montmorillonite, such as Wyoming

montmorillonite, contains partial isomorphic substitutions in both tetrahedral and oc-

tahedral sheets, which confer a net negative charge. Silicon (4+) ions in the tetrahedral

sheets are commonly substituted with aluminum (3+) ions, and octahedrally coordi-

nated aluminum (3+) by magnesium (2+), and iron (2+) ions. The negative charge

84
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is balanced by various exchangeable cations, often sodium (Na+) and calcium (Ca2+)

ions, which reside on the surfaces and within the interlayer region of the clay. Work

performed by Ferris et al. has shown that of twenty-two chemically distinct varieties of

natural montmorillonite, the Wyoming type has greatest catalytic activity [162].

The ability of montmorillonite to catalyse the formation of RNA oligomers has been

demonstrated in a number of experiments by Ferris and co-workers [71]. In their labo-

ratory studies Ferris et al. used artificial activated phosphorimidazolides of nucleosides

together with homoionic Na+ montmorillonite to form oligomers of 6-14 mers, in which

montmorillonite was shown to enhance the rate constant for oligomer formation by 100-

1000 times over the hydrolysis of the imidazole activating group [210, 211]. Ferris et al.

then experimented with the use of a primer strand of 10 mers which produced 30-40

mers [212]. By changing the activating group from imidazole to 1-methyladenine, Ferris

et al. formed single strands of up to 50 mers of poly-adenine and poly-uracil in a couple

of days, without the need for a primer strand. RNA sequences of this length are suffi-

ciently long to exhibit fidelity in replication as well as catalytic activity [71]. How such

polymerisation could have occurred in the pre-biotic era remains to be fully understood.

As each montmorillonite clay sheet carries a net negative charge and each RNA strand

has negatively charged phosphate groups, even the basic mechanism by which the RNA

interacts with clays needs clarification. Franchi et al. have proposed that cations play

a key role in the adsorption of the strands on clay surfaces [213]. The cations could

potentially mediate the interaction by screening the negative charge using monovalent

cations, or by creating a divalent cation bridge between the two layers of negative charge

from the nucleic acid and mineral surface. These authors have demonstrated that the

quantity of single stranded adenine and uracil RNA (poly[A] and poly[U]) adsorbed is

greater in the presence of Ca2+ than Na+ ions.

One of the leading theories concerning the origin of life is the RNA world hypothesis,

based on the assumption that an RNA based world preceded the world we live in now, in

which according to the central dogma of modern biology DNA makes RNA which in turn

makes proteins [214]. The hypothesis is attractive in part because it only requires the

formation of one type of biopolymer. The RNA world hypothesis has gained significant

support from the work of Cech and Altman, who won the 1989 Nobel prize in chemistry

for the discovery of a group of catalytic RNA molecules called ribozymes [25]. Steitz,

along with many others, elucidated the structure of the ribosome, which is the molecular

machine responsible for making proteins and amino acids [26, 215], showing that the

ribosome is a ribozyme. More recent support has come from Sutherland et al. who

synthesised purine based RNA [101]. Montmorillonite catalysis could potentially resolve

some of the problems in RNA synthesis, by concentrating and polymerising the RNA
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and producing stereo-enantiomers [216]. Much experimental work has been performed

on the interaction of nucleic acids (both single and double stranded RNA and DNA)

interacting with mica surfaces [217, 218]. Although the mica/nucleic acid system is not

identical to that of montmorillonite/nucleotide systems, the mica surface can be thought

of as an analogous system as both mica and montmorillonite have negatively charged

surfaces. For many years montmorillonite has been associated in part with the RNA

world hypothesis, and therefore the origins of life on Earth. Indeed, the idea that clay

minerals played an important role in the early chemical processes leading up to the

origin of life was proposed independently by Goldschmidt [219] and Bernal [220] as long

ago as 1947.

Even today, however, the structure and conformation of RNA interacting with montmo-

rillonite remains uncertain, as well as the mechanism of elongation of the polymer by

addition of nucleic acid monomers. Research into origins of life has hitherto rarely used

simulation techniques to understand the possible chemical pathways to the formation

of biomolecules [70, 191, 221]. However, over the past ten to fifteen years, molecular

simulation has played an increasingly important role in clay chemistry [137, 145], as

well as in the study of RNA [222]. Computer simulations complement current experi-

mental techniques by providing atomic-scale resolution of such systems. In particular,

simulation provides insight into how molecules adsorb on and intercalate within clays.

This chapter explores the mechanism by which RNA adsorbs on an aqueous Wyoming

montmorillonite mineral surface, using fully atomistic large scale classical molecular dy-

namics techiques. The interaction of various RNA molecules, of differing base sequence,

with the mineral surface in the presence of Ca2+ or Na+ charge balancing cations is in-

vestigated. How the differing counterions alter the RNA conformation, folding kinetics

and structure is studied, and a comparison to its behavior on montmorillonite to that in

aqueous solution is observed. The chapter looks at how RNA changes its structure and

conformation when interacting with a montmorillonite surface and contrast the structure

and conformation in bulk water.

Section 6.2 of this chapter describes techniques that we have employed to simulate the

clay/nucleic acid systems reported here. Section 6.3 discusses the results obtained in

these simulations, while Section 6.4 draws conclusions from this study.
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6.2 Methods

This section discusses the techniques that have been employed to simulate the aqueous

nucleic acids and clay systems in this paper. Fully atomistic, large scale molecular

dynamics techniques have been used to simulate these fully flexible systems containing

hundreds of thousands of atoms. A collection of three federated supercomputing grids

coupled to local resources at UCL were utilized in order to perform these simulations,

and their associated data analysis and transfer.
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The montmorillonite used in this study was derived from an initial structure with the

chemical formula Na3[Al14Mg2][Si31Al]O80(OH)16 shown in Figure 7.2, which is con-

sistent with naturally occurring Wyoming montmorillonite. Partial substitutions were

created in both tetrahedral and octahedral sheets, although there is no evidence that

the negative charge arising from partial substitution of Al3+ ions for Mg2+ ions in the

octahedral sheet are implicated in the bonding between RNA and montmorillonite. The

montmorillonite structure was constructed using the Materials Studio (Accelrys) soft-

ware. The montmorillonite structure was chosen as it is widely used in experiments

[213, 223] and it has been shown to possess catalytic activity with respect to RNA

oligomerisation [162].

The sizes and sequences of the RNA molecules used in this study are given in Table

6.1 and shown in Figure 7.2. All the polymers in models I-XII are 25 base groups in

length and are single-stranded. All the RNA molecules, denoted A, B, C and dA,

were assembled using the Nucleic Acid Builder which is part of AMBER Tools 1.2.

Models I and II consist of a single-stranded poly-adenine RNA molecule, sequence A,

aligned with the aqueous montmorillonite surface with differing cations neutralizing the

negative charge from the partial substitutions in the clay and charged un-protonated

phosphate groups. From the partial substitutions within the clay sheets, as shown

in the clay chemical formula Na3[Al14Mg2][Si31Al]O80(OH)16, a net negative charge

of 408 e− was generated on the clay structure. The RNA strands used in this study

all bear a net negative charge of 24 e−. As such, a corresponding number of Na+ or

Ca2+ ions were added in order to neutralise the negative charge in all the systems.

All phosphate groups were un-protonated and carrying a negative charge as we are

assuming a pH of 7 where all phosphate groups are known to be ionised. This sequence

was chosen to mimic the strand used in the experiments performed by Franchi et al.

[213]. Models III and IV are the corresponding RNA in bulk aqueous solution (i.e. in

the absence of montmorillonite); these are used to infer the effects of the clay surface on

the structure, dynamics and conformation of the RNA molecule. In models V to XII

two different single stranded RNA sequences were used (B and C). The base sequences

were taken from two stem-loop secondary structural motifs in the type III hammerhead

ribozyme [224]. The stem-loop motifs were chosen to observe the effects of the clay

surface on the formation and stabilisation of secondary structures. All sequences were

also simulated using different cations and in bulk aqueous solution. The two cations used

were monovalent Na+ ions and divalent Ca2+ ions, in order to investigate the effects of

cation charge density on RNA conformation and on mediating surface interactions; they

were selected to mimic those used in experiments [213]. Model Ia was constructed

in order to test the effect of the initial cation distribution on the simulation; in this

model the cations were distributed randomly around sequence A using a stochastic
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algorithm. Cations in other models were entered manually into random positions within

the simulation cell. Model XIII was simulated in order to provide a comparison with

the double stranded DNA and RNA experiments preformed on a mica surface.

The sizes and sequences of the RNA molecules used in this study are given in Table

6.1 and shown in Figure 7.2. Table 6.1 uses standard notation for displaying RNA

sequences, where the strand is displayed in the 5′-3′ direction exhibiting individual nu-

cleotide bases as A, U, C & G for adenine, uracil, cytosine and guanine respectively. All

the RNA molecules were built using the Nucleic Acid Builder, which produces nucleic

acid structures in a hierarchical fashion based on three successively applied steps: i)

transformation of nucleotide bases to achieve desired helical and base-pairing configu-

rations, ii) geometry optimisation which allows molecular structures to be built that

satisfy sets of distance constraints and iii) potential energy minimisation. Models I and

II consisted of a single-stranded poly-adenine RNA molecule aligned with the aqueous

montmorillonite surface with differing cations neutralising the negative charge from the

partial substitutions in the clay and charged un-protonated phosphate groups. This se-

quence was chosen to be identical to that used in the experiments performed by Franchi

et al. [213]. Models III and IV are the corresponding RNA in bulk aqueous solution

(i.e. in the absence of montmorillonite); these are used to infer the effects of the clay

surface on the structure and conformation of the RNA molecules.

The two stem-loop motifs in models V-VII were chosen to study the effects of the clay

surface on the formation and stabilisation of secondary structures. These sequences were

also simulated using different cations and in bulk aqueous solution. Distances of 20 Å in

the clay models and 50 Å in the aqueous models were used to minimise the interaction

between RNA and its periodic images. Over 25,000 water molecules were placed above

the surface of the montmorillonite clay within the periodic simulation cell, giving it a

length of 180 Å, sufficient to decouple the clay layer from its periodic image in the z-

direction. The initial configuration of the RNA and the clay surface is shown in Figure

6.2. Charge balancing cations were placed in the interlayer region of the clay, and also

between the RNA molecule and the surface manually. In the bulk water models cations

were placed at random locations around the molecule using the ‘solvate’ and ‘addions’

routines within AMBER Tools.

The models were minimised using the steepest-descent method. A thermalisation step

was run, heating the system up from 50 K to 300 K over 0.01 ns. The whole system was

allowed to evolve and equilibrate using the NPT ensemble. Equilibration was deemed to

have been established by monitoring the potential energy of the system as a function of

time, the radius of gyration of the RNA molecule and by looking for the cell dimensions to

take on stable average values. Fourteen models were simulated in total. All simulations
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were run on the geographically distributed computational resources. Clay models were

run on 512 processing cores and the bulk water models on 1024 cores. The number

of cores was selected based on the number of atoms of each model and the scaling

properties of the LAMMPS code. Each model was simulated in production conditions

for the specified number of nanoseconds following equilibration, shown in Table 6.1.

Models I and II were simulated for 30 ns, where it was shown that equilibrium had been

established for over 20 ns; as a consequence all other simulations were ran for at least

20 ns.

In order to perform the study reported here, very substantial computing resources were

needed. To this end, three supercomputing grid infrastructures were utilized in the

USA and Europe. These include computing nodes at Leeds and Rutherford Appleton

Laboratories on the UK’s National Grid Service (NGS) 1; Bigben at Pittsburgh Super-

computing Center (PSC), Ranger at the Texas Advanced Computing Center (TACC)

and Kraken at the National Institute for Computer Science (NICS), all on the US Ter-

aGrid 2. RZG at Rechenzentrum Garching on the Distributed European Infrastructure

for Supercomputing Applications (DEISA) 3 and Intrepid at the Argonne Leadership

Computing Facility, were also employed to run these simulations, as well as local ma-

chines at UCL, including the Centre for Computational Science’s Linux cluster, Mavrino,

and UCL Research Computing’s Legion machine.

6.3 Results

This section discusses the various differences in the interaction of RNA with an aqueous

clay surface in the presence of monovalent or divalent cations, and discuss how the dif-

ferent cations mediate the interaction between the clay and RNA. The observed collapse

and formation of secondary structural motifs in the various RNA sequences is reported.

The mechanism by which RNA tethers to the montmorillonite clay surface, and account

for the observed increase in adsorption of RNA on the clay surface in the presence of

divalent cations is also discussed.

6.3.1 Cations as mediators of the adsorption of RNA on clay surfaces

Model Ia was built in order to test the effects of the initial structure and distribution of

the counterions on the evolution of the MD simulation. Model Ia is identical to model I

in every aspect except for the initial location of the Na+ counterions. A comparison of

1http://www.ngs.ac.uk/
2http://www.teragrid.org/
3http://www.deisa.eu/
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the first 23 ns of simulation from models I and Ia, as well as average structures, showed

that once equilibrium had been reached both models exhibited more or less identical

RNA structure and conformation and counterion arrangement; this is supported by the

similarities in the density profiles produced for each system. Insignificant differences in

models I and Ia can be attributed to the random nature of MD simulations and did not

effect the time averaged data of the two systems.

RNA-montmorillonite systems were simulated with two different choices of cation to

balance the negative charge due to the unprotonated phosphate groups present in the

RNA molecule and from the partial substitutions in the clay sheets. The RNA-clay

models were simulated with Na+ and Ca2+ ions for the RNA sequences A, B and C, as

described in Table 6.1. Previous experimental studies carried out on nucleic acid-mineral

systems [213, 217] have shown that the cations play a key role in mediating the interac-

tion between RNA and clay surfaces. The role cations play in mediating the adsorption

of nucleic acids on clay surfaces was reported by Franchi et al. using adsorption assay

experiments [213]. Franchi and co-workers reported that divalent cations (Ca2+ and

Mg2+) are more efficient than monovalent cations (Na+) in mediating the adsorption

of nucleic acids on clay minerals including montmorillonite and kaolinite. This effect

can be explained by the higher affinity of divalent cations for nucleic acid molecules

and their greater ability to counter-balance the negative charges present in the nucleic

acid-clay system. Visualisation of the average structure taken after 20 ns, shown in

Figure 6.4, displays the extent of the differences caused by the different cations. The

RNA molecule interacts very strongly with the surface when the divalent Ca2+ ions are

present in models II, V and X, compared to the RNA strand in models I, IV and

IX when monovalent ions are present. Despite the like-charge of the RNA and clay

surface, the RNA polyanion is attracted to the surface when bridging divalent cations

are available in models II, V and X. Thus, as in experiments, our simulations show

significant differences in the interaction of RNA with the clay surfaces in the presence

of Na+ and Ca2+ cations.

