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Abstract

Recursive Bayesian estimation using sequential Monte Carlos methods is a powerful numer-

ical technique to understand latent dynamics of non-linear non-Gaussian dynamical systems.

Classical sequential Monte Carlos suffer from weight degeneracy which is where the number

of distinct particles collapse. Traditionally this is addressed by resampling, which effectively

replaces high weight particles with many particles with high inter-particle correlation. Frequent

resampling, however, leads to a lack of diversity amongst the particle set in a problem known

as sample impoverishment. Traditional sequential Monte Carlo methods attempt to resolve

this correlated problem however introduce further data processing issues leading to minimal to

comparable performance improvements over the sequential Monte Carlo particle filter.

A new method, the adaptive path particle filter, is proposed for recursive Bayesian estima-

tion of non-linear non-Gaussian dynamical systems. Our method addresses the weight degen-

eracy and sample impoverishment problem by embedding a computational intelligence step of

adaptive path switching between generations based on maximal likelihood as a fitness function.

Preliminary tests on a scalar estimation problem with non-linear non-Gaussian dynamics

and a non-stationary observation model and the traditional univariate stochastic volatility prob-

lem are presented. Building on these preliminary results, we evaluate our adaptive path particle

filter on the stochastic volatility estimation problem. We calibrate the Heston stochastic volatil-

ity model employing a Markov chain Monte Carlo on six securities. Finally, we investigate

the efficacy of sequential Monte Carlos for recursive Bayesian estimation of astrophysical time

series. We posit latent dynamics for both regularized and irregular astrophysical time series,

calibrating fifty-five quasar time series using the CAR(1) model. We find the adaptive path par-

ticle filter to statistically significantly outperform the standard sequential importance resampling

particle filter, the Markov chain Monte Carlo particle filter and, upon Heston model estimation,

the particle learning algorithm particle filter. In addition, from our quasar MCMC calibration

we find the characteristic timescale τ to be first-order stable in contradiction to the literature

though indicative of a unified underlying structure. We offer detailed analysis throughout, and

conclude with a discussion and suggestions for future work.
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Chapter 1

Introduction

The frequentist approach to probability, the populist view, is whereby the probability of an

uncertain event is defined by the frequency of that event based on previous observations. Such

an approach is sufficient provided you have an accurate account of many past instances of the

event. Bayesian probability theory enables plausible reasoning from logical consistency, where

we reason in situations where we cannot argue with certainty (as in the frequentist approach). It

is frequently conflated to be subjective in contrast to the objectivity afforded to the frequentist

approach. However, the subjectivity in the Bayesian approach is a mis-drawn fact, mainly by

scholars of competing schools. Bayesian probability does indicate a degree-of-belief but this is

conditioned on ones knowledge, as in rational actors, which is why Bayesian statistics always

explicitly states the conditioning (Sivia & Skilling 2006). Our research takes the Bayesian

approach, enabling us to reason about uncertainty in our beliefs in the temporal evolution of

data.

A time series is sequentially ordered data which could take discrete or continuous values.

Time series analysis, the process of discerning patterns within observed serial data, is both well

known and widely studied across disciplines. State space modeling of time series enables us to

reason probabilistically over time under a Bayesian framework. Here, Bayesian inference aims

to elucidate sufficient variables which accurately describe the dynamics.

Stochastic filtering is the process of recovering the latent state variable by removing obser-

vation errors and computing the joint posterior distribution over the most recent state. Bayesian

filtering adopts Bayesian reasoning within the stochastic filtering paradigm to approximate cal-

culation of the joint posterior distribution. This process is repeated upon every new observation

to allow us to revise our understanding. This iterative, recursive Bayesian filtering process en-

ables us to estimate the latent state variable through the observation of a large quantity of data.

The Bayesian recursions include a prediction and update step: we estimate the latent state a

priori and using this prediction and a new observation obtain an a posteriori estimate.
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Linear estimators do not provide closed-form solutions to distribution approximations fre-

quently encountered in real-world problems. Sequential Monte Carlo approximation is a numer-

ical method for optimal estimation in non-linear non-Gaussian settings. The main advantage of

sequential Monte Carlos for recursive Bayesian estimation is that they do not rely on any local

linearization or abstract functional approximation. Here, the state space is populated with par-

ticles weighted according to some probability measure. The particle system evolves and adapts

to the temporal evolution of the state space.

The main problem with sequential Monte Carlo methods is weight degeneracy. This is

where the particle systems collapses onto a few non-zero importance weights. Typically degen-

eracy is addressed using resampling - replacing particles with high weight with many particles

with high inter-particle correlation - though this leads to a lack of diversity amongst the particles

(a problem known as sample impoverishment). Traditional sequential Monte Carlo methods at-

tempt to resolve these correlated problems however introduce further data processing issues

resulting in minimal to comparable performance improvements over the traditional sequential

Monte Carlo particle filter. There have been a number of attempts to address this problem by

hybridizing the original particle filtering algorithm with ideas from evolutionary computation

and genetic algorithms with application to a variety of fields and problems.

1.1 Motivation & Approach

Recursive Bayesian estimation is a very important task in many real-world applications. It

enables us to reason under uncertainty and addresses shortcomings underlying deterministic

systems and control theories which do not provide sufficient means of performing analysis

and design (Maybeck 1979). In addition, parametric techniques such as the Kalman filter and

its extensions, though they are computationally efficient, do not reliably compute states and

cannot be used to learn stochastic problems where the underlying process is non-linear and

non-Gaussian.

For instance, sequential Monte Carlo methods have long been applied to the stochas-

tic volatility estimation problem in computational finance. Latent dynamics of the stochas-

tic volatility process are known to be highly complex, commonly modeled as mean-reverting

square-root diffusions. It has real-world implications both for the market as a whole and as

for the institution performing the estimation. Clearly, it is imperative to have the most accu-

rate estimate to aid correct derivative pricing, securities trading and to manage exposure to the

market. Similarly, there are many non-linear non-Gaussian dynamical systems in the physi-
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cal world around us where mathematical models posited by deterministic system and control

theories simply fail.

Our research is primarily focused on recursive Bayesian estimation of non-linear non-

Gaussian dynamical systems. We use discrete time observations to discern the stochastic pro-

cess evolution and benchmark these time series using a Markov chain Monte Carlo to calibrate

the underlying state space model. This allows us to estimate the parameter and state estimation

posteriors. Thereafter we run sequential Monte Carlos and compare estimation accuracy in aid

of providing practical results for direct application in real-world settings.

1.2 Problem Statement
Stochastic filtering and optimal estimation of complex distributions is a particularly pertinent

problem in real-world applications. Recursive Bayesian estimation using sequential Monte

Carlo methods is a common numerical technique, used to solve non-linear non-Gaussian esti-

mation problems where linear estimators fail.

Despite a concerted effort from within the sequential Monte Carlo community to address

weight degeneracy and sample impoverishment, the major open problem within the sequential

Monte Carlo domain, there still lacks a powerful filter which addresses this problem conclu-

sively and provides statistically significant improvements in estimation accuracy. We propose

to address the weight degeneracy and sample impoverishment problem by embedding an evo-

lutionary computation step (a heuristic selection scheme) of adaptive path switching between

generations based on maximal likelihood as a fitness function into the new adaptive path parti-

cle filter (APPF).

Our research hypothesizes our APPF will yield increased accuracy for recursive Bayesian

estimation of non-linear non-Gaussian dynamical systems compared to contemporary filters.

We shall test this on simulated and real financial securities time series, estimating the stochastic

volatility. In addition we shall test this in combination with assessing the efficacy of sequential

Monte Carlo methods for astrophysical time series analysis.

1.3 Contribution
This thesis provides a novel sequential Monte Carlo method which leverages a computational

intelligence step of adaptive path switching between generations based on maximal likelihood

as a fitness function to yield enhanced estimation accuracy for recursive Bayesian estimation of

non-linear non-Gaussian dynamical systems compared to contemporary filters, and an assess-

ment of the efficacy of the use of sequential Monte Carlo methods for modeling astrophysical

time series.
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This thesis makes the following contributions:

1. The development of a new sequential Monte Carlo method based on computational intel-

ligence for recursive Bayesian estimation of non-linear non-Gaussian dynamical systems.

(a) Outperformed contemporary filters in a scalar estimation problem and the univariate

log-stochastic volatility estimation problem.

(b) Successfully addresses weight degeneracy and sample impoverishment problem of

traditional sequential Monte Carlo methods.

2. The application of a new sequential Monte Carlo method to the stochastic volatility prob-

lem.

(a) Calibrated on Heston stochastic volatility model.

(b) Outperformed contemporary filters in estimation of six securities.

3. The pioneering application of sequential Monte Carlo methods to astrophysical time se-

ries analysis.

(a) Postulated latent dynamics of regularized and irregular quasar time series.

(b) Our novel sequential Monte Carlo method outperformed contemporary filters in

estimation of regularized quasar time series.

(c) Our novel sequential Monte Carlo method outperformed contemporary filters in

estimation of irregular quasar time series.

i. Calibrated CAR(1) model on fifty-five quasar time series.

ii. Found the characteristic timescale τ of quasars to be first-order stable.

1.4 Thesis Outline
The thesis is organized as follows:

• Chapter 2 proceeds to detail state space modeling and Bayesian inference. It sets out

the material relevant to our substantive work including an exposition of sequential Monte

Carlo methods, Markov chain Monte Carlo and computational intelligence for optimiza-

tion. We highlight and discuss open problems in the sequential Monte Carlo community.

• Chapter 3 introduces our model including its conceptual underpinnings. The model is

formally justified alongside its introduction. We provide some preliminary results on a

scalar estimation problem and on the log-stochastic volatility estimation problem.
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• Chapter 4 provides details of our stochastic volatility modeling experimental results.

• In Chapter 5 we detail our investigation into the efficacy of sequential Monte Carlo meth-

ods for astrophysical time series analysis. We provide details of quasar light curve esti-

mation using sequential Monte Carlo methods..

• Chapter 6 discusses our work in context, focusing on our methodology, significance and

contributions.

• Chapter 7 provides summary conclusions of our work and discusses avenues for future

work.

1.5 Publications
• A. Hanif and R. Smith. “Stochastic Volatility Modeling with Computational Intelligence

Particle Filters.“ Genetic and Evolutionary Computation Conference (GECCO), ACM,

2013
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• A. Hanif and R. Smith. “Selection Schemes in Sequential Monte Carlos for Stochastic

Volatility Estimation.“ IEEE Transactions on Cybernetics, submitted. 2013.

• A. Hanif and R. Smith. “Generation Based Path-Switching in Sequential Monte-Carlo

Methods.” IEEE Congress on Evolutionary Computation (CEC), 2012 , pages1–7. IEEE,

2012.



Chapter 2

State Space Models & Bayesian Inference

In this chapter we detail the background to state space modeling and Bayesian inference. We

begin in Section 2.1 by formally introducing the underlying concepts. We discuss control the-

ory concepts and proceed to describe stochastic filtering. In Section 2.2 we detail sequential

Monte Carlo methods, exploring the state-of-the-art of these algorithms for recursive Bayesian

estimation. We move onto describe Markov chain Monte Carlo methods in Section 2.3. These

batch processing techniques are used to learn latent components of complex distributions where

we either know or do not know the complete latent conditional distributions. In Section 2.4 we

introduce computational intelligence methods, and proceed to review the existing literature on

the symbiosis of computational intelligence and sequential Monte Carlo methods. We conclude

this Chapter in Section 2.5 by discussing the state-of-the-art of both sequential Monte Carlo

methods and synergistic computational intelligence methods, highlighting open problems.

2.1 Stochastic Models, Estimation and Control Theory
To facilitate probabilistic reasoning over time we will be adopting state space representations

under a Bayesian framework. A state space model of a time series {yt : t = 1, 2, ...} is

composed of two equations: the state equation and the observation equation. The observation

equation relates the observed data {yt} to the latent states {xt : t = 1, 2, ...}. Consider the

discrete time estimation problem (Gordon, et al. 1993) with the system model:

yt = ht(xt, vt) (2.1)

xt+1 = ft(xt,wt) (2.2)

in which we represent the observation vector at time t by yt ∈ Rp, which satisfies (2.1) where

ht : Rn × Rr → Rp is the observation function and vt ∈ Rr is the state error term whose

known distribution is independent of both system noise and time. Similarly, we represent the

state vector at time t by xt ∈ Rn, which satisfies (2.2) where ft : Rn×Rm → Rn is the system

transition function and wt is an error term whose known distribution is temporally independent.
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There are very few system models for which an analytic solution is available. Consider the

linear Gaussian model:

Yt = HtXt + Wt (2.3)

Xt+1 = FtXt + Vt (2.4)

where (2.3) is the measurement equation with {Wt} ∼ WN (0, Rt) observation errors; and

(2.4) is the state equation with {Vt} ∼ WN (0, Qt) state description errors. We assume that

the observation errors and state errors are uncorrelated. That is ∀s, ∀t : E[WsVt] = 0. Finally,

the initial state X0 is assumed to be uncorrelated with all errors {Vt} and {Wt}. Here, the

Kalman filter (KF) provides an analytic, optimal linear solution. However, such assumptions

of linearity and Gaussianity do not hold in most real-world applications which conversely are

of concern to us necessitating an investigation into models of estimation which can be used

practically.

Bayesian inference aims to elucidate sufficient variables which accurately describe the dy-

namics of the process being modeled. In such temporal models there are three major inference

problems (Russell, et al. 2010, Tsay 2010):

• Filtering: recovering the state variable xt given Ft with data up to and including time t .

To essentially remove observation errors and compute the posterior distribution over the

most recent state: P (Xt|Y0:t) .

• Prediction: forecasting the observation yt+h for h > 0 and Ft given all observations up

to t . To calculate the posterior distribution over the future state given all evidence up to

date: P (Xt+h|Y0:t) where h > 0 .

• Smoothing: to estimate the state xt given FT , where T > t . To calculate the posterior

distribution over a past state given all evidence up to the present: P (Xt|Y0:T ) where

T > t .

Stochastic filtering underlies Bayesian filtering and is an inverse statistical problem: you

want to find inputs as you are given outputs (Chen 2003). The principle foundation of stochastic

filtering lies in recursive Bayesian estimation where we are essentially trying to compute the

joint posterior. There are two key assumptions in deriving the recursive Bayesian filter: (i) that

the state process follows a first-order Markov process:

(xn|x0:n−1, y0:n−1) = p(xn|xn−1) (2.5)



2.2. Sequential Monte Carlo Methods 8

and (ii) that the observations and states are independent:

(yn|x0:n−1, y0:n−1) = p(yn|xn) (2.6)

For simplicity, we shall denote Yn as the set of observations y0:n := {y0, ..., yn} and p(xn|Yn)

as the conditional probability density function (pdf) of xn. From Bayes rule we have:

p(xn|Yn) =
p(Yn|xn)p(xn)

p(Yn)

=
p(yn,Yn−1|xn)p(xn)

p(yn,Yn−1)

=
p(yn|Yn−1, xn)p(Yn−1|xn)p(xn)

p(yn|Yn−1)p(Yn−1)

=
p(yn|Yn−1, xn)p(xn|Yn−1)p(Yn−1)p(xn)

p(yn|Yn−1)p(Yn−1)p(xn)

=
p(yn|xn)p(xn|Yn−1)

p(yn|Yn−1)

(2.7)

We see from (2.7) the joint posterior density p(xn|Yn) is described by three key terms:

• Prior: the knowledge of the model is described by the prior p(xn|Yn−1)

p(xn|Yn−1) =

∫
p(xn|xn−1)p(xn−1|Yn−1)dxn−1 (2.8)

• Likelihood: p(yn|xn) essentially determines the observation noise in (2.1).

• Evidence: the denominator of the pdf, involves an integral of the form

p(yn|Yn−1) =

∫
p(yn|xn)p(xn|Yn−1)dxn (2.9)

The calculation and or approximation of these three terms is the base of Bayesian filtering and

inference.

2.2 Sequential Monte Carlo Methods

There are two approaches to obtain the posterior distribution of concern defined in (2.7): para-

metric Gaussian approximation or non-parametric approximation using Monte Carlo techniques

(Nikolaev & Smirnov 2007). Though they are computationally efficient, parametric techniques,

the KF and its extensions, do not reliably compute states and cannot be used to learn stochas-

tic problems where the underlying process is non-linear and non-Gaussian. Anderson & Moore

(1979) highlight some applications of Kalman techniques though, conversely, highlight difficul-

ties in calculating closed-form solutions to distribution approximations and propose application

of numerical methods to overcome these difficulties.
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Sequential Monte Carlo approximation, a numerical method, of optimal estimation prob-

lems in non-linear non-Gaussian settings is commonly performed using particle methods (Chen

2003, Gordon et al. 1993, Kitagawa 1996, Liu & Chen 1998, Carpenter, et al. 1999, Bauwens,

et al. 1999, Doucet, et al. 2001, Maskell 2004). The main advantage of these methods is that

they do not rely on any local linearization or abstract functional approximation. This is at the

cost of increased computational expense however, given breakthroughs in computing technol-

ogy and the related decline in processing costs, this is not considered a barrier except in extreme

circumstances.

2.2.1 Importance Sampling

Monte Carlo approximation using particle methods calculates the expectation of the pdf by

sampling (Chen 2003). The state space is populated with particles weighted according to some

probability measure. The higher this measure the denser the particle concentration. The state

space evolves temporally with the particle system evolving around this. Specifically, from (2.7)

and (Nikolaev & Smirnov 2007):

p(xt|y0:t) =
p(yt|xt)p(xt|y0:t−1)

p(yt|y0:t−1)
(2.10)

where p(xt|y0:t) is the state posterior (filtering distribution), p(yt|xt) is the likelihood,

p(xt|y0:t−1) is the state prior (predictive distribution) and the denominator p(yt|y0:t−1) is the ev-

idence. The state prior is defined by: p(xt|y0:t−1) =
∫
p(xt|xt−1, y0:t−1)p(xt−1|y0:t−1)dxt−1

where p(xt|xt−1, y0:t−1) is the transition density and p(xt−1|y0:t−1) is the previous filtering

distribution.

We approximate the state posterior by f(xt) with i samples of x(i)t . To find the mean

E[f(xt)] of the state posterior p(xt|y0:t) at t, we generate the state samples x(i)t ∼ p(xt|y0:t).

Though theoretically plausible, empirically we are unable to observe and sample directly from

the state posterior. We replace the state posterior by a proposal state distribution (importance

distribution) π which is proportional to the true posterior at every point: π(xt|y0:t) ∝ p(xt|y0:t).

We are thus able to sample sequentially independently and identically distributed (i.i.d.) draws

from π(xt|y0:t) giving us:

E[f(xt)] =

∫
f(xt)

p(xt|y0:t)
π(xt|y0:t)

π(xt|y0:t)dxt

≈
∑N

i=1 f(x
(i)
t )w

(i)
t∑N

i=1w
(i)
t

(2.11)

When increasing the number of draws N this average converges asymptotically (as N → ∞)

to the expectation of the true posterior according to the central limit theorem (Geweke 1989).
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This convergence is the primary advantage of sequential Monte Carlo methods as they

provide asymptotically consistent estimates of the true distribution p(xt|y0:t) (Doucet &

Johansen 2008).

The foundation of common particle methods is importance sampling (IS) which relies on

the introduction of an importance density qt(x1:t) where given:

πt(x1:t) > 0⇒ qt(x1:t) > 0

we have the IS identities

πt(x1:t) ≡
wt(x1:t)qt(x1:t)

Zt

Zt ≡
∫
wt(x1:t)qt(x1:t)dx1:t

where wt(x1:t) is the unnormalized weight function, with γt : χt → R+ known pointwise:

wt(x1:t) =
γt(x1:t)

qt(x1:t)

2.2.2 Sequential Importance Sampling

IS allows us to sample from complex highly-dimensional distributions though exhibits linear

increases in complexity upon each subsequent draw (Doucet & Johansen 2008). To admit fixed

computational complexity we use sequential importance sampling (SIS). Given a general state

space model of the form (2.1), (2.2) where the proposal distribution is Markovian, SIS is defined

as in Table 2.1. Thus a weight reflects the particle density in the surrounding state space.

The SIS approach is very sensitive to the choice of proposal density with typical choices

being the transition probability of states (Kitagawa 1996, Freitas, et al. 2000). This proposal

density minimizes the variance of weights critical to the asymptotic convergence of the algo-

rithm. However, SIS suffers from some critical issues. Primarily, the variance of estimates

increases exponentially with n and leads to fewer and fewer non-zero importance weights

(Doucet & Johansen 2008). This problem is known as weight degeneracy. To alleviate this is-

sue, states are resampled to retain the most pertinent contributors, essentially removing particles

with low weights with a high degree of certainty (Gordon et al. 1993). It addresses degeneracy

by replacing particles with high weight with many particles with high inter-particle correlation

(Chen 2003).

2.2.3 Sequential Importance Resampling

There are a number of resampling schemes that can be adopted. The three most common

unbiased schemes are systematic, residual and multinomial. Of these multinomial is the most
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Table 2.1: SIS Algorithm

1. Initialization: generate the prior state distribution

X
(i)
0 ∼ q(x0)

and propagate the particles to compute the weights

w0(X
(i)
0 )

W
(i)
0 ∝ w0(X

(i)
0 )

and the likelihoods

yt = ht(x
(i)
t , wt)↔ p(yt|x(i)

t )

2. Importance sampling: For each subsequent time step, sample

X
(i)
t ∼ q(xt|X(i)

0:t−1)

3. Weight update: update weights by the likelihood, given by the definition wt =

p(xt|y0:t)/q(xt|y0:t)

w
(i)
t ≈ w

(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1, yt)

≈ w
(i)
t−1p(yt|x(i)

t )

4. Repeat from importance sampling step.

computational efficient though systematic resampling is the most commonly used and performs

better in most, but not all, scenarios compared to other unbiased sampling schemes (Douc &

Cappé 2005). Resampling does add noise (Chopin 2004) however, in a sequential framework

computational effort is focused on areas of high probability mass. It is theoretically possible

to classify particles as false-positives though the resampling step overcomes these issues. It

provides future stability at the cost of increased short term variance (Doucet & Johansen 2008).

