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Abstract 

Background. Liver cancer is the 3rd commonest cause of cancer death 

worldwide. Understanding the mechanisms of hepatocarcinogenesis is vital for 

developing more effective treatments.  Chronic liver disease is a predisposing 

factor for development of hepatocellular carcinoma (HCC) and increased 

translocation of gut bacteria is believed to exacerbate this inflammatory 

condition. Toll-like receptors (TLRs) play a crucial role in immunity against 

microbial pathogens and recent evidence suggests they may be important in 

pathogenesis of chronic liver disease. The aim of this thesis was to explore the 

role of TLRs in the pathogenesis of HCC. 

Materials & Methods: Tissue microarrays obtained from patients with cirrhosis, 

viral hepatitis and HCC were stained with for TLR4, TLR7 and TLR9 and the 

data were validated in actual patient samples. The role of gut translocation was 

explored in an animal model of HCC using diethylnitrosamine (DEN) and 

nitrosomorpholine (NMOR) after treatment with Norfloxacin. Proliferation of 

HCC cell lines were studied after stimulation (Imiquimod and CpG-ODN) and 

inhibition of TLR7 and TLR9 (IRS 954) and chloroquine. The effect of these 

interventions was confirmed in the DEN and NMOR and, a xenograft model. 

The studies were extended to determine their effect in cholangiocarcinoma. 

Results: TLR7 and TLR9 but not TLR4 were up regulated in HCC tissue and 

gut decontamination with Norfloxacin did not prevent HCC development but 

reduced liver fibrosis. TLR7 stimulation increased cell proliferation of HuH7 cells 

significantly and inhibition of TLR7 and TLR9 using IRS or chloroquine resulted 

in significant inhibition. TLR7 and TLR9 inhibition using IRS 954 and 

chloroquine reduced tumour growth in xenograft models and, chloroquine also 

decreased liver fibrosis and tumour growth in the DEN and NMOR model. 

These beneficial effects were also observed in cholangiocarcinoma.  

Conclusion: In conclusion, these data suggest that inhibiting TLR7 and TLR9 

and, using chloroquine could be potential novel therapeutic strategies for the 

prevention and the progression of primary liver cancers in susceptible patients.  
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1. Introduction 

1.1   Epidemiology and global distribution of HCC 

Liver cancer is the fifth most common cancer in the world and the third 

commonest cause of cancer death (Parkin et al., 2001 and Chen et al., 2006).  

About 85-90% of all primary liver cancer cases are diagnosed as hepatocellular 

carcinoma (HCC) (El Serag, 2011).  Nearly one million new cases of HCC are 

diagnosed annually accounting for approximately 500,000-600,000 deaths 

(Sherman, 2008, Feo et al., 2009 and Schutte et al., 2009).  The prognosis of 

HCC is poor with a median survival of less than one year (El Serag and 

Rudolph, 2007) and an actual 1-year survival rate of 3-5% (Schutte et al., 

2009).  

 

HCC is more common in men than women (Sherman, 2008), the mean male to 

female ratio being 2-4:1. HCC is the fifth most common cancer in men and 

seventh in women (El Serag, 2011).  It has also been noted that the peak HCC 

incidence in female patients occurs around 5 years later than in males (Schutte 

et al., 2009).  The high incidence of HCC in the male population is probably due 

to the higher exposure to risk factors such as sex hormones (Schutte et al., 

2009).  It has been shown that orchidectomy reduces the effect of chemical 

carcinogens in male rats (Leong and Leong, 2005). 

 

In the high incidence areas, HCC is common in younger patients, whereas in 

the low incidence areas it is predominantly a disease of the elderly (Leong and 

Leong, 2005).  The age-specific patterns are related to the differences in the 

distribution of dominant hepatitis virus in the population, the age at which viral 

infection occurs, and co-existence of other risk factors.  Of note, most Hepatitis 

C virus (HCV) carriers become infected in adulthood while most Hepatitis B 

virus (HBV) carriers acquire infection at a very young age (El Serag and 

Rudolph, 2007). 

 

There is a geographic variability in the distribution of HCC cases, highest 

incidence reported in south-east Asia and sub-Saharan Africa (Leong and 

Leong, 2005 and El Serag and Rudolph, 2007).  China alone accounts for more 

than 50% of the cases (El Serag and Rudolph, 2007).  European countries, 
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historically, have a low incidence of HCC, but over the past 20-years the 

incidence rate in Europe has been on the rise.  Similarly, although North and 

South America have a lower incidence of HCC (El Serag and Rudolph, 2007), 

the incidence of HCC has more than tripled in the United States of America in 

the last two decades (El Serag, 2011). 

 

 

Figure 1: Incidence of HCC worldwide. 

 

 

Figure 2: Regional variations in the mortality rates of HCC.  The rates are 
reported per 100, 000 persons (Adapted from El Serag and Rudolph, 2007). 
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1.2 Risk factors for development of HCC 

The aetio-pathogenesis of HCC involves a process characterised by an 

increased hepatocyte turnover following chronic liver injury and regeneration, 

triggered by a variety of insults (Fung et al., 2009).  Around 70%-90% of HCC 

cases are observed in patients with liver cirrhosis and long standing hepatic 

inflammation (Schutte et al., 2009).  The risk factors (described below) induce 

tumour formation and proliferation through a number of distinct and complex 

biochemical pathways. However, nearly all of them seem to have an 

inflammatory basis. 

 

1.2.1 Viral hepatitis 

One of the most important risk factors for HCC development is chronic hepatitis 

B and C (Dragani, 2010).  HBV, and less commonly HCV, can cause HCC due 

to the oncogenic properties of the viruses themselves (Fung et al., 2009).  HCV 

and HBV increase the risk of developing HCC by 20- fold (Schutte et al., 2009), 

and are responsible for more than 80% of all cases of HCC globally.  

 

HBV can cause HCC directly by increasing inflammation and regeneration.  

This process leads to accumulation of potential mutations in the hepatocyte 

genome resulting in HCC (Fung et al., 2009).  HCC can also be induced directly 

through integration of HBV DNA into the host genome (Rocken and Carl-

McGrath, 2001).  This direct pathway does not occur in HCC induced by HCV 

because this is an RNA virus and does not contain the reverse transcriptase 

enzyme.  Therefore HCV can only cause HCC through indirect pathways (Fung 

et al., 2009).  In hepatitis C, the structural proteins (Core, E1, E2 and p7) and 

the non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A and NS5B) are the 

main carcinogenic agents and host- viral protein interactions the main pathway 

behind hepatocarcinogenesis (Kim et al., 2007).  For example, the NS5B affects 

the cell cycle and leads to arrest at the G2 Phase (Baek et al., 2006).  NS5A 

alters intracellular calcium levels, reactive oxygen species (Gong et al., 2001) 

and inhibits apoptosis (Baek et al., 2006).  

 

Since the discovery of the HBV vaccine, there has been a decline in the HBV-

related HCC (Schutte et al., 2009).  On the other hand, the incidence of HCV- 



Introduction 

23 
 

related HCC has continued to increase due to higher rates of intravenous drug 

abuse and contaminated blood supply (Armstrong et al., 2000).  Hepatitis A and 

E have no carcinogenic effects as neither virus leads to chronic hepatitis.  

Hepatitis D virus infects the liver only in patients with hepatitis B thus making it 

difficult to evaluate its direct role in hepatocarcinogensis.  It has been suggested 

however that hepatitis D places additional load on the damaged liver 

contributing to the risk of HCC (Leong and Leong, 2005).  

 

1.2.2 Life style; Alcohol, Obesity and Non-Alcoholic steatohepatitis  

a) Alcohol 

Heavy alcohol consumption is a major risk factor for HCC in developed 

countries (Schutte et al., 2009).  Heavy alcohol intake is defined as long-term 

ingestion of more than 50-70g/day for an average of 10 years (El Serag and 

Rudolph, 2007). 

Chronic alcohol consumption is associated with a variety of liver diseases 

ranging from steatosis, steatohepatitis, cirrhosis, and finally to HCC (Mandrekar 

and Szabo, 2009).  There is evidence of a direct carcinogenic effect of alcohol 

on the liver; however, there are several mechanisms implicated in the initiation 

of HCC (Schutte et al., 2009). 

 

Ethanol is primarily metabolised in the hepatocytes through alcohol 

dehydrogenase (ADH) in the cytosol, microsomal ethanol oxidizing system 

(MEOS) in endoplasmic reticulum which also contain inducible cytochrome 

P450 2E1, and catalase which is located in the peroxisomes (McKillop and 

Schrum, 2005). ADH dependent ethanol metabolism induces nicotinamide 

adenine dinucleotide (NADH) which results in an increase in the synthesis of 

reactive oxygen species (ROS).  These substances cause peroxidation damage 

to DNA (McKillop et al., 2006).  In alcohol induced liver injury, the innate 

immune response is activated in the liver, macrophages and the Kupffer cells 

playing a crucial role in the early stages of pathogenesis (Hines and Wheeler, 

2004). 

 

The effect of alcohol on the liver is evident in many cells including the innate 

immune cells, liver parenchymal cells and the hepatocytes. Innate immune 
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cells, including the macrophages (Kupffer cells), recognise the 

endotoxin/lipopolysaccharide in the portal circulation during the early stages of 

alcohol-induced liver injury.  Alcohol induces oxidative stress with production of 

inflammatory cytokines such as tumour necrosis factor-α (TNF-α) in the 

macrophages resulting in alcoholic liver disease (ALD).  Furthermore, alcohol 

also sensitises hepatocytes to apoptosis through TNF-α (Mandrekar and Szabo, 

2009).  

 

b) Obesity and Diabetes  

In a prospective cohort study conducted in the United States, it was reported 

that liver cancer mortality rates were 5 times higher amongst men with high 

baseline body mass (Calle and Rodriguez, 2003).  The risk of developing HCC 

is higher in patients whose body mass index (BMI) exceeds 30kg/m2 (Chen et 

al., 2008 and Polesel et al., 2009).  Obesity, especially central obesity, is 

associated with hepatic steatosis (Ratziu et al., 2000 and Ratziu et al., 2004).  

The effect of obesity on liver is called the non- alcoholic fatty liver disease 

(NAFLD) the features of which ranges from fatty liver (steatosis), steatohepatitis 

to cirrhosis.  Increased hepatic steatosis is often associated with severe necro-

inflammatory activity and fibrosis (El Serag and Rudolph, 2007). 

 

Several studies found a significant association between diabetes and HCC (El 

Serag and Rudolph, 2007).  Insulin resistance is another such factor associated 

with hepatic steatosis (Ratziu et al., 2000 and Ratziu et al., 2004).  Diabetes 

has been reported to be a risk factor for NAFLD and NASH, the latter shown to 

have a causative link with HCC (Schutte et al., 2009).  

 

1.2.3 Other factors  

a) Toxins  

A potent hepatocarcinogenic toxin is the mycotoxin aflatoxin B1, which has been 

classified as a carcinogen by the International Agency for Research on Cancer 

(Schutte et al., 2009).  It is produced by fungi of the Aspergillus family such as 

Aspergillus Flavis and Aspergillus Parasitans.  They grow mainly on cereal 

grains stored in humid regions (Leong and Leong, 2005).  The role of Aflatoxin 

in hepatocarcinogensis is due to its ability to induce a high degree of 
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chromosomal instability (Pineau et al., 2008). Simultaneous infection by viral 

hepatitis B potentiates the carcinogenic effects of these toxins (Schutte et al., 

2009).  Aflatoxin is also one of the most potent genotoxic agents.  It induces 

multiple chromosomal alterations and unscheduled DNA synthesis (Wang and 

Groopman, 1999).  

 

b) Haemochromatosis  

Haemochromatosis results from the excessive accumulation of iron in the liver 

due to hereditary or acquired causes.  It leads to chronic inflammation with 

subsequent fibrosis and can lead to cirrhosis (Schutte et al., 2009).  HCC in 

haemochromatosis patients with or without cirrhosis suggests a direct 

hepatocarcinogenic effect of iron (Kowdley, 2004 and Kew, 2009).  A Swedish 

study has reported that hereditary haemochromatosis increases the risk of HCC 

by 1.7 fold (El Serag and Rudolph, 2007). 

 

c) Autoimmune hepatitis 

Autoimmune hepatitis is a chronic and progressive autoimmune disease 

associated with inflammation and hepatocellular necrosis.  It is more common in 

females and around 70% of all cases are detected in women between the ages 

of 15 and 40 years. Diagnosis is based on clinical (jaundice, fever and right 

upper quadrant pain), laboratory (increase ALT and AST, serum gamma 

globulin concentrations more than twice the normal levels, and sometimes the 

presence of antinuclear antibodies and/or anti-smooth muscle antibodies 

(Krawitt, 1996) and histological features.  Autoimmune hepatitis can progress to 

cirrhosis, often leading to HCC with an annual incidence rate of 1.1% (Yeoman 

et al., 2008). 

 

d) α1- Antitrypsin deficiency (α1-ATD) 

α1- Antitrypsin deficiency is an inherited metabolic disorder which prevents α1- 

Antitrypsin being exported from hepatocytes as a consequence of mutations in 

the coding sequence of the serine protease inhibitor.  The abnormal 

accumulation of glycoprotein α1- Antitrypsin in the hepatocytes results in 

apoptosis, hepatitis, fibrosis and cirrhosis (Fairbanks and Tavill, 2008).  

Homozygous patients become symptomatic about 15 years earlier than those 
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who are heterozygous (Schutte et al., 2009).  In α-1 antitrypsin deficiency, older 

cells with accumulated mutant glycoprotein stimulate newly formed cells to 

proliferate (Rudnick and Perlmutter, 2005).  As a result of accumulation of 

genetic mutations, hepatocellular adenoma and carcinoma develop on a 

background of chronic inflammation (Fairbanks and Tavill, 2008).  

 

e) Glycogen storage disease type 1 (Von Gierke’s disease, GSD1) 

Von Gierke’s disease is caused by a deficiency of glucose-6-phosphatase 

(G6Pase), which leads to accumulation of glycogen in the liver (Dragani, 2010).  

There are two distinct types of this disease, the type 1a (complete absence of 

G6Pase) and type 1b (deficiency of glucose-6-phosphate translocase at the 

endoplasmic reticulum membrane) (Janecke et al., 2001). Most cases of GSD1 

present with hepatocellular adenoma in the second and third decades of life.  

HCC may develop as an adenoma-carcinoma sequence (Franco et al., 2005). 

 

f) Miscellaneous  

Several other factors are implicated as potential risk factors for HCC. These risk 

factors include biological conditions such as hepatic porphyrias, Tyrosinemia 

type 1 and hypothyroidism (Dragani, 2010), chemical factors such as nitrites, 

hydrocarbons, solvents, pesticides and processed food (Leong and Leong, 

2005) and radiation. Both internal α and β radiation are carcinogenic (Leong 

and Leong, 2005). 
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1.3 Histopathological changes from normal to HCC 

 As a result of chronic hepatic injury, hepatic necrosis results and this is 

followed by proliferation.  Chronic hepatitis is characterized by infiltration of 

inflammatory cells, mainly lymphocytic infiltration, with much less lobular 

involvement.  Piecemeal necrosis and fibrosis may also be present.  Depending 

on the presence or absence of piecemeal necrosis; chronic hepatitis may be 

divided into chronic active hepatitis and chronic persistent hepatitis (Chadwick 

et al., 1979). 

 

Repeated cycles of destruction and regeneration in chronic liver disease lead to 

liver cirrhosis.  Histologically, cirrhosis is characterised by the presence of 

abnormal liver nodules surrounded by collagen deposition.  Within these 

nodules, hyperplastic nodules may be formed which develop into dysplasia 

leading subsequently to HCC (Farazi and DePinho, 2006).  

Severity of fibrosis can be staged according to Ishak scoring criteria: 

 

Table 1: Ishak criteria for fibrosis scoring (Ishak et al., 1995 and table 
adopted from Standish et al., 2006). 
 

Ishak Score Ishak description 

0 No fibrosis (normal) 

1 Fibrous expansion of some portal areas± short fibrous septa 

2 Fibrous expansion of most portal areas± short fibrous septa 

3 Fibrous expansion of most portal areas with occasional portal to 

portal bridging 

4 Fibrous expansion of portal areas with marked bridging portal to 

portal as well as portal to central 

5 Marked bridging with occasional nodules (incomplete cirrhosis) 

6 Cirrhosis  
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Dysplastic nodules are pre-cancerous, also known as adenomatous 

hyperplasia, hepatocellular pseudotumour, adenomatous regeneration and 

borderline nodule (Leong and Leong, 2005 and Wong and Ng, 2008). 

 

Classification is divided into high and low dysplastic nodule based on cytological 

features and the degree of histologic abnormality (Wong and Ng, 2008).  With 

increasing grade of dysplasia, hepatocytes become preneoplastic, which find a 

suitable environment for growth and proliferation to progress into malignant 

cells (Hussain et al., 2007).  Malignant foci may be found in some of these 

nodules.  This is known as nodule-in-nodule (Teoh, 2009).  Hepatocytes 

progress from being benign to preneoplastic and then malignant.  This takes 

place on a background of inflammatory conditions, which lead to cirrhosis.   