Plots of atomic density for models I and II, displayed in Figure 6.5, show the differences

in density of the phosphorus atoms near the clay surface when either Na+ or Ca2+ ions

are present. These plots clearly show that more phosphorus atoms in model II (Ca2+)

are concentrated near the clay surface than in model I (Na+), indicating that RNA has

a greater propensity to be closer to the surface in the presence of divalent cations. The

mean-squared displacement plots in Figure 6.6 for models I, II, V and VI show greater

diffusive molecular motion for RNA when Na+ are present, as compared to the models

containing Ca2+. Thus, the mean-squared displacement of RNA as a function of simu-

lation time for models II and V shows very little diffusive motion, characterized by the

gradient of the mean squared displacement plots in Figure 6.6. Thus, this support the
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earlier claim that divalent cations are more efficient than monovalent cations in medi-

ating the adsorption of nucleic acids on clay minerals. Franchi’s experiments showed no

significant differences in the adsorption of polypurines and polypyrimidines on montmo-

rillonite, even though previous work by Ferris et al. [226] reported a higher affinity of free

purines and purine nucleotides than that of free pyrimidines and pyrimidine nucleotides.

Visualisation of the snapshots taken from MD trajectories of the entire system in models

II, V and X, displayed in Figure 6.7, shows the RNA strand tethering to the surface

through a single planar purine base of the biopolymers with sequences A, B and dA.

Model XIII shows a Watson-Crick double-helical strand of RNA, sequence dA (Table

6.1), tethered to the montmorillonite surface through a planar purine base at the 5′ end

of one of the strands, rather than midsection nucleotide base. Average structures of

the RNA molecule, shown in Figure 6.8, reveal the extent to which the conformation of

RNA has altered in the presence of the clay surface, compared to the elongated helical

conformation of the strands in aqueous water. Experiments exhibit folding of single

stranded RNAs in bulk water and RNAs on mica surfaces [218, 227].

Simulations show that the nucleotide base contributes to the mechanism by which RNA

adsorbs onto the aqueous montmorillonite surface. This disagrees with the notion [213]

that the sugar and base groups of the RNA molecule do not take part in the adsorption

of RNA onto the surface and that the negatively charged phosphate groups are the best

candidates for the interaction with clay surfaces mediated through cations, suggested

by Franchi et al.. The visualisations from simulations in Figure 6.7 show the planar

adenosine base lying flat on the montmorillonite surface at a tetrahedral Si4+ site, away

from the Al3+ partial substitutions. The adenine ring interacts with the clay surface

atoms via a combination of van der Waals and electrostatic forces.

Franchi and co-workers experiment indicates that double-stranded nucleic acids need

higher cation concentrations than single-stranded ones to establish an interaction with

the clay surface. One proposed mechanism by which nucleic acids interact with a mont-

morillonite surface is through a “cation bridge” where divalent cations locate between

the mineral surface and the nucleic acid; the nucleic acid is then cooperatively bound

to the surface through the divalent cations [213, 217]. Simulations do not exhibit the

binding of RNA through a “cation bridge” mechanism, but rather indicate that the diva-

lent cations neutralise the negative charge present on both the nucleic acid and the clay

surface. The RNA then binds to the surface though a single nucleotide base essentially

mediated by Lennard-Jones dispersion forces.

Pastré et al. used atomic force microscopy (AFM) to probe DNA adsorbed to a mica

surface. Their experiments suggest that DNA attraction is due to the sharing of the

DNA and mica counterions. The correlation between divalent counterions on both the
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negatively charged DNA and the mica surface can generate a net attractive force whereas

the correlation between monovalent counterions is relatively ineffective. These exper-

imental observations regarding the counterion valency correlate with the simulations

reported here in which Na+ is ineffective in binding the single-stranded RNA in models

I, VI and X. The degree to which the Na+ ions are ineffective at attracting the RNA to

the montmorillonite surface can be viewed qualitatively in the animation of model VI

supplied in Appendix A.

6.3.2 RNA collapse and formation of secondary structural motifs

RNA molecules are known to fold into specific, intricate three-dimensional structures

which are necessary to perform numerous biological functions [228]. Thus, understanding

RNA folding is important in unravelling RNA’s putative role in the early chemical

processes which may have led to the origin of life on Earth. In addition to the models

consisting of RNA on an aqueous montmorillonite surface, corresponding models of RNA

in bulk water were built and simulated. These are models III, IV for sequence A, VII,

VIII for sequence B and models XI, XII for sequence C; see Table 6.1. The bulk

water simulations were designed to understand how the structure and conformation of

different RNA sequences are modified in the presence of a mineral surface, by comparison

with their corresponding behaviour in bulk aqueous solution. Visualisations taken from

our simulations reveal significant changes in the conformation of RNA between the clay

surface models I and II and the bulk water models III and IV, as well as notable

differences in structure and conformation when different cations are present in models I

and II.

The first experiments on the initial collapse of the RNA Tetrahymena ribozyme, induced

by various counterions, were presented by Thirumalai and Heilman in 2001 [229, 230].

Experiments using time-resolved small-angle X-ray scattering (trSAXS) have revealed

that, upon addition of divalent Mg2+ cations, RNA in bulk water rapidly compacts

from an extended state to a globular state of nearly native dimensions, well before the

formation of any stable tertiary contacts [228]. Gel electrophoresis experiments on the

Tetrahymena ribozyme performed by Kucoli et al. show that the rate of formation

of the catalytically active native state, from the initial collapsed state, increases with

decreasing counterion charge [231]. It is intuitive that the transition to the active state

would be slower compared to the initial collapse as it requires breaking of hydrogen

bonding and re-folding. These collapsed RNA states can be considered analogous to the

molten globule states that appear in early stages of protein folding which are stabilised

by hydrophobic interactions. Our simulations show a collapse of the initial elongated

RNA structures, for sequences A, B and C shown in Figure 7.2, into folded, more
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compact, structures in the models in which RNA is interacting with a montmorillonite

surface (models I, II, V and VI), over a time scale of 5 ns. The collapse of the initial

structure can be seen in plots of radius of gyration of the RNA strand as a function of

simulation time, shown in Figure 6.9. The radius of gyration is calculated here for the

RNA molecule in each model. The radius of gyration plots in Figure 6.9 for models I and

II show a decrease in the effective size of the molecule over the first 15 ns of simulation,

from 20 Å to around 15 Å. The radius of gyration plots for models V and VI show a

decrease in the effective size from 25 Å to around 15 Å. The reduction in size of the RNA

single-strand depicted here is supported further by the observed collapse and compaction

of RNA seen during the simulations. The 5 ns collapse observed in the simulations is

analogous to the 1 micro-second fast collapse of the tetrahymena ribozyme reported

experimentally using trSAXS [228]. The initial folding of the ribozyme happens over a

longer timescale due to the size (400 mer) and complexity of the ribozyme compared

with the smaller RNA sequences studied here. The ribozyme has complex junctions

stabilised by hydrogen bonds and base stacking interactions that are compatible with the

RNA’s electrostatically extended conformation. Base stacking refers to the stabilising

effect of parallel nucleotide base groups that interact through the π-bonding orbitals of

their aromatic rings. The breaking of these initial interactions slows down the rate of

the earliest global conformational changes. In the tetrahymena ribozyme experiments

discussed here, the ribozyme’s initial “extended” structure already contains preformed

secondary structures; it is not a random elongated strand.

The collapse that is observed in models I, II, V, VI, IX and X containing clay surfaces

is not observed in the corresponding bulk water simulations in this study. The single

strand RNA sequences in models III, IV, VII, VIII, XI and XII retain their initial

helical structure over the course of each simulation. The absence of folding of RNA in

these bulk water simulations is characterised by the constant effective size of the RNA

molecule for the duration of each simulation, which can be seen in plots of the radius of

gyration in Figure 6.9.

The outcome of the initial collapse of RNA has been suggested to result from a trade-

off between the electrostatic screening of negatively charged un-protonated phosphate

groups versus the hydrophobic collapse of the strand to shield the hydrophobic base

groups [228]. The collapse of the initial structures in the simulations leads to the for-

mation of secondary structural motifs in models I, II, V and VI. The formation of

the stem-loop secondary structure, shown in Figure 6.8, is stabilised by the stacking

of adjacent and non-adjacent bases, and by the formation of Watson-Crick base pairs

in models V and VI. The occurrence of Watson-Crick base-pairs and base stacking is

known to stabilise the formation of optimal and sub-optimal folded secondary structures

[222].
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To analyse the principal modes of motion of RNA in all models, PCA was employed; the

results are shown in Figure 6.8. In published MD simulations of RNA in bulk water the

dominant modes of motion are a twisting of the strand around a central axis, junction

bending and wedge bending [222]. Models III, IV, VII, VIII, XI and XII, which

consist of RNA in bulk water, confirm these findings. The dominant modes of motion

of RNA in bulk water can be seen in Figure 6.8. The clay-surface interacting RNA in

models I, II, V, VI, IX and X have different modes of motion since it is the interaction

with the clay surface which restricts molecular movement. The clay/RNA models show

a strong dependence between the first two eigenvectors, suggesting that forces acting

along these eigenvectors are coupled. The presence of the clay surface and the resultant

tethering of the RNA significantly restricts the movement of the RNA molecule. The

main contribution to the dynamics is seen at the ends of each of the RNA oligomer

chains, analogous to previous simulations of DNA intercalated within a layered double

hydroxide (LDH) matrix [149].

The compact folded structures observed in the simulations are analogous to the col-

lapsed, folded and mis-folded hairpin loops observed during replica-exchange molecular

dynamics performed by Sorin et al. [232], who reported the stabilisation of mis-folds

by non-native interstrand nucleotide stacking. Sorin et al. employed large ensembles of

simulations using the Folding@home distributed computing grid, thereby showing the

competing pathways in hairpin folding and unfolding. Sorin et al. concluded that the

conformational dynamics for folding small 12 mer RNA sequences happens over tens of

milliseconds. The models in this chapter indicate that the 25 mer RNA, of sequences

A, B and C, in the presence of a clay surface, enjoy an increased rate of folding due to

the change in their modes of motion.

For sequences B and C the optimal, and lowest energy, folded structures were calcu-

lated using the RNAfold tool which is part of the Vienna RNA software suite [225].

The RNAfold tool reads in RNA sequences and calculates their minimum free energies

using the minimum free energy algorithm of Zuker & Stiegler [233]. The optimal folded

structures of sequences B and C are displayed schematically, and as a three dimensional

structure, in Figure 6.3. The optimal folded structures and energies were used to com-

pare against the folded structures of the RNA sequences in the simulations, shown in

Figure 6.11. To obtain free energies for the folded structures that arise in the simula-

tions, the RNAinverse program, which is also part of the Vienna suite, was used. The

RNAinverse program searches for sequences that map into a predefined tertiary struc-

ture, thereby inverting the folding algorithm. Target structures and starting sequences

are read in alternately. The optimal and sub-optimal structures and energies are tabu-

lated in Table 6.2 where the secondary structures have been displayed using dot-bracket

notation in which the characters “(” and “)” correspond to the 5′ and the 3′ base which
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close the stemloop motif, while “.” denotes an unpaired base. The RNA folding pathway

can be discerned from the free energy landscape which may be visualised in terms of a

tree diagram. The tree arranges local minima and their corresponding saddle points in

a hierarchical fashion. Figure 6.12 shows the tree diagrams for both sequences B and

C. The optimal fold, the lowest energy fold, which has the structure shown in Figure

6.3, is given the label 1 in the tree plots.

Model Sequence Secondary Structure Type Free energy (Kcal/mol)

B ....(((((......)))))..... optimal -6.15

V B ..((................))... sub-optimal 2.51
VI B ........(......)......... sub-optimal 2.50

C ...((((((((...)))))..))). optimal -7.40

IX C ......................... un-folded 0.00
X C ...(.........)........... sub-optimal 4.20

Table 6.2: RNA sequences and their corresponding optimal folded secondary structures
for sequences B and C as well as the suboptimal structures in models V, VI, IX
and X. Secondary structures are shown in the “dot-bracket” notation (explained in the
main text), along with their calculated free energies.

The folding landscape in Figure 6.12 shows the compact structures for sequences B

and C within the folding pathway to their optimal lowest energy fold in bulk aqueous

solution. The structures taken from simulations are suboptimal structures which are

all present along the predicted folding pathway. This indicates that these local minima

are occupied at intermediate stages in the folding of the optimal secondary structure

conformations. As folding is not observed after 20 ns of simulation in the bulk water

models VII, VIII, XI and XII, but compact conformations of sub-optimal energies

are observed along folding pathways for our systems containing RNA and a clay surface

in models V, VI, IX and X, we infer that the clay surface has the effect of increasing

the rate at which these RNA sequences compact and fold along pathways that might

eventually reach their optimally folded conformations, associated with global free energy

minima, even though these may not be found in a clay/RNA system due to the presence

of many additional interactions.

Ion size determines the closest distance between ion and RNA and effects ion-ion distance

and hence the strength of Coulombic and excluded volume correlation. Folding studies

have been performed on the tetrahymena ribozyme looking into the effects of differing

ions on folding kinetics [234]. These experiments show that there is a linear relationship

between increase in folding stability and the increase in (divalent) ion charge density

(i.e. charge/volume of the ion). This experimental observation supports the differences

in folding rates shown between the simulation of models I, V and IX with models II,

VI and X. The increase in charge density of Ca2+ over Na+ leads to increased folding

stability and drives the increase in rate observed in these simulations.
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During the full 25 ns MD simulation of model XIII the double strand of RNA does

not undergo any folding, but retains its double helical conformation; this indicates that

the Watson-Crick base pairing is stable under these conditions, and no unzipping of

one strand from its complementary strand is observed. Figure 6.7 shows the double-

stranded RNA tethering to the montmorillonite surface through an adenine base group

at the 5′ end of the tethered strand; this suggests that a tethered strand provides a

stable template for growth of a complementary strand in the 5′ to 3′ direction.

6.4 Conclusions

In this present study simulations have elucidated a number of facets of nucleic acid–clay

interaction and reactivity that have been observed in previous experimental studies, but

have hitherto remained unexplained at a molecular level.

One prevailing theory in origins of life studies is that RNA in prebiotic conditions may

have been confined and restricted in motion by mineral surfaces, much as it is confined

within the ribosome of living cells today [215]. Due to the ubiquitous presence of clay

minerals and their associated cations in nature, these aqueous environments may have

provided prebiotic habitats for nascent nucleic acid polymers. Indeed, clays may thus

have played a key role in the formation and preservation of these polymers and/or their

precursors. Analysis of the dynamics of the RNA oligomers in all of the models we have

studied reveals that the behaviour of RNA interacting with these surfaces is significantly

different from that in bulk water.

