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Abstract

The versatility and the electrophysiological characteristics of the light-sensitive

ion-channels channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR) make

these optogenetic tools potent candidates in controlling neuronal firing in

models of epilepsy and in providing insights into the physiology and pathology

of neuronal network organization and synchronization. The experiments

described in this thesis were designed to determine if the ChR2/NpHR system

allows specific targeting and manipulation of interneuron activity in cortex and

hippocampus, if it allows modulation of gamma oscillations in the hippocampal

CA3 area, and if it constitutes a reliable toolbox enabling systematic analysis of

epileptic neural circuits and a novel anti-epileptic treatment strategy that relies

on optical activation of neurons to interrupt seizures. After successful

generation of lentiviral constructs containing opsin genes driven by the

interneuron-specific promoters glutamic acid decarboxylase (GAD) 67 and

cholecystokinin (CCK) and the production of high-titre lentivirus, it was

possible to demonstrate that both microbial opsins are expressed in neuronal

cultures and rat motor cortex and hippocampus. Expression of the constructs,

however, was not specific for interneurons and expression levels were low

compared to the same opsins driven by the calcium calmodulin-binding kinase

2a (Camk2a) promoter: either fluorescence was only visible after

immunofluorescent labelling or optical control of neural activity was not

achievable despite visible fluorescence. In a separate set of experiments,

stimulation of Camk2a–ChR2 with ramps of blue light induced oscillations in

hippocampal area CA3. Oscillations entrained to modulated ramps over a wide

range of frequencies with a frequency-dependent phase relationship. Finally,

optical stimulation of halorhodopsin successfully reduced high frequency

epileptic EEG activity in a tetanus toxin rat model of focal epilepsy. These

results demonstrate that targeting opsins to interneurons with the GAD67 and

CCK-promoters is not specific, that the CA3 network has properties that allow it

3



to entrain and synchronize to input from the dentate gyrus, which may help

explain how coherence between these two anatomically coupled networks

arises, and finally, that optical inhibition of HF discharges with NpHR targeted

to pyramidal neurons represents an exciting new tool to be pursued in models

of epilepsy both to dissect epileptic networks and for the development of other

optogenetic neuromodulation therapies.
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Chapter 1

Introduction

Opsins are a family of photosensory receptors found in all animal kingdoms,

where they subserve a wide diversity of functions: from phototaxis in algae to

eyesight in vertebrates (Briggs and Spudich, 2005). “Optogenetics” is a novel

technology that combines optics and genetics by optical control of opsins

targeted to living cell membranes. This fascinating technique has

revolutionized neuroscience in recent years, allowing specific control of

neuronal function with a spatiotemporal resolution and genetic specificity that

are far greater than those achieved with electrophysiology (Davidson and

Breakefield, 2003). Expression of these microbial light-sensitive proteins has

been used to study specific classes of neurons in vitro (Boyden et al., 2005;

Zhang et al., 2007b) and in intact brain tissue in vivo, in vertebrate (Aravanis

et al., 2007; Diester et al., 2011) and invertebrate models (Hwang et al., 2007).

More recent applications have focused on opsins as potential therapeutic tools

(Tonnesen et al., 2009; Busskamp et al., 2010).

Building upon these recent technological advances, the aims of my work were

threefold: Firstly, to target light-sensitive ion-channels to interneurons by

lentiviral delivery. Secondly, to study the mechanisms of gamma oscillation

synchronization and coherence in the hippocampus. Thirdly, to use optogenetic

tools to investigate epileptic networks and suppress seizures.
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Targeting the two major opsins channelrhodopsin-2 (ChR2) and halorhodopsin

(NpHR) to interneurons to manipulate interneuron populations as a whole or as

individual subclasses is desirable, as this would open up the possibility to study

the individual functions of interneuron classes, understand how interneurons

shape principal cell activity and neuronal oscillations, and define their role in

epileptic networks. Viral delivery of opsins offers the unique advantage of

targeted, cell subtype-specific and long-term expression. Two

interneuron-specific promoters, glutamic acid decarboxylase (GAD) 67 and

cholecystokinin (CCK), have successfully been used for virally-mediated

delivery of transgenes (Chhatwal et al., 2007; Teschemacher et al., 2005; Jasnow

et al., 2009), but the targeted expression of light-sensitive ion-channels to

interneurons as a whole, or specifically CCK-positive interneurons, had not

been attempted previously.

In collaboration with Thomas Akam, we set out to investigate whether ChR2

could be used to study synchronization mechanisms between local networks in

the hippocampal area cornu ammonis 3 (CA3). Local network oscillations are

known to be involved in input selection, consolidation of synaptic modifications

and linking of distant cell populations, to mention just a few functions (Buzsáki

and Draguhn, 2004). It is also known that network oscillations can become

linked between regions and that synchronization is altered or disrupted in

certain disease forms such as autism (Dinstein et al., 2011) and schizophrenia

(Dinstein et al., 2011). How synchronization is accomplished, however, is

unclear. We used optogenetic tools to control of a subset of neurons and bias

their oscillations to defined frequencies. At the same time, oscillation

entrainment and the interaction with other intrinsic oscillating networks was

recorded by monitoring population activity with electrophysiological methods.

My final aim was to investigate whether optogenetic tools would allow

modulation of epileptic activity. To date there is only one report on the

therapeutic potential of light-activated inhibition in an in vitro model of
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epileptiform activity (Tonnesen et al., 2009), and only one very recent

comparable study in vivo, where thalamic stimulation was found to abolish

stroke-induced seizures (Paz et al., 2012). An optimal therapeutic strategy

would be minimally invasive, targeted to the epileptogenic zone, and would

only suppress neuronal activity when needed. The versatility and the

electrophysiological characteristics of ChR2 and NpHR make optogenetic tools

potent candidates to control neuronal firing in models of epilepsy and to

provide insights into the pathophysiology of epileptic network organization

and synchronization.

The following sections will provide a review of the published literature and

provide background information to the subsequent results chapters.

1.1 Opsins

Photosensory receptors deliver to organisms the information carried by light by

absorbing single photons (Hecht et al., 1942; Van der Velden, 1946) and

transducing these quanta of electromagnetic energy into a chemical form

recognizable by cellular biochemical pathways. Many of these receptors, like

our own visual pigments, are proteins that combine with the vitamin-A derived

chromophore retinal (or retinaldehyde). This family of proteins are also termed

retinylidene proteins or opsins 1. They are the molecular basis for a variety of

light-sensing systems from phototaxis in flagellates to eyesight in animals.

1.1.1 General Structure

Opsins are 25 - 50 kD membrane-bound proteins with a seven-transmembrane

α-helical structure (Fig. 1.1) (Briggs and Spudich, 2005). They reversibly and

covalently bind retinal in Schiff base 2 linkage, by condensation of the aldehyde

group of retinal to the positively charged amino group of a lysine residue in the

1Rhodopsin refers to the entire molecule comprising the opsin protein and the cofactor retinal.
2Compounds having the structure RN=CR2 bearing a hydrocarbyl group on the nitrogen atom

R2C=NR’ (R’ 6= H) (McNaught and Wilkinson, 1997 (online version 2012)).
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seventh transmembrane alpha helix. Because this linkage is a protonated Schiff

base, the result is a buried positive charge in the protein, and light-induced

transfer of this proton within the binding pocket is important to function of

rhodopsins.

Retinal acts as a chromophore: it is the part of the opsin molecule that

photoisomerizes and causes a conformational change when absorbing light of a

certain wavelength. This conformational change activates downstream

G-protein signalling cascades or ion-transport mechanisms.

1.1.2 Classification

Primary sequence alignments divide opsins into two distinct phylogenetic

classes, type 1 or microbial, and type 2, found in visual pigments and in pineal

and hypothalamic receptor proteins of higher vertebrates. The two types of

opsins differ in physical size and in the position of the 7th transmembrane helix

in the membrane (Palczewski et al., 2000). Type 2 rhodopsins, such as visual

pigments, exhibit a different domain organization from type 1 opsins: Whereas

microbial rhodopsins have minimal interhelical loops, half of human retinal

rhodopsin is buried in the membrane of rod cells, with the other half in

hydrophilic loops protruding into the aqueous medium from both membrane

surfaces. This different domain organization reflects how visual pigments

transduce information from photons into biochemical signalling molecules: the

intracytoplasmic loops enable type 2 opsins to bind heterotrimeric G proteins,

receptor kinases, and other signalling proteins (Khorana, 1993; Sakmar, 1998).

The microbial rhodopsins, on the other hand, function largely within the

membrane to pump ions or to function as light-activated ion channels (Spudich,

1998). The isomeric configuration and ring/chain conformation of the retinal

and the photoisomerization step also differ between the two opsin classes (Fig.

1.2): Rhodopsins found in prokaryotes and algae commonly contain an all-trans

retinal isomer in the planar 6-s-trans conformation at the ground state that
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Figure 1.1: Crystal structure of bovine rhodopsin in three dimensions: Helices
1-6 are coloured in blue to orange, Helix 7 in red, retinal in purple. Reconstructed
on PyMOL (Schrödinger, LLC, 2010) from PDB ID: 1GZM (Li et al., 2004) on
www.pdb.org (Berman et al., 2000)).
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Figure removed due to copyright restrictions.

Figure 1.2: Retinal conformation and isomerization steps in opsins type 1 and
2. The atomic structure of retinal in type 1 microbial opsins (left) in the all-trans
(top) and 13-cis state (bottom) after absorption of photons. The conformation
of visual pigment-like type 2 opsin retinal (right) in the 11-cis (top) state, which
isomerizes to the all-trans state (bottom) after absorption of light (from (Spudich
et al., 2000)).

isomerizes to 13-cis upon light activation, whilst type 2 opsins bind an 11-cis

isomer of retinal in 6-s-cis conformation in the dark, which undergoes

photoisomerization to an all-trans retinal when activated by a photon. Finally,

despite having similar molecular structure and sharing functional features,

direct sequence comparison revealed no evident homology between the two

opsin groups, suggesting that the fundamental mechanism for detecting light

using an “opsin-like” protein was exploited twice independently during the

course of evolution (Fernald, 2006).

1.1.3 Microbial Opsins (Type 1)

The visual pigment rhodopsin was originally extracted from bovine retina

using bile salts in 1878 (Kuehne, 1878). Half a century later, G. Wald provided

evidence that visual pigment is composed of a protein conjugated with an

unidentified retinoid (Wald, 1935) and went on to characterize the primary

physiological and chemical visual processes in the eye3. He had also suggested

that there may be a retinal protein mediating phototaxis in such motile

unicellular organisms as the alga Chlamydomonas. In the following 30 years,

research on microbial rhodopsins focused on four proteins found in the

membrane of the halophilic archaeon Halobacterium salinarum and the only

microbial retinylidene proteins known prior to 1999: the light driven ion pumps

bacteriorhodopsin (BR) (Oesterhelt and Stoeckenius, 1973) and halorhodopsin

(HR) (Matsuno-Yagi and Mukohata, 1977; Schobert and Lanyi, 1982), and the

phototaxis receptors sensory rhodopsin I and II (SRI and SRII) (Bogomolni and

3For which he was eventually awarded the Nobel Prize in Physiology or Medicine in 1967.
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Spudich, 1982; Takahashi et al., 1985). From 1999 onwards, genome sequencing

of cultivated microorganisms has revealed the previously unknown presence of

homologs of photosensory microbial rhodopsin in the other two domains of life:

Bacteria (Beja et al., 2001; Jung et al., 2003) and Eukarya (Bieszke et al., 1999;

Sineshchekov et al., 2002). Since then, a remarkable 782 different partial

sequences homologous to type 1 rhodopsins was found by whole genome

“shotgun sequencing” of microbial populations collected en masse from sea

water samples in the world’s oceans (Beja et al., 2001; de la Torre et al., 2003;

Man et al., 2003; Man-Aharonovich et al., 2004; Sabehi et al., 2003; Venter et al.,

2004). Rhodopsin genes have been identified in microorganisms that inhabit the

most diverse environments from salt flats, soil, fresh water, surface and deep

sea water, to glacial sea habitats and human and plant tissues as fungal

pathogens (Briggs and Spudich, 2005). Studies of the microbial rhodopsins have

made them some of the best understood membrane proteins in terms of

structure and function at the atomic level. Atomic resolution structures, which

exist for fewer than 60 membrane proteins, have been obtained from electron

and X-ray crystallography from BR4 (Grigorieff et al., 1996; Pebay-Peyroula

et al., 1997; Essen et al., 1998; Luecke et al., 1999), HR (Kolbe et al., 2000), SRII

(Luecke et al., 2001) and, most recently, from Channelrhodopsin-2 (Müller et al.,

2011) and a chimera from Channelrhodopsin-1 and -2 from Chlamydomonas

reinhardtii (Kato et al., 2012). These proteins share a nearly identical positioning

of the seven transmembrane helices and 80% identity in the 22 residues forming

the retinal binding pocket. Finding type 1 rhodopsin homologs is based on

identifying these conserved protein residues in other organisms.

The remainder of this section will explore the archaeal rhodopsins, including

halorhodopsin, and the rhodopsins found in green flagellate algae, including

channelrhodopsin.

4Including a 1.55Å structure reported for BR, in which bound water molecules are visible
(Luecke et al., 1999).
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Figure 1.3: (Spudich et al., 2000)) .

1.1.3.1 Archaeal Rhodopsins

Sixteen variants of BR, HR, SRI and SRII have been documented in related

halophilic archaea such as Natronomonas pharaonis.

As briefly alluded to in the previous section, the functions and photocycles of

the four archaeal rhodopsins have been well characterized and I would like to

sketch the major determinants of their activation process in more detail:

A photon of visible light absorbed by BR provides sufficient energy for the

structural transformation from quiescence into a signalling protein (Hecht et al.,

1942; Van der Velden, 1946), a process described as photoisomerization: Within

femtoseconds, photon absorption causes rapid rearrangement of electrons in

the molecule, which results in trans→ cis isomerization at the C13 = C14 double

bond , causing transformation of all-trans to 13-cis retinal. Photoisomerization

of retinal initiates a sequence of photochemical events producing a series of

structural alterations in the opsin protein. The absorption spectrum of the

molecule is sensitive to conformational changes throughout the protein, and

therefore the sequentially different states of the opsin can be detected as so

called photointermediates with different absorption spectra. In the dark, the

unphotolyzed states of the pigments exhibit absorption maxima in the visible

range (BR 568 nm, HR 578 nm, SR I 587 nm, and SR II 487 nm), whilst the

absorption maxima of the photointermediates are shifted to either the red or

blue. To complete the cycle, the retinal needs to re-isomerize to all-trans: in

microbial rhodopsins the photointermediates spontaneously (i.e. by thermal

processes in the dark) return to the unphotolyzed state, completing a

photochemical reaction cycle (photocycle) (Spudich et al., 2000). Additionally, a

photochemical intermediate of the HR cycle can be photochemically

reconverted to the ground state by blue light, a two-photon reaction which is

also known for the M intermediate of bacteriorhodopsin (Hegemann et al.,
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1985). As a general rule, more than 10-fold faster photocycling rates distinguish

the archaeal transport (photocycles typically are < 30 ms) from the sensory

pigments (photocycles typically are > 300 ms) (Spudich et al., 2000).

Functionally, archaeal rhodopsins have either transport or sensory functions.

BR and HR are light-driven ion pumps for protons and chloride, respectively.

BR and HR hyperpolarize the membrane by proton ejection or electrogenic

chloride uptake thereby creating a negative inside/positive outside membrane

potential and an inwardly directed electrical gradient for net proton uptake.

This is especially important in alkaline conditions for pH homeostasis. BR also

converts light to a proton gradient which in turn is used by a second membrane

protein, ATP synthase to generate chemical energy in the form of ATP and to

drive substrate active transport and other energy-requiring processes. SRI and

SRII are receptors controlling the cell’s phototactic responses to changes in light

intensity and colour. In Archea, for example, they control the cell’s swimming

behaviour (Briggs and Spudich, 2005). If progenitors of these opsins existed

before the divergence of archaea, eubacteria and eukaryotes in early evolution,

then light-driven ion transport as a means of obtaining cellular energy may

have preceded the development of photosynthesis and may represent one of the

earliest means by which organisms used solar radiation as an energy source

(Briggs and Spudich, 2005).

1.1.3.2 Rhodopsins in Green Flagellate Algae

The rhodopsins found in the green flagellate algae Chlamydomonas reinhardtii

(Nagel et al., 2002, 2003; Sineshchekov et al., 2002), and Volvox carteri (Zhang

et al., 2008) are important mediators of light control of phototaxis and the

photophobic response. The photoreceptor currents mediating phototactic

orientation are confined to the pigmented eyespot region, a single,

asymmetrically placed photoreceptor apparatus. The presence of rhodopsin

receptors in green flagellate algae was initially suggested based on their action
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spectra for phototaxis (the rate of phototaxis plotted against light wavelength)

(Foster and Smyth, 1980) and then confirmed by the results of retinal

reconstitution studies in “blind” Chlamydomonas mutants (Lawson et al., 1991;

Foster et al., 1984; Hegemann et al., 1991; Takahashi et al., 1991; Zacks et al.,

1993; Sineshchekov et al., 1994). The receptor proteins themselves were not

identified until the search of Chlamydomonas complementary

deoxyribonucleic acid (cDNA) database revealed the presence of two sequences

homologous to archaeal opsins. The two opsin proteins were reported

independently by several research groups and named Chlamydomonas sensory

rhodopsin A and B (CSRA and CSRB (Sineshchekov et al., 2002)), channelopsin

1 and 2 (Chop-1 and 2 (Nagel et al., 2002, 2003)) and Archaeal type

Chlamydomonas opsin 1 and 2 (Acop-1 and Acop-2 (Suzuki et al., 2003)). In

this thesis we will use channelrhodopsin-1 (ChR1) and channelrhodopsin-2 for

the retinal-bound proteins and Chop-1 and 2 for their apoprotein or “opsin”

forms without retinal. The N-terminal domains (7-TM domain) of the encoded

opsin apoproteins form seven membrane-spanning helices and, in Xenopus

oocytes, the light-dependent currents and current-voltage relationships were

shown to be the same in full-length and 7-TM domains of ChR1 and 2,

demonstrating that the extensive C-terminal domain is not involved in the

photocurrents measured (Nagel et al., 2002, 2003). Under physiological

conditions photoreceptor currents are carried mainly by Ca2+, but Sr2+, Ba2+

and Mg2+ are also conducted albeit less efficiently (Holland et al., 1996). When

the eyespot region is exposed to low pH a second (H+-mediated) photoreceptor

current component appears (Ehlenbeck et al., 2002). Expression of Chop-1, or of

only the hydrophobic core, in Xenopus laevis oocytes in the presence of all-trans

retinal produced a light-gated current that showed characteristics of a channel

selectively permeable for protons, suggesting that ChR1 is the photoreceptor

system that mediates the H+-mediated photoreceptor current (Nagel et al.,

2002). ChR2 was subsequently shown to be a directly light-switched

cation-selective ion channel (Nagel et al., 2003). This channel opens rapidly (<
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C C* CO D

0.2 ms

10 - 400 ms 60 ms - 2 s

Figure 1.4: ChR2 photocycle. Schematic exemplifying time constants for ChR2
photoreactions modelled from electrophysiological data available (Müller et al.,
2011; Kato et al., 2012).

200 µs) after absorption of a photon to generate permeability for monovalent

and divalent cations. It desensitizes in continuous light to a smaller steady-state

conductance. Recovery from desensitization is accelerated by extracellular H+

and negative membrane potential, whereas closing of the ChR2 ion channel is

decelerated by intracellular H+. ChR2 is expressed in Chlamydomonas under

low-light conditions, suggesting involvement in photoreception in

dark-adapted cells (Nagel et al., 2003). The action spectra of the observed

photocurrents in Chlamydomonas cells correlated with those measured for ChR1

and 2 (Sineshchekov et al., 2002) and showed that ChR2 absorption is

blue-shifted (maximum at ~460 nm) as compared with ChR1 (maximum at

~500 nm). The ChR2 photocycle is only hypothetical due to only few

crystallographic data available (Müller et al., 2011; Kato et al., 2012), but could

be modelled from electrophysiological data as follows (Fig. 1.4) : (within 1 ns)

photon absorption leads to an excited state of ChR2 (C*). In slower dark

reactions this is followed by an open state (O), a closed, desensitized state (D),

and a closed ground state (C). From experimental data, a 1 ms time period leads

from a closed ground state (C) to the open state (C→ C*→ O). Closing to the

desensitized state (D) occurs within 10–400 ms, depending on intracellular pH.

As opening (C→ C*→ O) is so fast, the four-state transitions model (C→ C*→

O→ D→ C) is further reduced to a three-state transitions model (C→ O→ D

→ C). Time constants are 0.2 ms for light-activated opening (C→ O), 20 ms for

closing (O→ D) and 2 s for recovery from desensitization (D→ C). When using

these time constants, then the model predicts a much smaller stationary
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light-activated current than experimentally observed. This may indicate that

two photons are absorbed during the photocycle (in analogy with the

two-photon cycles of other rhodopsins (Hegemann et al., 1985)), with an

effective light-activated D→ C transition time constant of 60 ms (Nagel et al.,

2003). Expression of ChR2 in oocytes or mammalian cells was shown to be a

powerful tool to increase cytoplasmic Ca2+ concentration or to depolarize the

cell membrane, simply by illumination (Nagel et al., 2003).

1.1.4 Opsin Expression in Neurons: Replacing the Electrode with

Light?

Since Galvani first reported a method for the direct stimulation of nerves over

200 years ago (Galvani, 1791), the basic approach based on the use of metal

electrodes has changed surprisingly little. Electrical stimulation involves the

use of metal or electrolyte-filled glass pipette electrodes to trigger action

potentials in individual neurons or groups of neurons. This technique suffers

from three key limitations: it lacks specificity , as current can spread from the

electrode beyond the tissue in physical contact with it, inhibiting neurons is

difficult, and it is invasive (Scanziani and Häusser, 2009). Optical probes are

promising tools that obviate the need of physical contact with the tissue

studied(Scanziani and Häusser, 2009). Miesenboeck’s team at Yale first

developed optical techniques ranging from caged compounds,

phototransduction components of Drosophila expressed in neurons (Zemelman

et al., 2002) and combinations of heterologous expression of ligand-gated

channels and injected photolabile caged compounds in fruit flies (Lima and

Miesenböck, 2005). Since 2005, substantial progress was made by the groups of

Deisseroth at Stanford University5 and Nagel at the Max Planck Institute for

Biophysics (Boyden et al., 2005): They developed opsins with the necessary

temporal resolution to probe neurons at the resolution of single spikes. These

tools were developed in a remarkable series of experiments over only a couple

5www.stanford.edu/group/dlab/optogenetics/
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of years and subsequently further developed at both institutions (Kleinlogel

et al., 2011; Yizhar et al., 2011a) and by Boyden’s team at the Massachusetts

Institute of Technology (MIT) (Chow et al., 2010). Table 1.1 and 1.2 summarizes

the main spectral and kinetic characteristics of opsins available to date.

ChR2 was chosen to attempt genetically targeted photostimulation with fine

temporal resolution due to the efficacy and speed of its natural

light-transduction mechanisms. Knowing that the long C-terminus of ChR2 was

not involved in the generation of photocurrents, lentiviruses were engineered

containing a ChR2, whose C-terminus was fused with a yellow fluorescent

protein (YFP) gene. These viruses successfully targeted ChR2 to mammalian

neurons. Expression of ChR2 was shown to be was stable over weeks and safe,

as it did not alter the electrical properties or survival of neurons (Boyden et al.,

2005). Furthermore, ChR2 could drive neuronal depolarization without

necessitating addition of external cofactors, as the retinal present in the

mammalian brain was shown to be sufficient to constitute a functional

rhodopsin (Boyden et al., 2005; Ishizuka et al., 2006; Li et al., 2005). Illumination

with blue light induced rapid (opening rate of ~1.21 ms at 19.8 mW/mm2 light

intensity (Lin, 2011)), large amplitude (496±336 pA (mean±s.d.) at peak (Boyden

et al., 2005)) depolarizing currents, which rapidly recovered (closing rate of

13.5 ms at 19.8 mW/mm2 light intensity (Lin, 2011)). Pulsed optical activation of

ChR2 was also able to elicit precise, repeatable spike trains in a single neuron,

and to drive sustained naturalistic trains of spikes in a physiologically-relevant

spike range (5–30 Hz). Finally, ChR2 was shown to drive subthreshold

depolarizations and to control excitatory and inhibitory synaptic transmission

(Boyden et al., 2005).

Soon, a complementary high-speed hyperpolarizing Cl--pump was found by

screening halorhodopsins from two strains of archaea, Halobacterium salinarum

(HsHR) and Natronomonas pharaonis (NpHR) (Zhang et al., 2007b). Illumination

of HsHR- or NpHR-expressing Xenopus oocytes led to rapid outward currents
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Table 1.1: Optogenetic tools available to date - excitatory and bistable opsins.
Adapted from (Yizhar et al., 2011a). *Decay Kinetics are temperature dependent.
The given values were measured at room temperature, except for ChRGR that
was measured at 34°C. An ~50 % decrease in toff is expected at 37 °C (Yizhar
et al., 2011a).

Opsin Peak
Activation λ

[nm]

Off Kinetics
τ [ms]

Reference

Excitatory Opsins (Cation
Channels)

ChR2 470 ~10 (Boyden et al., 2005;
Nagel et al., 2003)

ChR2(H134R) 470 18 (Nagel et al., 2005;
Gradinaru et al., 2007)

ChR2(T159C) 470 26 (Berndt et al., 2011)
ChR2(L132C) 470 16 (Kleinlogel et al., 2011)
ChETA: ChR2(E123A) 470 4 (Gunaydin et al., 2010;

Berndt et al., 2011)
ChETAs: ChR2(E123T) 490 4 (Gunaydin et al., 2010;

Berndt et al., 2011)
ChETA: ChR2(E123T/T159C) — 8 (Gunaydin et al., 2010;

Berndt et al., 2011)
ChIEF 450 ~10 (Lin et al., 2009)
ChRGR 505 4–5* (Wang et al., 2009; Wen

et al., 2010)
VChR1 545 133 (Zhang et al., 2008)
C1V1 540 156 (Yizhar et al., 2011b)
C1V1 ChETA(E162T) 530 58 (Yizhar et al., 2011b)
C1V1 ChETA(E122T/E162T) 535 34 (Yizhar et al., 2011b)

Bistable Opsins
ChR2-step function opsins 470–590 2 s - 29 min (Berndt et al., 2009;

Bamann et al., 2010;
Yizhar et al., 2011b)

VChR1- SFOs 560–390 32 s - 5 min
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Table 1.2: Optogenetic tools available to date - inhibitory opsins and biochem-
ical modulators. Adapted from (Yizhar et al., 2011a). *Decay Kinetics are tem-
perature dependent. The given values were measured at room temperature. An
~50 % decrease in toff is expected at 37 °C (Yizhar et al., 2011a).

Opsin Peak
Activation λ

[nm]

Off Kinetics
τ [ms]

Reference

Inhibitory Opsins
eNpHR3.0 (Chloride Pump) 590 4.2 (Gradinaru et al., 2010)
Arch/ArchT (Proton Pump) 566 9 (Chow et al., 2010)
eBR (Proton Pump) 540 19 (Gradinaru et al., 2010)
Mac 565 (Chow et al., 2010)

Biochemical Modulators
increased G-protein signalling :

opto-β2AR 500 0.5 s (Airan et al., 2009)
opto-α1AR 500 3 s (Airan et al., 2009)
Rh-CT (5-HT1A) 485 3 s (Oh et al., 2010)

increased cAMP :
bPAC 453 12 s (Stierl et al., 2011)
BlaC 465 16 s (Ryu et al., 2010)
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with excitation maxima near 580 nm, which, importantly, is red-shifted from the

known ChR2 maximum of 470 nm. This spectral separation indicated that ChR2

and a halorhodopsin could be activated independently or in synchrony to effect

bidirectional optical modulation of membrane potential. Cl- currents were

reliable for both halorhodopsins across all physiological voltage regimes. On

the basis of NpHR’s higher extracellular Cl- affinity and stability, it was selected

for experiments in neurons. Expression of NpHR-EYFP was successful in

hippocampal neurons using lentiviruses carrying the ubiquitous elongation

factor 1 a (EF1a) promoter6 and expression was maintained for weeks after

transduction. In voltage-clamp experiments, illumination of NpHR-EYFP cells

with yellow light from a 300 W Xenon lamp induced outward currents with a

peak of 43.86±25.9 pA with rise and decay time constants of ton=6.1±2.1 ms and

toff=6.9±2.2 ms, respectively (no light intensity given in published literature)

(Zhang et al., 2007b). NpHR-mediated hyperpolarization was also able to

abolish evoked firing over a wide range of time-scales (up to 8 min) and with

single spike precision in current-clamped neurons illuminated with light of

21 mW/mm2 intensity. Furthermore, co-expression of NpHR and ChR2 in

cultured neurons confirmed that ChR2 and NpHR can be combined to achieve

bidirectional, independently addressable modulation of membrane potential in

the same neuron (Zhang et al., 2007b). Both NpHR and ChR2 were also

functionally expressed in the mammalian brain in vivo where they were shown

to operate at high speed without necessitating cofactor addition (Zhang et al.,

2007b; Li et al., 2005; Ishizuka et al., 2006).

1.1.4.1 Channelrhodopsin and its Variants

Despite the advantages of ChR2, its limitations became quickly apparent: the

single channel conductance of ChR2 is small, requiring either strong expression

or high levels of illumination to the tissue to effectively depolarize neurons.

Prolonged or high frequency light stimulation desensitizes 80% of the channels,

6LV-EF1a-NpHR–enhanced yellow fluorescent protein [EYFP]
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implying that five times more ChR2 needs to be expressed to achieve equivalent

depolarization of the neuron as when ChR2 is not desensitized. ChR2

expression can also cause the accumulation of intracytoplasmic aggregates and

cell toxicity. These shortcomings were tackled by developing better viruses and

mutant ChR2 variants (Lin, 2011; Mattis et al., 2012) as shown in table 1.1. The

first approach at developing improved ChR2 versions consisted in substituting

amino acids involved in the channel kinetics, its spectral or membrane

trafficking properties. The following channelrhodopsins (ChRs) were

developed by this technique (mutation in brackets): ChR2(H134R) with large

photocurrents but slower channel kinetics (Nagel et al., 2005), ChETA(E123T)

with fast channel kinetics but small current amplitudes advantageous for

reducing the depolarization block caused by overexpression of ChR2

(Gunaydin et al., 2010), a ChR2 including both mutations (H134R)+(E123T) with

accelerated kinetics, and large photocurrents (Gunaydin et al., 2010), ChR2-step

function (C128T) with long-lived open channel states but slow kinetics (Berndt

et al., 2009)7, and CatChR, a Ca2+ translocating ChR2, which is fast and 70-fold

more light sensitive than wildtype ChR2 but has not been tested in vivo or slices.

The T159C mutation (ChRTC) generates large photocurrents at low light

intensities and can be used with weaker promoters and long experiments. ChR

ET/TC (E123T/T159C) has accelerated and voltage-independent kinetics and is

good for high frequency activation, has no plateau depolarization and Na+

channel inactivation, with its optimal wavelength slightly red shifted to 505 nm

(Berndt et al., 2011). In addition to selectively mutagenizing ChR2, chimerae of

ChR1 and 2 were made to exploit the faster kinetics and smaller desensitization

properties of ChR1: a chimera of ChR1 and 2 called ChIEF has the best

photocurrent responses when stimulated continuously or with high frequency

pulses of light due to its high steady state and peak photocurrent. It requires

7Originally developed as a bistable switch driven by different colours of light (blue and yellow),
but it was eventually shown that the channel was not suitable for long stimulation paradigms, as
ChR did not desensitize well in darkness and was therefore not “bistable” (Schoenenberger et al.,
2009).
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desensitization with pulses of 570 nm light, as it does not recover in the dark

(Lin et al., 2009). Finally, the green-light driven chimera ChRGR has fast kinetics

with minimal desensitization (Wen et al., 2010). As a third approach to enrich

the optogenetic toolbox, new excitatory opsins were sought: a cation

conducting channelrhodopsin (VChR1) was found in Volvox carteri. It can drive

spiking at 589 nm, with its excitation maximum red-shifted by 70 nm compared

with ChR2 species (Zhang et al., 2008). VChR1 was recently improved to C1V1,

a far-red shifted version of ChR2, which is compatible with Fura-2 and GCaMP

Ca2+ imaging techniques (Yizhar et al., 2011b). If C1V1 was used with the

blue-shifted ChR2, it would allow combined stimulation of different neuronal

subpopulations with light of different wavelengths. Finally, by mutating a

cysteine residue, ChR2 variants with very long deactivation constants (up to

30 min) have been engineered (Berndt et al., 2009; Bamann et al., 2010; Yizhar

et al., 2011b). The long lasting photocurrent can still be interrupted by

deactivating the opsin with flashes of green/yellow light (560-590 nm (Berndt

et al., 2009)). Since these opsins have bistable behaviour, allowing step-like

control of the membrane potential, they have been termed step-function opsins

(SFO).

In parallel to the excitatory channels, so-called “optoXRs” were developed: a

chimeric opsin–G protein coupled receptor protein (GPCR) was engineered by

replacing the intracellular loops of bovine rhodopsin (physiologically coupled

with Gt–protein) with those of two specific adrenergic receptors (Gq–coupled

human a1-adrenergic receptor and Gs–coupled hamster b2-adrenergic receptor).

These optoXRs were shown to allow optical control of GPCR signalling

cascades by activation with 500 nm light (Airan et al., 2009). They are

responsive to timed light pulses, can be targeted to specific cell-types, and are

functional within mammals in vivo (Airan et al., 2009).

36



1.1.4.2 The Problem of a Good Inhibitor

Experimenters soon found that NpHR had shortcomings: it activates slowly

and generates small photocurrents. In addition, with high expression levels of

NpHR, intracellular accumulations of NpHR-EYFP started to become apparent.