 

Hepatocellular carcinoma: The gross picture (macroscopically) of HCC may 

constitute single or multicentric nodules, which may be well demarcated from 

surrounding liver tissue or have infiltrative growth (Kalinski and Roessner, 

2009).  The cross-section of these nodules may show areas of haemorrhage 

and necrosis.  The most important criteria of current tumour classification of 

Union Internationale contre Le Cancer (UICC) is vascular invasion of portal or 

hepatic veins.   

 

Microscopically, depending on the degree of differentiation, HCCs can resemble 

normal hepatic tissue.  HCC cells may take on different patterns, trabecular 

pattern enclosing sinusoid-like blood spaces, pseudoglandular or acinar pattern 

and compact or scirrhous pattern (Kalinski and Roessner, 2009).  The 

hepatocytes show high nucleo-cytoplasmic ratio, abundant finely granular 

eosinophilic cytoplasm, and prominent nucleoli.  There are cytologic variations 

in the form of clear cell type, pleomorphic type with giant cells and the 

sarcomatoid type (Drebber and Dienes, 2006).   
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1.4 Molecular pathogenesis of Hepatocellular carcinoma  

Carcinogenesis is the end result of accumulation of chromosomal abnormalities 

which can lead to cellular dysfunction.  These abnormalities may be genetic or 

epigenetic (Wong and Ng, 2008).  Accumulation of genetic alterations causes 

abnormal growth, malignant transformation followed by vascular invasion and 

metastasis (Teoh, 2009).   

 

For instance, genetic alterations include chromosomal deletions, gene 

amplifications, aneuploidy, rearrangement, mutations and epigenetic alterations 

including modulation of DNA methylation (Tada and Omata, 2009).  Both 

genetic and epigenetic alterations activate mediators that enhance cellular 

proliferation (such as cellular proto-oncogenes) and inactivate mediators that 

inhibit cell proliferation (tumour suppressor genes) (Pang et al., 2006).  

Mutations in human cancer have been found in many genes such as p53, 

adenomatous polyposis coli (APC), cancer breast 1(BRAC1) and (BRAC2), 

retinoblastoma (RB), Ras and β-catenin.  These genes are responsible for cell 

proliferation, cell cycle progression, apoptosis and metastasis.  In HCC, it was 

found that p53 and β-catenin are the most frequently mutated genes (Wong and 

Figure 3: Microscopic picture of HCC showing polygonal 
cells with increased nucleocytoplasmic ratio and 
prominent nuclei. 
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Ng, 2008).  As an example of the most frequent chromosomal deletions in HCC; 

deletions on chromosomal arms 17p, 8p, 16q, 16p, 13q, 1p, 4q, and 9p, and 

addition onto chromosomal arms 1q, 6p, 8q, 17q and 20q (Leong and Leong, 

2005 and Pang et al., 2006).   

 

Genetic alterations may be inherited mutations or acquired.  Acquired genetic 

alterations are due to a combination of chemical, physical or biological 

carcinogens attacking cells (Leong and Leong, 2005).  Carcinogenesis occurs 

due to either direct DNA damage followed by abnormal regeneration or 

secondary to chronic inflammation followed by cirrhosis.  It is important to note 

that, 90% of HCC cases have a background of chronic inflammation and fibrosis 

(or cirrhosis) irrespective of the cause of liver disease (Elsharkawy and Mann, 

2007).  Free radicals resulting from inflammation can damage DNA and proteins 

directly (Hussain et al., 2007).  As detailed above, the high incidence of 

developing HCC on a background of chronic inflammation makes the 

inflammation–cancer relationship a target for further study and investigation.
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1.5 Inflammation- cancer relationship in liver diseases 

Rudolf Virchow in 1863 noticed that cancer often occurred at sites of chronic 

inflammation suggesting that inflammation may play a pivotal role in 

tumourigenesis (Balkwill and Mantovani, 2001).  

 

The important role of inflammation and infection have also been shown to be 

integral in the pathogenesis of liver, colon, oesophagus, stomach, cervical, and 

nasopharyngeal cancer by causing cell damage and creating a 

microenvironment rich in cytokines that can enhance cell replication, 

angiogenesis and tissue repair (Palapattu et al., 2009).  In addition to these 

cancer types, a previous study highlighted that hepatocarcinogensis is strongly 

linked to chronic liver damage as it rarely exists in non diseased livers (El Serag 

and Rudolph, 2007).  The pathway from chronic liver inflammation to HCC is a 

multi-stage process involving progression from mild to severe liver inflammation 

followed by hepatic fibrosis, cirrhosis and finally hepato-carcinogenesis.  Liver 

inflammation is initiated by inflammatory cells either resident or recruited to the 

liver in response to signals released from damaged hepatocytes as a result.of 

exposure to toxins, infection or auto-immune causes. These inflammatory cells 

produce pro-inflammatory cytokines such as Interleukin 1B, Interferon-Gamma 

and Tumour necrosis factor α, which contribute to the creation of a pro-

inflammatory microenvironment leading to further hepatocellular damage. 

This ultimately leads to hepatocellular regeneration and restoration of liver 

integrity (Ramadori et al., 2008). The inflammation and cell proliferation subside 

after the noxious agent is removed and the repair is complete. However, when 

the assaulting agent is unable to be removed, the persistent infiltration of 

inflammatory cells and continuous damage to the parenchyma leads to 

activation of a wound-healing response characterized by the appearance of 

myfibroblast-like cells. Activated myofibroblasts are responsible for hepatic 

fibrosis.  These activated myofibroblasts may either be derived from quiescent  

hepatic stellate cell, bone marrow precursor or by epithelial to mesenchymal 

transition (EMT) (Brenner, 2009).   Oxidative stress resulting from increased 

production of free radicals (ROS and reactive nitrogen species (RNS)) and 

peroxides is another important factor contributing to tissue damage and 

fibrogenesis. According to Parola and Pinzani (2009) these three events; (1) 

http://www.ncbi.nlm.nih.gov/pubmed?term=Balkwill%20F%5BAuthor%5D&cauthor=true&cauthor_uid=11229684
http://www.ncbi.nlm.nih.gov/pubmed?term=Mantovani%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11229684
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chronic activation of the wound-healing reaction; (2) oxidative stress and 

reactive intermediates and; (3) derangement of epithelial-mesenchymal 

interactions are the key mechanisms underlying the initiation and maintenance 

of liver fibrogenesis (Parola and Pinzani, 2009).  . 
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Figure 4: Mechanism of liver inflammation and fibrosis. The process of 

inflammation initiated with inflammatory cells, which produce pro-inflammatory 
cytokines which in turn lead to damage of stressed cells. This is followed 
by elimination of cellular debris and regeneration of hepatocytes. However 
with persistent of these stressfull conditions, there is absence of 
hepatocytes regeneration and an activation of wound healing proceeds and 

lead to fibrosis. 
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Cirrhosis is the most advanced stage of liver fibrosis and is characterized by 

irreversible changes in the normal tissue architecture whereby hepatocytes lose 

their normal two-cell plate-like arrangement and regenerative nodules are 

formed surrounded and separated by fibrotic septae. Distortion of the liver 

parenchyma leads to a reduction in the blood flow to parts of the liver resulting 

in tissue hypoxia, portal hypertension and increased risk of liver failure.  At the 

same time the cirrhotic environment promotes the accumulation of genetic and 

epigentic mutations in pre-neoplastic hepatocytes or liver stem cells.  These 

genetic alterations activate positive signals of cellular proliferation (including 

proto-oncogenes) and inactivate inhibitory signals of cell proliferation (including 

tumour suppressor genes) resulting in cells with autonomous growth potential. 

The altered cells develop into dysplastic foci and form nodules which finally 

undergo malignant transformation to HCC  

 

Chronic inflammation also leads to stimulation of apoptosis and increase of 

oxidative stress which may lead to DNA damage (Schutte et al., 2009).  This is 

due to the toxic metabolites such as acetaldehyde which have the capability to 

bind to DNA (Inoue et al., 2001) leading to genomic alterations.  The alterations 

become severe with inhibition of DNA-repair enzymes (Homann et al., 2006) 

and therefore lead to accumulation of abnormal DNA and end up with 

neoplastic transformation of the cells.   

 

Up regulation of toll like receptors (TLRs) signalling pathway has been reported 

in chronic liver diseases previously.  LPS, the potent TLR4 stimulant is elevated 

in the systemic circulation and the portal vein of cirrhotic patients (Pradere et 

al., 2010).  Moreover, TLR4 was identified as one of seven genes associated 

with development of cirrhosis in patients with chronic hepatitis C (Huang et al., 

2007).  There is evidence suggesting the implication of TLRs in chronic liver 

disease and cirrhosis, which can serve as a background for HCC.  Thus, in 

order to understand the mechanism of liver inflammation, we were interested in 

the role of TLRs. 
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1.6 Toll like receptors 

The Toll protein was discovered in Drosophila.  It was shown to be essential 

during embryogenesis for determining the dorsal–ventral patterning (Anderson 

et al., 1985 and Morisato et al., 1995).  It also has a role in the early formation 

of the innate immune system (Lemaitre et al., 1996 and Cherry and Silverman, 

2006) and it was also found that mutation of TLR in Drosophila increases 

susceptibility to fungal infection (Kawai and Akira, 2006).  TLRs are well known 

to play an important role in innate immune responses (Kawai and Akira, 2006). 

 

To date, 13 subtypes of TLRs have been discovered (Park et al., 2009).  The 

human TLR family includes 10 members (Kawai and Akira, 2006 and Mencin et 

al., 2009).  These TLRs are stimulated by pathogen-associated molecular 

patterns (PAMPs).  PAMPs are structural motifs expressed by bacteria, viruses 

and fungi (Janeway and Medzhitov 2002, Akira et al., 2006).  Recently, danger-

associated molecular patterns (DAMPs) have been reported to be a potent 

stimulant of TLRs and are derived from injured host and necrotic cancer cells 

(Sato et al., 2009).  TLRs are divided into different families according to the 

phylogenetic properties (Roach et al., 2005).  Each family is made up of TLR 

members, which respond to a general class of PAMPs.  A specific ligand 

(DAMPs or PAMPs) has the ability to stimulate one particular member of the 

TLR family (table 2). 
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Table 2: TLRs and their corresponding PAMPs 
 
Members of TLRs family  Corresponding stimulators (PAMPs) 

 

TLR2, TLR1, TLR6 and 

TLR10 

bacterial (lipopeptides, lipoteichoic acid, and 

peptidoglycan), fungal (Zymosan) and Viral (viral 

core proteins) 

TLR3 recognizes the double-strand RNA and synthetic 

RNA derivatives (polyinosilic-polycytidylic acid) 

TLR4 Lipopolysaccharide (LPS) 

TLR5 Bacterial flagella 

TLR7, TLR8 and TaLR9 TLR7 and TLR8 respond to nucleic acid structures 

such as guanosine- or uridinerich single-stranded 

RNA (ssRNA), from viruses TLR9 recognizes 

unmethylated CpG DNA motifs from DNA bacteria 

 

The TLR2 family includes TLR2 with TLR1, TLR6 and TLR10.  They respond to 

molecular patterns which include bacterial (lipopeptides, lipoteichoic acid, and 

peptidoglycan), fungal (Zymosan) and viral (viral core proteins) pathogens 

(Takeuchi and Akira, 2001 and Takeuchi et al., 2002).  TLR3 recognizes the 

double-strand RNA and synthetic RNA derivatives (polyinosilic-polycytidylic 

acid) (Alexopoulo et al., 2001 and Matsukura et al., 2006). 

 

TLR4 has receptors for lipopolysaccharide (LPS) (Yang et al., 2002) which 

forms a complex with LPS-binding protein (LBP), the membrane CD14 molecule 

and the MD-2 glycoprotein.  These attach to the extracellular domain of TLR4 

(Rallabhandi et al., 2006).  TLR5 recognizes bacterial flagella through its 

monomeric constituent (Hayashi et al., 2001).   

 

 TLR7, TLR8 and TLR9 are in one family.  TLR7 and TLR8 respond to nucleic 

acid structures such as guanosine- or uridine-rich single-stranded RNA (ssRNA) 

from viruses (Heil et al., 2004).  TLR9 recognizes unmethylated CpG DNA 

motifs from DNA bacteria (Hemmi et al., 2000) and also unmethylated CpG in 

viral genome which is not common in vertebrate genome and if present, this 
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CpG dinucleotide is highly methylated (Krieg, 2007).  However, recently it was 

found that TLR9 can be stimulated by either host or pathogen derived DNA 

(Basith et al., 2012).  TLR1, TLR2, TLR4, TLR5 and TLR6 are expressed on the 

cell surface while TLR3, TLR7, TLR8 and TLR9 are present on the endosome 

lysosome membrane (Seki and Brenner, 2008). 

  

 

Figure 5: TLRs Receptors and their ligands (Adapted from Akira, 2004). 
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1.6.1 TLR pathway 

 There are two pathways for TLR members to be stimulated, MyD88- dependent 

(all TLRs except TLR3) and MyD88 independent (TLR3 and TLR4) pathways.  

MyD88-dependent pathways play a role in the activation of p38, c-jun N-

terminal kinase (JNK) and inhibition of NF-κB kinase (IKK)/NF-κB (Seki and 

Brenner, 2008).  Once stimulated, MyD88 activates IRAK through 

phosphorylation, the cascade leading to activation of TRAF6, which then 

activates JNK and NF-κB (Takeda and Akira, 2004).  There are four members 

of IRAK that stimulate or inhibit TLR pathways.  IRAK1 and IRAK4 interact with 

MyD88 through its N-terminal, which possesses an aspartate residue in the 

kinase domain leading to a stimulatory cascade.  IRAK-2 and IRAK-M do not 

have this residue, and are therefore inactive catalytically (inhibitory stimulus) 

(Janssens and Beyaert, 2003).   

 

Upon stimulation, IRAK4 and IRAK1 activate tumour necrosis factor receptor-

associated factor 6 (TRAF6). TRAF6 activates transforming growth factor–β-

activated protein kinase1 (TAK1) which activates the inhibitor of kappa β kinase 

(IKK) complex (Kawai and Akira, 2006).   

 

 TLR3 and TLR4 use the TIR-domain containing the adapter-inducing 

interferon-β (TRIF) or TRIF-dependant pathway (the MyD88-independent 

pathway), which utilizes TRAM for its activation. TRAM is an adapter protein, 

which links TLR4 and TLR3 to TRIF (Kawai and Akira, 2006).  TRIF stimulation 

leads to the activation of the transcription factor IRF-3 inducing INF-β (Takeda 

and Akira, 2004).   The end result of the MyD88 dependent and non dependent 

TLR activation is the stimulation of the transcription factor nuclear factor-kappa 

B (NF-κB).   
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Figure 6: MyD88-dependent and independent pathways. (A) MyD88-
dependent: MyD88 stimulation leads to activation of IRAK by 
phosphorylation which in turn leads to activation of TRAF6 and NF-κB. 
(B)MyD88- independent pathway; stimulation of TRIF leads to activation of 
the transcription factor IRF-3 followed by INF-B (adapted from Kawai & 
Akira, 2006). 
 

1.6.2 Role of Toll like receptors in liver inflammation-cancer progression  

Due to the anatomical relationship between the liver and the intestine, and 

increased gut permeability associated with chronic liver disease, the liver is 

exposed to gut-derived pathogens and pathogenic molecules. This stimulates 

TLRs, releasing multiple cytokines and inflammatory mediators including 

activation of NF-κB, which is one of the most potent inflammatory mediators.  

NF-κB activation produces an inflammatory state in the liver through up 

regulation in the expression of cytokines, chemokines, growths factors, 

adhesion molecules, matrix metalloproteinase and anti-apoptotic proteins 

(Shishodia and Agarwal, 2002 and Pikarsky et al., 2004),  thus inducing 

chemoresistance in cancer cells (Nakanishi and Toi, 2005) and  hepatocyte 

death (Elsharkawy and Mann, 2007).  In addition to NF-κB pathway, TLRs also 

act as potent activators of gene transcription and translation (Wolska et al., 

2009), causing chemoresistance and cancer progression (Chen et al., 2008).  
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Not only TLR4 is linked to liver disease but also elevated bacterial DNA levels in 

blood and ascites of liver cirrhosis patients (Guarner et al., 2006 and Frances et 

al., 2008) suggesting a strong causative link between infection and liver 

inflammation. The bacterial unmethylated CpG-containing DNA stimulates TLR9 

(Yang and Seki, 2012), leading to further inflammation, liver fibrosis, and 

malignancy. Indeed, an increased expression of TLR9 is observed in many 

malignant human cell lines such as lung cancer cells (Droemann et al., 2005), 

human gastric carcinoma cells (Schmausser et al., 2005) and human prostate 

cancer (Ilvesaro et al., 2007).  Moreover, TLR9 modulates cytotoxicity by 

enhancing the NK cell cytokine response to antibody-coated tumour cells 

(Wysocka et al., 2004, Roda et al., 2005 and Ren et al., 2008).  