We provide the sequential importance resampling (SIR) algorithm using the transition prior as

the proposal distribution (Chen 2003) in Table 2.2.

Resampling is at the cost of added variance, so it is best to resample only when degeneracy

passes a certain threshold for a given measure. The effective sample size (ESS) is defined at

time t:

Neff =

(
N∑
i=1

(W (i)
n )2

)−1
(2.12)

and measures the variability of unnormalized weights and allows us to measure degeneration

(Kong, et al. 1994). We provide the full adaptive SIR algorithm using the transition prior as
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Table 2.2: SIR Algorithm

1. Initialization: for i = 1, ..., Np, sample

x(i)
0 ∼ p(x0)

with weights W (i)
0 = 1

Np
.

For t ≥ 1

2. Importance sampling: for i = 1, ..., Np, draw samples

x̂(i)
t ∼ p(xt|x(i)

t−1)

set x̂(i)
0:t = {x(i)

0:t−1, x̂(i)
t }

3. Weight update: calculate the importance weights

W
(i)
t = p(yt|x̂

(i)
t )

4. Normalize weights:

W̃
(i)
t =

W
(i)
t∑Np

j=1 W
(j)
t

5. Resampling: Generate Np new particles x(i)
t from the set {x̂(i)

t } according to the importance

weights W̃ (i)
t .

6. Repeat from importance sampling step.

the proposal distribution (Chen 2003) in Table 2.3. Unfortunately, frequent resampling leads to

a lack of diversity amongst particles in a problem known as sample impoverishment (when a

particle set is impoverished there are many repeated points). Thus the weight degeneracy and

sample impoverishment are part of one larger correlated problem.

2.2.4 Auxiliary Particle Filter

Despite circumvention schemes (i.e. asymptotic justification) it is inherently impossible to

represent a highly-dimensional distribution by a finite sample set, however ergodicity of the

underlying process will smooth and prevent errors accumulating over time. Application of

resampling methods before importance weight calculations minimizes the loss of information.

The SIR algorithm uses ex-ante information from the likelihood model to inform sampling,

avoiding sampling of low likelihood and thus less informative particles. A generalization of

this ex-ante information usage would be advantageous in situations where it is not possible to

make use of the optimal proposal distribution (Doucet & Johansen 2008, Chen 2003). We shall

now introduce an algorithm which achieves just this.
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Table 2.3: SIS/R Algorithm

1. Initialization: for i = 1, ..., Np, sample

x(i)
0 ∼ p(x0)

with weights W (i)
0 = 1

Np
.

For t ≥ 1

2. Importance sampling: for i = 1, ..., Np, draw samples

x̂(i)
t ∼ q(xt|x(i)

t−1, yo:n)

set x̂(i)
0:t = {x(i)

0:t−1, x̂(i)
t }

3. Weight update: calculate the importance weights

W
(i)
t = W

(i)
t−1p(yt|x̂

(i)
t )

4. Normalize weights:

W̃
(i)
t =

W
(i)
t∑Np

j=1 W
(j)
t

5. Resampling: If Neff < Nthres: generate Np new particles x(i)
t from the set {x̂(i)

t } according

to the importance weights W̃ (i)
t , return otherwise.

6. Repeat from importance sampling step.

The general particle filter we have detailed suffers from two critical problems (Pitt &

Shephard 1999). Firstly, when we have outliers the distribution of weights will become uneven

and will lead to a breakdown of the particle system, requiring larger and larger values of Np

draws to approximate samples from the target filtering density. The second, and most debili-

tating weakness, is as we are using crude approximation techniques the tails of the distribution

are poorly approximated. This is particularly pertinent in time series whose distributions are

fat-tailed.

The auxiliary particle filter (APF) provides an approach to reduce the effects of outliers

whilst handling fat-tailed distributions. It was introduced by Pitt & Shephard (1999) and, as

the SIR, focuses on particles in high probability regions of the state space. The APF essen-

tially simulates particles using auxiliary indices to highlight regions and informative particles

(Nikolaev & Smirnov 2007). Given the filtering density:

p(xt|y0:t) ∝ p(xt|yt)
∫
p(xt|xt−1)p(xt−1|y0:t−1)dxt−1

∝
Np∑
i=1

W
(i)
t−1p(yt|xt)p(xt|x(i)t−1)

(2.13)
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we introduce an auxiliary variable ξ where ξ ∈ {1, ..., Np} which allows us to express an

augmented joint probability density:

p(xt, ξ = i|y0:t) ∝ p(yt|xt)p(xt, ξ = i|y0:t−1) (2.14)

Combining (2.13) and (2.14) we can write the filtering density as the approximation:

p(xt|y0:t) ∝
Np∑
i=1

w
(i)
t−1p(yt|x

(i)
t , ξ

i)p(xt|x(i)t−1) (2.15)

where the auxiliary variable i are indices of the particles from the previous time step t− 1. The

proposal distribution is thus:

q(xt, ξ|y0:t) ∝ q(ξ|y0:t)q(xt|ξ, y0:t) (2.16)

where:

q(ξi|y0:t) ∝ p(yt|µ
(i)
t )w

(i)
t−1 (2.17)

q(xt|ξi, y0:t) = p(xt|x(i)t−1) (2.18)

where µ(i)t is the point estimate mean, mode or sample value. The auxiliary variable ξ allows us

to obtain initial point estimates µ(i)t that characterize the transition prior p(xt|x(i)t−1) to evaluate

predictive likelihoods of particles p(yt|µ
(i)
t ). These are used to compute simulation weights

w
(i)
t−1p(yt|µ

(i)
t ) which are normalized and passed to the sampling algorithm to draw states x(i)t ∼

q(xt|ξi, y0:t) = p(xt|xξ
i

t−1). These simulated particles with indices ξi from t− 1 are likely to be

close to the true state (Nikolaev & Smirnov 2007).

The true posterior is approximated by:

p(xt|y0:t) ∝
Np∑
i=1

w
(i)
t−1p(yt|µ

(ξ=i)
t )p(xt|x(ξ=i)t−1 ) (2.19)

and from (2.17) and (2.18) the importance weights are recursively updated by:

w
(i)
t = w

(ξ=i)
t−1

p(yt|x
(i)
t )p(x(i)t |x

(ξ=i)
t−1 )

q(x(i)t , ξi|y0:t)

∝
p(yt|x

(i)
t )

p(yt|µ
(ξ=i)
t )

(2.20)

The APF takes advantage of ex-ante information however, when the process noise is large

can fail to focus on pertinent particles and the difference between the PF and APF will be in-

significant (Arulampalam, et al. 2002). Where process noise is small the APF performs signifi-

cantly better. Additionally, APF is more flexible and reliable than the generic PF with typically

lower variance results.
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2.2.5 Gaussian Mixture Particle Filters

Kotecha & Djuric (2003a) introduce Gaussian particle filters (GPF) for filtering dynamic state

space models. The proposed models have Gaussian noise terms with non-linear functions in the

state and measurement equations. The underlying idea which forms the base of the GPF, and the

Gaussian sum particle filter (GSPF) which we shall see later, comes from classical stochastic

control theory. It states that the predictive and filtering distributions in dynamical models can

be approximated as Gaussians (mixtures of the normal distribution) (Anderson & Moore 1979).

We are motivated to use the posterior mean computed using the GPF as it converges asymptot-

ically to the minimum mean square error (MMSE) estimate, something which is not exhibited

in extensions of the KF (Haykin 2001, Wan & Van Der Merwe 2001).

The GPF delivers more accurate mean and variance estimates than other particle filters

with the same number of particles, even in the face of severe non-linearities and noise, however

is sensitive to outliers as the state noise is assumed to be normal (Kotecha & Djuric 2003a).

To address this problem Kotecha & Djuric (2003b) model the state noise as another mixture

density, bringing further flexibility to the algorithm. In the GSPF the state noise εt is a finite

Gaussian mixture

εt =
K∑
k=1

αkN (εtk; ε̂tk,Σtk)

where ε̂tk is the mean noise and Σtk is the noise covariance matrix of the k-th mixand.

Kotecha & Djuric (2003b) show the GSPF exhibits greater performance and more accurate

estimation than GPF where the noise is fat-tailed and non-Gaussian as fat-tailed densities can be

modeled by Gaussian mixtures (Sengupta & Kay 1989, Kitagawa 1996). In addition, they show

particle based Gaussian mixture filters perform better in approximation and computational cost

than Kalman filter based Gaussian mixture filters.

2.3 Markov Chain Monte Carlo Methods

We have discussed a number of problems with particle methods and shall focus on a number of

these limitations to motivate further techniques (Doucet & Johansen 2008). Use of the optimal

importance distribution p(xt|yt, xt−1) does not guarantee the efficiency of sequential Monte

Carlo algorithms as when the variance of p(yt|xt−1) is high, the variance of the approximation

shall be high. This shall result in frequent resampling and the particle approximation of the

joint distribution shall be unreliable. Corollary, as k � n the marginal distribution p̂(x0:k|y0:n)

shall collapse onto a a few or single unique particle(s) as the machine would have resampled

many times between k and n. Another major issue with the aforementioned particle methods

is that they only sample variables {Xi
t} at time t but the path values {Xi

0:t−1} remain fixed.
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A simple improvement of such techniques would incorporate path value modifications over a

fixed lag {Xi
t−L+1:t−1} for L > 1 with respect to a new observation yt. We shall proceed to

discuss some techniques to address these issues but firstly we shall take a small digression into

a common numerical method.

Markov chain theory is concerned with finding conditions under which there exists an

invariant distribution Q and conditions under which the iterations of the transition kernel

K(., .) converges to the invariant distribution (Gilks & Berzuini 2001, Chien & Fu 1967).

Markov chain Monte Carlo (MCMC) inverts Markov chain theory: the invariant distribu-

tion, corresponding to the target density π(x), is assumed known but the transition kernel

is unknown. MCMC methods draw random samples from a target density π(x) (Johannes

& Polson 2009). We shall be considering the distribution of parameters and variables given

observed prices p(Θ, X|Y ). Utilizing the Clifford-Hammersley theorem (Hammersley &

Clifford 1968, Besag 1974), which states that a joint distribution can be specified by the com-

plete conditional distributions, we can characterize p(Θ|X,Y ) by p(X|Θ, Y ) and p(Θ, X|Y ).

Sequences can be generated which are not necessarily i.i.d. but form Markov chains which,

under a number of conditions and metrics, converge to the target distribution p(Θ, X|Y ). The

critical point within MCMC is that it is easier to specify the complete conditionals than to

directly analyze and characterize the higher-dimensional joint distribution.

2.3.1 Markov Chain Monte Carlo Sampling

There are two different generic MCMC steps: (i) if the complete conditionals can be directly

sampled we utilize the Gibbs sampler proposed by Geman, et al. (1984). Given (Θ(0), X(0)):

1. Draw Θ(1) ∼ p(Θ|X(0), Y ) (2.21)

2. Draw X(1) ∼ p(X|Θ(1), Y ) (2.22)

Continue to generate the sequences of variables {Θ(g), X(g)}Gg=1 which converges to

p(Θ, X|Y ).

(ii) In practice, one or more of the complete conditionals cannot be sampled and thus

we cannot employ Gibbs sampling. In such situations we use Metropolis-Hastings algorithms.

These algorithms draw a candidate from a proposal density and accept or reject based on ac-

ceptance criteria. Consider the case of the one parameter, single dimensional distribution π(Θ).

To generate samples from π(Θ) the Metropolis-Hastings algorithm requires us to specify a pro-

posal density q(Θ(g+1)|Θ(g)). We require the density ratio π(Θ(g+1))/π(Θ(g)) to be readily
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and easily computable (Metropolis, et al. 1953). Given (Θ(0), X(0)) from a prior density:

1. Draw Θ(g+1) ∼ q(Θ(g+1)|Θ(g)) (2.23)

2. Accept Θ(g+1) with probability α(Θ(g),Θ(g+1)) (2.24)

where

α(Θ(g),Θ(g+1)) = min

(
π(Θ(g+1))/q(Θ(g+1)|Θ(g))

π(Θ(g))/q(Θ(g)|Θ(g+1))
, 1

)
(2.25)

We effectively draw from the proposal, draw a uniform random variable and evaluate the ac-

ceptance criteria. The algorithm generates the samples {Θ(g)}Gg=1 whose limiting distribution

is π(Θ). Though theoretically there is no restriction on the proposal density, the choice of

proposal distribution has a great affect on the algorithm’s performance and convergence.

2.3.2 Markov Chain Monte Carlo Particle Filter

Having introduced MCMC methods we can proceed to define the MCMC particle filter. This

filter and its two variants we shall be discussing address the limitations we discussed above:

namely weight degeneracy and inadequate path value approximation (sample impoverishment).

MCMC methods are used in particle filtering in either the sampling or resampling step to draw

from the invariant distribution. Some examples of MCMC integration with particle methods

can be found in Berzuini, et al. (1997), Liu & Chen (1998), Fearnhead (2004), MacEachern,

et al. (1999), Pitt & Shephard (1999) and Fearnhead & Clifford (2003).

Resample-Move Algorithm

The weight degeneracy problem can be alleviated using the resample-move (RM) algorithm

which is a special MCMC particle filter (Gilks & Wild 1992, Berzuini & Gilks 2001, Gilks

& Berzuini 2001). MCMC uses Markov kernels to generate correlated samples however RM

uses them to “jitter” particle locations and reduce degeneracy (Doucet & Johansen 2008). The

algorithm is as follows (Gilks & Wild 1992): group particles into a set St = {x(i)t }
(Np)
i=1 at time t

and propagate through state space equations using SIR and MCMC sampling; at t+ 1 move the

resampled particles according to a Markov chain transition kernel to form St+1. Forming this

new set St+1 involves resampling to draw samples {x(i)t } from St such that they are selected

with a proportional probability to {W (x(i)t )} and then moving the selected particles by sampling

from the Markov chain transition kernel (Chen 2003).

Block Sampling

RM suffers from a major limitation: it does reintroduce particle diversity however the impor-

tance weights have the same expressions as the generic particle filter (Chen 2003). The impor-

tance weights are reliant on the location before the MCMC move whilst the sample depends
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upon the location after the move. Even if the transition kernel was perfect, leading to i.i.d.

samples from the target distribution, some of those samples would be removed and some would

be replicated in the resampling step. This leads to an insignificant reduction in the number of

resampling steps compared to the standard particle filter. Doucet, et al. (2006) propose an al-

ternative to RM called block sampling. Recapping RM, it aims to sample xt in regions of high

probability density and then uses MCMC to rejuvenate xt−L+1:t after resampling. The optimal

importance distribution (which minimizes the variance of the importance weights at t) is:

p(xt−L+1:t|yt−L+1:t, xt−L) =
p(xt−L:t, yt−L+1:t)

p(yt−L+1:t|xt−L)
(2.26)

where

p(yt−L+1:t|xt−L) =

∫ k∏
k=t−L+1

f(xk|xk−1) · g(yk|xk)dxt−L+1:t (2.27)

As before, it is typically impossible to sample from (2.26) or to compute (2.27). We design an

importance distribution which approximates the optimal importance distribution:

q(xt−L+1:t|yt−L+1:t, xt−L) ∼ p(xt−L+1:t|yt−L+1:t, xt−L) (2.28)

Using the optimal IS distribution, that is:

q(xt−L+1:t|yt−L+1:t, xt−L) = p(xt−L+1:t|yt−L+1:t, xt−L) (2.29)

we obtain:

wt(x̄0:t−1, xt−L+1:t) =
p(x̄0:t−L, xt−L+1:t, y0:t)p(x̄t−L+1:t−1|yt−L+1:t−1, x̄t−L)

p(x̄0:t−1, y0:t−1)p(xt−L+1:t|yt−L+1:t, x̄t−L)

= p(yt|yt−L+1:t, x̄t−L)

(2.30)

where { 1
N , X̄

i
t} is the set of equally-weighted resampled particles. The optimal weight (2.30)

has a variance which decreases exponentially fast with L. As a result, in adaptive sampling

this strategy offers vastly superior performance and a significant reduction in the number of

resampling steps.

2.4 Computational Intelligence for Optimization
In our introductory discussion on computational models of posterior distributions in Section

2.2 we emphasize the lack of exact methods, parametric techniques and solutions to many

empirical problems. Metaheuristics are robust optimization techniques, particularly suited to

non-linear continuous optimization problems, which typically synergize ideas drawn from na-

ture and artificial intelligence. The two main, common concepts for metaheuristics are rep-

resentation (encoding) of a solution and the definition of the objective function. They allow
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us to tackle large-optimization problems with satisfactory results, reaching a balance between

exploration of the search space (diversification) and exploitation of the best solutions (intensifi-

cation) (Talbi 2009). Perceived in this light we can say sequential Monte Carlos are themselves

single-solution based metaheuristics, manipulating and transforming a single-solution through

the course of search.

Parameter tuning is a particularly important task in metaheuristics, dictating the efficiency

and effectiveness of search. Carefully tuned parameters enable larger flexibility and robust-

ness. This task can be achieved either offline or online, the difference between the two being

metaheuristic execution with predefined parameters or with dynamically updated parameters.

Similarly, parameter tuning is an important task in both sequential Monte Carlos and MCMCs.

There have been a number of extensions of traditional sequential Monte Carlos imbued with

population-based search characteristics to better guide exploration of the search space which

we shall now examine.

2.4.1 Evolutionary & Genetic Algorithm Particle Filters

Kwok, et al. (2005) attempt to address the sample impoverishment problem through studies

on the number of particles actually being used. They find through the use of the Chebyshev

inequality (in that all numbers are close to the mean and can thus be used to bound estimation

error) that the number of particles is the cause of impoverishment. They conduct studies of

the gambler’s ruin problem to try and understand impoverishment from resampling however

incorrectly assume naive uniform resampling. In practice the stochastic effect of resampling

will accelerate impoverishment.

They propose a hybridization scheme to address impoverishment which replaces tradi-

tional resampling with an evolutionary stochastic universal sampling step. This step is in

essence identical to control variates from traditional Monte Carlo theory. They manipulate a

pair of chromosomes to ensure one of them is lower than some threshold γ. The distance be-

tween the two is calculated with the manipulated chromosome repelled from the one with the

higher fitness. This method populates unexplored areas of the solution space in aid of mini-

mizing and preventing impoverishment. The proposed approach is tested on monobot location

tracking with some stationary landmarks. The hybrid filter is tested against SIR and is found

both with low and high numbers of particles to outperform SIR in tracking the bot. The higher

number of particles shows a dramatic reduction in sample impoverishment with the solution

space diffusing from single strands into a generalized trace envelope. The results are promis-

ing however could be furthered with additional scenarios and a detailed comparison with other

filters.
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Sample impoverishment is also the problem of concern for Han, et al. (2011). They address

sample impoverishment through embedding an immune genetic algorithm (IGA) in front of the

resampling step. IGAs leverage the idea of antibodies from biology. The antibody self-regulates

in the promotion or inhibition of new antibodies, produced through crossover and mutation, thus

controlling diversity. IGA effectively diffuses the particle set prior to resampling ensuring that

new particles improve diversity of the particle set. Their evolutionary particle filter is used to

track simulations of the univariate non-stationary growth model (UNGM):

xt = 0.5xt−1 +
25xt−1

1 + x2t−1
+ 8cos[1.2(t− 1)] + wt (2.31)

yt =
x2t
20

+ vt (2.32)

where wt and vt are both zero mean, unit variance Gaussian white noise processes. In their

simulations they find that the evolutionary particle filter outperforms SIR with the IGA step

increasing the number of meaningful particles surviving resampling. Applied to target tracking

in video surveillance, they again find the evolutionary particle filter outperforming SIR. Further

analysis shows that the evolutionary particle filter has a higher count of meaningful particles

which enables the filter to better express the true state.

Uosaki, et al. (2005) combine evolutionary computation with non-linear estimation using

particle systems. They recognize the similarities between sequential Monte Carlo methods and

evolutionary strategies synthesizing the two to propose the evolution strategies based particle

filter which replaces the resampling step in SIR with a deterministic selection process step from

evolutionary strategies. Running some sample experiments they find that though their filter is

similar in performance in mean square errors (MSE) and processing times as SIR it is more

stable. Their investigation provides insights into the use of evolutionary computation in particle

systems though they do not themselves provide a significantly improved filter.

Duan & Cai (2008) build an evolutionary particle filter for robust simultaneous localiza-

tion and map building (SLAM) tasks of autonomous mobile robots. They augment the current

state space dynamics to include a faulty robot i.e. sensor damage, sensor occlusion or wheels

blocked by obstacles. Traditional SLAM techniques have found the traditional PF to be fairly

accurate but the assumptions underlying traditional models are fairly loose and do not trans-

late well into real-world environments. Extensions try and address these shortcomings. Most

of these come across the same sampling impoverishment problem as described in Section 2.2.

To diversify the particle set they use an adaptive mutation scheme straight after resampling.

Unnormalized particles are mutated through simple Gaussian mutation with calibrated linear
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mutation rates. Tested on a real robot they find that their evolutionary particle filter addresses

sample impoverishment. The scheme essentially minimizes selective pressure.