In general, these simulations have shown that strong electrostatic forces act between the

montmorillonite clay surface, the interacting RNA molecule and the aqueous monovalent

or divalent cations. Divalent cations are more effective in mediating the interaction be-

tween the clay surface and RNA sequences, due to increased electrostatic screening. The

electrostatic repulsion of the unprotonated phosphate groups within the RNA molecule

from the negatively charged sites associated with aluminium ions on the clay surface is

overcome through the presence of solvated divalent cations, allowing the RNA molecule

close proximity with the clay surface. These simulations have identified a mechanism for

clay-RNA interactions, whereby a planar purine nucleotide base interacts with the clay

surface mainly through Lennard-Jones forces. The electrostatic attraction and teth-

ering of the RNA strand to the clay surface causes it to be significantly pinned and

hence restricted in movement compared to RNA in bulk water. Structural analysis of

surface-interacting RNA molecules in all of the models we have studied confirms that

the motion of RNA is indeed substantially restricted compared to RNA in bulk wa-

ter. Tethering of single-sranded RNA to the montmorillonite surface is only observed
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in models with Ca2+ counterions: equivalent models which have Na+ counterions do

not produce similar effects. This leads to the inference that divalent ions such as Ca2+

very likely play a key role in tethering, as reported experimentally [213]. The observed

tethering of single-sranded RNA to the clay surface is of considerable relevance to pre-

biotic chemistry: 5′-3′ regioselective RNA polymerisation has been reported by Ferris

and co-workers [71, 210, 211], but was hitherto difficult to explain mechanistically.

These simulations show that single strands of RNA fold at a considerably enhanced

rate when a montmorillonite surface is present compared with the same sequences in

bulk water. For both Na+ and Ca2+ containing clay and single-sranded RNA models,

the single-sranded RNA undergoes a fast collapse stage of folding into a more compact

structure in less than 5 ns, which is not observed in bulk water with the same cations.

The increased rate of folding at clay surfaces is of importance to the RNA world view,

according to which early RNA polymers would have needed to produce well defined

folded structures to support enzymatic activity in order to cleave self-replicating RNA

strands, essential components in the first steps of molecular evolution [42]. Accelerated

folding kinetics considerably increases the parameter space that may be explored by clay-

RNA complexes in constructing catalytically active structures under conditions which

may have been far from benign.

When interacting with the clay surface the motion of the end groups of the oligonu-

cleotide dominate the motion of the molecule; as a result the single RNA strands collapse

and fold into more compact structures, made possible by the increased concentration

of cations screening the mutual electrostatic repulsion from phosphate groups in clay-

containing systems with both Na+ or Ca2+. Simulations show that the compact, folded

structures of these RNA sequences are stabilised by the stacking of adjacent and non-

adjacent base groups as well as via hydrogen bonds between nucleotide groups, giving

rise to secondary structural hairpin-loop motifs. Conceptually, once RNA chains are

stabilised on clay surfaces, double-stranded RNA may be formed, for example as part of

a template-directed replication process; folded into tertiary structures, such ribozymal

RNA can then act as a catalyst [42] for self-replication.

Through these studies of mineral bound nucleic acids, the insight gained from many

large-scale molecular simulations run for tens of nanoseconds adds considerably to the

interpretation of experimental data from previous studies through provision of highly

detailed molecular level insight. It is evident that, when considering the RNA world,

minerals may substantially modify the chemistries that can occur: an RNA-mineral-

water world may have differed considerably from a mineral-free RNA world.
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Figure 6.1: a) Initial structure of the unit cell of Wyoming type montmorillonite with
charge balancing ions and water removed for clarity. Atoms are coloured as follows: Si
(gold), O (red), H (white), Al (purple), Mg (green) and Fe (blue). The visualisation
depicts the tetrahedral and octahedral layers of the clay, as well as interlayer regions
and the exposed surface. (b) RNA sequences A, B & C show the three different 25 mer
single strands of RNA and dA depicts the double stranded RNA used in this study.
RNA sequence A is used in models I-IV and consists of 25 adenine base groups. RNA
sequence B is used in models V-VIII and C in models IX-XII; both consist of different
nucleotide base sequences described in more detail in Table 6.1. dA consists of a 25nt
adenine sequence and complementary uracil strand. Colour scheme is as follows: O
(red), H (white), N (blue), C (grey), and P (yellow). The visualisation shows the RNA
strands in the 3′ → 5′ direction, where the prime indicates the carbon atom on the
ribose sugar component of the RNA monomer.
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Figure 6.2: Starting structure of model II in Table 6.1, the silicon atoms within mont-
morillonite being shown as magenta spheres; remaining clay atoms have been hidden to
aid viewing. Nitrogen, carbon and phosphorus atoms belonging to the RNA molecule
are coloured the same as in Figure 7.2. Ca2+ ions are shown as grey spheres which were
placed manually at random locations. Water molecules are not displayed. The helical
structure of the RNA strand was created using the Nucleic Acid Builder.
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Figure 6.3: (a) Secondary structure of the hammerhead ribozyme (type III) and (b)
the crystal structure of the RNA (type III) hammerhead ribozyme. Colour scheme as
in Figure 7.2. Secondary structure schematic in Figure (a) was generated using the
Vienna RNA software suite [225]. The tertiary structure of the ribozyme (b) was taken
from the protein database file 1MME and visualised using VMD. Both Figures show
the two stemloop motifs which were used in sequences B and C; sequence B consists
of the nucleotides 24-48, and sequence C of nucleotides 3-27 shown in (a).
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(a) (b)

(c) (d)

Figure 6.4: Average structures taken from simulations after 20 ns of simulation time.
Atom colours are as described in Figure 6.2, water is not shown for clarity. The vi-
sualisations of the trajectories here reinforces the differences observed in simulations
between the various models described. Visualisation in Figure (a) and (c) show the
RNA strand adopting a more compact conformation in model I and II respectively,
which are composed of an aqueous clay surface, compared to the extended structure of
RNA in bulk water, observed in models III and IV in Figures (b) and (d) respectively.
The visualisation displayed here also show the non-adjacent stacking of nucleotide bases
in models I and II, Figures (a) and (c) respectively, which is not observed in the bulk
water models. Colour scheme as in Figure 6.2.
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Figure 6.5: Atomic density profiles taken from 20 nanosecond simulations, of models V
in Figure (a) and VI in Figure (b). The atomic density profile shows the time averaged
atomic density of the specified atoms as a function of distance along the z-axis of
the simulation cell. Atomic density refers to the number of atoms per unit volume.
These profiles show the density of phosphorus atoms belonging to the RNA molecules,
surface Al3+ ions and Na+ or Ca2+ cations. The plots show the density of phosphorus
atoms to be concentrated closer to the surface in model VI than in model V where
the density is spread-out around 40 Å. The density of phosphorus atoms in model VI
shows more well defined peaks indicating that these atoms occupy more regions relative
to the clay surface than those in model V. These differences can be attributed to the
increased electrostatic screening by divalent Ca2+ ions in model VI relative to that of
monovalent Na+ ions in model V in Figure (a).
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(a)

(b)

Figure 6.7: Simulation snapshots taken at 20 ns from simulations of (a) model VI and
(b) model XIII, after 30 and 20 ns respectively. The colour scheme is the same as
in Figure 6.4. These visualisations show the conformation of RNA and throw light on
the mechanism by which RNA tethers to the surface. The visualisations in this Figure
show the tethering of (a) the single strand, of sequence B, and (b) the double strand
dA of RNA to the montmorillonite clay surface, through a planar purine ring, in this
case adenosine, at the 5′ end of the biopolymer. The screening of the negative charges
between the surface and phosphate groups by the cations allows the RNA strand to get
close enough to the surface for it to tether through the nucleotide base and the surface
via attractive dispersion forces. Water molecules are hidden to aid in viewing.
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(a) (b)

(c) (d)

Figure 6.11: Folded sections of the average RNA structure taken from the entire pro-
duction simulation for (a) model V , (b) VI, (c) IX and (d) X. Colour coding as in
Figure 7.2. Images show the folded secondary structures of RNA for sequences B and
C when interacting with a clay surface. Figures (a), (b) and (d) show the formation
of hairpin loop type motifs stabilised by stacking of nucleotide bases, seen as a closed
loop in the 3D structures. Figure (c) shows sequence C in model IX which has not yet
formed a secondary structure motif, but exhibits a more compact conformation than
the corresponding sequence in bulk water in model XI, in which the end segments have
folded in onto the rest of the molecule.
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Figure 6.12: A representation of the folding free energy landscape of (a) sequence B and
(b) sequence C. The tree arranges local minima and their corresponding saddle points
in a hierarchical fashion. The optimal and lowest free energy fold is labeled as 1 in each
tree. Folding landscapes were calculated using the Vienna RNA software suite [225].
Energies calculated for each RNA structure in Figure 6.11 correspond to sub-optimal
folds and energies in the folding landscapes shown here. The energy values given in
the horizontal axis are in units of Kcal/mol. The vertical axis gives shows the relative
stability of the folded structure, the highest being the most stable. The free energies
of the RNA sequences in models V and VI correspond to the suboptimal structures
labelled 9 and 10 respectively in (a). Model IX corresponds to the suboptimal structure
labelled 27 in (b).



Chapter 7

Influence of Surface Chemistry

and Charge on LDH-RNA

Interactions

This chapter details the results of large-scale molecular simulations, run over several

tens of nanoseconds, of 25-mer sequences of single-stranded ribonucleic acid (RNA), in

bulk water and at the surface of three hydrated positively charged MgAl layered double

hydroxide (LDH) minerals. The three LDHs differ in surface charge density, through

varying the number of isomorphic Al substitutions. We constructed these simulations in

order to probe the interaction of various aqueous RNA sequences with LDH of differing

charge density at the mineral surface.

7.1 Introduction

Clay and clay-like layered materials have gained considerable attention due to their

ability to intercalate and adsorb guest molecules or to exchange charged species for ex-

ternally present interlayer ions [235]. In principle, through the incorporation of charged

species into and onto a layered host, novel solids may be engineered with desired physical

and chemical properties [236].

LDHs have a structure similar to that of brucite, Mg(OH)2, which consists of charge-

neutral 2-dimensional layers of edge-sharing hydroxide octahedra. In the largest family

of LDHs, isomorphic replacement of a fraction of divalent cations, for example Mg2+,

with trivalent ions such as Al3+, occurs. This yields a positive charge on the layer, and

112
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in turn necessitates the uptake of charged species into the interlayer region. This LDH

family, which we study here, can be represented by the general formula:

[M2+
1−xM

3+
x (OH)2]A

n−
x/n·mH2O, (7.1)

where M2+ and M3+ are divalent and trivalent cations respectively, and A is an anion

of valence n.

Layered double hydroxide-nucleic acid nanohybrids have proven to be a useful class of

materials. Their application as efficient drug delivery vehicles for treatment of various

neurodegenerative conditions [237] means that a detailed understanding of the interac-

tion between biological molecules and the inorganic LDH interface is much sought after

in the biotechnology/biomedicine domain.

Laboratory studies have shown that small interfering ribonucleic acids (siRNA) can

be used in treating neurodegenerative conditions such as Parkinson’s, Alzheimer’s and

Huntington’s disease. Small interfering RNA are a potentially powerful class of bioactive

drugs able to target and destroy messenger RNA (mRNA) [238]. Delivery of unprotected

RNA based therapeutics is ineffective due to their inability to penetrate the plasma

membrane and their susceptibility to degradation by nucleases. siRNAs play a variety of

roles in biology; they interfere with specific gene expressions in RNA inference pathways

and help shape the chromatin structure of the genome. However, these bioactive agents

have yet to be successfully delivered to the required region in patients. For this reason

there has been limited use of RNAs in treating these conditions [239, 240].

LDHs have the ability to exchange their interlayer anions with other charged species;

this enables them to intercalate functionally bioactive anionic molecules, such as nucleic

acids, with a very high loading capacity [241, 242]. It is thought that the positive surface

charge of the LDH further allows an association with negatively charged plasma mem-

branes, thus making the LDH particularly adept at transporting charged biomolecules

across a cell membrane. LDHs have very low cytotoxicity and are highly biocompatible.

There has also been much interest in mineral surfaces, and in particular the interlayer

region of layered minerals, in prebiotic or “origin of life” chemistry [243, 244]. We have

recently discussed the possible role of LDHs in stabilising nucleic acids under potential

early Earth conditions [133, 245].

Certain Fe2+/Fe3+ LDHs may well have been prevalent on the early Earth and would

undoubtedly have interacted with a range of prebiotic molecules and species associated

with the putative RNA world. In addition to providing sanctuary for early RNA se-

quences against thermal or ultraviolet light degradation, such LDHs might have also
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afforded effective surfaces for templated polymerisation of further RNA sequences as an

early form of heredity [73].

Montmorillonite, by contrast, is a smectite clay. Smectites consist of negatively charged,

crystalline aluminosilicate sheets. The montmorillonite type of smectite has a structure

comprising stacks of pyrophyllite-like sheets, [Al2Si4O10(OH)2], each of which consists

of an octahedral alumina layer sandwiched between two tetrahedral silica layers. The

negative charge arises from partial substitution of metal ions in typically both the octa-

hedral and tetrahedral layers.

In Chapter 6 molecular dynamics is used to explain how the smectite, montmorillonite,

catalyses the polymerisation of RNA and the mechanism of RNA adsorption at the

montmorillonite surface [132]. Montmorillonite has the general formula:

[MgxAl2−x(OH)2(Si4O10)](C
n+)x/n · nH2O, (7.2)

where C is a cation of valence n, commonly Na+, Ca2+ and Mg2+.

The ability of montmorillonite to catalyse the formation of RNA oligomers has been

demonstrated in a number of experiments by Ferris and co-workers [71]. In their labo-

ratory studies, Ferris et al. used artificial activated phosphorimidazolides of nucleosides

together with homoionic Na+ montmorillonite to form oligomers of 6-14 mers, in which

montmorillonite was shown to enhance the rate constant for oligomer formation by 100-

1000 times over the hydrolysis of the imidazole activating group [210, 211]. By changing

the activating group from imidazole to 1-methyladenine, Ferris et al. formed single

strands of up to 50 mers of polyadenine and polyuracil without the need for a primer

strand [223]. RNA sequences of this length are sufficiently long to exhibit fidelity in

replication as well as catalytic activity [71]. It is important to note here that the acti-

vated monomers that Ferris et al. used in these studies have yet to be synthesis under

what are considered prebiotically plausible conditions.

A question arises when considering the interactions of nucleic acids with layered miner-

als as to whether the nucleic acid intercalates between the mineral layers, or binds to

the edge sites. Many of the studies on RNA and layered minerals have used smectite

clays, with a low charge density and more complex edge site chemistry [246]. In recent

studies by Ferris & X-ray diffraction studies have shown the intercalation of the nucleic

acid [247]. In the case of LDH-DNA systems, more relevant to the present study, the

intercalation is unambiguous by X-ray diffraction (an interlayer expansion from 13.3 to

20.0 Å is observed) and at extremely high density [69]. Other studies have shown that

simple phosphate containing biomolecules also intercalate into LDHs [248, 249].
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Ertem and Ferris showed that the presence of 2′-5′ linkages in these initial oligomers

would not have significantly deterred the origin of the RNA world since oligo(C) oligomers

containing less than 50% 3′-5′ linkages are effective templates for the formation of the

complementary RNAs [250, 251]. Gallori and co-workers have also shown how mont-

morillonite can protect RNA sequences such that they remain active as ribozymes after

exposure to UV radiation [252].