They were mainly localized to the endoplasmatic reticulum (ER). To improve

trafficking of NpHR to the cell membrane, a number of different peptides

modulating membrane trafficking were screened and a combination of two

motifs was identified that markedly promoted membrane localization and ER

export: an N-terminal signal peptide and a C-terminal ER export sequence. The

modified ‘enhanced’ NpHR (eNpHR2.0 or simply NpHR2.0) displayed

high-level expression in mammalian neurons, increased peak photocurrent in

the absence of aggregations or toxicity, and optical inhibition was observed, not

only in vitro, but also in vivo (Gradinaru et al., 2008). Later, a membrane

trafficking signal from an inward rectifier potassium channel (Kir2.1) was

added to the NpHR sequence, generating NpHR3.0, with even better

photoactivation and kinetic properties and a spectrum of activation shifted up

to 680 nm(Gradinaru et al., 2010). A second group developed

archaerhodopsin-3 (Arch) and an opsin from the fungus Leptosphaeria maculans

(Mac), two proton-pumps activated by yellow and blue light, respectively

(Chow et al., 2010). Arch expresses in vivo and silences currents of up to 900 pA,

it spontaneously recovers and has no inactivated state. If used together, Arch

and Mac could potentially allow “multicolour silencing”, in the same way as

the ChR2 variants allow “multicolour activation” of neurons. A comparison of

kinetics of the three major inhibitors is given in Table 1.3 .

1.1.4.3 Applied Optogenetics

Expression of microbial light-sensitive proteins has been used to interrogate

specific classes of neural cells, from cultured neurons to intact brain tissue in

vivo. Targeting specific neuronal subpopulations will be discussed in a
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Table 1.3: Kinetics of the optogenetic inhibitors. Details available of NpHR2.0,
NpHR3.0 and Arch spectral and kinetic characteristics compared with those of
ChR2. Values are expressed as mean±s.d. except for Arch (mean±standard er-
ror). No kinetic data were found on Mac (Boyden et al., 2005; Zhang et al., 2007b;
Chow et al., 2010; Gradinaru et al., 2010).

ChR2 NpHR2.0 NpHR3.0 eBR Arch

Recovery time
[s]

5.1 ± 1.4 — — — —

Current rise
time [ms]

6.1 ± 2.1 — — — 8.8 ± 1.8

Voltage rise
time [ms]

8.0 ± 1.9 35.6 ± 15.1 — — —

Current decay
time [ms]

— 6.9 ± 2.2 — — 19.3 ± 2.9

Voltage decay
time [ms]

— 40.5 ± 25.3 — — —

Peak current
[pA]

496 ± 336 43.8 ± 25.9 — — 863 ± 6.2

Steady state
current [pA]

193 ± 177 214.1 ± 24.7 747.2 ± 93.9 46.4 ± 7.2 —

Max. hyper-
polarization
[mV]

— 57.2 ± 6.8 101 ± 24.7 10.8 ± 1.0 76.2 ± 10.1

Shortest light
time
published
[ms]

15 50 5 1000 15
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subsequent chapter, but, briefly, can be achieved using cell-type specific

promoters in viral vectors and in transgenic animals (Cardin et al., 2009) or

cre-lox systems, or by employing both. To allow optical stimulation in vivo, an

integrated fiberoptic and optogenetic technology was developed. The interface

employed an implanted fiber guide to target the brain region of interest (Zhang

et al., 2010). The fiber guide was used for two purposes: to deliver the

engineered viruses that render specific neuronal types optically sensitive

through ChR2 expression, and to direct the illumination beam of an optical fiber

coupled with a laser to the ChR2 positive neurons. This interface was then

superseded by direct implantation of a custom-made fiberoptic cannula into an

area of viral injection or in transgenic mice expressing ChR2 and NpHR2.0

under the neuron specific Thymocyte differentiation antigen 1 (Thy1) -

promoter (Wang et al., 2007; Arenkiel et al., 2007; Zhao et al., 2008). The

interface has been implemented in rat, mouse and monkey models, and was

used to target specific neuronal cell types without evidence of a functional

immune response in vivo (Aravanis et al., 2007; Han et al., 2009a; Cardin et al.,

2010; Diester et al., 2011). Following these advances, there has been an

explosion in scientific output using optogenetic techniques. Among the notable

results obtained with this technology are these findings: Using lentiviral

targeting of ChR2 to hypocretin neurons in the lateral hypothalamus, electrical

activity arising from hypocretin neurons was sufficient to drive awakening from

sleep states (Adamantidis et al., 2007). Opsins were used to to elucidate the link

between the firing of locus coeruleus neurons and arousal (Carter et al., 2010),

between astrocyte activity and breathing patterns (Gourine et al., 2010), and to

dissect the amygdala circuitry (Stuber et al., 2011; Tye et al., 2011). Optical

microstimulation of ChR2 was used to drive perceptual decisions and learning

behaviour in the barrel cortex of mice (Huber et al., 2008), to manipulate neural

synchrony without perturbation of other parameters such as spiking rate (Han

et al., 2009b; Han and Boyden, 2007) and to induce gamma oscillations (Cardin

et al., 2009; Adesnik and Scanziani, 2010; Carlén et al., 2011). More recent
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applications have focused on opsins as potential therapeutic tools: Optical

microstimulation of ChR2 was used to rescue inner retinal neurons and restore

visual function in a mouse model of retinal degeneration (Bi et al., 2006; Lagali

et al., 2008), whilst halorhodopsin was able to reactivate human photoreceptors

in retinitis pigmentosa (Busskamp et al., 2010) and to control epileptiform

activity in organotypic hippocampal slice cultures (Tonnesen et al., 2009).

Optical stimulation of the direct-pathway circuitry in the basal ganglia rescued

the motor deficits in a mouse model of Parkinson’s disease (Kravitz et al., 2010),

whilst stimulation of the medial prefrontal cortex had an antidepressant effect

in mice (Covington et al., 2010). More recently, further development of viral

vectors and opsins has made it possible to selectively stimulate projection tracts

rather than only somata (Tye et al., 2011), and to achieve pathway-specific

targeting of specific subpopulations of neurons (Gradinaru et al., 2010).

1.2 Viral Vectors

Transfer of foreign genes into terminally differentiated cells such as neurons is

desirable for experimental and therapeutic purposes and can be accomplished

with nonviral or viral methods. Nonviral methods comprise the use of

transfection reagents or of physical means such as ballistic, ultrasound, or

electroporation-based DNA injection. Transfection relies on the principle that

chemicals such as calcium phosphate, diethylaminoethyl-dextran

(DEAE-Dextran) (Pagano and Vaheri, 1965) and cationic liposomes coat or

neutralize the DNA’s negative charge, thereby enabling it to cross the plasma

membrane via endocytosis or phagocytosis.

Calcium-phosphate precipitation is an inexpensive technique developed in the

1970s, which has changed little over time and is based on the principle that

when calcium phosphate is added to a DNA suspension in controlled

conditions (pH and temperature), it precipitates (Graham and van der Eb, 1973).

These precipitates are added to a cell culture, where the DNA/calcium
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complexes are thought to be taken up by endocytosis. A major drawback of the

technique is a low transfection efficiency in most culture systems including

neurons (Dudek and Bertram, 2010) and the fact that little or no expression is

observed in vivo. A further potential problem is that it loads neurons with Ca2+,

which may be toxic.

Cationic liposomes are vesicles composed of positively charged synthetic

lipids8 in bilayer formation (Felgner et al., 1987). The lipid-DNA complexes

(lipoplexes) are stable and the positive charge of the complex interacts with the

net negative charge of plasma membranes leading to internalization. The

advantage of their low immunogenicity is counterbalanced by low transfection

rates and cytotoxicity, thereby limiting their application. The cytotoxicity of

lipoplexes manifests as cell shrinking, vacuolization of the cytoplasm and cell

death via apoptosis, and is related to the lipid-DNA molar charge ratio and the

dose administered. Since transfection efficiency also depends on the charge

ratio (as well as the lipid composition and the vesicle size), in practice this

means that cationic liposomes can only be used in limited quantities to avoid

cytotoxicity, which results in low transfection efficiencies (Kongkaneramit et al.,

2008; Masotti et al., 2009). In neurons some success can be achieved with

commercially available cationic liposome formulations such as

LipofectamineTM (Invitrogen) (Dalby et al., 2004) and FugeneTM (Roche)

(Wiesenhofer and Humpel, 2000).

Physical methods of gene transfer include electroporation and biolistic particle

delivery (e.g. gene gun) methods (Gamper and Shapiro, 2006). Electroporation

is based on the principle that an electric pulse applied to a cell perturbs the

plasma membrane forming pores, that facilitate entry of DNA into the

cytoplasm (Shigekawa and Dower, 1988). It can be used to transfect neurons by

single cell electroporation via a patch pipette (Haas et al., 2001) or to transfect

periventricular neurons by in utero electroporation (Tabata and Nakajima,

81,2-di-O-octadecenyl-3-trimethylammonium propane, DOTMA
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2001). Biolistic delivery consists in propelling complementary deoxyribonucleic

acid (cDNA) coated gold particles at the nucleus of the cells of interest and can

be used in cultured neurons (Gamper and Shapiro, 2006) and brain slices (Lo,

2001). Whilst the nonviral methods of gene transfer described above can be

employed in many experimental paradigms, there are significant drawbacks:

transfection is not specific for neurons and targets only a small volume of cells,

and for therapeutic purposes, the techniques are not applicable to the central

nervous system. These limitations can be overcome with neurotropic viral

vectors, which have effectively evolved to target specific subpopulations of

human cells, lead to long-term expression of viral genes and evade the attack of

the immune system. Viral gene transfer into the nervous system has been

successful in vitro and in vivo using vectors derived from simple retroviruses

(such as Moloney murine leukaemia virus (MoMLV) (Mohajeri et al., 1999)) or

from complex retroviruses (such as lentivirus (LV) (Bloemer et al., 1997)), from

adenoviral vectors (such as adenovirus (Thomas et al., 2000) and

adeno-associated virus (AAV) (Bartlett et al., 1998)), from herpes-simplex virus

(HSV) (Wilson et al., 1999), Sindbis virus (Ehrengruber et al., 1999; D’Apuzzo

et al., 2001), and from Semliki virus (Ehrengruber et al., 1999). The following

section will describe the use of lentivirus and adeno-associated virus for viral

gene delivery to the nervous system.

1.2.1 Lentiviruses

Lentiviral vectors were created to harness the powerful capacity of the human

immunodeficiency virus (HIV) to infect post-mitotic cells and stably insert a

stretch of genetic material into the cell genome. Lentiviruses are enveloped

viruses belonging to the Lentiviridae subfamily of the Retroviridae family. They

are the aetiologic agents for acquired immunodeficiency syndromes for a broad

range of animal species including humans, primates, cats, horses, sheep and

goats. The name lentiviruses (from the latin lenti = slow) originated from the

prolonged incubation period needed for the infecting virus to induce the
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disease. The first lentiviral gene transfer vector derived from HIV was described

in 1996 (Naldini et al., 1996) as a promising tool for gene therapy. With time and

design modification, this vector would also become an important laboratory

tool: the ability to infect post-mitotic cells and a resistance to epigenetic

silencing once integrated into the host genome, permitted the transduction of

terminally differentiated cells such as neurons, achieving widespread and

long-term gene expression in the brain (Bloemer et al., 1997). Further advances

in lentiviral design have recently yielded non-integrating lentiviruses (Philippe

et al., 2006; Apolonia et al., 2007), whose nucleic acids do not integrate into the

host genome because either the integrase gene or the viral long-terminal repeats

(LTRs) are mutant, thus avoiding the risk of mutagenesis and oncogenesis.

1.2.1.1 Structure and Viral Genome Organization

A complete lentiviral particle, or virion, consists of a lipid bilayer envelope

derived from the host cell membrane and carrying glycoproteins coded for by

the viral and host genomes, a protective protein core called nucleocapsid

(comprising the viral protein p24) containing reverse transcriptase and a

rod-shaped nucleoid made up of two copies of positive (i.e. coding)

single-stranded RNA molecules. The whole virion is spherical and measures

80–100 nm in diameter.

The viral cDNA integrated into the host genome is called provirus and its

length averages 9–10 kilobases (Federico, 2003). The genetic structure of a

prototypic lentivirus is detailed in Fig.1.5. Both ends of the lentiviral proviruses

are constituted by homologous regions of approximately 600–900 nucleotides,

which are called long-terminal repeats (LTR). They are required for viral

integration, replication and expression. LTRs can be divided in three

functionally distinct regions: U3, R and U5. The U3 region contains sequences

that interact with cellular factors during viral transcription, as well as elements

with modulatory-, enhancing- and basal-promoting activity. The R region
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Figure 1.5: Structure and genome of HIV-1 (redrawn from (Federico, 2003)).
Genes and function of the expressed protein: gag: Gag polyprotein, physical
infrastructure, pol: viral enzymes, viral replication machinery, env: viral glyco-
protein gp120 and gp4, tat, rev: regulatory proteins Tat and Rev, nef : negative
factor, promotes viral release and infectivity, vif : blocks a cellular inhibitor of
viral replication, vpr: participates in migration of the pre-integration complex to
the nucleus, arrests cells in G2, vpu: facilitates viral release, LTR (long-terminal
repeats). Genes drawn at different levels when overlapping to facilitate view.

includes the transcription initiation site 9 and sequences that form stable loops

in the growing RNA molecules. These RNA loops bind Tat (transactivator of

transcription), a 15-kDa viral protein, whose effect results in a dramatic increase

in the rate of viral genome transcription (Federico, 2003). The lentiviral genome

codes for three structural proteins (Gag, Pol, Env) and contains open reading

frames for regulatory genes necessary for the viral replication and transduction.

It is the presence of these regulatory genes that differentiates lentiviruses from

other retroviruses.

gag codes for the Gag polyprotein, which provides the physical infrastructure of

the virus and is processed to matrix protein (p17); capsid protein (p24); spacer

peptide 1 (p1); nucleocapsid protein (p7); spacer peptide 2 (p2) and p6 (Freed,

1998). pol provides the viral replication machinery and codes for the viral

enzymes reverse transcriptase (synthesis of viral cDNA from genomic RNA),

integrase (integration of viral cDNA into host genome), and HIV protease

(cleavage of Gag-Pol precursor proteins) (Li et al., 1997). env codes for a

precursor of the viral surface glycoprotein gp120 and the transmembrane

glycoprotein gp41, which are critically involved in the cell receptor recognition

and the fusion of viral to cell membranes (Wyatt and Sodroski, 1998). Of the

regulatory proteins, Tat dramatically increases levels of viral transcription at the

9It is interesting to note, that as the first nucleotide of the R region corresponds to the tran-
scription initiation site, the structure of the proviral cDNA does not fully overlap with that of the
genomic RNA. The genomic RNA has in fact the structure R-U5-genes-U3-R (Federico, 2003).
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level of the elongation of viral transcripts by binding to cellular factors and to a

tat-activation region on the growing viral RNA. Rev (regulator of virion) is a

21-kDa protein involved in the export of viral RNA containing a rev-responsive

element from the nucleus to the cytoplasm in the presence of Rev, unspliced

RNA for the synthesis of the viral structural proteins Gag-Pol and single-spliced

RNAs for the expression of env and some regulatory genes are effectively

transported into the cytoplasm. In the absence of rev, viral transcripts are

multispliced so that only the smaller RNAs for regulatory proteins can leave the

nucleus and be translated (Federico, 2003; Purcell and Martin, 1993).

1.2.1.2 The Life Cycle of a Lentivirus

Lentiviruses attach target cells by the interaction of their envelope glycoproteins

with cell surface receptors. Through pH-independent fusion of the viral

envelope with the cell membrane, the nucleocapsid is released into the cell

cytoplasm, where the capsid disassembles and reverse transcriptase transcribes

genomic viral RNA into double-stranded DNA. Notably, both LTRs in the

proviral DNA originate from the 3’ LTR present on the genomic RNA. The most

important feature distinguishing lentiviruses from other retroviruses is their

ability to enter the nucleus independently of cell duplication, and hence

independently of the nuclear membrane disassembling. Inside the nucleus, the

provirus arranges in a circular form and is integrated into the host genome by

viral integrase. Recent studies show that lentiviral cDNA insertion does not

occur at random, as previously thought, but that lentiviruses integrate

preferentially into transcriptionally active sites (Mitchell et al., 2004). The

expression of viral proteins is tightly regulated and begins with the synthesis of

small regulatory proteins, including Rev, which is then followed by nuclear

export of unspliced and single spliced RNA into the cytoplasm, where the

synthesis of viral proteins is accomplished. The later steps in the viral life cycle

are common among all retroviruses and comprise the assembly of a mature

viral particle containing two identical copies of full-length viral RNA (Federico,
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2003).

1.2.1.3 Recombinant Lentiviruses

Recombinant lentiviral particles carry a highly deleted viral genome, to avoid

the generation of replication-competent lentiviruses. For biosafety reasons, the

genes encoding the structural proteins Gag/Pol and Rev, the envelope protein

and the gene of interest have been separated onto three different plasmids (four

in third generation lentiviral packaging plasmids): a transfer vector deprived of

all regulatory elements and carrying the sequences to be engineered as well as

the sequences for replication, packaging and expression; a packaging plasmid

expressing gag/pol and rev (supplied on a separate plasmid in 4th generation

lentiviruses) and a vector encoding env, which is often derived from a

heterologous virus (a process known as pseudotyping). The most frequently

used env is derived from the vesicular stomatitis virus (VSV) due to the high

stability and broad tropism of its G protein (VSVg). VSVg enables viral entry

through interaction with a ubiquitous host cell receptor (Escors and Breckpot,

2010), although a wide range of viral envelope proteins have been used to

achieve cell type specificity in the brain (Bouard et al., 2009; Escors and

Breckpot, 2010). Pseudotyping with VSVg leads to preferential neuronal gene

delivery, although injection into white matter will transduce cells of all major

macroglial types (Rahim et al., 2009). Of note, the packaging and envelope

plasmids do not carry the encapsidation signal sequence and therefore lentiviral

particles incorporate only the RNA from the transfer vector (Federico, 2003).

Lentiviruses are usually produced in a producer cell line (e.g. human

embryonic kidney cells - HEK 293 or 293FT) by co-expressing the transfer

vector, the packaging plasmid and the envelope plasmid. Lentiviruses have a

capacity to carry transgenes of approximately 8 kb (compare with:

adeno-associated virus: 4.5 kb, adenovirus: 20 kb and HSV amplicon: up to 150

kb) and induce no immune response when injected into the brain parenchyma.

Their transgene expression can persist for prolonged periods, providing
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efficient and long-term gene delivery (Davidson and Breakefield, 2003).

1.2.1.4 Safety Issues

The most frequently used lentiviral vectors are derived from HIV-1, a highly

pathogenic human virus. The main biosafety concerns regarding lentiviral

vector use are (a) the possibility of generation of replication-competent viruses,

(b) promoter activity of the 3’ LTR, which could theoretically switch on the

transcription of downstream genes leading to dysregulation and oncogenesis

(Federico, 2003), and (c) insertional mutagenesis. The generation of

replication-competent viruses can be minimized by improved design of the

packaging system, trying to avoid regions of homology with the vector system

to avoid recombinations and by ensuring that only the transfer vector is

incorporated into mature viral particles. Fortunately, human endogenous

retroviruses, which make up 1% of the human genome and can act as

recombination partners with viral sequences, are mainly derived from onco-

and spumaretroviridae. Homologous sequences of lentiviruses have not yet

been found in mammalian genomes (Trono, 2002). To avoid any undesired gene

dysregulation by the viral promoter in the 3’ LTR, lentivirus vectors of the most

recent generation, also called self-inactivating vectors (SIN), have a chimeric

LTR, where the HIV promoter was replaced with transcriptional control

elements from heterologous viral (e.g. cytomegalovirus, CMV) or cellular

promoters (Zufferey et al., 1998; Federico, 2003). Lentiviral integration carries

the intrinsic risk of disrupting and thereby possibly activating or inactivating

host genes. The possibility of insertional oncogenesis is presently hotly debated

and whilst there is evidence that non-Hodgkin lymphomas in late stage AIDS

patients can be caused by an activation of cellular oncogenes (Shiramizu et al.,

1994), there are no other reports about insertional activation of oncogenes by

HIV (Trono, 2002). This might be due to the fact that HIV-infected cells tend to

die quickly thereby preventing tumour development. However, lentiviral

vectors for gene therapy would not kill their target cells, in addition, microglial
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cells proliferate and the central nervous system (CNS) also contains a limited

source of neural stem cells. Hence, insertional mutagenesis remains a real

possibility and should be considered when developing clinical grade

lentiviruses.

1.2.2 Adeno-Associated Virus (AAV)

As one of the smallest viruses, AAVs were discovered 1965 as contaminants of

Adenovirus (Ad) cultures. Because AAV needs a helper virus for replication

(which does not need to be an adenovirus), it is called a defective virus. Despite

80% of humans being seropositive for AAV serotype 2, no human disease is

known to be attributable to it (Gonçalves, 2005). AAV consists of a capsid and a

stretch of linear single-stranded DNA (plus or minus stranded genomes are

packaged with equal efficiency) terminating in inverted terminal repeats (ITRs).

ITRs are multipalindromic sequences folded up in a hairpin structure and

contain the origin of replication. No polymerase is encoded by the viral genes,

and the virus relies on cellular polymerases. The AAV genes are rep (coding for

non structural proteins) and cap (structural proteins): Rep proteins have

overlapping functions, whilst the cap gene encodes 3 different virion proteins

(VP1, 2 and 3) that make up the capsid with icosahedral symmetry. The molar

ratio between VP1, VP2 and VP3 in AAV particles is 1:1:10. The capsid is

assembled in the nucleoplasm and has pores through which the de novo

synthesized single-stranded DNA reaches the inside of an empty particle. AAVs

use heparan sulphate proteoglycans as receptors for attachment and integrin

receptors for internalization. As these proteins are ubiquitous, this explains the

broad tropism of the virus for human and non-human cells. AAV5 additionally

also uses the platelet-derived growth factor receptor and N-linked sialic acids.

Uptake of the virus is via receptor-mediated endocytosis and the virion escapes

from endosomes via a low pH dependent process. Each endosome contains one

virion only. How the virion then enters the host cell nucleus is unclear. Whether

the viral capsid enters the cell nucleus intact or modified depends on the
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presence or absence of a helper virus (Gonçalves, 2005).

1.2.2.1 The Life Cycle of an AAV

Once AAV is inside the nucleus, it can follow one of two routes: If a cell latently

infected with AAV is infected with a helper virus, the AAV genome is excised,

and the DNA replicated and packaged into virions, which are then released by

cell lysis (lytic route). If no helper virus has co-infected the cell, then AAV genes

are auto repressed, and AAV DNA is integrated into the region called AAVS1

on the long arm of the human chromosome 19 (19q13.3-qter) and the lysogenic

route is taken (Kotin et al., 1991). This targeted site-specific integration of the

AAV provirus is a unique phenomenon among all eukaryotic viruses, and it

allows the provirus DNA to be passed on through cell division (Gonçalves,

2005). The ITR, a Rep-binding element harbouring sequence and either one of

the two largest Rep proteins are necessary for DNA integration. If a helper

virus, such as Ad or HSV, has infected the cell, the lytic route is followed. This

rescue programme is also activated if the cell is subject to metabolic inhibitors

and DNA damaging agents e.g. UV (Yalkinoglu et al., 1988), and if no helper

virus and no genotoxic agents are present (but the process is less efficient).

Recombinant AAVs (rAAVs) are based on the fact that the ITRs are separate

from virally encoding genes and that ITRs contain all cis-acting sequences

necessary for genome replication, viral integration and packaging. It is

therefore possible to follow a “gutless” approach by analogy to retroviruses by

removing all virus encoding sequences and providing them in trans (Gonçalves,

2005). Viral production is based on AAV serotype 2 (AAV2) as the “prototype”

and consists in transfection of virus-producing cell lines with rAAV DNA

containing ITRs and a gene of interest, together with a rep and cap plasmid.

Originally, wild-type Ad was used as helper virus, but it was later discovered

that co-transfection of certain Ad RNAs is sufficient (the scale of vector

production remains limited by the problem of co-transfection). Purification of

the virus is possible via chromatography. The tropism of AAV depends on the
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receptor content of the host cell, but low transduction rates can also result from

problems with virion trafficking or single to double strand DNA conversion.

AAV tropism can be broadened by rationally adding specific ligands to the

capsid or by using capsid genes of other AAVs with different tropism, e.g. using

rep of AAV2 and cap of a different AAV (Gonçalves, 2005). This approach solves

the problems presented by neutralizing antibodies to capsid components in

seropositive individuals or in patients in need of vector re-administration. It is

important to remember that recombinant AAVs (rAAVs) are devoid of viral

genes; this has two important implications: 1) The absence of Rep proteins

prevents DNA integration at the AAVS1 locus. 2) As no viral genes are present,

single-to double strand conversion and integration of the viral DNA depend on

state of the cell and its physiological activities. Single to double strand form

conversion of DNA is a prerequisite of gene expression and can be

accomplished either by host cell polymerases or by passive annealing of plus

and minus strands. Integration of rAAV is a passive process that depends on

naturally occurring chromosomal breaks and host-cell enzymes. Therefore,

rAAVs do not generate chromosomal breaks, nor do they have viral promoters

active on host cell genes; this makes them less oncogenic than lentiviruses.

However, it is still possible that rAAV sequences could cause a change in cell

genes, since they are preferentially inserted in transcriptionally active sites. The

main limitations of AAVs include the generation of neutralizing antibodies to

viral proteins and the small packaging capacity of 4.5 kb. The latter can be

overcome by a variety of techniques: through intermolecular recombination of

rAAVs whose ITRs had been spliced out (the efficiency of this strategy is lower

than with just one vector) or by hybrid technologies, for example including long

double-stranded rAAV genomes in capsids of larger viruses e.g. Ad, HSV,

baculovirus. Finally, rAAVs have the advantage that, rather than just adding

genes, rAAVs can also be used to disrupt or correct mutant genes by

homologous recombination; as an example AAVs were (successfully) used to

disrupt mutant collagen genes in mesenchymal stem cells of individuals with
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osteogenesis imperfecta (Chamberlain et al., 2004).

1.2.2.2 Safety Issues

One of the great advantages of AAV vectors is that the risks of insertional

mutagenesis are minimal for the reasons described above. However, several

risks remain to be addressed for adeno-viral approaches: Overexpression of the

transgene may cause cell toxicity and implies that we will need to develop

molecular switches or use inducible promoter systems. Transgene expression

can occur in non-target tissue, although at least vertical AAV transfer has so far

been ruled out in animal models (Favaro et al., 2009). Horizontal virus shedding

in body fluids can occur for AAVs in the first 10 days after vector administration

but disappears thereafter (Manno et al., 2006). The main concern surrounding

the use of AAV in humans is its immunotoxicity, as T cells against capsid

antigens and neutralizing antibodies have been documented in clinical trials

(Mingozzi and High, 2011).

1.2.3 Targeting Viral Delivery

For many applications, it is mandatory to target the delivery of a transgene to a

specific subset of cells. This can be achieved at the level of vector entry into the

cell (transductional targeting), or at the level of transgene expression

(transcriptional targeting). Transductional targeting is achieved by using

envelope glycoproteins of different types of neurotropic viruses such as Rabies-,

Mokola-, Ross-River-, HSV- and VSVg-viruses (Kang et al., 2002; Mazarakis

et al., 2001; Watson et al., 2002). The most commonly used surface glycoprotein

for targeting lentiviruses is the G-Protein derived from the Rhabdovirus

Vesicular Stomatitis Virus (VSVg), as it is highly stable and confers broad

tropism by binding to a cell surface lipid (Burns et al., 1993; Schlegel et al.,

1983). Neuronal tropism of lentiviral vectors is mainly due to the VSVg

envelope (de Almeida et al., 2001). Redirecting transgene transcription for

targeted expression is a relatively easier task but it has been challenging to
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control the level and specificity of lentivirus expression. Frequently used

promoters for this task are strong promoters of viral, cellular or hybrid origin,

including the cytomegalovirus (CMV) promoter and the CMV enhancer

sequence (Klein et al., 2006, 2002). Even strong promoters, however, may be

inactivated by methylation over time. In contrast, lack of expression does not

necessarily mean the neuron is uninfected, as the expression levels might

simply be below detection threshold (Davidson and Breakefield, 2003; Federico,

2003). Physiological long-term transcription in the nervous system can be

achieved by using strong neuronal promoters including synapsin-1 (Glover

et al., 2002), elongation factor 1a (EF-1a) (Zhang et al., 2007b), calcium

calmodulin-binding kinase 2a (Camk2a) (Aravanis et al., 2007) specific for

excitatory neurons, neuron-specific enolase (Klein et al., 1998),

prepro-hypocretin (Hcrt) specific for hypocretin neurons (Adamantidis et al.,

2007), glial fibrillary acidic protein (GFAP) specific for astrocytes (Gourine et al.,

2010), tyrosine hydroxylase for targeting catecholaminergic neurons (Min et al.,

1994) and neurofilament (Zhang et al., 2000), or by adding enhancing cassettes

or intronic sequences to the transgene of interest (Benzekhroufa et al., 2009;

Davidson and Breakefield, 2003).

The cell specificity and different transduction efficiencies of rAAVs depend on

serotype: rAAV2 has broad tropism as its receptor is a common molecule, a

complex of 3 components including heparan sulphate proteoglycans, integrin

and the fibroblast growth factor receptor (Flotte and Berns, 2005). AAV5 is

known to achieve more widespread expression, whilst AAV6 and 8 can achieve

“body-wide” transduction efficiencies in striated muscle or hepatocytes

(Gonçalves, 2005). AAV9 is a promising serotype as it can be administered

systemically (Moscioni et al., 2006) and is known to cross the blood - brain

barrier (Foust et al., 2009; Duque et al., 2009; Fu et al., 2011).
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1.2.4 Viral Vectors for Gene Delivery to the Nervous System

Therapeutic gene delivery to the nervous system poses several challenges

because the brain is relatively inaccessible, protected by the blood-brain barrier

and made up of post-mitotic non-dividing cells. In addition, neurological

disease often affects large areas, if not the entire nervous system, implicating a

large volume and a large number of cells to be targeted for therapeutic

purposes. Viral vectors can solve some of these problems, because of their

ability to transduce terminally differentiated cells and (for AAV9) to penetrate

the blood-brain barrier. Strategies to achieve targeted viral expression include

stereotactic injections into specific brain regions, muscle injections of viruses

capable of retrograde transport and the use of viruses that can be transported

trans-synaptically. More global spread of the virus can be achieved with

multiple injections, and intraventricular and intravascular injections (Flotte and

Berns, 2005).

Lentiviruses can transduce neurons at high efficiency, leading to long-term

transgene expression, making them suitable vectors for experiments targeting

genes to neurons, which have proven notoriously resistant to means of

non-viral transduction. The host immune response to lentiviruses is minimal,

due to the lack of sequences coding for viral proteins. Therefore

readministration of the lentiviral vector is possible (Trono, 2002). In addition,

their cloning capacity of 8 - 9 kb accomodates relatively large transgenes and,

depending on the pseudotyped envelope, their tropism in the brain is very

broad (Davidson and Breakefield, 2003; Federico, 2003). To date, lentiviruses

have been successfully and stably expressed in the nervous systems of several

different animal species including mice, rats, guinea pigs and non-human

primates in vivo and in vitro (Naldini et al., 1996; Trono, 2002). Among goals of

such work are: to mimic disease, to explore basic neurophysiological

mechanisms, and to test therapeutic targets. The use of lentiviruses ranges from

the expression of normal and mutant proteins to the delivery of antisense or

53



Table 1.4: Summary of characteristics of viral vectors used to target the nervous
system (adapted from (Davidson and Breakefield, 2003)). Infectious units/ml
(IU/ml) is the number (unit) of viral particles available to transduce target cells
in 1 ml of suspension.

Vector Size [nm] Titres [IU/mL] Transgene Capacity
[kb]

Lentivirus 100 106– 1010 8 – 10

Advantages modest packaging capacity, no immune response, long term expression

Problems integration into host genome, short distance transport

Adenovirus 80 – 120 1010– 1012 20

Advantages retrograde transport, long term expression, transgene capacity.

Problems adjuvant properties, immune response (capsid!), also transduces microglia,

and ependymal cells.

AAV 20 – 30 109– 1013 4.5

Advantages Non-toxic, neurons preferentially.

Problems can integrate into genome, does not transduce neurons equally well,

transgenes small.

HSV 120 -– 300 1011 30 - 50

Advantages large transgenes, antero- and retrograde, episomal state, minimal toxicity.

Problems Low-level expression of viral genes, not only neurotropic.

small inhibitory RNA to suppress target protein expression (Davidson and

Breakefield, 2003). Major obstacles to lentiviral use include poor transduction

efficiency, and only transient and low transgene expression. Inducible systems

such as tetracycline-regulated promoters can be used to switch transgene

expression on and off at will, but in the off state there may still be low levels of

transgene expression, making these approaches “leaky”.