  

1.6.3 TLR effects in cancers 

The idea that TLRs are restricted to immune cells has changed, with a number 

of recent studies confirming expression of functional TLRs in cancer cells as 

well (Basith et al., 2012). 

 

a) TLRs in cancer immunology, cytotoxicity 

In any immune response, regulatory T cells (Treg) mediate antigen-specific 

immune attenuation and therefore can assist the tumour progression.  The 

function of Tregs is to inhibit exaggerated immunological reactions (Coussens 

and Werb, 2002, Fisson et al., 2003 and Sakaguchi, 2004) including 

autoimmune, antimicrobial and antitumour immune responses by inhibiting T 

cell, B cells and NK cells (Yang et al., 2009).   

 

It was found that Treg cells produce mRNA for TLR4, TLR 5, TLR 7 and TLR 8 

and TLR4 stimulation with LPS activates the suppressive function of Treg on 

cytotoxic T lymphocytes (Caramalho et al., 2003) which inhibit antitumour 

immune response and lead to tumour progression.  On the other side, 

stimulation of TLR9 modulates cytotoxicity of tumour cells by enhancing the NK 

cell cytokine response to antibody-coated tumour cells (Wysocka et al., 2004, 

Roda et al., 2005 and Ren et al., 2008).   
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Although TLRs recruit more immune cells to the tumour microenvironment, the 

tumour cells secrete pro-angiogenetic and growth factors, which make the 

tumour more resistant and can escape the cytotoxic lymphocytes. 

 

Recently, some TLR agonists have been used as a vaccine for induction of anti-

tumour immunity and the use of TLR agonists have shown promising results as 

anticancer agents.  Therefore Basith and colleagues described the role of TLRs 

in cancer as double edged sword (Basith et al., 2012). 

 

b) TLR effect on proliferation 

Cancer develops as a result of increase of the cell proliferation to cell-death 

ratio (Hanahan and Weinberg, 2000).  NF-κB has been reported to have a role 

as a hepatocyte survival factor (Elsharkawy and Mann, 2007).  NF-κB signalling 

produces more cytokines, chemokines and antiapoptotic proteins, which 

contribute to increase in tumour proliferation (Basith et al., 2012).  It was found 

that TLR stimulation leads to the activation of  phosphoinositide3-kinase (PI3K) 

and Akt which may have a role in regulation of glycogen synthase kinase 3 

(GSK3) (Monick et al., 2001 and Martin et al., 2005) and β-catenin (Monick et 

al., 2001 and Thiele et al., 2001).  It also activates MAP kinase, JNK, p38 and 

ERK (Rakoff-Nahom and Medzhitov, 2008). 

 

Previous studies reported that TLR ligands augment tumour growth (Harmey et 

al., 2002, Luo et al., 2004, Sfondrini et al., 2006 and Huang et al., 2007).  It has 

been reported that TLR4 with TLR3 play a role in tumour proliferation (Jego et 

al., 2006, Chochi et al., 2008, Kundu et al., 2008 and Pries et al., 2008).   

 

c) TLR effect on Apoptosis  

NF-κB which is produced from stimulation of TLRs activates pro-apoptotic 

factors.  In addition, NF-κB up regulates TNF-α which inhibits apoptosis (Salaun 

et al., 2006).  TLR4 was found in the human lung cancer cell line and thought to 

play a role in protecting lung cancer cells through the induction of 

immunosuppressive cytokines and resistance to apoptosis (He et al., 2007).  In 

some studies, TLR9, TLR3, TLR4 and TLR7 trigger apoptosis (Jahrsdorfer et 

al., 2002, Jahrsdorfer et al., 2005, Smits et al., 2007, Lehner et al., 2007 and 
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Paone et al., 2008).  However, Jego and colleagues found that in myeloma cells 

triggering TLR7 and TLR9 prevents chemotherapy-induced apoptosis and 

induces cell growth (Jego et al., 2006).  Another study suggested that the anti-

apoptotic effect of TLR9 was through involvement of HSP90β.  Lim et al., 

suggested the mechanism of anti-apoptotic effect mediated by stimulation of 

TLR9 depended on the Akt-FoxO3a signaling pathway (Lim et al., 2010). 

 

d) TLR effect on Angiogenesis 

 It has been demonstrated that both TLR2 and TLR9 act as pro-angiogenic 

factors (Chang et al., 2005).  TLR4 also enhances chemoresistance (Kelly et 

al., 2006).  Although TLR9 is a pro-angiogenic factor it can also act as an anti-

angiogenic factor together with TLR7 (Li et al., 2005, Majewski et al., 2005 and 

Damiano et al., 2006).  NF-κB was also found to promote angiogenesis 

(Muccioli et al., 2012). 

 

e) TLR effect on Metastasis 

TLR-derived signals regulate the function of cyclooxygenases, chemokines, 

VEGF and matrix metalloproteinase (Rakoff-Nahoum et al., 2004, Pull et al., 

2005 and Fukata et al., 2006).  They have been known activate mesenchymal 

stem cells (Pevsner- Fisher et al., 2007).  It was noticed that injecting 4T1 

murine mammary carcinoma cells into the tail vein of mice resulted in increased 

lung metastasis after LPS (TLR4 agonist) injection (Harmey et al., 2002).  In two 

different studies, stimulation of TLR9 was associated with increased cancer 

invasion and this was attributable to the activity of matrix metallopeptidase-13 

(MMP13) (Ilvesaro et al., 2007 and Ilvesaro et al., 2008). 

 

f) TLR effect on autophagy  

Autophagy is a process of intracellular compartment degradation in stressful 

conditions and this process is thought to be related to cell survival, cell death 

and antigen presentation (Munz, 2009, Dalby et al., 2010 and Levine et al., 

2011).  Autophagy is primarily a cell survival mechanism.  However, excessive 

autophagy can cause programmed cell death, which can be through apoptotic 

or non-apoptotic pathways (Gozuacik and Kimchi, 2004).  In addition to this, 

autophagy enhances the process of presentation of tumour antigen via MHC 

http://www.ncbi.nlm.nih.gov/pubmed?term=Ilvesaro%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=18922969
http://www.ncbi.nlm.nih.gov/pubmed?term=Ilvesaro%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=18922969
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class II (Dengjel et al., 2005, Schmid and Munz, 2007 and Bertin and Pierrefite-

carle, 2008).  This suggests that autophagy can have an anti-tumoural effect by 

increasing immune surveillance (Bertin and Pierrefite-carle, 2008).  However, in 

solid tumours which express MHC class II the tumour antigen presentation 

could enhance tumour growth as a result of induction of tolerance (Dengjel et 

al., 2006 and Bertin and Pierrefite-carle, 2008). 

 

TLR signaling was suggested to link the autophagy pathway to phagocytosis 

(Sanjuan et al., 2007).  Two subsequent studies demonstrated that TLR ligands 

have the ability to stimulate autophagy (Xu et al., 2007 and Delgado et al., 

2008).  A previous study showed that CpG (TLR9 ligand)  not only induced 

autophagy in different tumour cell lines such as colon, breast and prostate 

cancer, but also that TLR9 itself  was required for autophagy (Bertin and 

Pierrefite-carle, 2008).  Light chain B (LC3B) is continuously degraded during 

the process of autophagy and more LC3B is needed to replenish the LC3B pool 

(Mammucari et al., 2008).  For autophagy, the fusion of autophagosome with 

lysosomes is a mandatory step.  Chloroquine has been reported to inhibit the 

fusion of autophagosome, thereby inhibits autophagy (Boya et al., 2005 and 

Ramser et al., 2009). 

 

g) TLR effect on cytotoxicity and tumour management  

Interestingly, it was noted that chemotherapy can induce initial inhibition of 

tumour growth, which is then followed by recurrence of more aggressive tumour 

phenotypes.  This may be explained by the stimulation of TLRs by partial 

induction of cell death after chemotherapy, which stimulates inflammatory cells 

in a process known as sterile inflammatory response (Chen et al., 2008).   

 

Inhibition of endosomal TLRs has a potential therapeutic in autoimmune 

diseases treatment.  Chloroquine, the antimalrial drug has been used to treat 

immune-mediated inflammatory disorders such as SLE, rheumatoid arthritis and 

Sjogren’s syndrome (Sun et al., 2007).  It also inhibits CpG DNA-driven cellular 

activation (Macfarlane and Manzel, 1998) and this inhibition occurs as a 

consequence of alkalinisation as acidification of endosome is essential for TLR 
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activation (Macfarlane and Manzel, 1998, Hacker et al., 1998 and Yi and Krieg, 

1998). 

 

1.6.4 Clinical application of TLRs agonist and antagonist  

a) Clinical application of TLRs agonist  

 TLR2 agonist SMP-105 consists of mycolic acids and peptidoglycan 

derived from Mycobacterium Bovis.  It has been used to treat bladder cancer 

(Simons et al., 2008). 

 TLR3 was found to be a promising candidate for cancer treatment and 

clinical trials have reported that darn (TLR3 agonist) is linked to survival in 

cancer patient particularly breast cancer, primary and metastatic clear cell renal 

cancer (Salaam et al., 2006). 

 TLR4 agonist, monophosphoryl lipid A (MPLA) is less toxic than the well-

known agonist LPS.  This has been approved as a part of the improved 

hepatitis B vaccine (Basith et al., 2012). 

 TLR5 agonist (Flagellin) is under investigation with another component 

for the treatment of viral infection and as a vaccine against influenza (Huleatt et 

al., 2008). 

 TLR7 agonist (imiquimod) has been approved as a topical treatment of 

cancer skin and cutaneous metastasis (Schon and Schon, 2008). 

 TLR9 agonist unmethylated CpG (cytosine-phosphate-guanine) has 

been studied in targeting many cancers (Basith et al., 2012).  However, 

immunomodulatory oligonuclutides (IMOs), which are also TLR9 stimulants are 

in clinical development for chronic HCV treatment.   IMO-2055 has an 

anticancer effect and it is under clinical trial for the treatment of non-small lung 

cancer and in colorectal cancer (Krieg, 2008). 

 

b)  Clinical application of TLRs antagonist 

TLRs antagonists have also been used in the treatment of different diseases. 

 TLR2 inhibitor is being investigated for the treatment of inflammatory 

diseases including cardiac and kidney ischemia/reperfusion injuries and sepsis 

(Arslan et al., 2008). 
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 TLR4 antagonist, Chaperon 10 had been tested in patients with multiple 

sclerosis, for the treatment of sepsis and septic shock, rheumatoid arthritis and 

psoriasis (Vanags et al., 2006 and Broadley and Hartl, 2009). 

 TLR7 and TLR9 antagonists, IMO-3100 have been developed for the 

treatment of autoimmune diseases.  Dynavax produced an oligonucleotide-

based compound, which inhibits endosomal TLRs, called immunoregulatory 

sequences (IRS 954).  IRS 954 inhibits both TLR7 and TLR9 and has been 

tested in animal models for the treatment of systemic lupus erythematosis and 

also under investigation for the treatment of HIV infection (Pawar et al., 2007).   

Another inhibitor of TLR7 and TLR9 is the antimalarial drug, chloroquine.  It has 

been used as an endosomal TLR inhibitor.  It is a weak base and it incorporates 

into the acidic vesicle within the endosome and interferes with its acidification 

as the acidic pH is mandatory for the endosomal TLR activation (Macfarlane 

and Manzel, 1998, Yi and Krieg, 1998 and Kuznik et al., 2011).  It has been 

reported also that chloroquine inhibit the CpG-TLR9 interaction and can be 

used as TLR9 antagonist and endosomal acidification inhibitor at the same time 

(Rutz et al., 2004).   
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2. Aims of the study 

This thesis was designed to explore the role of toll like receptors in the 

pathogenesis of HCC and evaluate their role as a potential therapeutic target.  

Specifically I aimed to  

1. Establish 2 animal models of primary liver cancer; a chemically-induced 

and a xenograft model.   

2. Determine whether gut decontamination with Norfloxacin could prevent 

HCC.   

3. Determine whether the expressions of TLR4, TLR7and TLR9 were 

increased in primary liver cancer in patient. 

4. Evaluate the expression of these TLRs in primary liver cancer cell-lines 

and the effect of stimulation or inhibition on cell proliferation. 

5. Determine the effect of inhibiting TLR7 and 9 using specific antagonists 

or non-specific inhibitor (chloroquine) in animal models. 
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3 Materials & Methods 

 Animal models are explained in details in chapter (4.1). 

 All the reagents that had been used in this research are reported in the 

appendix section. 

 

3.1  Animal tissues collection 

Rats and mice were anaesthetized in an induction chamber supplied with 

isoflurane from a vaporizer (5% and O2 1L/min) until the rodent was 

anaesthetised then anaesthesia was maintained using isoflurane (2%).  The 

liver was surgically removed and pictures of each liver were taken.  In the case 

of rats the dimensions of the whole rat liver and any obvious tumour(s) was 

measured using a ruler.  Half of the liver was then placed in 10% formalin and 

the other half was snap frozen in liquid nitrogen.  The formalin-fixed tissue 

contained representative areas of tumour and tumour-free tissue.  The snap-

frozen liver samples were divided into liver tissue macroscopically free from 

tumour and tumour nodules. 

 

In the case of mice only the tumours were measured.  The tumour was excised 

and snap-frozen in liquid nitrogen.  A corresponding tumour free area of liver 

tissue was also snap-frozen in a separate tube.  In other cases the whole of the 

mouse liver was fixed in formalin. Blood was collected in heparinised tubes 

which were placed directly on ice and then centrifuged for 10 minutes, 13000 

rpm, 4°C. 

 

3.2 Processing of tissue for histological examination 

Freshly harvested livers from rats and mice were cut into thin slices using a 

scalpel and placed in an embedding cassette for processing in a Benchtop 

Tissue Processor (Leica TP1020).  The processor automatically fixes the tissue 

in formalin, dehydrates it in alcohol and infiltrates it with paraffin wax (Ficher 

Scientific, UK).  Once the tissue processing was complete, 4 μm sections were 

cut from the paraffin embedded tissue blocks using a microtone (Leica, UK).  

The sections were then mounted from warm water (40C) onto adhesive poly- L-

Lysine coated glass slides ready for immunohistochemical staining and 

analysis.
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3.3 Haematoxylin and Eosin (H&E) staining  

Paraffin-embedded tissue sections were stained with H&E using conventional 

methods.  The sections were first de-paraffinised by immersing in two tanks of 

xylene, 2 x 5 minutes each and rehydrated by submerging in descending 

grades of ethanol; 100%, 95% and 75% ethanol, 5 minutes each.  The sections 

were then washed in distilled water for 5 mins, stained with Mayer/s 

Haematoxylin (Dako, UK), 3 mins, rinsed in tap water for 15 minutes, stained 

with Eosin (Sigma, UK) for 1 min and washed in a few changes of distilled water 

before dehydrating with ascending grades of ethanol;  75%, 95% and 100% 

ethanol, 3 minutes each.  Finally, the slides were cleared in 2 separate tanks of 

xylene, 5 minutes each, and mounted as follows: a drop of DPX mounting 

medium (Sigma, UK) was placed in the middle of a coverslip making sure to 

avoid any air bubbles.  The slide to be mounted was tapped to remove excess 

xylene and gently lowered on top of the coverslip so that the tissue section was 

sandwiched between the slide and coverslip.  The slide was then turned over 

and the DPX allowed to fully spreading under the coverslip.  The slides were left 

to harden in a fume hood overnight before being examined under microscope. 

 

3.4 Reticulin staining 

The silver stain has the ability to bind to collagen and fibrous tissue. 

 Methods 

The sections were first de-paraffinised by immersing in two tanks of xylene, 2 x 

5 minutes each and rehydrated by submerging in descending grades of ethanol; 

100%, 95% and 75% ethanol, 5 minutes each.  The sections were washed in 

distilled water.  The slides were treated with acidified potassium permanganate 

for 10 minutes then washed well with distilled water.  Oxalic acid was added to 

cover the slides for 1 minute until the colour acquired by potassium 

permanganate disappeared; the slides were then washed with water.  

Ammonium sulphate was added to slides for 10 minutes then washed with 

water.  The slides were treated with ammonical sliver solution for 5-20 seconds 

then washed and 10% formalin was added for 1 minute.  Then the slides were 

washed in water and dehydrated with ascending grades of ethanol; 75%, 95% 

and 100% ethanol, 3 minutes each.  Finally, the slides were cleaned in 2 
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separate tanks of xylene, 5 minutes each, and mounted as described in in the 

previous section (3.3). 

 

3.5  Picro-Sirius red staining 

This stains the collagen and fibrous tissue with red colour. 

 Method 

The sections were first de-paraffiinised by immersing in two tanks of xylene, 2 x 

5 minutes each and rehydrated by submerging in descending grades of ethanol; 

100%, 95% and 75% ethanol, 5 minutes each.  The sections were washed in 

distilled water.  Then sections were treated with picro-Sirius mixture for 15 

minutes then 100% ethanol for 5 minutes.  The slides were dehydrated with 

ascending grades of ethanol; 75%, 95% and 100% ethanol, 3 minutes each.  

Finally the slides were cleared in 2 separate tanks of xylene, 5 minutes each, 

and mounted as described in section (3.3). 