A challenge that arises for intercalated RNA-LDH hybrids in origin of life scenarios, and

one encountered more generally in the field of clay-polymer nanocomposites [190, 253],

is that of releasing the oligomer/polymer formed within the mineral interlayer. Multi-

ple attachment points result in a biomolecule that is difficult to displace. There are a

number of pathways by which this may occur in our prebiotic setting. One understood

and experimentally determined pathway for the release of DNA/RNA from the mineral

surface is the acidic dissolution of the mineral layer leaving the nucleic acid free and

exposed. Experiments by Tyner et al. showed that the weak base LDH nanocrystallites

were completely dissolved upon exposure to a solution with pH 5.0 while kept almost

unchanged at pH 7.2 [254]. Certainly, LDHs are broken up in order to buffer the pH in

mammalian cells after transfection of the nucleic acid/LDH system. Release mediated

by pH decrease is particularly relevant as, if the LDH minerals form near alkaline vent

systems [52, 169], then, at some point in the Archean ocean, the alkaline source may

of diverted to remove the mineral-RNA system to equilibrate with seawater which is

thought to have had a pH of about 6 [255]. Two other potential routes exist: i) carbon-

ate is very efficient at displacing anions from LDH systems through competitive anion

exchange, though this has not been tried for polynucleic acids, to our knowledge, and ii)

since we use Mg/Al LDH as a proxy for FeII/FeIII LDH, as the oceans became toxic, it

is possible that a transformation of the mixed valence LDH to non-layered iron oxides

would also result in polymer release.

7.2 Methods

Computer simulation of clays has gained wide currency in recent years as it is capable of

providing information and insight into these often amorphous and structurally disordered

systems in a way that remains largely inaccessible experimentally [147, 245].

This section describes the large-scale computational methods and resources used to per-

form the aqueous-RNA and LDH-RNA simulations reported in this Chapter. The choice

of interaction potentials needed to describe the clay-organic interactions is described in

more detail in Chapter 4.
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The sizes and sequences of RNA polyanions used in this study are given in Table 7.1.

Table 7.1 uses standard notation for displaying RNA sequences, in which the strand

is displayed in the 5′-3′ direction showing individual nucleotide bases as A, U, C & G

for adenine, uracil, cytosine and guanine respectively. The RNA strands were chosen

as they have been well characterised in previous molecular dynamics (MD) simulations

[132]. Sequence A is a 25-mer polyadenine RNA. Sequences B and C are both 25-mer

strands with mixed base sequences taken from the hammerhead ribozyme which exhibits

secondary structural features [256]. All nucleic acids were built using the Nucleic Acid

Builder, which is part of AmberTools 1.5. All phosphate groups were un-protonated

and carry a negative charge as we assume a pH of 7 for which all phosphate groups are

known to be ionized. Since the conditions on the early Archaean Earth remain unknown,

Models were built replicate the conditions of previous simulations which work with a

pH of 7.

The LDH structure used in this study was obtained by the refinement of powder X-

ray diffraction (PXRD) data on hydrotalcite using Rietveld methods and has an initial

structure with chemical formula [Mg2Al(OH)6]Cl·2H2O (see Figure 7.1) [81]. Two ad-

ditional LDH surfaces were constructed by altering the isomorphic substitutions present

in the LDH sheet to produce [Mg3Al(OH)6]Cl3·2H2O and [Mg6Al(OH)6]Cl9·2H2O.

Water molecules were placed above the surface of the LDH within the periodic simu-

lation cell, with a perpendicular length of 140 Å to the adjacent periodic image layer,

sufficient to decouple the mineral layer from its periodic image in the z-direction. This

represents either an external surface of the LDH. The LDH was charge balanced using

the anionic nucleic acid and chloride ions. Chapter 6 investigates the effects of a cationic

montmorillonite clay surface on the structure and stability of RNA [132]. As mentioned

earlier, the cationic montmorillonite is a 2:1 clay consisting of an octahedral alumina

sheet sandwiched between two tetrahedral silica sheets (see Figure 7.1). Partial substi-

tutions in both sheets give rise to a net negative surface charge. The present chapter

compares and contrasts the differing behaviour of RNA on cationic and anionic clays.

The models were minimized using the steepest-descent method. A thermalisation step

was run, heating the system from 50 K to 300 K over 1 ps. The system was allowed to

evolve and equilibrate using the NPT ensemble. Equilibration of models which are dom-

inated by electrostatic interactions, like those reported in this chapter, can be difficult

due to the time required to traverse the local minima associated with these interactions.

Equilibration was deemed to have been established by monitoring the potential energy

of the system as a function of time and by looking for the cell dimensions to take on
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(a)

(b)

Figure 7.1: Structure of (a) the cationic clay mineral sodium montmorillonite interca-
lated with water and sodium ions and (b) the anionic MgAl layered double hydroxide
intercalated with water and chloride ions. The colour scheme is O (red), Si (orange),
Cl (green), Na (brown), H (white), Mg (pink) and Al (light green). Blue dashed lines
indicate periodic cell boundaries.

stable average values. Twelve models were simulated in total. Each model was simu-

lated in production mode for ten nanoseconds following equilibration as shown in Table

7.1. This is sufficient to demonstrate equilibration in our studies [69, 146], it should

be noted that the models may become trapped in energy minima on such molecular



Chapter 7. Influence of Surface Chemistry and Charge... 118

18
0
Å

143Å
83Å

Figure 7.2: Starting structure of model A-Mg2Al (see Table 7.1) which consists of an
Mg2Al LDH surface with RNA. Atom colours: oxygen, red; hydrogen, white; nitrogen,
blue; phosphorus, orange; aluminium, silver; magnesium, light green; chlorine, dark
green. Water molecules have been hidden to increase clarity. Periodic boundaries are
imposed in xyz direction

dynamics timescales. Extended computational work, including much longer timescales

and ensembles of many MD simulations (of relatively short duration) would enable us to

probe further the general significance of our findings, but at far greater computational

cost.

In order to perform the study reported here, very substantial computing resources were

needed. To this end the XSEDE1 supercomputing infrastructure was utilised in the USA

which allowed access to Ranger at the Texas Advanced Computing Center (TACC) and

Kraken at the National Institute for Computer Science (NICS). As well as machines on

1https://www.xsede.org/home
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(a) (b) (c)

Figure 7.3: Starting structures of RNA sequences (a) A, (b) B and (c) C. Sequence
A is a 25-mer polyadenine RNA. Sequence B and C are both 25-mer strands with
mixed base sequences taken from the hammerhead ribozyme which exhibits secondary
structural features [256] (See Table 7.1).

the XSEDE, local computers at UCL were invoked, including the Centre for Compu-

tational Science’s Linux cluster, Mavrino, UCL Research Computing’s Legion machine

and the UK’s national super computing resource HECToR.

7.3 Results

The results of the RNA/LDH surface and RNA/montmorillonite surface nanohybrid sim-

ulations are discussed in this section. For the former, by comparison to the RNA-aqueous

system (Models A-Bulk, B-Bulk and C-Bulk), a consideration of i) the adsorption and

interaction of RNA with the LDH mineral surface interface and look at how this af-

fects the structure and stability of the polynucleotide molecules; ii) the structure of the

water at the mineral interface and around the RNA; iii) the hydrogen bonding struc-

ture between the biomolecule and the mineral surface/water. This section subsequently

examines how a change in the LDH surface charge density modifies the RNA/LDH

interaction.

A comparison is made between the most similar LDH charge case with that of Ca2+-

montmorillonite-RNA, where the surface of the mineral is a silicate rather than hydroxide

and in which electrostatic charge interactions occur via bridging cations to enable the

anionic RNA to bind to the mineral.
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7.3.1 Adsorption of RNA at the LDH mineral surface interface

The atomic density profile, shown in Figure 7.4, displays the density of atoms as a

function of distance along the z-axis (perpendicular to the plane of the mineral sheet).

The density profile clearly shows the two LDH layers from the well-defined aluminium

and magnesium peaks at 5 Å and 25 Å. Water and charge balancing chloride ions occupy

the region between the two well seperated LDH layers in the periodic box. The interlayer

region can be seen between 10 and 20 Å in Figure 7.4. Water forms a mono-layer at the

LDH surface which is shown by the two oxygen density maxima within the interlayer.

Hydrogen atoms face away from the hydroxyl surface, producing a large hydrogen density

peak at approximately 15 Å. At the exposed aqueous surface the formation of a bilayer of

water is seen indicated by the large oxygen atom densities at around 35 and 40 Å. Beyond

the 40 Å water layer a density profile characteristic of bulk water is shown, exhibiting

no long range order. The atomic density profile also shows phosphorus atoms in close

proximity to the exposed mineral surface, suggesting a strong electrostatic attraction

between the charged phosphate groups which make up the backbone of the RNA strand

and the oppositely charged mineral surface. The density profile implies that the RNA

strand arranges such that the phosphate groups are orientated towards the surface while

the hydrophobic base groups are exposed to the bulk water region.

Many of the properties suggested by the atomic density profile are reinforced by direct

visualisation of the model. Figure 7.5 (a) shows the RNA strand, of sequence A in model

A-Mg2Al, adsorbing to the LDH surface and adopting a configuration in which the

phosphate backbone faces the positively charged surface while the adenine base groups

are orientated normal to the surface towards the bulk water region. The orientation of

RNA with respect to the mineral surface is depicted as a schematic diagram in Figure

7.5 (b). The visualisation in Figure 7.5 (a) shows that the RNA strand has undergone

a change in conformation: it has unwound from its helical-like starting structure, which

model A-Bulk shows is conserved in bulk water over the 10 ns timescale of the simulation.

The structure and arrangement of RNA at the LDH mineral surface, observed in these

simulations, give us an indication of the mechanism by which RNA based therapeutics

are bound and protected when an LDH is used as a drug delivery vehicle [257].

Images of the three different RNA sequences in Figure 7.6 show the full extent to which

the mineral surface has altered the RNA strands’ structures. All three sequences, when

interacting with a Mg2Al LDH, show a deviation from the helical-like initial structure,

shown in Figure 7.2, towards a more elongated configuration. Figure 7.6 shows all

three sequences in this elongated structure with conserved linear regions. The free

energy penalty arising from adopting this new linear type configuration is overcome
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Figure 7.4: Atomic density profile of model A-Bulk produced using time-averaged data
from the last 4 ns of molecular dynamics simulation. The atomic density plots for both
nitrogen and phosphorus are scaled by 100 in the y-direction to provide better clarity.
The profile shows strong, well-defined, aluminium and magnesium peaks at 24 Å and
32 Å which indicate the positions of the LDH sheets. The large oxygen (and hydrogen)
peak at 36.5 Å indicates a monolayer of water at the LDH surface, and a double layer
at 40 Å. The phosphorus peak at 39 Å and the nitrogen peak at 47 Å reveal that the
RNA strand aligns in such a way that the phosphate groups face the mineral surface
and the nitrogen-rich base groups are exposed to the aqueous region.

by the electrostatic attraction between the positively charged mineral surface and the

negatively charged phosphate groups along the backbone of the RNA strand.

It is clear that the LDH mineral interface significantly alters the conformation of RNA

when compared to the corresponding structure in bulk water, which is conserved over

the duration of the simulation. RNA is concentrated on these clay surfaces, to which it is

pinned by strong electrostatic forces (as shown in Figure 7.5), while facilitating templat-

ing with complementary nucleic acid bases. The exposed base groups aligned normal to

the mineral surface are well positioned to form hydrogen bonds with incoming mononu-

cleotides. Orgel et al. originally showed the oligomerisation of activated mononucleotides

using polycytosine and polyuracil homopolymers as templates for these reactions [258].

Further studies are needed to fully understand if and how a complementary monomer

or polymer of RNA would template to the adsorbed RNA.
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(a)

(b)

Figure 7.5: (a) Final snapshot of model A-Mg2Al after 8 ns of production molecular
dynamics simulation. Colour scheme is the same as in Figure 7.2. The visualisation
shows the RNA interacting strongly with an Mg2Al LDH surface through the phos-
phate groups, leaving the hydrophobic base groups exposed to the aqueous region. (b)
Schematic diagram displaying the orientation that the RNA adopts when interacting
with the LDH surface, shown from simulation in (a).

The radial distribution function with respect to phosphorus atoms, displayed in Figure

7.7, shows water coordinating the P atoms at 2.6 Å. The LDH surface hydroxyl groups

are seen to reside at approximately 5 Å from the phosphorus groups and the LDH

metal ions at 7 Å. The radial distribution function shows a slightly increased peak for

aluminium over magnesium, presumably because Al3+ confers a net positive charge on

the mineral; as a result the phosphate groups have a higher affinity for these ions.

7.3.2 Comparison with RNA-cationic clay

Results obtained from the simulation of LDH-RNA systems compared with a further

analysis of montmorillonite-RNA systems simulated in Chapter 6 [132] is given here. The

main difference, as far as the periodic simulation cells are concerned, is the replacement



Chapter 7. Influence of Surface Chemistry and Charge... 123

(a) (b) (c)

(d) (e) (f)

Figure 7.6: Snapshots of RNA taken after 5 ns of production molecular dynamics
simulation for (a) sequence A (model A-Mg2Al, (b) sequence B (model B-Mg2Al)
and (c) sequence C (model C-Mg2Al), all of which are interacting with an Mg2Al LDH
(not shown). Models (d)-(f) are the corresponding sequences in bulk water, models A-
Bulk, B-Bulk and C-Bulk respectively. Strands (a)-(c) show sequences with elongated
portions over the corresponding conserved helical structures in bulk water (d)-(f) which
better resemble the initial structure. Colour scheme as in Figure 7.1.

of the hydroxide layer by the aluminosilicate layer. Though montmorillonite layers are

negatively charged, through having Ca2+ as charge balancing ions, the montmorillonite

layers effectively interact as positively charged layers.

The results shown here for single-stranded RNA interacting with an exposed aqueous

anionic surface are very different to those reported for the same single-stranded RNA

sequences interacting with an aqueous montmorillonite cationic clay surface [132]. When

interacting with the montmorillonite surface the RNA strands undergo a hydrophobic

collapse into a globular-like structure where the RNA bases become buried within the

charge of the phosphate backbone. The globular structure then forms characteristic



Chapter 7. Influence of Surface Chemistry and Charge... 124

Figure 7.7: Radial distribution functions of atoms (shown in legend) with respect to
phosphorus for the RNA sequence A within the Mg2Al LDH in model A-Mg2Al.

secondary structures, which are stabilised by hydrogen bonding and base-stacking. The

extent to which the RNA folds at the cationic montmorillonite interface is shown in

Figure 7.8. By contrast, RNA responds very differently at an LDH surface. Instead of

folding, the elongation of the RNA molecule, due to the electrostatic penalty that would

be paid in an anionic (chloride) environment is observed. The calcium ions associated

with the montmorillonite clay effectively screen the phosphate charge, allowing the RNA

to collapse.