As mentioned in the previous section, other vector types, including

adeno-associated viruses, retroviruses, adenoviruses and HSV, can be used to

target genes to the nervous system. Their strengths and drawbacks are
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summarized in Table 1.4. Adeno-associated viruses were the first viral vectors

to be used in clinical trials for CNS disorders due to their neuronal tropism,

stable transgene expression in quiescent cells, low toxicity and poor rate of

integration in the host genome. The lack of pathogenicity in humans from the

wild-type virus further distinguishes them from lentivirus and adenovirus

(Towne et al., 2010). One of the biggest challenges facing AAV gene delivery is

the host immune response. The host defense mechanism at the adaptive level is

made up of cell-mediated and humoral immunity. The cell-mediated response

functions at the cellular level, eliminating the transduced cells using cytotoxic T

cells, whereas the humoural response produces neutralizing antibodies against

capsid antigens, preventing the readministration of vector. Most clinical data

relates to rAAV serotype 2, although other serotypes are starting to emerge due

to their better distribution and higher number of transduced neurons (five-to

eightfold in rAAV 1 and 5 compared to serotype 2). AAV serotypes 2 and 5

transduce mostly neuronal cell types, whilst serotype 4 transduces mostly

ependymal cells (Flotte and Berns, 2005). Wide spread of virus also means that

one injection may be sufficient for therapeutic purposes. If the gene is

overexpressed this can lead to toxicity. So far transcriptional regulation of rAAV

has not been convincingly demonstrated, nor have there been clinical trials

involving regulated transgene expression. In addition to the low background

expression present in most gene regulation systems (Haberman and McCown,

2002), the main problem of regulation systems for AAVs is that their sequences

are long and that rAAVs have a finite packaging capacity. Splitting the

regulating transgenes into 2 vectors, is possible but may affect the viral terminal

repeats, which could in turn affect internal promoter function (Haberman and

McCown, 2002). These problems need to be addressed before rAAVs can be

used for therapeutic purposes.

In summary, to date, most strategies to cure human disease using viral vectors

have concentrated on lentiviruses and AAVs, lentiviruses being mainly used for
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ex-vivo transduction of haematopoietic and stem cells and AAVs for in vivo

approaches. The major safety issue with LVs is represented by insertional

mutagenesis, whilst the host immune response is the main hurdle for AAV

approaches.

1.2.5 Clinical Trials of Gene Delivery to the Human Central Nervous

System

Only a small number of clinical trials using viral vectors in humans have been

done, and with little success10 (Mingozzi and High, 2011). Targeting the central

nervous system as a whole remains a challenge and is currently under

investigation only in animal models. Some success of focal viral delivery has

been documented in patients with Parkinson’s disease (PD) (Palfi, 2010):

“ProSavin”, a lentivirus delivering three genes involved in dopamine synthesis,

was injected into the striatum of PD patients. However numbers were very

small (9 patients, only 6 months duration of the study, progress self-reported by

2–3 patients only). An improved version (Stewart et al., 2011) of the lentivirus is

currently part of a dose-finding Phase II study in humans.

AAVs have been used to administer neurotrophic factors (Marks et al., 2008,

2010; Mandel, 2010) and enzymes responsible for metabolism of

neurotransmitters (Christine et al., 2009; Eberling et al., 2008; Kaplitt et al., 2007;

LeWitt et al., 2011). A safety study and a phase I trial were performed for the

intraparenchymal administration of AAV2 encoding aspartoacylase cDNA to

the brain of patients affected by Canavan’s disease (Janson et al., 2002; McPhee

et al., 2006; Leone et al., 2012), a severe and fatal neurodegenerative disease. A

decrease in the metabolite N-acetyl-aspartate in the brain, an improvement in

seizure frequency and stabilization of overall clinical status have recently been

reported (Leone et al., 2012). Some improvement was detected in children with

Batten’s disease (caused by a mutation in ceroid lipofuscinosis, neuronal 2 gene

10http://www.wiley.com/legacy/wileychi/genmed/clinical/ maintains a list of ongoing clini-
cal trials using AAVs or LVs.
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(CLN2), which normally codes for a lysosomal protein. If mutated it causes

toxic accumulation of metabolites in lysosomes and cell death.) injected with

AAV (containing CLN2 cDNA) through six burr holes and two injections per

hole (Worgall et al., 2008) (these results formed the basis of a Phase I/II trial).

One child developed severe seizures 14 days after intracortical injections, which

resulted in death. Challenges for successful gene delivery to the brain include

the need to achieve whole brain transduction, to treat before severe neuronal

loss ensues, as well as the difficulty in determining clinical endpoints for

diseases where the patient population is small and there are often no

biomarkers of disease.

In all viral vector approaches, extensive work still needs to be done to assess the

biosafety of viral vectors including insertional mutagenesis and oncogenesis,

seroconversion, biodistribution, germline transmission, recombination with

endogenous viral sequences and the production of large scale clinical grade

viral batches of high yields and better purity.

1.3 Interneurons

In the central nervous system (CNS), interneurons are neurons whose axons

and dendrites lie within the same brain area as their soma (Freund and Kali,

2008). In contrast, pyramidal neurons can have long axons projecting to brain

regions distant from their soma or the contralateral hemisphere. Interneurons

have traditionally been classified into two main groups: spiny and aspiny (or

sparsely spiny) non-pyramidal cells (Jones and Peters, 1984; DeFelipe et al.,

2013). Aspiny inhibitory non-pyramidal cells comprise the majority of CNS

interneurons, are found in all cortical layers and release g-aminobutyric acid

(GABA) or glycine (in the spinal cord) as predominant neurotransmitter

(Freund and Kali, 2008; DeFelipe et al., 2013). In contrast, spiny non-pyramidal

neurons are found in middle cortical layers and are glutamatergic (Feldmeyer

et al., 1999). In the cortex, hippocampus and basal ganglia, GABAergic
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interneurons also contain neuropeptides such as cholecystokinin (CCK),

parvalbumin (PV), somatostatin (SOM), vasoactive intestinal polypeptide (VIP),

and neuropeptide Y (NPY) among many others, which they may release under

certain conditions. Several recent attempts have been made to classify

GABAergic interneurons: they have excluded spiny non-pyramidal cells and

focused on aspiny GABAergic interneurons as major component of cortical

circuits Ascoli et al. 2008; DeFelipe et al. 2013. I will follow this approach and

hereforth discuss only GABAergic interneurons.

Interneurons have a predominantly inhibitory action on their post-synaptic

target, since GABA mediates hyperpolarization of the membrane by opening

chloride (via the GABAA-receptor) or potassium channels (via the G-protein

coupled GABAB-receptor). However, GABA is also known to mediate

post-synaptic depolarization through action on GABAA-receptors of immature

neurons (Ben-Ari et al., 1989) and by perisomatic inhibition of mature

pyramidal cells in both the hippocampus (Sauer et al., 2012) and neocortex

(Gulledge and Stuart, 2003; Szabadics et al., 2006). Interneurons synapse onto

local neurons and provide two fundamental types of inhibition: Feed-forward,

if the input to the interneuron comes from a population/cell different to the one

it inhibits, and feed-back, if the interneuron receives input from the same local

cell it synapses on (Freund and Kali, 2008). The major function of interneurons

is to regulate the gain of pyramidal cell input, control activity levels of local cell

assemblies, coordinate and synchronize them (Freund and Kali, 2008). As

mentioned above, interneurons are a heterogenous group of neurons that differ

on the basis of their morphological, electrophysiological and molecular criteria.

This diversity can be used to classify interneurons into distinct groups

(Somogyi and Klausberger, 2005; Ascoli et al., 2008; Freund and Kali, 2008;

DeFelipe et al., 2013).
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1.3.1 Diversity and Classification of Interneurons

The classification of neurons is still a hotly debated area and multiple attempts

have been made at obtaining reliable, objective, reproducible criteria for

classifying interneurons and a standardized terminology (Ascoli et al., 2008;

DeFelipe et al., 2013). Most recently, software tools analysing databases of

neuronal features have been developed and implemented for an automated

classification of interneurons (Druckmann et al., 2012; DeFelipe et al., 2013). The

major anatomical, molecular and electrophysiological classification criteria for

interneurons can be summarized as follows:

1.3.1.1 Anatomical/Morphological

Aside from the anatomy of their soma and dendrites, interneurons can be

subdivided according to their target specificity: innervating pyramidal cells,

other interneurons or non-neural structures (e.g. blood vessels). Further,

interneurons targeting pyramidal cells can be subdivided according to target

location into axo-axonal or chandelier cells (target: axon initial segment), basket

cells (target: perisomatic region), and interneurons targeting pyramidal cell

dendrites. According to their axonal orientation relative to their layer of origin,

basket cells can be classified as interneurons with tangential, radial, mixed or

undetermined axons. Interneurons targeting dendrites can be distinguished

according to which dendritic compartment they target (the shaft or the spines)

and then further according to their axonal morphology. Shaft-targeting

interneurons comprise willow and Martinotti cells. Spine targeting

interneurons include horse-tail and neurogliaform cells (Ascoli et al., 2008).

1.3.1.2 Molecular

The Petilla classification (Ascoli et al., 2008) subdivides interneurons into five

main groups, according to the expression of different neuropeptides:

parvalbumin (including chandelier and basket cells), somatostatin (including
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Martinotti cells), and cells expressing cholecystokinin, those expressing

vasoactive intestinal polypeptide and those expressing neuropeptide Y. The five

subtypes can be further characterized by their expression of other molecular

markers such as transcription factors, synthesizing enzymes, connexins,

voltage-gated ion-channels etc. The different types of voltage-gated

ion-channels expressed on the interneuronal membrane endow the cell with

different spiking properties and threshold responses to the frequency of

stimulation, and contribute to the differential involvement of distinct

interneuron subclasses in network oscillations of specific frequencies. As an

example, PV-positive basket cells express K+ channels of the Kv3 family, which

contribute to the “fast-spiking” behaviour of this cell type, which among other

characteristics supports the hypothesis of their crucial involvement in

generating gamma oscillations (Freund and Kali, 2008; Buzsáki and Wang,

2012a).

CCK-positive and PV-positive basket cells will be discussed in further detail in

the sections on CCK and neuronal oscillations, respectively.

1.3.1.3 Electrophysiological

Six main types of interneurons can be defined by physiological criteria (Ascoli

et al., 2008; DeFelipe et al., 2013): Fast-spiking (non-adaptive spiking at steady

state, short spikes, large afterhyperpolarizations), non-adaptive

non-fast-spiking cells (no increase in inter-spike interval at steady state),

adapting neurons (increase in inter-spike interval at steady state), accelerating

neurons (decrease in inter-spike interval at steady state) and irregular spiking

neurons (irregular inter-spike interval at steady state). Each neuron type

contains further subclasses.

1.3.1.4 Functional

Interneurons can be functionally grouped according to the target they innervate

and according to their firing patterns relative to different network oscillations
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(Somogyi and Klausberger, 2005; Freund and Kali, 2008).

Since the dendrites are the site of major glutamatergic input and long- and

short-term plastic changes, interneurons innervating the dendritic compartment

modulate the efficacy and plasticity of the input to the pyramidal cell (Freund

and Kali, 2008). Conversely, the soma is the site of summation of all

post-synaptic conductances. Therefore, interneurons synapsing onto the soma

or axon initial segment are ideally located to modulate pyramidal cell output.

Furthermore, interneurons have been found to be involved in neurovascular

coupling and to differentially modulate vascular tone, depending on their

molecular profile: interneurons expressing VIP or nitric oxide synthase

inducing vasodilatation in slices, whilst NPY and SOM expressing interneurons

modulated vasoconstriction (Cauli et al., 2004; Kocharyan et al., 2008).

In addition to this target-related functional grouping, in vivo recordings in

different hippocampal subfields have shown that anatomically/molecularly

distinct classes of interneurons have similar firing patterns during a given brain

state (such as different phases of sleep or behaviours) characterized by a specific

network oscillation (Somogyi and Klausberger, 2005). As an example, during

theta oscillations recorded extracellularly in the pyramidal cell layer, axo-axonic

cells have the highest probability of firing during the peak of theta. Conversely,

perisomatic basket cell are more likely to fire during the descending phase of

theta. Other characteristic firing pattern have been established for distinct

interneuron classes relative to gamma oscillations and sharp-wave ripples.

These results imply that anatomically and molecularly defined classes of

interneurons have also functionally similar roles (Somogyi and Klausberger,

2005; Freund and Kali, 2008).

1.3.2 The Interneuron Promoters GAD67 and CCK

A promoter consists of DNA elements flanking the transcription initiation site

of a gene, which are involved in recruiting the transcription machinery (made

up of transcription factors and RNA polymerase II) for the successful
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transcription of a protein-coding gene. Promoter sequences also contain

regulatory sites (enhancers, silencers, insulators) to which transcription factors

bind (Smale and Kadonaga, 2003). These regulatory sites are scattered over

hundreds of basepairs in mammalian genomes and it is the complex

organisation of regulatory DNA that allows the detailed control of gene

expression (Levine and Tjian, 2003). The process of designing tissue-specific

promoters is made difficult by the fact that it is not possible to determine

promoter enhancing and silencing sequences a priori and that even the 5’

untranslated region (5’ UTR) of a given gene might have unexpected effects on

gene expression (Chhatwal et al., 2007). The screening of putative promoter

sequences has traditionally been accomplished by two methods: expression of

promoter-reporter cassettes in vitro, knowing that selectivity in vitro might

equate to selectivity in vivo, or expression of constructs in transgenic animals or

by lentiviral delivery in vivo (Chhatwal et al., 2007). Two cell-type specific

promoters have been identified: the promoter regulating the transcription of

glutamic-acid decarboxylase (GAD, EC 4.1.1.15), and of cholecystokinin.

Glutamic acid decarboxylase catalyzes the rate limiting step in the synthesis of

g-aminobutyric acid (GABA): it decarboxylates L-glutamate to form GABA

(Erlander and Tobin, 1991). GABA is the principal inhibitory neurotransmitter

in the central nervous system of vertebrates and is released by 20-30% of CNS

neurons (Szabó et al., 1996). Since its discovery in 1951, two GAD isoforms have

been characterized as products of two different genes: they differ in molecular

weight (GAD67, 67 kDa and GAD65, 65 kDa) and share a nearly identical

distribution in the brain but differ in their subcellular localizations and their

affinity for the co-factor pyridoxal phosphate (Erlander et al., 1991). The gene

coding for GAD67 is mapped to chromosome 2 in mice and man (Brilliant et al.,

1990). In mice, it spans more than 70 kb with at least 20 kb of 5’ regulatory

sequences (Szabó et al., 1996). At the start of neuronal differentiation during

development, GAD67 mRNA is detectable as early as embryonal day 10.5

(E10.5) in mice (the equivalent of E11.5 in rats), whilst the GAD67 protein
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Figure 1.6: Structure of the 5’ flanking region of the murine GAD67 gene. The
arrows mark the transcripional start sites under control from the proximal house-
keeping promoter (P1) and two more distal promoters (P2 and P3). P1 is made
up of several GC boxes, P2 and 3 are made up of TATA boxes. NRSE, Neuron-
restrictive silencer element. Redrawn from (Katarova et al., 1998).

becomes detectable one day later. In addition to the adult type mRNA, two 2 kb

alternatively spliced mRNAs are detectable: they code for a 25 kDa leader

peptide and a 44 kDa truncated form of the enzyme, which may play a role in

the development of inhibitory synapses (Szabó et al., 1994). The promoter

region P1 comprises the main group of transcription inititation sites at the 5’

end of the GAD gene (Fig. 1.6), has binding sites for putative transcription

factors and shares features of promoters of constitutively expressed

housekeeping genes (Szabó et al., 1996). In addition to the main promoter, two

further transcription initiation sites (P2 and P3) have been identified 130 and

295 bp upstream of P1. These promoters have characteristics of tissue-specific

promoters, such as TATA and CAAT-like boxes. The 1.3 kb of the 5’-upstream

sequences also contain neuronal-specific regulatory and silencing elements, as

well as the putative binding sites for several transcription factors such as AP2,

Hox, E-box, egr-1 and NF-kB (Szabó et al., 1996). GAD67 expression in

transgenic mice carrying 5’-upstream regulatory elements of the GAD67 gene

and lacZ as a reporter, was shown to be crucially dependent on the increasing

length of the GAD67 5’-upstream region included in the construct. The

proximal promoter P1 was not sufficient to confer orthodox expression patterns,

indicating that P1 is negatively regulated. Only by including the region-specific

enhancers between 1.3 and 9 kb upstream of the first exon, was a nearly fully
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correct expression pattern achieved (Katarova et al., 1998). Various segments of

the GAD67 regulatory sequences have since been used successfully to drive

transgene expression in interneurons. Examples include gene gun delivery to

organotypic cortical slice cultures (Jin et al., 2001) and adenoviral delivery to

slice cultures of the brainstem (Teschemacher et al., 2005).

Cholecystokinin (CCK) was originally discovered as a hormone of the digestive

tract and represents one of the most abundant neuropeptides in the brain,

where it is mainly present in the form of an octapeptide (Fink et al., 1998). A

3 kb promoter including the 5’ UTR region of the CCK gene has recently been

described and is capable of selectively targeting CCK-positive cells in the

hippocampus (Chhatwal et al., 2007) and the basolateral amygdala (Jasnow

et al., 2009). Whilst CCKmRNA is also present in neocortical pyramidal

neurons, the actual CCK protein is mainly expressed in GABAergic

interneurons (Lee and Soltesz, 2011). In the hippocampus, CCK is expressed at

high levels, CCK-positive interneurons are found in all layers and subfields,

and they represent approximately 10% of the hippocampal population of

interneurons. Of particular importance, CCK is expressed in one of two

subpopulations of hippocampal basket cells (the other one expressing

parvalbumin and discussed below). CCK-positive basket cells are thought to

provide the fine-tuning of pyramidal cell input, due to their slow membrane

time constants and the modulatory input they receive from subcortical

structures (Glickfeld and Scanziani, 2006; Scanziani and Häusser, 2009).

Additionally, CCK is able to excite PV-positive basket cells and to depress

GABA release from CCK+-interneurons via indirect action on axonal

cannabinoid-type 1 (CB1) receptors (cannabinoids are released by pyramidal

cells innervated, in turn, by CCK+-interneurons) (Miller et al., 1997; Katona

et al., 1999; Karson et al., 2008; Lee and Soltesz, 2011). CCK+-interneurons have

therefore been compared to molecular switches, gating different sources of

perisomatic inhibition. CCK has also been found in another two populations of
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interneurons of the hippocampus: Schaffer-collateral associated cells (targeting

the apical dendrites of CA1 pyramidal cells) and perforant path-associated cells

(targeting the apical tuft of pyramidal cells). These CCK+-interneurons were

found to fire at specific frequencies and phases of ripple and theta oscillations,

suggesting that whilst PV+-interneurons may synchronize pyramidal cells

during oscillations, CCK+-interneurons may be involved in differentiating

groups of pyramidal cells forming assemblies (Klausberger et al., 2005). Finally,

CCK has also been found to facilitate glutamate from most excitatory

hippocampal pathways (Deng et al., 2010; Lee and Soltesz, 2011). These results

indicate that despite its high expression levels throughout the nervous system,

CCK exerts selective actions on different neuronal subpopulations, and it is

therefore not surprising that CCK has been found to modulate mood and

behaviour in health and disease states. CCK has been linked with anxiety states

through its actions in the basolateral amygdala (Jasnow et al., 2009), and sleep

states through activation of hypothalamic orexin neurons and modulation of

thalamic rhythms (Cox et al., 1997; Tsujino et al., 2005). Both CCK and

endocannabinoid systems have been linked to the regulation of satiety,

nociception, , as well as interacting with dopaminergic, serotonergic and opioid

systems (Fink et al., 1998; Noble and Roques, 2006; Lee and Soltesz, 2011). In

schizophrenia, whole brain CCK levels were found to be low in post-mortem

brains (Kerwin et al., 1992), whilst CCK receptor polymorphisms were

demonstrated in schizophrenia and panic attack disorder (Kennedy et al., 1999;

Sanjuan et al., 2004). Finally, CCK+-interneurons were reduced in the

hippocampus of kindled animals (Sayin et al., 2003) and CB1-receptors were

upregulated in developmental seizure models, whilst blocking CB-1 receptors

reduced hyperexcitability (Chen et al., 2003, 2007).

1.3.3 Choice of Interneuron Promoters

As briefly discussed in the introductory section, my original aim was to target

opsins to interneurons by viral delivery. This approach would offer the
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possibility to target opsins to interneurons in non-transgenic animals and,

potentially, in humans. Ideally, ChR2 targeted to interneurons could then have

been used to drive oscillations and to potentially inhibit epileptiform activity in

behaving animals by activating interneurons. The choice of interneuron-specific

promoters for the viral approach is limited by the fact that only the GAD67 and

CCK promoters had been cloned and shown to be specific for interneurons or

subpopulations thereof (Chhatwal et al., 2007; Jasnow et al., 2009; Katarova

et al., 1998; Jin et al., 2001; Teschemacher et al., 2005). Additionally, the

promoter had to be small enough to be cloned into a lentiviral vector (i.e. under

10 kb in size). Despite the biological limitations, had the GAD67 and CCK

promoters been specific, they would have helped clarify the role of interneurons

as a whole and of CCK+-interneurons in particular in the generation and

entrainment of hippocampal gamma oscillations. As CCK+-interneurons have

been shown to be reduced in kindling models of epilepsy, the contribution of

cortical CCK+-interneurons could have been studied in the tetanus toxin model

of epilepsy used in my experiments. Further molecular characterization of

tissue-specific promoters or transcription factors may allow a better target in

future studies. For the study of hippocampal gamma oscillations (further

discussed below), an ideal approach would have targeted the opsin-containing

virus to PV-basket cells. A possible alternative solution would consist of

crossing a PV-Cre with a floxed-ChR2 transgenic mouse line, resulting in ChR2

expressing PV-basket cells. This approach has been used successfully in

previous studies (Cardin et al., 2010; Carlén et al., 2011) and could be

complemented by using red-shifted opsins targeted to principal cells using a

Camk2a or EF1a promoter to drive principal cells and PV cells independently.

Further alternative approaches would be to express opsins in SOM-Cre,

GAD67-Cre dependent mice by injecting AAV or LV carrying floxed ChR2 or

NpHR, to study the contribution of these neurons to gamma oscillations.
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1.4 Neuronal Oscillations and Synchronization

1.4.1 Brief Overview

An oscillation is the periodic variation of a physical measure above and below a

central value. It is characterized by three variables: frequency, amplitude and

phase. Neuronal oscillations are rhythmic voltage fluctuations in time that arise

at the level of the individual neuron and at the level of a neuronal population,

in which case the term “neuronal oscillation” describes the collective behaviour

of ensembles of neurons. Individual neurons display rhythmic changes in their

post-synaptic potentials and subthreshold membrane depolarizations that can

oscillate at given frequencies (Hutcheon and Yarom, 2000; Llinás, 1988).

Although synaptic transmembrane currents are the majour source of the local

field potential (LFP, i.e the electric potential measured by an extracellularly

placed electrode), Na+ and Ca2+ spikes, ion fluxes through ligand and

voltage-gated ion-channels and membrane voltage oscillations significantly

contribute to shaping the LFP (Buzsáki et al., 2012). Conversely, the same

oscillation measured on the LFP may be generated by different cellular

mechanisms. Whilst the extracellular signal gives us information about the

behaviour of a population of neurons, when we record a macroscopic oscillation

on LFP, we can not infer any underlying microscopic mechanism (the ’inverse

problem’) (Buzsáki et al., 2012). The intrinsic property to generate rhythmic

changes of the membrane potential depends on the expression and the function

of voltage-gated ion channels and is described by differential equations in the

Hodgkin-Huxley model (Hodgkin and Huxley, 1952, 1990). In addition,

neurons are interconnected with each other, creating a local network in which

neurons can synchronize and oscillate. The oscillation frequency of a network

depends on the size of the network (i.e. the number of neurons involved) and

the speed of neuronal signalling (limited by axon conductance and synaptic

delays) (Buzsáki and Draguhn, 2004). Most connections among neurons are

local, with few long range connections, a network design similar to
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“small-world” networks (Watts and Strogatz, 1998). Therefore, the oscillation

frequency of a network is mainly correlated with its size: small local networks

of neurons are recruited in high frequency oscillations, large networks in slow

frequency oscillations (Buzsáki et al., 2004). Oscillation frequencies in mammals

span four orders of magnitude (0.5 - 200 Hz) and are preserved throughout

evolution (Buzsáki and Draguhn, 2004). Table 1.5 gives a brief overview of the

oscillation nomenclature (excluding sleep and pathological rhythms).

Mammalian brains however, differ in size across species, bringing up the

intriguing question of how to synchronize neurons in big brains. At the local

level, higher mammals have inhibitory interneuron networks (Buzsáki et al.,

2004) and electrical coupling by gap junctions (Gouwens et al., 2010). In

addition there are a limited number of long range connections: they reduce

synaptic path lengths between distant networks. The advantages of this

architectural design are that bigger brains can maintain the same functions and

synchronize distant regions using oscillators, which require less energy than

wiring (Buzsáki and Draguhn, 2004).

The function of oscillations is thought to depend on the underlying neuronal

substrate in which they arise. However, there are several main functions of

oscillations that can be generalized at the level of the neuronal network. Briefly,

they are: input selection (i.e. an oscillating network is less responsive to an

external input e.g thalamocortical sleep spindles during sleep (Riedner et al.,

2011), or to a sensory input that is not timed correctly (Hutcheon and Yarom,

2000)), linking of distant cell populations oscillating at similar frequency (for

subsequent concerted activation of downstream pathways) (Buzsáki and

Draguhn, 2004), consolidation of synaptic modification by replay during

slow-wave sleep (Buzsáki, 1998) and representation of information by phase

(i.e. action potential spike precession in relation to the phase of the

hippocampal theta oscillation for representation of spatial short-term memory

(O’Keefe and Recce, 1993)).
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Table 1.5: Neuronal Oscillation Nomenclature (adapted from (Steriade, 2005;
Uhlhaas et al., 2008)).

Name Frequency [Hz] Cell Assemblies
Involved

Putative Function

Delta 1 – 4 thalamocortical and
corticothalamic neurons

physiologically found
in deep sleep

Theta 4 – 8 septohippocampal
cholinergic system

(clock), dentate granule
cells and CA1 pyramids

Spatial navigation,
working memory,
cognitive control,

sensory gating, synaptic
plasticity, top-down
control, long-range

synchronization

Alpha 8 – 12 largely unknown, likely
generated within the

cortex itself,
surface-parallel

intracortical
connections are

important for spread

Inhibition, attention,
consciousness,

top-down control,
long-range

synchronization

Beta 12 – 30 cells from some
thalamocortical nuclei
(e.g. centrolateral (CL)
intralaminar thalamic
nucleus), cortex and

amygdala

Sensory gating,
attention, perception,

motor control,
long-range

synchronization

Gamma 30 -– 200 hippocampus
(pyramidal cells
synchronized by
fast-spiking PV+

interneurons)

Attention, perception,
motor control, memory,
consciousness, synaptic

plasticity
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Correlation of local network oscillations between regions can be described in

relation to amplitude, frequency or phase. “Synchronization” in animal

experiments refers to correlation between spikes in two regions or between

spikes and local field potentials (LFPs) (Tiesinga et al., 2008; Fell and Axmacher,

2011). The latter is also termed spike-field coherence. Furthermore, studies have

analyzed the phase correlation between LFPs in different regions. How

synchronization is accomplished, however, is poorly understood but is

important: frequency-specific networks emerge during perceptual tasks and the

degree of frequency synchronization correlates with task performance in

humans (Hipp et al., 2011). Phase synchronization underlies long-term and

working memory (Fell and Axmacher, 2011), and synchronization is thought to

be disrupted between hemispheres of autistic children (Dinstein et al., 2011) and

in schizophrenia (Uhlhaas and Singer, 2010).

1.4.2 An Introduction to Gamma Oscillations

Neuronal oscillations in the gamma range (35-45 Hz) were first described by

Jasper and Andrews in 1938, who probably recognized that they had different

behavioural correlates than slower EEG rhythms (Jasper and Andrews, 1938;

Buzsáki and Wang, 2012a,b). The term was rediscovered and became popular in

the 1980ies and was officially reintroduced by Freeman, who used it to describe

the oscillation band between 30-90 Hz. Eventually, the nomenclature of brain

rhythms should be based on the underlying physiological mechanism, but since

our knowledge is incomplete, the names of brain rhythms respect historical

traditions. The nomenclature of rhythms above 90 Hz is discussed in the

epilepsy chapters. Gamma rhythms have been described in animals in vivo since

the very early days of neurophysiology (Adrian, 1942; Eckhorn et al., 1988; Gray

and Singer, 1989) and revolutionized the field of neuronal oscillations when

found in vitro (Fisahn et al., 1998). Coherent, sensory stimulus-induced gamma

oscillations were first described in the olfactory system of the hedgehog

(Adrian, 1942), and subsequently in other mammalian sensory systems,
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including the visual cortex of cats (Eckhorn et al., 1988; Gray and Singer, 1989).

The notion that brain areas could be synchronized with millisecond-scale

precision more than just a cortical column apart, and without oscillation of the

tissue in between, led not only to the idea that synchronized oscillations could

“bind” different areas of cortex responding to the same stimulus, but also to the

fascinating hypothesis that such synchrony could be associated with perception

(Roelfsema et al., 1994; Fries et al., 1997) and perhaps awareness (Traub and

Whittington, 2010). Gamma oscillations are not specific to visual cortex, and

have been found to be induced by sensory stimuli in somatosensory (Buhl et al.,

1998), auditory (Palva et al., 2002) and olfactory cortex (Neville and Haberly,

2003), as well as during slow-wave sleep. Gamma oscillations have also been

found in entorhinal cortex (Chrobak and Buzsáki, 1998), amygdala (Halgren

et al., 1977), hippocampus (Buzsáki et al., 1983; Whittington et al., 1995),

striatum (Berke et al., 2004) and thalamus (Pinault and Deschênes, 1992).

Although gamma oscillations in vivo have been found in mammals (Fries et al.,

1997; Buhl et al., 1998; Fisahn et al., 1998) and other species (Ramcharitar et al.,

2006), sensory-induced oscillations are not universally encoded in the gamma

range11. It has been postulated that mammals may use frequencies in the

gamma range to encode sensory-induced oscillations, as the period of a gamma

oscillation may interface with time constants of processes involved in synaptic

plasticity, such as the calcium concentration changes within dendrites (Traub

and Whittington, 2010). The first persistent gamma oscillations to be found in

vitro in brain slices were obtained by adding carbachol, a cholinergic agonist, to

the bathing solution, and by a careful slicing technique aimed at preserving the

inhibitory circuitry (Fisahn et al., 1998). These findings were revolutionary

because in vitro gamma oscillations subsequently enabled researchers to study

the physiopharmacology of gamma oscillations in vitro. It also became apparent

that gamma oscillations required fast inhibitory cell firing and GABAA-receptor

11Beta frequencies have been reported in the turtle visual system (Prechtl, 1994) and insect ol-
factory system (Laurent et al., 1996).
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mediated inhibition. On the basis of current data from experiments and

computational modelling, two models have been proposed to explain the

emergence of gamma oscillations:

In the I-I model (or interneuron network gamma (ING) model (Whittington

et al., 2000)), a subset of interneurons (I) are mutually connected. Gamma

oscillations arise when interneurons start discharging synchronously and

generate inhibitory postsynaptic potentials (IPSPs) in the downstream

interneurons, which will only start firing again when the hyperpolarization

mediated through GABAA receptors has decayed (Wang and Rinzel, 1992;

Whittington et al., 1995; Wang and Buzsáki, 1996). Pyramidal neurons in this

network are synchronized by inhibitory input. The frequency of the gamma

oscillation in this model is determined by the IPSPs kinetics and the

net-excitation of the interneuron assembly (Wang and Buzsáki, 1996; Buzsáki

and Wang, 2012a).

In the E-I model (or pyramidal-interneuron network gamma (PING) model

(Whittington et al., 2000)), excitatory and inhibitory neurons are reciprocally

connected. A synchronous excitatory volley from the excitatory (E) neurons

activates interneurons (I), which in turn generate a synchronous inhibitory

volley. Once the E neurons recover from inhibition they can generate the next

synchronous excitatory volley. This was the earliest model for oscillations

(Wilson and Cowan, 1972), and has since been refined by many investigators.

Long-distance coupling of oscillations is poorly understood, but one recent

hypothesis is that the axons of principal cells may be coupled via gap-junctions

(Traub and Whittington, 2010). Although this is a minority view, I find the

model compelling and would like to briefly outline here how it explains the

generation of gamma oscillations (Traub and Whittington, 2010): Pyramidal

cells axons can generate spontaneous action potentials, which initiates a wave

of activity (termed very fast oscillations (VFO), ~250 Hz) transmitted to other
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network axons through gap junctions 12. The wave of activity leads to

near-synchronous phasic depolarization of fast-spiking interneurons, which in

turn generate IPSPs in pyramidal cell somas. This produces hyperpolarization

and reduced action potential propagation along pyramidal cell axons, thereby

reducing the VFO. Once the IPSPs fade, the process is repeated, giving rise to

the next gamma period. The frequency of the gamma oscillation in this model

depends on the axon conduction and the synaptic delays between excitatory

and inhibitory reciprocal synapses. An alternative view on mechanisms to

temporally coordinate distant oscillators includes interleaving assemblies

(Vicente et al., 2008) and long-range interneurons (Buzsáki and Draguhn, 2004)

with thicker axons and large diameter myelin sheaths, allowing for rapid signal

propagation. Both models were developed to explain gamma oscillations in the

cortex. In the cornu ammonis 1 (CA1) area of the hippocampus, a hybrid

network made up of both I-I and E-I networks has been suggested, as

interneurons display both phase advance (as postulated in the I-I model, where

interneurons synchronize pyramidal cells) or delay (as in the E-I model, where

the interneuron “inherits” the spike from an excitatory neuron (Buzsáki and

Wang, 2012a)) relative to the spikes of pyramidal cells (Bragin et al., 1995;

Brunel and Wang, 2003; Mizuseki et al., 2011; Belluscio et al., 2012). Other

mechanisms may be responsible for gamma oscillations in other brain areas

(Buzsáki and Wang, 2012a). In addition to our basic understanding of the

mechanisms underlying gamma oscillations, it is known that the coherence of

gamma oscillations across regions varies depending on sleep/wake states

(Bragin et al., 1995; Montgomery et al., 2008) and task demands (Montgomery

and Buzsáki, 2007). Different gamma synchronization patterns are thought to be

important for information flow through the hippocampus (Salinas and

Sejnowski, 2001; Akam and Kullmann, 2010), but the factors that govern

gamma oscillation coherence across brain regions is poorly understood.