 

3.6 Measuring Liver enzymes and bilirubin 

Plasma samples were analyzed for ALT, AST and bilirubin (Cobas Integra 400, 

Roche Diagnostics, Burgess Hill, West Sussex, UK).   

Using a specific tube for Cobas (Roche Diagnostics Ltd, UK), 200μl of rat’s 

plasma was added.  The corresponding cartridges for the enzymes and bilirubin 

were placed in the Cobas machine.  The machine was run according to 

manufacturer’s instructions.   

 

3.7 Endotoxin kinetic LAL assay measurement  

 Method  

1. The samples (rat’s plasma) were diluted 1:10 LAL reagent water to 

prevent protein interference (50μL sample + 450μL LAL) then heated in a 

boiling water bath for 10 minutes. 

2. The Standard Reconstituted Endotoxin was diluted to obtain a 50EU/ml 

concentration (220µL for the standard curve plus 20uL/sample). 

3. Plate reader was switched on, Endotoxin test was selected, and 

temperature adjusted to 37ºC. 
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4.  5-point standard curve (50EU to 0.005EU) was made, in duplicate with 

the following dilutions :  

a) 111µL of the 50EU standard in the first well A of the 1st 2 rows 

b) 100µL of LAL water in the wells B, C, D, E, F  first 2 rows 

c) 11µL from the well A into the well B, from B to C and so on.  Down to 

E, 11µL was discarded from well E.  Well F was the blank sample. 

5. 100μL of each sample was transferred aseptically in quadruplicate (4 

wells in the plate).  In the last two wells, 10µL of 50EU standard endotoxin was 

added as spike well.   

6. The plate was then placed in plate reader for 5 minutes to warm up. 

7. The LAL reagent was prepared as the following (each bottle was diluted 

with 3.2ml of LAL reagent water) then vortexed for 20 seconds.  100µL of LAL 

regent was added to each well to start the reaction.  Then the plate was read at 

350 – 650nm (on scan mode). 

 

3.8 Western blot 

3.8.1 Protein extraction from liver tissue 

The liver tissue was disrupted using a pre-cleaned, autoclaved pestle and 

mortar which had been pre-cooled by placing in a -20ºC freezer for an hour or 

more.  A small piece of liver tissue, 100 mg, was dissected from the frozen 

tissue stock, and weighed by placing it inside an eppendorf safe-lock tube 

(Eppendorf UK Limited) on ice.  After weighing, the tissue was then placed in 

the cold mortar and 300μl of lysis buffer added per 100 mg of tissue.  The pestle 

was used to macerate the tissue to a pulp and the grinding continued until a 

homogenous liquid was produced.  The tissue extract was poured into a sterile 

1.5ml eppendorf safe-lock tube and then centrifuged for 5 minutes, 13000 rpm, 

4°C.  The supernatant was then aliquoted into a fresh eppendorf tube and the 

protein concentration in the liver tissue lysate determined using a biuret assay. 
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3.8.2 Determination of Protein Concentration  

 Biuret Protein Assay 

The protein concentration in the liver tissue extract was determined using the 

biuret protein assay.  This is a colorimetric assay used to determine the the 

protein concentration.  It is used for detecting the presence of peptide bonds.  It 

depends on the reduction of copper (II) ions to copper (I), the latter forms a 

complex with the nitrogen of the peptide bonds in an alkaline solution.  A violet 

colour indicates the presence of proteins. 

 

 Preparation of albumin standard curve 

A set of protein standards was prepared from a 2 mg/ml albumin (Zenalb) stock 

solution with the following concentration: 40μg/ml, 20μg/ml, 10μg/ml, 5μg/ml 

and 2.5μg/ml. 

 

 Biuret assay 

200μl of Biuret solution was added per well in 96 wells.  Standard serial dilution 

of albumin was prepared from albumin.  10μl from each standard and from each 

sample was placed into the biuret solution in the 96-well plate in duplicate for 2 

hours at 37°C then read in a plate reader for 562nm wave length.  After the 

reading, the amount of protein in each well was calculated.   

 

3.8.3 Addition of loading buffer to protein extract  

The loading buffer (LB) (Life technologies, UK) contains SDS which is a 

detergent that denatures the proteins and applies a negative charge which 

allows the proteins to migrate through a gel based on their length.  The LB also 

contains a dye, bromophenol blue, which helps to track the movement of 

proteins through the gel and glycerol, which adds viscosity to the mix making it 

easier to load the samples on a gel.  The samples were prepared by mixing 20 

ug of protein in given volume, made up to 15µl in de-ionised water, with 1/4th  

volume of 4 x LB and 1/10th volume of reducing agent (Life technologies, UK).  

The samples were then heated to 95-100°C for 5 minutes to denature the 

proteins and help SDS to bind.  The samples were then spun briefly for a few 

seconds in microcentrifuge to bring all the droplets to the bottom of the tube.  
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The samples were then ready to load onto an SDS polyacrylamide gel for 

electrophoresis. 

 

3.8.4 Gel electrophoresis  

Electrophoresis of proteins was carried out using pre-cast 4-12% Bis-Tris 

Nupage gels (Life Technologies, UK).  The gel cassette was removed from its 

casing and placed inside a Nupage gel tank according to the manufacturer’s 

instructions.  The gel tank was then filled with 1 x SDS running buffer (Life 

Technologies, UK).  The gel comb was gently removed and a Pasteur pipette 

was used to gently wash the wells.  The protein samples were then loaded onto 

the gel along with a protein molecular weight marker (See Blue ladder, Life 

technologies) loaded onto one of the wells.  The lid was then put in place on the 

gel tank, which was then connected to an electrical power supply.  

Electrophoresis was then carried out at 200V for 45 minutes or until the blue 

dye was around 1cm from the bottom of the gel. 

 

3.8.5 Western blot transfer 

a) Transfer buffer 

25ml of 20X transfer buffer (Life Technologies, UK) was added to 375 ml 

deionised water then 100 ml of methanol was added.  Prior to transfer Four 

sponges and 2 filter papers were soaked in the transfer buffer for around 30 

min.  The PVDF was first activated by soaking it in ice cold methanol for 15 

seconds followed by ice cold transfer buffer for 5 minutes.   

 

b) Transfer of proteins from gel to membrane 

When gel electrophoresis of proteins was complete, the proteins were 

transferred from the gel onto a membrane made of polyvinylidene difluoride 

(PVDF, Life technologies, UK) by electroblotting.  During this process, the 

proteins move from within the gel onto the membrane whilst maintaining the 

organization they had within the gel.  As a result of this blotting process, the 

proteins are exposed on a thin surface layer for detection.  The transfer 

sandwich was then assembled as seen in (Fig. 7) in a transfer cassette XCell 

II™ Blot Module CE Mark (Life Technologies, UK).   

 

http://en.wikipedia.org/wiki/Polyvinylidene_difluoride
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Figure 7: Transfer process.  The diagram showing the arrangement of the 
sponge, paper, membrane and gel in the transfer cassette.  The current 
flow runs from cathode to anode. 
 

Any air bubbles were removed from between the layers by using a designated 

roller which was rolled over the different layers after they were put in place.  Once 

the stack was complete, the sandwich unit was closed and placed in the blotting 

apparatus following manufacturer’s instructions.  Ice cold transfer buffer was then 

poured on top of the sandwich until its contents were entirely immersed.  The 

compartment outside the sandwich unit was filled with distilled water.  The lid was 

then placed on the blotting apparatus which was then connected to an electrical 

power supply.  Protein transfer was carried out at 30 V for 1 hour.   

 

c) Checking protein transfer 

After western blotting was complete, protein transfer to the PVDF membrane was 

checked by staining with Ponceau S solution (Sigma, UK).  The membrane was 

removed from the blotting sandwich and immediately immersed in a sufficient 

volume of Ponceau S to cover the membrane.  Five minutes later the Ponceau S 

(Sigma , UK) was poured off and the membrane was rinsed in several changes of 

deionised water until the background membrane staining disappeared and the 

pink protein bands were clearly visible.  Once protein transfer was verified, the 

stain was completely removed from the proteins by continued washing with Tris-

Buffered Saline and Tween 20 (TBST) buffer for 20 minutes.  The membrane 

was then blocked and probed with antibody as described in the next section. 
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3.8.6 Probing membrane with antibody 

Probing of Western blot membranes with antibody involves several steps.  

SNAP i.d.  Protein Detection System (Millipore, UK) was used.  It is a device 

that has place to accommodate particular cassettes; the cassettes are opened 

and the membrane inside was hydrated with de-ionised water then the 

Polyvinylidene difluoride (PVDF) membrane after which was put in specific 

order, the membrane face which was contact with gel during the transfer was 

put directly to face the cassette’s membrane then the cassette closed and put in 

the device.  The nonspecific binding was blocked with block solution (Millipore, 

UK).  This block reduces the background and eliminates false positives for an 

hour.  Following the blocking step, the blocking solution was removed by 

suction and the membrane was incubated with the following primary antibodies: 

mouse monoclonal NF-κB (1/500, Millipore, UK), rabbit polyclonal Akt (1:1000, 

cell signalling, UK), rabbit monoclonal pAkt (Ser473) (1:1000, cell signalling, 

UK), rabbit polyclonal LC3B (1:1000, cell signalling, UK) and rabbit polyclonal 

VEGF (1:500, Abcam, UK).  For checking the loading, protein amount, rabbit 

polyclonal β-actin (1:500, Abcam, UK) and mouse monoclonal α-tubulin 

(1:1000, Millipore, UK) the antibodies were diluted in blocking solution for 10 

minutes.  Then the antibody was removed by suction and after three washes 

with TBST 5 ml each and suction was turned on to remove the washing buffer.  

The membrane in the cassette was incubated with the secondary antibody 

diluted in blocking buffer for 10 minutes.  The secondary antibody is directed at 

a species-specific portion of the primary antibody (hence it is referred to as anti-

mouse (1:5000, Abcam, UK), anti-rabbit (1:5000 cell signalling).  The secondary 

antibodies were horseradish peroxidase-conjugated.  The secondary antibody 

was removed by suction and the 5ml of TBST was put in the cassette to wash 

the membrane 3 times then the wash buffer was removed by suction and the 

cassettes removed from the snap id device.   
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3.8.7 Visualizing antibodies on Western Blots by ECL 

The enhanced chemiluminescence (ECL) Western Blotting substrate for 

visualizing bound antibodies on membrane blots was used as recommended by 

the manufacturer (GE healthcare life sciences, UK).  One ml of each of the 

detection reagents, Reagents 1 and 2, was mixed and added to the membrane.  

After 1 minute the membrane was drained, covered in cling film and exposed to 

photographic film (Thermoscientific, UK) up to 2 minutes inside an intensifying 

film cassette.  The exposed film was then removed and placed in a film 

developer to visualize the antibody signals.  If necessary, a second sheet of 

photographic film was exposed to the membrane for a longer or shorter period 

of time (from a few seconds to 10 minutes) in order to get a stronger or weaker 

signal.   

 

3.9 TNF-α measurement by ELISA 

Measuring rat TNF-α was performed by ELISA (BD Bioscences, UK) on liver 

tissue lysate.  Liver tissue was homogenised and protein was measured as in 

section 3.8.1 and 3.8.2.  96-well plate was used and the plate was read on 

wave length 650nm as specified in the protocol and the results presented as the 

amount of TNF-α per amount of protein added (known from protein 

measurement). 

 

 Method 

a) 96-well plate was coated with the capture antibody.  Capture antibody 

was diluted 1 in 250 in coating buffer and then 100μl was added per well.  

The plate was sealed and incubated overnight in 4°C.   

b) On the second day the plate was washed with 300μL per well (5 times).  

This was blocked by adding 250μL of assay diluents to each well and 

incubated for 1 hour.  Then this was washed 5 times as described 

before. 

c) Sample or standard was added per well (in duplicate) as follow.  50μL of 

assay diluent in each well, then 50μL of sample or standard.  The 

samples used were tissue lysates.   

d) A seven point standard curve was achieved using serial dilutions.  Then 

the plate was covered and incubated for 2 hours.  After 2 hours the plate 
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was washed 5 times as before with washing buffer.  Then, the detection 

antibody was added.   

e) The detection antibody was diluted 1 in 250 in assay diluents and 100μL 

of the diluted detection antibody was added to each well.  The plate was 

covered and incubated for 1 hour then washed as before.  100μL of 

Streptavidin-HRP was added to each well after dilution (1 in 250 with 

assay diluents) and plate covered and incubated for 30 minutes.  The 

plate was then washed 7 times with 300μl per well each time.  100μL 

substrate solution was added per well and incubated for 20 minutes at 

room temperature in a dark place.   

f) After 20 minutes, 50μl of stop solution was added per well.  The plate 

was taped to mix gently and the plate was placed in the plate reader and 

read at a wavelength of 450nm. 
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3.10  Immunohistochemistry  

3.10.1 Materials  

a) Human Tissue Microarrays 

Human tissue microarrays (TMA) were purchased from Vbiolabs, Cambridge 

(UK).  Custom made slides were prepared containing 4μm parallel sections 

from 111 paraffin embedded human liver tissues of different histologies.  The 

samples were originally derived from 78 males and 33 females of a similar age 

group.  96 of cases were associated with hepatitis virus infection; 53 with HBV 

and 33 with HCV.  Details of the tissue samples along with the relevant clinical 

data are given in (Table 3). 

 

Table 3: Details of the Tissue Microarrays 
 
Histology Total 

No. 

Males 

No. 

Females  

 

No. 

Median Age 

(range) 

No. with 

hepatitis 

virus 

Males Females B C 

Normal 9 6 3 42 (34-58) 41 (30-41) 0 0 

Hepatitis 26 19 7 55 (26-68) 57 (52-72) 18 8 

Cirrhosis 24 23 1 55 (33-69) 47 (47) 16 8 

Hepatocellular 

carcinoma  

41 24 17 54.5 (29-68) 53 (41-72) 19 18 

Cholangio 

carcinoma 

9 2 7 54.5 (34-63) 61 (27-69) 0 0 

 

b) Archival Liver Tissue (Validation Set) 

Paraffin embedded liver tissue samples from patients who were admitted to the 

Royal Free Hospital between 1993 & 2004 were retrieved from the hospital 

pathology department.  The histology of these samples and other relevant data 

are given in Table 2.  All the cases of HCC were on a background of cirrhotic 

liver.  4 micron sections were cut from each paraffin-embedded tissue block 

using a microtome.  The sections were placed on poly-L Lysine coated slides 

(VWR, UK).
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Table 4:  Details of the archival liver tissue samples (Validation Set) 
 

 Histology Total  

No. 

  

 Males 

No. 

 Females 

No. 

 Age Range  No. with 

Hepatitis 

virus  

 Males  Females  B  C 

 Normal  2  -  -  -  -  -  - 

 cirrhosis  5  -  -  -  -  -  - 

 HCC 19  16  3  43 - 68  31 - 51  3  9 

 

3.10.2 Immunohistochemistry procedure 

Immunohistochemistry was carried out on the human tissue specimens (TMA 

and validation set).   Paraffin was removed (from the sections) by heating at 

60˚C for 20 minutes before processing.  Tissue section on glass slides were first 

de-paraffiinised by immersing in 3 changes of xylene, 5 mins  each and 

rehydrated by submerging in descending grades of ethanol; 100%, 90%, 80 %, 

and 70% ethanol, 5 mins each.  Following a 5 minute wash in phosphate 

buffered saline (PBS) the slides were immersed in target retrieval solution, 

citrate pH 6 (Dako UK Ltd) and placed in a microwave oven for 10 minutes at 

700 watt power.  The slides were allowed to cool for approximately 30 mins 

approximately and then washed in PBS, 3 x 2 mins.  The excess liquid was 

removed by gently tapping the slides on a piece of tissue before applying 10% 

hydrogen peroxide for 30 mins to block the endogenous peroxidase activity.  

This was followed by another wash in PBS, 3 x 2 min.  The PBS was carefully 

removed again before incubating the slides with serum blocking reagent (Life 

Technologies, UK) for 30 mins.  The blocking reagent was tapped off the slides 

and the excess liquid was wiped away from around the tissue.  Each tissue 

section was then covered with diluted primary antibody or negative control 

(without primary antibody) and left to incubate overnight at 4 C in a closed 

chamber.  The slides were removed from the incubation chamber and washed 

in PBST, 3x2 minutes.  The excess liquid was then wiped away and each 

section was covered with secondary antibody for 45 minutes.  The slides were 

next washed in PBST, 3x2 mins and covered in freshly prepared 

Diaminobenzidine (DAB) chromogenic/substrate solution for 2-3 minutes 
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(Envision Kit, Dako UK Ltd).  Following by a 5 min rinse in tap water the slides 

were counterstained with Haematoxylin (Dako UK Ltd), 3 mins, followed by 

another wash in tap water for 20 mins.  Finally, the coverslips mounted with 

aqueous mounting medium (Life Technologies, UK).  The slides then placed in 

an oven for 30 min to harden.   

 

3.10.3 Scoring of the immunohistochemistry data 

The immunohistochemically stained slides were examined by two independent 

pathologists.  Smooth muscle actin staining was scored by the presence or 

absence of the stain.  For TLR4, TLR7 and TLR9 the scoring system was 

depend on the intensity and extent.  The total score was calculated as the 

following. 