While it appears that Ca2+-montmorillonite and Mg2Al LDHs both effectively adsorb

RNA at the mineral surface, these minerals have contrasting effects on the conformation

and arrangement of these biomolecules. While the Ca2+-montmorillonite clay strongly

promotes folding of the RNA structure the LDH prevents folding, possibly nullifying any

enzymatic activity the RNA may possess. Instead, LDH arranges RNA in a way that

may promote elongation reactions through a templating mechanism which makes LDH

a prime candidate for amplifying the population of a known RNA sequence. It should

be noted that the folding of 25-mer RNA sequences on clays as studied by us [132] does

show folding to known secondary structural motifs.
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(a) (b)

Figure 7.8: (a) Snapshot of RNA, of sequence B in Table 7.1, interacting with divalent
calcium ions, water and a montmorillonite mineral surface after 30 ns of MD simulation.
(b) Closeup of the folded RNA secondary structural motif in (a). Free energies indicate
that (b) is a fold along the folding pathway to the native stemloop secondary structure.
The folded RNA structure is taken from Chapter 6 [132].

Previous simulations have suggested how single-stranded RNA may adsorb to montmo-

rillonite surfaces via a tethering mechanism in which the nucleotide base at the 3′ end

of the RNA attaches to the surface with the rest of the strand aligned perpendicular

to the surface, exposed to the aqueous region [132]. RNA interacts with the oppositely

charged LDH surface in a different way: it is the charged phosphate group which is

adsorbed to the surface, with the strand lying flat, parallel, to the surface. The inter-

action of RNA with anionic and cationic clays is analogous to the interaction of amino

acids with these two types of clay minerals. Simulations by Newman et al. suggest that

the anionic amino acid (S)-phenylalanine arranges in a similar manner to RNA with an

Mg3Al LDH; the amino acid interacts with the surface in such a way that the amino

acid faces towards the aqueous region [259]. Newman et al.’s simulations also show that

the cationic (S)-tyrosine amino acid arranges in an analogous way to RNA with the

hydrophobic side-chain adjacent to the montmorillonite surface.

The following section describes the effect of changing the surface charge density of the

LDH has on the adsorption and surface interactions of the different RNA sequences.

7.3.3 RNA - surface bonding

An important factor which controls the structural stability of the LDH is the devel-

opment of a surface bonding network between the metal hydroxide LDH layers, water
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molecules and intercalated organic molecules.

The electrostatic attraction between the charged phosphate groups in RNA and the

charged metal sites in the LDH surface sheet allows the RNA to closely approach the

LDH surface which in turn admits inner-sphere complexes to be established between the

phosphate oxygen atoms and the metal hydroxide hydrogen atoms (see Figure 7.9). Inner

sphere complexes form when ions bind directly to the surface without any bridging water

molecules to mediate the adsorption. This is where the complexation is established, as

opposed to RNA interacting with negatively charged montmorillonite via mediating

cations.

Figure 7.9: Simulation snapshot depicting the inner-sphere complexes taking place.
The numerical values shown in black show the distance between interaction donors
and acceptors in Ångstroms. Colour scheme: O(red), H(white), P(gold), C(grey) and
N(dark blue).

The enhanced interaction gained through the inner-sphere complexation adds consider-

ably to the adsorption of the RNA to the mineral surface. Due to the orientation of

approach the RNA has to the LDH and the type of bonding that takes place the RNA is

effectively pinned to the LDH by each phosphate group which fixes the RNA in a position

which appears to facilitate the templating of a complementary strand through hydrogen

bonding [260]. As mentioned earlier, further studies are needed to fully understand if

and how a complementary strand would template to the adsorbed RNA.
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7.3.4 Effect of varying surface charge density on adsorption of RNA

In Figure 7.10 the radial distribution function with respect to phosphorus for RNA se-

quence A interacting with Mg3Al and Mg6Al LDHs is displayed. These can be compared

to that of the same RNA sequence for the Mg2Al LDH in Figure 7.7 in order to ascertain

how differing surface charge densities alter the RNA-LDH interaction. The radial distri-

bution of water around the phosphorus atoms is the same for each of models A-Mg2Al,

A-Mg3Al and A-Mg6Al. The radial distribution of surface alumina ions around the

phosphorus atoms differs as the surface charge density increases; a peak emerges at 3

Å indicating that the RNA has adsorbed onto the LDH surface and that phosphorus

atoms are occupying space in close proximity to the alumina sites of the LDH sheet.

The radial distribution shows an Al peak at 5 Å for both models A-Mg3Al and A-

Mg6Al. The radial density for the LDH surface hydroxyl hydrogen atoms with respect

to phosphorus show peaks at 5, 5.5 and 6 Å for Mg2Al, Mg3Al and Mg6Al respectively.

Thus, the greater the surface charge density the closer the RNA can approach. In this

case Mg2Al has the greatest charge density of the models tested, and exhibits the closest

binding of RNA to the mineral surface. With this in mind, Mg2Al would prove a better

delivery vector for RNA based drugs through increased adsorption/protection over LDHs

with less surface charge density e.g. Mg3Al and Mg6Al. The increased surface charge

density would also lead to a higher loading capacity of RNAs and as a consequence

endow the LDH drug vector with a more effective anion exchange capacity.

The radius of gyration, shown in Table 7.2, indicates how the size of the RNA molecule

changes over the last 4 ns of simulation. The smallest averaged radius of gyration is

found in RNA in bulk water. The helical starting structure of RNA, similar to that in

Table 7.2, is conserved in the bulk water simulations and corresponds to the RNA with

the smallest effective size compared to the RNAs in LDH models. The LDH adsorbed

RNAs all show larger radii of gyration which confirm their elongated configurations when

interacting with the surface. The RMSD shows that the RNA in bulk water deviates

the least from the initial helical crystal structure due to the conservation of the initial

structure from strong base-stacking interactions, shown in Figure 7.3, compared to the

LDH-bound RNAs. The radii of gyration values do not show an increasing trend. A

possible reason for the smaller radius of gyration values for RNA at the Mg6Al LDH is

that there is a decreased number of Cl− counterions as compared to Mg2Al and Mg3Al

LDHs.

The ionic environment in the vicinity of the surface of Mg2Al LDH is greater than that

of Mg6Al LDH which means there is a greater electrostatic penalty for neighbouring

phosphate groups. The difference in ionic environment caused by counter cations has

been suggested as a possible reason for the difference in catalytic activity of various
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montmorillonite clays by Joshi et al. [162]. This implies that Mg2Al LDH may be a

better surface for the adsorption of RNA compared to Mg3Al and Mg6Al LDH.

The end-to-end distance of each RNA was taken as an estimate of the linear distance be-

tween phosphorus atoms at each exposed end of the RNA sequence, as a function of time,

and is displayed in Table 7.2. End-to-end distances provide an indication of the extent

to which RNA is folding; shorter distances indicate that more folding has occurred. All

RNA/LDH models exhibit an end-to-end distance which is comparable to that of their

corresponding sequence in bulk water, except for models B-Bulk and C-Bulk. These

two models show an increased RNA end-to-end distance over the same sequences in

bulk water. This suggests that the RNA helical-like conformation is unwinding, giving

a more elongated structure. Although the end-to-end distances are similar for most of

the LDH bound RNAs, the RMSD shows that the structures of the RNA sequences in

the LDH environment are far removed from their bulk water counterparts which are

conserved over the 10 ns simulations (shown in Table 7.2). Figure 7.6 indicates that

the differences in RMSD between RNAs arise from the LDH environment. Each RNA,

when interacting with the LDH surface, forms elongated segments through the central

stretches of its sequence. The exposed ends of the RNA sequence then tuck-in towards

the rest of the molecule giving somewhat smaller than expected end-to-end distances for

sequences which nevertheless exhibit elongated segments.

For a given LDH charge density, variations in the base pair sequences lead to different

structures. This effect is observed in the varying structures shown in Figure 7.6 and

shown for a given cationic clay in [132]. Put another way, the mineral surface interacts

differently with each RNA oligomer as a function of its sequence (i.e. depending on

the genetic information contained in the biomolecule), due at least in part to different

base stacking interactions in the sequences studied. Extensive sampling across different

sequences have not been performed. The relatively long time-scale of the simulations

suggests this may be a genuine effect and one that merits further investigation in the

future. Such an effect would have implications for the role of charged, layered minerals

in prebiotic chemistry.

7.4 Conclusions

Molecular dynamics computer simulations have been used to probe the interaction of

various aqueous RNA sequences with LDH of differing charge density at the mineral

surface. The simulations provide detailed insight into the arrangement of water and

counter-ions and suggest possible RNA-surface interactions. This information is partic-

ularly useful since it is not generally available from experiment for these systems due
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to their poor crystallinity and disordered nature. The simulations demonstrate that

RNA adopts significantly different conformations and interacts with LDH surfaces in

very distinct ways than it does with montmorillonite surface.

The structure and arrangement of RNA at the LDH mineral surface, observed in these

simulations, support the currently accepted mechanism for the LDH-mediated transfec-

tion of mammalian cells with nucleic acids. This mechanism holds that once the RNA

is tightly bound/adsorbed through strong attractive electrostatic interactions between

the surface and negatively charged RNA phosphate groups, the cationic LDH mineral

is attracted to the cell surface where the RNA-LDH is taken-up via receptor-mediated

endocytosis [182, 257]. Once inside the cell, the lower pH in the endosome causes the

LDH to dissolve, thus delivering the nucleic acid to the cell.

According to our simulations, while cationic montmorillonite clays promote folding of

the RNA structure, LDH prevent folding. The folded tertiary structure induces the

catalytic capacity of the RNA ribozymes; unfolding inhibits catalytic activity. From

simulation, the LDH arranges the RNA in a way which might promote a templating

mechanism, making LDHs a potential candidate for amplifying the population of RNA

sequences.

The findings confirm that the distance between LDH charge sites is equidistant to that

of the phosphate groups of the RNA [189]; this permits strong docking of RNA onto

the LDH surface. The insight gained from these many large-scale molecular simulations

run for tens of nanoseconds adds considerably to the interpretation of experimental data

through provision of highly detailed molecular level insight about the way RNA interacts

with LDH mineral surfaces.

The interactions described here between RNA and LDH have relevance to origins of life

studies, as the arrangement of single RNA strands in this manner might have made them

amenable to Watson-Crick templating as part of an early hereditary process [244, 245].
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(a)

(b)

Figure 7.10: Radial distribution functions of atoms (shown in legend) with respect to
phosphorus for the RNA sequence A with (a) an Mg3Al LDH in model A-Mg3Al and
(b) an Mg6Al LDH in model A-Mg6Al.
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Model Rg (Å) RMSD (Å) end-to-end (Å)

A-Mg2Al 23.914±1.142 6.638±0.601 62.952±5.390
A-Mg3Al 28.028±1.214 4.788±0.462 75.510±2.949
A-Mg6Al 25.888±0.516 5.948±0.536 73.420±3.958
A-Bulk 20.502±1.690 1.174±0.472 73.986±4.289

B-Mg2Al 21.720±0.597 3.320±0.280 53.228±2.258
B-Mg3Al 25.432±0.737 2.785±0.187 85.772±1.430
B-Mg6Al 21.131±1.449 3.987±0.222 59.789±4.354
B-Bulk 20.335±1.165 1.182±0.922 68.447±5.217

C-Mg2Al 25.370±0.862 3.029±0.241 65.421±3.659
C-Mg3Al 25.231±0.955 7.491±0.698 68.064±3.330
C-Mg6Al 26.235±1.804 6.493±0.698 81.705±3.563
C-Bulk 20.521±1.376 2.090±0.511 64.685±2.944

Table 7.2: Radius of gyration (Rg), root-mean-squared deviation (RMSD) and end-to-
end distances of RNA calculated as the mean dependent variable from linear regression
as a function of simulation time taken from the final 4 ns of simulation, displayed
with the corresponding standard deviation. Radius of gyration shows that the RNA
in the bulk water simulation (model A-Bulk) has the smallest size, with RNA on the
clay models adopting an elongated structure. The RMSD show that the water model
deviates the least from the initial crystal structure shown in Figure 7.3. End-to-end
distances were calculated as the linear distance between the phosphorus atom at the 3′

and 5′ ends of the RNA strand. The end-to-end distances show no significant change in
the length of the strand, indicating that no folding is taking place; on the other hand
the RMSD clearly shows that the RNA has deviated from its crystal structure when
interacting with the LDH surface.



Chapter 8

Folding and Catalytic Structure

of the Hammerhead Ribozyme

from Replica Exchange Molecular

Dynamics

Enhanced sampling of replica exchange molecular dynamics is used in this chapter to

study the complex folding pathway and the catalytically active structure of the full-

length hammerhead ribozyme. This study furnishes molecular level resolution of the

structure and mechanism of the hammerhead ribozyme and resolve hitherto open ques-

tions related to the catalytic activity of the ribozyme including the role of metal ions in

mediating the reaction.

8.1 Introduction

Ribonucleic acid (RNA) was first suggested to be capable of exhibiting catalytic activity

by Woese, Crick and Orgel in 1967 after the discovery that RNA could fold to form

secondary structures in an analogous way to protein enzymes [155, 261, 262]. It was not

until the 1980s that Cech and Altman independently discovered the first ribozymes, for

which they won the 1989 Nobel Prize in Chemistry [263, 264].

The hammerhead ribozyme has long been regarded as a prototype for the understanding

of the catalytic nature of RNA molecules because of its relatively small length and well

characterised crystal structure. Notwithstanding the wealth of experimental work which

has gone into the elucidation of the catalytic structure of the hammerhead ribozyme

133
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[265, 266] the precise details of the catalytic mechanism remain unknown and a topic of

much debate, as does the role of divalent the Mg2+ ions in the catalysis. The metal ions

have not been observed crystallographically to bridge the adenine and scissile phosphate

so as to promote acid/base catalysis.

The hammerhead ribozyme is derived from a small, self-cleaving genomic RNA discov-

ered in satellites of various plant RNA virus genomes [267, 268]. It catalyses the RNA

self-cleavage phosphodiester isomerisation reaction producing two separate RNA strands

[269]. The hammerhead itself consists of two RNA strands. Experimentally, the strand

which is to be cleaved can be supplied in excess while multiple turnover can be demon-

strated and shown to obey Michaelis-Menten kinetics [270], perhaps the best known

model for protein enzyme kinetics.

Ribozymes play an integral part in the popular ‘RNA world hypothesis’ which maintains

that a world based entirely on RNA preceded the DNA/protein based one we now

live in. The hypothesis holds that at some point in time the more stable nucleic acid

deoxyribonucleic acid (DNA) took over the role of informational storage from RNA

and that proteins, which are better catalysts than RNA, took over the enzymatic role

from RNA. It has been suggested that many of the RNA biomolecules such as viruses

still present on the Earth today are molecular fossils from this RNA world. The RNA

world hypothesis is attractive because it only requires the prebiotic synthesis of one

(bio)molecule rather than three in the case of modern ‘DNA makes RNA makes proteins’

biology.

Molecular simulation methods provide a wealth of information about ribozyme systems

which can often be difficult to characterise experimentally because of the lack in measure-

ment resolution and the complex nature of RNA structure. Up until now only relatively

short RNA sequences have been studied using REMD methods to investigate the fold-

ing pathway and structure. Both groups of Wang and Paschek have reported REMD

simulations of 8-mer RNA sequences in explicit water [271, 272]. Single uncoupled 12 ns

MD simulations have been reported for the hammerhead ribozyme, by Lee et al. [273].