12Interestingly, both in vitro and in vivo experiments in Connexin-36 (a neuronal gap-junction
protein) knock-out mice have demonstrated that hippocampal gamma oscillations are selectively
impaired (Hormuzdi et al., 2001; Buhl et al., 2003).
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1.4.3 Interneurons and Gamma Oscillations

Several lines of evidence support the involvement of fast-spiking PV-positive

interneurons in gamma oscillations: In behaving rats, trains of spikes at gamma

frequency recorded from fast-spiking interneurons (putative and histologically

verified PV-basket cells) are correlated with the LFP theta oscillation (Buzsáki

et al., 1983). Further, post-synaptic potentials recorded in vitro in pyramidal

cells during carbachol-induced gamma oscillations are phase locked to the LFP

gamma rhythm. These postsynaptic potentials reverse their polarity at the

equilibrium potential for chloride, indicating that they are mediated by

GABAA-receptors. In addition, the maximum discharge from basket cells

precedes the depolarisation of pyramidal cells recorded in slices during

carbachol-induced gamma oscillations, as suggested in E-I models (Buzsáki and

Wang, 2012a). These findings suggest that extracellularly recorded gamma

oscillations represent pyramidal cells’ IPSPs driven by fast-spiking

PV-interneurons (Buzsáki et al., 1983; Bragin et al., 1995; Hasenstaub et al., 2005;

Freund and Katona, 2007; Hájos and Paulsen, 2009). As mentioned above, the

molecular and neurophysiological characteristics of PV-positive basket cells

further support their role in the induction of gamma oscillations: They include

their low spike threshold, their fast-spiking properties and narrow spikes

conveyed by the expression of KV3.1/3.2 channels and their resonance at

gamma frequency (Buzsáki et al., 1983; Gulyás et al., 1993; Lien and Jonas, 2003;

Pike et al., 2000; Cardin et al., 2009). Other subclasses of interneurons are more

likely to contribute to slower rhythms (Martinotti cells e.g. have resonance at

theta) and to establish cross-frequency coupling between gamma and theta

(Buzsáki and Wang, 2012a).

1.4.4 Neuronal Oscillations and Optogenetic Tools

Optogenetic tools offer the unique possibility to drive a subset of neurons at

different frequencies, without perturbing others, and to measure the effect on
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the local field potential or on single unit recordings. Most importantly they

allow to experimental testing of the function of neuronal ensembles and to

establish cause and effect of oscillations when they are optically activated

(Tiesinga and Sejnowski, 2009). Optogenetic tools were first used to selectively

drive fast spiking parvalbumin-positive interneurons at a range of frequencies

(8-200Hz), which resulted in selective amplification of gamma oscillations in

barrel cortex of mice (Cardin et al., 2009). Subsequently, opsins were used to

show that N-Methyl-D-aspartate (NMDA) receptors in parvalbumin-positive

interneurons play a critical role in the induction and maintenance of gamma

oscillations in sensory cortex (Carlén et al., 2011), whilst another group studied

how the horizontal projections of pyramidal cells in layer 2/3 of the cortex

modulate cortical activity by exciting ChR2 and eliciting gamma oscillations in

pyramidal cells with ramps of blue light (Adesnik and Scanziani, 2010). Our

study describes the first use of optogenetic techniques to study gamma

oscillations in the hippocampus.

1.5 The Neurobiology of Focal Neocortical Epilepsy

1.5.1 Terminology

“Epilepsy” is not a single disease but comprises a variety of disease forms with

different aetiologies and clinical manifestations (Panayiotopoulos, 2005). In

addition, the definitions of “epilepsy” and “seizures” are still debated and not

uniformly accepted by specialists in the field (Panayiotopoulos, 2005). The

classification of epileptic seizures and syndromes is updated at regular intervals

by the Commission on Classification and Terminology of the International

League against Epilepsy (ILAE), to ensure that the classification of this disease

matches our advances in knowledge based on new research findings in

molecular biology, genomic technologies and imaging (Berg et al., 2010). It is

therefore important to define the terminology (Table 1.6) that will be used here

and to delineate the subtype of “epilepsy” that will be discussed in the
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Table 1.6: The terminology of epilepsy

Epilepsy: the liability to recurrent clinically manifested seizures of any type
(Panayiotopoulos, 2005).

Epileptic seizure: a clinical manifestation presumed to result from an abnormal and
excessive discharge of a set of neurons in the brain. The clinical manifestation
consists of a sudden and transitory abnormal phenomena which may include
alterations of consciousness, motor, sensory, autonomic, or psychic events perceived
by the patient or an observer (Commission-ILAE, 1993).

Pharmacoresistant seizures: Seizures that fail to respond to two or more first-line
drugs alone or in combination.

Focal seizures: Seizures that originate primarily within networks limited to one
cerebral hemisphere. For each seizure type there is one consistent onset zone. The
network underlying the ictal onset zone may be localized or more widely distributed
within one hemisphere. Focal seizures can propagate to involve cortical areas
different from the onset zone and to the contralateral hemisphere (Berg et al., 2010).

Generalized seizures: originate within, and rapidly engage, bilaterally distributed
networks. The networks include cortical and subcortical structures and seizures may
be asymmetric (Berg et al., 2010).

Ictal epileptiform patterns (Chartrian et al., 1974): sharp wAves, spikes, spike-wave
complexes and polyspike-wave complexes

Spike: a transient lasting between 20-75 ms that is clearly distinguishable from the
baseline (Chartrian et al., 1974; White et al., 2010).

Sharp wave: a transient lasting between 75-200 ms that is clearly distinguishable
from the baseline(Chartrian et al., 1974).

Spike-wave complexes: a spike followed by a slow wave (4-7Hz)

Polyspike-wave complexes: 2 or more spikes followed by 1 or more slow wAves
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Table 1.7: Forms of neocortical epilepsy with genetic causes (Panayiotopoulos,
2005; Crompton et al., 2010; Meisler et al., 2010; Bellini et al., 2011)

Benign familial neonatal seizures (mutations in KCNQ2, also known as
Kv7.2, and KCNQ3, also known as Kv7.3).

Benign familial infantile seizures (linked to chromosomes 2, 19 and the
PRRT2 gene on chromosome 16)

Benign familial neonatal–infantile seizures (missense mutations in SCN2A
gene)

Autosomal dominant nocturnal frontal lobe epilepsy (mutations in the
CHRNA2, CHRNA4, and CHRNB2 genes)

Familial temporal lobe epilepsy:

- Mesial familial temporal lobe epilepsy (gene unknown)

- Lateral familial temporal lobe epilepsy (LGI-1 gene mutations in
chromosome 10q)

Familial focal epilepsy with variable foci (linkage with chromosome 2q and
22q but gene not cloned yet)

following paragraphs.

1.5.2 Epidemiology - the Burden of the Disease

Epilepsy is one of the commonest neurological disorders and a major public

health concern, affecting approximately 50 million people worldwide

(Radhakrishnan, 2009) and 450,000 people in the UK. 60-70% of epilepsies may

involve focal seizures, half of which arise from the temporal lobes

(Panayiotopoulos, 2005). According to the revised ILAE terminology for the

classification of epilepsy and seizures (Berg et al., 2010), epilepsies can be

classified according to their aetiology as genetic, metabolic/structural and of

unknown cause.

Genetic forms of epilepsy manifesting with focal seizures include the familial

(autosomal dominant) electroclinical syndromes detailed in Table 1.7. Some of

them are monogenic forms of epilepsy now belonging to a group of disorders
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termed channelopathies, due to mutations in susceptibility genes coding for

ion-channel subunits.

Structural and metabolic causes of focal seizures include malformations of

cortical development, tumors, infections, inflammation, stroke, peri-natal

insults, trauma and other injuries. The exact incidence and prevalence of these

aetiologies is unknown and is different in westernized and developing

countries, with infections (cysticercosis and tuberculosis) being the most

common cause in the developing world (Panayiotopoulos, 2005). The old ILAE

classification of epilepsies further distinguished between focal seizures arising

from limbic structures (mesial temporal lobe epilepsies and others defined by

location and aetiology), versus the neocortex (frontal, parietal, occipital and

lateral temporal neocortical seizures) (Engel and ILAE, 2001).

The following chapters will concentrate on the focal epilepsies arising from

frontal neocortical networks in humans and the tetanus toxin (TT) rodent model

of this disease (Nilsen et al., 2005).

1.5.3 Clinical and Electrophysiological Features of Focal Seizures

Arising from the Frontal Neocortex

Based on cytoarchitectural and functional studies, the frontal neocortex can be

subdivided into primary motor cortex, premotor cortex and prefrontal cortex,

and seizures may originate from anywhere within it. Frontal lobe seizures

present diagnostic challenges both clinically and electrographically: they are

characterized by rapid spread to other areas and by a varied semiology and

electroencephalographic (EEG) features due to varied patterns of spread

(Panayiotopoulos, 2005), which are, in turn, facilitated by the manifold

connections of the frontal lobe with other brain regions.

Clinically, frontal lobe seizures are generally short and can occur without

warning and with little post-ictal confusion. They frequently occur out of sleep,

and can cluster in 5-6 seizures per night. The ictal manifestiations range from
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tonic and clonic motor manifestations with preserved consciousness (the typical

Jacksonian motor seizure), to ictal posturing of the limbs (ipsi-, contra or

bilateral) preceded by a somatosensory aura of numbness or tingling when

arising from more anterior areas such as the supplementary motor area (SMA),

to complex stereotyped behaviour (often referred to as “hypermotor”) in

seizures arising from the frontopolar, opercular-insular, anterior cingulate and

orbitofrontal regions. The rapid spread of the seizures between the hemispheres

can cause sudden hyper- or hypotonia manifesting as drop attacks with risk of

serious injury (Sisodiya and Manford, 2009). Autosomal dominant nocturnal

frontal lobe epilepsy is a familial form of frontal lobe epilepsy with Mendelian

inheritance, stereotyped nocturnal seizures and association with mutations in

the beta-2 or alpha-4 subunit of nicotinic receptors.

Electroencephalographic recordings often fail to help in the diagnosis of frontal

lobe seizures for the following reasons: 1) The considerable size of the frontal

lobes, which makes it difficult to detect discharges in the deep or distant cortical

structures by scalp recordings, 2) The fact that frontal lobe seizures have motor

manifestations, implying that the EEG recording is obscured by motor activity

during the seizure, 3) The fact that EEG recording is inherently inaccurate, as

even depth EEG electrodes detect discharges only near the electrode and

intracranial grids sample only superficial signals.

Imaging can aid diagnosis but the detection rate of abnormalities is lower than

for temporal lobe epilepsies, with computed tomography (CT) identifying 20%

of lesions with localizing value, magnetic resonance imaging (MRI) identifying

a further 30-40% and positron emission tomography often detecting

non-specific changes (Kellinghaus and Lüders, 2004; Sisodiya and Manford,

2009).

Despite these shortcomings, the increased use of intracranial recordings (which,

unlike the surface EEG, do not suffer from the low-pass filtering effect of the

skull and scalp) and of hardware capable of higher sampling rates (>1000 Hz)
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(Jacobs et al., 2009a) has recently led to identification of ictal EEG activity in the

frequency range between 80 and 200 Hz. These brief synchronous neuronal

discharges have been called epileptic high frequency oscillations (HFO) or

“ripples” and are implicated in ictogenesis (Bragin et al., 2000; Engel et al.,

2009). Clinically, HFOs have been detected at the seizure onset zone of patients

with neocortical epilepsy undergoing pre-surgical evaluation and several

reports have shown that they can be detected at the onset of a neocortical

seizure and inter-ictally (Traub et al., 2001; Worrell et al., 2004). They can occur

independently from interictal spikes and have a better localizing value than

spikes. Surgical resection of the tissue, wherein HFOs have been recorded, leads

to a favourable outcome (Jacobs et al., 2008; Modur et al., 2011). The clinical

usefulness of HFOs has yet to be established, but they are being investigated as

a clinical tool to precisely define and limit the seizure onset zone both in

neocortical and temporal lobe epilepsy.

Frontal lobe seizures must be differentiated from parasomnias (sleep disorders

characterized by motor activity and stereotyped or complex behaviour during

sleep). Behaviour in parasomnias is usually less stereotyped, more complex and

does not usually cluster more than once or twice per night. A polysomnogram

with video-EEG often aids in differentiating these disorders from seizures. A

further differential diagnosis is non-epileptic attacks, which involve complex

behaviour with retained awareness combined with a normal scalp EEG. Attacks

arising from sleep, of short duration and of stereotyped nature should raise

suspicions of an ictal phenomenon.

1.5.4 Mechanisms of Focal Epileptogenesis and Modelling Focal

Epilepsy

Broadly speaking there are genetic and acquired forms of epilepsy (implying

that they develop and occur after an insult to the brain). The pathophysiological

processes underlying both forms of epilepsy can be investigated by studying
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Table 1.8: Animal models of chronic focal epilepsy

Local Application of Effect

Acetylcholine Acute seizures during local infusion, but no spontaneous
ones (Ludvig et al., 2006; Baptiste et al., 2010)

Tetrodotoxin Elvax polymer containing tetrodotoxin sheets did not
produce spontaneous epileptiform events in rats (Graber
and Prince, 1999)

Cobalt Focal seizures, but run down after a few days or weeks
(cobalt wire (Chang et al., 2004)).

Iron Gives rise to a chronic epileptic focus in albino rats and
cats but with iron salt deposition and activation of
macrophages and glial proliferation (Willmore et al.,
1978).

Penicillins Selectively block GABA receptors and generate acute
focal seizures within several minutes but do not develop
into chronic epilepsy (Silfverhuth et al., 2011).

Injection of Effect

Alumina gel Used as a non-human primate model of complex partial
seizures but not used in rodents (Ribak et al., 1998).

Tetanus Toxin Neocortex or hippocampus as a model of chronic focal
epilepsy (Carrea and Lanari, 1962; Mellanby and
Thompson, 1977; Mellanby et al., 1977).

human tissue from post-mortem brains or surgical resections, or by replicating

the electrographic features of seizures in cell culture systems or brain slices.

Although useful for answering a set of questions, these experimental setups do

not allow one to observe the behavioural phenomena and comorbidities

associated with seizures and epilepsy. Certainly it is possible to study epilepsy

and epileptogenesis in the human patient, but these studies focus on imaging

and electrographic approaches and cannot investigate these processes at the

molecular and cellular level. An alternative approach to better understand

epilepsy in a living organism consists of trying to reproduce the human

pathology in animal models (Table 1.8). Animal models, too, have their

limitations, which need to be acknowledged. If used in a responsible way,

however, they provide important tools not only to understand epilepsy but also
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to develop and test new drugs and diagnostic tools.

How can animal models be used? After several decades of research, it has

become apparent that many cellular and molecular alterations can lead to

seizures and that multifactorial processes act at multiple levels - from genes to

networks (Dudek et al., 2001). Consequently, each model of focal

epileptogenesis may answer only part of the scientific puzzle. Table 1.8

summarizes animal models available today to study chronic focal epilepsy in

adults.

1.5.4.1 The Tetanus Toxin Model of Neocortical Epilepsy

The effects of intracerebral tetanus toxin (TT) and its antitoxin were described

by Roux and Borrell in 1898 (Roux and Borrell, 1898). They had pioneered a

short-lived intracerebral antitetanus injection technique for the treatment of

tetanus. Short-lived because after four years the treatment was shown to be

inferior to the subcutaneous or parenteral route of injection of the antitoxin

(Wilson, 1997). The first use of tetanus toxin to generate seizures was described

by Carrea and Lanari (Carrea and Lanari, 1962) in dogs in an attempt to

establish a model of chronic focal epilepsy based on the hypothesis that tetanus

toxin selectively blocked inhibitory synapses . The equivalent rodent model

was introduced by Mellanby and colleagues (Mellanby et al., 1977) and has

since been used in rat hippocampus and cortex (Nilsen et al., 2005) to generate

spontaneous recurrent focal seizures with very little morphological damage.

The model mimics temporal lobe or limbic complex partial seizures if the toxin

is injected into the hippocampus. If TT is injected into the neocortex the model

mimics focal neocortical epilepsy with or without secondary generalization and

epilepsia partialis continua. Epilepsia partialis continua is defined as

’spontaneous regular or irregular clonic muscle twitching of cerebral cortical

origin, sometimes aggravated by action or sensory stimuli, confined to one part

of the body, and continuing for a period of hours, days or weeks’ (Obeso et al.,
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1985).

The experimental procedures will be described in detail in the methods section

but, briefly, consist in a stereotaxtic injection of 4–50 ng TT into the

hippocampus or neocortex of adult rats (injection of TT is also possible in the

neonatal hippocampus). The toxin is very labile and can lose toxicity if it binds

to surfaces and if agitated too vigorously. The use of an inert protein, such as

bovine serum albumin (BSA) can prevent the loss of toxicity (Pitkaenen et al.,

2006). The dose of the TT is critical in the neocortical model, as too low a dose

produces no seizures at all, whilst too high a dose causes severe convulsions

and death.

Seizures develop from day 3–8 in the adult hippocampal model, and from day

3–14 in the neocortical model, depending on the dose. In the hippocampal

model seizures can occur up to 30 times a day at their peak, but they rarely last

longer than 2 minutes. They are characterized by behavioural arrest, clonic

movements and secondary generalization with the EEG showing bursts of

2–3 Hz activity in the hippocampus, increasing to synchronized 20 Hz before

slowing down again and ending at 2–5 Hz (Finnerty and Jefferys, 2002). In the

neocortical model seizure manifestations comprise behavioural arrest and focal

twitching, which can be subtle. They are associated with bursts of fast activity

(>20 Hz) (Nilsen et al., 2005). Spontaneous seizures remit spontaneously at 6–8

weeks in the adult hippocampal model, but all animals have impaired memory

and learning (Mellanby et al., 1999). In the neocortical model seizures can

persist for many months (Nilsen et al., 2005).

Mechanism of Action of Tetanus Toxin Tetanospasmin (referred to as

“tetanus toxin”) is one of the two exotoxins13 produced by the gram-positive

bacillus Clostridium tetani and is one of the most potent toxins known to man14.

Tetanospasmin is a zinc-metalloproteinase synthesized as a single 150 kDa

13The second exotoxin is tetanolysin, which subserves a hitherto unknown function.
14with an estimated lethal dose of 2.5 ng per kg in humans
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progenitor toxin, which is then cleaved by a protease into the active toxin

composed of a 50 kDa light chain and a 100 kDa heavy chain by a protease

(Pellizzari et al., 1999). Both fragments remain connected by a disulfide bridge,

which is required for the neurotoxicity of the protein (Schiavo et al., 1990).

Clostridia present in the soil can contaminate wounds, where they secrete the

tetanospasmin. The TT diffuses in body fluids to presynaptic cholinergic or

sympathetic peripheral axon terminals, where it binds to glycoproteins and

glycolipids with high affinity and specificity (Schiavo et al., 1991; Pellizzari

et al., 1999). These binding sites are implicated in the peripheral neuron-specific

binding of the TT (Schiavo et al., 1991). The precise mechanism by which TT

reaches the CNS is unknown but the following description summarizes the

fascinating steps, which are thought to take place (Pellizzari et al., 1999): TT is

first internalized into the peripheral neuron via an endocytic vesicle and is

transported retrogradely along the axon into the central nervous system. On

reaching the distal dendrites, the toxin is released into the synaptic cleft. TT

then binds to the presynaptic membrane of an inhibitory interneuron by a

different receptor to the one that mediated its uptake into the peripheral nerve.

Uptake into the central neuron is again via an endocytic vesicle. An acidic pH is

required to mediate the translocation of the toxin from the vesicle to the

cytoplasm, where it can exert its proteolytic activity. The acidic pH is thought to

expose hydrophobic residues of the proteins, which are eventually capable of

tunnelling the toxin into the cytosol, either via a pore or via vesicle lysis. Once

TT has reached the cell cytosol, the light chain cleAves synaptobrevin at a single

site (Schiavo et al., 1992) 15. Synaptobrevin is one of the proteins making up the

SNARE (Soluble NSF Attachment Protein Receptor proteins) tetrahelix - a

protein complex involved in vesicular release of neurotransmitters - and its

cleavage prevents the release of inhibitory GABA and glycine, thereby causing

15Strikingly, botulinum toxin serotype B cleAves synaptobrevin at the exactly same site, sug-
gesting that the different clinical symptoms derive from the different sites of intoxication (from
a different ability to undergo retrograde transport: botulinum toxin cleAves synaptobrevin at the
neuromuscular junction but tetanus toxin is transported transsynaptically into inhibitory termi-
nals), rather than from a different molecular mechanism of the two toxins (Pellizzari et al., 1999)

84



paroxysmal increases in motoneuron activity, manifesting as intense muscle

spasms accompanied by autonomic instability, which can eventually prove

fatal. The clinical symptoms of tetanus intoxication would suggest a role of TT

in blocking inhibitory neurotransmission at the level of the spinal cord.

However, there is no conclusive data demonstrating that the toxin is selective

for interneurons. On the contrary, in vitro and in vivo data have shown that TT

has a differential effect on inhibitory and excitatory synapses which are time

and dose-dependent: After a latent period, TT effects become apparent in spinal

cord neuronal cultures as bursts of activity called paroxysmal depolarizing

events (PDEs) that are due to the following mechanisms: evoked glycine

release16 and the frequency of inhibitory postsynaptic potentials (IPSPs) are

blocked more rapidly and at lower TT concentrations, whereas inhibition of

evoked glutamate release and excitatory postsynaptic potentials is achieved

later and at higher toxin doses (Bergey et al., 1983; Williamson et al., 1992).

After several hours of toxin exposure there is total loss of synaptic activity

(Bergey et al., 1987). Therefore the apparent selectivity of TT for interneurons

may be due to the following two reasons: peripheral infections with TT result in

very small concentrations of the toxin (picomolar (Pellizzari et al., 1999)) at the

synaptic cleft, thereby affecting preferentially the more sensitive interneurons at

lower concentrations as detailed above. In addition there may be a

morphological reason behind a preferred disinhibition of central pathways:

interneurons synapse at the soma and proximal dendrites of spinal motor

neurons, whilst excitatory inputs are located at the distal dendrites. Therefore,

when arriving at the peripheral cell soma, the toxin may affect proximal

synapses earlier in its retrograde travel (Bergey et al., 1987). Both mechanisms

in combination can explain an early central disinhibition as a net clinical effect.

What then isthe action of tetanus toxin in generating seizures when injected into

the cortex and hippocampus? In both models measurement of radiolabelled

16TT inhibits the Ca2+-dependent but not spontaneous release of neurotransmitters (Williamson
et al., 1992).
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GABA reveals decreased GABA release and IPSPs in the early stages

post-injection (37 hours) (Empson et al., 1993; Empson and Jefferys, 1993),

whilst no difference in Ca2+-dependent GABA release was detected at four

weeks (Empson et al., 1993). Inhibitory responses, however, remain depressed

(Vreugdenhil et al., 2002). It is conceivable that an initial short term inhibition of

GABA release causes hyperexcitability leading to epileptogenesis. This would

require changes in transcription or down-stream events leading to altered

channel expression. TT is cleared from the central nervous system within 45

days, as supported by experiments measuring elimination of radio-labelled TT

from the brain (Mellanby, 1989), and by experiments measuring cleaved

vesicle-associated membrane protein/synaptobrevin as a function of the

proteolytic activity of TT (Mainardi et al., 2012). Despite rapid clearance, TT

leAves long-lasting changes in local connectivity in a cortex rendered epileptic.

In support of this hypothesis, alterations of the intrinsic excitability of layer 5

pyramidal neurons were shown in the cortex of TT injected rats (Wykes et al.,

2012) up to 20 days post-injection. At the cellular level, minimal cell loss was

reported in the low-dose hippocampal and cortical models (Louis et al., 1990;

Benke and Swann, 2004), whilst subcellular molecular and genetic changes have

not been described in detail. One report describes increased expression of

GAD67 and NMDA receptor subunits (Liang and Jones, 1997).

Limitations of the model comprise the need for surgical equipment and

stereotaxic injection into the brain, as well as the variability of the toxin batches,

whose potency can vary considerably, depending on the mode of production

and the subsequent handling and storage of the toxin (Schiavo personal

communication).

1.5.5 Therapeutic Challenges

Treatment of focal neocortical seizures is usually with lamotrigine or

carbamazepine monotherapy (Marson et al., 2007), or a combination of two
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drugs upon failure of two first line antiepileptic drugs (AED). Patients who

have failed to respond to adequate doses of two first-line drugs have a less than

20 % chance of achieving seizure freedom with the addition of a new AED

(Schiller and Najjar, 2008). Pharmacoresistance is especially common in focal

neocortical epilepsy with up to 49 % of patients being reported as having

drug-resistant seizures (Sillanpää, 1993; Beleza and Pinho, 2011): patients

continue to have seizures as well as suffering the side effects of medication, the

risk of injury and death and only a small minority are candidates for surgery.

Focal extratemporal epilepsy is particularly problematic, as neocortical seizure

foci are not always amenable to surgery because they are difficult to localize

despite modern imaging tools (positron emission tomography, 3-Tesla magnetic

resonance imaging, surface rendering and diffusion weighted imaging), the

function of the underlying cortex is difficult to determine and map out, making

it difficult to predict post-surgical deficits, and because the seizure foci are

sometimes localized in eloquent cortical areas and therefore not amenable to

surgical resection at all (Rothman, 2009). This explains why only 10-20 % of

patients in surgical series suffer from frontal lobe epilepsy. Epilepsy surgery

options include lesionectomy, frontal lobe resection or corpus callosotomy (the

transection of the corpus callosum to slow seizure spread to the contralateral

hemisphere or secondary generalization), which is a palliative procedure

sometimes performed in devastating drop attacks. Overall, surgery has limited

success with only 20-40 % of patients achieving seizure freedom (compared to a

success rate of 70 % in temporal lobe epilepsy). Alternatives are limited and

involve implantation of a titanium encased vagal nerve stimulator (VNS) with

two stimulating electrodes tunnelled subcutaneously and then wrapped around

the vagus nerve fibres. Vagal nerve stimulation can be used as adjunct

treatment of partial seizures but its mechanism of action remains speculative,

with modulation of ictal events and activation of the noradrenergic, the

reticular activating, the limbic and autonomic systems as putative modes of

action (George and Aston-Jones, 2010).
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1.5.5.1 New Therapeutic Approaches for Focal Epilepsy

The main therapeutic goal in any form of epilepsy is freedom of seizures with a

well tolerated treatment. In women of childbearing age this includes freedom

from potential teratogenic effects of the drugs or treatment on the developing

foetus. But curing epilepsy also includes preventing the development of

seizures in subjects at risk, as well as striving to find a more specific way of

targeting medical and surgical treatments to maximize benefits and avoid side

effects (Jacobs et al., 2009b). This is why new therapeutic approaches are

needed. The efforts made to develop new treatment strategies in humans have

been aimed at suppressing neuronal excitability in two ways:

1. Using non-specific physical methods such as therapeutic cooling,

magnetic devices and deep brain stimulation (DBS), and repetitive

transcranial magnetic stimulation (rTMS) (Löscher et al., 2009; Rothman,

2009; George and Aston-Jones, 2010)

2. Specific targeting of treatment by viral delivery of genes involved in

neurotransmission. The following paragraph will outline the most recent

approaches tested in humans.

Physical Methods

Deep Brain Stimulation The idea to stimulate the nervous system with

electricity to influence it therapeutically is surprisingly old, with the first

documented use in the year 46AD, when the electric shocks of the torpedo ray

were described to treat headaches and peripheral pain (Alotaibi et al., 2011). But

it was not until 1954 that the first therapeutic use of deep brain stimulation was

demonstrated clinically, in a woman with Parkinson’s Disease (Pool, 1954). The

therapeutic effects of brain stimulation on seizures were demonstrated a year

later in a cat model of seizures (Cooke and Snider, 1955). Whilst the initial

interest of deep brain stimulation (DBS) in epilepsy was diverted to stimulation
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of the cerebellum due to its main inhibitory GABA-ergic output through

Purkinje cells (Cooke and Snider, 1955), the regions of the brain that are

currently being evaluated in clinical trials include the subthalamic nucleus, the

thalamus (anterior and centromedian nuclei), the caudate nucleus, the

amygdalohippocampal complex, locus coeruleus, mammillary body and the

mammillothalamic tract (reviewed in (Alotaibi et al., 2011; Kahane and

Depaulis, 2010)). Overall, electrical stimulation to suppress seizures can be

directed at the epileptic focus itself (as in amygdalohippocampal, cortical or

lesional stimulation), or, more commonly, at structures thought to influence

epileptic activity remotely, as is the case in stimulation of the subthalamic

nucleus, the thalamus (anterior and centromedian nuclei), the caudate nucleus

and the so called “overdrive method” of stimulation, where white matter

structures connected to the epileptic focus are stimulated. Whilst these

techniques receive no feed-back of the stimulation effect from the

stimulus-delivering electrode, a new method called responsive

neurostimulation comprises a closed-loop feed-back system and the stimulus

itself is triggered by EEG events (ictal or pre-ictal) that are analyzed using

software algorithms and differ from patient to patient (Alotaibi et al., 2011).

Responsive neurostimulation relies on the development of precise seizure

detection algorithms and stimulation parameters (Kahane and Depaulis, 2010),

but it may eventually prove to be more physiological than chronic stimulation

of the brain.

Magnetic Devices Repetitive transcranial magnetic stimulation (rTMS) is

based on the principle that a strong magnetic field generates a current in

superficial neurons perpendicular to the coil. Low frequency stimulation

(<1 Hz) seems to decrease cortical activity, whilst high frequency stimulation

increases it (Pascual-Leone et al., 1999). Of all nervous system stimulation

techniques, it is the least invasive. Reports of rTMS in refractory partial

epilepsy, however, are conflicting with some authors reporting a significant
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decrease in seizure frequency (Fregni et al., 2006; Sun et al., 2011), whilst a

double-blinded placebo controlled trial found no difference against placebo

(Cantello et al., 2007).

Therapeutic Cooling Low temperatures have a number of beneficial effects on

limiting injury to the nervous system: they suppress metabolic activity, decrease

tissue adenosine triphosphate and oxygen consumption, and reduce glutamate

release, mitochondrial dysfunction and calcium overload. In addition, the

blood-brain barrier becomes less permeable, thereby limiting oedema, and

inflammation is mitigated (Polderman, 2008). There are a number of reports

documenting the therapeutic effect of external therapeutic hypothermia in cases

of status epilepticus (Cereda et al., 2009; Corry et al., 2008; Elting et al., 2010).

The degree of hypothermia used is usually between 30–35 °C and the most

common side effects include vein thrombosis, pulmonary embolism, cardiac

arrhythmias and infections. Shivering has to be controlled with neuromuscular

blockade. Focal cooling of the brain parenchyma with cold saline has been

reported to stop seizures (Karkar et al., 2002), and has the additional advantage

of fewer systemic side effects. The final goal would is the development of an

implantable thermoelectric device built into a closed loop system and capable of

cooling a defined area of the brain when seizure activity is detected. A simple

thermoelectric device has been shown to be successful in terminating seizures

in a rat model, without causing neuronal damage (Rothman, 2009). Despite the

enthusiasm generated by a number of case reports, no randomized trials have

been conducted to assess the benefits of therapeutic hypothermia on epileptic

patients, and until more evidence becomes available, mild hypothermia should

be reserved to the most refractory cases of status epilepticus only.

Gene Therapy Gene therapy approaches are problematic: Embryonic stem

cells raise a variety of ethical issues, xenografts have tolerance problems and the

first xenograft of GABA cells failed to survive (Riban et al., 2009).
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Gene therapy approaches using viral vectors have not been attempted in

human patients with epilepsy. Different viral vectors, however, have been

tested in rodent epilepsy models. We have recently been able to demonstrate

that lentiviral gene therapy for epilepsy was successful in the TT model of focal

epilepsy: We showed that lentiviral overexpression of the potassium channel

Kv1.1 not only prevented epileptogenesis when the virus was co-injected with

TT, but also that epileptogenesis was prevented when the lentivirus was

administered into an established epileptic focus (Wykes et al., 2012).