A similar hybrid particle filter is proposed by Li & Honglei (2011). They attempt to

resolve a number of problems: sample impoverishment and weight degeneracy for sequential

Monte Carlos; and slow convergence speed and premature convergence for genetic algorithms

(GA). They propose a unified framework to leverage ability from and across both GAs and

PFs. Premature convergence is synonymous to sample impoverishment wherein both systems

are failing due to a lack of diversity. They propose to parallelize the problem and to include

the unscented Kalman Filter (UKF) as the importance distribution feeding into the PFs. Their

parallel genetic unscented particle filter (PGUPF) thus aims to mitigate premature convergence,

increase particle diversity whilst at the same time, increasing computational efficiency. They

parallelize out across the number of particles N with resampling being carried out in a central

unit. Upon importance sampling, the particles are optimized using arithmetic crossover and

uniform mutation. The central unit then combines results from across the N streams to build an

estimate.

The PGUPF was tested on the bearings-only tracking problem where satellite navigation

and positioning of a dynamic vehicle is considered. Root mean square error (RMSE) values

were compared against the posterior Cramer-Rao lower bound (CRLB) - if MSE is closer to

CRLB then performance is better - across a number of algorithms and was found to be optimal

compared to SIR, the sequential importance evolutionary particle filter (SIE-PF) of Uosaki et al.

(2005) described above and the unscented particle filter (UPF) (Van Der Merwe, et al. 2001).

When the vehicle is in uniform linear motion all filters track well however as soon as the ve-

hicle starts to change behavior tracking performance starts to vary across the filters. When the

vehicle is in uniform motion but spiraling SIR loses track. SIE-PF has improved positioning

accuracy however with large tracking error. UPF and PGUPF have far better position accuracy

with the PGUPF having smaller tracking error. Similar to Uosaki et al. (2005) above, Li &

Honglei (2011) find sampling optimization using simple genetic operators such as crossover

and mutation increases sample diversity. Comparing computational expense, the PGUPF has

increased expense compared to SIR however has vastly superior performance compared to both

SIE-PF and UPF. This result coupled with tracking accuracy highlights the benefits of a unified

approach. Their tests were done both on single and multi-processor machines and where, as ex-

pected, found to provide and utilize added resource capacity compared to sequential execution

algorithms.
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Another genetic particle filter is proposed by Park, et al. (2007) who seek to advance

Uosaki et al.’s (2005) work on the application of evolutionary algorithms to sequential Monte

Carlos. Concurrent with our discussion above, Park et al. note that though they use computa-

tional intelligence techniques, Uosaki et al. do not propose a significantly improved filter. They

aim to make fuller use of the GA toolkit addressing sample impoverishment but to also address

jumps in series. The key step here is to vary the number of particles coupled with arithmetic

crossover and residual mutation. The genetic operations are adaptively applied using calcula-

tions of ESS to address sample impoverishment. Varying the number of particles allows the

filter to control computational load. The proposed genetic (algorithm) particle filter (GAPF) is

applied to a toy tracking problem in two settings. In the first, the target is assumed to be moving

at some constant speed. Here the errors in the distance, velocity and accuracy between SIR and

GAPF are invariant. However, in the second case, where we have a maneuvering target SIR

cannot track the real state. The GAPF captures the dynamics well. Further analysis of particle

evolution shows the mutation operation to be capturing the jumps in the series, observed as

particle deprivation, as the target becomes erratic.

2.4.2 Particle Swarm Optimization Particle Filters

Metaheuristics which leverage the collective behavior of species are known as swarm intelli-

gence algorithms (Bonabeau, et al. 1999, Pinto, et al. 2005, Runkler 2008). Swarm intelligence

algorithms are inspired from a simplified social model of competition for food. The main char-

acteristics of swarm algorithms are that particles are simple agents, cooperating by indirect

communication (self-organization using indirect cooperation is an important issue leveraged

from biological systems (Camazine, et al. 2003)) and move in a decision space (Talbi 2009).

Particle swarm optimization (PSO) is a particular swarm intelligence algorithm where poten-

tial solutions are represented as particles in a search space, and a fitness function is defined as

the latent kinematic model (Kennedy & Eberhart 1995). The social metaphor underlying PSO

is defined as individuals of a society hold an opinion that is part of the belief space which is

shared by neighboring individuals. Individuals can modify the opinion state through an inertia,

cognitive and social factor. Inertia refers to knowledge of the environment, the cognitive aspect

reflects the individual’s previous history of states, with the history of the individual’s neighbor-

hood forming the social factor. Driven by well-defined rules of interaction, individuals adopt

the belief of more successful individuals in the society which, evolving over time, leads to a

culture where individuals hold closely-related opinions (Zheng & Meng 2008).

Zheng & Meng (2008) imbue the generic PF with PSO-with-mutation with the aim of

providing a robust, flexible solution to the sample impoverishment problem. The PSO with
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mutation operator, proposed by Wang, et al. (2006), addresses the impoverishment problem by

applying mutation to keep multiple modes of particle sets. The PSO algorithm is applied to

the PF as a dynamic sampling and evolving algorithm, where instead of drawing samples by

the importance functions, particles keep in motion after initialization and adjust their location

according to PSO rules. Given the dynamic movement of particles, PSO is able to find solutions

with a smaller number of particles than traditional particle methods however this is offset by

the associated computational effort. The proposed PSO-PF is applied to visual object tracking

in both indoor and outdoor settings. The PSO-PF is found to be adaptive and robust to both

jitter and occlusion. Further analysis shows that the PSO-PF provides a flexible and adaptive

mechanism to keep the society tight (intensification) whilst enabling individuals to explore new

areas (diversification).

A similar extension of the APF with PSO is proposed by Yang, et al. (2010) for dual

estimation (coupling state and parameter estimation). The aim here is to tune static parameters

of dynamic models through a recursive maximum-likelihood estimator. The PSO-based fitness

evaluation, similar to Zheng & Meng (2008) above, replaces the importance sampling step. The

PSO-APF is tested on simulations of the Markov-switching stochastic volatility model (MSSV)

from finance. Given a price series yt, the MSSV model is given by:

yt = exp(xt/2)wt (2.33)

xt = αst + βtxt−1 + σvt (2.34)

where the initial state of time-varying log-volatility is x0 ∼ N (0, δ2

1−β2 ), and where v and w

are uncorrelated Gaussian white noise sequences N (0, 1). The regime variables st follows a

first-order Markov process pij = Pr(st = j|st−1 = i) for i, j = 1, ..., k.

Averaged over 50 runs, the PSO-APF was able to correctly estimate the state and regime

variables. In addition, online parameter estimation was able to correctly understand regimes

and abrupt changes with a minimal 3.2% misclassification. Yang et al. clearly demonstrate the

adaptive nature of their algorithm to changing latent dynamics however fail to demarcate be-

tween factors endogenous to the PSO-APF and those to the (A)PF. In addition, their assumption

of running on static parameters throughout is a good building block but their assertion that this

reflects practical applications is incorrect (Cont 2001). They have provided a base application

example though this needs extrapolation to more realistic applications tested and evaluated on

real data.
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2.4.3 Hybrid & Metaheuristic Particle Filters

Smith & Hussain (2012) hybridize traditional particle filters and apply them to stochastic

volatility estimation. Their hybridization involves evolution strategies and real-coded genetic

algorithms. Evolution strategies are stochastic, derivative-free numerical optimization meth-

ods of non-linear or non-convex continuous optimization problems where new candidates are

sampled according to a multivariate normal distribution with pairwise dependencies between

variables represented in a covariance matrix. This matrix is updated using covariance matrix

adaptation equating to learning the second-order model of the underlying objective function.

Real-coded genetic algorithms do not use a coding scheme to code the population, rather they

apply evolutionary operators (crossover, mutation, etc.) directly on the population. Applied to

the stochastic volatility problem their hybrid metaheuristic real-coded genetic algorithm par-

ticle filter (RGAPF) outperforms the traditional PF and the more advanced particle learning

algorithm particle filter (PLA). PLA is essentially the SIR-PF though with an MCMC step after

every 50 time steps. The RGAPF provides more accurate results with less particles however is

sensitive to choice of recombination operator.

Zhang, et al. (2011) address sample impoverishment through the hybridization of the SIR

algorithm to include elements from both GA and PSO. Genetic operators are used to maintain

particle diversity whilst PSO is used to optimize the particle distribution. The whole algorithm

is then parallelized to reduce compute time. To enable parallel execution, the filtering task is

divided into two major parts. One group uses elitism to reserve the Nbest chromosomes into the

next generation followed by arithmetic crossover on the remaining chromosomes to maintain

diversity. The second group employs PSO to optimize resampling, updating the position and

velocity of each particle towards the region of higher likelihood. Thereafter these two groups

exchange information to enable the bestNmigrate particles in each group to migrate to the other

group to replace poorly performing particles. This migratory step helps ensure diversity whilst

minimizing the probability of premature convergence. The two groups are then integrated to

estimate the state.

Applied to the UNGM and averaged across 50 independent simulation runs the proposed

genetic algorithm particle swarm optimization particle filter (GAPSO-PF) shows better per-

formance than the generic PF, GA-PF and the PSO-PF. Additionally, the computation time of

the GAPSO-PF is lower compared to the other hybrid particle filters. Closer examination of

tick-by-tick performance shows the GAPSO-PF adapting to abrupt changes quicker than the

other filters, which is self-evidently pronounce in the problem at hand though it’s performance

through the race to convergence is comparable to the other filters. The RMSE results reported
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are not statistically significantly better however the algorithm shows promise in this quite ex-

treme experimental case.

Klamargias, et al. (2008) also test their PSO-PF on the UNGM. Their proposed PSO-PF

attempts to alleviate sample impoverishment by addressing the problem of biasing samples sig-

nificantly towards either the prior or the likelihood. This problem is tackled using conventional

multi-objective optimization where the prior and posterior distributions are aggregated into a

single objective function. Perturbing the prior sample to maximize the objective function as-

sumes a balance between the prior and the posterior likelihood. The corresponding objective

function is maximized using PSO the aim of which is to move particles towards regions of

higher likelihood in the search space without allowing them to move significantly far away

from the region of the prior.

In their experiments Klamargias et al. (2008) compare the efficacy of the PSO-PF and the

PF with two varying particle set sizes N = 20 and N = 50. These initial samples were passed

to the PSO which iterated 50 times to return the best positions as the final sample. The overall

filtering was simulated 100 times over 60 time steps with the RMSE being compared using the

Wilcoxon signed-rank sum test (used to compute the statistical significance between a given

PSO-PF and PF run). For N = 20 particles the PSO-PF outperformed the PF across the three

levels of noise - minimal, moderate and high. This result was evident in the N = 50 particles

experiment however as expected, given the larger particle set and when there was both higher

system and measurement noise, there was no statistically significant increase in performance

between the PSO-PF and PF indicating that the PSO-PF provides robust solutions in high-noise

systems with a smaller particle set.

Pantrigo & Sanchez (2005) hybridize particle filters with population based metaheuris-

tics (PBM) in aid of solving dynamic optimization problems exploiting advantages of both

approaches. As discussed above, hybrid metaheuristics are the skilled synergy of advantageous

elements to find higher quality solutions. A hybridization framework is proposed to test dif-

ferent combinations of PFs and PBMs. The template aims to build a low-level hybridization

between the two techniques to improve the quality of the solution. The template includes the

two major strands of the chosen PF and PBM followed by a selection, replacement and es-

timation procedure. Various implementations of the template were applied to the articulated

and multiple object tracking problem. Similar to Klamargias et al. (2008), Pantrigo & Sanchez

find that the traditional PF performance increased when the number of particles increased and

conversely the PBM-PF hybridizations produced robust results with a limited particle set. They

have shown you can plug and play PBM into PF to solve dynamic optimization tasks.
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Building on their work in Pantrigo & Sanchez (2005) and Pantrigo, et al. (2011), Cabido,

et al. (2012) show an effective approach to visual tracking on a graphical processing unit using a

hybridized particle filter. They propose a hybridization of the particle filter with a memetic algo-

rithm to form the memetic algorithm particle filter (MAPF) for tracking single and multiple ob-

jects. Memetic algorithms are popular genetic local search algorithms for multi-objective opti-

mization (Gen & Lin 2004, Ishibuchi & Murata 1998, Jaszkiewicz 2002, Talbi, et al. 2001). The

key principle in memetic algorithms is the combination and hybridization of different heuristics

in a population of solutions during the overall optimization process. This consists of imbuing

an evolutionary algorithm search with a local search algorithm from which solutions are found

through potentially local improvement procedures applied in different stages of the process.

The memetic algorithmic step replaces IS in the PF to form the MAPF. The memetic

algorithm applies recombination, mutation to maintain diversity and an improvement step in

order to sample solutions. The PF was initialized with N = 256 particles and the MAPF

with only N = 64 particles. Compared on tracking a single synthetic sequence through the

diagonal, the MAPF shows perfect tracking compared to minor vibrations in the PF’s tracking

of this perfect motion. Similar results are observed when tracking multiple objects in the same

space however there is greater computational load in tracking with the PF. Further tested on

tracking two squash players, these results are reinforced showing the accuracy and precision

obtained with the MAPF in real conditions. In the MAPF, the PF is a sequential estimator with

an imbued memetic algorithm refining the population to improve estimation. This is primarily

attributable to the memetic algorithm’s local search which explores the search space around the

PF estimation more exhaustively. As noted, real applications of the proposed procedure would

add steps to handle issues like occlusion, varying light and heavy noise.

Wang & Li (2010) propose a co-evolutionary particle filter to address sample impoverish-

ment and to maintain diversity in PFs. Each particle is an intelligent agent having the ability

of local perception, competitive selection and self-learning. These evolutionary behaviors en-

able these intelligent particles, constructed as a lattice, to swarm towards regions of higher

likelihood. The proposed multi-agent co-evolutionary particle filter (MACoEPF) is tested on

the moving object tracking problem. MACoEPF performance is compared to the generic PF.

On face target tracking in a video sequence, PF tracking deteriorates as both time passes and

with face moves: a direct result of sample impoverishment and a lack of diversity amongst the

particles. The MACoEPF addresses these drawbacks and maintains tracking accuracy through-

out the sequence. Their second experiment involves tracking a fast moving object in a complex

scene by the MACoEPF. In such scenarios the PF rapidly deteriorates and as such is not included
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for comparison. The MACoEPF tracks the fast moving target in real-time and accurately in

presence of a number of similar objects in the sequence. Wang & Li (2010) have demonstrated

the synergy of swarm intelligence with traditional PFs to address sample impoverishment and

sample diversity.

Lima & Krohling (2011) also introduce a hybridization mechanism into the general PF

framework. They insert a sampling mechanism inspired by differential evolution (DE) and PSO

into the PF. DE is a relatively new though highly successful evolutionary algorithmic approach

to continuous optimization (Storn & Price 1997). The main idea here is to use vector distances

between samples to perturb the population. From an initial random population successive gen-

erations can be generated by adding to a random sample the weighted difference of two other

random samples. DE uses the crossover operation to generate these new solutions which in turn

increases the diversity of the population.

The proposed hybrid particle filters replace subsequent IS runs following initialization of

SIR with a routine which finds fitter particles using either DE or PSO. Applied to the object

tracking problem the PF, PSO-PF and DE-PF were used for histogram intersection detection

(an effective similarity measure between images) for tracking in a 100 frame image sequence.

The first version of the 100 frame sequence contained the original frames, whilst the second

had noise added. Running with N = 150 particles the filters were run against the two sequence

sets. On the original sequence performance was comparable towards the beginning of the se-

quence however as the frames progressed the PF began to deteriorate rapidly though it did not

lose complete track. On the second sequence set, the PF quickly deteriorated losing track as

samples degenerated, as measured through the ESS. Assessing tracking error the DE-PF per-

formed the best out of the three filters whilst having both the lowest degeneration average and

lowest average error. Assessing the influence of increasing the number of particles, the same

experiments were run with N = 300 and N = 600 particles. This investigation showed that

only the PF was influenced by increasing the number of samples reiterating results we have

seen in the literature above.

Yoo, et al. (2012) address sample impoverishment and propose a novel evolutionary parti-

cle filter for sequential dependency learning from video data. The proposed scheme for depen-

dency learning and segment summarization does not rely on prior labeling, using a Gaussian

mixture model (GMM) for modeling the dependency structure complemented with the scalar

invariant feature transform to estimate changepoints (switching from one scene to another) to

enable segment summarization. Hybridizing the PF, particles are sampled base on a Euclidean

distance fitness function with crossover. Mutation operations are performed to maintain di-
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versity in the population and to avoid degeneracy. The fitness function uses ridge regression

techniques to ensure a normalized measure of pertinence for each particle.

The evolutionary particle filter for stream segmentation and GMM for sequential depen-

dency learning were tested on three broadcast television episodes compared and contrasted to

10 human participants. As expected the humans did not agree on changepoints however a char-

acteristic set was built for each episode to aid comparison. The proposed method identified

four times as many changepoints which enabled it to, through the transition probability matrix,

correctly estimate segment sequences and thus represent a video stream in a much smaller and

simpler data structure. Their results are promising however leave room for improvement in the

number of changepoints identified by the learning process.

Xiaowei, et al. (2013) also address sample impoverishment with an evolutionary particle

filter for improved object tracking. A self-adaptive genetic algorithm evolutionary mechanism

(S-AGA) is added to the resampling step in SIR to make particles into intelligent agents with

the ability of dynamic self-adaption. Self-adaptive crossover and mutation operators enable the

evolution system to propose solutions which track the true state more accurately than conven-

tional methods. S-AGA leverages the maximum fitness in the particle set, the largest fitness

of the crossover individuals, the average fitness of the population and the fitness of the largest

mutation individual to provide an adaptive evolution strategy where the crossover and mutation

operators are dynamically computed to the evolutionary strategy and fitness changes.

The self-adaptive genetic algorithm particle filter (S-AGAPF) was tested against varying

illumination, interference from similar targets and occlusion, and shape change. For face track-

ing with illumination variation the S-AGAPF outperforms the PF. Using only color information

the PF fails to track as the target color changes dramatically as illumination is varied however,

as the S-AGAPF is using texture cues from variations in illumination it can still track very well.

Interference by a similar target and occlusion for face tracking highlight problems of particle

degeneration and sample impoverishment in the traditional PF. With intelligent adaptive agents,

the S-AGAPF maintains track through interference by similar targets and occlusion. Similar

results are observed when testing against structural deformation to validate tracking perfor-

mance. Building the posterior based on subtleties of the latent signal enables the S-AGAPF to

outperform traditional methods for object tracking.

2.5 Discussion

Understanding complex non-linear non-Gaussian dynamics where exact inference is not pos-

sible leads us to use sequential Monte Carlo approximate inference methods. The underlying
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temporal distribution and the associated generating pdf are understood through population based

recursive Bayesian estimation techniques. Latent signal processing in such scenarios is particu-

larly challenging as the underlying distributions are not i.i.d with respect to the observed series

showing excess kurtosis and non-stationarity. In addition many complex systems are condi-

tionally heteroskedastic which inherently leads to periods of turbulence followed by periods of

calm.

As such linear techniques such as the KF have proven insightful but ultimately not useful

for complex time series analysis. An extension, the extended Kalman filter, was proposed to

handle such non-linearities and though an improvement on the simple KF performs poorly un-

der non-Gaussianity and performs extremely poorly under severe non-linearity. The unscented

Kalman filter is a variant of the KF which addresses such problems using the deterministic

sampling unscented transform technique to provide increased mean and covariance estimation

accuracy.

Extensions of the KF address some of the underlying problems however are restricted

by linear Gaussian dynamics. Such dynamics are not prevalent in distributions of concern,

motivating us to look into techniques which address non-linearity and non-Gaussianity. We are

unable to obtain closed-form solutions to distribution approximations and thus apply numerical

methods. The PF is a common sequential Monte Carlo method for optimal estimation in non-

linear non-Gaussian settings. The main advantage of particle methods is their lack of reliance

on any local linearization or crude functional approximation.

We have inspected IS which is the building block of particle methods. IS allows us to

sample from complex highly-dimensional distributions but with linear increases in complexity

upon each draw. To admit fixed computational complexity we use SIS though this suffers

from the weight degeneracy problem which can be alleviated by resampling which conversely

introduces sample impoverishment. The SIR algorithm replaces particles with high weight with

many particles with high inter-particle correlation. The SIR algorithm coupled with adaptive

resampling is the simple sequential PF we have defined. This algorithm is very sensitive to

choice of proposal distribution.

The SIR filter suffers from two critical drawbacks; it does not approximate outliers or the

tails of a distribution well. Not handling leptokurtosis is particularly debilitating in complex

systems. The APF reduces the effects of outliers whilst handling fat-tailed distributions, taking

advantage of ex-ante information. If the process noise is particularly large, the APF can fail to

focus on pertinent particles and performs similarly to the sequential PF.
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The GPF which filters dynamic state space models with Gaussian noise and non-linear

functions in the state and measurement equations has been shown to deliver increased mean

and variance estimation accuracy than other PFs, even when faced with severe non-linearities

and noise. Unfortunately it is sensitive to outliers as the state noise is assumed to be Gaussian.

Modeling the state noise as another mixture density, the GSPF overcomes this issue exhibiting

greater performance than the GPF in the presence of outliers and leptokurtosis.

MCMC methods have been used to address a number of issues, specifically particle de-

generacy and inadequate path value approximation, with sequential Monte Carlo algorithms.