Single MD simulations tens of nanoseconds in length are relatively short for modern

day standards and MD does not sample configurational space to the extent that REMD

and metadynamics techniques can. The simulation of protein folding and structure is

in many ways an analogous process to RNA ribozyme study. Pandé et al. have been

leading the way in terms of distributed ensemble simulations of small proteins using the

Folding@home network [274]. REMD simulations have been reported for the study of

proteins of 8 residues using 20 replicas which is a comparable scale to the REMD studies

being performed on RNAs [272].
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Origins of life studies lends itself well to theoretical and simulation studies given the vast

span of time which separates us. This is the first case of large-scale replica exchange

sampling performed on petascale computers to investigate processes relating to origins

of life studies, and at an unprecedented scale for ribozyme simulation.

8.2 Methods

This section describes the large-scale computational methods and resources used to per-

form the aqueous full-length hammerhead ribozyme folding simulations reported in this

article, including the computational sampling algorithms used. This Chapter uses fully

atomistic, large-scale replica exchange molecular dynamics techniques to simulate these

flexible systems. Distributed high performance supercomputers, Kraken & JUGENE,

coupled to local resources at University College London (UCL) were utilised in order to

perform these simulations and their associated data analysis.

8.2.1 Model construction & potential parameterisation

The starting structure of the hammerhead ribozyme was modified from the 2.2 Å resolu-

tion crystal structure of the full-length catalytically active hammerhead ribozyme (PDB

2GOZ and NDB ID: UR0084), See Figure 8.1. The full-length hammerhead ribozyme

consists of two RNA chains 43 and 20 nucleotides in length. The chains form three base-

paired helix-like stems. 20 Å of SPC/E water and 50 charge balancing Na+ ions were

placed around the ribozyme using the solvate function in AmberTools. Crystal waters

molecules were kept along with the divalent metal ion sites which were populated with

5 Mg2+ ions. The complete model consists of 54210 atoms and has unit cell dimensions

of 83.6 x 73.8 x 95.4 Å. The RNA sequences are as follows, with each letter representing

a base (A=adenine, U=uracil, G=guanine and C=cytosine):

Chain A: GGAUGUACUACCAGCUGAUGAGUCCCAAAUAGGACGAAACGCC

Chain B: GGCGUCCUGGUAUCCAAUCC

The bonding interactions and partial charges for the RNA ribozyme molecule were de-

scribed using the Amber parm.rna.ff99 force field parameters [124]. The parmbsc0 re-

finement was used to provide an improved description of the α/γ concerted rotations

within the RNA molecule [125]. The Amber forcefield has been used extensively to sim-

ulate nucleic acids and reproduces the structure and dynamics of nucleic acid moieties,

including Watson-Crick base pairing [126, 132, 133].
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(a) (b)

Figure 8.1: (a) Schematic representation of the secondary structure of the full-length
hammerhead ribozyme and (b) the three-dimensional representation taken from the
crystal structure. Annotations in (a) follow the scheme developed by Yang et al.[275]:
canonical base-pairing is shown as coloured lines and hydrogen base pairing is shown as
black lines. Open circle next to open square = Watson-Crick/Hoogsteen; open square
next to open triangle = Hoogsteen/sugar edge; dashed line = H-bond; green line =
non-adjacent base stacking. The thick black line shows the direction and continuity of
the backbone. The colour scheme depicts Stem I in yellow and purple, Stem II in blue,
Stem III in red and the scissile phosphate group in green [266].

The SHAKE algorithm was employed in order to constrain bonds and angles within

hydroxyl groups and water [139] (see Section 4.2.1). This allowed us to use a timestep

of 2 fs within the molecular dynamics algorithm.
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8.2.2 Replica exchange molecular dynamics techniques

All simulations reported here were run using the Large Atomistic/Molecular Massively

Parallel code (LAMMPS) developed by Plimpton et al. [136]. The code exhibits a

near linear scaling relationship between the number of cores used and the speed-up in

wall-clock time.

Before production simulations, the starting structure was energy minimised using the

steepest descent method, then thermalised with molecular dynamics from 0 K, 0 atm to

300 K and 1 atm using the isothermal-isobaric ensemble.

The high level of conformational sampling in this study was achieved using the Replica

Exchange Molecular Dynamics (REMD) algorithm [144]. The REMD method has been

widely used in the computational study of protein folding [276], and also the analogous

process of RNA folding [271, 272, 277]. REMD consists of M non-interacting copies (or,

replicas) of the original system in the canonical ensemble at M different temperatures Tm

(m = 0, ...,M − 1). The replicas are arranged so that there is always one replica at each

temperature. The trajectory of each independent replica is computed using molecular

dynamics (MD). After a certain number of MD steps, adjacent replicas (replicas i and

i+ 1) exchange temperatures according to the probability distribution:

Pex =

{
1 for Ui+1 < Ui

exp[(βi − βi+1)(Ui − Ui+1)] for Ui+1 > Ui

βi is equal to 1/kBT where kB is the Boltzmann constant; Ui is the instantaneous total

potential energy of replica i. Typically the temperature spacing is selected so that

Pex≈ 20− 30 % for all replicas [278]. REMD enhances the sampling of configurational

space and provides a way of obtaining equilibrium properties of a system described by

complicated energy landscapes [144].

100 replicas of the hammerhead ribozyme system were simulated, ranging in tempera-

tures from 300.00 K to 570.94 K. An exponential temperature spacing was selected in

order to achieve an exchange frequency of 23% which is essentially the same over all

replicas, as shown in Figure 8.2.

Each replica was simulated for 50 ns which equates to 5 µs of fully atomistic molecular

dynamics simulation for the entire ensemble of replicas. The equations of motion were

integrated with a timestep of 2 fs and periodic boundaries were imposed in all three

spatial directions. Electrostatic interactions were computed using the particle mesh

Ewald method. A clustering process was applied to the large dataset of structures in

order to group mutual similarity and reduce the complexity of the data, and to identify
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a set of identifiable structurally/conformationally distinct clusters in terms of which

the sampling can be understood. k-means clustering based on the cartesian coordinate

RMSD between structures simulated from 300.00 to 307.90 K with a fixed radius of 4

Åwas applied. The k-means clustering was performed using the MMSTB (Multiscale

Modeling Tools for Structural Biology) toolset [279].

The radius of gyration, rG , estimates the molecule’s effective size during the simulation:

rG =

√√√√ 1

N

N∑
i=1

(ri −< r >)2, (8.1)

where < r > is the mean position of all N RNA atoms. Principal component analysis

(PCA) was used to describe the main changes in RNA conformation with time. PCA is

widely exploited to reduce the dimensionality of an MD trajectory and it identifies the

dominant collective modes of motion of molecules. In a Cartesian coordinate system,

the covariance matrix can be defined as:

C =< (r− < r >)(r− < r >)T >, (8.2)

where r represents the atomic positions of the RNA molecule in a 3N dimensional

configuration space, < r > is the mean position of atoms over all snapshots, and the

superscript T denotes the matrix transpose. In PCA, the eigenvectors and corresponding

eigenvalues of C are found by diagonalisation of the covariance matrix. The eigenvectors

denote the orthogonal modes of motion and the eigenvectors with the largest eigenvalues

dominate the dynamics of the system.

8.2.3 Convergence verification

In order to ascertain whether our REMD simulations have achieved reasonable conver-

gence the difference between the free energies of states and the free energy of the lowest

energy, native state for all temperatures was calculated and inspected the values as

block averages over the last 10 ns of simulation time (see Figure 8.3). The free energy

difference was calculated on the basis of the relative populations of states using the

equation:

∆G = −RT ln[(1− Pn)/Pn], (8.3)
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where Pn is the fraction of native structures, R is the gas constant and T is the tem-

perature. The number of replicas used, the high temperatures sampled, the convergence

demonstrated and the long simulation times for models of this size provide confidence

that all of the major states of the hammerhead ribozyme have been sampled and that

we can make sufficient conclusions based on the structure and function of the ribozyme.

High performance supercomputing infrastructure

It is important not to overlook the considerable computational power required to run

simulations of this type. To this end, supercomputing grid infrastructures were utilised

in the UK and Europe. The primary computing source in this study came from the

petascale IBM Blue Gene/P machine at Forschungszentrum Jülich in Germany called

JUGENE and Kraken Cray XT5 system at the National Institute for Computational

Science (NICS). We also employed local machines at UCL, including Mavrino, the Centre

for Computational Science’s Linux cluster, and UCL Research Computing’s 5,500 core

Legion machine.

The simulation was run on 76,800 cores. The total combined computing time expended

in this work was in excess of 20 million CPU hours and resulted in more than 5 µs of

production molecular dynamics. Simulations produced in excess of 6 terabytes of data

which was transferred via the grid infrastructure to local storage at UCL for analysis.

Visualisation is an essential tool for examining and analysing the structure and behaviour

of molecular systems. Systems were visualised using the Visual Molecular Dynamics

program (VMD) for its fast rendering qualities and excellent representation of nucleic

acid structures.

8.3 Results

The original hammerhead ribozyme crystal structure, which is refered to as the minimal

hammerhead ribozyme [280], only resolved the partial crystal structure and produced

apparent inconsistencies between mutational experiments [281] and the interpretation of

thio substitutions [282, 283] within the crystallographic structural information. Many

facets of the minimal structure did not agree with the experimentally determined cat-

alytic mechanism. The rate of cleavage of the crystallised minimal structure was faster

than that of the minimal hammerhead ribozyme in aqueous solution [284], which sug-

gests that the global fold must correspond to the catalytically active form of the molecule

as the aqueous minimal structure would have undergone a structural relaxation from the

crystal minimal structure.
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The crystal structure of the full-length hammerhead ribozyme was recently obtained at

2.2 Å resolution [269]. The full-length hammerhead ribozyme structure, which will be

refered to from now on as the ‘hammerhead ribozyme’, is 50% bigger in size than the

minimal hammerhead. The hammerhead ribozyme tertiary structure as described by

the replica exchange molecular simulations will be discussed in the following section.

Various likely structural conformations that the hammerhead ribozyme can have will be

monitored. In the Section entitled 8.3.2 the conformation of the hammerhead ribozyme

active site will be investigated and correlated to the tertiary structure in the Section

entitled 8.3.1. Tertiary interactions are important in maintaining the active site con-

formation and will be discussed. Finally, the conformation of the active site is shown

which points towards a well defined mechanism for the catalytic self-cleavage reaction

and compare to other mooted reaction mechanisms that have been suggested in the

literature.

8.3.1 Tertiary structure and folding of the hammerhead ribozyme

The clustering analysis performed uses the MMTSB algorithm to iteratively go through

the structures and locate clusters of structures that are the same. From this it creates

centroids describing each cluster and then gives an RMSD for each structure in the

trajectory with respect to each identified cluster. The centroids themselves are not

physically meaningful since they are effectively a mathematical construct based on the

member of a cluster. However, the structure that has the lowest RMSD with respect to

each centroid is meaningful and much easier to understand. In this way it is possible

to look at the structure that is closest to the centroid representing each of the clusters

found.

The clustering analysis grouped the hammerhead ribozyme structures into clusters where

each structure has a RMSD within 4 Å from the centre of the cluster. The routine

decomposed the replica exchange trajectories of replicas at ambient temperatures (300.00

- 307.90 K) into 30 distinct structural clusters. The histogram in Figure 8.4 shows the

population of each cluster. Cluster FL01 has the largest population, being composed

of 1753 like structures. The structures which belong to clusters that have a population

under the threshold of 500 were deemed to be insignificant and were not considered in

the majority of the ensuing analysis. With the threshold in place, 12 structures remain

which are significantly populated.

In order to visualise the twelve most populated clusters, structure were selected which

had the lowest RMSD value from the centre of each cluster. The hammerhead ribozyme

structure with the lowest RMSD value from the centre of its cluster we refer to as the
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‘best member’ of that cluster. The best member is more meaningful than the average

structure of each cluster. The best member of each of the twelve most populated clusters

is displayed in Figure 8.5, which visually demonstrates the variety of structures the

hammerhead ribozyme is likely to adopt in conformational space - from compact, folded,

structures to elongated ones. We will repeatedly refer to this figure in the remainder of

the Chapter in order to help visualise the theoretical clusters.

To display the conformational landscape of the hammerhead ribozyme, showing the

various structures the molecule is likely to adopt, a plot of each structure as a function of

principal components 1 and 2 was made. Figure 8.6 depicts the conformational landscape

and displays an excellent correlation between the first two principal components (which

contribute the majority of the dynamics) and the clusters. When the conformational

landscape is viewed in three dimensions (by plotting the first three principal components)

I can be seen that each cluster ‘island’ is independent and separated by unoccupied

conformational space. This indicates that there are only twelve significant structures

that the hammerhead ribozyme is likely to adopt.

Figure 8.7 displays the dominant principal component projected onto the hammerhead

ribozyme molecule. The first principal component contributes a significant majority of

the dynamics to the overall motion of the molecule. The principal motion observed is

similar to the junction bend motion observed in DNA and RNA duplexes [222]. The

second principal component, which contributes significantly less than the first to the

motion of the hammerhead ribozyme, is consistent with a spring type compression along

the central axis of the molecule; this is also observed in DNA and RNA duplexes. Movies

of the first two principal components are given as Supporting Information.

Figure 8.8 finds how the structural cluster islands relate to the hammerhead ribozyme

crystal structure. The minima shown in Figure 8.8 shows the location of the structure

which deviates the least from the crystal structure. The crystal structure-like conforma-

tion is a member of cluster FL03 (which can be seen in Figure 8.5). The exact structure

lies 1.33 Å from the centre of cluster FL03. From this minimum the surface ascends

out towards three distinct maxima which relate to clusters FL02, FL05 and FL08. The

RMSD from the hammerhead ribozyme crystal structure was determined for each best

cluster member and is reported in Table 8.1.

If this hammerhead ribozyme conformation, which is closest in terms of RMSD to the

crystal structure, was the lowest energy native structure it would theoretically belong

to the most populated structure as we can assume that the relative free energy is pro-

portional to the population difference for a converged system [278]:
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Table 8.1: Cluster number as shown in 8.6 with associated values of root mean-squared
deviation (relative to the crystal structure and cluster centre) and radius of gyration
for the ‘best member’ structure of each of the dominant clusters.

Cluster RMS (from crystal) Rg e2e 1 e2e 2 in Å

FL01 8.89±0.25 18.59±0.23 44.66±1.74 46.63±1.36
FL02 10.34±0.25 17.46±0.16 29.65±2.41 27.34±1.51
FL03 6.10±0.15 18.48±0.14 48.75±1.13 50.60±1.04
FL04 8.33±0.26 18.43±0.22 43.79±5.01 49.99±1.40
FL05 11.56±0.21 17.89±0.12 51.29±2.13 44.60±1.34
FL06 7.91±0.31 19.13±0.16 51.97±4.10 53.52±2.33
FL07 10.61±0.14 16.99±0.11 34.26±1.80 38.00±1.24
FL08 10.07±0.21 20.14±0.21 61.61±1.63 63.52±2.13
FL09 10.00±0.24 18.53±0.30 57.70±1.89 30.18±2.16
FL10 10.04±0.19 18.76±0.12 56.12±1.98 38.69±0.76
FL11 10.55±0.10 16.56±0.07 40.36±0.50 31.81±0.57
FL12 10.74±0.59 17.10±0.28 24.78±1.30 37.08±4.66

ln

(
P (x, y)

Pmax

)
=

∆F

kβT
(8.4)

where Pmax is the population of the highest populated cluster, P (x, y) is the cluster

population and ∆F/kβT is the relative free energy. The relative free energy is shown in

Figure 8.9 as a histogram which corresponds to the various clusters in Figure 8.4 and as

a heat map which shows free energy as a function of the first two principal components.