AAVs have been the most commonly used viruses in epilepsy models so far:

they have been used to suppress gene expression of excitatory

neurotransmitters or to overexpress genes involved in neuronal inhibition. In

the kainic acid rat model of epilepsy, AAVs expressing neuropeptide Y (NPY)

delivered to the piriform cortex alone or in combination with the NPY receptor

Y2, were able to suppress seizures (Foti et al., 2007; Richichi et al., 2004;

Woldbye et al., 2010; Noe et al., 2010; McCown, 2009), whilst delivery of galanin,

a neuroactive peptide, through constitutive expression from AAV, attenuated

seizure sensitivity and reduced hilar cell death (Haberman et al., 2003; Lin et al.,

2003). Adenosine kinase downregulation via AAV serotype 8 antisense DNA

was recently shown to suppress seizures (Theofilas et al., 2011). Herpes-based

vectors were used to overexpress the neurotrophic factors fibroblast growth

factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF) in a pilocarpine

model of temporal lobe epilepsy: this resulted in increased neurogenesis and

reduced inflammation (reduced astrocytosis, microcytosis and interleukin-beta

production) and behaviourally in reduced seizure frequency and severity

(Paradiso et al., 2009; Bovolenta et al., 2010). How the pathogenic epileptic

milieu influences the transduction efficacy and viral tropism for neurons is

currently the subject of investigations (Weinberg et al., 2011).
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Chapter 2

Research Questions

The experiments proposed here were designed to determine:

1. if an interneuron promoter-driven ChR2/NpHR system allows specific

targeting and manipulation of interneuron activity in cortex and

hippocampus,

2. if opsins allow modulation of gamma oscillations in the hippocampal CA3

area,

3. if opsins constitute a reliable toolbox enabling systematic analysis of

epileptic neural circuits and

4. whether NpHR could be used as a novel anti-epileptic treatment strategy

that relies on optical inhibition of neurons to interrupt seizures.
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Chapter 3

Materials and Methods

3.1 Plasmid Design and Construction

Lentiviral plasmids used to target excitatory neurons contained NpHR2.0–EYFP

(enhanced yellow fluorescent protein, EYFP) and ChR2-mCherry under the

excitatory neuron specific promoter Camk2a (gift of K.Deisseroth, Stanford

University (Aravanis et al., 2007), see Appendix Fig.A.1 for a list of original

plasmids used for cloning). They were used as backbones to generate the

constructs carrying the GAD67 (gift of S. Kasparov (Teschemacher et al., 2005))

and CCK promoters (gift of K. Ressler (Chhatwal et al., 2007)). The vectors

contain the HIV-1 central polypurine tract (cPPT) (Zennou et al., 2001) and the

Woodchuck Hepatitis Virus Post-transcriptional Regulatory Element (WPRE)

(Brun et al., 2003) to improve transduction efficiency. To construct the vectors

pLenti-CCK-NpHR–EYFP and pLenti-CCK-ChR2-mCherry, I inserted an XbaI

site into pLenti-CCKpro-GFP (green fluorescent protein, GFP) by mutagenizing

it with the following primers: forward

5’-acaaaaacaaattacaaaaattcaaaattttatctagatttcccagggaagatgaagaa-3’ and

reverse 5’-ttcttcatcttccctgggaaatctagataaaattttgaatttttgtaatttgtttttgt-3’. The ~3 kb

CCK promoter sequence was subsequently removed (XbaI/BamHI fragment)

and ligated into pLenti-Camk2a-NpHR2.0–EYFP and

pLenti-Camk2a-ChR2-mCherry cut with the restriction enzymes XbaI/BamHI. I
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generated a further construct to capitalize from the combined use of

pAAV-double floxed-hChR2(H134R)-mCherry-WPRE-pA (gift of K.Deisseroth,

Stanford University) and the CCK-driven Cre-recombinase in the lentiviral

vector pCCKp-cre-IRES-DsRED (gift of K. Ressler (Chhatwal et al., 2007)): I

cloned the inverse double-floxed sequence (BamHI/EcoRI fragment) into

pLenti-Camk2a-NpHR2.0–EYFP and pLenti-Camk2a-ChR2-mCherry after

removing channel and fluorophore by digestion with BamHI and EcoRI. I

amplified plasmids using conventional kits (Quiagen) and confirmed all

sequences by restriction enzyme digesting and sequencing. GAD67 subcloning

was outsourced to Entechelon GmBH, Regensburg, Germany. The adenoviral

vector (AVV) shuttle carrying 3.7 kb of GAD67 promoter sequences was

mutagenized and a PacI site inserted 5’-upstream of the PmlI site. The Camk2a

promoter was subsequently removed from pLenti-Camk2a-NpHR2.0–EYFP

and pLenti-Camk2a-ChR2-mCherry via restriction digest with PacI/PmlI and

the GAD67 promoter cloned in (see Appendix Fig.A.2 for cloned constructs).

3.2 Lentiviral Production and Titration

I generated VSVg pseudotyped Lentiviruses according to local protocols

(provided by Collins, Towers and Escors) in Prof. Mary Collin’s laboratory

(Division of Infection and Immunity, UCL): 293FT cells (Invitrogen) were

seeded 24 hours prior to transfection and should have reached 90% confluence

the following day. Cells were co-transfected with the transfer vector, p8.91

(gag/pol expressor) and pMD.G (VSVg expressor) in Fugene 6 (Roche),

Optimem and sterile Tris-Ethylenediaminetetraacetic acid buffer (both

Invitrogen), pH 8. Approximately 24, 48 and 72 hours after transfection,

lentivirus-containing supernatant was harvested and the HEK cell medium was

replaced with fresh complete medium (Dulbecco’s Modified Eagle Medium

(DMEM) containing 10% Fetal Bovine Serum and 1% Penicillin/Streptomycin).

The supernatant was pooled and stored at 4 °C, then filtered through a 0.45 mm
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filter (Fisher Scientific) into polyallomer ultracentrifuge tubes and a 20% 1x

Hanks’ balanced salt solution (HBSS) with a sucrose cushion added at the

bottom of the tubes to remove cell debris. Six centrifuge tubes were spun at

20,000 rpm for 2 hours at 4 °C in a swing-out rotor ultracentrifuge (Beckman

Coulter). After centrifugation, the supernatant was carefully decanted, the

tubes filled with 300 µl 1x HBSS and left to rest for one hour on ice. The virus

was then re-suspended, aliquoted and stored long term at -80 °C. I determined

the concentrated viral titer by quantitative polymerase chain reaction (PCR) to

be between 108 and 109 infectious units (IU)/ml.

3.3 Primary Neuronal Cell Cultures

I used a modified version of the protocol presented by Deitch and Fischer

(Deitch and Fischer, 1999) on tissue from neonatal (postnatal day 0, p0)

Sprague-Dawley rats or knock-in mice expressing GFP in GABAergic neurons

(GAD67-GFP mice) (Tamamaki et al., 2003): Cortex and hippocampi were

dissected in ice-cold balanced salt solution (BSS) containing 10 x Hanks’

balanced salt solution and 10 mM HEPES, pH 7.3. Meninges were removed to

minimize contamination with fibroblasts and the collected tissue treated with

2.5% trypsin for 15 minutes at 37 °C. After removing the trypsin, hippocampi

were washed with BSS and triturated with a fire-polished Pasteur pipette. Cell

density and the fraction of viable cells were identified with trypan-blue. Cells

were plated in neuronal medium (Neurobasal Medium containing GlutaMAX-I

and B27 serum-free supplement, Invitrogen) containing 10% fetal calf serum

(FCS) on Poly-D-Lysine(PDL)/Laminin coated coverslips (prewashed overnight

in HNO3 and sterilized with dry heat 230 °C for 2 h). Plating density was

100,000 neurons per well in 24-well plates. I replaced half the culture volume

with serum-free neuronal medium, changed it twice a week and added cytosine

arabinoside (1-b-D-arabinofuranosylcytosine) on day 3 to a final concentration

of 1 µM to curb glial proliferation. Neuronal cultures from the ganglionic
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eminence (embryonal day 14) were made by W. Andrews and A. Zito in Prof.

John Parnavelas’ lab (Department of Cell and Developmental Biology, UCL).

Although neuronal medium contains B27 and hence retinyl acetate, the

neurophysiological experiments were conducted in solutions devoid of retinal.

3.4 Viral Transduction In Vitro

Day 7 hippocampal cultures were transduced with fourfold serial dilutions of

the lentivirus (~1 x 105–1 x 107 IU/ ml). pLenti-Camk2a-NpHR2.0–EYFP was

applied to wild-type neuronal cultures, whilst pLenti-Camk2a-ChR2-mCherry

was transduced in GAD67-GFP expressing cultures, to confirm that lentiviruses

targeted only excitatory neurons. Images were taken using a Nikon

Fluorescence microscope. Cultures were incubated at 37 °C for 7–11 days before

electrophysiological experiments or fixed in 4 % paraformaldehyde (PFA) for 10

minutes and then stained for immunofluorescence.

3.5 Electrophysiology and Imaging in Cultures

These experiments were performed with Volynski and Ermolyuk (Department

of Clinical and Experimental Epilepsy, UCL): We acquired live confocal images

on a Zeiss LSM 510 confocal microscope using EYFP and mCherry filter settings

on day in vitro 14–18 (DIV). Neurons were patched in whole-cell mode with

borosilicate glass micropipettes (Warner, pipette resistance ~4 MW). The

intracellular solution contained (in mM) KGluconate (97), KCl (38), EGTA (0.35),

HEPES (20), Mg ATP (4), Na GTP (0.35), NaCl (6), Phosphocreatine (7)

(equilibrated to pH 7.28 with KOH) (Boyden et al., 2005). Experiments were

performed at room temperature (22–24 °C) as in (Boyden et al., 2005) and

recordings were obtained with an Axon Instruments Multiclamp 700B

Amplifier. Brief pulses of light were delivered using a 473 nm laser for

activation of ChR2 and an XCite exacte mercury burner and a standard
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bandpass excitation 530–560 nm filter for activation of NpHR. Spiking

behaviour was measured during flashes, while holding patched neurons at

-70 mV in current clamp and delivering brief depolarizing steps (~200 pA) to

induce firing. LabView (National Instruments) software was used to record all

data.

3.6 Acute Hippocampal Slicing and Neurophysiology

Acute hippocampal slices of 250 µm thickness were cut on a Leica VT1200

vibratome in ice-cold cutting solution containing (in mM): NaCl (64), NaHCO3

(25), Glucose (10), Sucrose (120), KCl (2.5), NaH2PO4 (1.25), CaCl2 (0.5), MgCl2

hexahydrate (7). Slices were then allowed to rest for 45 min in carbonated

artificial cerebrospinal fluid containing (in mM): NaCl (124), KCl (3), NaHCO3

(26), NaH2PO4 (1.25), CaCl2 (2.4), MgCl2 hexahydrate (1.3), Glucose (10),

equilibrated with 95% O2and 5% CO2. Neurons were patched in whole-cell

mode with borosilicate glass pipettes (Resistance 3–7 MW, Warner) and intra-

and extracellular solutions as published in (Aravanis et al., 2007).

Neurophysiological experiments were performed on an Olympus BX50WI

microscope at room temperature. Fluorescent neurons were visualized with an

HBO 100 Olympus Mercury Burner and filter sets for EYFP (Exciter

HQ500/20x, Dichroic Q515LP, Emitter HQ535/30m, Chroma) and HcRed

(Exciter HQ575/50x, Dichroic Q610LP, Emitter HQ640/50m, Chroma). Optical

stimulation was performed with fibre-coupled lasers with TTL and/or

analogue modulation: a blue 473 nm laser (LD pumped all-solid state, CNI), a

green 461 nm laser (diode pumped, Crystalaser) and a yellow 593 nm laser (LD

pumped all-solid state, Laser 2000) through an Olympus 60x water immersion

objective (LUMPLFL 60x W/IR/0.90, Olympus). Recordings were performed

with an Axopatch 1D Amplifier and visualized and recorded in LabView

software. Membrane currents were low-pass filtered at 2 kHz, digitized at

10 kHz, with current command routines written in Labview.

97



Electrophysiological data were analyzed offline in Octave (an OS MatlabTM

clone) and QtiPlot open source software.

For the oscillation experiments in slices (Akam et al., 2012) we used animals

injected with AAV5-Camk2a-ChR2(H134R)-mCherry into CA3. Slice thickness

was 400 µm to preserve the circuitry involved in gamma oscillations. Optical

stimulation was performed with a blue 470 nm light emitting diode (LED)

(OptoLED, Cairn) coupled to the epifluorescence illuminator tube of a Zeiss

Axioskop FS microscope and the slices visualized with an amber LED and an

LED filter set for red fluorescence (Exciter 572 nm/Dichroic 660 nm/Emitter

HQ640/50m) under a 60x water immersion objective. For the sinusoidal

stimulus experiments, the ramp current was multiplied by 0.25 and an offset of

1 to give a sinusoid whose amplitude was 25% of the stimulus amplitude at any

given time during the ramp. Light intensity and local field potential (LFP)

during a ’ramp-kick’ experiment consisted of a 5 ms boost of light intensity by

20–40% (of the immediately preceding ramp value) at 500 or 750 ms into the

ramp stimulus. Traces of 500 ms duration (centered around stimulus) were

low-pass filtered with a 6th order Butterworth filter (cut-off frequency 4 times

the estimated oscillation frequency). Since filtering causes changes in oscillation

shape and phase, we calculated cycle averaged local field potentials (LFPs) by

resampling all pre-stimulus cycles to a length of 200 samples. Wavelet

transform graphs were created in Matlab (Mathworks) by using the continuous

wavelet function (cwt), once the traces had been down sampled to 1 kHz. The

relationship between averaged LFP and modulation phase was computed as in

(Akam et al., 2012), after eliminating the first 200 ms of stimulation.
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3.7 In Vivo Experiments

3.7.1 Animals

Male postnatal day 20 (p20) Sprague-Dawley rats were used for in vivo viral

injections. Postnatal day 20 was the youngest age allowed for injections at our

institution, since the injected rat had to be quarantined for 24 hours

post-injection before being allowed back to its dam and p20 is the usual

weaning age for rats. Young rats were desirable, as juvenile tissue survives

longer and is healthier in patch clamp experiments, which were usually

performed at least 14 days after lentivirus injection (and up to 4 weeks for

AAVs) to ensure viral expression was present. As there is no brain atlas for the

juvenile rat, the correct coordinates for the hippocampal injection site had to be

identified by injection of Trypan Blue. Rats were terminally anaesthetized with

isoflurane and 1–1.5 µl (cortex and hippocampus, respectively) Trypan Blue

injected into the putative target area. Brains were sliced acutely, the site of

injection measured and the coordinates adjusted. For the TT model, 5–10 week

old male Sprague-Dawley rats were used. All animals were housed on a

12-hour light/dark cycle in a temperature- and humidity-controlled

environment with free access to food and water. All efforts were made to

minimize animal suffering and to reduce the number of animals used. Animal

experiments were conducted in accordance with the Animals (Scientific

Procedures) Act 1986 and local ethical review.

3.7.2 Stereotaxic Surgery and Viral Transduction In Vivo for Targeting

Opsins to Interneurons

For the stereotaxic operation each rat was anaesthetized with isoflurane

(Forane; Abbot). The animals were placed in a stereotaxic frame (Kopf

instruments). Surgery was performed under a Leica S6E microscope. In the first

set of experiments, a permanent guide cannula (Plastics One, Seven Oaks, Kent,

UK) was implanted and secured with screws and dental cement. For the NpHR

99



group the implantation was targeted to the right motor cortex at the following

stereotaxic coordinates, measured in millimetres from bregma in the

anterior-posterior (AP) and lateral (L) planes and ventral from dura in the

vertical (V) plane: AP +1, L +2.5, V -1.5. To target the cornu ammonis 3 (CA3)

area of the hippocampus in juvenile rats, the guide cannula was implanted at

AP -3.5, L +4, V -2.6. Five days after stereotaxic surgery, animals were lightly

sedated with isoflurane, and lentivirus (lentiviral titres ~108 IU/ml) injected

with a microinjector unit (UMP3-1, World Precision Instruments) via an internal

cannula at a rate of 0.1 µl/min. Later, permission was granted to inject

lentivirus directly with a Hamilton syringe (5 µl Hamilton Syringe, 900 Series,

liquid tight with reinforced plunger; 33 G blunt needle; injection rate 200 nl/min

with a microinjector unit) without the implantation of a guide cannula.

Injection volume was of 1 µl to cortex at the following stereotaxic coordinates

AP -1.5 , L -1.5, V -1.45, and 1.5 µl to dorsal CA1/3 at AP -2.8 , L +3.6, V -2.9 and

ventral CA3: AP -4.1, L +4.45, V +5.35. Before lightening anaesthesia, rats were

injected with 0.05 mg/kg subcutaneous (s.c.) buprenorphine analgesia and

1–2 ml s.c. 0.9% saline and the animal allowed to recover.

3.7.3 Modelling Focal Epilepsy

Five to ten-week old male Sprague-Dawley rats were stereotaxically injected

into the right motor cortex (between the forelimb and hind limb cortical

representations) with 12.5 - 17.5 ng tetanus toxin (gift of G. Schiavo). The toxin

suspension was diluted in an isoosmotic solution containing 150 mM NaCl,

NaOH HEPES 10 mM and 0.1% bovine serum albumin (BSA, pH 7.0–7.2) in

0.5–1.25 µl high-titre virus. Injection coordinates in mm from bregma for

antero-posterior (AP) and lateral (L) and from pia for depth (V) were as follows:

AP +1, L +2.4, and V -1. Depending on experimental protocols, the viral vectors

used included: 1) lentivirus carrying NpHR tagged with EYFP under the

Camk2a promoter (viral titre 108–109 IU/ml, made by myself as detailed above),

2) lentivirus carrying GFP under the EF1a promoter as control
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(pCDH-CMV-MCS-EF1a-copGFP, SBI systems), 3) AAV serotype 5, carrying an

eNpHR3.0-2A-ChR2 construct (abbreviated as eNPAC (Gradinaru et al., 2010))

under the Synapsin (hSyn) promoter (gift of K. Deisseroth and produced by

UNC vector core, titre 1012). Control animals were injected with fluorescent

beads (Invitrogen, F8834) in Dulbecco’s Phosphate-Buffered Saline (D-PBS) or

control virus as in 2). An optic fibre (core diameter 200 mm, numerical aperture

0.22, cannula length 1.5–1.8 mm, Doric Lenses, Canada) and an EEG electrode

were subsequently implanted above the injection site. A reference electrode

soldered to a screw was fixed to the skull anterior to bregma on the left side.

Both electrodes (stainless steel coiled wire with silicone insulation) had been

tunnelled subcutaneously from a wireless transmitter (A3019D, Open Source

Instruments Inc.) for continuous EEG recording (sampling frequency 512 Hz,

bandwidth 0.7–160 Hz) (Chang et al., 2011) implanted in the left dorsal region in

a subcutaneous pouch. After recovery rats were housed singly in cages placed

inside a large Faraday enclosure for continuous EEG telemetry from the first

post-operative day.

3.7.4 Optogenetic Stimulation In Vivo

Optogenetic studies were performed on day 7–10 post-surgery. For optogenetic

studies, the implanted optic cannula was connected to a 561 nm laser

(Crystalaser) via fiberoptic patch cord (NA 0.22, Doric Lenses) and a rotatory

commutator (Doric Lenses), and stimulated on and off in 20 second intervals for

sessions of 1000 second duration. The laser output was calibrated with a digital

optical power meter (PM100D, ThorLabs), aiming for an intensity of 25 mW at

the implantable fibre tip, corresponding to an irradiance of approximately

22 mW/mm2 at a distance of 0.5–1 mm, previously reported to be sufficient to

inhibit 98% of spikes in brain slice experiments (Zhang et al., 2007b).
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3.7.5 EEG Acquisition and Analysis

The implanted wireless transmitter (A3019D, Open Source Instruments Inc) has

two analogue input filters: a 0.7 Hz high-pass filter and a three-pole low-pass

anti-aliasing filter (cut off frequency 160 Hz) with a sharp roll-off. Following

analogue to digital conversion, the EEG signal is visualized and analyzed with

software scripts within the the Neuroarchiver software environment (Open

Source Instruments Inc.): signal peaks greater than 5 x RMS were removed and

power bands were computed for 2 s EEG epochs. The EEG data were also

analyzed by measuring the coastline (sum of the absolute difference in voltage

between consecutive sample points (Korn et al., 1992)) for successive 2 s

segments. We complemented this with an automated event classifier that

detected all episodes of duration 250–1000 ms that exceeded 5 times baseline

power, and grouped them according to key features such as periodicity,

amplitude and asymmetry into 4 groups: “short high frequency bursts”

(<250 ms), “long high frequency bursts” (>250 ms, event power >6 x baseline),

“long high frequency bursts of low amplitude” (>250 ms, event power 5–6 x

baseline), and “high frequency spikes”, referencing them back to a library of

events that had previously been validated by a blinded operator on a large

group of animals as being linked to seizures, artefacts or being normal1. Data

were analyzed offline in QtiPlot open source software.

3.7.6 Tissue Processing

For electrophysiological recordings, animals were sacrificed up to 6–8 weeks

following viral injection, by an overdose of pentobarbitone and perfused

transcardially with ice-cold sucrose-based solution (Aravanis et al., 2007) for

2 min. For immunohistochemistry, rats were perfused transcardially with

ice-cold artificial cerebrospinal fluid, decapitated and the brains removed and

post-fixed for 24 h in 4 % paraformaldehyde (adjusted to pH 7.4 with 1 M HCl)

1At http://www.opensourceinstruments.com/Electronics/A3018/Seizure_Detection.html
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at 4°C. They were then transferred to a solution containing 30 % sucrose in 1x

phosphate buffered saline (PBS) and left at 4°C until they had sunk. Using a

Leica freezing vibratome (laboratory of Prof. Steve Davies, UCL), 30 µm coronal

sections were cut through the targeted brain regions. For

immunohistochemistry, sections were stored in 24-well plates in 250 µl volume.

Every section from each series was taken and stained for either GAD67, CCK

and GFP, GFAP or activated Caspase-3 as a marker of apoptosis, and

4’,6-diamidino-2-phenylindole (DAPI) to visualize cell nuclei.

3.8 Immunohistochemistry

Immunohistochemical staining was conducted on free floating sections.

Sections were washed in PBS and permeabilized in PBS, 0.2% Triton X-100 for 10

minutes and then blocked with DAKO-blocking medium (Dako) for 1 hour on a

shaker. Series of sections were incubated for 2 days in the primary antibodies

against g-amino butyric acid (GABA, 1:100-1:200, Thermo Scientific, PA1-18027),

cholecystokinin-8 (CCK-8, 1:100-1:200, Thermo Scientific, PA1-18016), CaMKIIa

(1:100-1:200, Thermo Scientific, #MA1-048), green-fluorescent protein (GFP,

1:3000, Abcam, ab13970 or Aves 1:800), dsRed and mCherry (1:200, Living

Colors® DsRed or mCherry Monoclonal Antibody, catalogue no. 632392 and

632543), activated Caspase-3 (1:200, kindly gifted by A. Cariboni and

J.Parnavelas) or glial fibrillary acidic protein 46 (GFAP, 1:200, Millipore clone

GA5, #MAB3402). Following washing in PBS (3 x 15 min), the sections were

incubated in secondary antibodies (1:1000, all Abcam and labelled with Alexa

Fluor (AF) 488, AF 568 or Tetramethylrhodamine, all gift of A. Cariboni and J.

Parnavelas) overnight at 4°C. After further washing in PBS, sections were

incubated in DAPI for 5 minutes. The free floating sections were mounted onto

microscope slides and allowed to dry. They were subsequently coverslipped

using Mowiol Mounting Medium (gift of A. Cariboni and J. Parnavelas). A

similar protocol was developed to stain cultured neurons. As fixation with 4%
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PFA greatly reduces the fluorescent signal, constructs carrying NpHR-EYFP

were always stained with primary antibodies against EYFP and secondaries

labelled with AF 488 to detect expression of the virus, whilst constructs carrying

ChR2-mCherry were always counterstained with primary antibodies against

dsRed or mCherry and secondary antibodies labelled with AF 561 or

Tetramethylrhodamine. For colocalization studies, primary antibodies against

GABA, CCK, GFAP and CaMKIIa were labelled with secondary antibodies

carrying a red fluorophore (for the NpHR-EYFP expressing slices) or a green

fluorophore (for the ChR2-mCherry expressing slices). Slices from adult male

GAD67-GFP mice expressing GFP in interneurons were used as positive

controls for anti-GAD67, anti-CCK and anti-CaMKIIa antibodies. As there is no

GAD67-, CCK- or CaMKIIa knockout line available to me, a true negative

control experiment was not possible. The anti-GFP antibody could have been

tested on the GAD67-GFP mice using a red fluorochrome-labelled secondary

antibody to detect co-localization with GFP cells. However, as fixation in 4%

PFA destroys at least part of the GFP signal, this experiment was not considered

suitable as a positive control. Instead, control stains without primary, without

secondary and without any antibody were run alongside the main experiments.

All immunohistochemical experiments were performed in the laboratory of

Prof. John Parnavelas , UCL, with help from F. Chiara and A. Cariboni.

3.9 Morphological Analysis

The evaluation and acquisition of morphological data was performed on a Leica

DM2500 Upright confocal microscope (Rockefeller Biomedical Research Unit,

UCL) with a 40x oil immersion objective and the following excitation laser lines:

488 nm, 532 nm, 405 nm (see Appendix Table A.1). Slices were first analyzed by

fluorescence illumination for expression of the fluorochrome in the targeted

area. Image acquisition was performed with Leica LAS AF software. The

colocalization of opsin-expressing cells and neuronal or glial cell markers
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(GABA, CCK, CaMKIIa) was analyzed in the cortex and hippocampus. To

compare the extent of viral expression volumes of different constructs, the size

of the area exhibiting EYFP fluorescence was measured at 5–10-fold

magnification in the cortex and hippocampus. Volumetric analysis was

performed using Octave open source analysis software. Immunostained

sections were digitized by means of a high-resolution video camera. All stained

sections were evaluated. Image analysis and cell counting was performed using

GIMP (GNU Image Manipulation Program) and Image J open source software2.

3.10 Statistical Analysis

Data were analyzed with paired or unpaired non-parametric tests and paired

and unpaired t-tests, implemented in R open source software3 and InStat V3

software (Graphpad, LaJolla, CA). Statistical analysis will be discussed as part

of each result chapter.

2http://www.gimp.org/ and http://rsbweb.nih.gov/ij/
3http://www.R-project.org
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Chapter 4

Targeting Opsins to Interneurons

The experiments I will discuss in this chapter were aimed at exploring whether

it was possible to generate lentiviral constructs containing opsin genes driven

by the interneuron-specific promoters glutamic acid decarboxylase 67 (GAD67)

and cholecystokinin (CCK). Further experiments were aimed at demonstrating

whether expression of these constructs in vitro and in vivo was possible and if

expression was restricted to interneurons. Finally, I will discuss the construction

of an optogenetic setup and the experiments aimed at photoactivating opsins

expressed under the Camk2a, GAD67 and CCK promoter in vitro.

4.1 Plasmid Construction and Assessment of Promoter

Activity In Vitro

After generating five lentiviral constructs as outlined in the methods section

(Appendix Fig. A.2), and before producing active lentiviruses, I transfected the

viral constructs carrying the GAD67 and the CCK promoters into 293FT HEK

cells (Fig. 4.1) to assess if both promoters were able to drive transgene

expression and to compare their level of expression with a control virus

(carrying a CMV promoter driving GFP expression) and with the original

constructs (LV-CCKpro-GFP, pLenti-Camk2a-NpHR2.0–EYFP and

pLenti-Camk2a-ChR2-mCherry). Transgene expression was defined by
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Figure 4.1: Cloned lentiviral constructs and assessment of promoter activity in
vitro. (a-c) Left panels: schematic of the viral vector; right panels: fluorescence
micrographs of transfected HEK cells. Micrograph a2 and b2 were taken with a
different filter setting.
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visualization of the fluorophore in all cases, as in all ChR2/NpHR containing

vectors, the fluorophore is fused in-frame to the N-terminus of the opsin gene.

HEK cells expressed visible fluorescence with all plasmids, although

fluorescence levels were lower (in terms of brightness and numbers of

fluorescing cells on visual inspection) in the GAD67/CCK constructs. No

inference on GAD67/CCK promoter strength can be drawn, however, as the

lentiviral plasmid still contains the 5’ LTR and its promoter, which may be

interfering with the internal GAD67/CCK promoter1.

4.2 Lentiviral Generation

4.2.1 Lentiviral Production and Titration

The successful production of lentiviral particles is a process fraught with

variables that have to be controlled to be able to get high enough titres to ensure

expression in neurons. After testing a number of various methods

(Lipofectamine protocol by G. Towers, one or more rounds of centrifugations,

different resuspension media, different types of HEK cells), I found that there

was a highly significant difference in viral titres (Fig. 4.2, p < 0.01, two-tailed,

unpaired t-test) when the viral suspension was centrifuged once only versus

when I used two rounds of centrifugation. Two rounds of centrifugation are

used when a cleaner viral preparation is necessary, such as in vaccination or in

vivo experiments, where cell debris could otherwise trigger unwanted immune

reactions. The protocol described in the methods section and provided by D.

Escors (Prof. Collins’ lab), yielded the best results with consistent titres as high

as 108–109 IU/ml. Titration experiments also needed optimization:

Fluorescent-activated cell sorting (FACS) analysis is advantageous in that it

1As discussed in the introductory section both LTRs in the proviral DNA originate from the 3’
LTR present on the genomic RNA. To avoid any undesired gene dysregulation by the viral pro-
moter in the 3’ LTR, lentivirus vectors of the last generation, also called self-inactivating vectors
(SIN), have a chimeric LTR, where the HIV promoter was replaced with transcriptional control
elements from heterologous viral (e.g. CMV) or cellular promoters (Federico, 2003): when DNA
provirus integrates into the host cell genome, expression will only depend on the internal pro-
moter.
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Figure 4.2: Viral titres depending on number of centrifugation steps. Viral
titres of pLenti-Camk2a-NpHR2.0–EYFP batches concentrated with two rounds
of ultracentrifugation (n = 36) had significantly reduced titres (p < 0.01, two-
tailed, unpaired t-test), compared to viral batches centrifuged only once (n = 10).
In black mean values and SEM.

gives a direct readout of the expression of the gene of interest, providing there is

a reporter fluorophore. In the constructs I used, the opsin gene is fused to the

fluorophore gene, therefore fluorescence would have indicated expression of

the opsin, too. FACS, however, cannot distinguish the total amount of lentiviral

DNA in a fluorescent cell and is thought to underestimate real titres (Sastry

et al., 2002). Also, FACS analysis depends on the available laser wavelengths

used to excite the fluorophores. Unfortunately, the FACS analyzers available

did not have a laser line for the excitation of mCherry. Therefore, I found that

the best method of titration for both mCherry and EYFP constructs was

quantitative PCR (qPCR)2.

2qPCR enables one to determine the total amount of lentiviral DNA in a sample relative to total
cellular DNA. It hence allows calculation of the infectious units per unit volume if the amount of
virus and the number of cells transduced are known
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Figure 4.3: Expression of Camk2a driven ChR2 and NpHR in neuronal cul-
tures. (a) Timeline of experiments. (b) Fluorescent images of neurons express-
ing pLenti-Camk2a-NpHR-EYFP in culture at 20x magnification. (c) Evaluation
of expression levels by counting fluorescent EYFP-positive neurons in 4 visual
fields (n=1) of transduced cultures revealed high expression levels (73–89% of
total neurons).

4.3 Study of Camk2a-driven ChR2 and NpHR in

Neuronal Cultures

4.3.1 Viral Transduction in Primary Neuronal Cell Cultures

Lentiviruses expressing ChR2 or NpHR under the Camk2a promoter were

initially tested in primary neuronal cultures . Both opsins were successfully

expressed in postnatal hippocampal cultures of rat or mouse, with fluorescence

visible as early as day 4 post-transduction in NpHR and day 5

post-transduction in ChR2-expressing neurons (Fig. 4.3a, b). Expression

persisted in healthy looking neurons without signs of cytotoxicity as long as
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Figure 4.4: GAD67- and CCK-driven opsins in hippocampal neuronal cul-
tures. (a) LV-CCK-ChR2-mCherry, (b) LV-GAD67-ChR2-mCherry, (c) LV-CCK-
NpHR2.0-EYFP, and (d) LV-GAD67-NpHR2.0-EYFP expressed at low levels in
wild-type neuronal cultures.

cultures survived. Evaluation of expression levels by counting fluorescent

EYFP-positive neurons in 4 visual fields of transduced cultures revealed high

expression levels (73–89 % of total neurons, Fig. 4.3b, c). When I tested the

GAD67/CCK-driven opsin vectors in wildtype p0 rat hippocampal or cortical

cultures, the results reflected the low levels of endogenous expression, with

very little or no expression visible at all when transduced with different

concentrations of lentivirus, ranging from 105–107 IU/ml (Fig. 4.4 and Fig.

4.54.6). It has been known for a long time that both neuronal activity and

growth factors such as brain-derived neurotrophic factor (BDNF) regulate soma

size, levels of GABA and dendrite morphology in inhibitory interneurons in

culture (Marty et al., 1997). Also, co-culturing neurons with astrocytes, rather

than on Poly-D-Lysine (PDL) alone, accelerates the appearance of GABA- and
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Figure 4.5: CCK- and GAD67-driven opsins in ganglionic eminence neuronal
cultures.LV-CCK-NpHR2.0-EYFP: (a) LV-CCK-NpHR2.0-EYFP expresses in GE
neuronal cultures (in green). Approximately 90% of LV-CCK-NpHR2.0-EYFP ex-
pressing neurons (in green) also stain for anti-CCK antibody (b, in red). Arrows
depict examples of colocalizing neurons, arrowheads non-colocalizing neurons.
(c, f) DAPI stain was used to aid cell counting (n=1). LV-GAD67-NpHR2.0-
EYFP: (d) LV-GAD67-NpHR2.0-EYFP expresses in GE neuronal cultures (in
green) and co-localizes with GABA-antibody (e, in red): 40% of LV-GAD67-
NpHR2.0-EYFP expressing neurons (in green) also stain for GABA-antibody (in
red). Arrows and arrowheads used as above (n=1).
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Figure 4.6: Cell counts of CCK- and GAD67-driven opsins in ganglionic
eminence neuronal cultures.Bar plot (a) shows that 19/21 LV-CCK-NpHR2.0-
EYFP expressing neurons are also CCK-antibody positive (n=1). Bar plot (b)
shows 73/181 LV-GAD67-NpHR2.0-EYFP neurons also stain for GABA antibod-
ies (n=1).

glutamatergic transients (present at 24 hours in cultures in the former, versus at

4 days in the latter case) (Li et al., 1999). In view of the remote possibility that

transducing hippocampal neurons cultured on PDL-coated coverslips failed

because there was too small a percentage of inhibitory neurons on day 7 in vitro,

I decided to increase the number of inhibitory cells in the culture by using

neuronal cultures from the ganglionic eminence (GE), the birthplace of

interneurons. Embryonal day 14 (E14) GE neuronal cultures were provided by

A. Zito and W. Andrews (Prof. Parnavelas’ lab). GAD67 is already expressed at

E14 and the cultures were transduced at days 5-7 in vitro with 106 IU/ml per

well. Fluorescence was visible for LV-GAD67-NpHR2.0 EYFP and

LV-CCK-NpHR2.0-EYFP but not for the ChR2-mCherry constructs: ~90 % of

cells expressing LV-CCK-NpHR2.0-EYFP also stained for anti-CCK antibody

(19/21 cells, 4 visual fields (VFs)). 40% of LV-GAD67-NpHR2.0-EYFP

expressing neurons were also anti-GABA antibody positive (73/181 cells, 4

VFs). Caveats remain due to the small numbers in the experiments.
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4.3.2 ChR2 Mediates Neuronal Depolarization In Vitro

We were able to demonstrate in pilot experiments that our lentiviral particles

carrying LV-Camk2a-ChR2-mCherry successfully transduced hippocampal

neurons of GAD67-GFP expressing mice (Fig. 4.7). The red fluorescence of

mCherry was exclusively detected in neurons not expressing GFP, indicating

that targeted expression to principal cells had been successful. Neurons

expressing mCherry were patch-clamped in whole cell mode as described

above (with help from Y. Ermolyuk and K. Volynski) and the cell flashed with

blue light. Brief flashes of blue light of 200 ms elicited reliable depolarization

and spiking of current-clamped neurons (Fig. 4.7c).