There are two MCMC sampling techniques. If we can state the complete conditional distribu-

tions describing the joint distribution we use the Gibbs sampler. In practice, one or more of the

conditionals is unknown and we employ the Metropolis-Hastings algorithm. RM addresses par-

ticle degeneracy by jittering particle locations thus reducing degeneracy. This algorithm does

introduce particle diversity but is essentially the same as the sequential PF with, typically, an in-

significant reduction in the number of resampling steps. Block sampling is an alternative to RM

which uses the optimal IS distribution when designing an importance density which approxi-

mates the optimal importance distribution. The resulting weight calculations have a variance

which decreases at an exponential rate offering vastly superior performance and a significant

reduction in the number of resampling steps.

We have discussed a number of extensions of sequential Monte Carlo methods which lever-

age techniques from computational intelligence. A number of evolutionary and hybrid particle

filters are discussed across a variety of problems and are shown to mitigate sample impover-

ishment to some degree. In addition, we have discussed a number of evolutionary and genetic

strategies which show the efficacy of particle filters imbued with metaheuristics.

Empirically, the stochastic effect of resampling accelerates sample impoverishment. Meta-

heuristics are used to diversify the particle set. Uosaki et al. (2005), Li & Honglei (2011) and

Yoo et al. (2012) amongst others find sampling optimization using simple genetic operators

such as crossover and mutation increases sample diversity. Further integration of PBMs into

the PF framework has shown encouraging results. Dynamic particles in PSO based PFs are able

to find solutions with a smaller number of particles than traditional methods however with an

increased computational cost. Klamargias et al. (2008) and Pantrigo & Sanchez (2005) find that

traditional PF performance increased when the number of particles increased and conversely

PBM-PF hybridizations produce robust results with a limited particle set. Across a number of

metaheuristics including evolutionary strategies, evolutionary algorithms, genetic algorithms,
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PSO, DE, memetic algorithms, we have seen their synergy with PFs to solve dynamic opti-

mization tasks.

Sequential Monte Carlo methods are an active research area. Given their success they have

been used in many settings and various adaptations provide further avenues of research. From

our discussion above and reviewed literature we can elicit some open problems within the area:

• The primary problem with particle methods is weight degeneracy where the distribution

of the importance weights becomes more and more skewed over time with fewer and

fewer non-zero importance weights. In introducing their SIR filter, Gordon et al. (1993)

highlight this problem with the preceding and their own methods. ESS based adaptive

algorithms have been advocated but the fundamental issue is with resampling itself. It

does not prevent the problem of weight degeneracy it essentially discards meaningless

particles from calculations. Additionally, resampling introduces the problem of sample

impoverishment where particles with high weightwik are statistically selected many times

leading to a loss of diversity amongst the particles where the resultant sample will contain

many repeated points (Arulampalam et al. 2002). Sample impoverishment is particularly

acute for systems with small latent noise as all particles will collapse to a single point

very, very quickly (Clapp 2000, Liu & West 1999).

• Being a numerical method, it is inherently impossible to represent a highly-dimensional

distribution by a finite sample set despite asymptotic justification. Additionally, when

such problems are complex it is not possible to obtain accurate approximations in a rea-

sonable amount of time. Though they are parallelizable, most techniques when applied

in practice are compute bound and naively assigning hardware to the problem will not

speed up computation.

• Parameter estimation with a large number of parameters leads to slow exploration of the

parameter space. In addition dual estimation, coupling state and parameter estimation, is

extremely difficult with a limited number of particles. These can be amalgamated into

a single higher-dimensional filter however such problems hinder such filter algorithms

from working in practice (Doucet & Johansen 2008, Saha 2009). Further research in this

area is needed.

• Particle methods are very sensitive to choice of proposal distribution. It has been sug-

gested to use the transition prior however this does not incorporate the most recent ob-

servation, an omission which leads to and exacerbates sample impoverishment. Building
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improved PFs necessitates understanding the dynamics of the system of concern and

choosing a proposal distribution which is conditioned on the latest observation.

• Reliably detecting divergence is essential to running filters optimally. Divergence indi-

cators are relatively sparse and is largely an unexplored field. In fly-by-wire and drive-

by-wire systems, measurements are split up into a bank of filters. PFi provides every

n-th sample, for i = 1, 2, ..., n (Gustafsson, et al. 2002). These PFs are approximately

independent with voting used to restart each filter. This process has been effective and

efficient in removing outliers from the data.

• Convergence analysis and asymptotic behavior in the tails, is sparsely treated in complex

systems. Estimation accuracy, choice of proposal distribution, assumptions and various

other inputs need to be understood in the convergence of the filters. Effort is needed in

this area.

2.6 Summary
Stochastic filtering and optimal estimation of non-linear and non-Gaussian distributions is a par-

ticularly pertinent problem in many practical applications. Analyzing the underlying processes

from such times series given noisy observations, we are unable to find closed-form solutions

and use particle filters, a power numerical method, which work by partitioning the state space

and populating it with particles with respect to some probability measure. The higher this mea-

sure, or weight, the denser the particle concentration. The state space evolves temporally and

the particle system evolves around this, promoting particles with higher weights and discarding

less pertinent particles adaptively. Particle methods have found prominence in many applica-

tions providing a robust, numerical method to tackle a number of online and stochastic inference

problems, an active research area of which we have highlighted a number of open problems.



Chapter 3

Theoretical Model

There are a number of open problems in sequential Monte Carlos which have been highlighted

through our exploration of the literature and field. Primal of these, we shall be focusing our

research on the weight degeneracy and sample impoverishment problem and propose a new

particle filter which yields increased accuracy for recursive Bayesian estimation of non-linear

non-Gaussian dynamical systems compared to contemporary filters. In Section 3.1 we briefly

describe the principles and concepts behind our proposed method. In Section 3.2 we move onto

a formal specification of the model and provide the mathematical reasoning in Section 3.3. We

proceed to show some experimental results in Section 3.4. Thereafter we briefly summarize.

3.1 Principles & Conceptual Model

In evolutionary computation (EC), the generation gap is the fraction of the population which

is replaced each cycle. It is closely linked to the concepts of overlapping and non-overlapping

populations which define the competition between parents and offspring where in overlapping

generations they compete with one another for survival and in non-overlapping models the

entire parent population is replaced. Here, selection algorithms are evolutionary algorithms

which makes decisions as to which parents and which offspring should survive (Sarma &

De Jong 2000).

Particle filters can be viewed as evolutionary algorithms as they have overlapping genera-

tions compared to genetic algorithms which historically, are non-overlapping. Sampling can be

seen as mutation, resampling as selection and the importance weight calculation as the fitness

function (Uosaki et al. 2005).

Recollecting SIS/R and SIR, resampling retains the most pertinent particles however de-

stroys information by discounting the potential future descriptive ability of particles. This phe-

nomena has been well commented upon in a number of surveys e.g. Chen (2003) and Gustafs-

son (2010), with ESS based adaptive SIS/R filters as the answer. However we find a number of
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techniques which address sample impoverishment better e.g. APF, MCMC-PF, from within the

sequential Monte Carlo community. Recently there has been a concerted effort at advancements

of computational intelligence sequential Monte Carlos which leverage ideas from traditional

evolutionary computation and genetic algorithms to propose novel filters addressing practical

and empirical shortcomings of the PF.

As commented above in our discussion of methodologies, resampling does not really pre-

vent sample impoverishment: it simply excludes poor samples from calculations, providing

future stability through short-term increases in variance. If we were to leverage the descriptive

ability of naively discarded particles in an adaptive evolutionary environment with a well de-

fined fitness function we posit that we shall see an increased accuracy for recursive Bayesian

estimation of non-linear non-Gaussian dynamical systems.

3.2 Formal Model

We embed a generation based adaptive particle switching step into the particle filter weight

update, using the transition prior as our proposal distribution, to enable us to make use of

previously discarded particles ψ if their discriminatory power is higher than the current particle

set. This step is formalized into our adaptive path particle filter (APPF) and is detailed in Table

3.1.

The APPF is a recombinatory evolutionary algorithm. In Figure 3.1 we have N = 20 par-

ticles: at t = 36 upon evaluation of the fitness function we select 11 particles from the current

importance samples x̂36 (marked as the blue particles) and 9 particles from importance samples

based on the previously resampled out set x̌36 (marked as the red particles). For example we can

see W (1)
36 is assigned as x̂(1)

36 , similarly W (8)
36 is assigned as x̌(8)

36 . As can be seen in the resultant

particle set W36 we are leveraging the fittest particles amongst and across the two generations.

x̂36 x̌36

W36 =
1 2 3 4 5 6 7 8 9 1011121314151617181920

Figure 3.1: APPF weight update fitness assessment through inter-generational competition for

N = 20 at t = 36:= W (i)
36 = max

[
p(y36|x̂(i)

36 ), p(y36|x̌(i)
36 )
]
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Table 3.1: APPF Algorithm

1. Initialization: for i = 1, ..., Np, sample

x(i)
0 ∼ p(x0)

ψ
(i)
0 ∼ p(x0)

with weights W (i)
0 = 1

Np
.

For t ≥ 1

2. Importance sampling: for i = 1, ..., Np, draw samples

x̂(i)
t ∼ p(xt|x(i)

t−1)

set x̂(i)
0:t = {x(i)

0:t−1, x̂(i)
t }

and draw x̌(i)
t ∼ p(xt|ψ(i)

t−1)

set x̌(i)
0:t = {x(i)

0:t−1, x̌(i)
t }

3. Weight update: assess fitness

W
(i)
t = max

[
p(yt|x̂

(i)
t ), p(yt|x̌

(i)
t )

]
evaluate:

if p(yt|x̌
(i)
t ) > p(yt|x̂

(i)
t ) then

x̂(i)
t = ψ

(i)
t

end if

4. Normalize weights:

W̃
(i)
t =

W
(i)
t∑Np

j=1 W
(j)
t

5. Commit pre-resample set of particles to memory:

{ψ(i)
t } = {x̂(i)

t }

6. Resampling: Generate Np new particles x(i)
t from the set {x̂(i)

t } according to the importance

weights W̃ (i)
t .

7. Repeat from importance sampling step 2.

At the level of the representation of the probability distribution, the primary output of

a sequential Monte Carlo method, the APPF is using a fitness-based recombination of a past

representation with a current representation. In this sense, we believe the algorithm draws upon

the body of EC experience and theory. Admittedly, this is in essence an EC algorithm with

a population of size 2. A natural extension, which would make APPF appear to be a more

traditional EC algorithm, would be the maintenance and fitness-based recombination of several

past iterations particles and thus a larger population. However, note that due to the nature of
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the PF process itself - that of the state process being a Markov process by assumption (i) as

Equation (2.5) in Section 2.1 - the immediate previous particle set contains information about

those previous representations explicitly. In this sense, the recombination of only these two

sets of particles in the APPF contains the implicit schema average fitness information upon

which much of EC theory is based (Goldberg & Holland 1988). Thus, we feel that the dramatic

improvements in performance the APPF offers, as shown in the following experimental results

and further validated in this thesis, are directly related to EC theory and practice, and can be

built on further using EC ideas.

3.3 Justification

The prediction phase follows the same process as the original bootstrap filter (Gordon et al.

1993). As such it follows that repeating the process of sampling xk−1(i) from p(xk−1|Dk−1)

generates {x∗k(i) : i = 1, . . . , N} which are independently distributed as p(xk|Dk−1).

Similarly the update phase relies upon the fundamental reasoning for Monte Carlo methods

and the reasoning from Smith & Gelfand (1992). The main reasoning for Monte Carlo methods

in general argues their convergence by a central limit theorem onto an invariant and thus the

correct distribution as described in Section 2.2 and as follows (Van Der Merwe et al. 2001). As

the posterior can be approximated by the empirical estimate

p̂(x0:t|y1:t) =
1

N

N∑
1=1

δ
x
(i)
0:t

(dx0:t)

where the random samples {x(i)
0:t; i = 1, . . . , N} are drawn from the posterior distribution and

δ(d.) is the Dirac delta function. Thus, any expectations of the form

E[f(x0:t)] =

∫
f(x0:t)p(x0:t|y1:t)dx0:t

can be approximated by

E[f(x0:t)] =
1

N

N∑
i=1

f(x
(i)
0:t)

where the particles x(i)
0:t are i.i.d. According to the law of large numbers we have

E[f(x0:t)]
a.s.−−−−→

N→∞
E[f(x0:t)]

where a.s.−−−−→
N→∞

is almost surely convergence. Furthermore, if the posterior variance of f(xo:t) is

bounded such that varp(.|y1:t)f(x0:t) <∞ then the following central limit theorem holds

√
N
(
E[f(x0:t)]− E[f(x0:t)]

)
⇒

N→∞
N
(
0, varp(.|y1:t)f(x0:t)

)
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where ⇒
N→∞

denotes convergence in distribution.

In Smith & Gelfand (1992) it is shown that Bayes theorem can be implemented as a

weighted bootstrap which is what was implemented and justified by Gordon et al. (1993). It

must be noted that MCMC, sequential Monte Carlo and the proposed method are all heuristic

methods. Consequently the main motivation for the APPF is no different in character to the

main motivation for Monte Carlo methods.

3.4 Experimental Results
We present two experiments to illustrate the operation of the APPF. We compare estimation per-

formance with the standard SIR filter and with the MCMC-PF. The first example is a synthetic

scalar estimation problem and the second is the standard univariate log-stochastic volatility

model estimation problem.

3.4.1 Synthetic Experiment

We explore the scalar estimation problem posed by Van Der Merwe et al. (2001), a common

benchmark problem in the sequential Monte Carlo literature (Zhang, et al. 2010). A time series

was generated by the process model:

xt+1 = 1 + sin(ωπt) + φ1xt + vt (3.1)

where v ∼ Ga(3, 2) modeling the process noise, ω = 4e−2 and φ1 = 0.5 are scalar parameters.

We have the non-stationary observation model:

yt =

 φ2x
2
t + nt t ≤ 30

φ3xt − 2 + nt t > 30
(3.2)

where φ2 = 0.2 and φ3 = 0.5. The observation noise nt is Gaussian N (0, 0.00001). This

problem is severely non-linear in both the system and measurement equations. This model was

realized with an initial uniform prior.

Given noisy observations yt we used the filters to estimate the latent states xt for t = 1...60.

The experiment was repeated 100 times with random re-initialization using N = 200 particles

and residual resampling. Table 3.2 summarizes the performance of the various filters. It shows

the mean and variance of the RMSEs of the state estimates. We observe a marked increase in

performance of the APPF RMSE = 0.305 compared to the PF RMSE = 0.427 and MCMC-PF

RMSE = 0.444.

Deeper inspection shows the APPF locking onto the latent signal quicker than the PF and

MCMC-PF. Figure 3.2 shows results from our synthetic experiment for the 100th run. The

observed (realized) series is the blue line, the latent state (true x) is the red line, the PF state
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Table 3.2: Synthetic Experiment Simulation Results. RMSE mean, and variance over 100 runs

using 200 particles and residual resampling.

SMC Mean Var

PF 0.427 0.045083

MCMC-PF 0.444 0.051481

APPF 0.305 0.055635

estimate is the green line, the MCMC-PF state estimate is the yellow line and the APPF state

estimate is the magenta line.

We observe around t = 10 and t = 12 the APPF reacting to the fluctuation in the latent

signal quicker than the MCMC-PF which does not adapt until t = 13. Similarly between t = 5

and t = 7 the PF lags the APPF and MCMC-PF. Further issues can be seen around t = 27

through t = 31 as the non-stationarity of the underlying signal affects all filters with the APPF

showing most stability. Such phenomena result in the lower RMSE of the APPF compared to

the PF and MCMC-PF, highlighting the adaptability and robustness of track of the APPF.
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Figure 3.2: Synthetic Experiment Simulation Results Run 100/100 - Filter Estimates (pos-

terior means) vs. True State PF (RMSE=0.58116), MCMC-PF (RMSE=0.66878) and APPF

(RMSE=0.5505)
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3.4.2 Stochastic Volatility Model Experiment

Consider sequential Monte Carlo implementations which attempt to estimate the standard uni-

variate log-stochastic volatility model (Jacquier, et al. 2004, Ghysels, et al. 1996) where the

returns yt and log volatility states xt follow a state space model of the form:

yt = exp(xt/2)εt (3.3)

xt = α+ βxt−1 + σηt (3.4)

with initial log volatility x0 ∼ N (m0, C0) and with σ as the volatility of volatility. The errors

ε and η are uncorrelated white noise sequences N (0, 1). In addition the observation process is

given by:

yt = logPt − logPt−1 (3.5)

We generate a 500 time-step time series using the parameter values

θ = (α, β, σ2) = (−0.0084, 0.98, 0.04)

and an initial prior of x0 ∼ N (0, 1) as proposed by Stroud, et al. (2004). We can see our

simulated stochastic volatility series in Fig 3.3.

Given noisy observations yt we estimated the latent state xt using the sequential Monte

Carlos for t = 1...500. The experiment was repeated 100 times with random re-initialization

usingN = 10, 000 particles and systematic resampling. Table 3.3 summarizes the performance

of the various filters. It shows the mean and variance of the RMSE of the state estimates. We

observe a notable increase in performance of the APPF RMSE = 0.22688 compared to the PF

RMSE = 0.28088 and MCMC-PF RMSE = 0.26521.

We can see a sample visualization from the 100th run of our recursive stochastic volatility

estimation in Figure 3.4. As before, the observed (realized) series is the blue line, the latent

state (true x) is the red line, the PF state estimate is the green line, the MCMC-PF state estimate

is the yellow line and the APPF state estimate is the magenta line.

This simple realization shows clustering of volatility and the leptokurtic nature of finan-

cial time series. The effective advantage of our method can be seen from t = 0 through

t = 150 where the APPF exhibits markedly superior estimation accuracy than both the PF

and the MCMC-PF. Thereafter, all methods are fairly similar though this initial race to conver-

gence provides empirical proof of the superiority of our method with the PF RMSE = 0.21441,

MCMC-PF RMSE = 0.19744 and APPF RMSE = 0.061379.
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Figure 3.3: Simulated Stochastic Volatility Series
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Figure 3.4: Stochastic Volatility Experiment Simulation Results Run 100/100 - Filter Estimates

(posterior means) vs. True State
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Table 3.3: Stochastic Volatility Simulation Results. RMSE mean, and variance over 100 runs

using 10,000 particles and systematic resampling.

SMC Mean Var

PF 0.28088 0.007177

MCMC-PF 0.26521 0.009993

APPF 0.22688 0.017392

3.5 Summary
We have introduced our APPF which uses techniques from evolutionary computation to provide

adaptive path switching between particle generations. Theoretically we should see an increase

in accuracy in recursive Bayesian estimation of non-linear non-Gaussian dynamical systems as

we leverage the descriptive ability of discarded particles.

We have provided some experimental results of the application of evolutionary computa-

tion selection techniques in sequential Monte Carlo methods both in a synthetic and real-world

example. In both experiments we see an increase in recursive Bayesian estimation accuracy

with the APPF compared to the PF and MCMC-PF.

Closer inspection of some sample realizations allow us to observe the mechanism through

which our filter works and excels compared to contemporary filters. We see that whilst the

PF and MCMC-PF are converging their signal onto the latent states the APPF has already

converged, providing greater estimation accuracy in the meanwhile. These two preliminary

experiments provide some exciting results in validation of our hypothesis on the advantages of

adaptive path selection schemes in sequential Monte Carlos.



Chapter 4

Stochastic Volatility Modeling

We begin our evaluation of APPF performance on the stochastic volatility estimation problem

from computational and quantitative finance. This problem has practical importance for both

securities trading and derivative pricing. We begin in Section 4.1 by defining the problem and

introducing the Heston stochastic volatility model. We describe the data we are using and our

performance metrics in Section 4.2 and Section 4.3 respectively. We provide our results in

Section 4.4, summarizing and concluding in Section 4.5.

4.1 Stochastic Volatility Estimation Problem

Derivative theory is founded on the ideas of delta hedging and no-arbitrage. Delta hedging is the

concept of using carefully constructed products to remove the randomness (risk) of a security.

A delta value is selected to compensate and adjust the riskiness of an asset. No-arbitrage is the

idea that caeteris paribus there are no opportunities in the market to make riskless profit. These

foundations form the basis of the Black-Scholes model for derivative pricing, the pre-eminent

derivative pricing formula in the world, of which the delta and associated values are used for

hedging and trading (Wilmott 2007).

Black-Scholes assumes constant volatility. It is understood to be a deterministic function of

time and the asset price however both these axioms are not true. Analyses of volatility processes

show it to be a highly unstable quantity. Statistical modeling of volatility tends to measure

different types of volatility. Actual volatility is an instantaneous measure of randomness in an

asset at a given time. It is a very difficult quantity to measure. Realized (historical) volatility is

a measure of randomness over a period in the past. Implied volatility is the volatility measure

back-computed from market prices for a given derivative of an asset. Forward volatility refers

to the volatility measure, whether implied or actual, over some future period.

These traditional methods of measuring volatility all suffer from the same problem: they

cannot be the future value of volatility (Wilmott 2007). Either they are market views or esti-
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mated from the past. The correct value to be used in pricing derivatives of an asset cannot be

known until the derivative itself has expired.

As the volatility measure is not constant, not predictable and not directly observable it

is best modeled as a random variable (Wilmott 2007). Understanding the dynamics of the

volatility process in tandem with the dynamics of the underlying asset in the same timescale

enable us to measure the stochastic volatility (SV) process. However, modeling volatility as

a stochastic process requires an observable volatility measure: this is the stochastic volatility

estimation problem. We are interested in predicting a random variable in aid of derivative

pricing and securities trading. Choosing a stochastic volatility model requires us to postulate

and validate asset price dynamics. The most popular stochastic volatility model is the Heston

model which uses both square-root and Ornstein-Uhlenbeck processes. We shall proceed to

describe and estimate this model.