The conformation most like the crystal structure is, as we stated earlier, a member of

cluster FL03. FL03 is not the group of structures with the lowest free energy, in fact

two clusters have lower minimum in the free energy landscape, shown in figure 8.9.

Cluster FL01 is the global minima and cluster FL02 is the second lowest minimum,

which indicates that the conformations within these two clusters are more predominant

in aqueous solution than the crystal structure.

8.3.2 Active site structure and ribozyme mechanism

The hammerhead ribozyme catalyses an RNA self-cleavage phosphodiester isomerisa-

tion reaction reacts via nucleophilic attack of the C-17 2′O upon the adjacent scissile

phosphate that produces two product RNA strands. the 5′ product possesses a 2′,3′-

cyclic phosphate terminus, and the 3′ product has a 5′-OH terminus. The reaction is

effectively reversible as the scissile phosphate remains a phosphodiester and may act as

a substrate for ligation.
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There are several known mechanisms for the self-cleavage reaction in ribozymes. Known

mechanisms include the the base-catalysed abstraction of a proton from the 2′O nucle-

ophile, the acid-catalysed donation of a proton to the 5′O leaving group, and also the

direct electrostatic stabilisation of the pentacoordinate oxyphosphorane transition state

[285]. The hammerhead ribozyme crystal structure resolved two invariant residues G-12

and G-8 that are positioned consistent with general acid base catalysis. G-12, in the

crystal structure, is within hydrogen bonding distance of the nucleophile 2′O of C-17,

and the ribose of G-8 hydrogen bonds to the leaving group 5′O. It is still an ongoing

concern as to the specific role, if any, the divalent Mg2+ ions play in the conformation

and stability of the active site.

A second cluster analysis was performed, this time on the six conserved RNA residues

which make up the hammerhead ribozyme active site. The clustering analysis was

performed with a k-means radius of 1.5 Å as the active site conformations sampled

differ less in RMSD than the full hammerhead ribozyme structure. The clustering of

the active site was plotted as a function of the first two principal components of the

full hammerhead ribozyme, in Figure 8.10, in order to observe the correlation between

the active site conformation and the full length tertiary structure. Figure 8.10 indicates

that the clustering of the active site has excellent correlation with the first two principal

components of the hammerhead ribozyme which suggests that the active site structure is

largely determined by the overall tertiary structure of the hammerhead ribozyme, a facet

of the full-length hammerhead ribozyme which was proposed by the X-ray experiments

of Scott et al. [266, 269]. They suggested that for optimal activity in the hammerhead

ribozyme, the presence of the sequences in stem I and stem II are needed to form tertiary

contacts which arrange the active site. This explains the lack of catalytic activity of the

minimal crystal structure elucidated by Pley et al [280].

Because the cluster analysis of the active site correlates to the principal components

it can be inferred that the cluster analysis of the active site also correlates with the

clustering of the hammerhead ribozyme tertiary structure. The exception to this state-

ment is that the independent cluster islands in Figure 8.6 of cluster FL03 and FL06 are

assimilated in the clustering of the active site (Figure 8.10, cluster AS01). This means

that the two islands have an active site conformation that has a RMSD value within

1.5 Åof each other. For this reason the active site conformation of cluster AS01, in

Figure 8.10, is the most populated, having the lowest relative free energy of the active

site conformations sampled.

The difference in RMSD of the active site within each cluster island is very small,

suggesting that the six RNA residues which contribute to the active site are well ordered.

For this reason we can display a meaningful average structure for each cluster instead
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of the best member used for the full tertiary structure. The average structure of the

active site from cluster FL03 and FL06 is shown in Figures 8.11 and 8.12 respectively.

The average conformation of residues from cluster FL01, the lowest free energy cluster,

show a significant deviation from the conformation within the crystal structure (2GOZ).

Specifically, the guanine and adenine (G-10 and A-9) residues are orientated 90o from

the z-x plane which the other residue are positioned in. This orientation has the effect

of closing the active site pocket and arranging the RNA nucleotides in a closer, more

compact conformation. The conformational change appears to retain all the important

atom positions which participate in the self-cleavage reaction in place; the A-9 and C-1.1

phosphate groups and the G-10 N7 all remain coordinated to the central Mg2+ cation.

The base stacking interactions between G-10:A-9, G-8:C1.1 and G-12:C-17 are all still

present. It is the pucker in the phosphate backbone around the G-10.1 and A-9 residues

which brings about the structural rearrangement.

Figure 8.12 displays the average active site conformation for the structures belonging

to cluster FL03 (see Figure 8.6). The arrangement of bases in this conformation have

an RMSD value closest to that of the crystal structure which indicates that the crystal

structure is a highly populated structure and a low free energy conformation, but it

is not the lowest free energy structure. In other words, it is not the global minimum.

This conformation differs from that in Figure 8.11 in that the G-10 and A-9 residues

are rotated in the same plane as the rest of the active site residues. This arrangement

has the effect of opening the active site pocket. This is seen in Figure 8.13 where the

average distance from the centrally coordinated Mg2+ ion is larger than in the average

structure from cluster FL06 (see Figure 8.13 (b) and (c)).

The arrangement of the active site is shown by displaying heavy atom distances as

a probability distribution for significantly populated clusters from the initial cluster

analysis in Figure 8.6. Clearly the distances between heavy atoms is different between

clusters as observed in the probability distribution curve shift along the x-axis. The

possible exception to this is the distances shown between the O2′ atom of A-9 and the

O2′ atom of C-1.1. Each of the clusters displayed shows a distance of approximately 4.3

Å (values are given in Table 8.2). This distance is indicative of the coordination of these

two negatively charged phosphate groups around a central Mg2+ cation in the active

site pocket (which can be visualised in Figure 8.11 and 8.12). The coordination is also

demonstrated in Figure 8.13 (c) where the O5′ group of C-1.1 coordinates around the

Mg2+ ion. These features of the active site all point towards a single metal mechanism for

the hammerhead ribozyme self-cleavage reaction. The proposed single metal mechanism

suggests that a single Mg2+ ion bridges the A-9 and C-1.1 scissile phosphate in response

to the negative charge that accumulates in the transition state from the proximity of

the phosphate groups.
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Table 8.2: Comparison of experimental and simulation heavy atom distances.

X-ray Simulation
2GOZ 2OEU FL02 FL01 FL06 FL03

C1.1:OP2 – A9:OP2 4.33 4.28 4.302 4.318 4.302 4.134
G8:O2′ – C1.1:O5′ 3.19 3.51 4.418 3.476 4.878 4.470
C17:O2′ – C1.1:P 3.18 3.30 4.181 3.753 4.090 4.200
G12:N1 – C17:O2′ 3.54 3.26 7.335 4.799 5.013 5.297
A9:N6 – G12:N3 2.63 3.22 10.495 6.608 13.446 7.822
A9:N6 – G12:O2′ 3.21 2.98 9.913 6.053 11.699 7.367
A9:N7 – G12:N2 2.90 2.90 13.050 8.973 14.022 9.256

Experimental evidence for the single metal cation mechanism has come from Wang et

al. who observed the equilibrium and kinetic thio-effect at the A-9 phosphate and at the

scissile phosphate which are consistent with this mechanism [282]. Experiments which

have implicated the G-8 base as the general acid using pH dependence correlated with

metal pKa values [286].

One of the significant conformational changes between the active site in the crystal

structure and the active site in the lowest free energy structure is the arrangement of

the G-12 and C-17 residues. The crystal structure suggests the nitrogen in the 1 position

of the guanine base donates electron density to the oxygen in the 2′ position of the ribose

ring of the C-17 residue to initiate the self-cleavage reaction. The average structure from

cluster FL06 shows a different arrangement of residues and indicates a different electron

donor. The most probable electron donor in this case is the lone pair on the nitrogen in

the 4 position of the guanine base as this is positioned in-line with the electron acceptor,

the hydrogen atom bonded to the cytosine O2′.

The A-9 and G-12 residues exhibit a sheared base-pair hydrogen bonding network [287] in

the crystal structure. In the average structure taken from the lowest free energy cluster it

is found that the base-pair is disrupted, the residues having undergone a conformational

rearrangement. The lowest free energy conformation actually shows the greatest distance

between A-9 and G-12 residues out of all the highest populated conformations. This

suggests that there is an energetic relaxation associated with the breaking of this base-

pair and allowing the active site to adopt a different arrangement - the arrangement we

discussed as having contacts which promote the self-cleavage mechanism.

8.4 Conclusions

The replica exchange simulations reported here are of an unprecedented scale. The large

scale of the simulations in terms of size, simulation time and number of replicas allows
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sampling of the complex conformational space of the large hammerhead ribozyme in

aqueous solution. Previous simulation approaches for the study of the hammerhead ri-

bozyme have employed classical molecular dynamics techniques which do not effectively

sample the conformational space and are too susceptible to trapping in local energy min-

ima. The replica exchange molecular dynamics techniques overcome this by exchanging

temperatures in order to transcend local minima, at the cost of being much more ex-

pensive computationally. The tyranny of however, it is an ideal kind of application

for deployment on petascale machines such as the ones we have used with hundreds of

thousands of cores.

The hammerhead ribozyme has been studied in detail experimentally and theoretically

but the precise conformation and mechanism of the self-cleavage reaction hitherto re-

mains unknown. Simulations have shown that the full-length hammerhead ribozyme

adopts very well defined and distinct structural conformations wherein it is observed

that only a few populated misfolded structures and well populated low free energy

conformations. The lowest free energy conformation of the hammerhead ribozyme is

identified which is structurally distinct from the resolved crystal structure. The lowest

free energy, and most highly populated conformation, is the native fold.

The simulations show that the contact made between secondary structural loops in the

hammerhead ribozyme are important in arranging the active site for catalysis. It also

shows that the active site conformational space correlates directly to the conformational

landscape of the tertiary structure through the clustering analysis. This explains why the

minimal hammerhead ribozyme crystal structure does not exhibit the catalytic potential

the full-length model does.

Details of the active site conformation of the native fold which differs from that sug-

gested by crystal structure studies are given. The simulation study reported here shows

that the disputed mechanism corresponds to the previously proposed single metal reac-

tion mechanism whereby a central divalent magnesium cation provides the electrostatic

screening by means of which the active site residues coordinate around the central cation

to facilitate the self-cleavage reaction. Holm discusses in detail the significance of Mg in

prebiotic geochemistry and origins of life scenarios [288]. It is possible then to discount

the proposed mechanistic scenarios which involve no mediation from metal cations and

where the metal cation interacts only indirectly by coordinating with the G-10.1 residue.

It is shown in Chapters 7 and 6 that a clay mineral surface can have a significant impact

on the structure and dynamics of RNA sequences. The montmorillonite surface investi-

gated in Chapter 6 was shown to alter the motion and energetics of the RNA strand in a

way which promoted the folding of the sequence into a well-defined secondary structure

at the same time enhancing the kinetics of the system so that the native structure forms
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more rapidly than in bulk water. It can be inferred that a more complex sequence like the

hammerhead ribozyme would undergo similar physical-chemical changes when in a min-

eral environment. Experiments by Biondi et al. confirm these predictions inferred from

previous simulations [289]. They showed that the montmorillonite presence protects the

RNA against degradation and increases the rate of cleavage kinetics by approximately

an order of magnitude. Like the case of the hammerhead ribozyme in bulk water, the

self-cleavage mechanism of the ribozyme in a mineral environment is unknown as well

as the mechanism for how the mineral environment alters the kinetics. This chapter

demonstrates the ability of REMD to identify the major populated structures in the

complex conformational landscape and to elucidate important catalytic mechanistic and

structural details. This approach would lend itself to the study of the hammerhead

ribozyme in a clay mineral environment and compliment experiments performed on this

system.
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Figure 8.5: Structures with the lowest RMSD from the centre of their cluster (number
shown next to molecule) which are referred to as the “best member” of the cluster
island. Each structure is shown in a stick formation with a trace of its phosphate
backbone beside. The trace more clearly displays the folded tertiary structure of each
ribozyme.
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Figure 8.6: Principal component analysis where the first and second eigenvectors are
projected onto the ribozyme molecule and plotted on the x and y axis respectively. Each
structure is coloured according to which cluster it belongs to in Figure 8.4. The plot
shows a well defined correlation between the principal components of the trajectories
and the RMSD of the structure from the clustering process. Each structural “island”
displays the cluster number.
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(a) (b)

Figure 8.7: The dominant principal component (PC1) projected onto the ribozyme
molecule. (a) the minimum eigenvalue, around -400 and (b) the maximum eigenvalue
around 200. The motion is referred to as a junction-bend and is the dominant mode
observed in standard RNA and DNA duplexes.
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Figure 8.8: The first two principal components have been used to show the distinct
cluster islands, as in Figure 8.6, plotted against an RMSD surface with reference to the
crystal structure. The surface shows one distinct minimum of which the structure with
the lowest RMSD (5.5 Å, shown on the right) from the crystal structure is positioned
1.33 Å from the centre of cluster FL03. It can be deduced from this that cluster FL03 is
representative of the crystal structure. However, cluster FL03 is not the most populated
cluster and therefore not the lowest free energy native folded hammerhead ribozyme.
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Figure 8.10: Principal component 1 and 2 of the full hammerhead ribozyme structure.
Each structure is coloured according to the clustering of the active site (not the full
tertiary structure as in Figure 8.6). The plot shows an excellent correlation between
the principal motions of the full tertiary structure and the local conformation of the
hammerhead ribozyme active site which is composed of six residues. This suggests that
the active site structure, and therefore ribozyme mechanism, is dependent of the full
tertiary structure.



Chapter 8. Folding and Catalytic Structure of the Hammerhead Ribozyme 157

Figure 8.11: Average structure of the six conserved residues that participate in the self
cleavage reaction, which are referred to as the active site, taken from cluster FL01 of
the clustering analysis shown in Figure 8.10. The crystal structure is shown in orange.
The arrangement is consistent with a single metal mechanism where the A-9 phosphate
is positioned proximate to the C-17 scissile phosphate via electrostatic screening from
the divalent metal cation positioned in the active site pocket.

Figure 8.12: Average structure of the six conserved residues that participate in the self
cleavage reaction, which are referred to as the active site, taken from cluster FL03 of
the clustering analysis. The crystal structure is shown in orange.
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Figure 8.14: Distance between G12:N1 and C17:O2′ from the crystal structure and the
average structure from cluster FL06. A previously proposed mechanism based on the
crystal structure suggests the nitrogen in the 1 position of the guanine base donates
electron density to the oxygen in the 2′ position of the ribose ring of the C-17 residue.
The average structure from cluster FL06 shows a different arrangement of residues and
indicates a different electron donor.
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Figure 8.15: Distance between A9:N6 and G12:N3 from the crystal structure and the
average structure from cluster FL06. The crystal structure shows a sheared type hy-
drogen bonding network between the adenine and guanine bases. The base pairing
between A-9 and G-12 in the crystal structure is not observed in the average structure
of the lowest free energy structure.