4.3.3 NpHR Inhibits Neuronal Firing In Vitro

In a pilot experiment, consistent with previous data (Zhang et al., 2007b), we

were able to show not only that the NpHR is stably expressed in cultured

neurons without disrupting cellular morphology, but also that the Cl--pump

was functional (data not shown). Green fluorescing cultured hippocampal

neurons expressing LV-Camk2a-NpHR2.0 EYFP were patched in whole cell

mode and their membrane potential measured. We first verified that the neuron

was capable of firing action potentials by current injection. Then neurons were

flashed with yellow light at random intervals during firing. Increasing

intensities of light led to inhibition of spiking evoked by current injection.

However, flashing patch-clamped LV-GAD67-NpHR2.0-EYFP and

LV-CCK-NpHR2.0-EYFP expressing neurons in a GE neuronal culture with

yellow light from an amber or white LED (irradiance values between 1.15 and

8.55 mW/mm2 at the 40x objective) was not sufficient to inhibit neuronal firing.

In summary, in the first experimental period, I generated new lentiviral

constructs carrying ChR2 and NpHR2.0, each driven by the interneuron-specific

promoters GAD67 and CCK. I generated high-titre lentivirus of the Camk2a,

GAD67 and CCK driven constructs and tested them in vitro on neuronal
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Figure 4.7: Neurophysiology of Camk2a driven ChR2 in neuronal cultures. (a,
b) Transduction of neuronal cultures from GAD67-GFP mice with LV-Camk2a-
ChR2-mCherry, showing green fluorescence in interneurons (a), whilst the vi-
rally transduced neurons are principal cells (b). (c) Neurons expressing mCherry
were recorded in whole-cell patch-clamp mode as described above and the cell
flashed with blue light if healthy. Brief flashes of 473 nm blue laser light elicited
reliable depolarization and spiking of current clamped neurons (n=1).
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cultures. All constructs expressed, but at low levels for the GAD67 and CCK

driven constructs. CCK was specific for CCK neurons in GE neuronal cultures

(but numbers are small), whilst GAD67 was not specific. Patch-clamp

experiments with optogenetic excitation or inhibition of neurons succeeded in

the Camk2a driven constructs only.

4.4 Opsin Expression In Vivo

We went on to explore if we could achieve reliable expression of the lentiviral

vectors carrying NpHR and ChR2 in vivo. NpHR was of particular interest as a

promising candidate for inhibition of neuronal spiking in focal and in vitro

epilepsy models.

4.4.1 Morphological Characterization of Opsin Expression Levels in

Rat Cortex and Hippocampus

All rats injected with 500–1250 nl of lentivirus carrying NpHR2.0-EYFP under

the Camk2a, GAD67 and CCK promoters (titre 3 x 108 or 5 x 108 IU/ml)

exhibited strong fluorescence in both cortex and hippocampus in stained

sections, which was also clearly visible in acutely sliced sections. Conversely,

lentivirus vectors expressing ChR2-mCherry under the Camk2a, GAD67 and

CCK promoters were only visible on stained sections. To compare expression

levels between LVs and AAVs, a group of animals (n=1 for each virus) were

injected with either AAV5-eNpHR3.0-2A-ChR2-EYFP (eNPAC) (UNC vector

core, titres 1012 IU/ml), or to evaluate and compare opsin expression between

promoters and between LVs and AAVs, sliced and fixed sections were stained

with an anti-GFP, anti-dsRed or an anti-mCherry primary antibody3 (Living

Colors®). The antibody signal was amplified by using a secondary antibody

labelled itself with GFP or a red fluorophore (Tetramethylrhodamine or Alexa

3As EYFP is a derivative of GFP and mCherry one of dsRed, they have sequence homologies
(Shaner et al., 2004) and can therefore be detected by anti-GFP and anti-dsRed antibodies, respec-
tively.
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(a) (b) (c)

100 µm 100 µm 100 µm

Figure 4.8: Comparison of expression levels in cortex. Fluorescence Micro-
graphs at 10x magnification obtained from cortex of animals injected with (a)
LV-CCK-NpHR2.0-EYFP, (b) LV-Camk2a-NpHR2.0-EYFP and at (c) 5x magnifi-
cation showing expression of AAV-eNPAC. Continuous line denotes the area of
fluorescence, dashed line the pial surface. Slices were counterstained with anti-
GFP antibodies and AF 488 secondaries to amplify the GFP signal; n=1; injection
volume 1–1.25 ml.

Cortex LV-Camk2a-NpHR2.0-EYFP

AAV5-eNpHR3.0-2A-ChR2-EYFP

(eNPAC)

Viral Titre 108 IU/ml 2 x 10 12 IU/ml

Injection
Volume 1.25 µl 1 µl

Expression
Volume 0.04 mm3 0.09 mm3

Table 4.1: Comparison of expression in cortical slices injected with LV vs. AAV
(n=1).

Fluor 589). Only the areas of direct injection were studied: Calculation of

volume of expression was performed by measuring the area exhibiting strongly

fluorescent neurons under 5x or 10x magnification in all slices available for one

animal and computing the volume by multiplying the areas with the thickness

of the slice. Since all slices showing fluorescence were examined, the result

should therefore represent the entire volume of viral expression (Fig. 4.8 and

Table 4.1 for results in cortex, Fig. 4.9 and Table 4.2 for results in hippocampus).

Expression volumes were greatest in AAV injected animals, approximately

five-fold of the values obtained in areas injected with Camk2a lentivirus.

However, 1 in 3 animals injected with AAVs showed diffuse axonal staining
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Figure 4.9: Comparison of expression levels in hippocampus. Fluorescence
micrographs showing extent of expression in hippocampus (n=1) injected with
1.5 ml of either (a) LV-CCK-NpHR2.0-EYFP, (b) LV-GAD67-NpHR2.0-EYFP (both
10x magnification), or (c) 1 ml AAV-eNPAC (5x magnification). Slices were coun-
terstained with anti-GFP antibodies and AF 488 secondary antibodies to amplify
the GFP signal. Stratum radiatum (rad.), pyramidale (pyr.; dotted lines) and
oriens (or).

Hippocampus
LV-CCK-NpHR2.0-

EYFP
LV-GAD67-NpHR2.0 EYFP

AAV5-eNpHR3.0-

2A-ChR2-EYFP

(eNPAC)

Viral Titre 108 IU/ml 108 IU/ml 2 x 10 12 IU/ml

Injection
Volume

1.5 µl 1.5 µl 1 µl

Expression
Volume

0.009 mm3 0.013 mm3 0.08 mm3

Table 4.2: Comparison of expression in hippocampal slices injected with LVs
carrying different promoters and LV vs. AAV (n=1).
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rather than expression of virus in cell somata. The interneuron-promoter driven

opsins had the lowest levels of expression.

4.4.2 Evaluation of Promoter Specificity

The quantitative data described here are based on observations of fluorophore

labelling in confocal or fluorescent micrographs: To count and score cells, the

fluorophores were sequentially visualized, then their images merged in RGB

space. Slices from adult male GAD67-GFP mice expressing GFP in interneurons

were used as positive controls (Fig. 4.10) . I found LV-Camk2a-NpHR2.0-EYFP

to be specific for pyramidal cells (Aravanis et al., 2007), with ~74 % of

LV-Camk2a-NpHR2.0-EYFP-expressing cells staining for CaMKIIa-antibody

(38/51 cells). The GAD67- and CCK-driven constructs were counted in the

hippocampus, because of the better penetration of the anti-GAD67 antibody

into hippocampal slices compared with cortex4. LV-GAD67-ChR2-mCherry was

found not to be selective for interneurons in CA1 and CA3 with only 2.6% of

GABA-antibody stained cells also expressing LV-GAD67-ChR2-mCherry (Fig.

4.11a, Fig. 4.12a-cdelete: 4.11a). Conversely, 3% of pyramidal cells stained with

anti-CaMKIIa also expressed LV-GAD67-ChR2-mCherry (Fig. 4.11a,4.12

d-edelete:4.11a).

Strong dendritic expression and spread to dentate gyrus (DG) was noted,

although the latter was most likely due to virus spread rather than retrograde

transport into mossy fibres, as there is no evidence so far that VSVg

pseudotyped lentiviruses are transported in a retrograde fashion (Mazarakis

et al., 2001; Wong et al., 2004). LV-GAD67-NpHR2.0-EYFP was found to be

expressed in only ~15% of hippocampal GABA positive interneurons, but also

in ~10% of CaMKIIa positive neurons (Fig. 4.11b, Fig. 4.13 delete:4.11b) .

LV-CCK-ChR2-mCherry was found to stain only very few neurons in the

hippocampal pyramidal layer, and was difficult to find on microscopy. Only 4

4Some antibodies had a low penetration into the myelinated cortex compared with the hip-
pocampus, which did not improve despite varying the concentration of the permeabilizing agent.
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Figure 4.10: Immunohistochemistry on control sections. Fluorescent micro-
graphs from GAD67-GFP mice used as positive controls for anti-GAD67, anti-
CCK and anti-CaMKIIa antibodies (n=1 animal). (a), (d), (g) Interneurons ex-
pressing GFP under the GAD67 promoter. (b) Anti-CaMKIIa stains neurons in
the pyramidal layer of the hippocampus (n = 97) and none of the neurons ex-
pressing GFP (n = 23; arrowheads). (c) shows overlay images of the green (a),
red (b) and blue (DAPI) channels. (e) All GABA-antibody stained neurons (n =
14) expressed green fluorescence (arrows). (f) showing overlay images of (d), (e)
and the blue (DAPI) channel. (h) CCK-antibody stained neurons (i) overlay im-
age: 80% (7/9) of CCK-antibody stained neurons (red) expressed GFP (green) .
One third of GFP expressing interneurons (green) also stained for CCK-antibody
(9/27; arrows). Stratum radiatum (rad.), pyramidale (pyr.; dotted lines) and
oriens (or).
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Figure 4.11: Colocalization data. (a) LV-GAD67-ChR2-mCherry: Only 5/193
(20 visual fields (VFs), 3 slices, 1 animal) anti-GABA antibody stained neu-
rons also expressed LV-GAD67-ChR2-mCherry. 27/895 anti-CaMKIIa antibody
stained neurons also expressed LV-GAD67-ChR2-mCherry (15 VFs, 2 slices, 1
animal). (b) LV-GAD67-NpHR2.0-EYFP: 91/852 anti-CaMKIIa antibody stained
neurons also expressed LV-GAD67-NpHR2.0-EYFP (12 VFs, 2 animals). 43/279
anti-GABA antibody stained neurons also expressed LV-GAD67-NpHR2.0-EYFP
(23 VFs, 3 animals). (c) LV-CCK-ChR2-mCherry: 7/14 anti-GABA antibody
stained neurons also expressed LV-CCK-ChR2-mCherry (4 VFs, 1 animal). 7/8
LV-CCK-ChR2-mCherry positive cells stained for anti-GABA antibody. (d) LV-
CCK-NpHR2.0-EYFP: 9/19 anti-GABA antibody stained neurons also expressed
LV-CCK-NpHR2.0-EYFP (1 VF cortex and 2 VFs hippocampus, 3 animals). (e)
LV-CCK-NpHR2.0-EYFP: 1/42 anti-CaMKIIa antibody stained neurons also ex-
pressed LV-CCK-NpHR2.0-EYFP (4 VFs, 1 animal).
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Figure 4.12: Immunofluorescence study of LV-GAD67-ChR2-mCherry in hip-
pocampus. (a) LV-GAD67-ChR2-mCherry-expressing neurons in red (arrow-
heads), (b) anti-GABA positive interneurons in green and (c) overlay (with
DAPI) show that LV-GAD67-ChR2-mCherry is not specific for GABAergic in-
terneurons. (d) LV-GAD67-ChR2-mCherry-expressing neurons in red (arrow-
heads) are not stained with (e) anti-CaMKIIa antibody. (e) Anti-CaMKIIa anti-
body positive pyramidal cells in green and (f) overlay with DAPI to visualize cell
nuclei. The scale bar is 25 µm for all images. Stratum radiatum (rad.), pyramidale
(pyr.; dotted lines) and oriens (or).
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Figure 4.13: Immunofluorescence of colocalization of LV-GAD67-NpHR2.0-
EYFP in hippocampus. (a) LV-GAD67-NpHR2.0-EYFP-expressing neurons
in green (arrowheads), (b) anti-CaMKIIa positive pyramidal cells in red and
(c) overlay with DAPI to visualize cell nuclei. Approximately 10% of anti-
CaMKIIa stained neurons also express LV-GAD67-NpHR2.0-EYFP. (d) LV-
GAD67-NpHR2.0-EYFP-expressing neurons in green (arrowheads), (e) anti-
GABA positive interneurons in red and (f) overlay (with DAPI) show that LV-
GAD67-NpHR2.0-EYFP is not specific for GABAergic interneurons. The scale
bar is 25 µm for all images. Stratum radiatum (rad.), pyramidale (pyr.; dotted
lines) and oriens (or).

25 µm
(a) (b) (c)

or.

Figure 4.14: Immunofluorescence and colocalization of LV-CCK-ChR2-
mCherry in stratum oriens (or). (a) LV-CCK-ChR2-mCherry-expressing neurons
in red (arrows), (b) anti-GABA positive cells in green and (c) overlay with DAPI
to visualize cell nuclei. Arrowhead points to LV-CCK-ChR2-mCherry positive
neuron, which does not co-localize with GABA antibody stained cells. The scale
bar is 25 µm for all images.
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Figure 4.15: Immunofluorescence of colocalization of LV-CCK-NpHR2.0-EYFP
in hippocampus. (a) LV-CCK-NpHR2.0-EYFP-expressing neurons in green, (b)
anti-CaMKIIa positive pyramidal cells in red and (c) overlay with DAPI to vi-
sualize cell nuclei. Arrowheads points to LV-CCK-NpHR2.0-EYFP-expressing
neurons, which do not colocalize with anti-CaMKIIa antibody stained cells. (d)
LV-CCK-NpHR2.0-EYFP-expressing neurons in green, (e) anti-GABA positive
interneurons in red and (f) overlay (with DAPI). Arrowheads points to LV-CCK-
NpHR2.0-EYFP-expressing neurons, which do not colocalize with anti-GABA
antibody stained cells. Stratum radiatum (rad.), pyramidale (pyr.; dotted lines)
and oriens (or).

VFs were evaluated in hippocampus, with 7/8 LV-CCK-ChR2-mCherry positive

cells (in red) also stained with anti-GABA (Fig. 4.11c, Fig. 4.14 delete: 4.11c).

LV-CCK-NpHR2.0-EYFP appeared to be slightly more specific for interneurons

but the numbers of transduced cells was small. 47% of anti-GABA

antibody-stained cells also expressed LV-CCK-NpHR2.0-EYFP (Fig. 4.11d and

Fig. 4.15 delete: 4.11d). 2.4% of anti-CaMKIIa antibody stained neurons also

expressed LV-CCK-NpHR2.0-EYFP in hippocampus (Fig. 4.11e and 4.15 delete:

4.11e). The CCK antibody failed to stain neurons in these sections and could not

be evaluated.

Finally, AAV5-eNpHR3.0-2A-ChR2-EYFP (eNPAC) was evaluated:
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approximately 30% of all AAV-eNPAC-expressing cells stained for anti-GABA

antibody (34/112 cells, 2 VFs). 70% of all AAV-eNPAC expressing cells stained

for anti-CaMKIIa antibody (108/154 cells). Evaluated separately, 67.5% of all

anti-CaMKIIa stained cells also expressed AAV-eNPAC (108/160 cells).

Approximately 83% of all anti-GABA stained cells also expressed AAV-eNPAC

(34/41 cells, 2 VFs).

In conclusion, in vivo the GAD67 and CCK promoter-driven constructs

expressed at lower levels than the Camk2a-driven opsins and were not specific

for interneurons. AAV-eNPAC expressed in larger volumes than LV in cortex

and hippocampus, and stained both interneurons and pyramidal cells.

4.5 Optical Requirements and Development of a Laser

Setup

Immunohistochemistry directed against mCherry confirmed that all

ChR2-mCherry constructs were detectable. Why the NpHR 2.0-EYFP and

ChR2-mCherry lentiviral constructs in acute slices had different expression

levels presented a puzzle, as all viruses had been made in the same batch and

had similar viral titres. Different batches were tested and different volumes of

injection (up to 2 ml in the hippocampus). In addition, using a Cre

recombinase/floxed opsin approach by co-injection of a LV-CCK-Cre

recombinase and a double floxed ChR2-mCherry lentivirus under a strong

promoter5 gave the same results. I was using an LED system for combined

fluorescence visualization/opsin excitation on the rig (OptoLED light source,

Cairn Research) at this stage. Since I was also having difficulties in

photoactivating the clearly visible NpHR2.0-EYFP constructs with an amber

LED, it seemed plausible that both the light intensity for the mCherry excitation

and for the NpHR2.0 photoactivation were too low at maximum LED current.

5This was done to test the hypothesis that expression of Cre recombinase, even if weak, would
be sufficient to invert the floxed ChR2-mCherry sequence in the second lentivirus, thereby allow-
ing expression of the construct under the strong promoter (see Appendix Fig. A.2).
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Figure 4.16: Colocalization of AAV-eNPAC. (a) Confocal fluorescence micro-
graphs showing expression of AAV-eNPAC (in green) and (b) anti-CaMKIIa
stained pyramidal cells in red. Arrows point to AAV-eNPAC expressing (green)
neurons stained with anti-CaMKIIa antibody (red). Arrowheads point to AAV-
eNPAC-expressing (green) neurons, which do not stain for anti-CaMKIIa anti-
body (red). (c) overlay (with DAPI to identify cell nuclei), scale bar 25 µm for a-c.
(d-f) Fluorescence micrographs showing expression of (d) AAV-eNPAC (green)
in neurons, which also stain for (e) GABA-antibody (in red; arrows). (f) overlay
of (d) and (e). Arrowheads point to AAV-eNPAC-expressing (green) neurons not
stained with anti-GABA antibody. The scale bar for (d) and (e) is 50 µm. Stratum
radiatum (rad.), pyramidale (pyr.; dotted lines) and oriens (or).
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Initially I tried to increase the light intensity measured with a power meter

(Thorlabs) at the level of the microscope chamber by changing the excitation

filters, to optimize light transmission, as well as trying a brighter amber LED

that had just come out on the market (Jan-Feb 2011) and by trying various

permutations of excitation filters/LEDs/dichroic mirrors (Table 4.3) . I then

visualized slices from parvalbumin (PV)-TomatoRed transgenic mice and

pipettes filled with AF 594 as a control for the visualization of red fluorescence,

comparing them to the fluorescence intensity from a mercury burner on a

colleagues’ microscope and concluded that the mercury burner provided far

higher intensities of light. In addition, I had used AAV5-eNPAC for

patch-clamp experiments as a control and managed to excite ChR2 with the

473 nm blue LED, but not at the level of temporal precision and the degree of

depolarization expected (Gradinaru et al., 2010), whilst I remained unable to

optically activate NpHR3.0 in the same construct with LEDs. A period of

intense exchange with other laboratories using opsins followed, including

Marco Capogna’s at Oxford (successfully using an LED system for activation of

ChR2 of commercial AAV expressed in slices) and Karl Deisseroth’s at Stanford

(only using mercury burners or lasers on their set-ups). I concluded that I

needed to increase the light intensity on the microscope set-up. To optimize the

optical system with help from Georg Ritter, I reinstalled a mercury burner

(BX-FLA, Olympus) on my microscope, achieving light intensities greater than

with the LED by an order of magnitude (Table 4.4). An ideal set-up would have

allowed me to visualize fluorescence with a mercury burner and flash the

opsins with a mercury burner or a laser. However, a fast shutter was not

available to generate light pulses with the mercury burner, and could not have

been mounted because of space restrictions inside the Faraday cage. Flashing

the opsins with a Cairn Xe-Flash system and a self-built optrode (optic fibre

attached to patch pipette) was attempted, but was also unsuccessful because the

power supply could not be triggered precisely and because the light intensity

fluctuated excessively. The Xe-arc lamp also generated excessive electrical
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LED setup Wave-
length
[nm]

Power‡
[mW]

Irradiance‡
[mW

mm-2]

Power‡
[mW]

Irradiance‡
[mW

mm-2]

‡ at Objective 40x 10x

572nm emitter /
amber LED

593 0.59 2.95 2.43 0.63

560 nm emitter /
amber LED

593 0.23 1.15 0.87 0.23

560 nm emitter /
white LED

593 1.71 8.55 6.8 1.77

White LED and
660 dx

593 1.2 6 10.58 2.75

Amber LED and
660 dx

593 0.33 1.65 7.4 1.92

eEndow GFP
filter and blue
LED

488 2.6 13 10.5 2.73

Irradiance requirement (Irradiance [mW mm-2] at 40x

ChR2 8–12
(Boyden

et al.,
2005)

NpHR2.0 21.7
(Zhang
et al.,

2007b)

Table 4.3: Light requirements and LEDs. Light requirements of opsins and flu-
orophores, and the intensities achieved with the LED system at the chamber,
measured with a power meter (Thorlabs). LED light was used at maximal inten-
sity and current (blue LED 1 A, white LED 0.96 A, amber LED 1.01 A). To get
maximal light intensity for NpHR, a 560 and a 572 nm emitter mirror were tested
with an amber or white LED, respectively; 660 dx = 660 nm dichroic mirror; com-
pare with light intensities required by opsins (Aravanis et al., 2007; Berndt et al.,
2009).
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Fluorescence
filter

Wavelength
[nm]

Power‡ [mW] Irradiance‡ [mW/mm2 ]
‡at Objective 10x 40x 10x 40x

endow GFP 488 29.3 6 7.618 30
EYFP 514 11.8 2.5 3.068 12.5

HcRed 587 147 45.2 38.22 226
HcRed 593 139 29 36.14 145

660 Dichroic
Mirror alone

593 — 66 — —

Table 4.4: Mercury burner light intensity. Light intensities achieved with the
Olympus Mercury burner through the microscope objective.

noise, which made it difficult to record from cells. It became clear that it was

necessary to develop a modular system that would allow laser light to be fed

into the microscope, whilst maintaining the mercury burner for fluorescence

visualization. The lasers were however kept separated from the setup, in order

to use them for the in vivo part of the project. The following modular set-up was

therefore designed and assembled with help from G. Ritter: a lens tube system

consisting of a microscope port adapter, cage rods, a focussing lens, together

with a fiber optic mating sleeve (all Thorlabs) were mounted onto the second

camera port of an Olympus dual-port adapter above the fluorescence

illuminator (Fig. 4.17). This allowed coupling of the optic fibres running from

the laser head to the fiber optic mating sleeve at the top of the lens tube system,

whilst keeping the lasers and optic fibres independent from the microscope

set-up. The irradiance values obtained with laser stimulation under the 10x

Objective were 0.3–9 mW for the 473 nm laser, 0.06–13.5 mW for the 561 nm laser

and 0.76–13 mW for the 593 nm laser. Figure 4.18 shows the calibration line for

the 561 nm laser. It is important to note that there is considerable power loss

through coupling the light into optic fibres and the type of the optic fibre

ending, core size, numeric aperture and coupling have to be chosen with care to

minimize losses.
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Figure 4.17: Optogenetic microscope setup. (a) Olympus BX50WI microscope
setup, front view. (b) Detail of the lens tube system consisting of a microscope
port adapter (1), cage rods (2), a focussing lens (3), together with a fiber optic
mating sleeve (4) (all Thorlabs) mounted onto the second camera port of the
Olympus dual-port adapter above the fluorescence illuminator (5). This allowed
coupling of the optic fibres running from the laser head to the fiber optic mating
sleeve at the top of the lens tube system, whilst keeping the lasers and optic fibres
independent from the microscope set-up. The first port of the Olympus dual-
port adapter is used for visualization with a CCD camera, whilst the fluorescence
illuminator (Olympus BX-FLA) is attached to the rear port of the microscope. (c)
488 nm light delivered through the 60x water immersion objective (LUMPLFL
60x W/IR/0.90, Olympus) to the slice preparation.
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Figure 4.18: Calibration of the 561 nm Laser.
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4.6 Neurophysiology and Optogenetic Activation in

Slices

Successful optogenetic experiments were performed in acute slices strongly

expressing AAV5-eNPAC (containing both ChR2 and NpHR3.0) in

hippocampus. Using the Cairn LED system, it was possible to photoactivate

ChR2 in AAV5-eNPAC-expressing cells with the blue 470 nm LED and an

470/40x excitation filter.

At the maximum LED current of 0.9 A, the irradiance6 was of <10 mW/mm2

under the 40x objective. Only at maximal LED current of 0.9 A was

depolarization possible (Fig. 4.19a, b). A minimum LED light duration of 50 ms

was required to drive APs; with trains of 10 ms pulses at 10 Hz there were many

AP failures (Fig. 4.19 b). In contrast, previous reports have shown that

ChR2(H134R) within the eNPAC construct is capable of driving firing at up to

20 Hz with 5 ms pulses (Gradinaru et al., 2010). Pulses lasting 1 ms elicited

subthreshold depolarizations but could not generate trains of action potentials.

Conversely, when flashed with a blue 473 nm laser (CNI Laser), short 1 ms laser

pulses were able to drive reliable action potentials (Fig. 4.19 c, d, 4.20e;

Irradiance calibrated prior to experiments to be 5 mW/mm2). The 561 nm green

laser (CrystaLaser), however, was unable to activate NpHR3.0 and did not

inhibit firing but instead co-activated ChR2. This phenomenon can be explained

by the overlap of the activation spectra of ChR2 and NpHR3.0 at 561 nm,

resulting in photocurrents of cations and chloride in the same direction to

6Irradiance or power density is defined as the light intensity in mW per illuminated area of
view in mm2. The irradiance over the area of view of the objective, can be calculated as follows:

field diameter = field number/magnification of objective
The field number can be found on the eyepieces and for the BX 50 microscope is 22
Calculation for a 40x objective:
field diameter = 22/40
field diameter = 0.55 (for 10x objective field diameter = 2.2)
area of view with 40x objective:
A=2p(0.55/2)2

A=0.23 mm2 (for 10x obj A=3.8)
meaning that if you get 1mW over the detector area, in theory you should get that 1mW over

your area of view (Irradiance) =>
Irradiance = 5mW/mm2 (for 10x Obj Irradiance= 0.26mW/mm2).
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Figure 4.19: Optogenetic experiments in slices -1. (a-b) Current clamp traces of cor-
tical neuron expressing AAV5-eNPAC 5 weeks post AAV injection illuminated with a
blue LED. (a) A 2 s and two 1 s pulses of 473 nm LED light depolarize the neuron above
threshold, but only 1 AP is triggered. (b) Six 50 ms pulses elicit reliable spiking, whilst
10 ms light pulses are unable to consistently drive action potentials. (c-f) Laser experi-
ments (c) Sample trace of a CA3 pyramidal neuron expressing AAV5-eNPAC illuminated
with 2 s pulses of 473 nm light (irradiance 5 mW/mm2) at the beginning of a 13 min pro-
tocol (2 pulses, 1 Hz). (d) The last two traces at the end of the stimulation protocol show
a reduction in the number of APs fired from a mean of 13.6 at t = 0, to a mean of 5 at
t = 13 min. The decrease in the number of APs may be due to laser instability or opsin
desensitization. Membrane potential (Em).
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5 mV/30 pA

(e) (f)

Figure 4.20: Optogenetic experiments in slices -2.(e) 5 ms blue laser pulses (left part
of trace) reliably drive spike firing, and even 1 ms pulses (right part of trace) are able
to elicit APs. (f) A CA1 neuron expressing AAV5-eNPAC is stimulated with a 593 nm
laser (13 mW at 10x objective). Yellow light hyperpolarized the membrane (400 ms pulse
duration), albeit by only by 2.5 mV, and inhibited action potential firing during current
injection (30 pA, 20 ms pulses). Membrane potential (Em).

cancel each other out (for the excitation of NpHR3.0 stimulation at the very end

of the spectrum was advised - personal communication, V. Gradinaru, Stanford)

(Gradinaru et al., 2010). After purchase of a longer wavelength 593 nm yellow

laser (Laser 2000), it was possible to successfully depolarize the resting

membrane potential and to independently activate NpHR and inhibit spike

firing elicited by current injection (Fig. 4.20delete: 4.19f)7.

4.7 Discussion

In this final section of the chapter I will discuss the differences in

adeno-associated and lentiviral expression of opsins, the results of the

interneuron-targeted strategies and some of the reasons behind the difficulties

in visualizing and photoactivating opsin constructs.

My experiments have shown that constructs delivered with AAV serotype 5

were strongly expressed within the hippocampus and cortex and and over a

7The yellow laser had no analogue modulation input and had to be switched on and off man-
ually.
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wider spatial extent than when delivered with lentiviruses. AAV serotype 2 and

5 are known to transduce mostly neurons (Flotte and Berns, 2005) and diffuse

spread of virus also has the advantage that a single injection would be sufficient

for experimental or therapeutic purposes. On the down side, however, in our

hands roughly 30% of animals injected with AAV only showed diffuse axonal

staining but no somatic fluorescence. All animals had had the same type,

volume and batch of virus injected on the same day of surgery and rats were of

the same age and the same litter. The reasons for this difference are not clear,

but it is known that since recombinant AAVs do not contain viral genes, the fate

of viral DNA depends on the presence of host cell polymerases and therefore on

the state of the cell. In addition, AAVs have a hitherto unexplained differential

neuronal tropism, not only due to the specificity of the promoter, but also

influenced by capsid proteins and other sequences8. Certainly, if the

mechanisms of this tropism were known, they could be exploited to effectively

target gene delivery. The reason to use lentiviral vectors in my project was the

advantage of their large transgene capacity (8-10 kb in LVs vs 4.5 kb in AAVs),

which would have allowed one to shuttle the relatively large GAD67 and CCK

promoter sequences (3.5 and ~3 kb, respectively). As discussed in the

introductory chapter, there are ways to split larger transgenes onto 2

complementary AAVs. However the techniques are complex, and the success

rate in generating the constructs perhaps lower. Also, if considering viral

vectors as therapeutic tools, LVs are relatively invisible to the immune system,

as they do not carry or cause expression of viral proteins in transduced cells,

whilst AAVs can cause generation of neutralizing antibodies. This really is the

main obstacle to using AAVs for repeated therapeutic applications. However,

AAVs have the powerful advantage of site-specific integration, which avoids

the risks of insertional mutagenesis carried by LVs. Eventually, it will be

8Some authors have claimed a general bias of AAVs towards inhibitory neurons and of LVs
towards excitatory neurons. However there is no conclusive evidence to prove this interesting
thought: many other authors have used AAVs to target excitatory neurons and the bias of LVs
towards interneurons has not been replicated in other studies (Nathanson et al., 2009).
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important to continue working on both types of vectors, in order to make better

tools but also better treatments: manipulating capsid proteins of AAVs may be a

way to reduce the immune response and increase neuronal specificity, whilst

among the lentiviral secrets to unravel are how, for example, the secondary

intermediate RNA structure of the virus influences its packaging, what

variables determine LV packaging efficiency and titres (Neve, 2011), and

whether the LTRs could be modified in order to achieve site-specific integration

to avoid disruption of genomic sequences. An alternative approach would be

the use of non-integrating lentiviral vectors, which has proven successful in

delivering transgenes to dendritic cells as a vaccine carrier in mice (Hu et al.,

2009, 2010), or herpes simplex virus, which give reliable expression in neurons,

can carry a large payload (up to 100 kb) and are capable of retrograde transport.

But ultimately, before being able to use any viral vector for human use, we will

need to achieve controllable regulation of expression and manage to produce

clinical grade viruses on a large scale and at affordable prices.

On immunofluorescent and morphological criteria, expression of the

GAD67-promoter driven constructs was not specific for interneurons in slices

and cultures. The CCK-driven constructs may be slightly more specific for

interneurons as a whole in slices and for CCK interneurons in ganglionic

eminence (GE) neuronal cultures, but the numbers of neurons stained are too

small to make inferences. In the hippocampus, GABA is specific for

interneurons, making up 7–11% of all neurons (Freund and Buzsáki, 1996). In

the adult central nervous system, GAD67 and GAD65 colocalize with GABA in

most if not all GAD-positive cells, although GABA is also known to be

expressed in non-neuronal cells (Katarova et al., 1998), more so in the periphery

(Erdö and Wolff, 1990). GAD67 and GAD65 are expressed and colocalize with

GABA as early as E10.5, showing that embryonic GABA is synthesized by the

same enzyme isoforms present in the adult (Katarova et al., 2000). CCK is

already expressed at prenatal day 14 (Giacobini and Wray, 2008), and persists
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throughout postnatal migration (Morozov et al., 2006). Therefore, postnatal

neuronal cultures should have been capable of expressing the

GAD67/CCK-driven constructs. Expression of the constructs only succeeded in

GE neuronal cultures. However, whilst using the same virus, this was not the

case in postnatal hippocampal cultures (neither wildtype, nor in GAD67-GFP

mice). Conversely, the Camk2a-driven constructs expressed in both GE and

hippocampal cultures. Whilst there is evidence in the literature that some

promoters may be correctly regulated in transgenic mice but not in cultures

(Katarova et al., 1998), this clearly should have applied to both pre- and

postnatal types of culture. Both types of culture were plated on PDL-coated

coverslips (i.e. without astrocytic support) and transduced on day 7 in vitro,

therefore neither type of culture could be considered as mature from a point of

view of synaptic connections and GABA and glutamatergic synaptic events.