4.1.1 Heston Stochastic Volatility Model

Recent reformulations of the original Fourier integrals of the Heston stochastic volatility model

(Heston 1993) have led to numerically stable and efficient computations of derivative prices

(Andersen 2008, Lewis 2000, Lipton 2002, Carr & Madan 1999, Lee 2004). The Heston model

to estimate stochastic volatility is defined by the coupled two-dimensional stochastic differential

equation:

dX(t)/X(t) =
√
V (t)dWX(t) (4.1)

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dWV (t) (4.2)

where κ,θ,ε are strictly positive constants, and whereWX andWV are scalar Brownian motions

in some probability measure; we assume that dWX(t) · dWV (t) = ρdt, where the correlation

measure ρ is some constant in [−1, 1]. X(t) represents an asset price process and is assumed to

be a martingale in the chosen probability measure. V (t) represents the instantaneous variance

of relative changes to X(t) - the stochastic volatility - and is modeled as a mean-reverting

square-root diffusion, with Ornstein-Uhlenbeck dynamics. The parameters are understood as:

κ is the variance mean-reversion rate; θ is the long-run variance to which the variance of the

asset converges; and ε is the volatility of volatility.

Recognizing that the asset price process X(t) is relatively close to geometric Brownian

motion, it is sensible to work with logarithms of X(t). By Ito’s lemma we have:

d lnX(t) = −1

2
V (t)dt+

√
V (t)dWX(t) (4.3)

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dWV (t) (4.4)
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Euler discretization of the stochastic differential equation (4.3)-(4.4) takes the form:

ln X̂(t+ ∆) = ln X̂(t)− 1

2
V̂ (t)∆ +

√
V̂ (t)ZX

√
∆ (4.5)

V̂ (t+ ∆) = V (t) + κ(θ − V̂ (t))∆ + ε

√
V̂ (t)ZV

√
∆ (4.6)

where X̂ and V̂ are discrete-time approximation to X and V , respectively, and where ZX and

ZV are Gaussian random variables with correlation ρ.

A critical problem with the naive Euler discretization above enables the discrete process for

V to become negative with non-zero probability, makings the computation of
√
V̂ impossible.

A full truncation scheme produces the smallest discretization bias (Lord, et al. 2006), leading

to the dynamics:

ln X̂(t+ ∆) = ln X̂(t)− 1

2
V̂ (t)+∆ +

√
V̂ (t)+ZX

√
∆ (4.7)

V̂ (t+ ∆) = V (t) + κ(θ − V̂ (t)+)∆ + ε

√
V̂ (t)+ZV

√
∆ (4.8)

where the operator x+ = max(x, 0) enables the process for V to go below zero thereafter

becoming deterministic with an upward drift κθ, and where X̂(t) is the observed price process

and V̂ (t) is the stochastic volatility process to be estimated. In addition we need to calibrate the

parameters κ,θ,ε to run the recursive Bayesian estimators.

4.2 Financial Data
The Heston model’s underlying economic rationale and reasoning leads to its prevalence in

stock index derivative pricing. This owes to the fact that stock indices are less susceptible to

jumps as single stocks, however the above formulation has also found use for valuing single

stock derivatives. Our research was carried out on historical data from across two major finan-

cial markets. We examine the S&P500 (SPX), NASDAQ and FTSE100 (FTSE) stock indices.

In addition we examine three common stocks: General Electric (GE), Citigroup (C) and AT&T

(T). We use closing price data from the start of 2010 till the end of 2012 for each of these se-

curities. As we are running an online learning algorithm we run our experiments on the whole

dataset.

Working on the log return asset price evolution a number of points bear mentioning. Fi-

nancial time series are leptokurtic, with unit-root tests indicating non-stationarity. There is,

however, a degree of predictability in the markets as volatility clusters. This clustering is due to

the autoregressive conditionally heteroskedastic (ARCH) nature of financial time series which

if captured correctly leads to high concentration of positive returns. We can see such a series in

Figure 4.1. Here we have the daily closing price for SPX from 04-Jan-2010 through 28-Dec-

2012 and the associated log-return price process evolution. We clearly observe ARCH effects
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Figure 4.1: SPX daily closing price process for 04-Jan-2010 through 28-Dec-2012

throughout the series with this particularly acute in the middle of 2011 - around the 400 to 500

point mark highlighted in blue on the Figure.

4.3 Performance Analysis

Evaluating the estimation accuracy of sequential Monte Carlos is traditionally performed using

the RMSE measure. There are a number of other performance metrics which could be used.

Earlier, we saw Li & Honglei (2011) advocating the CRLB which is a computationally intensive

calculation of estimation accuracy. Under the CRLB, if the MSE, or RMSE, is closer to the

CRLB performance is better however Quang, et al. (2010) have demonstrated the convergence

of the RMSE under an upper bound which does not show explicit dependency on the dimension

of the hidden state. This classical result enables assignment of the RMSE as the Monte Carlo

error (MC error) in discrete and continuous dynamical systems, the ultimate benchmark which

is to be minimized.

4.4 Experimental Results

Given the price process we estimate the latent stochastic volatility process using the SIR,

MCMC-PF, PLA and APPF particle filters run with N = 1, 000 particles and systematic re-

sampling. Furthermore, we explore the effects of increasing the number of particles. We take
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the joint maximum a posteriori (MAP) estimates of κ and θ from our MCMC calibration and

calculate the RMSE between the estimated volatility and actual stochastic volatility process for

each particle filter. Our experiments were run on an Intel Core i7-2600k @ 3.4GHz processor

with 16GB of DDR3 memory. Firstly we calibrate the model using an MCMC run and then run

our experiments.

4.4.1 Stochastic Volatility Calibration & Parameter Estimation

Volatility calibration is an important part of computational finance having direct impact on both

trading and pricing. MCMC methods have frequently been advocated for their path-dependent

evaluation and parallel execution abilities. This is at the cost of extreme computational intensity

(Ge, et al. 2000). To calibrate the SV process for each of our securities we ran a 10,000 iteration

MCMC calibration to build an understanding of the price process (observation equation) and

volatility process (state equation).

We took the joint MAP estimate of κ and θ from our MCMC calibration as per Chib,

et al. (2002). The MAP estimate is a Bayesian parameter estimation technique which takes

the mode of the posterior distribution. It is unlike maximum likelihood based point estimates

which disregard the descriptive power of the MCMC process and associated pdfs. Our Heston

model stochastic volatility calibration for SPX can be seen in Figure 4.2, where we can see

the full truncation scheme forcing the SV process to be positive, and the associated parameter

evolution can be seen in Figure 4.3. This process was repeated for the remaining securities

of whose Heston stochastic volatility calibration and associated parameter estimation evolution

can be seen in Figures 4.4 - 4.13.

Of note, we can see ε is a small constant throughout all the securities. This is attributable

to the fact ε represents the volatility of volatility. If it were large and or varying across the

securities we would not observe the coupling between and amongst securities in these markets

as we do. This coupling, referred to as trend/momentum in finance, can be seen as the measure

of similarity between the return processes in Figures 4.2, 4.4, 4.6, 4.8, 4.8 and 4.12. There are

large periods of activity across certain time points (e.g. between t = 400 - t = 500 days) which

are very similar across the securities indicative of an underlying trend within the market.
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Figure 4.2: Heston model SPX daily closing stochastic volatility calibration using 10,000 iter-

ation MCMC for 04-Jan-2010 through 28-Dec-2012
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Figure 4.3: Heston model SPX daily closing stochastic volatility calibration using 10,000 iter-

ation MCMC: parameter estimates and evolution for 04-Jan-2010 through 28-Dec-2012
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Figure 4.4: Heston model NASDAQ daily closing stochastic volatility calibration using 10,000

iteration MCMC for 04-Jan-2010 through 28-Dec-2012
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Figure 4.5: Heston model NASDAQ daily closing stochastic volatility calibration using 10,000

iteration MCMC: parameter estimates and evolution for 04-Jan-2010 through 28-Dec-2012
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Figure 4.6: Heston model FTSE daily closing stochastic volatility calibration using 10,000

iteration MCMC for 04-Jan-2010 through 28-Dec-2012
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Figure 4.7: Heston model FTSE daily closing stochastic volatility calibration using 10,000

iteration MCMC: parameter estimates and evolution for 04-Jan-2010 through 28-Dec-2012
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Figure 4.8: Heston model GE daily closing stochastic volatility calibration using 10,000 itera-

tion MCMC for 04-Jan-2010 through 28-Dec-2012
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Figure 4.9: Heston model GE daily closing stochastic volatility calibration using 10,000 itera-

tion MCMC: parameter estimates and evolution for 04-Jan-2010 through 28-Dec-2012
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Figure 4.10: Heston model C daily closing stochastic volatility calibration using 10,000 itera-

tion MCMC for 04-Jan-2010 through 28-Dec-2012
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Figure 4.11: Heston model C daily closing stochastic volatility calibration using 10,000 itera-

tion MCMC: parameter estimates and evolution for 04-Jan-2010 through 28-Dec-2012
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Figure 4.12: Heston model T daily closing stochastic volatility calibration using 10,000 itera-

tion MCMC for 04-Jan-2010 through 28-Dec-2012
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Figure 4.13: Heston model T daily closing stochastic volatility calibration using 10,000 itera-

tion MCMC: parameter estimates and evolution for 04-Jan-2010 through 28-Dec-2012
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4.4.2 Stochastic Volatility Estimation

Given the price process we estimate the latent stochastic volatility process using the SIR,

MCMC-PF, PLA and APPF particle filters run with N = 1, 000 particles and systematic re-

sampling. Our results can be seen in Table 4.1 and in Figures 4.14 - 4.19 respectively. Across

all securities we can clearly see the APPF providing more accurate estimates of the underlying

stochastic volatility process compared to the other particle filters. As such the APPF provides

statistically significant improvements in estimation accuracy compared to the other filters.

Upon estimating indices: in estimation of SPX SV (refer to Figure 4.14) we observe no-

ticeably worse estimation by the MCMC-PF and PLA compared to the SIR PF with the APPF

outperforming all these filters by a significant margin - a 6% improvement on SIR with mod-

erate computational expense in reference to the other filters. In estimation of NASDAQ SV

(refer to Figure 4.15) the MCMC-PF and PLA perform comparably to SIR with the APPF

again outperforming all the filters, achieving a 5% increase in performance over SIR. We see

similar performance in FSTE SV estimation (refer to Figure 4.16) with the MCMC-PF and

PLA performing comparably to SIR and the APPF significantly outperforming all these filters.

This trend continues upon estimation of the three common stocks. Estimating GE SV (refer to

Figure 4.17) the MCMC-PF and PLA perform comparably to the SIR PF however the APPF

markedly outperforms all three of these with an RMSE = 0.051 in comparison to PF RMSE =

0.061; a 16.6% improvement in performance. In estimation of C SV (refer to Figure 4.18), the

MCMC-PF and PLA perform worse than the SIR PF, with the APPF outperforming all these fil-

ters once again with a 4.5% improvement in estimation accuracy compared to SIR. And finally,

in estimation of T SV (refer to Figure 4.19), the MCMC-PF and PLA perform comparably to

SIR whilst the APPF outperforms all these filters with a 4.8% improvement over SIR. Such

impairments across the board can lead to both problematic trading and mispricing compared to

derivatives factoring in the APPF SV estimates.

4.4.3 Stochastic Volatility Estimation with Increased Particle Set

To assess the influence of increasing the sample size on filter performance we ran an estimation

of GE SV using N = 5, 000 particles. Our results are summarized in Table 4.2. By taking the

MAP estimate we reduced the parameter estimation problem to a 2-dimensional, deterministic

control function and as such this enables us to focus our efforts on state estimation. We ob-

serve similar results as in the literature with only the PF showing any discernible increase in

estimation performance. It is evident that increasing the particles does not increase APPF per-

formance, outperforming the PF by 14.9%, and as such we can say the APPF provides robust

performance with a limited particle set in comparison to the PF, MCMC-PF and PLA.
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Table 4.1: Heston model experimental results. RMSE mean and execution time in seconds

using 1,000 particles and systematic resampling.

SPX

RMSE Exec. (s)

PF 0.05282 3.79

MCMC-PF 0.05393 59.37

PLA 0.05317 21.30

APPF 0.04961 39.33

NASDAQ

RMSE Exec. (s)

PF 0.05793 3.87

MCMC-PF 0.05799 59.06

PLA 0.05771 21.23

APPF 0.05500 39.36

FSTE

RMSE Exec. (s)

PF 0.06014 3.85

MCMC-PF 0.06067 58.95

PLA 0.05970 21.29

APPF 0.05725 39.32

GE

RMSE Exec. (s)

PF 0.06121 3.79

MCMC-PF 0.06166 58.34

PLA 0.06095 20.91

APPF 0.05108 38.90

C

RMSE Exec. (s)

PF 0.06162 3.88

MCMC-PF 0.06233 59.32

PLA 0.06175 21.33

APPF 0.05887 39.65

T

RMSE Exec. (s)

PF 0.05976 3.84

MCMC-PF 0.05940 59.37

PLA 0.06025 21.64

APPF 0.05691 39.01

Table 4.2: Heston model experimental results - particle size experiment. RMSE mean and

execution time in seconds using 5,000 particles and systematic resampling.

GE

RMSE Exec. (s)

PF 0.06001 3.84

MCMC-PF 0.06154 58.80

PLA 0.06110 21.22

APPF 0.05108 39.22
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Figure 4.14: Heston model estimates for SPX - filter estimates (posterior means) vs. true

state PF (RMSE=0.05282), MCMC-PF (RMSE=0.05393), PLA (RMSE=0.05317) and APPF

(RMSE=0.04961)
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Figure 4.15: Heston model estimates for NASDAQ - filter estimates (posterior means) vs. true

state PF (RMSE=0.05793), MCMC-PF (RMSE=0.05799), PLA (RMSE=0.05771) and APPF

(RMSE=0.05500)
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Figure 4.16: Heston model estimates for FTSE - filter estimates (posterior means) vs. true

state PF (RMSE=0.06014), MCMC-PF (RMSE=0.06067), PLA (RMSE=0.05970) and APPF

(RMSE=0.05725)
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Figure 4.17: Heston model estimates for GE - filter estimates (posterior means) vs. true

state PF (RMSE=0.06121), MCMC-PF (RMSE=0.06166), PLA (RMSE=0.06095) and APPF

(RMSE=0.05108)
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Figure 4.18: Heston model estimates for C - filter estimates (posterior means) vs. true

state PF (RMSE=0.06162), MCMC-PF (RMSE=0.06233), PLA (RMSE=0.06175) and APPF

(RMSE=0.05887)
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Figure 4.19: Heston model estimates for T - filter estimates (posterior means) vs. true

state PF (RMSE=0.05976), MCMC-PF (RMSE=0.05940), PLA (RMSE=0.06025) and APPF

(RMSE=0.05691)
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4.5 Summary
We have proposed an evolutionary computation based particle filter for the estimation of

stochastic volatility of indices and stocks. We have compared our method, the APPF with

the traditional SIR particle filter, and the more advanced MCMC-PF and PLA. We find our fil-

ter to perform better in all state estimation experiments compared to these filters, with marked

and statistically significant improvements in places.

Additionally, APPF performance does not increase when increasing the number of parti-

cles indicating we can get optimal results with a small number of particles. The APPF over-

comes potential noise uncertainty in the weight update fitness evaluation. It is robust to changes

in the signal once the optimal solution has been locked onto. Finally, the APPF overcomes

uncertainty from the temporal fitness function.

These results go some way in showing that selective pressure from our generation-gap and

distribution-recombination method does not lead to premature convergence. We have implicitly

included a number of approaches to handling premature convergence in dynamic optimization

problems with evolutionary computation (Jin & Branke 2005). Firstly, we generate diversity

after a change by resampling. We maintain diversity throughout the run through the impor-

tance sampling diffusion of the current and past generation particle set. This generation based

approach enables the learning algorithm to maintain a memory, which in turn is the base of

Bayesian inference. And finally, our multi-population approach enables us to explore previ-

ously, possibly unexplored regions of the search space.



Chapter 5

Modeling & Estimation in Astrophysics

We continue our evaluation of APPF performance by modeling and estimating astrophysical

time series. In aid of assessing efficacy and applicability of sequential Monte Carlos to astro-

physical time series analysis we worked on modeling quasar time series and in understanding

their latent dynamics. We introduce the domain and provide some background in Section 5.1.

Our evaluation begins in Section 5.2 where we inspect the efficacy of sequential Monte Carlo

methods on modeling regularized astrophysical time series. Building on these results we look

towards modeling irregular astrophysical time series in Section 5.3. We summarize and con-

clude in Section 5.4.

5.1 Computational Statistics in Astrophysics

Owing to the proliferation of astrophysical data from deep-sky surveys past, present and future

a key problem facing astronomy and the astrophysical community is with understanding the

data. Such efforts are typically used to search for and/or predict phenomena within the sky. The

usefulness of a survey is thus correlated to the analysis and understanding therewith. There has

been significant research into the application of classification and traditional machine learning

systems to astronomy alongside postulations of theoretical physical systems of the underlying

dynamics. In this investigation we are concerned with understanding the latent dynamics of

quasars, through the use of real-time learning techniques. Such an understanding can then be

used to characterize light curves.

Quasars display high electromagnetic energy across all wavebands which comes from ac-

cretion onto a supermassive black hole. Such variability is typical of an active galaxy nucleus

(AGN). The source of such variability is unclear though there have been efforts to describe

the optical flux through thermal fluctuations (Kelly, et al. 2009), accretion disk instabilities

(Kawaguchi, et al. 1998), supernovae (I., et al. 1997), microlensing (Hawkins 2004), and Pois-

son process models (Cid Fernandes, et al. 2000).



5.2. Statistical Modeling of Regularized Time Series 60

Results from reverberation mapping have shown that the broad emission lines respond to

variations in the continuum emission after some lag, implying that continuum variations are

dominated by the intrinsic process of the accretion disk (Peterson, et al. 2004). Kelly et al.

(2009) built on these results and found that optical flux is driven by thermal fluctuations, on

the base that optical emission was understood to be thermal emission from the accretion disk.

Previous analyses of quasar optical flux were reduced to working with ensemble sets owing

to the difficulty in obtaining high quality, well sampled light curve time series. Working with

high quality light curves from across datasets, these results provides an important and powerful

insight into the physics of the accretion disk and quasar dynamics.

Motivated by these results we conducted an investigation into the efficacy of online learn-

ing methods to astrophysical data - light curves from the MACHO dataset. The MACHO survey

observed the sky from July 1992 through 1999 to detect microlensing events produced by mas-

sive compact halo objects (MACHO) in the Milky Way halo. Several tens of millions of stars

were observed in the Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC) and

Galactic bulge (Alcock, et al. 2000).

5.2 Statistical Modeling of Regularized Time Series
In principal recursive Bayesian estimation can be applied on any non-linear non-Gaussian dy-

namical system though typically it is prevalent in fields where problems are well known both

theoretically and empirically. Astrophysics throws up a novel problem in not having mature

models of the dynamical systems underlying observations, though we have promising theoreti-

cal and experimental models as those of Kelly et al. (2009) discussed in Section 5.1. Building

on their insight we are encouraged to assess the dynamics from first principles.

Forecasters have been drawn to the benefits of parsimony (Hamilton 1994). Complex

models perform well over periods on which the parameters have been trained though they often

perform poorly on out-of-sample runs. It is noted that simpler models provide more robust

forecasts. Box & Jenkins (1976) have been strong advocates of parsimonious modeling. Their

approach to forecasting can be distilled into the following four steps:

(i) Transform the data, if necessary, so that it is covariance-stationary.

(ii) Make initial guesses of p and q which might describe an ARMA(p, q) model of the trans-

formed series.

(iii) Estimate the autoregressive parameters φ(L) and the moving average parameters θ(L).

(iv) Perform diagnostic analysis to confirm model is consistent with observed features.
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Traditional machine learning and artificial intelligence techniques assume regularized data

(where the data is observed at regular time intervals). However, many systems (both natural and

artificial) are largely irregular posing a major data problem prior to the main learning tasks. We

proceed by regularizing our data through interpolation over a defined granularity to facilitate

an investigation into the efficacy of sequential Monte Carlo methods for astrophysical time

series. Thereafter we will relax the regularized sampling restriction and model irregular time

series in Section 5.3. Employing the Box-Jenkins modeling philosophy we first consider the

covariance-stationary case in Subsection 5.2.1 and then move onto assuming non-stationary

data in Subsection 5.2.2.

5.2.1 Autoregressive Models

Autoregressive models leverage the statistical significance of their lagged autocorrelations in an

attempt to predict the future. Consider an AR(p) autoregressive model of order p:

Xt =

p∑
i=1

αiXt−i + εt (5.1)

where α1 . . . αi are the autoregressive parameters and εt is a white noise process with variance

σ2. It makes use of the predictive power of past observations with varying decay through the

autoregressive parameters ai. Given this feedback, trivially increasing the order p will lead to

over-fitting, usually expressed in an unusually accurate fit on the current dataset but with little

explanatory power to new datasets. We shall be considering a few AR(p) models which we

proceed to define.

Given (5.1) we define an AR(1) process as:

Xt = αXt−1 + εt (5.2)

The state space dynamics are given by:

Xt = αXt−1 + εt (5.3)

Yt = HXt (5.4)

where (5.3) is the state equation and (5.4) is the observation equation with H = (1, 0, . . . , 0).

Equivalence of an AR(p) and state space models can be found in Appendix A.

Given (5.1) we define an AR(2) process as:

Xt = α1Xt−1 + α2Xt−2 + εt (5.5)

The state space dynamics are given by:

Xt = α1Xt−1 + α2Xt−2 + εt (5.6)

Yt = HXt (5.7)
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where (5.6) is the state equation and (5.7) is the observation equation with H = (1, 0, . . . , 0).