Chapter 9

Overall Conclusions

The work detailed in this thesis has used advanced simulation techniques to investigate

how nucleic acid molecules interact with various charged clay mineral environments.

The implications of our findings on the transition from chemistry to biology de novo

on the early Earth, which we refer to as the origins of life, has been discussed in each

Chapter.

Although there is a great deal of progress being made in the field of origins of life studies,

there are still large gaps in our knowledge of the processes leading up to the emergence

of life. Chapter 2 reviews theoretical and molecular modelling approaches that are now

throwing considerable light on numerous challenging issues associated with the origin

of life on Earth. As the field continues to gain respectability from within the scientific

establishment, it is hoped that there will be stronger interactions between theoretical

approaches and related experimental research, that can only serve to underpin further

advances in our understanding of origins of life processes. I hope that the research

presented here will go some way in promoting these interactions which may inspire new

experiments.

Chapter 5 presents a comparative study of the structure, properties and stability of

selected double-stranded sequences of RNA, DNA and PNA. The intention was to gain

insight into which candidate genetic material arising at the time of the origin of life on

Earth may have been preferentially favoured by the prevailing geochemistry, in particular

when interacting with anionic clays. Of the three nucleic acids under investigation, DNA

is observed to be the most stable when intercalated within an LDH, with respect to the

percentage of Watson-Crick base-pairs. The opposite is found in bulk water where both

PNA and RNA are more stable than DNA. Conceivably, a mineral mediated origin of

life may have favoured DNA as the informational storage biomolecule over competing

RNA and PNA, providing a route to modern biology from the RNA world.

160
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One prevailing theory in origins of life studies is that RNA in prebiotic conditions may

have been confined and restricted in motion by mineral surfaces, much as it is confined

within the ribosome of living cells today. Due to the ubiquitous presence of clay minerals

and their associated cations in nature, these aqueous environments may have provided

prebiotic habitats for nascent nucleic acid polymers. Chapter 6 shows that single strands

of RNA fold at a considerably enhanced rate when a montmorillonite surface is present

compared with the same sequences in bulk water. The increased rate of folding at clay

surfaces is of importance to the RNA world view, according to which early RNA poly-

mers would have needed to produce well defined folded structures to support enzymatic

activity in order to cleave self-replicating RNA strands, essential components in the first

steps of molecular evolution. Accelerated folding kinetics considerably increases the pa-

rameter space that may be explored by clay-RNA complexes in constructing catalytically

active structures under conditions which may have been far from benign.

Chapter 7 investigates the structure and arrangement of RNA at the LDH mineral

surface. According to the simulations, while cationic montmorillonite clays promote

folding of the RNA structure, LDH prevent folding. The folded tertiary structure induces

the catalytic capacity of the RNA ribozymes; unfolding inhibits catalytic activity. From

the simulations it is hypothesised that the LDH arranges the RNA in a way which might

promote a templating mechanism, making LDHs a potential candidate for amplifying

the population of RNA sequences. The interactions described here between RNA and

LDH have relevance to origins of life studies, as the arrangement of single RNA strands

in this manner might have made them amenable to Watson-Crick templating as part of

an early hereditary process.

The research detailed in Chapter 8 is a natural progression from that in Chapter 6 where

it takes a transition from looking at the enhanced rate of folding of relatively short

RNA sequences to probing the structure and function of the large, more biologically

relevant, RNA ribozyme molecule. The catalytic nature of RNA is a feature which has

great importance in the origins of life and the hammerhead ribozyme is seen here as

a prototype for understanding the catalytic nature of RNA. Catalytic, enzymatic-like,

processes such as the self condensation of RNA for example would have been essential

in prebiotic chemistry. The simulations show that the contacts made between secondary

structural motifs in the hammerhead ribozyme are important in arranging the active

site for catalysis. The results show that the active site conformational space correlates

directly with the conformational landscape of the tertiary structure through clustering

analysis. This explains why the minimal hammerhead ribozyme crystal structure does

not exhibit the catalytic potential which the full-length model does and why in general

the full tertiary structure is needed in ribonucleic enzyme activity.
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The work contained within this thesis, and the research published as a result of the work

displayed here, has made a significant contribution to the field of origins of life studies.

The recent advances in computational power have resulted in the large-scale simulation

of complex chemical systems which have been discussed here. The simulations have not

only added insight to experimental work, but they also inform new directions of study.

The work in this thesis illustrates the potential of charged mineral surfaces to radically

alter the kinetics of chemical processes such as nucleic acid folding, which are likely to

prove important in future years in underpinning research into one of the great challenges

in prebiotic chemistry, namely to identify where and when genetic information first be-

came an important discriminator. With increasingly powerful computational resources,

and increasingly sophisticated large-scale e-infrastructure environments, simulations will

grow in their capacity to address the fundamental scientific questions in the prebiotic

chemistry domain.



Chapter 10

Future Work

Chapter 9 reviews the work contained in this thesis and presents this along with the

important conclusions drawn from each research chapter, it is also discusses how these

findings impact the overall field of origins of life studies. The origins of life is one of

sciences most open-ended problems, it gives us an unending string of questions and

plausible explanations. This can bring us a proliferation of riches in basic chemical

understanding. So it is fitting that we close with a chapter on ‘Future Work’. With

this chapter briefly discussing the ways in which we can progress the ideas set out in

this thesis and to hone methodologies so that we can move closer to ever more plausible

origins of life scenario.

I have made every effort to compare the results of the simulations to corresponding

observable experimental data in order to provide confidence in the selection of force field

potentials we have chosen. A problem in validating force field potentials for mineral

interfaces using experimental fitting is the lack of data which can be used. Relevant

observable data are available for a limited number of systems, but they are most often

insufficient for fitting purposes.

The force fields potentials should be validated against ab initio calculations for each

mineral-organic system studied in this thesis. Clearly, it would be possible to obtain

better agreement by refitting to the ab initio curve. However, such a procedure would

lack the advantages of a more general procedure for transferability and ease of adding

new interactions to the force field. There is inevitably a balance to be struck between

accuracy and these other considerations.

It is important when setting up molecular dynamic simulations that the latest and

most accurate force field is chosen. Much work is continuing to be done to make force

field potentials as accurate as possible for many systems including inorganic-organic
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hybrid systems like these. Current modifications include the ’Barcelona refinement’

(PARMBSC0) from Orozco et al. that improves the description of αβ concerted rotations

in nucleic acids [125]. Jurečka et al. have refined the Cornell nucleic acid force field in

order to reparameterize the glycosidic torsion, χ, in RNA [290]. When extending or

reproducing any of the simulations reported here careful consideration should be taken

in selecting the right force fields to simulation these systems.

Section 4.2.2 discussed briefely enhanced sampling methods. The enhanced configu-

rational sampling that we get from these methods lead to better statistics from the

time-averaged data we draw from molecular dynamics trajectories. Simply repeating

simulations from alternative starting configurations (or initial atomic velocities) in an

uncoupled ensemble will deliver better statistics and reduce standard deviations.

I hope that the ideas set forth in this chapter will help guide further theoretical research

in origins of life studies and somewhat provide a map for progressing the work set out in

this thesis. This chapter has discussed improvements and refinements that can be made

to the methodologies used and how better sampling can lead to improved results.



Appendix A

Simulation Movies

The Movies listed below can be accessed at the following website:

http://ccs.chem.ucl.ac.uk/∼jacob/Movies/

Movie 5.1: A-Mg2Al, File Type: Mpeg.

Visualisation of the trajectories taken from fully atomistic molecular dynamics (MD)

simulation of A-Mg2Al (see Table 7.1 of Chapter 7) at 300 K and 1 atm. The simulation

consists of a two layer Mg2Al layered double hydroxide (LDH) clay surface and a single

stranded RNA of 25 nucleotides.

Movie 5.2: A-Mg3Al, File Type: Mpeg.

Visualisation of the trajectories taken from fully atomistic molecular dynamics (MD)

simulation of A-Mg3Al (see Table 7.1 of Chapter 7) at 300 K and 1 atm. The simulation

consists of a two layer Mg3Al layered double hydroxide (LDH) clay surface and a single

stranded RNA of 25 nucleotides.

Movie 5.3: A-Mg6Al, File Type: Mpeg.

Visualisation of the trajectories taken from fully atomistic molecular dynamics (MD)

simulation of A-Mg6Al (see Table 7.1 of Chapter 7) at 300 K and 1 atm. The simulation

consists of a two layer Mg6Al layered double hydroxide (LDH) clay surface and a single

stranded RNA of 25 nucleotides.

165



Appendix A. Simulation Movies 166

Movie 5.4: A-Bulk, File Type: Mpeg.

Visualisation of the trajectories taken from fully atomistic molecular dynamics (MD)

simulation of A-Bulk (see Table 7.1 of Chapter 7) at 300 K and 1 atm. The simulation

consists of a 24 base-pair DNA duplex of mixed base sequence in bulk water.

Movie 6.1: Model I, File Type: Mpeg.

Visualisation of the trajectories taken from fully atomistic molecular dynamics (MD)

simulation of Model I in Chapter 5 at 300 K and 1 atm. The simulation consists of a

three sheet Mg2Al layered double hydroxide (LDH) clay in which one of the interlayers

is intercalated with a 24 base-pair RNA duplex of mixed base sequence.

Movie 6.2: Model II, File Type: Mpeg.

Visualisation of the trajectories taken from fully atomistic molecular dynamics (MD)

simulation of Model II (in Chapter 5 at 300 K and 1 atm. The simulation consists of a

three sheet Mg2Al layered double hydroxide (LDH) clay in which one of the interlayers

is intercalated with a 24 base-pair DNA duplex of mixed base sequence.

Movie 6.3: Model III, File Type: Mpeg.

Visualisation of the trajectories taken from fully atomistic molecular dynamics (MD)

simulation of Model III in Chapter 5 at 300 K and 1 atm. The simulation consists of a

three sheet Mg2Al layered double hydroxide (LDH) clay in which one of the interlayers

is intercalated with a 24 base-pair PNA duplex of mixed base sequence.

Movie 6.4: Model IV: File Type: Mpeg.

Visualisation of the trajectories taken from MD simulation for Model IV in Chapter 5

at 300 K and 1 atm, which is comprised of a six sheet Mg2Al LDH in which twenty four

RNA duplexes are distributed evenly between the clay interlayers. The Movie shows

that the motion of the nucleic acid has been restricted by the LDH when compared to

the nucleic acid in bulk aqueous solution.

Movie 6.5: Model V: File Type: Mpeg.

Visualisation of the trajectories taken from MD simulation for Model V in Chapter 5

at 300 K and 1 atm, which is comprised of a six sheet Mg2Al LDH in which twenty four

DNA duplexes are distributed evenly between the clay interlayers.



Appendix A. Simulation Movies 167

Movie 6.6: Model VI: File Type: Mpeg.

Visualisation of the trajectories taken from MD simulation for Model VI in Chapter 5

at 300 K and 1 atm, which is comprised of a six sheet Mg2Al LDH in which twenty four

PNA duplexes are distributed evenly between the clay interlayers.

Movie 6.7: Model I: File Type: Mpeg.

Visualisation of the projection of the motion of all RNA atoms onto the first eigenvector

using principal component analysis for Model I in Chapter 5 which contains Mg2Al LDH

intercalated RNA taken from the last 1ns of simulation.

Movie 6.8: Model I: File Type: Mpeg.

Visualisation of the projection of the motion of all DNA atoms onto the first eigenvector

using principal component analysis for Model II in Chapter 5 which contains Mg2Al

LDH intercalated DNA taken from the last 1ns of simulation.

Movie 6.9: Model I: File Type: Mpeg.

Visualisation of the projection of the motion of all PNA atoms onto the first eigenvector

using principal component analysis for Model III in Chapter 5 which contains Mg2Al

LDH intercalated PNA taken from the last 1ns of simulation.

Movie 6.10: Model I: File Type: Mpeg.

Visualisation of the projection of the motion of all RNA atoms onto the first eigenvector

using principal component analysis for Model VII in Chapter 5 which contains RNA in

bulk water taken from the last 1ns of simulation.

Movie 6.11: Model I: File Type: Mpeg.

Visualisation of the projection of the motion of all DNA atoms onto the first eigenvector

using principal component analysis for Model VIII in Chapter 5 which contains DNA

in bulk water taken from the last 1ns of simulation.
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Movie 6.12: Model I: File Type: Mpeg.

Visualisation of the projection of the motion of all PNA atoms onto the first eigenvector

using principal component analysis for Model IX in Chapter 5 which contains PNA in

bulk water taken from the last 1ns of simulation.

Movie 7.1: Model V, File Type: Mpeg.

Visualisation of the trajectories taken from 35ns of fully atomistic molecular dynamics

(MD) simulation for Model V in Chapter 6. Model V consists of RNA of sequence B in

the presence of Na+ montmorillonite. Nucleosides and the phosphate backbone of RNA

are coloured blue and yellow respectively. Surface silicon ions are magenta and Na+ ions

are grey. The visualisation shows the folding of the initial elongated RNA structure into

a more compact secondary structure over the first 5ns of simulation which persists over

the full 35ns of simulation. The animation also shows the ineffectiveness of the Na+ ions

in attracting the single-strand of RNA to the surface of the montmorillonite clay.

Movie 7.2: Model VI: File Type: Mpeg.

Visualisation of the trajectories taken from 35ns of MD simulation for Model VI in

Chapter 6. Model VI consists of RNA of sequence B in the presence of Ca2+ montmo-

rillonite. Colour scheme as in animation 1. with Ca2+ coloured grey. The visualisation

shows the folding of the initial elongated RNA structure into a more compact secondary

structure over the first 5ns of simulation and the subsequent tethering of the strand to

the surface of the montmorillonite clay.

Movie 7.3: Model VII: File Type: Mpeg.

Visualisation of the trajectories taken from 20ns of MD simulation for Model VII in

Chapter 6. Model VII consists of RNA of sequence B in the presence of Na+ ions in

bulk water. Colour scheme as in animation 1. The visualisation shows the absence of

folding of the initial elongated RNA structure into a more compact secondary structure;

the RNA molecule retains its helical structure over the entire duration of the 20ns

simulation.

Movie 7.4: Model VIII: File Type: Mpeg.

Visualisation of the trajectories taken from 20ns of MD simulation for Model VIII

in Chapter 6. Model VIII consists of RNA of sequence B in the presence of Ca2+

ions in bulk water. Colour scheme as in animation 1. The visualisation shows the
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absence of folding of the initial elongated RNA structure into a more compact secondary

structure;the RNA molecule retains its helical structure over the entire duration of the

20ns simulation. The Ca2+ ions are more tightly bound to negatively charged phosphate

groups than Na+ ions in model VII.
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