Perhaps the only difference is that the number of interneurons is much higher in

GE neuronal cultures; therefore the virus transduces fewer principal cells that

will not be able to express the construct, thereby allowing visible expression of

fluorescence in interneurons.

In the in vivo experiments, two problems need addressing: Firstly, why

expression of the GAD67/CCK constructs was not specific for interneurons,

and secondly, why the Camk2a-ChR2 constructs were not visible in acute slices.

To answer the first question, I would first like to focus on the GAD67 promoter,

described by Katarova et al. (Katarova et al., 1998) and made available to us by

S. Kasparov, Bristol. The promoter used in my experiments contains 3.7 kb of 5’

upstream sequences of the GAD67 promoter, containing the first intron and part

of the second exon, and has been used to target GABAergic nucleus of solitary

tract interneurons in organotypic slice cultures (Teschemacher et al., 2005).

However, as discussed previously, the original authors also showed that only

by including longer 5’ upstream regulatory sequences, did GAD67 drive correct

expression of reporter genes. Transgenic mouse lines containing 3 to 7 kb of 5’

upstream sequences of the GAD67 promoter (called short and intermediate
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constructs) showed variable staining of hippocampal interneurons at best, as

well as ectopic expression (in hippocampal pyramidal neurons e.g. that express

low levels of GAD mRNA (Cao et al., 1996)), and even the longest construct

showed patterns of mixed correct and ectopic expression both in the

hippocampus and the cortex, whilst correctly labelling cerebellar Purkinje cells

(Katarova et al., 1998). In an attempt to test whether my constructs would

correctly express in Purkinje cells, I injected the rat cerebellar vermis but was

unable to obtain any expression, in concordance with previous results on the

“short construct” (Katarova et al., 1998). Also, evaluating expression at different

time points did not alter the pattern of expression. I would therefore argue that

the GAD67 promoter, in the form I used it, may contain all regulatory sequences

for correct expression in brain regions of high GABA content, which develop

early (Katarova et al., 1998) but not for specific targeting of interneurons in the

hippocampus or cortex. The CCK promoter, on the other hand, has been used to

label interneurons of the hippocampus and the basolateral amygdala (Chhatwal

et al., 2007; Jasnow et al., 2009). On a closer look, however, previous authors

convincingly show hippocampal staining of the interneuron-rich polymorphic

layer of the dentate gyrus (whilst the excitatory granule cell layer is not

stained), which co-localizes with CCK-mRNA in situ hybridization. However,

CCK-mRNA in-situ hybridization shows strong staining throughout the

pyramidal cell layer of CA1 and CA3, and the authors have not confirmed

whether these neurons are indeed interneurons (Chhatwal et al., 2007; Jasnow

et al., 2009). In this sense, having used the same CCK promoter (gift of K.

Ressler), LV-CCK-NpHR2.0-EYFP shows the same good expression in the

polymorphic layer of the dentate gyrus but in CA1 they only stain very few

cells, which are undoubtedly pyramidal, both in their morphology and

antibody staining pattern. In addition, the LV vector used is not a

self-inactivating vector9; therefore even at the viral level, both promoters

9As discussed in footnote 1 at the beginning of this chapter, SIN have a chimeric LTR, where
the HIV promoter was replaced with transcriptional control elements from heterologous viral
(e.g.CMV) or cellular promoters (Federico, 2003): when DNA provirus integrates into the host
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GAD67 and CCK may have been influenced by the 5’ LTR promoter.

Furthermore, CCK-mRNA is found in the somata of neurons in many brain

regions, including CA3 pyramidal cells, albeit without expression of the

octopeptide (Schiffmann and Vanderhaeghen, 1991), indicating that staining for

the octopeptide, rather than using in situ hybridization, is more specific to

detect expression of the actual neurotransmitter. Other authors have tried

alternative promoters, e.g. using small promoters from Takifugu rubripes (fugu)

to restrict expression specifically to interneurons, with the advantage that they

could be used in AAV vectors because of their small size (Nathanson, 2009).

However, interneurons were identified mainly morphologically and without

quantitative data as to the percentage of interneurons stained by the fugu-AAV.

More work is required to understand which and how regulatory elements

determine promoter function. This will allow us to use promoters or their

regulatory elements to target specific cell subtypes.

The last questions to address include 1) why it was not possible to visualize the

ChR2-mCherry constructs or to photoactivate NpHR driven by GAD67/CCK,

and 2) what really are the photoactivation requirements of opsins. My

hypotheses for the difficulty in visualizing ChR2-mCherry is that expression

levels were too low to become visible or that the protein was misfolded, since

the antibodies targeted to mCherry revealed that the protein had been

expressed. Protein misfolding could be explained by the fact that I used a ChR2

of an early generation, and that subsequent ChR2 versions have been improved.

It is likely that NpHR could not be photoactivated with the LED system because

of the higher light requirements and smaller photocurrents of NpHR2.0.

NpHR2.0 has recently been superseded by NpHR3.0 . It might well be that with

NpHR3.0 and other (better) opsin inhibitors on the market, light from an LED

system will be sufficient to inhibit neuronal firing. This would greatly facilitate

in vivo (and clinical) applications. Overall, (and in hindsight) it is important to

test the adequacy of the flashing system as one of the key parameters when

cell genome, expression will only depend on the internal promoter.
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using optogenetic tools. In later experiments in collaboration with F. Cacucci

and T. Wills, UCL, we measured the 470 nm laser output by looking at the

photodiode sensor/power meter output. We also fed the voltage from the

power meter box directly into an oscilloscope. Both studies revealed a very

noisy laser output trace, which could be explained by problems in the cavity

geometry - a known problem in diode laser design (material temperature

coefficients, long term distance stability, mechanical shocks, etc.) or crystal

damage (personal communication). More worryingly, it became clear that the

laser took 1–2 s to reach full power. It became also clear that when using short

pulses of 5–10 ms, the light intensity achieved would have been a lot smaller

than at steady state. This implies that some of the experiments might have

failed due to lack of light to the preparation. Undoubtedly, many of these

problems will be overcome with the development of better and more affordable

light sources.
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Chapter 5

Optogenetic Induction and

Entrainment of CA3 Oscillating

Networks

The experiments discussed in this chapter were aimed at understanding the

dynamical properties of CA3 networks by answering the following questions:

1. Can gamma oscillations be induced in the hippocampus by optogenetic

activation of excitatory neurons (by analogy with experiments in cortex

(Adesnik and Scanziani, 2010))?

2. How do optogenetic induced gamma oscillations compare with

carbachol-induced oscillations?

3. Are phase-response curves derived for optogenetic and electrical

alveus/dentate gyrus stimulation consistent with results predicted by the

Wilson-Cowan Model?

4. Can gamma oscillations entrain to periodic inputs?

This part of my PhD project was developed and executed in collaboration with

T. Akam and E. Ferenczi, and the experiments described form an integral part of
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Figure 5.1: Optogenetic induction of gamma oscillations. (a) Fluorescent mi-
crograph showing expression of AAV5-Camk2a-ChR2(H134R)-mCherry in the
pyramidal layer of CA3. Typically, 4 - 5 sections of 400 µm thickness each would
exhibit fluorescence. (b) Schematic of the experimental setup for excitation with
470 nm light from an LED coupled to the microscope (Akam et al., 2012).

T. Akam’s project aimed at testing the predictions of a computational model to

confirm its accurate description of large scale coherence dynamics in vivo (Akam

and Kullmann, 2010). E. Ferenczi performed the alveus stimulation experiments

under supervision of T. Akam. Because this was a collaborative project to which

my contribution was the development and application of optogenetic tools, I

shall describe the results relatively briefly. They are published in (Akam and

Kullmann, 2010). Experimental procedures are described in detail in the

method section. Since a newer generation ChR2 had become available in AAV

(ChR2(H134R) (Gradinaru et al., 2007)), we employed this novel vector in these

experiments. Briefly, we injected postnatal day 20 (p20) male Sprague-Dawley

rats with AAV5-Camk2a-ChR2(H134R)-mCherry into dorsal and ventral CA3,

which resulted in widespread somatic red fluorescence in the pyramidal layer

(Tye et al., 2011; Lee et al., 2010) of CA3 (Fig. 5.1). Some 30% of the animals,

however, showed diffuse fluorescence throughout CA3 and no somatic staining.

This may have been due to variability of the viral aliquot (titre, damage to the

virus through handling) or uneven distribution of viral particles in the syringe,

which was usually pre-filled to be used to inject 2 animals in the same session.
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Figure 5.2: Induction of gamma oscillations by ChR2 activation (Akam et al.,
2012). A 1 s ramp of blue light (top panel) elicits gamma oscillations of 52.6 ±
5.1 Hz (middle panel), n=7. The bottom panel shows the average wavelet trans-
form amplitude (12 traces, 1 slice).

Stimulation of ChR2 was performed by delivering a 1 s ramp of blue light with

a blue LED (Cairn Instruments) coupled through the epifluorescence

illuminator of a Zeiss Axioscope microscope. To deliver the light ramp, the LED

current was kept in the linear input-output range with the light intensity

delivered to the slice ranging from 0 to < 15.3 mW/mm2 irradiance. Ramps

were delivered every 45 seconds. A ramp was delivered instead of a square

pulse to avoid channel desensitization (Adesnik and Scanziani, 2010). The

recording field electrode was placed adjacent to the pyramidal cell layer of CA3

where maximum fluorescence was visible.

5.1 Induction of Gamma Oscillations by Light

Stimulation of CA3 pyramidal cells with ramps (0–15.3 mW/mm2 irradiance) of

470 nm blue light for 1000 ms induced self-organized oscillations in the gamma

range (n=7, Fig. 5.2). The light stimulus imposed the start and end of the
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Figure 5.3: Optogenetic rephasing of gamma oscillations (Akam et al., 2012).
(a) Light intensity and local field potential (LFP) during a ramp-kick experiment,
consisting in a 5 ms boost of light intensity by 20–40% (of the immediately pre-
ceding ramp value) at 500 or 750 ms into the ramp stimulus. (b) The stimulus
induces a biphasic response curve as demonstrated in a single slice (top panel)
and a population (middle panel, n = 4, 95% confidence interval in shaded green)
aligned with the mean unfiltered LFP (bottom panel).

rhythmic activity, but not its frequency1.

5.2 Rephasing of Gamma Oscillations by ChR2

To analyze the effect of the light stimulus on the CA3 gamma oscillation, we

evaluated the phase response curve (PRC). The phase of an oscillation is defined

as the time f elapsed relative to the origin of the oscillation. f is normalized by

the period T of the oscillation, and is therefore given as a variable between 0

and 1 (Winfree, 1967). A PRC shows the alteration of the phase of an oscillation

due to a stimulus as a function of the oscillation phase. Delivering a light “kick”

stimulus to an oscillating slice elicited a biphasic phase response curve. This

implies that the ChR2-activated conductance advances or delays the phase of

the gamma oscillation depending on the timing of the perturbation (Fig. 5.3).

1Note that the frequency of the ChR2-induced gamma oscillations was higher than that in-
duced by carbachol (Akam et al., 2012) as in Appendix Fig. A.3, suggesting that, although both
light activation of ChR2 and carbachol activated pyramidal neurons, the network effect on oscil-
lation frequency was different, perhaps because different subsets of interneurons were activated
(Pálhalmi et al., 2004) or because carbachol depolarized interneurons directly (Pitler and Alger,
1992).
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5.3 Comparison with Carbachol-induced Gamma

Oscillations in CA3

We then asked, how optogenetically-induced gamma oscillations compare to

carbachol-induced gamma oscillations and their PRCs. These experiments were

performed by T. Akam and E. Ferenczi. In brief, gamma oscillations were

induced in CA3 by perfusing slices with 20 µM carbachol. The LFP was

recorded in CA3 and 60-100 stimuli delivered with bipolar electrodes in the

alveus or dentate gyrus every 1.5–2 s (Fig. 5.4a). We found that

carbachol-induced gamma oscillations also exhibit biphasic PRCs on weak

alveus stimulation, but that the maximum phase advancement occurs later than

in optogenetically-induced oscillations (Fig. 5.4b, c).

Strong alveus stimulation led to resetting of the oscillation, independent of

stimulus phase (Fig. 5.4d). Stimulation of dentate gyrus led to the same

rephasing behaviour with biphasic PRCs on weak stimulation and resetting of

the oscillation with strong stimuli (Akam et al., 2012)2.

5.4 Phase Response Curves are Consistent with

Predictions from the Wilson-Cowan Model

We proceeded to test if our phase-response curves obtained through

optogenetic and alveus/dentate gyrus stimulation were correctly predicted by

the Wilson-Cowan Model3 (Wilson and Cowan, 1972). This is a simple model of

2Akam and Ferenczi classified stimulation strength based on their effect on the oscillation
rather than based on the parameters of the stimulation. One reason for this was that there was
no ideal objective measure of stimulation strength: Measures based on the strength of electrical
stimulation were problematic because the exact position of the stimulating electrode and how in-
tact the fiber pathway was in the slice would both effect the amount of synaptic input recruited for
a given stimulation intensity. Finally, for different strength stimuli in a single slice they observed
a qualitative change in the shape of the PRC as the stimulation strength was increased. Therefore
they used weak vs strong to describe stimuli that produced these different shape phase response
curves. A quantitative measure of stimulation strength based on the effect on the oscillation was
introduced at the end in order to combine data from different slices and is discussed in (Akam
et al., 2012).

3Modelling was performed by T. Akam.
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Figure 5.4: Carbachol-induced gamma oscillations in CA3 (Akam et al., 2012).
(a) Experimental setup for alveus and dentate gyrus stimulation. (b) CA3 gamma
oscillations have biphasic PRCs on weak alveus stimulation. The maximum
phase advance occurs later than with optogenetic rephasing. (c) Weak alveus
stimulation in one experiment. LFPs (in blue, with superimposed average in red)
grouped according to stimulation phase. (d) Strong alveus stimulation leads to
phase resetting (colour coded as in c).
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Figure 5.5: Wilson-Cowan model (Akam et al., 2012). (a) Schematic of the
Wilson-Cowan Model depicting a network of excitatory and inhibitory popu-
lations of neurons. The bottom panel graphs depict E(t) (the proportion of ex-
citatory cells firing per unit time at the time point t) and I(t) (the proportion of
inhibitory cells firing per unit time at the time point t) over time when no noise
perturbs the system. (b) Phase space diagram describing the state of (a) at any in-
stant with the coordinates E(t) on the x-axis and I(t) on the y-axis. In blue the limit
cycle. The limit cycle is a solution for dynamical systems, which repeats itself in
time (a dynamical system is a mathematical model describing the evolution in
time of a system). Depicted in red the isochrons (a set of parameters resulting in
oscillations of the same phase). Nullclines (black: dashed, excitatory; solid, in-
hibitory; Nullclines are curves through points found solving a parent differential
equation, for which the parent equation’s slope will always be zero.

neural networks used in computational neuroscience. It is composed of

recurrently and mutually connected excitatory and inhibitory populations of

neurons (Fig. 5.5a), which are regarded as an oscillator and can be described by

a differential equation.

Solutions to the system equations are found numerically. These are graphically

depicted in phase plane plots (Fig. 5.5b). Both solutions and phase plane plots

describe and predict dynamic interactions of the two populations of neurons. In

the model, the two key variables are defined as follows (Wilson and Cowan,

1972): I(t) as the number of inhibitory cells firing per unit time at the time point

t, E(t) as the number of excitatory cells firing per unit time at the time point t.
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a b

Figure 5.6: Wilson-Cowan model and alveus stimulation rephasing (Akam
et al., 2012). (a) Experimental data on rephasing of gamma oscillation in a hip-
pocampal slice with alveus stimulation of four different strengths. Blue dots rep-
resent the troughs of the oscillation and are represented along the x-axis accord-
ing to the phase before the stimulus. Four troughs are shown for each oscillation
after the stimulus (blue dots along a vertical line), with the diagonal grey lines
depicting the expected position of the troughs had the stimulus been absent. As
shown in Fig. 5.4 there is phase advancement of the oscillation on weak alveus
stimulation and resetting of the oscillation to the same phase on strong stimu-
lation. (b) Shows Wilson-Cowan model derived graphs for rephasing gamma
oscillations on alveus stimulation, which are consistent with experimental data
in (c).

Figure 5.7: Phase space diagrams for (a) weak and (b) strong alveus stimu-
lation (Akam et al., 2012). Coloured squares represent positions at the time of
alveus stimulation for 100 simulations. Coloured circles represent positions 6 ms
after the stimulus. Coloured lines show trajectories of 10 points from the time
of stimulation until their return to the original limit cycle. The black vertical ar-
row describes the direction (ratio of inhibitory vs excitatory input) of the input
stimulus.
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I(t) and E(t) depend on the number of cells not refractory to stimulation and the

amount of synaptic connectivity between the cells. The differential equation

also contains variables for the strength of the connectivity between the cells, the

amount of external input to excitatory neurons and a term for the stimulus

decay. Unperturbed, the synaptic interactions between excitatory and inhibitory

populations give rise to an oscillatory state resulting in an anti-clockwise

oriented limit cycle in the model’s phase space. Very simplistically, the model

predicts that if this state is perturbed by a stimulus, this will push the oscillation

away from the stable limit cycle.

To understand how the system behaves when perturbed, the concepts of latent

phases and isochrons need to be introduced. The latent phase of a point x off

the limit cycle is defined as the phase of a point y on the limit cycle, for which

trajectories coming off point x and y will converge as t approaches infinity.

Lines connecting points with the same latent phase are called isochrons. A

stimulus that pushes the oscillation perpendicular to the vertical axis

(representing I(t)) towards isochrons of increased latent phase will advance the

phase of the oscillation, pushing the oscillation towards isochrons of decreased

latent phase will delay the oscillation. If the oscillation is pushed parallel to the

isochrons, the phase of the oscillation will not change.

The Wilson-Cowan model correctly predicted the rephasing behaviour for

alveus/dentate gyrus and for optogenetic stimulation. The rephasing

behaviour after weak alveus stimulation was reproduced in the model by an

input that was biased towards the inhibitory population (corresponding to a

nearly vertical input vector in the phase plane), thereby advancing the phase of

the oscillation, as the limit cycle is pushed in the vertical direction and points on

the limit cycle now cross isochrons with an advanced latent phase (Fig. 5.6 and

5.7a). The model also correctly described the resetting of the oscillation phase

after strong alveus stimulation (Fig. 5.6 and 5.7b). At the end of the strong

stimulus the points on the limit cycle reach new positions. These new positions

148



Figure 5.8: Optogenetic rephasing in the Wilson-Cowan model (Akam et al.,
2012). (a) Experimental data on rephasing of gamma oscillation in hippocampal
slices (n=4) with optogenetic stimulation of two different strengths (weak: LED
current increment by 20-30%, strong: LED current increment by 40%). Data are
represented as in Fig. 5.6c delete: 5.5. Phase advancement of the oscillation
occurs earlier in the oscillation phase than on weak alveus stimulation. Strong
light stimuli elicited discontinuous PRCs and reset the oscillation to the same
phase as on strong alveus stimulation. (b) Shows Wilson-Cowan Model derived
graphs for rephasing gamma oscillations by optogenetic stimulation, consistent
with experimental data in (a).

define a loop that is so displaced compared to the original limit cycle, that only

a fraction of isochrons are crossed. This implies that independent of the phase

before stimulation, a strong stimulus will reset the oscillation to only a small

range of phases. The Wilson-Cowan model also corresponded with the

experimental optogenetic rephasing data as shown in Fig. 5.8 . In this case the

rephasing behaviour was reproduced in the model, if the input stimulus was

targeted more towards the excitatory population, resulting in a PRC with earlier

phase advance.
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(a)

(b)

(c)

Figure 5.9: Entrainment of oscillations by modulated ramps (Akam et al., 2012).
(a) Light intensity stimulus modulated by a 30 Hz sinusoid. (b) LFP entraining
at stimulus frequencies between 30 and 80 Hz. (c) Averaged wavelet transforms
for each frequency (n = 4 slices).

5.5 Entrainment of Oscillations by Modulated Light

Ramps

Finally, we tested the hypothesis that the gamma oscillation frequency could be

modulated or entrained by the frequency of an oscillatory stimulus. We

delivered a light ramp with sinusoidal modulation (25% of the stimulus

amplitude) at frequencies from 30–80 Hz, which entrained the oscillating local

field potential (LFP), as shown in Fig. 5.9. With higher modulation frequencies

there was a gradual advancement of the oscillation phase (Gutkin et al., 2005).

Figure 5.10 shows that in our experiments, the phase of the LFP trough relative

to the modulation cycle is advanced when the modulation frequency is greater

than the unmodulated gamma frequency, and retarded when the modulation

frequency is smaller than the unmodulated gamma frequency. When the
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(a) (b)

Figure 5.10: Relationship between LFP phase and modulation frequency
(Akam et al., 2012). (a) The cycle averaged field potentials at each modulation
frequency (shown in different colours for each frequency) as a function of the
light stimulus modulation phase (bottom blue curve). The relationship between
LFP phase and modulation frequency remains constant for each modulation fre-
quency, but there is advancement of the LFP trough (black circles) with modu-
lation frequencies higher than the unmodulated gamma frequency (n = 4 slices).
The amplitude of the cycle averaged field potential is maximal at the resonant
frequency of 52.6 ± 5.1 Hz. (b) Relationship between the entrainment phase and
the normalized modulation frequency (Gaussian weighted moving average in
black, individual slice data in blue).

modulation frequency approaches the unmodulated gamma frequency of 52.6 ±

5.1 Hz, the amplitude of the LFP is maximal denoting resonance. The

relationship between the trough phase of the LFP and the modulation

frequency is constant. We conclude, that the phase relationship of input

stimulation and output frequency is frequency dependent .
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5.6 Discussion

In this final section I would like to discuss the answers to the four questions

posed at the beginning of this chapter:

1. Can gamma oscillations be induced in the hippocampus by optogenetic

activation of excitatory neurons (by analogy to experiments in cortex

(Adesnik and Scanziani, 2010))?

2. How do optogenetic-induced gamma oscillations compare with

carbachol-induced oscillations?

3. Are phase-response curves derived for optogenetic and electrical

alveus/dentate gyrus stimulation consistent with results predicted by the

Wilson-Cowan Model?

4. Can gamma oscillations entrain to periodic inputs?

We had set out to explore the characteristics of CA3 networks underlying

gamma oscillations. Our original aim was to drive different subclasses of

hippocampal neurons at various frequencies, to study how synchronization

between local networks is accomplished and what variables influence

inter-region coherence of oscillatory activity. We would have liked to drive

interneurons and pyramidal cells separately with light of different wavelengths,

to disentangle how the two populations interact to generate an oscillation. With

the optogenetic techniques available, we were able to accomplish part of the

project and studied the influence of excitatory input to hippocampal gamma

oscillations. We were able to drive excitatory neurons with ChR2 and show that

also in CA3 (Adesnik and Scanziani, 2010) it is possible to generate oscillations

in the gamma range. We showed that the PRC of the optogenetically-induced

oscillations is biphasic, which is also the case in PRCs obtained on alveus and

dentate gyrus stimulation during carbachol-induced oscillations. These results

suggest that it may be a general property of CA3 networks to advance or delay

gamma oscillations depending on the timing of synaptic input.
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We were also able to show how gamma oscillations respond to periodic inputs,

a principle that may help explain how oscillation coherence may arise in

various brain regions. When driving oscillations with a sinusoidally modulated

ramp, the oscillation frequency entrained over a broad range of frequencies.

The phase relationship of the LFP trough to the modulation stimulus was

strongly frequency dependent. We suggested that modulating the intrinsic

oscillation frequency may be a mechanism to modulate the phase relationship

of coupled networks. The fact that the modulated ramp was so effective in

entraining the oscillation deserves attention, as one may have expected ChR2 to

desensitize to the modulated ramp stimulus. Evidently, there was enough ChR2

expressed, so that even if some of the channels inevitably desensitised (within

18 ms) (Lin, 2011), there were still enough in an open or activatable state to

generate the LFP oscillation. Most importantly, however, these in vitro data

reproduced the simulated data computed from a model based on the

Wilson-Cowan equations with a transient input pulse developed by T. Akam,

confirming that neuronal mass models in general can be used to study

synchronization dynamics (Akam et al., 2012). Also in the field of neuronal

oscillations, optogenetic and viral approaches will be instrumental in acquiring

new answers in the future: they will allow manipulation of oscillatory activity

in the live animal and behavioural studies. They will also allow, as in our case,

to flexibly tune individual input and output variables in an oscillatory system

and thereby field test computational models and theories, a fundamental part of

our attempts at understanding network behaviour.
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Chapter 6

Optogenetic Inhibition of

Epileptiform Activity

Epilepsy affects over 50 million people worldwide, of whom only 60–70% are

seizure free on medication (Duncan et al., 2006). Pharmacoresistance is common

in focal neocortical epilepsy, and resective surgery is only appropriate when the

epileptogenic zone does not involve eloquent cortex (Schuele and Lueders,

2008). Because seizures are intermittent, developing a method for rapid and

reversible suppression of activity in a restricted area of neocortex would be an

important advance. High-frequency oscillations build up prior to neocortical

seizure onset, and occur preferentially in epileptogenic areas (Worrell et al.,

2004; Bragin et al., 2010). Although automated detection of such

electroencephalographic (EEG) correlates of incipient seizures has attracted

attention, progress in local manipulation of brain excitability has been slower,

and is mainly focused on electrical brain stimulation (Kahane and Depaulis,

2010), focal brain cooling (Rothman, 2009) or targeted drug delivery (Heiss

et al., 2010). A potentially powerful alternative way to suppress seizure activity

‘on demand’ is to photo-activate prokaryotic light-sensitive ion channels and

transporters expressed in neurons (Zhang et al., 2007a; Miesenböck, 2011).

Photoactivation of the chloride pump halorhodopsin from Natronomonas
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pharaonis (NpHR) has been shown to suppress burst firing in organotypic

hippocampal cultures (Tonnesen et al., 2009), and most recently, NpHR

activation in thalamus was used to attenuate post-stroke seizures in rodent

sensory cortex (Paz et al., 2012). I asked if NpHR photoactivation can attenuate

epileptic activity in an established neocortical seizure focus in vivo and if the

halorhodopsin system constitutes a reliable toolbox to study epileptic networks

in the tetanus toxin model of focal neocortical epilepsy. Our long-term aim was

to suggest a new approach to treatment for human disease and provide the

backbone for the development of other optogenetic neuromodulation therapies.

6.1 Modelling Focal Neocortical Epilepsy

The choice of the tetanus toxin (TT) model of focal neocortical epilepsy to study

optogenetic inhibition of epileptic activity was motivated by the following

reasons: The possibility of targeted NpHR-lentivirus delivery into an epileptic

focus would allow treatment of focal epilepsy, whilst avoiding the shut down of

the entire brain. The study would build on established work of our laboratory,

which demonstrated that stereotaxic application of tetanus toxin to motor

cortex of rodent brain, gives rise to drug-resistant spontaneous seizures,

characterized by behavioural arrest and bilateral facial twitching, mimicking

those of neocortical epilepsy (Nilsen et al., 2005).

Some initial difficulties were related to finding the best dose and supplier of TT,

as doses equal to or below 12.5 ng, and TT from Quadratech UK Ltd. (Epsom,

Surrey, UK), or Sigma failed to elicit seizures. The TT used in the experiments

described was a gift of G. Schiavo, Cancer Research Institute London, UK. The

experiments were performed in Prof. Kullmann’s lab, in collaboration with Dr.

Rob Wykes, Postdoctoral Fellow.

Experimental procedures are described in the Methods chapter. Briefly, TT

(12.5–17.5 ng) was injected into the motor cortex of 5–10 week-old

Sprague-Dawley rats together with 1.25 ml high-titer (108 infectious units/ml)
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2nd generation lentivirus carrying NpHR2.0 tagged with enhanced yellow

fluorescent protein (EYFP) under the Camk2a promoter (Zhang et al., 2007b).

We used two sets of control animals: one group was injected with NpHR

lentivirus alone, and the other with TT and a lentivirus expressing only green

fluorescent protein (GFP) or fluorescent beads. Immediately after the injection a

cannula was implanted at the same site with a 200 mm diameter optic fiber. A

cortical EEG electrode was also implanted, and connected to a subcutaneous

wireless transmitter for continuous EEG recording (bandwidth 1 – 160 Hz).

Between day 3 and 7 following tetanus toxin application, we observed the

development of spontaneous bursts of high-frequency EEG activity (HFA) >

70 Hz in the motor cortex, near the site of TT injection, lasting over 5 weeks (Fig.

6.1 and 6.2). A more extensive characterization of the model was carried out by

R. Wykes and J. Heeroma. With high doses of TT these electrographic

phenomena can be accompanied by contralateral limb tonic posturing and

clonus, head jerks, weight loss and/or status epilepticus (Wykes et al., 2012).

Epileptogenesis is also accompanied by persistent changes in the intrinsic

excitability of layer 5 pyramidal neurons (Wykes et al., 2012). There were also

electrographic seizures, interictal spikes and slow wAves (Wykes et al., 2012).

Behavioural arrest and forelimb myoclonus were documented on video

recordings (Wykes et al., 2012). To allow comparison of the differences in the

EEG traces in control and experimental animals, the EEG power was computed

from 50 minutes of continuous 2–4 second EEG epochs for each frequency band

by Fast Fourier transformation. Whilst control animals have a relatively linear

relationship between log power and log frequency, TT injected animals have a

significant increase in the high frequency components of the EEG between

70–120 and above 120 Hz (Fig. 6.1a). These changes, once apparent, persisted

for the entire duration of the experimental protocol (or at least 35 days in

animals monitored for longer periods of time).
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Figure 6.1: The tetanus toxin model of focal epilepsy. (a) Power values at dif-
ferent EEG frequency bands for control animals (n = 5) and TT injected animals
(n = 6) recorded on day 7–10 post injection (displayed as mean ± standard error
of mean (SEM)): delta (0–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz),
low gamma (30–50 Hz), high gamma (50–70 Hz), high frequency activity (HFA)
> 70 Hz (displayed in two bands of HFA 70–120 Hz and HFA 120–170 Hz). The
graph shows an increase in the HFA > 70 Hz in TT injected animals.
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Figure 6.2: High-frequency activity increase after TT injection. (a) The HFA
increase is significant in the 70–120 Hz band (p = 0.004, unpaired two-tailed t
test) and (b) 120–160 Hz band (p = 0.001, unpaired two-tailed t test) of TT injected
animals.
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Figure 6.3: The optogenetic setup. (a) Schematic of the implanted headstage for
simultaneous EEG recording and optical stimulation. (b) Representative EEG
traces before, during and after 561 nm laser illumination, showing a decrease in
HFA.

6.2 Optogenetic Setup

Optogenetic studies were performed on day 7–10 post-surgery, when both viral

expression (on immunohistochemistry) and HFA bursts (on EEG) were present.

An aim was to prevent animal suffering, as we had observed that a number of

animals would be severely affected by the toxin and would go on to develop

fixed limb posturing with constant HFA if kept alive for long periods of time.

On the experimental day, the implanted optic cannula (Fig. 6.3a) was connected

to a 561 nm laser (with analogue modulation, diode pumped, 75 mW nominal

power, Crystalaser) via a fiberoptic patch cord (fibre core 200 µm, NA 0.22, Doric

Lenses) and a rotatory commutator (Doric Lenses) to prevent entanglement of

the animal when connected to the fibre in the cage (Appendix Fig. A.4). Before

in vivo experiments, the laser output was calibrated by setting up a test light

path (laser→ optic fibre→ commutator→ patch cord→ implantable cannula)

identical to the experimental setup to be used in vivo, and by measuring the

light intensity at the tip of the test implantable cannula with a digital optical

power meter (PM100D with Slim Photodiode Power Sensors S130C, ThorLabs).

A stimulation intensity of 25 mW at the implantable fibre tip was chosen for the

experiments, in light of the following considerations: 1) NpHR2.0 requires an

irradiance value of 21.7 mW/mm2 to inhibit 98% of spikes in slice experiments

(Zhang et al., 2007b) and there is loss of light intensity through the tissue. 2)
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Figure 6.4: Irradiance loss in vivo. Irradiance values predicted at various tissue
depths and computed by means of on line tissue calculator for laser wavelength
561 nm, NA 0.22, fiber core 0.2 mm, light intensity at fiber tip 25 mW. At 0.5 mm
depth, the irradiance is ~22 mW.

Lentivirus expression volume is of approximately 0.04 mm3. 3) To attain

illumination with the required irradiance of 21.7 mW/mm2 of most of the

transduced volume, 25 mW were estimated to be adequate. Following my visit

to Karl Deisseroth’s lab, I was given a light transmission calculator for brain

tissue (available on-line1), which allows one to compute the actual irradiance

values (depending on the NA and the diameter of the fibre, the tissue and the

wavelength used). Irradiance values at various distances from the fibre vary

considerably (by more than one order of magnitude between 0 and 1 mm

distance from the fibre tip), and even illumination of the transduced cortical

volume is impossible (Fig. 6.4 ). I based the decision to continue using 25 mW at

the fibre tip based on my immunohistochemical findings, which showed

healthy neurons transduced at depths of more than 0.5 mm below the tip (Fig.