 

 The staining intensity was scored as follows: 

(0) No staining   

(+) Faint staining    

(++)  Moderate staining  

(+++)  Intense staining  

 

 The staining  extent was scored as follows: 

   < 1/3 of the cells stained  

    > 1/3 and <2/3 of cells stained 

    > 2/3 of the cells stained. 

 

 Then total score was calculated as the following: 

 

Table 5: Scoring system of immunohistochemistry 
 
staining Score description 

0  Negative or + staining in less than 1/3 of the cells 

1  (+) intensity  in more than 1/3 of the cells or ++ in less than 

1/3  

2  (++) or (+++) intensity of staining in more than2/3 of the cells  
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Ki-67 index:  A proliferation index was calculated by counting 1000 tumour cells 

and using a cell counter to count the number of Ki-67-positive nuclei among the 

1000 nuclei in highly expressed selected fields (el-Sader et al., 1996) and the 

index was presented as percentage.   

 

3.11  Cell cultures 

3.11.1 Cell Lines 

Human hepatocellular carcinoma cell line HepG2 was purchased from the 

American Type Culture Collection (ATCC) (as frozen vial).  The human 

hepatocellular carcinoma cell line HuH7 was purchased from SIGMA (as a 

growing cells).  HuCCT1 cell line was provided by another Laboratory (Riken 

BioResource centre, Japan).   

 

3.11.2 Cell Culture Medium 

Cells were grown in T75 culture flasks angled neck filter sterile (VWR) 

containing 15 ml of Dulbecco’s minimal essential medium (DMEM) for HepG2 

and HuH7 or Roswell Park Memorial Institute (RPMI) for HUCCT1 both media 

supplied with 2mM glutamine purchased from (Gibco) supplemented 10% fetal 

bovine serum (FBS) heated inactivated, from (Gibco), and 10000 U penicillin 

streptomycin (Life Technologies, UK).  The culture flasks were placed at 37°C in 

a 5% CO2 incubator.  The culture medium was changed twice a week until the 

cells were 70-80% confluent after which the cultures were subdivided by 

trypsinization. 

 

3.11.3 Trypsinization of cell cultures 

Cell lines were subcultured by trypsinization.  The culture medium was 

discarded from the flask and the cells were rinsed with 10 ml PBS (Life 

Technologies, UK).  The PBS was poured off and 1ml of 0.25% Trypsin-EDTA 

(Life Technologies, UK) was added to the flask.  The flask was then incubated 

at 37C for 2-3 minutes to allow the cells to detach from the flask.  The trypsin 

was then neutralized by adding 5 ml of DMEM containing 10% FBS.  The 

trypsinised cells where divided equally between five T75 flasks each containing 

10ml of DMEM supplemented with 10% FBS, 2mM glutamine and 10 000 U of 

penicillin/ streptomycin. 
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3.11.4 Cell Counting by Trypan Blue Staining 

Freshly trypsinised cells were counted using a haemocytometer as follows: 10μl 

of Trypan blue (Sigma, UK) were mixed with an equal volume of a well-mixed 

cell suspension.  The haemocytometer was cleaned by rinsing in distilled water 

followed by 70% ethanol.  The haemocytometer coverslip was cleaned in the 

same way then carefully placed in position on the counting chamber.  10 µl of 

the typan blue cell suspension were applied to the edge of the coverslip using a 

Gilson pipette and allowed to run under the coverslip.  When the counting 

chamber was completely filled with sample the cell numbers were determined 

by direct counting under a light microscopy at 20 X objective.  Live cells appear 

colourless whilst dead cells stain blue. 

The number of live cells in one of the large corner squares was counted in each 

of the 4 large corner squares and an average was taken.  The average was 

then multiplied by the dilution factor (in this case 2) and by 104, i.e. the average 

was multiplied by 20 000.   

 

3.11.5 Cell Viability  and proliferation Assay  

 Principle of the assay 

The assay is composed of tetrazolium compound [3-(4, 5-dimethylthiazol-2-yl)-

5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS].  

MTS is reduced by living cells into coloured product that is soluble in tissue 

culture medium.  The assay was performed by adding the reagent directly to the 

culture wells and it was incubated for 2 hours and then recording the 

absorbance at 490nm with a 96-well plate reader (Data sheet of the MTS assay, 

Promega). 

The cells were grown in 96-well plate (Nunc) 104 cells were seeded separately 

into 3 wells each and the number of cells was estimated after  24, 48, 72 and 98 

hours to detect the growth behaviour of the cells.  Before the reading, the media 

which was added to the cells was discarded and 100μl of fresh media added to 

each well.  Then 20μl of the proliferation assay solution was added to the media 

(as described by the manufacture protocol).  The plate was incubated (37ºC 

and 5% CO2) for 2 hours.  The plate was placed in the plate reader and read at 

a wavelength of 490 nm. 
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 Cell response to treatment 

104 HuH7 or HuCCT1 cells per well were plated in a 96-well plate.  A time-

course (24, 48 and 72-hours) of the proliferation of the cells was determined 

following treatment with CpG-ODN 5μM (TLR9 agonist, Invivogen, UK), 

Imiquimod 5ug/ml (TLR7 agonist, Invivogen, UK), chloroquine 15uM (Invivogen, 

UK) and IRS- 954 (Dynavax, USA) 20ug/ml [IRS-954 is an immunoregulatory 

DNA sequence which is a specific TLR7 and TLR9 antagonist and is being 

developed as a potential treatment of systemic lupus erythematosis (Barrat el 

al., 2005).  The proliferation assay was performed to detect any effect of 

treatment on proliferation. 

 

3.11.6 Neutral red uptake test 

 Principle of the test 

This test is based on the ability of viable cells to uptake the supravital dye 

Neutral Red (NR).  NR is weak cation which, through non-inionic passive 

diffusion penetrates cell membrane and accumulates in the lysosomes (Repetto 

et al., 2008).   

 

 NR dye preparation 

Under sterile conditions, neutral red stock solution was prepared by dissolving 

40 mg neutral red dye (Sigma, UK) in 10ml PBS in a falcon tube then protected 

the tube from light by foil.  The neutral red stock solution was diluted 1:100 in 

DMEM media and kept overnight in the incubator. 

HuH7 cells were trypsinised and seeded 104 cells per well for 48 hours and 

treated with the dosage as in cell response to treatment section.  DMEM media 

was discarded and 100μl of the diluted NR solution was added per well.  The 

plate was incubated for 2 hours.  Then the plate was examined under light 

microscopy to observe the red stain inside the cells. 
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3.11.7 Immunofluorescence staining 

HuH7 cells and HuCCT1 cells were stained using the immunofluorescence 

technique.  From each cell line, 5x103 cells were grown on 13mm glass 

coverslips (treated with 1 molar HCL then rinsed in 70% ethanol and finally 

washed with PBS).  Coverslips with cells were placed in 24-well plate for 24 

hours incubation to allow the cells to settle down.   

Then coverslips with cells were treated in duplicate with one of the following 

treatments: Imiqumoid (IMQ), CpG, chloroquine and IRS and one group without 

any treatment as a control.  The dosage of treatment mentioned in cell 

response to treatment section.  After 24 hours the media was discarded and 

cells fixed with methanol as describe before (Minogue et al., 2006).  Then the 

cells were washed with PBS and 70% cold methanol was added to each well.  

Then the plate was placed in -20ºC freezer  for no longer than 3 minutes this 

was then washed with PBS tree times then blocked with 3% bovine serum 

albumin (BSA)(Sigma, UK) for 20 minutes.  After blocking the following 

antibodies were added after dilution in 0.3% BSA as an antibody diluent.  

Mouse monoclonal TLR9 (1/50, Abcam, UK), mouse monoclonal lamp-1 

(1/100Abcam, UK), rabbit polyclonal TLR7 (1/100, Abcam, UK) and Rabbit 

polyclonal calnexin (1/100, cell signaling).  The matching secondary antibody 

was diluted in the same antibody diluents, antimouse Alex fluor 543 (1/500, Life 

Technologies, UK) and anti rabbit Alex fluor 488 (1/500, Life Technologies, UK) 

with hoechst 33342 (1/5000, Life Technologies, UK) for nuclear counterstaining.  

Cells were mounted using prolong gold antifade reagent (Life Technologies, 

UK) and observed under an LSM 510 Meta laser-scanning confocal 

microscope, (Carl Zeiss Ltd).  All images were obtained with a Zeiss 63× 1.4 NA 

oil-immersion objective with pinholes set to one Airey unit.  12-bit fluorescence 

images were collected to peak. 

 

3.11.8 Western Blot Analysis for cells  

The expression of specific proteins in the cell cultures was examined by 

Western blot analysis.  The method involves the following steps which are 

described in more in sections 3.8 

1. Extraction of proteins from cells  

2. Measurement of protein concentration in the cell.   
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3. Separation of proteins by electrophoresis on a nupage gel. 

4. Transfer of proteins from the gel to membrane  

5. Staining of the protein with antibodies 

6. Visualization of antibody signal by ECL reagent (steps 3, 4, 5 and 6 were 

described before in section 3.8 

 

 Protein extraction from cell cultures 

Cells were grown in T75 flasks until they were about 80% confluent.  The 

culture medium was then discarded and the cells were rinsed in 10 ml of PBS.  

The PBS was discarded and 500μl of mammalian protein extraction reagent M-

PER (Thermo Fisher Scientific, UK) was added to the flask.  The cells were 

then scraped off the flask using a cell scraper (Fischer scientific, UK) and 

collected in a 1.5 ml eppendorf tube then placed on ice and sonicated for 1 min.  

The tube was spun for 5 min, 13000 rmp, 4°C to pellet the debris.  The 

supernatant was collected and then aliquoted into a fresh tube and the protein 

concentration determined using a Bicinchoninic Acid (BCA) Protein Assay Kit 

(Thermo Fischer Scientific, UK). 

 

 Protein estimation by micro BCA Assay Kit 

The Bicinchoninic acid (BCA) assay was used to determine protein 

concentration in the cell culture lysates.  The principle of the assay is the 

reduction of Cu II to Cu I by proteins in an alkaline medium then detection of the 

Cu I ions by BCA reagent.  BCA is a chromogenic reagent that reacts with Cu I 

ions producing a purple complex with strong absorbance at 562nm.  The 

intensity of the colour produced is directly proportional to the concentration of 

protein in the sample.  The protein concentration is determined by measuring 

the colour intensity in the sample against a protein standard curve.  The 

standard curve is prepared using a series of bovine serum albumin (BSA) 

dilutions, at known concentration, which are assayed alongside the unknown(s) 

(Data sheet of the assay).   
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 Method 

A serial dilution of the protein extracted from cells, 1/75, 1/100 and 1/150 had 

been prepared in distilled water and had been put in triplicates and standard 

serial dilution of albumin 40mg/ml, 20mg/ml, 10mg/ml, 5mg/ml and 2.5mg/ml 

was prepared.  In 96-well plate the dilution of standard was put in total volume 

150µl in descending order in duplicate with one with only water  then the 

reagents had been mixed as a kit instruction and incubated with the proteins 

from the cells for 2 hours in 37°C then read in a plate reader for 562nm wave 

length. After the reading, the amount of protein in each well was determined 

after the linear regression correction and the accuracy of standard was 

calculated.   

 

 Albumin Standard 

BSA (2mg/ml) in 0.9% saline a set of protein standards was prepared from a 2 

mg/ml BSA stock solution with the following concentration: 40μg/ml, 20μg/ml, 

10μg/ml, 5μg/ml and 2.5μg/ml. 

 

3.12 Statistical analysis 

Continuous variables were analysed with t-test or ANOVA.  For inter-group 

comparison, Mann-Whitney-U-test or Kruskal-Walllis test were used for the 

nonparametric analyses.  For correlation spearman test was used.  Statistical 

significance was taken as P< 0.05.  All statistical analyses were performed 

using Prism software Version 4 (GraphPad).   
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4.1 Establishment of HCC animal models 

4.1.1 Introduction 

Animal models of HCC were established to determine the role of TLRs in HCC.  

Types of HCC animal models that have been used are as follows: 

 

a) Chemical-induced models of HCC 

Many chemical carcinogens have been used to develop HCC models including: 

Carbon tetrachloride, diethynitrosamine, acetylaminoflurane and 

nitrosomorpholine.  Natural substances such as aflatoxin, pyrrolizide and safrole 

have also been used (Heindryckx et al., 2009).  These substances have been 

administered orally by mixing with food or drinking water or via intraperitoneal 

injection. 

 

b) Viral-induced Models of HCC 

Previous studies have used HBV, HCV and Woodchuck hepatitis virus to 

produce HCC related to viral infection.  The viral models have been used to test 

chemoprevention of HCC and evaluation of gene therapy.  However, these 

models take more than 2 years to develop and are associated with considerable 

expense.  Both factors ruled out the possibility of these models for our study 

(Wu et al., 2009). 

 

c) Transplantable models of HCC & Cholangiocarcinoma 

There are two common transplantable models of HCC, syngeneic models and 

xenograft models.  Syngeneic models are created by implantation of rodent 

cancer cell lines into inbred animal to produce tumours.  In these models the 

immune system is intact.  The xenograft models are created by implanting 

human cancer cells taken directly from a patient (or cultured cell line) into 

immunodeficient mice (mainly nude mice).  The xenograft models have the 

advantage of perhaps making the model mimic the human tumour behaviour 

more closely, but the major disadvantage is the absence of the immunologic 

interaction, which occurs normally between the host and the tumour (Wu et al., 

2009). 

 

 



Results                                                               Establishment of HCC Models 
 

69 
 

d) Genetically engineered models of HCC  

Genetically engineered models of HCC are highly sophisticated using 

transgenic mouse technology.  These models use immunocompetent animals 

and have been shown to demonstrate similar pathophysiological features to 

human cancers.  However, they are expensive and substantial time is required 

for successful tumour development (Heindryckx et al., 2009). 

 

4.1.2 Choice of animal models for exploring our aim 

From the above models we decided to develop 

a)  chemically induced model of HCC for the following reasons: 

i. A relatively short period of time is required for tumour induction: typically 

three months. 

ii. Technically simple requiring oral or intraperitoneal administration of an 

agent. 

iii. Relatively inexpensive. 

b) Xenograft model 

Human cells can be used in this model and therefore the behaviour of any 

resulting tumours is more likely to be representative of the situation in humans. 

 

Two different models of HCC were established in an attempt to ensure the 

results obtained from our studies were not model specific.  For our purposes, a 

small animal (such as rats and mice) model was preferable for ease of handling.  

All experiments were conducted in accordance with local ethical approval and 

subjected to the complied with the UK’s animals’ (Scientific Procedures) Act 

1986. 

 

4.1.3 DEN & NMOR- induced rat model of HCC 

a) Method of establishment 

Fischer rats were chosen as the first model as they are well-known for their 

ability to develop HCC (Yoshino et al., 2005).  Thirteen, 5-weeks old male rats 

were divided into two groups: 1) the carcinogen group (n=7) and 2) the naive 

group (n=6).  All rats were acclimatised for one week before beginning the 

experiment (standard housing conditions 29-32°C, humidity 60%-65%).  From 

the start of the study, animals were health checked on alternate days including 
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body weight and drinking water intake to ensure that the carcinogen treated rats 

were not unduly affected by the administration of the substances.   

 

Rats were injected with diethylnitrosamine (DEN) (100mg/kg) intraperitoneal 

(IP) on day zero and given nitrosomorpholine (NMOR) 80 PPM in drinking water 

for a period of 14 weeks.  All rats (from carcinogen treated group) underwent an 

MRI scan at week 10 and week 14.  For the MRI, rats were transported to the 

UCL animal radiology unit and anesthetised with isoflurane.  They were then 

allowed to recover, and after a period of observation they were then returned to 

their ordinary cages.  MRI scanning was conducted using a 9.4 Tesla scanner 

with a horizontal bore system (Agilent, Varian).  MRI settings used were: fast, 

multi-slice, spin echo with a 1mm slice thickness.  Thirty slices were obtained 

per rat in the coronal orientation.  Images were analysed using Amira software 

5.3.1.  Total liver volume and volume of each nodule were calculated. 

 

One carcinogen group rat was culled at week 10 and the other rats were culled 

at week 16.  Animals were terminated under terminal anaesthesia by isoflurane 

(inhalation).  Livers were collected and fixed in 10%formalin.  Four μm liver 

sections were cut and stained with H&E, reticulin and Sirius red for 

histopathological evaluation.  Smooth muscle actin immunohistochemistry 

staining was also carried out.  (Further details of histology technique are 

provided in section materials and methods). 