5.2.2 Autoregressive Integrated Moving Average Models

Thus far we have assumed that our observed series is linear and stationary though given the

unknown nature of the underlying dynamical system (it is entirely plausible that physical affects

in the halo could introduce non-stationarity into our series) it would be beneficial to assess the

stationarity of the series. To do so we shall use ARIMA models where we can transform a non-

stationary series into a stationary series by considerings its differenced series (corresponding to

step (i) of the Box-Jenkins modeling philosophy). The order of this differencing corresponds

to the d of an ARIMA(p, d, q) model. Our prediction equations must now reflect the fact we

are working on the differenced series. We define a number of linear growth (d = 1) ARIMA

models that we shall be considering.

An ARIMA(p,d,q) process is given by:(
1−

p∑
i=1

φiL
i

)
(1− L)dXt =

(
1 +

q∑
i=1

θiL
i

)
εt (5.8)

where L is the lag operator, the αi are the autoregressive parameters, the θi are the moving aver-

age parameters, and the εt are i.i.d. sample error terms from the normal distribution. Derivation

of the ARIMA process can be found in Appendix B.

For an ARIMA(1, 1, 0) of the form (5.8) the prediction states equation is:

Xt = αXt−1 + εt + (Xt−1 − αXt−2) (5.9)

Full derivation of (5.9) can be found in Appendix B.1.

For an ARIMA(2, 1, 0) of the form (5.8) the prediction states equation is:

Xt = α1Xt−1 + α2Xt−2 + εt + (Xt−1 − α1Xt−2 − α2Xt−3) (5.10)

Full derivation of (5.10) can be found in Appendix B.2.

5.2.3 Results

We tested regularized modeling on the MACHO QSO 63.7365.151 B-band light curve. The

original, irregular light curve can be seen in Figure 5.1. Note the abnormal evolution within

the series just after 4.95x104 MJD and 5x104 MJD, in addition to the massive spike just after

5.05x104 MJD. We remove bad measurements, such as the spike just after 5.05x104 MJD, and

linearly interpolate using 1-dimensional piecewise cubic Hermite interpolation over 10 days

with extrapolation to out-of-range values. Analysis of the underlying distribution pre and post-

regularization does show a significant change, as is to be expected on such sparsely-sampled

time series. The resultant regularized series can be seen in Figure 5.2.
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We estimated the AR(1), AR(2), ARIMA(1,1,0) and ARIMA(2,1,0) models 100 times

with the SIR PF, MCMC-PF and APPF using N = 1, 000 particles and multinomial resam-

pling. The parameters of the AR(p) models are estimated using the Burg method (an extended

case of least-squares), using a set of forward and backward prediction equations to estimate the

parameters. The ARIMA models were fitted using sequential quadratic programming multidi-

mensional constrained linear optimization which allowed us to not only difference the data as

per step (i) of the Box-Jenkins modeling philosophy but to also find the optimal parameters.

Sample runs for each of the models can be seen in Figure 5.3 - Figure 5.6. Summary results

across the runs are detailed in Table 5.1. We compare the RMSE, the variance of the RMSE

and execution time.

Table 5.1: Regularized Time Series Experiment Results. RMSE mean, variance and execution

time in seconds: 100 runs using 1,000 particles and multinomial resampling.

AR(1)

RMSE Var Exec. (s)

PF 0.061409 (-9.84E-07) 5.19

MCMC-PF 0.064501 (-1.33E-05) 8.29

APPF 0.026691 (-4.67E-07) 7.54

AR(2)

RMSE Var Exec. (s)

PF 0.046247 (-5.49E-07) 5.30

MCMC-PF 0.048789 (-2.64E-07) 16.43

APPF 0.027902 (-6.10E-07) 7.79

ARIMA(1,1,0)

RMSE Var Exec. (s)

PF 0.044886 (-1.60E-06) 126.95

MCMC-PF 0.041431 (-4.84E-07) 137.49

APPF 0.027094 (-6.31E-07) 128.74

ARIMA(2,1,0)

RMSE Var Exec. (s)

PF 0.038406 (-1.55E-06) 203.31

MCMC-PF 0.047284 (-8.38E-07) 213.24

APPF 0.028913 (-7.53E-07) 205.69
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Figure 5.1: Source 63.7365.151 quasar light curve from the MACHO QSO candidates in the

LMC fields dataset.
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Figure 5.2: Source 63.7365.151 quasar light curve linearly interpolated using 1-dimensional

piecewise cubic Hermite interpolation per 10 days.
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Figure 5.3: AR(1) - Filter Estimates (posterior means) vs. True State PF (RMSE=0.06108),

MCMC-PF (RMSE=0.061934) and APPF (RMSE=0.026268)
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Figure 5.4: AR(2) - Filter Estimates (posterior means) vs. True State PF (RMSE=0.046927),

MCMC-PF (RMSE=0.048948) and APPF (RMSE=0.028735)
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Figure 5.5: ARIMA(1,1,0) - Filter Estimates (posterior means) vs. True State PF

(RMSE=0.043025), MCMC-PF (RMSE=0.04133) and APPF (RMSE=0.027015)
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Figure 5.6: ARIMA(2,1,0) - Filter Estimates (posterior means) vs. True State PF

(RMSE=0.036684), MCMC-PF (RMSE=0.046511) and APPF (RMSE=0.030455)
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In analyzing the AR(p) models we see that though the performance of the AR(2) model

increases for the PF and MCMC-PF it does not for the APPF. Closer analysis of Figure 5.3

for the AR(1) and Figure 5.4 for the AR(2) respectively show the PF and MCMC-PF to be

significantly away from truly describing the latent signal. For the AR(1) we can see the MCMC-

PF behaving quite erratically, it is tracking the signal through a lagged moving average window.

Adding a further order to the AR expression enables the PF and MCMC-PF to estimate the state

more accurately however not at the level of the APPF. The APPF tracking is fairly stable across

the two models.

We can see that the AR(1) process describes the light curve well. Assessing the RMSEs

of the APPF across the AR(1) and AR(2) we do not see a marked improvement. The PF shows

a marked improvement with little increased computational overhead. The MCMC-PF estima-

tion accuracy increases with the AR(2) but at egregious added computational expense. Most

informative across these runs is the performance of the APPF. Here performance, across our

experiments, as mentioned actually slightly deteriorates however still vastly outperforms both

the traditional PF and MCMC-PF indicating the performance increase we are seeing for the

PF and MCMC-PF is an artifact of over-fitting: an AR(1) process is sufficient to describe the

light curve. Recollect naively adding autoregressive terms allows you to describe a series more

accurately however limits its descriptive ability to out-of-sample series and points.

This thesis is further corroborated in analysis under assumptions of non-stationarity. See

how for the ARIMA(1,1,0) in Figure 5.5 and the ARIMA(2,1,0) in Figure 5.6, performance of

the PF and MCMC-PF increase substantially however, crucially APPF performance does not in-

crease substantially, remaining within the bounds of the AR(p) model performance. In addition,

there is a vast computational increase across all three filters which together with distinct lack of

increase in estimation accuracy is indicative of limited-to-null non-stationarity within the series.

We can thus say that the light curve can be characterized by a first-order autoregressive AR(1)

process and does not have any significant non-stationarity present in the series.

The APPF tracks idiosyncrasies of the light curve across all the models. The PF and

MCMC-PF go part way in achieving this in some of the models e.g. in the AR(2) model

between t = 0− t = 40 but quickly drop track as the series evolves and jumps. Here the APPF

clearly displays its adaptability and robustness to noise and change in the underlying system.

In these experiments we have shown that sequential Monte Carlos can be used to understand

the latent dynamics of regularized astrophysical time series, and from amongst these the APPF

provides the highest estimation accuracy.
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5.3 Statistical Modeling of Irregular Time Series
Astrophysical time series are rarely regularly sampled. Discrete processes, as the AR(p) models

above, are oftentimes obtained through observing a continuous process over a discrete sequence

of time. It is natural thus to model discrete time observed flux as a continuous process: actual

physical processes in the accretion disk are continuous and modeling as such allows us to handle

our irregularly sampled light curves. Owing to these considerations we model the light curves

as a first-order continuous-time autoregressive process (CAR(1)) (Brockwell & Davis 2002).

The CAR(1) process is described by the stochastic differential equation:

dX(t) = −1

τ
X(t)dt+ σ

√
dtε(t) + bdt (5.11)

where τ is the relaxation time of the process X(t), and ε(t) is a Gaussian white-noise process

with mean zero and variance one. Within the context of this work X(t) is the quasar flux. The

mean value of the light curve X(t) is bτ and the variance is τσ2/2. The relaxation time τ can

be seen as describing the variability amplitude of the time series and from Kelly et al. (2009)

has been shown to be significantly related to the black hole mass MBH .

There have been a few previous attempts in using CAR(1) to model light curves. Kelly

et al. (2009) show the CAR(1) process provides accurate descriptions of active galactic nuclei

including the light curves under consideration in this paper. Pichara, et al. (2012) use cali-

brations of CAR(1) as inputs into classification methods for the EROS-2 and MACHO LMC

datasets.

5.3.1 Parameter Estimation of the CAR(1) process

Parameters of CAR(1) processes are usually estimated through maximum likelihood of the ob-

served series. Such an approach avoids cascading errors commonly found in non-parametric

methods. Estimating characteristic parameters directly from the data gives us unbiased esti-

mates though this requires one to assume a parametric model for the time series.

For a light curve with measured fluxes x = {x1, . . . , xn} observed at times {t1, . . . , tn}

with measurements error variances {δ1, . . . , δn} the likelihood function of a CAR(1) process of

the form (5.11) is a mixture of Gaussian functions:

p(x|b, σ, τ) =

n∏
i=1

1
√
vi
f

(
x(ti)−mi√

vi

)
(5.12)

where f(x) = n(x; 0, 1) is a standard normal, τ = 1/a, m1 = bτ and for i > 1:

mi = e−δt/τx(ti−1) + bτ
(

1− e−δt/τ
)

(5.13)

vi =
σ2

2
τ
[
1− e−2δt/τ

]
(5.14)
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Figure 5.7: MAP estimation for MACHO source 63.7365.151 at t = 220 using MCMC with

10,000 samples. Here τ = 491.45 and σ = 0.42.

Employing a Bayesian approach, we solve the likelihood using Metropolis-Hastings

MCMC sampling. The probability distribution of the parameters (the posterior) is calculated

as a product of the likelihood and a uniform prior. We propose a uniform prior as we assume

any value of the autoregressive parameters ai to be equally likely and do not a priori postulate

any correlations between subsequent points. Such a prior is non-informative in the sense that

all information comes from the data.

Upon parameter estimation, simply taking posterior median values would not be congruent

with Bayesian analysis: the estimates would not significantly differ from a maximum likelihood

fit (Sorenson 1980). We take the mode of the posterior distribution which corresponds to the

MAP point estimation on the basis of the data. An example 2-dimensional MAP estimate of τ

and σ for MACHO source 63.7365.151 at t = 220 can be seen in Figure 5.7. We can see that

the highest peak (global maximum) of this surface corresponds to the point where τ = 491.45

and σ = 0.42.

5.3.2 Results

We tested the CAR(1) model against 55 MACHO QSO B-band light curves. We remove bad

measurements from the original, irregular light curves prior to a 10,000 iteration MCMC cali-

bration. The filters are then run using MAP estimates from the calibration, 1,000 particles and
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multinomial resampling. Summary results can be seen in Table 5.2 where τ is the characteristic

timescale of the quasar light curve in days, calculated off of the last 100 points; στ is the stan-

dard deviation of the characteristic timescale of the quasar light curve, calculated off of the last

100 points; τN is the standard deviation of the characteristic timescale of the quasar light curve,

calculated off of the last 100 points; 95% CI τN is the conditional 95% confidence interval of

the final characteristic timescale value; σ is the standard deviation of the quasar flux variations,

calculated off of the last 100 points; σσ is the standard deviation of the standard deviation of

the quasar flux variations, calculated off of the last 100 points; and σN is the standard deviation

of the quasar flux variations of the final value of the quasar light curve in days.

From our calibration we notice a number of interesting items. The value of τ is tightly cou-

pled across all quasars, with a tightly bounded variance, breaking from the understanding that τ

is related toMBH as posited by Kelly et al. (2009). Recent postulations within the astrophysical

community suggest the presence of a unified underlying structure for accretion powered sources

(Kazanas, et al. 2012). The appearance of such sources are different only because of differences

in ionization (the spectrum of ionizing radiation) e.g. the wind density profile can accommodate

several diverse and independent aspects of AGN phenomenology under one framework. This

parsimonious framework describes AGNs using just two parameters: the dimensionless accre-

tion rate ṁ and the observers inclination angle θ. The MBH it is argued by Boroson (2002)

provides the overall scale of an object’s luminosity and size. The characteristic timescale τ

corresponds to the distance between x-rays and the galactic dust in the accretion disk (as related

through the x-ray absorptions features of the QSO spectra) and should not, as indicated by the

data, therefore have any correlation to the MBH .

Significantly, we find that all filters perform well with the APPF outperforming both the

traditional PF and the MCMC-PF in all cases. There are a number of scenarios where PF and

MCMC-PF performance is similar, indicative of cases where the MCMC implementation as a

PF is catching itself out in a pre and post-loop: the importance weights are reliant on the location

before the MCMC move however the sample is reliant upon the location after the move which

in essence causes removed samples to be replicated in resampling thus performing comparably

to the generic PF. Assessing performance across the filters, we can see the heuristic step within

the APPF (that being the only difference between it and the PF) imbues the filter with a level of

performance far beyond the PF and MCMC-PF in most cases.

Examining some specific scenarios we see the filter run for MACHO source 63.7365.151

in Figure 5.8 and the associated MAP evolution of τ in Figure 5.9. Recollect this is the same

quasar light curve we regularized and estimated using both AR(p) and ARIMA(p, d, q) models
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Table 5.2: Irregular Time Series Experiments: CAR(1) calibration of 55 MACHO light

curves.τ and σ were calibrated using a 10,000 run MCMC; RMSE means of the particles filters

compared to the true observations using N = 1, 000 particles and multinomial resampling.
Source Points τ a στ b τN

c 95% CI τN d σ e σσ f σN
g PF MCMC-PF APPF

1.4418.1930 1033 497.75 11.92 500.53 [488.12 : 495.63] 0.27 0.21 0.3 0.04444 0.02392 0.01078
1.4537.1642 1186 496.4 14.06 499.12 [487.90 : 496.38] 0.27 0.18 0.24 0.02123 0.02068 0.01488
11.8988.1350 1014 499.12 14.16 503.68 [496.01 : 501.81] 0.31 0.25 0.28 0.02065 0.01893 0.01253
13.5717.178 937 501.46 12.71 508.49 [500.08 : 505.17] 0.29 0.24 0.35 0.02118 0.01923 0.01349
13.5962.237 930 498.99 14.92 471.90 [476.87 : 487.06] 0.32 0.28 0.19 0.02624 0.02546 0.01584
13.6805.324 1006 498.76 13.16 508.78 [511.28 : 519.04] 0.26 0.2 0.06 0.02173 0.02364 0.01364
13.6808.521 926 499.85 15.45 495.52 [473.37 : 486.78] 0.29 0.22 0.6 0.01920 0.02376 0.01242
14.8249.74 881 501.96 14.87 501.15 [509.70 : 518.41] 0.25 0.18 0.26 0.01661 0.01830 0.01402
17.2227.488 436 500.7 12.2 516.40 [501.79 : 510.64] 0.27 0.24 0.26 0.03330 0.03063 0.02554
17.3197.1182 428 502.42 12.72 498.03 [485.46 : 493.91] 0.26 0.21 0.03 0.03030 0.02991 0.01620
2.5873.82 896 499.53 13.46 495.90 [500.04 : 506.39] 0.28 0.22 0.12 0.02277 0.02052 0.01281
20.4678.600 355 501.14 17.01 500.81 [498.69 : 505.01] 0.27 0.27 0.46 0.02458 0.03042 0.01781
206.16653.987 882 501.1 14.74 504.97 [503.99 : 509.70] 0.28 0.23 0.05 0.02155 0.02142 0.01324
206.17052.388 901 499.45 13.08 503.07 [493.63 : 499.98] 0.28 0.22 0.24 0.01745 0.01933 0.01041
207.16310.1050 988 500.61 14.25 509.43 [502.16 : 508.44] 0.32 0.25 0.12 0.02730 0.02268 0.01091
207.16316.446 834 499.73 13.35 501.47 [499.12 : 503.83] 0.26 0.22 0.2 0.02213 0.01974 0.01226
208.15799.1085 967 500.56 14.71 531.80 [517.81 : 529.89] 0.3 0.23 0.5 0.02503 0.02348 0.00901
208.15920.619 992 499.79 13.64 511.06 [505.21 : 514.01] 0.3 0.22 0.04 0.01708 0.01939 0.01016
208.16034.100 973 500.35 13.39 504.55 [480.89 : 492.83] 0.28 0.22 0.3 0.01774 0.01688 0.01122
211.16703.311 863 500.1 14.3 506.99 [498.54 : 504.93] 0.29 0.22 0.47 0.01801 0.01906 0.01190
211.16765.212 856 498.48 14.9 492.84 [487.84 : 493.87] 0.31 0.24 0.46 0.02607 0.02070 0.00952
22.4990.462 551 498.29 13.93 498.19 [485.47 : 493.17] 0.24 0.23 0.34 0.02441 0.02711 0.01396
22.5595.1333 562 497.6 13.73 497.59 [501.07 : 506.39] 0.3 0.26 0.04 0.02819 0.03034 0.01651
25.3469.117 360 501.59 15.32 502.24 [488.32 : 495.35] 0.2 0.22 0.18 0.02261 0.02980 0.01317
25.3712.72 347 500.14 15.04 499.04 [507.27 : 517.35] 0.24 0.22 0.35 0.01656 0.01566 0.01561
28.11400.609 329 501.41 13.78 518.69 [510.74 : 518.74] 0.25 0.22 0.91 0.03785 0.03889 0.02985
30.11301.499 296 500.27 12.79 495.66 [491.45 : 495.69] 0.23 0.21 0.06 0.07567 0.04284 0.02564
37.5584.159 272 501.05 14.07 505.02 [496.67 : 502.98] 0.27 0.24 0.26 0.03282 0.03327 0.01798
48.2620.2719 345 498.87 14.93 485.52 [479.38 : 488.62] 0.26 0.21 0.07 0.03125 0.02685 0.01203
5.4643.149 896 501.48 12.96 497.99 [492.38 : 500.83] 0.26 0.22 0.07 0.01978 0.02187 0.01368
5.4892.1971 1002 499.35 14.6 495.40 [499.10 : 506.67] 0.29 0.24 0.81 0.02232 0.02312 0.01433
52.4565.356 249 500.33 12.2 516.17 [510.42 : 519.07] 0.19 0.19 0.23 0.03371 0.02845 0.01834
53.3360.344 250 500.63 13.78 499.59 [507.68 : 515.92] 0.21 0.21 0.59 0.05704 0.04432 0.03391
53.3725.29 238 500.89 12.34 496.74 [488.42 : 496.80] 0.23 0.23 0.06 0.03330 0.04460 0.01751
53.3970.140 266 501.37 12.67 514.41 [491.67 : 505.44] 0.27 0.25 0.37 0.01634 0.01346 0.01236
58.5903.69 236 500.95 13.79 510.93 [492.45 : 503.64] 0.23 0.21 0.31 0.04874 0.03388 0.02139
58.6272.729 312 499.17 13.62 488.49 [488.44 : 496.85] 0.23 0.2 0.16 0.05335 0.05251 0.04612
59.6398.185 268 499.05 14.29 509.79 [499.91 : 505.35] 0.22 0.21 0.32 0.03696 0.03839 0.01233
61.8072.358 374 500.69 15.42 519.16 [507.99 : 514.14] 0.26 0.23 0.35 0.02838 0.03421 0.01216
61.8199.302 405 499.26 13.67 505.95 [499.76 : 505.11] 0.2 0.18 0.07 0.02358 0.02297 0.01151
63.6643.393 241 499.41 14.97 509.57 [508.56 : 514.44] 0.26 0.24 0.02 0.04686 0.04094 0.02344
63.7365.151 229 497.92 14.38 494.29 [495.78 : 500.38] 0.21 0.19 0.04 0.03547 0.03674 0.01587
64.8088.215 260 501.02 13.47 500.46 [500.42 : 506.38] 0.26 0.24 0.53 0.05011 0.04561 0.02843
64.8092.454 260 501.77 14.88 498.97 [499.58 : 503.46] 0.23 0.19 0.24 0.03401 0.03380 0.02044
68.10968.235 258 499.88 11.76 506.65 [479.26 : 491.11] 0.24 0.22 0.22 0.02845 0.03869 0.01386
68.10972.36 264 500 10.92 500.70 [502.26 : 512.07] 0.23 0.21 0.46 0.03724 0.04330 0.02171
69.12549.21 233 499.03 13.1 499.93 [471.73 : 484.87] 0.25 0.24 0.11 0.02401 0.02641 0.02187
70.11469.82 246 499.9 11.87 502.89 [503.92 : 510.43] 0.21 0.19 0.2 0.04503 0.04859 0.04106
75.13376.66 236 500.77 10.33 507.23 [516.10 : 526.96] 0.21 0.18 0.4 0.03014 0.03601 0.02316
78.5855.788 873 498.13 11.4 488.00 [481.38 : 489.36] 0.23 0.21 0.08 0.02130 0.01843 0.01388
82.8403.551 877 501.96 13.25 497.21 [491.20 : 497.24] 0.28 0.22 0.04 0.02225 0.02557 0.01220
9.4641.568 1035 499.46 15.05 497.06 [501.96 : 507.96] 0.28 0.23 0.71 0.02085 0.02276 0.01336
9.4882.332 1070 496.53 15.24 505.57 [500.45 : 506.62] 0.29 0.22 0.22 0.02115 0.02286 0.01168
9.5239.505 997 499.72 14.05 510.25 [503.51 : 511.64] 0.3 0.24 0.09 0.01802 0.01892 0.01174
9.5484.258 1022 499.91 14.35 525.52 [511.15 : 522.02] 0.33 0.24 0.45 0.01891 0.01932 0.00955

a The characteristic timescale of the quasar light curve in days, calculated off of the last 100 points.
b The standard deviation of the characteristic timescale of the quasar light curve, calculated off of the last 100 points.
c The characteristic timescale of the final value of the quasar light curve in days.
d The conditional 95% confidence interval of the final characteristic timescale value.
e The standard deviation of the quasar flux variations, calculated off of the last 100 points.
f The standard deviation of the standard deviation of the quasar flux variations, calculated off of the last 100 points.
g The standard deviation of the quasar flux variations of the final value of the quasar light curve in days.
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in Section 5.2. We are able to estimate the latent state accurately using all three filters with

comparative RMSEs (from Table 5.2) PF RMSE = 0.03547, MCMC-PF RMSE = 0.03674 and

APPF RMSE = 0.01587. The APPF provides a 55% improvement over the PF, a markedly

significant performance increase. We can see how the APPF keeps track through the evolution

of the series whilst the PF loses track on a number of occasions especially towards the beginning

of the series. Analyzing the evolution of τ we can see it quickly jumps to 500 and fluctuates

around that value with little deviation, adapting as and when necessary.