6.4). In view of the slow kinetics and high light intensity requirements of

NpHR2.0 (Zhang et al., 2007b), we decided to deliver constant light pulses, but

to avoid shifting the GABA reversal potential to depolarizing values by

prolonged NpHR activation (Raimondo et al., 2012) and tissue damage through

overheating, we limited pulse duration to 20 seconds. Laser stimulation was

given on and off in 20 s intervals for sessions of 1000 s duration, preceded by a

1www.stanford.edu/group/dlab/cgi-bin/graph/chart.php
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Figure 6.5: Optogenetic suppression of neuronal excitability reduces high fre-
quency activity in focal neocortical epilepsy. (a) Mean EEG power in the 120–
160 Hz band before, during and after laser stimulation in animals injected with
TT and NpHR lentivirus (n = 6), showing a significant decrease (p < 0.05; grey:
individual experiments; black: mean ± SEM). (b) Baseline HFA EEG power was
lower in animals injected with NpHR lentivirus alone, and unaffected by laser
illumination (n = 5; green: mean ± SEM). (c) Laser illumination had no effect on
HFA EEG power in control animals injected with TT together with either GFP-
expressing control virus or fluorescent beads (n = 8; individual experiments in
grey, blue: mean ± SEM).

1000 s baseline and followed by a further period of 1000 s (Fig. 6.3b). The

animals were observed for signs of discomfort or seizures throughout the

stimulation paradigm but were never visibly adversely affected by the light,

and displayed a variety of behaviours from grooming and exploration, to

feeding, resting and falling asleep. Overt motor seizures occurred at too low a

frequency to be expected during the 50 min duration of the experiment.

6.3 NpHR Reduces Epileptiform Activity In Vivo

We were able to demonstrate that suppressing network excitability by inhibiting

a subset of neurons in the epileptic focus was sufficient to reduce epileptiform

activity. To objectively quantify the differences in the EEG before, during and

after laser experimentation (1000 s each), we employed three independent

analysis methods. Firstly, we computed the mean power for 500 consecutive 2 s
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EEG epochs in each frequency band: delta (1–4 Hz), theta (4–8 Hz), alpha

(8–12 Hz), beta (12–30 Hz), low gamma (30–50 Hz), high gamma (50–70 Hz),

high frequency activity (HFA) in the band 70–120 Hz and in the band

120–160 Hz. No assumption was made on the distribution of the data within the

sets. The data before and during laser experiments were regarded as naturally

linked as they were collected in the same animal. The Wilcoxon matched pairs

signed-rank test was used to compare the means of the data before versus

during experimentation and a probability value of 0.03 was regarded as

significant. The unpaired two-tailed t-test was computed to compare mean

power between the experimental animal groups. Illumination with 561 nm light

in animals co-injected with TT and NpHR yielded a significant reduction in HF

power in the 120–160 Hz band compared to the 1000 s baseline period (Fig. 6.5a,

p = 0.03, Wilcoxon matched pairs signed-rank test). Lower EEG frequency

bands (< 70 Hz) were not affected by the laser stimulation (Appendix Fig. A.5).

Control animals injected with TT alone displayed a similar increase in the mean

HFA (120-160 Hz) band of their EEG but HFA power was not significantly

affected by laser stimulation with 561 nm light (Fig. 6.5b). In control animals

injected with NpHR alone, HFA power in the 120–160 Hz band was

significantly lower than in those with TT (p = 0.001, unpaired two-tailed t-test),

and remained unaffected by laser activation (Fig. 6.5c).

The EEG data were also analyzed by measuring the coastline (sum of the

absolute difference in voltage between consecutive sample points (Korn et al.,

1987)) for successive 2 s segments and computed for 1000 seconds before the

laser experiment, 1000 seconds during laser stimulation and the 1000 seconds

period after the experiment. The EEG coastline length was significantly reduced

from baseline in the TT/NpHR group during laser stimulation (Fig. 6.6a, p =

0.03, Wilcoxon matched pairs signed-rank test). The mean EEG coastline length

was significantly shorter in the control group injected with NpHR alone (p =

0.001, unpaired two-tailed t-test) and again unaffected by laser illumination

(Fig. 6.6b). In animals injected with TT and GFP virus (or beads), coastline was
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Figure 6.6: Antiepileptic effect of NpHR assessed by coastline analysis and
automated event detection. (a) Mean EEG coastline length was significantly
reduced by laser illumination in animals injected with TT/NpHR (symbols as
in Fig. 6.5). (b) Baseline coastline was lower in animals injected with NpHR
lentivirus alone, and unaffected by illumination. (c) EEG coastline length was
unaffected by laser illumination in animals injected with TT together with GFP
lentivirus or fluorescent beads. (d) Automated event classification used to de-
tect bursts of high-frequency activity revealed a significant decrease upon laser
illumination (n=8).

comparable to the baseline length in the TT/NpHR group, but was unaffected

by laser illumination (Fig. 6.6c).

The analysis described above includes all the EEG throughout the 50–minute

duration of the experiment. As neither the coastline length nor the HFA are

specific for seizures, we complemented the analysis above with an automated

event classifier as described in the Methods section, which allowed us to

separate epileptiform activity from spontaneous behaviour artifacts such as

from eating and grooming (Fig. 6.7 ). The number of events that fell into

categories independently validated as characteristic of epileptic animals was

counted prior to, during, and after intermittent illumination. The frequency of

events was increased in the animals injected with TT/NpHR and was

significantly reduced by illumination with 593 nm light, when analyzed with a

paired t-test after logarithmic transformation (Fig. 6.6d, p = 0.048).
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Figure 6.7: Examples of EEG events detected by automated event classifier.
Sample traces of “short high frequency bursts” (<250 ms), “long high frequency
bursts” (>250 ms, event power >6 x baseline), “long high frequency bursts of low
amplitude” (>250 ms, event power 5–6 x baseline), and “high frequency spikes”,
and artefacts from eating and grooming (from (Wykes et al., 2012)).
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(a) 25 µm (b) 100 µmGFP CaMKIIa GFP

Figure 6.8: Immunofluorescence for CaMKIIa in TT/NpHR injected animals.
(a) Micrograph obtained from an animal sacrificed on day 6 after surgery, show-
ing 38/51 EYFP positive cells (arrowheads) stained with Anti-GFP antibodies
(left panel, green) also stained for CaMKIIa (central panel in red, and right
panel showing overlay). (b) EYFP Immunofluorescence micrographs of 30 mm
sections obtained one month after TT/LV–Camk2a–NpHR2.0-EYFP injection
stained with Anti-GFP antibodies, confirming expression in layer 5 neurons.

6.4 NpHR targets CaMKIIa cells.

At the end of the experiments, the animals were terminally anaesthetized with

isoflurane and a lethal dose of pentobarbitone, perfused with artificial

cerebrospinal fluid (ACSF) and the brains fixed in 4% paraformaldehyde

overnight. 30 µm sections were double labelled with an anti-CaMKIIa and an

anti-GFP antibody to confirm expression of LV-Camk2a-NpHR2.0-EYFP in

principal neurons as described in the Methods section. DAPI was used to stain

nuclei and aid cell counting. Seventy-five percent of EYFP-expressing cells were

found to be CaMKIIa positive (Fig. 6.8 a, 131 cells counted, 3 visual fields, 1

animal), when cerebral cortex was injected with 500 nl of LV. The volume of

cortex containing all EYFP positive cells was estimated in an animal injected

with 1.25 µl of LV at one month post injection as approximately 0.04 mm3.

I wanted to address the question whether viral injection triggers a glial reaction.

On day 4 post headstage implantation there were 39% more GFAP positive cells

around the injection site than in a distant control area of cortex. There were also

marked morphological differences with a larger soma and thicker processes of
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Figure 6.9: Study of glial activation in virus-injected animals. (a) Fluorescent
micrograph (5x magnification) showing area of LV-Camk2a-NpHR2.0-EYFP/TT
injection (day 4) and expression of GFP (counterstained with anti-GFP antibody).
The cortical defect is due to the implantation of the optic cannula and recording
electrode. Scale bar 100 µm. (b) Fluorescence micrograph (5x magnification) of
the same section, shows increased numbers of GFAP positive cells (red). Scale
bar 100 µm. (c) 40x magnified confocal fluorescence micrograph showing LV-
Camk2a-NpHR2.0-EYFP/TT injected area and infiltration with bulky astrocytes.
Day 4 post-injection; scale bar 25 µm. (d) Slender astrocyte morphology in con-
trol area of cortex. Day 4 post-injection; scale bar 25 µm. (e) LV-CCK-NpHR
2.0-EYFP injected animals (day 33 post injection) showing astrocytes cluster-
ing around injection site (confocal image, 40x magnification, anti-GFP and anti-
GFAP stained). Scale bar 25 µm.
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astrocytes at the injection site in the first days after injection (Fig. 6.9c and d).

However, staining for GFAP revealed glial infiltration wherever screws

(inserted for headstage stability) were accidentally touching or penetrating the

cortical surface, and around the needle track in animals not implanted with a

cannula (Fig. 6.9e). I concluded that infiltration by glial cells can be triggered

just by mechanical trauma and is difficult to separate from glial infiltration due

to viral injection only.

Further, I wanted to address whether LV injection initiates apoptotic cell death.

I compared activated caspase-3 on day 6 versus at 1 month post injection.

Caspases are cysteine-aspartic acid proteases, responsible for most proteolytic

cleavages that lead to apoptosis. Caspase-3 is a key downstream effector

caspase, whose activation has been shown to be a requirement for the execution

of apoptotic cell death (Li and Yuan, 2008; Woo et al., 1998). There were more

activated caspase-3 positive cells on day 6 (Fig. 6.10, 196 cells/mm3, 1 animal)

versus one month, where approximately half the amount of activated caspase-3

was counted (118 cells/mm3, 1 animal (Fig. 6.10c, d). Only 5% of caspase

positive cells at one month were fluorescent neurons. Since the animals were

co-injected with TT, however, caspase activation might have been due to toxin

effects on cells, the effects of increased excitation, HFA and seizures and

generally due to the poorer health of the animals. Animals sacrificed at one

month were usually less affected by the toxin and had fewer high HFA bursts,

making it difficult to compare them with those sacrificed in the first week.

Additionally, a positive control, where neurons were known to die by

apoptosis, was not available, I therefore did not pursue this study further.

In summary, we confirmed that LV-Camk2a-NpHR2.0-EYFP was mainly

expressed in principal cortical neurons and that expression was present in the

first post-operative week and persisted for at least 4 months.
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(a) (b)

(c) (d)

25 µm

Figure 6.10: Immunofluorescence for caspase-3 activation. (a) Confocal
micrograph showing only activated caspase-3 positive cells (in red) in the
TT/LV–Camk2a–NpHR2.0-EYFP injected area on day 6 post injection. (b)
Confocal micrograph showing the same area of cortex counterstained with
anti-GFP (green) and anti-activated caspase-3 antibody (in red). (c) Confo-
cal micrograph showing only activated casepase-3 positive cells (in red) in the
TT/LV–Camk2a–NpHR2.0-EYFP injected area at 1 month post injection. Fewer
nuclei are stained by the anti-caspase-3 antibody. (d) Confocal micrograph
showing the same area of cortex counterstained with anti-GFP (green) and anti-
activated caspase-3 antibody (in red). All images at 40x magnification; scale bar
25 µm in all images.
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6.5 A Model to Dissect Epileptic Networks?

Despite the importance of HFA, it remains unclear how these oscillations are

generated in the cortex. Since the thalamus is known to be able to generate

rhythmic neuronal firing (Pedroarena and Llinás, 1997) in the cortex, such as

during sleep (a simple schematic of thalamocortical connections to the primary

motor cortex is sketched in Fig. 6.11a), one may tentatively hypothesize that

HFA in primary motor cortex may involve thalamocortical connections.

Optogenetic tools have already been used to discover pathway-specific

feed-forward circuits between thalamus and cortex using LVs (Cruikshank

et al., 2010). To investigate if thalamocortical networks play a role in generating

HFA bursts in the TT model, in preliminary experiments I injected

LV-Camk2a-NpHR2.0-EYFP into the venterolateral part of the anteroventral

nucleus of the thalamus (AVVL), known to project to and excite the motor

cortex (Zin-Ka-Ieu et al., 1998). Subsequently, I injected TT into primary motor

cortex and implanted an optic cannula above the injection site (Fig. 6.11b). I

hypothesized that if laser stimulation of primary motor cortex switches off

HFA, this would suggest that CaMKIIa-expressing excitatory thalamocortical

afferents are involved in the generation of HFA, either by driving the

oscillation, or just by providing tonic excitation. LV was correctly expressed on

day 8 post injection (Fig. 6.11c) although the fibres could not yet be tracked back

to cortex (Fig. 6.11c top panel) and stimulation with light did not reduce HFA >

70 Hz (n = 2) 8 days after injection. Optogenetic experiments to be pursued in

the future could address the timing of axonal expression of NpHR and whether

NpHR expression in axons reaches the motor cortex. Further, experiments

could test if NpHR inhibition of thalamocortical axons in primary motor cortex

could be used to suppress glutamate release and HFA > 70 Hz.
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Primary motor cortex

Interneuron

CaMKIIa positive neuron

Figure 6.11: Optogenetic inhibition of thalamocortical connections. (a)
Schematic of thalamocortical connections (Zin-Ka-Ieu et al., 1998). (b) LV-
Camk2a-NpHR2.0-EYFP was injected into the venterolateral part of the an-
teroventral nucleus of the thalamus (AVVL) and an optic cannula with a record-
ing electrode implanted in primary motor cortex, which was stimulated with
561 nm yellow light. (c) Schematic of coronal brain section at AV coordinates
from bregma - 1.3 mm, showing the location of the AVVL and, on the right, a
superimposed fluorescent micrograph (5x magnification) showing the correct
expression of LV-Camk2a-NpHR2.0-EYFP (bottom micrograph, 40x magnifica-
tion). On day 8 post injection, the fibre tracts were beginning to show fluo-
rescence (top micrograph, 40x magnification) but did not yet reach the site of
cannula implantation in primary motor cortex (AV +1 mm from bregma). Un-
surprisingly, optical stimulation with 561 nm laser light did not reduce HFA in 2
experimental animals. Brain section redrawn from (Paxinos and Watson, 1986),
plate 23.
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6.6 Discussion

In this final section of the chapter, I would like to discuss my results in the

context of the topic of high-frequency oscillations, how to modulate them and

their relationship to epilepsy. I will then discuss further open questions suitable

for optogenetic investigation in epilepsy models, and conclude by addressing

the potential translation of optogenetic treatment approaches to human

patients.

With the increased use of intracranial electrodes and the use of higher sampling

frequencies for the evaluation of epilepsy surgery patients (Worrell et al., 2004,

2008), it has been possible to record EEG frequencies above the gamma range,

which were undetectable by surface electrodes due to the low-pass filtering

properties of the skull vault. As discussed in the introductory chapter, the

oscillation frequency ranges above gamma have no strict definition or names.

Many authors use the term “ripples” for frequencies between 80–200 Hz and

“fast ripples” for frequencies above 200 Hz. The frequency range itself does not

define whether an oscillation is physiological or pathological, and the two must

be distinguished both in the hippocampus and in the cortex. In my work I have

used the term high-frequency activity (HFA) to describe EEG frequencies above

70 Hz. I will use the term high frequency oscillations (HFOs) when this term has

been used by authors in their published work. Physiological HFOs > 300 Hz can

be readily observed in human somatosensory cortex during stimulation of

peripheral nerves (Hashimoto, 2000; Hashimoto et al., 1999), as can HFOs >

200 Hz in rodent barrel cortex during stimulation of the thalamus or vibrissae

(Jones et al., 2000) and ripples (80–200 Hz) in the neocortex of cats during

vigilance or anaesthesia (Grenier et al., 2001). Fast ripple oscillations in the

dentate gyrus (DG) were the first documented pathological HFOs (Bragin et al.,

1999): they are not normally present in the DG and they are associated with

interictal spikes and more generally only with tissue capable of epileptogenicity

(Engel et al., 2009). This and the fact that they are detectable at the ictal onset,
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supports the hypothesis that they must play a role in seizure generation (Bragin

et al., 2005, 1999). “Epileptic” HFOs (60–100 Hz) have been documented in

human neocortex on the electrocorticogram of focal epilepsy patients implanted

with subdural electrodes both pre-ictally and during seizures (Worrell et al.,

2004). HFO rates were significantly higher in the seizure onset zone (Jacobs

et al., 2009b) (SOZ) and it has therefore been suggested that they be used as

biomarkers for epilepsy by aiding the identification of the SOZ in presurgical

patients. Additionally, two recent studies have reported a significantly better

outcome in patients whose HFO-generating tissue was completely removed

during epilepsy surgery (Akiyama et al., 2011; Jacobs et al., 2010). Some authors

postulate that HFOs may represent localized activity of GABA-ergic

interneurons (Hashimoto, 2000; Engel et al., 2009), whilst others favour a

pyramidal cell network coupled by gap-junctions at the level of the axon, as the

origin for very high frequency oscillations present in the epileptic human cortex

(Roopun et al., 2010). It is not known whether interfering with the HFOs would

improve seizure control in humans but recent studies have suggested that

seizures may arise not from a discrete focus, as previously thought, but from

concerted activity of epileptogenic networks. Therefore, modulating these

networks with optogenetic tools or chemically (Etherington and Frenguelli,

2004; Hamil et al., 2012) may prove successful in preventing and treating ictal

phenomena (Wilke et al., 2011).

The results of the experiments described above, may help answer a few of these

open questions: we have shown that injection of TT into primary motor cortex

models HFA bursts found in seizure onset zones of patients with focal epilepsy

and have demonstrated rapid and reversible suppression of HFA upon

photoactivation of NpHR. As to the networks generating the high-frequency

oscillations, our findings would support the gap-junction hypothesis mentioned

above, since halorhodopsin was targeted to excitatory neurons, and their

inhibition with 561 nm light reduced the power of the HFA. Alternatively, two
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other mechanisms could also explain our results: removal of tonic drive to

interneurons (removal of metabotropic glutamate receptor activation

(Whittington et al., 2000)) or attenuated inhibitory postsynaptic currents (iPSCs)

in pyramidal cells due to intracellular accumulation of Cl- and a reduced GABA

driving force.

Our data show that opsins are suitable tools to modulate and study epileptic

networks with great precision and specificity. It was interesting to observe that

in control animals, NpHR activation alone did not affect any of the EEG

frequency bands. This finding was supported by the laser experiments

performed in Karl Deisseroth’s lab at the Short Course in Optogenetics (April

2011), where I implanted an optic cannula into the primary motor cortex of a

transgenic Thy1-NpHR2.0 mouse and stimulated it with 593 nm yellow laser

light, without detectable effect on the animal’s behaviour or motor function.

One may tentatively suggest that the modest chloride influx through NpHR 2.0

may only suffice to disrupt or modulate the effects of small pyramidal networks

generating the HFOs. The smaller photocurrents generated by NpHR2.0 may

also explain why chloride influx does not shift the chloride reversal potential

and eventually cause GABAA receptor opening to lead to depolarization of the

membrane potential (Tonnesen et al., 2009), whilst the contrary has been shown

to be true when using NpHR3.0, which generates larger photocurrents and is

more effective at silencing neurons (Raimondo et al., 2012).

Equally interesting was the observation that a previously healthy transgenic

Thy1-ChR2 mouse developed a generalized tonic-clonic seizure when either the

stimulation frequency or the 473 nm laser intensity were too high, indicating

that the ictal activity did not remain localized to where photoactivation took

place generating only a focal seizure (as perhaps would have been expected

from focal stimulation of motor cortex) but that ictal activity rapidly spread and

secondarily generalized in an otherwise normal brain (aside from surgical

trauma from the implantation of the optic cannula). This observation supports
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the idea that synchronization of small scale networks can recruit distant

networks and quickly synchronize brain regions at considerable distance, again

suggesting that epilepsy may arise from abnormal synchronization of local

networks, which could therapeutically be perturbed without altering global

brain function and behaviour.

Several unanswered questions about the nature of high-frequency oscillations

and epilepsy can be addressed with optogenetic techniques: An intriguing one I

started to address, was whether thalamocortical connections are involved in

generating HFA in primary motor cortex. Instead of switching off principal cells

in primary motor cortex to attenuate HFA in TT animals, I injected thalamic

nuclei projecting to the primary motor areas with a Camk2a driven NpHR, and

stimulated their afferents in the cortex with green light to study their effect on

HFA, in analogy to previous work done on animal models of Parkinson’s

disease (Gradinaru et al., 2010). Further experiments are needed to understand

whether thalamocortical connections play a role in the generation of cortical

HFA. Optogenetic tools could further be used in epilepsy models to elucidate

the precise mechanism of action of deep brain stimulation in different

stimulation targets for different forms of focal and generalized epilepsy. Future

studies will benefit from newer generation opsins and viruses, and should make

use of an optogenetic proton-pump inhibitor to avoid influencing GABAergic

synaptic transmission with newer generation NpHRs (Raimondo et al., 2012).

Finally, and most importantly, our results indicate that optical inhibition of

neurons in the epileptogenic zone, combined with wireless telemetry and

seizure detection algorithms, represents a promising new platform to dissect

epileptic networks and to develop an automated device to stop seizures acutely,

akin to an implantable defibrillator. Since HFA is linked to seizure foci and the

removal of HFA containing cortex is linked with improved surgical outcome, it

is conceivable that by manipulating excitation and reducing HFA, this may

translate into reduced seizure activity. It will be important to test this
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hypothesis and to continue to study epilepsy and epileptogenesis not only at

the synaptic but at the network level, because “ultimately, curing epilepsy may

require not only halting epileptogenic processes but returning synaptic

networks to their pre-epileptic state or by creating a compensatory balance to

suppress the excess excitability” (Jacobs et al., 2009b).
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Chapter 7

General Discussion and Outlook

Several points have emerged from the experiments described in this thesis: In

the chapter dedicated to targeting opsins to interneurons we have seen that the

GAD67 and CCK promoters are not specific for interneurons or subsets of

interneurons. I have shown that in vivo, AAVs are expressed over a larger

volume than LVs, and I have discussed how to set up optogenetic experiments

in vitro using adequate light sources. In the chapter discussing optogenetic

induction and entrainment of CA3 oscillating networks I have shown that it is

possible to elicit oscillations in the gamma range by stimulating CA3 principal

cells with ChR2. I have also demonstrated how gamma oscillations respond to

periodic inputs and described the relationship between oscillation phase and

stimulus frequency. These results were adequately predicted by a model

developed by T. Akam based on the Wilson-Cowan equations. In the final

results chapter, I showed that injection of TT into primary motor cortex models

HFA bursts found in seizure onset zones of patients with focal epilepsy. I then

showed that halorhodopsin is reliably expressed and can be stimulated in vivo

in rat motor cortex, without clinical signs of dysfunction in the live animal, nor

histological features of cytotoxicity. Finally, I have demonstrated rapid and

reversible suppression of epileptic EEG activity upon photoactivation of NpHR.

I would like to conclude by adding a few final remarks and ideas and an
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outlook to the above mentioned main points:

Optogenetics has revolutionized neuroscience and provides the unique

opportunity to selectively interrogate and manipulate ensembles of neurons. As

better opsins are being developed, the technique will become more reliable and

easier to implement but great care is necessary when setting up each component

of the technique, from illumination to the choice of vector. The ability to study

excitatory and inhibitory interneurons separately and how they interact is one

of the main requirements of modern neuroscience. This can not be reliably

achieved with the GAD67 and CCK promoter-driven opsins in their current

form. If not by serendipity, it is unlikely we will achieve this goal if we do not

fundamentally question what genetic and transcriptional factors determine the

identity of an interneuron. Efforts to study this are already under way (Heinrich

et al., 2010). Whilst optogenetics has given us the means to drive populations of

neurons, it will be equally important to develop a 3-dimensional readout

strategy, in order to acquire precise recordings of neural activity in vivo. So far,

multielectrode arrays have had the disadvantage that they cause scarring and

inflammation, but new materials and the advances in nanotechnology hold

great promise for the future.

Viral vectors are important as study tools and for gene therapy of terminally

differentiated cells, but also carry the risk of mutagenesis and immune system

activation. Before viral gene therapy of the nervous system can be considered

“safe” for human applications, several issues need addressing: First it is vital to

establish the “gene dose” required and how to control it. The correct “dose” of

the lentiviral vector “ProSavin” (Oxford Biomedica) is currently under

investigation in a Phase II study in patients with Parkinson’s disease. Further it

is important, to achieve control over promoter activity and specificity to ensure

that the therapeutic gene reaches the diseased cells. This could be achieved by

inducible promoter systems. Finally, it is paramount to ensure no “spill-over”

of virus occurs into germ cells. Overall I think the best option available to date
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for human use would be a non-integrating lentivirus with an inducible

promoter system.

In the second result chapter, I touched on some of the most fascinating

questions in neuroscience: how brain activity is coordinated, information is

processed and routed (which eventually translates into what we call cognition

and behaviour). We demonstrated that the CA3 network has properties that

allow it to entrain and synchronize to input from the dentate gyrus, which may

help explain how coherence between these two anatomically coupled networks

arises. Thoughts about function of the coherence between CA3 and dentate

gyrus are only speculative, but we suggest it may help control information flow.

Oscillations are perturbed in disorders such as schizophrenia, epilepsy and

Parkinson’s disease and it will be an important task to test if the cognitive and

perceptual deficits associated with these disorders are due to the fact that

networks cannot synchronize or that the disruption in oscillatory activity affects

synaptic plasticity (Uhlhaas and Singer, 2010) in the hippocampus. To explore

the interplay of neuronal subtypes in generating and synchronizing oscillations,

a future strategy could exploit a far-red shifted ChR2 (Yizhar et al., 2011b) to

drive principal cells under the Camk2a promoter and PV-Cre transgenic mice

with a double-floxed stop blue-shifted ChR to drive fast-spiking interneurons.

Most importantly, oscillatory activity in different subclasses of neurons could be

perturbed or induced in the live animal to determine how this may impact on

behaviour. The optogenetic tools that will continue to be developed will

certainly help us find answers to these questions.

In the last result chapter, my experiments show that optogenetic treatment

approaches for epilepsy are feasible and may in the future become viable for

human patients. When considering opsins as future therapeutic tools, several

challenges will need addressing: Firstly, optogenetic tools need to be optimized,

with better and faster inhibitors generating large photocurrents and expressing

long-term in vivo. Secondly, the random insertion of lentiviral vectors with their
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inherent potential for mutagenesis, oncogenesis and the lack of control over

transgene expression represents a significant risk to patients. As discussed in

previous chapters, adeno-associated virus vectors with targeted insertions and a

better understanding of inducible and cell-subtype specific promoters are

required. Thirdly, caution must be taken in causing expression of potentially

immunogenic proteins, although there is no evidence so far that long-term

expression of opsins causes an immune response (Han et al., 2009a), possibly

because neurons reside in immunologically privileged areas behind the

blood-brain barrier. Further, the development of brighter and miniaturized

LEDs with better light coupling into optic fibres will allow powering of the light

source with a small battery and therefore development of implantable devices -

some prototypes are already available for small animal work (e.g. Kendall

Research Systems). Timing and duration of illumination will need to be

optimized and reliable seizure detection algorithms developed and validated in

human epilepsy. Eventually, this could lead to the development of implantable

devices that will trigger the generation of a “defibrillator” light pulse once the

electrical signature of a seizure onset is detected, yielding a radically new

treatment alternative for human disease. In addition, in parallel with scientific

tools, surgical techniques have advanced, too. Consequently, human brain

tissue has become available for culturing (Gibbons and Dragunow, 2010) and

for neurophysiological studies (Graebenitz et al., 2011; Roopun et al., 2010). It

should now also be the study of epileptic human brain tissue that will take our

knowledge of epilepsy a step further.

Finally, scientific collaboration across the fields of science will be crucial to

generate new ideas, develop new techniques and interpret results. It is the

prerequisite to advance our knowledge of the phenomena occurring in the brain

in health and disease. And it is those scientific collaborators, supervisors,

mentors, post-docs, friends and my husband I would like to thank for their

inspiration and support. They have helped me find my way in science, greatly
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advance my own understanding, and advance our shared knowledge a small

step forward.
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Figure A.1: Original Plasmids and Fluorophores. (a) Schematic of original plas-
mids used for cloning. (b) Activation spectra of ChR2 and NpHR (adapted from
(Zhang et al., 2007a)) (c) Table summarizing wavelengths required for excita-
tion of opsins and fluorophores, and emission wavelengths for EYFP, GFP and
mCherry.
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Figure A.2: Cloned Lentiviral Constructs.
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Table A.1: Fluorophores and Filter Settings Used for Confocal Microscopy Ex-
periments

Fluorophore Wavelength maximum [nm] Laser
excita-

tion
wave-
length
[nm]

Filter
set for

emitted
light
[nm]

Excitation Emission

AF 488 495 519 488 500-570

AF 568 578 603 532 570-690

Tetramethyl-
rhodamine

550 570 532 570-690

DAPI (4’,6-
diamidino-2-
phenylindole)

358 561 405 420-490
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Time (ms)

Field Potential 

(mV)

Figure A.3: Induction of gamma oscillations by carbachol.Example of local
field potential trace during carbachol perfusion inducing gamma oscillations of
slower frequency (~22 Hz) than those elicited by ChR2 activation (~52 Hz). Pyra-
midal neuron held at -55 mV (from (Akam et al., 2012)).

(a) Optic fibre (core diameter 200 μm, numerical aperture 0.22, cannula length 1.5 – 1.8 mm, Doric Lenses, Canada)  

(b)Wireless transmitter (A3019D, Open Source Instruments Inc; sampling frequency 512 Hz, bandwidth 0.7 – 160 Hz). 

(c) Fiberoptic patch cord (in black, right: NA 0.22, Doric Lenses) connected via a rotatory commutator (center: Doric 

Lenses) to laser fiberoptic cable (in orange, left: Crystalaser). (d) 561nm laser (Crystalaser) connected to microcontroller 

(Arduino) for pulsing the laser. (e) Faraday enclosure for continuous EEG telemetry. 

(a)

(d)
(e)

(b) (c)

Figure A.4: Optogenetic Equipment for In Vivo Experiments.
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Figure A.5: EEG Frequency Bands < 70 Hz are not affected by laser stimulation.
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5’ UTR 5’ untranslated region
AAV adeno associated virus
Acop-1 and Acop-2 Archaeal type Chlamydomonas opsin 1 and 2
ACSF artificial cerebrospinal fluid
Ad Adenovirus
AF Alexa Fluor
AP anterior-posterior
Arch archaerhodopsin-3
AVV adenoviral vector
AVVL anteroventral nucleus of the thalamus
BDNF brain-derived neurotrophic factor
BR bacteriorhodopsin
BSA bovine serum albumin
BSS balanced salt solution
CA1 cornu ammonis 1
CA3 cornu ammonis
Camk2a calcium calmodulin binding kinase 2a (promoter)
CaMKIIa calcium calmodulin binding kinase II alpha (protein)
CB-1 cannabinoid type 1
CCK cholecystokinin
cDNA complementary deoxyribonucleic acid
Chop-1 and 2 channelopsin 1 and 2
ChR1 and ChR2 channelrhodopsin-1 and -2
CLN2 ceroid lipofuscinosis
CMV cytomegalovirus
CNS central nervous system
cPPT central polypurine tract
CSRA and CSRB Chlamydomonas sensory rhodopsin A and B
D-PBS Dulbecco’s Phosphate-Buffered Saline
DAPI 4’6-diamidino-2-phenylindole
DBS deep brain stimulation
DEAE-Dextran diethylaminoethyl-dextran
DG dentate gyrus
DIV day in vitro
DMEM Dulbecco’s Modified Eagle Medium
DOTMA 1
E14 Embryonal day 14
EEG electroencephalographic
EF1a elongation factor 1 a
eNPAC AAV5-eNpHR3.0-2A-ChR2-EYFP
ER endoplasmatic reticulum
EYFP enhanced yellow fluorescent protein
FACS Fluorescent-activated cell sorting
FCS fetal calf serum

Table A.2: List of Abbreviations
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GABA gamma-aminobutyric acid
GAD glutamic acid decarboxylase
GE ganglionic eminence
GFAP glial fibrillary acidic protein
GFP green fluorescent protein
GPCR G protein coupled receptor protein
HBSS Hanks’ balanced salt solution
Hcrt prepro-hypocretin
HEK human embryonic kidney cells
HFA high frequency activity
HFO high frequency oscillations
HIV human immunodeficiency virus
HR halorhodopsin
HsHR Halobacterium salinarum
HSV herpes simplex virus
hSyn Synapsin
ILAE International League against Epilepsy
IPSPs inhibitory postsynaptic potentials
ITRs inverted terminal repeats
IU infectious units
L lateral
LED light emitting diode
LFP local field potential
LTRs long-terminal repeats
LV lentivirus
Mac a proton pump from the fungus Leptosphaeria maculans
MIT Massachusetts Institute of Technology
MoMLV Moloney murine leukaemia virus
NMDA N-Methyl-D-aspartate
NPY neuropeptide Y
p0 postnatal day 0
p20 postnatal day 20
PBS phosphate buffered saline
PCR polymerase chain reaction
PD Parkinson’s Disease
PDL Poly-D-Lysine
PFA paraformaldehyde
PRC phase response curve
qPCR quantitative PCR
rAAVs recombinant AAVs
s.c. subcutaneous
SEM standard error of mean
SFO step-function opsins
SIN self-inactivating vectors
SOZ seizure onset zone
SRI sensory rhodopsin I and II

Table A.3: List of Abbreviations - continued
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Thy1 Thymocyte differentiation antigen 1
TT tetanus toxin
V vertical
VFO very fast oscillation
VFs visual fields
VSV vesicular stomatitis virus
VSVg G-Protein of vesicular stomatitis virus
WPRE Woodchuck Hepatitis Virus Post-transcriptional Regulatory Element
YFP yellow fluorescent protein

Table A.4: List of Abbreviations - continued
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