 

b) Results of DEN & NMOR rat model 

At the beginning of the experiment, the average weight of the rats was 

229.3±10.5 g for carcinogen group and 221-249g in the naive group.  At the end 

of experiment the carcinogenic group weighted 328-353g and the control group 

430-478g (P <0.01).  In both groups there was an increase body weight, 

although this was reduced in the carcinogen treated group. 
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Figure 8: Graph showing increase in the body weight of rats in both 
groups treated or untreated with DEN and NMOR.  The weight of rats 
treated with DEN and NMOR was lower compared to the naïve untreated 
rats.  
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I. Rat liver MRI scans 

At week 10, there were small pinhead sized lesions that could not be 

conclusively classified as tumours.  At week 14 multiple nodules of variable 

sizes (Fig. 9), suggestive of tumour, were identified in all rats in the carcinogen 

group.   

 

 

 

Figure 9: MRI scanning showing liver lesion after 14 weeks treatment with 
DEN and NMOR.  The arrows point to the lesions. 
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By using Amira software, the total liver volume and total nodule volume were 

calculated and the percentage of nodule volume relative to total liver volume 

was estimated as listed in the table (6).    

 

Table 6: Liver lesion volume in rats treated with DEN and NMOR.  MRI 
scan results of DEN and NMOR treated rats showing the total volume of 
lesion compared to liver volume per rat. 
 

   Liver 

volume/pixels  

Lesion 

volume/pixels 

% 

Rat 1 15462.36133 2616.24585 16.92009 

Rat 2 12224.68652 1799.691772 14.72178 

Rat 3 14481.61719 1471.139038 10.15867 

Rat 4 14390.74316 820.014832 5.69821 

Rat 5 12694.27246 1324.208862 10.43155 

Rat 6 13924.06055 2082.059082 14.95296 

 

II. Histopathology of DEN & NMOR rat livers 

Macroscopic appearance rat livers 

 The livers of rats in carcinogen group were found to be pale in colour and 

larger in volume (average of 5x4x3 cm), compared to the control group 

(average of 3.5x3x2 cm).  The livers in the carcinogen group were nodular with 

an irregular surface, and on cut sections showed multiple pale nodules (Fig.  

10).  In the control group, all the animals had normal livers; a bright red glossy 

colour with a smooth outer surface, cut section shows homogenous liver tissue 

without any nodules (Fig. 10). 
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Figure 10: Macroscopic picture of livers obtained from DEN and NMOR 
treated and untreated rats.  Livers of treated rats demonstrate 
multinodular irregular outer surface and pale colour, while livers from 
naive group demonstrate bright red smooth outer surface. 
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Microscopic appearance of rat livers 

 Haematoxylin & Eosin staining  

Two independent pathologists assessed and graded slides from the livers of all 

rats.  Liver from one animal that was culled at week ten demonstrated high-

grade dysplasia (atypical polygonal large cells with large nucleus and prominent 

nucleoli).  The non-tumourous background showed an inflammatory cell 

infiltrate, with bridging necrosis and fibrosis.  In addition, there were small foci 

indicative of HCC showing small compact cells with hyperchromatic nuclei (Fig.  

11). 

 

  
 
Figure 11: Histopathologic changes in rat liver treated with DEN and 
NMOR for 10 weeks showing dysplasia and inflammation.  Areas of severe 
inflammation (black arrows) and high-grade dysplasia (yellow arrows) 
with foci suspicious of HCC (white arrow). 
 

After 16 weeks, all the livers of rats treated with DEN and NMOR developed 

severe inflammation, necro-inflammatory foci, bridging necrosis (moderate to 

severe) and multiple scattered dysplastic nodules, which together formed the 

background for multiple foci of HCC.  The hepatocytes inside these foci showed 
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frequent abnormal mitosis, increased nucleo-cytoplasmic ratio and irregular 

nuclear membranes which provided further support that these represented HCC 

foci.  The tumour grade ranged from well differentiated to poorly differentiated 

HCC.  Five out of six developed moderate to poorly differentiated HCC and 

severe inflammation.  One animal developed well-differentiated HCC.  All the 

animals developed fibrosis, which was confirmed with reticulin staining.   

 

 

 

Figure 12: Microscopic picture of normal rat liver showing the central vein 
and hepatocytes radiating around with no inflammation or atypical cells. 



Results                                                               Establishment of HCC Models 
 

77 
 

  

 

Figure 13: Microscopic picture of liver section derived from DEN and 
NMOR treated rats for 14 weeks: 10x magnification showed nodules of 
atypical cells, the black arrows point to the nodules.  40x magnification 
showed atypical cells within the nodules.  There was small cell dysplasia 
(white arrow), pleomorphism of the cells with prominent nucleoli and 
other cells had two nucleoli (yellow arrow).  There were also abnormal 
mitoses (black arrow) suggesting that this is a malignant nodule (HCC).    

10x

40x

a)

b)
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 Smooth muscle actin staining  (SMA) 

Immunohistochemical analysis of liver sections stained with SMA antibody 

(shown in brown colour) in all blood vessel walls.  It was also found also within 

the foci identified as  HCC providing additional confirmation of tumourigenesis 

as it stained the newly formed blood vessles within the tumour (Fig. 14). 

 

  

 

Figure 14: immunohistochemistry of smooth muscle actin (SMA) 10x 
magnification showed brown staining in the smooth muscle in the wall of 
blood vessels and the smooth muscle in the new blood vessels in the 
tumour mass.  20x showing the SMA staining in the tumour. 
 

10x

20x
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 Reticulin & Sirius red staining 

The DEN and NMOR treated rats developed liver fibrosis which was detected 

by silver stain (black colour) with reticulin or Sirius red.  The fibrosis varied from 

3/6-5/6 grade depending on Ishak criteria listed page (28).  The fibrosis in the 

carcinogen treated group varied from bridging fibrosis, portal to portal and in 

some cases it was found to be portal to central.  Bridging fibrosis reached the 

level of incomplete cirrhosis where the fibrous bands formed incomplete 

nodules (Fig.  15).  However, the livers in the control group did not show any 

evidence of fibrosis. 

 

  

  
Figure 15: Reticulin staining of liver section obtained from naïve (normal) 
and DEN & NMOR treated rat showing silver staining around blood 
vessels and fibrous band of pre-cirrhotic stage of liver with incomplete 
nodules and in normal liver the silver staining is around the blood vessels 
only.

DEN&NMOR

Normal
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Sirius red staining also confirmed fibrosis.  Livers obtained from the carcinogen 

group showed evidence of severe fibrosis (Fig. 16). 

  

 
 
Figure 16: Sirius red staining of liver section obtained from Naive (normal) 
and DEN & NMOR treated rats.  It stained the collagen in the wall of blood 
vessels and fibrous tissue red.  Liver section obtained from normal and 
DEN&NMOR treated rats showed multiple red stained fibrous septa, which 
tended to form nodules with DEN&NMOR treatment and only red staining 
around blood vessels in normal liver.   
 

DEN&NMOR

Normal
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4.1.4 Xenograft mouse model of HCC 

a) Method of Establishment 

Scatton and colleagues established the xenograft model in seven to eight week 

old male NOD-SCID mice (Scatton et al., 2008). The value of choosing this type 

of mouse is that they have severe combined immunodeficiency and therefore 

the injected cells in the liver are not exposed to repeat cycles of inflammation 

which can lead to cell rejection.  The human cell lines used (HuH7, HepG2 and 

HuCCT1) were injected intrahepatically following visualisation via a small 

laparotomy with five million cells in 100μl of saline of either HuH7 or HepG2 

(hepatocellular carcinoma cell lines) HuCCT1 (cholangiocarcinoma cell-line) 

underneath the Glisson's capsule. The procedure was performed under general 

anaesthesia using sterile conditions, with the laparotomy closed using 

absorbable suture (Vicryl, Johnsosn and Johnson). The animals were allowed 

to recover, before being returned to the housing rooms in independently 

ventilated cages for the duration of the study.  Blood and tissue samples were 

collected under terminal anaesthesia.  

 

Mice were injected intrahepatically with either HuH7 (n=7) or HepG2 (n=5) or 

HuCCT1 (n=7).  For HepG2 and HuCCT1 cells it took about approximately 60 

days (study protocol duration) to develop a tumour nodule, while  proliferation 

with HuH7 was noticeably faster and at 60 days these animals often developed 

a massive tumour that would lead to  the animal  having impairment in its 

movement with some mice dying before the protocol study period was 

complete. In consideration of this the end-point for the HuH7 injected mice was 

revised to 35 days.  With the HCC cell lines, it was found that there was a 

tumour in the liver and another mass was usually found outside the liver 

attached to the muscle wall over the site of cell injection, which could be 

explained as leakage from the injection site. With HuCCT1 cells, even though 

the cells were injected intrahepatically, there was no tumour found inside the 

liver but instead the tumour nodule found was outside the liver attached to the 

muscle of the abdominal wall. The tumour size was calculated by multiplying the 

three dimensions of the mass. 
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b) Results of mouse xenograft models  

I. HuH7 derived tumour characteristics  

The HuH7 cells derived tumour characterised by its rapid proliferation and the 

masses formed inside and outside the liver. The masses developed inside the 

liver were lobulated outer surface and the cut sections showed areas of 

necrosis and haemorrhage, which increased proportionally with the tumour 

volume. The average volume of these tumours varied from 0.2 cm3 to 3 cm3 

(Table 3). However, there were two cases in which the tumour developed 

outside the liver and there was no lesion within the liver. These masses were 

similar macroscopically and microscopically to the tumour cells inside the liver 

(Fig. 17). The volume of these tumours varied from  a mean of 2.3±0.5 cm3 and 

only one animal developed tumour within the liver only without any extra-hepatic 

masses. 

  

Table 7: 3 HuH7 derived tumour volumes in NOD-SCID mice 
 

HuH7 derived tumour volume (cm3) 

Intra-hepatic mass  Extra-hepatic mass  Total mass volume  

0.62  0.6  1.22  

0.5  3.6  4.1  

0.26  1.26  1.52  

0  0.5  0.5  

3  0.05  3.05  

2.4  0  2.4  

0  3.38  3.38  
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Figure 17: Macroscopic and microscopic picture of HuH7 derived tumour.  
The tumour was formed inside and outside the liver.  The microscopic 
picture 5x shows the tumour (blue lesion).  10x shows areas of 
haemorrhage (black arrows) and areas of necrosis (yellow arrows).  40x 
shows HCC cells and areas of necrosis (black arrows). 
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II. HepG2 derived tumour characteristics 

HepG2 cells derived tumours also formed inside and outside the liver.  It was 

characterised by its slower rate in progression compared to HuH7.  The masses 

that developed inside the liver were distinct from the surrounding tissue and the 

cut sections showed areas of necrosis and haemorrhage.  The tumour volume 

of these tumours varied from a mean of 2.0±0.7 cm3 (Table 4).  The extra-

hepatic masses were similar macroscopically and microscopically to the tumour 

cells inside the liver (Fig. 18) and they attached to the muscle of the anterior 

abdominal wall.  The volume of these tumours varied from 0.1 cm3 to 2.4 cm3. 

 

Table 8: HepG2 derived tumour volumes in NOD-SCID mice 
 

HepG2 derived tumour volume (cm3) 

Intra-hepatic masses Extra-hepatic masses  total  masses volume 

0.69  0.675  1.365  

1.4  0.18  1.58  

0.125  0.375  0.5  

1.152  2.4  3.552  

1.575  2.4  3.975  
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Figure 18:  Macroscopic and microscopic picture of HepG2 derived 
tumour.  The mass was formed inside the liver and compressed the 
surrounding liver tissue.  The microscopic picture 5x magnification 
revealed dark blue cells surrounded by normal liver.  10x showed area 
of haemorrhage (yellow arrows) and areas of necrosis (white arrows).  
40x showed malignant cells with prominent nuclei and frequent 
abnormal mitosis (black arrows). 
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III. HuCCT1 derived tumour characteristics 

The main aim of developing this type of tumour was to study 

cholangiocarcinoma, which is a primary liver cancer.   This tumour was different 

from the previous type of HCC cells induced tumour. All the tumour masses 

were formed outside the liver and nothing was found within the liver tissue.  This 

tumour had different phenotype macroscopically to the other models.  This 

tumour was white in colour, rounded and had a smooth outer surface.  The cut 

section did not show any haemorrhage or necrosis (Fig.  19).  HuCCT1 derived 

tumour was attached to the anterior abdominal wall muscle as well.  The 

volume of this tumour varied from 1 cm3 to 1.95 cm3 (Table 9). 

 

Table 9: HuCCT1 derived tumour volumes in NOD-SCID mice 
 

 

 

 

 

 

 

 

 

 

  

 HuCCT1 derived tumour 

volume (cm3) 

1.44 

1.95 

1.10 

1.44 

1.44 

1.00 

1.10 
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Figure 19: Macroscopic and microscopic picture of HuCCT1 cell derived 
tumour.  The tumours found outside the liver, the red box surrounded the 
mass.  5x showed the invasion of the tumour to the abdominal muscle 
wall.10x magnification showed the acinar pattern formation by the cells.  
40x magnification revealed malignant epithelial cells with nuclear 
pleomorphism and prominent nuclei surrounded by stroma consistent 
with cholangiocarcinoma.   
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4.1.5 Discussion  

There are different types of HCC models, chemical-induced, transplantable, 

viral and genetically engineered models.  The last two types are more 

expensive and time consuming to develop.  In this study, the chemical and 

transplantable-induced models were established, as they are relatively easy, 

cheap and quick to develop – approximately 2 to 3 months.  In our chemical-

induced model, DEN and NMOR treatment was used to induce HCC on a 

background of fibrosis and inflammation in Fischer rats.  Yoshino and 

colleagues originally developed the use of DEN and NMOR to induce HCC in 

rats (Yoshino et al., 2005). Following treatment with these drugs the animals 

were weighed twice weekly for 16 weeks as a means of checking their 

development and relative health.  Their weight was found to increase over time 

although the rate of weight gain was less than in the control untreated rats.  

Other than this, the rats appeared normal with no obvious abnormalities.  This 

was taken as an indication that the chemical-induced HCC model was a stable 

and suitable model for our study. 

 

After 10 weeks of DEN and NMOR treatment the rats were scanned by MRI to 

look for any tumours in their livers.  At this time point only a few pinhead size 

lesions could be seen in some of the rat livers.  After 14 weeks of treatment 

multiple masses were detectable in all the treated rat livers.  The size of these 

lesions was measured using the Amira software program.  The average size of 

these masses varied from 5 to 16% of the total liver volume.  The treatment with 

DEN and NMOR was stopped after 14 weeks and the rats were culled two 

weeks later.  The livers were harvested from the DEN and NMOR treated rats 

as well as the control group.  The livers of the treated rats were noticeably paler 

in colour with multiple nodules visible on the outer surface as well as the inner 

surfaces of the cut liver.  There were also areas of haemorrhage within some of 

the nodules suggesting that these were malignant lesions. 

 

When the H&E stained liver sections from the carcinogen treated rats were 

examined under a microscope they revealed foci and nodules with cellular 

atypia, hyperchromatism, increased nucleo-cytoplasmic ratio, prominent 

nucleoli and abnormal mitotic figures suggestive of HCC.  Other changes in the 
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form of large and small cell dysplasia were also observed in the background 

liver of the treated animals.  In addition, the background liver was severely 

inflamed.   

 

Histological examination of the liver sections by reticulin and Sirius red staining 

(of the fibrous bands and collagen) revealed the livers from the treated rats 

were also fibrotic.  According to the Ishak criteria (Ishak et al., 1995) the stage 

of fibrosis varied from stage 3 (fibrous expansion of most portal areas with 

occasional portal to portal bridging) to stage 5 (incomplete cirrhosis).   

 

Immunohistochemical analysis of the liver sections with smooth muscle actin 

(SMA), which stains the blood vessel smooth muscle cells, was used to identify 

newly formed blood vessels within the liver nodules.  SMA staining was 

therefore useful for distinguishing malignant nodules from nodules formed as a 

result of incomplete cirrhosis and which contained dysplastic cells.   

 

Successful establishment of the chemically induced HCC model above provided 

the opportunity to examine the effects of liver inflammation on HCC growth and 

development.  The model was also useful for targeting various molecular 

pathways, which could play an important role in HCC pathogenesis. 

 

One obvious disadvantage of this chemically-induced HCC model is that it may 

not be representative of the way that HCC develops in humans.  For this reason 

a second tumour model using human liver cancer cell xenografts was 

established with the view that these may be more representative of primary liver 

cancer behaviour in humans.  In this case HCC (HuH7 or HepG2) or CC 

(HuCCT1) cells from established cultures were injected into the sub-capsular 

area of the right liver lobe of NOD-SCID mice.  These mice are immuno-

compromised thus reducing the possibility of rejection of the injected cells.  The 

xenografts were initially allowed to establish for 60 days.  However, by this time 

some of the animals injected with the HuH7 died and others developed 

abdominal masses, which were large enough to prevent the mice from walking.  

As a result, the experiment with the HuH7 cells was repeated using a fresh 
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group of NOD-SCID mice but in this case the xenografts were allowed to 

develop for only 35 days in total. 

 

At the end of the 60 day period the animals injected with HepG2 and HuCCT1 

were culled and their livers harvested.  In the case of the HuCCT1 injected 

animals no tumours were detected in the liver but instead tumours were 

observed attached to the anterior abdominal wall.  This unexpected result could 

be due to the fact that these cells derived from bile duct cancer cells, which may 

prefer to grow outside the liver.  Fava and colleagues developed a xenograft 

cholangiocarcinoma mice model outside the liver.  However, they used different 

types of cells such as SV40-transformed normal human cholangiocytes and Mz-

ChA-1cell lines (Fava et al., 2009).   