MACHO source 211.16703.311 exhibits far more erratic behavior. Observe the massive

downward spikes in Figure 5.10 around 4.95x104 MJD and 5.1x104 MJD. All filters track the

signal closely with the APPF (RMSE = 0.01190) showing a marked improvement over the PF

(RMSE = 0.01801) and MCMC-PF (RMSE = 0.01906). Of note, we have more data points for

this light curve compared to MACHO source 63.7365.151 (863 vs. 229) which is evident both

in the evolution of the curve and in the evolution of τ in Figure 5.11. We can see it is extremely

tightly coupled with a larger concentration around the long run mean of 500.

A similar period of turbulence, with a number of massive upward and downward spikes

around 4.95x104 MJD, can be observed in MACHO source 1.4418.1930 in Figure 5.12. Across

this period we can see the power of the IS diffusion in capturing spikes in the data. In estima-

tion of this light curve, the APPF is statistically significantly more accurate with an RMSE =

0.01078 compared to PF RMSE = 0.04444 and MCMC-PF RMSE = 0.02392 exhibiting a 75%

increase in performance. As with source 211.16703.311 we can see an extremely tight coupling

and bounds in the evolution of τ in Figure 5.13. MACHO source 30.11301.499 is a sparsely ob-

served light curve with only 296 data points. There are many periods of missing data within the

series, easily seen by the sharpness of the evolution of the series in Figure 5.14. See for instance

the two jagged troughs between 4.93x104 MJD and 4.94x104 MJD. This artifact is also visible

in the evolution of the associated τ in Figure 5.15. Here again, the APPF (RMSE = 0.02564)

significantly outperforms the PF (RMSE = 0.07567) and MCMC-PF (RMSE = 0.04284) in

estimation accuracy providing a 66% increase in performance.

Across these four sample curves we have observed the advantage provided by the APPF in

estimation of irregular quasar time series. For both sparse and densely sampled series, the APPF

provides statistically significant increases in estimation accuracy when compared to the PF and

MCMC-PF. It is able to adapt to changes in the latent state quicker and more accurately than

the other filters building on the IS diffusion inherent to the original particle filtering recursions.

These results are replicated across all quasar light curves we have estimated.
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Figure 5.8: Source 63.7365.151 quasar light curve - filter estimates (posterior means) vs. true

state PF (RMSE=0.03547), MCMC-PF (RMSE=0.03674) and APPF (RMSE=0.01587)
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Figure 5.9: Source 63.7365.151 τ MAP estimates
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Figure 5.10: Source 211.16703.311 quasar light curve - filter estimates (posterior means) vs.

true state PF (RMSE=0.01801), MCMC-PF (RMSE=0.01906) and APPF (RMSE=0.01190)
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Figure 5.11: Source 211.16703.311 τ MAP estimates
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Figure 5.12: Source 1.4418.1930 quasar light curve - filter estimates (posterior means) vs. true

state PF (RMSE=0.04444), MCMC-PF (RMSE=0.02392) and APPF (RMSE=0.01078)
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Figure 5.13: Source 1.4418.1930 τ MAP estimates
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Figure 5.14: Source 30.11301.499 quasar light curve - filter estimates (posterior means) vs.

true state PF (RMSE=0.07567), MCMC-PF (RMSE=0.04284) and APPF (RMSE=0.02564)
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Figure 5.15: Source 30.11301.499 τ MAP estimates
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Our MCMC MAP calibration of τ across the light curves shows a level of stability in

contradiction to the literature. From Table 5.2, we can quite clearly see it oscillating around τ =

500, with quite significant jumps from 0 to this rest level from the beginning of the calibration

in the sample evolutions of τ provided in Figure 5.9, Figure 5.11, Figure 5.13 and Figure 5.15.

From this it is self-evident that equivocating MBH to τ , as the masses across the quasars vary,

is not valid and is in essence indicative of a more unified AGN structure.

5.4 Summary
In this chapter we have presented a method for understanding the latent dynamics of astro-

physical time series in real-time. Firstly we show that regularized astrophysical time series can

be learned using sequential Monte Carlo methods through experiments based on autoregres-

sive models. Secondly, we build on these results to model irregular astrophysical times series,

successfully capturing the idiosyncrasies of 55 MACHO QSO light curves.

We calibrate the CAR(1) using an MCMC run by taking MAP estimates. The calibration

shows τ to be first-order stable across the light curves which is at odds with current understand-

ings of τ in the literature, leading us to discussions of τ ’s relation to x-rays in the galactic dust

and towards a more unified AGN structure. Upon analysis, the evolution of τ is found to rapidly

converge to a stable state which coupled with the efficacy of the fully Bayesian framework em-

ployed leads to extremely accurate state estimation, particularly with the APPF, excelling and

outperforming the SIR PF and MCMC-PF.



Chapter 6

Discussion

In this chapter we discuss and evaluate our work in aid of highlighting what we have contributed

to the field. We concisely answer our research objective in Section 6.1, providing detailed

elaboration of our results in defining our conclusions. We thoroughly analyze our methods in

Section 6.2. We articulate our findings into the body of knowledge in Section 6.3, highlighting

significance and novelty, alongside a discussion on contributions. We conclude the chapter in

Section 6.4.

6.1 Introduction

Embedding a computational intelligence step (a heuristic selection scheme) of adaptive path

switching between generations based on maximal likelihood as a fitness function into the new

APPF has yielded increased estimation accuracy for recursive Bayesian estimation of non-linear

non-Gaussian dynamical systems compared to contemporary filters. We have observed the

APPF outperforming the SIR PF, MCMC-PF and PLA in estimation of the Heston stochastic

volatility model for three stocks and three indices. In addition, we have observed the APPF

being used for estimation of fifty-five quasar time series, outperforming both the SIR PF and

MCMC-PF. Within and across both these domains the APPF provides statistically significant

increases in estimation accuracy by addressing the weight degeneracy and sample impoverish-

ment problem inherent to traditional sequential Monte Carlo methods.

Mathematical filtering is signal modeling and state inference given noisy observations.

Wiener provided solutions for the stationary underlying distribution, with Kalman catering for

non-stationary underlying distributions. Extensions of the KF try to overcome limitations of

assumptions of linearity and Gaussianity but do not provide closed-form solutions to the dis-

tribution approximations required. As such the KF and its extensions have severe limitations

when applied to complex distributions frequently encountered in real life.
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Prediction X̂Filtering X
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Figure 6.1: Recursive Bayesian Filtering

When filtering, we maintain an explicit representation of the current distribution over the

state of the world. Filtering leverages state space models in a data processing algorithm to

estimate latent state variables through the observation of large quantities of data. It focuses

on removing observation errors and computing the pdf over the most recent state. This is

an inverse learning problem: you want to find inputs as you are given outputs. Recursive

Bayesian filtering, Figure 6.1, builds on the assumptions that the state follows a first-order

Markov process and that the observations and states are independent to reason about beliefs

under conditions of uncertainty. Given an initial understanding we predict (estimate) the latent

state a priori by:

p(xt|y0:t−1) =

∫
p(xt|xt−1, y0:t−1)p(xt−1|y0:t−1)dxt−1

We update our understanding by using the prediction and new observation to obtain an a poste-

riori estimate:

p(xt|yt, y0:t−1) =
p(yt|xt, x0:t−1)
p(yt|y0:t−1)

p(xt|y0:t−1)

Monte Carlo approximation using particle methods calculates this expectation of the pdf by

sampling from the importance distribution π which is proportional to the true posterior at every

point. We thus are able to sample sequentially i.i.d. draws, enabling us to estimate the state as

in Equation (6.1). Given a prior understanding, particles are re-weighted as an expectation with

respect to the dominating importance density.

Epθ(x0|y1:t)[h(x0:t)] ∝
∫
h(x0:t)·

pθ(x0:t−1|y1:t−1)
πθ(x0:t−1|y1:t−1)

· fθ(xt|xt−1) · gθ(yt|xt)
πθ(xt|x0:t−1, y1:t)

·πθ(x0:t|y1:t)dx0:t

Expectation wrt
Target Density

Function we’re
interested in

Prior Weight Re-weight
Latent Transition

Density Observation Density

Marginal Importance
Function

Expectation wrt
Dominating Density

(6.1)



6.1. Introduction 80

The primary problem with sequential Monte Carlo methods is weight degeneracy, where

the particle system collapses onto a few non-zero points. The distribution of importance weights

becomes more and more skewed over time with fewer and fewer non-zero importance weights.

This is traditionally tackled with resampling the importance weights however this leads to a lack

of diversity amongst particles, where the resultant sample has many repeated points. Traditional

sequential Monte Carlo methods attempt to address this problem however introduce further

data processing problems, which results in minimal to comparable performance improvements

over the SIR PF. There have been a number of successful attempts to address this problem by

hybridizing the original SIR algorithm with ideas from EC and GA, with application to a variety

of fields and problems.

A new computational intelligence sequential Monte Carlo method, the APPF, is proposed

for recursive Bayesian estimation of non-linear non-Gaussian dynamical systems. The APPF

is a recombinatory evolutionary algorithm which embeds a generation based adaptive particle

switching step into the weight update. This step codifies the objective function as a maximal

likelihood weight update fitness assessment through inter-generational competition. Initializa-

tion follows from SIR however upon IS we draw from both the current particle set and the past

resampled out particle set. These two particle sets are recombined using a maximal likelihood

weight update. This update follows from the fundamental reasoning of Monte Carlo methods:

the APPF converges by a central limit theorem onto an invariant and thus the correct distri-

bution. The core idea of the APPF is to leverage the descriptive ability of naively discarded

particles in an adaptive evolutionary environment.

Initial tests were performed on a synthetic scalar estimation problem and on the univariate

log-stochastic volatility model. The scalar estimation problem tackled is a common benchmark

problem in sequential Monte Carlo literature. This problem has severe non-linearity in both

the system and measurement equations with additive Gamma noise in the process equation.

The observation model is non-stationary, changing at t = 30. Across 100 runs there was a

marked and statistically significant increase in performance by the APPF in comparison to the

PF and MCMC-PF, providing a 40% increase in performance. This result is interesting in

firstly, displaying the theorized performance increase however, secondly, and more importantly

we are able to analyze some key empirical features of the APPF. Though we are some way off

perfect tracking, the APPF reacts and adapts quicker to spikes in the signal, especially when the

generating distribution changes. This key adaptive feature is further observed in our univariate

log-stochastic volatility model experiment. Assessed over 100 runs, there is a notable increase
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in performance by the APPF in comparison to the PF and MCMC-PF. Closer examination shows

the APPF converging to the generating signal quicker than the comparison filters.

This key feature led us in naming our novel filter the APPF. It is patent that the adaptive

particle switching step, this being the only difference between it and SIR, is addressing the

weight degeneracy and sample impoverishment problem. This step enables the APPF to switch

between competing particles to best understand the current signal, addressing weight degen-

eracy. In addition this step coupled with resampling maintains diversity amongst the particle

system. This is self-evident from the results observed.

6.1.1 Stochastic Volatility Estimation

Estimation of the Heston stochastic volatility model built on our preliminary results. Three in-

dices and three common stocks (3 years’ daily closing prices) were calibrated using an MCMC

and estimated using the PF, MCMC-PF, PLA and APPF. The APPF outperformed all compari-

son filters in all SV estimation experiments. By taking the MAP estimate from our calibration

of the models, the parameter estimation problem is reduced to a deterministic 2-dimensional

control function, enabling us to marginalize out parameter estimation effects on state estima-

tion. The results from state estimation are thus easily compared and benchmarked against one

another as deviations from the MCMC calibration.

In estimation of the three indices we find the APPF providing a 4% - 6% increase in

performance accuracy over the SIR PF. In estimation of the three common stocks we find the

APPF providing a 4% - 16% increase in performance accuracy over the SIR PF. A zoomed

window of t = 0 - t = 160 for GE SV estimation in Figure 4.17 is provided in Figure 6.2. We

observe the APPF converging onto the latent signal quicker than the other PFs. See the variation

in filter performance through t = 0 - t = 5. Thereafter all filters either lag or over emphasize

changes in the latent signal though the APPF provides most stability in this respect. In addition

filters other than the APPF frequently lag and overshoot the latent signal. This leads to the

observed increase in performance of the APPF. This result is prototypical of the SV estimation

results across all securities.

As observed in our preliminary results, the APPF significantly outperforms the other filters

through the race-to-convergence. The APPF is more accurate in its response to changes in the

latent state and subsequent tracking. When testing against influences of particle size, there

is no notable increase in filter performance for the APPF, though there is a small increase in

performance for the PF, MCMC-PF and PLA in congruence with literature. This result displays

the robustness of the APPF which we find attributable to the APPF maintaining a population of

particles which when diffused through IS and selected through inter-generational competition,
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Figure 6.2: Heston model estimates for GE - filter estimates (posterior means) vs. true state:

zoom t = 0 – t = 160

selects informative particles from pertinent areas of the search space. This is the cause of

increase in performance observed in the PF, MCMC-PF and PLA. More particles allow the IS

diffusion to search a wider area in the search space.

6.1.2 Astrophysical Time Series Analysis

Estimating astrophysical time series using sequential Monte Carlo methods buttressed previous

results. On regularized time series the APPF outperformed both the PF and the MCMC-PF,

providing statistically significant increases in estimation accuracy. Over 100 runs for the AR(1)

model the APPF provided a 56% increase in estimation accuracy, a 40% increase for the AR(2)

model, a 40% increase for the ARIMA(1,1,0) model and a 25% increase for the ARIMA(2,1,0)

model.

Adding additional autoregressive terms self-evidently allows us to further specify the la-

tent dynamics. Trivial increases in the autoregressive order leads to overfitting of the data and

needs to be carefully monitored. This increased performance of the PF and MCMC-PF how-

ever does not increase performance of the APPF. Positing stationarity within the series again

increases performance of the PF and MCMC-PF, without significantly affecting APPF perfor-

mance. From this it is clear that the APPF is providing robust estimates without further speci-

fication of the underlying astrophysical dynamics. This can be seen quite clearly in Figure 6.3

which provides a zoom onto t = 100 - t = 200 on the sample runs found in Figure 5.3 and

Figure 5.4.
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Figure 6.3: Regularized source 63.7365.151 quasar light curve AR(1) & AR(2) - filter estimates

(posterior means) vs. true state: zoom t = 100 – t = 200

Firstly, note how accurately the APPF tracks the true latent state. It is able to pick up and

adapt to changes in the underlying signal quicker and more accurately than both the PF and

MCMC-PF. For AR(1) the MCMC-PF is very erratic: it picks up the broader trend but with a

high level of variance (2 orders of magnitude higher than both the PF and APPF - see Table

5.1). Here, the PF is far off tracking the signal closely. Adding an autoregressive term and

positing AR(2) dynamics results in minimal change in APPF performance however observe the

tightening of variance in the MCMC-PF with both it and the PF improving significantly in their

track of the latent state. Tracing through, the PF and MCMC-PF seem to be providing lagged

estimates to the true state. The APPF is able to both track the state more accurately and adapt

to changing dynamics whilst not over specifying the problem.

Fifty-five MACHO B-band light curves were modeled using the CAR(1) model after some

pre-processing to remove bad measurements. The APPF outperformed both the PF and MCMC-

PF in estimation of every light curve. The percentage increase in performance accuracy can be

seen in the histogram and complementary cumulative distribution function in Figure 6.4. In-

terestingly the density of increase in estimation accuracy is skewed with mean at 40% and a

fat left tail (indicating a larger tendency to significantly outperform). In addition we can see

from the complementary cumulative distribution function that for ∼80% we get at least a 35%
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Figure 6.4: CAR(1) model of 55 MACHO light curves increase in APPF estimation accuracy

with respect to SIR PF - histogram and complementary cumulative distribution function. There

is a large tendency for a 40% increase in estimation accuracy (where the histogram is centered),

with ∼80% gaining 35% and ∼30% gaining at least 45%.

increase in estimation accuracy, whilst ∼30% are gaining at least a 45% advantage. The APPF

has significantly outperformed the PF in estimation accuracy, with the adaptive path switching

step being the only change between the APPF and the SIR PF making patent our hypothesis

that embedding a computational intelligence step of adaptive path switching between gener-

ations based on maximal likelihood as a fitness function into the new APPF yields increased

estimation accuracy for recursive Bayesian estimation of non-linear non-Gaussian dynamical

systems compared to contemporary filters.

6.2 Methods and Performance Analysis

A representation of the posterior distribution for parameter estimation was built using MCMC

simulation techniques. This is the modus operandi for calibrating stochastic volatility mod-

els (Sandmann & Koopman 1998). Shephard & Pitt (1997), Durbin & Koopman (1997) and

Durbin & Koopman (2000) have designed methods for constructing likelihoods of general state

space models using Monte Carlo methods which were shown to be efficient implementations

for standard linear SV models and for non-linear extensions by Sandmann & Koopman (1998).

The key feature of the Monte Carlo method is the formulation of the SV as a linear dynamical
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system enabling powerful filtering and smoothing algorithms to be used and to draw on the vast

spectrum of research on structural time series models (Harvey 1991).

There are a number of advantages to using such adapted Monte Carlo methods (Sandmann

& Koopman 1998). Firstly, computational effort is reduced dramatically when compared to

naive Monte Carlo grid search space exploration, while attaining finite sample efficiency. Sec-

ondly, sampling variation is reduced to give arbitrarily close approximations to the posited true

likelihood density. Thirdly, standard likelihood tests can be used for comparison to other meth-

ods. And finally, a number of increasingly complex extensions can be posited with minimal

changes to the estimation procedure as the state space form is retained. Several well-known and

widely used extensions of the basic SV model can thus be treated. Leveraging this retention

of state space form, calibration of the CAR(1) model for astrophysical time series analysis was

performed using an MCMC.

There are a number of criticisms of using MAP estimates. Primarily, it is argued that MAP

is not very representative of Bayesian methods. This criticism is false by assertion: Bayesian

methods summarize data by characteristic distributions from which either the median or mean

is taken, and in the case of MAP the mode is taken. In addition, Sorenson (1980) has shown

that taking posterior median values does not differ significantly from a maximum likelihood fit.

Secondly, it is argued that where mixture models are used the posterior may be multi-modal

which by taking MAP would necessitate finding the highest mode. This criticism is more of a

computational challenge which is overcome by using higher-dimensional histogram analysis as

can be seen in the contour plot in Figure 5.7.

The calibration of τ across the astrophysical time series in Section 5.3 (details in Table

5.2) shows a level of stability in direct contradiction with literature. The value of τ is first-order

stable and coupled across all quasars (note the characteristic timescale of the quasar light curve

calculated off the last 100 points and the characteristic timescale of the final value of the quasar

light curve), with a tightly bounded variance (note 95% CI of final characteristic timescale

values) breaking from the understanding that τ is related to MBH as posited by Kelly et al.

(2009). Recent postulations in the astrophysics community suggest a more unified structure

underlying accretion powered sources (Kazanas et al. 2012): the characteristic timescale τ

corresponds to the distance between x-rays and the galactic dust in the accretion disk (as related

through the x-ray absorptions features of the QSO spectra) and should not, as indicated by the

data, therefore have any correlation to the MBH : a thesis our results corroborate.

Calibration of the regularized astrophysical time series models followed the Box-Jenkins

methodology. This is a parsimonious modeling technique which provides robust forecasts
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(Hamilton 1994). The methodology is fully defined in Section 5.2. Estimates of the autore-

gressive parameters were provided by the Burg method which fits the input data by minimizing

the least squares fit to forward and backward prediction errors with constraints satisfying the

Levinson-Durbin recursion, which calculates solution to equations involving Toeplitz matrices

(Kay 1988). Empirically, the Burg method was found to provide stable estimates in comparison

to the method-of-moments calculations through the Yule-Walker equations.