 

In the case of mice injected with HCC lines, Huh 7 or HepG2, the cancer cells 

formed intra-hepatic tumours and in some cases small nodules were found 

outside the liver attached to the muscle of the anterior abdominal wall.  Their 

exact location was in the midline with some shifting toward the right 

hypochondrium.  The extra-hepatic masses may have arisen as a result of 

leakage from the site of cell injection or as a result of tumour invasion.  The 

mean volume of the HuH7, HepG2 and HuCCT1 derived tumours was found to 

be 2.3 ± 0.5cm3, 2.0 ± 0.7 cm3 and 1.45 ±0.5 cm3 respectively.  H&E analysis of 

tumour sections derived from the HepG2 and HuH7 injected animals revealed 

the tumour histology had the criteria of HCC i.e. polygonal cells, hyperchromatic 

nuclei, prominent nucleoli and abnormal mitotic figures.  In addition, there were 

areas of haemorrhage and necrosis.  Histological analysis of the HuCCT1 

derived tumours had all the hallmarks of cholangiocarcinoma; sheets of 

cuboidal cells within a stromal background, the cuboidal cells showing 

increased nucleo-cytoplasmic ratio and nuclear hyperchromatism with lots of 

abnormal mitotic figures scattered within the tumour.   

 

As well as being more representative of the situation in humans, establishment 

of the tumour xenograft models enabled us to study the effects of inhibiting 

particular cell receptors, which were up regulated in primary human liver 

cancers.  
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One of the disadvantages of the xenograft model was the complicated surgical 

procedure needed to inject the cancer cells into the livers and the high rates of 

animal mortality incurred during or shortly after surgery.  Another disadvantage 

with this model is that the tumour environment in an immunocompromised 

animal is very different from that of a normal animal.  It is well established that 

tumourigenesis is an integrated process whereby the interactions between 

tumour and immune system can have a significant effect on tumour behaviour 

(Igney and Krammer, 2002).   

 

Challenges of establishing xenograft models and lessons learnt: 

One of the biggest hurdles in establishing the xenograft models was trying to 

avoid the high mortality rate associated with the NOD-SCID mice. These 

animals are extremely fragile and many died either during or shortly after the 

surgical interventions. Some expired in response to administration of 

anaesthetic only whilst others arrested a few seconds following intra-hepatic 

injection of cells. In order to reduce the number of deaths occurring during 

surgery the latter was carried out by one individual who was highly skilled with 

operating on mice.  The surgical procedures were conducted in a highly sterile 

environment,: The anaesthetic chamber and surgical table were all thoroughly 

cleaned by spraying with 70% ethanol and wiping with clean tissue prior to any 

surgery; the floor and walls in the area surrounding the surgical table were also 

cleaned with 70 % ethanol and all surgical instruments were cleaned and 

sterilized by autoclaving prior to use. The high mortality rate associated with the 

NOD-SCID mice often meant that the number of viable animals at the end of 

some experiments was smaller than initially planned.  As a precaution any 

experiment involving NOD-SCID mice should begin with a larger number of 

animals than is actually required in order to take such losses into account. 
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4.2 Effect of gut decontamination on HCC pathogenesis 

4.2.1 Introduction  

Several studies have suggested that increased gut permeability in the presence 

of chronic liver disease maintain a state of enhanced and continuous exposure 

of the liver to pathogen associated molecular patterns (PAMPs) (Mencin et al., 

2009).  This may form the basis for the persistent activation of TLR-MyD88-

TRAF6- NF-ĸB system, which in turn leads to chronic liver inflammation and 

development of HCC.  NF-ĸB was linked to inflammation-fibrosis-carcinoma 

sequence (ElSharkawy and Mann, 2007).  Particularly, TLR4 has been a target 

for therapy in chronic liver disease and fibrosis (Soares et al., 2010).  As 

inflammation and fibrosis was found to be a hallmark in the development of 

HCC and gut sterilization inhibited the development of liver fibrosis (Rakoff-

Nahoum et al., 2004 and Seki et al., 2007), I decided to study the effect of gut 

decontamination on chronic inflammation and development of HCC in 

DEN&NMOR rodent model of HCC.  The aims of this study were to reduce 

bacterial translocation using the antibiotic Norfloxacin and monitor the effect on 

HCC development. 

 

4.2.2 Gut decontamination using Norfloxacin in rat model of HCC 

I. Method 

Three groups of 6 rats each were used for this experiment: 

i. The first group of rats were treated with the carcinogens 

DEN&NMOR for 14 weeks in order to induce HCC as previously 

described in chapter 4.1.  

ii. A second group DEN & NMOR treated rats were also given 

Norfloxacin treatment by gavage at a dose of 20mg/kg/day in two divided 

doses for 14 weeks.  

iii. A third group of naïve rats were used as controls. 

 

 

 

 

http://www.frontiersin.org/Gastrointestinal_Sciences/10.3389/fphys.2012.00138/full#B108
http://www.frontiersin.org/Gastrointestinal_Sciences/10.3389/fphys.2012.00138/full#B108
http://www.frontiersin.org/Gastrointestinal_Sciences/10.3389/fphys.2012.00138/full#B124
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II. Results of Gut Decontamination  

Histopathology of livers from Norfloxacin treated rats 

a) Macroscopic appearance of rat livers 

The animals in each group were terminated at the end of experiment under 

terminal anaesthesia.  The livers of rats treated with DEN&NMOR were pale in 

colour, bigger in size (around 5x4x3 cm), and nodular in character with irregular 

surfaces, and on cut section showed multiple nodules, which were even paler 

than the surrounding tissue.  In the group treated with Norfloxacin in additon to 

DEN&NMOR the livers were much brighter and red in colour with smoother 

outer surfaces, and measured smaller (around 4x3.5x2 cm).  The cut section of 

the liver in both groups showed nodules, which were paler than the surrounding 

tissue.  In the naive group, all animals had normal bright red glossy livers with 

smooth outer surfaces and around 3.5x3x2 cm, cut section showing 

homogenous liver parenchyma devoid of nodules. 
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Figure 20: Macroscopic appearance of livers from DEN & NMOR rat 
models of HCC in the presence or absence of Norfloxacin treatment. The 
liver from the rat without Norfloxacin treatment is pale with an irregular 
outer surface and multiple nodules. The liver from the Norfloxacin-treated 
rat is brighter and less nodular in appearance. 
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b) Microscopic appearance of rat livers 

 Haematoxylin & Eosin staining 

Following Haematoxylin and Eosin staining, two independent pathologists 

examined the slides under light microscopy. 

All animals in the DEN&NMOR group; developed severe inflammation, 

apoptosis, bridging necrosis (moderate to severe) and multiple scattered 

dysplastic nodules with multiple foci of HCC.  The presence of HCC was 

confirmed by the presence in these foci of frequent abnormal mitosis, increase 

in the nucleo-cytoplasmic ratio and irregular nuclear membrane.  The tumour 

grade ranged from well differentiated to poorly differentiated HCC, and in 

addition, all the animals developed severe fibrotic changes, which were 

confirmed with reticulin staining. 

In the Norfloxacin, treated group the liver tissue showed less inflammation and 

only the severity of fibrosis was mild to moderate.  HCC in all the animals were 

well-differentiated except in one rat in this group where there was only evidence 

of a very early grade of HCC, considered high-grade dysplasia. 
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Figure 21: H&E stained liver sections from DEN&NMOR rat models of HCC 
in the presence or absence of Norfloxacin treatment. Yellow arrows point 
to areas of inflammation. Without Norfloxacin treatment, the liver 
inflammation is severe. With Norfloxacin treatment, the liver inflammation 
is minimal. 
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 Evaluation of liver inflammation & fibrosis with Norfloxacin treatment 

using reticulin staining 

In DEN and NMOR group all the rats developed inflammation and liver fibrosis 

ranging from grade 3/6 and 5/6 according to Ishak criteria, while in the 

Norfloxacin treated group there was minimal inflammation in the liver.  The 

degree of fibrosis varied from 0/6 to 2/6, and did not exceed 2, suggesting a 

significant reduction in the development of fibrosis with Norfloxacin treatment (P 

<0.04).   

 

Table 10: Pathological differences in fibrosis and tumour development 
between rats treated with DEN&NMOR±Norfloxacin 
 

 Rat 

No 

DEN&NMOR DEN&NMOR+Norfloxacin 

1 Incomplete cirrhosis, 5/6 fibrosis, 

multifocal poorly differentiated 

HCC 

Fibrosis grade 1/6, well 

differentiated HCC 

2 Fibrosis 4/6 , Foci of HCC Fibrosis 2/6, haemorrhagic HCC 

3 Fibrosis 5/6, 2 foci of HCC 

moderately differentiated 

Fibrosis 1-2/6, with some 

dysplastic Changes suggestive of 

early HCC 

4 Fibrosis 4/6, one focal HCC 

moderately differentiated, and 2 

foci well differentiated 

Fibrosis 0/6, moderately 

differentiated HCC   

5 Fibrosis 3/6 and moderately 

differentiated HCC 

Fibrosis 0/6, well differentiated 

HCC 

6 Fibrosis 4/6, well differentiated 

HCC 

Fibrosis 1/6, well differentiated 

HCC 
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Figure 22: Graph demonstrating degree of liver fibrosis in DEN & NMOR 
rat models of HCC in the presence or absence of Norfloxacin treatment 
and in naive rats. The degree of liver fibrosis is significantly lower in the 
Norfloxacin treated rats compared to that in the livers from the DEN & 
NMOR only treated rats. 
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Figure 23: Reticulin staining in livers from DEN&NMOR rat models of HCC 
in the presence or absence of Norfloxacin treatment. Multiple fibrous 
bands are visible in the liver of the DEN&NMOR only treated rat. The 
degree of fibrosis is minimal in the liver of the Norfloxacin treated rat. 
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4.2.3 Improvement of liver enzymes with Norfloxacin treatment 

Serum transaminases, AST and ALT, were measured in all animals (Cobas 

Integra 400, Roche Diagnostics, Burgess Hill, West Sussex, UK). 

ALT and AST (mean ±SE) levels were significantly lower the group treated with 

Norfloxacin (P <0.05, and P <0.01 respectively) 

 

Table 11: Reduced levels of ALT and AST with Norfloxacin treatment in 
DEN & NMOR rat models of HCC (P < 0.05 for ALT & P < 0.01 for AST). 
 

Test DEN&NMOR 

U/L 

DEN&NMOR+Norfloxacin 

U/L 

Control 

U/L 

ALT 143.4 ±5.1 120.2±4.0 68.4±4.8 

AST 142.3±3.17 118.0±1.3 77.1±9.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Results                                             Effect of gut decontamination on HCC 

101 
 

4.2.4 Decreased endotoxin levels in response to Norfloxacin treatment 

 In order to prove a possible connection between the protective effect of 

Norfloxacin on liver inflammation through its effect on gut decontamination and 

subsequent reduction in endotoxin (LPS) production, an endotoxin assay was 

carried out.  The plasma levels of endotoxin were measured as (EU/ml).  There 

was a significant reduction in the endotoxin level (P =0.02) with Norfloxacin 

treatment.  No endotoxin was detected in the control group.   

 

  

 

Figure 24:  Graph showing endotoxin levels in the DEN & NMOR rat model 
of HCC in the presence or absence of Norfloxacin treatment. Gut 
decontamination using Norfloxacin treatment resulted in a significant 
reduction of endotoxin levels in the DEN&NMOR rat models. 
 

4.2.5 TLR4 expression decreased in rat livers with Norfloxacin treatment. 

To determine whether gut decontamination has an effect on the expression of 

TLR4, immunohistochemistry using TLR4 antibody was performed on liver 

tissue derived from DEN&NMOR treated rats with and without Norfloxacin 

treatment.  TLR4 was negative in the malignant hepatocytes and was only 

found positive in the background of HCC.  TLR4 expression was strongly 

positive (Score 2) in the cytoplasm of non-malignant hepatocytes which formed 

the background in the non-Norfloxacin treated group. In the Norfloxacin treated 

group, TLR4 expression varied from mild to moderate (Score 1) suggesting 

down-regulation of TLR4 in the liver following Norfloxacin treatment (Fig.  26). 
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Figure 25: Graph demonstrating reduced TLR4 expression with 
Norfloxacin treatment in livers from DEN&NMOR rat models of HCC. The 
TLR4 scores are from non-tumour regions of the liver. 
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Figure 26: Immunohistochemical analysis of TLR4 expression in livers 
from DEN & NMOR rat models of HCC in the presence and absence of 
Norfloxacin treatment. TLR4 is not expressed in malignant hepatocytes 
(white arrow) but highly expressed in the surrounding background tissue 
from the liver of the DEN & NMOR treated rat. Very weak expression of 
TLR4 is seen in the liver of the Norfloxacin treated rat.  
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4.2.6 NF-κB expression decreased in rat livers with Norfloxacin treatment  

Using western blot, an up regulation of NF-κB protein was observed in the liver 

tissue lysate obtained from the DEN&NMOR induced HCC group without 

Norfloxacin treatment, which was significantly reduced in the Norfloxacin treated 

group, (P <0.02).   

 

 

   

 

 

 
Figure 27:  Western blot analysis showing reduced expression of NF-κB 
with Norfloxacin treatment in livers of DEN & NMOR rat models of HCC. (a) 
The expression of NF-κB was up regulated in the liver of DEN & NMOR 
treated rats compared to normal untreated rat liver. However, the levels of 
NF-κB expression were significantly reduced in the livers of Norfloxacin 
treated rats compared to those without Norfloxacin treatment (P <0.02). (b) 
The graph shows the densitometry results from the Western blot 
expressed as the ratio of NF-κB relative to β-actin signal. 
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4.2.7 TNF-α expression is not significantly altered in rat livers with 

Norfloxacin treatment 

TNF-α level was measured using ELISA in liver tissue lysate obtained from rats 

treated with DEN&NMOR ± Norfloxacin. The results were divided by the amount 

of protein per sample. In DEN and NMOR animals TNF-α level was 193±149.3 

pg/1μg protein of liver tissue lysate, which showed slight, statistically non- 

significant, reduction with Norfloxacin co-treatment; 111.5±63.8 (P =0.783). 

TNF-α level in the liver of Naïve rat as control was 32.8±7.5. 

 

 
 
Figure 28: Graph showing levels of hepatic TNF-α in livers of DEN & 
NMOR rat models of HCC with and without Norfloxacin treatment. TNF-α 
levels were increased in the livers of DEN & NMOR-treated rats compared 
to the livers from naïve rats. There was no significant reduction in levels 
of TNF-α expression in response to Norfloxacin treatment. 
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4.2.8 Discussion 

The idea that a relationship exists between chronic inflammation and cancer 

was first suggested by Virchow in 1863.  Persistent inflammation in chronic liver 

disease is believed to be the predisposing factor in HCC development (Chen et 

al., 2008).  Persistent inflammation of the liver in these patients is thought to 

arise from an increased exposure of the liver to pathogens associated 

molecular patterns (PAMPs) derived from the gut.  The translocation of these 

pathogens from the gut to the liver is a consequence of the increased gut 

permeability frequently found in patients with chronic liver disease (Bauer et al., 

2002).  Particularly, the levels of circulating bacterial lipopolysaccharides (LPS) 

have been reported to be increased in patients with liver cirrhosis (Lin et al., 

1995, Chan et al., 1997 and Pinzone et al., 2012).  LPS is known to be a 

stimulator of TLR4 (Fitzgerald et al., 2003).  Toll like receptor 4 has been 

reported to play an important role in liver fibrosis (Seki et al., 2007) and 

promotion of HCC (Dapito et al., 2012).   

 

Several studies on patients with cirrhosis and in animal models of cirrhosis have 

shown that decontamination of the gut using antibiotics such as Norfloxacin can 

lead to a decrease in bacterial translocation from the gut to the liver (Gines et 

al., 1990, Llovet et al., 1996 and Rabiller et al., 2002).  Further studies in 

humans also demonstrated a reduction in bacterial translocation in response to 

Norfloxacin treatment (Francés et al., 2008).  In addition to these findings a 

reduction in liver inflammation was also reported with Norfloxacin treatment in 

rodent models of liver fibrosis (Zhang et al., 2010).  However, the effects that 

gut decontamination might have on HCC development had not been reported 

prior to our study.  I therefore set out to examine the effect of gut 

decontamination using antibiotics in rat model of HCC.  The HCC rat model 

used in this study had previously been developed in our laboratory (Chapter 

4.1).  For this particular experiment one group of rats was treated with the 

antibiotic Norfloxacin for 14 weeks in addition to treatment with the carcinogens 

DEN and NMOR.  A second group of rats was treated with DEN and NMOR 

only.  A third group of control rats which was not given either carcinogens or 

antibiotics was also included in the study. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Franc%C3%A9s%20R%5BAuthor%5D&cauthor=true&cauthor_uid=18306221
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The experiment was terminated 16 weeks later as previously described and the 

livers were immediately removed for examination.  There were some obvious 

differences in the macroscopic appearance of the livers in all 3 groups.  The 

livers from the Norfloxacin and carcinogen treated rats were paler and the 

surface of the liver was more irregular than livers from the control untreated 

group of rats.  The livers from the rats treated with DEN and NMOR were even 

paler and more irregular than those from either the control or Norfloxacin with 

carcinogen treated groups.  All rats treated with DEN and NMOR developed 

multiple tumours regardless Norfloxacin treatment.  There were no obvious 

differences in the number and size of tumours between the two groups 

macroscopically.  However, closer inspection of the tumours histologically 

revealed some differences in tumour grade between the two different groups.  