Given parameter estimates, state estimation performance was assessed using RMSEs. The

RMSE is lower-bounded by the CRLB which is a computationally intensive calculation of es-

timation accuracy. Furthermore, Quang et al. (2010) have shown the RMSE converges under

an upper bound which does not show explicit dependency on the dimension of the hidden state.

This result enables assignment of the RMSE as the MC error in discrete and continuous dy-

namical systems, the ultimate benchmark which is to be minimized. Hendeby (2008) argue that

RMSE evaluation only captures one aspect of filter performance as distribution estimates differ.

They advocate the use of Kullback-Leibler (KL) divergence to capture the true difference be-

tween distributions however, KL divergence can only be used in a simulation setting. Working

on real data institutes using the prior as a substitute for the real distribution from which we

diverge. As such entropy measures such as KL divergence, though enticing theoretically, have

limited practical application.

Preliminary results indicated towards the performance increase achieved by the APPF in

comparison to both the PF and MCMC-PF. These were built built upon by taking a number

of representative securities, benchmarking them through an MCMC calibration of a common

SV model and estimated using sequential Monte Carlos. RMSE tracking comparison found

the APPF to offer statistically significant increase in estimation accuracy compared to the PF,

MCMC-PF and PLA. Subsequently, the APPF was applied to astrophysical time series were

fifty-five light curves were modeled both as regularized and irregular series. The APPF ex-

celled in comparison to the PF and MCMC-PF in both scenarios, again providing statistically

significant improvements in estimation accuracy. Across both problem domains the APPF ex-

celled in providing robust and accurate estimates of the latent state.

Whilst not the primary concern of this work, there is a body of research on the use of

evolutionary computation for parameter estimation (Pantrigo & Sanchez 2005, Han et al. 2011,

Park et al. 2007, Kwok et al. 2005, Li & Honglei 2011, Duan & Cai 2008, Yang et al. 2010,

Zhang et al. 2010, Zheng & Meng 2008) which has been reviewed in Section 2.4. The assertions

made here are sensitive to parameter settings. As such, benchmarking methods i.e. MCMC,

need to be undertaken carefully to ensure no extraneous factors affect final results. The results
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have focused primarily on state estimation on two distinct datasets from which we have drawn

firm conclusions as to the efficacy of computational intelligence synergism in sequential Monte

Carlo methods in comparison to the PF, MCMC-PF and PLA.

6.3 Significance & Contributions

An effective new sequential Monte Carlo method, the APPF, is realized for recursive Bayesian

estimation of non-linear non-Gaussian dynamical systems, to achieve increased estimation ac-

curacy through adapting to changes in the latent process and addressing the weight degeneracy

and sample impoverishment problem within sequential Monte Carlo methods. As postulated,

embedding a computational intelligence step of adaptive path switching between generations

based on maximal likelihood as a fitness function into the new APPF, has yielded increased

estimation accuracy compared to contemporary filters.

Computational intelligence techniques have long been applied to computational finance

though stochastic volatility estimation has never previously been accomplished through the

synergy between computational intelligence and sequential Monte Carlo methods. By building

on work from within both the sequential Monte Carlo and computational intelligence commu-

nity we were able to address a major problem with sequential Monte Carlo methods. The APPF

was successfully applied to the stochastic volatility estimation problem where it outperformed

a number of contemporary filters.

Sequential Monte Carlo methods, to the best of our knowledge, have not been applied to

modeling astrophysical time series. We pioneered research into the application of sequential

Monte Carlo methods to astrophysical time series analysis, in turn postulating latent dynamics

and measuring estimation accuracy. Starting with regularized quasar time series we proposed a

number of autoregressive and autoregressive integrated moving average models to describe the

latent dynamics. Upon recursive Bayesian estimation using sequential Monte Carlo methods,

we found the APPF to outperform the PF and MCMC-PF, providing robust results with gen-

eralized dynamical system dynamics. Building on this result, we attempted to model irregular

astrophysical time series using the CAR(1) model. Fifty-five quasar time series were calibrated

using MCMC, after which they were estimated using sequential Monte Carlos. In all cases we

found the APPF outperforming the PF and MCMC-PF providing statistically significant results.

In addition, we found τ - the characteristic timescale of the quasar in days - to be first-order

stable in contradiction to literature and in line with current postulations within the astrophysics

community.
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This thesis provides a novel sequential Monte Carlo method which leverages a compu-

tational intelligence step of adaptive path switching between generations based on maximal

likelihood as a fitness function to yield enhanced estimation accuracy for recursive Bayesian

estimation of non-linear non-Gaussian dynamical systems compared to contemporary filters,

and an assessment of the efficacy of the use of sequential Monte Carlo methods for modeling

astrophysical time series. Our novel method, the APPF, has been successfully applied to the

stochastic volatility estimation problem, outperforming contemporary sequential Monte Carlo

methods and to modeling astrophysical times series, again, outperforming contemporary filters.

Admittedly there are many ideas which can be explored in the combinatorial space between

computational intelligence (and more general metaheuristic techniques) and sequential Monte

Carlo methods however we are looking at a particular problem - weight degeneracy and sample

impoverishment - using a really specific technique in two distinct application domains with ex-

tremely positive results. There are an uncountably large number of modifications which could

be made to sequential Monte Carlos which this work does not intend to address.

6.4 Summary
Recursive Bayesian filtering aims to maintain an explicit representation of the current distribu-

tion over the state of the world. It leverages state space models in a data processing algorithm

to estimate latent state variables through observation. Sequential Monte Carlo approximation

suffers from a number of problems, primary of which is the weight degeneracy and sample

impoverishment problem. We have described a novel sequential Monte Carlo method which

leverages ideas and concepts from computational intelligence to tackle the weight degeneracy

and sample impoverishment problem.

Preliminary results on a scalar estimation problem and the log-stochastic volatility esti-

mation problem shows the APPF outperforming contemporary particle filters. Application into

two distinct problem domains shows the APPF statistically significantly outperforming contem-

porary particle filters. We have examined our methodology and have provided reasoning and

justification for the process model we have used, elaborating and discussing apparent discrepan-

cies, range of applicability and breadth of validity. We conclude by discussing the significance

and novelty of our work, whilst setting out our contributions.



Chapter 7

Conclusions and Future Work

The main objective of this thesis was to address the weight degeneracy and sample impoverish-

ment problem in sequential Monte Carlo methods. It was proposed to be addressed by embed-

ding a computational intelligence step, a heuristic selection scheme, of adaptive path switching

between generations based on maximal likelihood as a fitness function into a new adaptive path

particle filter (APPF). It was posited that our APPF will yield increased accuracy for recursive

Bayesian estimation of non-linear non-Gaussian dynamical systems compared to contempo-

rary filters. Preliminary tests on a scalar estimation problem and the log-stochastic volatility

model proved that the APPF was outperforming contemporary sequential Monte Carlo meth-

ods. Further tested on stochastic volatility estimation and modeling of astrophysical time series,

the APPF statistically significantly outperformed contemporary sequential Monte Carlo meth-

ods, providing robust estimates with enhanced recursive Bayesian estimation accuracy and an

admissible increase in computational effort.

Recursive Bayesian estimation accuracy has been increased using a heuristic selection

scheme which addresses a key problem within sequential Monte Carlo methods and applied

into two distinct application domains with extremely positive results. This thesis has shown

the advantages of such a synthesis. This development naturally lends itself to applications to

non-linear non-Gaussian dynamical systems in general, offering further avenues for refinement

along the way. At the level of the representation of the probability distribution, the APPF is

using a fitness-based recombination of a past representation with a current representation and

owing to the Markov nature of the state process draws upon the body of evolutionary compu-

tation experience and theory. The observed gains in estimation accuracy are directly related to

evolutionary computation theory and practice and are justified through the fundamental reason-

ing of Monte Carlo methods - their convergence by a central limit theorem onto an invariant

and thus the correct distribution by the law of large numbers. Owing to this relation the APPF

can be further built upon using ideas from computational intelligence.
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This novel approach could prove to be of great commercial and proprietary import, in aid-

ing accurate pricing of derivative products and both proprietary and market-making activities.

Here, the smallest increase in modeling and estimation accuracy affords real competitive advan-

tages and capitalization opportunities. Furthermore, the approach has the potential to be used

in further understanding the astrophysical dynamics of quasi-stellar radio objects and in clas-

sification models of stellar object type. Our work in this field pioneered the use of sequential

Monte Carlo methods for modeling astrophysical time series. It has helped in both highlighting

the efficacy of their use in astrophysical time series analysis but also in a wider understanding

of the astrophysical dynamics of such time series.

7.1 Contributions

This thesis provides a novel sequential Monte Carlo method which leverages a computational

intelligence step of adaptive path switching between generations based on maximal likelihood

as a fitness function to yield enhanced estimation accuracy for recursive Bayesian estimation of

non-linear non-Gaussian dynamical systems compared to contemporary filters, and an assess-

ment of the efficacy of the use of sequential Monte Carlo methods for modeling astrophysical

time series.

This thesis makes the following contributions:

1. The development of a new sequential Monte Carlo method based on computational intel-

ligence for recursive Bayesian estimation of non-linear non-Gaussian dynamical systems.

(a) Outperformed contemporary filters in a scalar estimation problem and the univariate

log-stochastic volatility estimation problem.

(b) Successfully addresses weight degeneracy and sample impoverishment problem of

traditional sequential Monte Carlo methods.

2. The application of a new sequential Monte Carlo method to the stochastic volatility prob-

lem.

(a) Calibrated on Heston stochastic volatility model.

(b) Outperformed contemporary filters in estimation of six securities.

3. The pioneering application of sequential Monte Carlo methods to astrophysical time se-

ries analysis.

(a) Postulated latent dynamics of regularized and irregular quasar time series.
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(b) Our novel sequential Monte Carlo method outperformed contemporary filters in

estimation of regularized quasar time series.

(c) Our novel sequential Monte Carlo method outperformed contemporary filters in

estimation of irregular quasar time series.

i. Calibrated CAR(1) model on fifty-five quasar time series.

ii. Found the characteristic timescale τ of quasars to be first-order stable.

7.2 Future Work

We have successfully displayed the enhanced estimation accuracy from the heuristic selection

scheme in the APPF. There are a number of interesting avenues for future exploration, detailed

below, which provide ideas for broadening our methodology and its application. These shall

help further refine our results, allowing focus on both theoretical and empirical aspects.

7.2.1 Dual Estimation & Particle Learning

Our work has focused on state estimation using an MCMC calibration to drive the sequential

Monte Carlos. This has enabled us to focus efforts on refining our algorithm for this purpose,

marginalizing the parameter estimation problem. It would be interesting to inspect estimation

performance when we combine state and parameter estimation as the dual estimation problem

(also referred to as particle learning in the literature). This could, similarly as above, be bench-

marked off an MCMC calibration for comparison.

The dual estimation problem is a prohibitively hard problem with an active research com-

munity (Doucet & Johansen 2008, Saha 2009). First proposed by Berzuini et al. (1997), a com-

mon technique is to include the parameters as part of the state vector. Particle filters perform

poorly when the dimension increases (Bengtsson, et al. 2008, Crisan & Doucet 2002, Daum &

Huang 2003, Snyder, et al. 2008), and as such any such amalgamation of parameters into the

particle system, leads to a slower exploration of the search space. This added computational

cost is a severe hindrance to the efficacy of particle learning in practice. It would be interesting

to inspect the effectiveness of the computational intelligence step introduced into SIR as the

APPF in overcoming learning difficulties in particle learning.

7.2.2 Convergence Analysis

The generation gap inspired adaptive particle switching step introduces a direct, fitness based

(specifically, descriptive power based) competition between generational elements into the par-

ticle filter, creating a more evolutionary computation like algorithm, which is yielding superior
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results. It also suggests advancing particle filters in other ways that are inspired by genetic

algorithm theory and practice.

For instance, generation gap methods, as the ones adopted in the APPF, increase se-

lective pressure which can potentially lead to premature convergence: a problem analogous

to the very one we are addressing in sequential Monte Carlos. However, there are various

schemes in evolutionary computation i.e. fitness sharing (Arulampalam et al. 2002, Goldberg

& Richardson 1987), crowding (Mengshoel & Goldberg 2008, Eiben & Smith 2008), niche

specialization (Ashlock 2006) and triggered hypermutation (Morrison & De Jong 2000) which

aim to preserve diversity in populations and across generations providing further avenues of

potential enhancement of the APPF. Within the framework outlined in the APPF, we can draw

on past genetic algorithm investigations of these techniques which should fully bring to bear the

theoretical advantages of genetic algorithms and evolutionary computation in particle filters.

7.2.3 Derivative Pricing and Systematic Volatility Trading

Typically, stochastic volatility estimation is used in derivative pricing. The advantages of the

APPF over contemporary filters can be used to more accurately price derivatives. However,

this is not the only avenue available to capitalize on accurate forward knowledge of volatility.

Volatility trading strategies have been around for some time though very little effort has been

placed in investigating systematic trading models for volatility arbitrage (where quoted volatil-

ity and our estimates provide an arbitrage opportunity). A simple such strategy would look at

bounded ranges of futures positions to maximize on upside and minimize downside risk. Simi-

larly one could enact vanilla and exotic trading strategies using long/short straddles, long/short

strangles, ratio call/put spreads and call/put ratio backspreads.

7.2.4 Predictive Power for Astrophysical Time Series Analysis

Our work in astrophysical time series analysis, and specifically the estimation accuracy

achieved leads us to ponder the predictive power of the posited astrophysical dynamics and

associated sequential Monte Carlo methods. Traditionally, sequential Monte Carlo methods are

used for one-step ahead prediction though it would be interesting to assess the predictive-decay

in comparison to classical astrophysical time series analysis techniques. For instance we could

compare the tracking degeneracy between static and dynamic τ ’s. Furthermore, this analysis

would feed into our discussion of the latent dynamics and for instance could include an exoge-

nous noise term in the observation equation. Such an extension would enable us to investigate

effects away and aside from the state dynamics currently under consideration, considering more

accurate dynamics.



Bibliography

C. Alcock, et al. (2000). ‘The MACHO Project: Microlensing Results from 5.7 Years of Large

Magellanic Cloud Observations’. The Astrophysical Journal 542:281–307.

L. Andersen (2008). ‘Simple and efficient simulation of the Heston stochastic volatility model’.

Journal of Computational Finance 11(3):42.

B. Anderson & J. Moore (1979). ‘Optimal filtering’. Prentice-Hall Information and System

Sciences Series, Englewood Cliffs: Prentice-Hall, 1979 1.

M. Arulampalam, et al. (2002). ‘A tutorial on particle filters for online nonlinear/non-Gaussian

Bayesian tracking’. Signal Processing, IEEE Transactions on 50(2):174–188.

D. Ashlock (2006). Evolutionary computation for modeling and optimization, vol. 200.

Springer-Verlag New York Inc.

L. Bauwens, et al. (1999). Bayesian inference in dynamic econometric models. Oxford Univer-

sity Press, USA.

T. Bengtsson, et al. (2008). ‘Curse-of-dimensionality revisited: Collapse of the particle filter in

very large scale systems’. Probability and statistics: Essays in honor of David A. Freedman

2:316–334.

C. Berzuini, et al. (1997). ‘Dynamic conditional independence models and Markov chain Monte

Carlo methods’. Journal of the American Statistical Association 92(440):1403–1412.

C. Berzuini & W. Gilks (2001). ‘RESAMPLE-MOVE filtering with cross-model jumps’. Se-

quential Monte Carlo Methods in Practice pp. 117–138.

J. Besag (1974). ‘Spatial interaction and the statistical analysis of lattice systems’. Journal of

the Royal Statistical Society. Series B (Methodological) 36(2):192–236.

E. Bonabeau, et al. (1999). Swarm intelligence: from natural to artificial systems. No. 1. Oxford

University Press, USA.



Bibliography 94

T. A. Boroson (2002). ‘Black hole mass and eddington ratio as drivers for the observable

properties of radio-loud and radio-quiet QSOs’. The Astrophysical Journal 565(1):78.

G. Box & G. Jenkins (1976). ‘Time series analysis. Forecasting and control’. In Holden-Day

Series in Time Series Analysis, Revised ed., San Francisco: Holden-Day, 1976, vol. 1.

P. Brockwell & R. Davis (2002). Introduction to time series and forecasting. Springer.

R. Cabido, et al. (2012). ‘High performance memetic algorithm particle filter for multiple object

tracking on modern GPUs’. Soft Computing-A Fusion of Foundations, Methodologies and

Applications 16(2):217–230.

S. Camazine, et al. (2003). Self-organization in biological systems. Princeton University Press.

J. Carpenter, et al. (1999). ‘Improved particle filter for nonlinear problems’. In Radar, Sonar

and Navigation, IEE Proceedings-, vol. 146, pp. 2–7. IET.

P. Carr & D. Madan (1999). ‘Option valuation using the fast Fourier transform’. Journal of

Computational Finance 2(4):61–73.

Z. Chen (2003). ‘Bayesian filtering: From Kalman filters to particle filters’. Tech. rep., and

beyond. Technical report, Adaptive Systems Lab, McMaster University.

S. Chib, et al. (2002). ‘Markov chain Monte Carlo methods for stochastic volatility models’.

Journal of Econometrics 108(2):281–316.

Y. Chien & K. Fu (1967). ‘On Bayesian learning and stochastic approximation’. Systems

Science and Cybernetics, IEEE Transactions on 3(1):28–38.

N. Chopin (2004). ‘Central limit theorem for sequential Monte Carlo methods and its applica-

tion to Bayesian inference’. The Annals of Statistics 32(6):2385–2411.

R. Cid Fernandes, et al. (2000). ‘Quasar Variability in the Framework of Poissonian Models’.

The Astrophysical Journal 544:123–141.

T. Clapp (2000). ‘Statistical methods for the processing of communications data’. Signal

Processing Group Department of Engineering St. Johns College, University of Cambridge .

R. Cont (2001). ‘Empirical properties of asset returns: stylized facts and statistical issues’.

Quantitative Finance 1(2):223–236.

D. Crisan & A. Doucet (2002). ‘A survey of convergence results on particle filtering methods

for practitioners’. Signal Processing, IEEE Transactions on 50(3):736–746.



Bibliography 95

F. Daum & J. Huang (2003). ‘Curse of dimensionality and particle filters’. In Aerospace

Conference, 2003. Proceedings. 2003 IEEE, vol. 4, pp. 1979–1993. IEEE.
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Appendix A

Equivalence of AR(p) and State Space Models

Given any scalar AR(p) model in vector form:

Xt+1 = FXt + Vt

Yt = HXt

Assuming F has dimension p, back-substitute:

yt+p = H(F pXt + Vt+p−1 + FVt+p−2 + . . . F p−1Vt)

yt+p−1 = H(F p−1Xt + Vt+p−2 + FVt+p−3 + . . . F p−2Vt)

. . .

yt+1 = H(FXt−1 + Vt)

yt = HXt

Thus the observed series yt satisfies a difference equation of AR form with error terms Vt.

Corollary. AR models in state-space form: in the scalar AR(p) model as a vector AR(1) process

with:

Xt = FXt−1 + Vt

yt = HXt

the observation equation lifts the first element so we let H = (1, 0, . . . , 0).



Appendix B

Forecasts using ARIMA(p,d,q) models

For a time series Xt an ARMA(p,q) model is given by:(
1−

p∑
i=1

αiL
i

)
Xt =

(
1 +

q∑
i=1

θiL
i

)
εt

where L is the lag operator, the αi are the autoregressive parameters, the θi are the moving

average parameters, and the εt are i.i.d. sample error terms from the normal distribution.

Assume now that
(
1−

∑p
i=1 αiL

i
)

has a unitary root multiplicity of d:

(
1−

p∑
i=1

αiL
i

)
=

(
1−

p−d∑
i=1

φiL
i

)
(1− L)d

An ARIMA(p,d,q) process expresses the polynomial factorization process and is given by:

(
1−

p∑
i=1

φiL
i

)
(1− L)dXt =

(
1 +

q∑
i=1

θiL
i

)
εt (B.1)

and thus can be thought of as an ARMA(p+d,q) process having the autoregressive polynomial

with some roots of unity.

B.1 ARIMA(1, 1, 0)

For an ARIMA(1, 1, 0) of the form (B.1), given the lag operator

LXt = Xt−1 (B.2)

and the factorization

Yt = (1− L)dXt

= Xt −Xt−1 (B.3)
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the prediction states equation for an ARIMA(1, 1, 0) is given by:

εt = (1− αL)Yt

= (1− αL)(Xt −Xt−1)

= Xt −Xt−1 − αXt−1 + αXt−2 (B.4)

rearranged:

Xt = αXt−1 + εt + (Xt−1 − αXt−2) (B.5)

B.2 ARIMA(2, 1, 0)
For an ARIMA(2, 1, 0) of the form (B.1), given the definition of an AR(p):

εt = Xt −
p∑
i=1

αiXt−1

=

(
1−

p∑
i=1

αiL
i

)
Xt, (B.6)

the lag operator

LXt = Xt−1 (B.7)

and the factorization

Yt = (1− L)dXt

= Xt −Xt−1 (B.8)

the prediction states equation for an ARIMA(2, 1, 0) is given by:

εt =

(
1−

[
p∑
i=1

αiL
i

])
Yt

=
(
1−

[
α1L+ α2L

2
])
Yt

=
(
1−

[
α1L+ α2L

2
])

(Xt −Xt−1)

= Xt −Xt−1 − α1Xt−1 + α1Xt−2 − α2Xt−2 + α2Xt−3 (B.9)

rearranged:

Xt = Xt−1 + α1Xt−1 − α1Xt−2 + α2Xt−2 − α2Xt−3 + εt

= α1Xt−1 + α2Xt−2 + εt + (Xt−1 − α1Xt−2 − α2Xt−3) (B.10)
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