The tumours from the Norfloxacin treated rats were found to be mild to 

moderately differentiated whilst 5/6 livers from the rats treated with DEN and 

NMOR also included tumours with poor differentiation.  A similar study on the 

effect of gut sterilization on HCC development was recently reported by Dapito 

and colleagues.  A number of antibiotics (ampicillin, neomycin, metronidazole 

and vancomycin) were used for gut sterilization in a CCL4-induced mouse 

model of chronic liver injury and HCC (Dapito et al., 2012).  The outcome of this 

study was a reduction in the number and size of tumours, by 90% and 70% 

respectively, in the antibiotic treated group of mice.  Moreover, TLR4 mutant 

mice demonstrated less HCC number and size.  The authors concluded that the 

intestinal microbiota could promote HCC progression in chronically injured liver 

through stimulation of the TLR4 pathway by LPS derived from translocated 

bacteria.   

 

The results from our study on gut decontamination and development of HCC 

were not as dramatic as those of Dapito but the lack of poorly differentiated 

tumours in the Norfloxacin plus carcinogen treated rats in our study and their 

appearance in the group of rats without gut decontamination could lend support 

to the idea that gut bacterial translocation could influence tumour development 

and/or behaviour although the number of animals used in our study is too small 

to confirm this.  The differences in results between our study and that of Dapito 

et al. may in part be explained by the fact that only one type of antibiotic, 
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Norfloxacin, was used in our study whereas a combination of 4 different 

antibiotics which targeted a variety of pathogens other than gram negative 

bacteria were used for gut decontamination in the study by (Dapito et al., 2012) 

No data was given regarding liver fibrosis in their study.   

 

Although the effect of selective gut decontamination on HCC development was 

marginal in our study, the impact on liver fibrosis was more remarkable.  The 

degree of fibrosis in the rat livers was assessed histologically by staining the 

liver sections with reticulin and examining them microscopically.  The degree of 

liver fibrosis as scored by the Ishak criteria was found to be 3/6 - 5/6 for rats 

treated with carcinogens alone and 0/6 - 2/6 for rat livers treated with 

carcinogens plus Norfloxacin.  Selective gut decontamination with Norfloxacin, 

therefore, significantly reduced fibrosis in the livers of rats treated to gut 

decontamination compared to those without gut decontamination (P <0.04). 

 

In addition to reducing liver fibrosis, the treatment of rats with Norfloxacin also 

resulted in an improvement of the level of the liver enzymes ALT (P <0.05) and 

AST (P <0.01).  An improvement of liver function with Norloxacin treatment was 

previously demonstrated in two separate models of liver cirrhosis using CCL4 

and BDL treated rats (Zhang et al., 2010 and Shah et al., 2012).  These findings 

are all compatible with the hypothesis that bacterial translocation from the gut 

into the systemic circulation could play a role in liver inflammation and fibrosis. 

 

In order to confirm that gut decontamination by Norfloxacin treatment was 

successful in our experimental rats the levels of plasma endotoxin in these 

animals were measured using an endotoxin assay.  As expected, the levels of 

plasma endotoxin were significantly reduced in the Norfloxacin treated group of 

animals as compared with the Norfloxacin untreated group (P <0.02).  In the 

naïve control group of rats no endotoxin was detectable.  Since the endotoxin 

plasma levels are a reflection of the levels of circulating LPS the results from 

the assay confirmed that there was reduction with Norfloxacin treatment.  A 

reduction in plasma endotoxin levels and bacterial translocation from the gut in 

response to Norfloxacin treatment have also recently been reported (Zhang et 

al., 2010 and Corradi et al., 2012)  
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It is known that bacterial LPS acts as ligands and stimulators of TLR4 so I 

decided to examine the levels of TLR4 expression in the livers of our 

experimental rats to see if Norfloxacin treatment also had any effect on these.  

The levels of TLR4 expression, as measured by immunohistochemical analysis 

of the rat liver sections using a TLR4-specific antibody, were very low in the 

naïve group of animals but high in the rats treated with DEN and NMOR alone 

(Score 2) in the liver background and not in HCC.  In the group of rats treated 

with Norfloxacin with carcinogens TLR4 expression in liver background was 

higher (Score 1) than normal but significantly lower than in the non-Norfloxacin 

treated group (P <0.01).  This findings are compatible with TLR4 being 

stimulated by bacterial LPS and suggests that selective gut decontamination 

reduces inflammation and fibrosis via the TLR4 pathway.  Although Testro and 

colleagues reported that Norfloxacin increased the expression of TLR4 in 

cirrhosis, their study investigated the expression of TLR4 in mononuclear cells 

and not hepatocytes (Testro et al., 2010).  This suggests that different location 

of TLR4 could have several effects on the pathogenesis of liver disease.  

 

Since NF-κB and TNF-α are known to be stimulated by TLR4 (as well as other 

TLRs) I decided to also look at their expression in the rat livers.  The expression 

of NF-kB was measured by Western blot analysis and demonstrated low levels 

in the liver from the naïve rats but was highly expressed in both groups of 

carcinogen treated rats.  However, in the Norfloxacin treated animals the levels 

of NF-kB were significantly lower than in the untreated animals (P <0.02).  The 

levels of TNF-α were measured by ELISA assays on rat liver tissue lysates that 

were macroscopically free from any visible tumour.  The TNF-α levels were 

found to be low in the naïve rat livers but high in the livers of the all the 

carcinogen treated animals.  The levels of TNF-α expression were lower in the 

Norfloxacin treated rats as compared with the non-Norfloxacin treated rats but 

this difference was not significant ( P =0.7).  A similar study on the effects of gut 

decontamination using Norfloxacin in a cirrhosis model using BDL rats was 

previously carried out by Shah et al.  In this particular case. the effects of gut 

decontamination on the kidneys was studied.  The endotoxin levels were found 

to be reduced in the plasma of the Norfloxacin treated rats as compared with 
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the non-Norfloxacin treated rats.  Levels of TLR4, NF-kB b and TNF-α 

expression were also downregulated in the kidneys of the Norfloxacin treated 

rats compared with non-Norfloxacin treated rats (Shah et al., 2012).   

 

In summary my findings support the hypothesis that bacterial translocation from 

the gut to the systemic circulation may play a role in liver inflammation and 

fibrosis and this action may be brought about through induction of the TLR4 / 

NF-kB pathway.  Selective gut decontamination with Norfloxacin does not 

however, appear to have a dramatic effect on HCC development and / or 

progression despite that fact that Norfloxacin can bring about a reduction in 

TLR4 and NF-kB b expression.  Norfloxacin is a poorly absorbed antibiotic, 

which acts mainly on gram-negative bacteria so the possibility that other types 

of pathogens may still play a role in HCC development via translocation from 

the gut still exists.  The pathways used by these pathogens may circumvent the 

TNF-α pathway.  TNF-α is known to be stimulated by other TLRs and pathways.  

Many studies revealed that LPS and unmethylated CpG, which is derived from 

bacterial translocation, are involved in the pathogenesis of chronic liver disease 

(Takeuchi and Akira, 2010 and Frasinariu et al., 2012).  In addition, several 

lines of investigation in humans indicate that TLR9 is up regulated in chronic 

liver disease and promotes the development of non-alcoholic steatohepatitis 

and hepatic fibrosis (Gäbele et al., 2008, Stadlbauer et al., 2008 and Henao-

Mejia et al., 2012).  Increased bacterial DNA is a feature of cirrhosis due to 

bacterial translocation (Seki and Schnabl, 2012) and the unmethylated CpG 

sequences in bacterial DNA are potent stimulators of TLR9 (Yamamoto and 

Takeda, 2010).  An examination of TLR9 and TLR4 expression in human livers 

will be presented in the next chapter. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Frasinariu%20OE%5BAuthor%5D&cauthor=true&cauthor_uid=23280158
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3379693/#b83
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3379693/#b83


Results                                                TLRs expression in human HCC tissue  
 

111 
 

4.3 TLR Expression in human liver tissue 

As gut decontamination with Norfloxacin was not linked to great effect on HCC 

development, I decided to study the expression of the TLR4, TLR7 and TLR9 in 

HCC and a variety of human liver diseases.  These TLRs were correlated to 

chronic liver diseases in many studies (Gabele et al., 2008, Mencin et al., 2009, 

Starkel et al., 2010, Jing et al., 2012 and Xu et al., 2012).  Expression of TLR4, 

TLR7 and TLR9 in human liver was examined by immunohistochemistry on 

custom made tissue arrays containing a variety of human liver samples and a 

validation set as described in materials and methods. 

 

4.3.1 Results of TLR expression in tissue microarrays 

a) TLR4 expression in liver tissue microarrays 

 Normal Liver: TLR4 expression was negative in normal liver 

hepatocytes but strongly positive (Score 2) in the cytoplasm of all the bile duct 

epithelium in all 9 cases. 

 Hepatitis: TLR4 expression was negative in the hepatocytes but strongly 

positive in the bile duct epithelium and inflammatory cells in all 26 hepatitis 

cases. 

 Cirrhosis: Weak cytoplasmic staining (Score 1) of hepatocytes was 

observed in 3/24 cases of cirrhosis.  The remaining 21 cases were all negative 

for TLR4 expression in the hepatocytes.  However, the bile ducts, inflammatory 

cells and fibroblasts in all 24 cases were strongly positive for TLR4 expression.   

 HCC: TLR4 expression was negative in the hepatocytes but strongly 

positive in the bile ducts, inflammatory cells and fibroblasts in 41 cases of HCC. 
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Figure 29: TLR4 expression in liver tissue arrays (a) TLR4 expression is 
absent in the hepatocytes of normal liver. The hepatitis liver demonstrates 
TLR4 expression in the bile duct epithelium and inflammatory cells. In the 
cirrhotic liver TLR4 expression is absent in the hepatocytes but strongly 
expressed in the bile duct epithelium, inflammatory cells and fibrous 
tissue. In HCC, TLR4 expression is absent in the hepatocytes but visible 
in the inflammatory cells and bile ducts. b) The HCC and cirrhotic tissue 
shown at higher magnifications. 
 

a) TLR7 expression in liver tissue microarrays 

 Normal liver: TLR7 was detected as dark brown staining around 

hepatocyte nuclei in 2/9 normal livers.  However, the expression involved less 

than 1/3 of the hepatocyte in each case (Score 1).  Faint brown cytoplasmic 

staining was detected in 2 cases in less than 1/3 of the hepatocyte in each 

case.   

 Hepatitis: Perinuclear TLR7 was detected in 9/26 cases of hepatitis.  

However, less than 1/3 of the hepatocyte nuclei were stained in 8 cases (Score 

1).  One case showed perinuclear TLR7 in more than 1/3 of the hepatocytes 

(Score 2).  Cytoplasmic TLR7 was observed in 5 cases of hepatitis in less than 

1/3 of the hepatocytes and considered as (0). 

Normal Hepatitis Cirrhosis HCC

a)

b)

Cirrhosis

HCC zoom

zoom
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 Cirrhosis: TLR7 was expressed in 6/24 cases of cirrhosis.  In 3 cases 

less than one third of the hepatocyte nuclei stained positive for TLR7 (Score 1) 

and in 2 cases more than two thirds of the hepatocyte showed cytoplasmic 

TLR7 (Score 1) (Fig. 30).  Perinuclear TLR7 was detected in more than two 

third of the hepatocytes in one case (Score 2). 

 HCC: TLR7 was expressed in 37/41 HCCs.  The expression involved 

over two thirds of the hepatocyte nuclei (Score 2) in 27 cases (Fig. 30) and less 

than one third of the hepatocyte nuclei (Score 1) in 9 cases and one case 

showed cytoplasmic TLR7 in more than two third of the hepatocytes (Score 2).  

4 HCCs were negative for TLR7. 

 

 
 

Figure 30: TLR7 expression in liver tissue arrays. a) TLR7 is absent in 
the normal, hepatitis and cirrhosis tissues. Perinuclear expression of 
TLR7 is seen in the HCC section. b) Graph demonstrating the 
percentage of normal, hepatitis, cirrhosis and HCC cases in the liver 
tissue arrays expressing TLR7 at different levels; 0 = no expression, 1 = 
weak  and 2 = high expression. c) 40 x magnification of the cirrhosis 
and HCC tissue. The dark brown staining of TLR7 is seen more clearly 
in the nuclei of HCC cells. The zooming box shows some cytoplasmic 
staining of TLR7 in the cirrhosis tissue. 
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b) TLR9 expression in liver tissue microarrays 

 Normal liver: TLR9 expression was visible on the cell membranes in 2/9 

cases.  No cytoplasmic staining was detected in 8/9 cases of the normal livers 

and (Score1) TLR9 was found in 1/9 case. 

 Hepatitis: Membranous staining was detected in 12 cases of hepatitis.  

Cytoplasmic TLR9 was absent in 21/26 of hepatitis cases and faintly 

cytoplasmic in more than two third of hepatocytes (Score 1) in the other 5 

cases.   

  Cirrhosis: Membranous staining of TLR9 was observed in the 

hepatocytes of 13/24 of cirrhosis cases.  Cytoplasmic TLR9 was not detected in 

23/24 cases and was visible in 1 case (Score1). 

 HCC: Cytoplasmic staining of TLR9 was observed in 29/41 HCCs and 

absent in 12 cases.  TLR9 score was (Score 1) in 11 cases and high (Score 2) 

in the remaining 18.  No cytoplasmic staining was observed in 12 HCCs.   

Membranous staining of TLR9 was seen in 13/41 HCCs.  The membranous 

staining was associated with weak cytoplasmic staining of TLR9 in 9 cases 

(Score 1) and with high cytoplasmic staining (Score 2) in the remaining 4 cases. 
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Figure 31: TLR9 expression in the liver tissue arrays. (a) TLR9 is absent 
in normal and hepatitis tissue. Weak cytoplasmic expression of TLR9 is 
visible in the cirrhosis section.  In HCC, TLR9 is highly expressed in the 
cytoplasm of malignant hepatocytes. b) Graph demonstrating the 
percentage of normal, hepatitis, cirrhosis and HCC cases in the tissue 
array expressing cytoplasmic TLR9 at different levels; 0 =no expression, 
1 =weak expression or  2 =high expression. c) 40 x magnification of the 
cirrhosis and HCC sections with zooming boxes showing more clearly 
the membranous expression of TLR9 in the cirrhosis sample and its 
expression in the cytoplasm of malignant hepatocytes in the HCC 
section. 
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4.3.2 Results of TLR expression in human liver tissue validation set  

a) TLR4 expression in human liver tissue validation set 

TLR4 expression was absent in malignant hepatocytes but positive in the 

normal bile ducts, inflammatory cells and fibroblasts of the cirrhotic liver.  These 

findings are similar to those observed in the liver tissue arrays. 

 

 
 
Figure 32: TLR4 expression in HCC and cirrhotic background. The top left 
image shows absence of TLR4 expression in the malignant hepatocytes 
but high TLR4 expression in the bile duct epithelium (black arrows). Top 
right is a magnified image of the TLR4 negative hepatocytes. The lower 
left image shows high expression of TLR4 in the inflammatory cells of the 
cirrhotic background, seen more clearly in the magnified image to the 
lower right. 
 

b) TLR7 expression in human liver tissue validation set 

 Normal liver: TLR7 was not detected in the cytoplasm or the nuclei of 

2/2cases. 

 Cirrhosis: TLR7 was found in hepatocytes perinuclear in 1/5th of the cases.  

However the expression was found in less than 1/3 of the hepatocytes (Score 

1).  The other 4 cases were all negative. 
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Cirrhotic background
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 Cirrhotic background: 6/19 cases were positive for TLR7.  5 cases 

exhibited perinuclear TLR7 in less than 1/3 of the hepatocytes (Score 1) and 1 

exhibited cytoplasmic TLR7 in more than 2/3 of the hepatocytes (Score 1).  The 

remaining 13 were all negative for TLR7.   

 HCC: TLR7 was expressed in 16/19 cases.  The expression was found 

perinuclear in less than 1/3 of the malignant hepatocytes (Score 1) in 4 cases 

and perinuclear in more than 2/3 of the malignant hepatocytes (Score 2) in 12 

cases.  The remaining 3 cases were all negative for TLR7.   

 

 
 
Figure 33: TLR7 expression in the validation set confirms the findings in 
the tissue microarrays. Peri-nuclear expression of TLR7 is visible in more 
than two thirds of malignant hepatocytes in the HCC section (top left and 
top right images). TLR7 was weakly expressed in the cirrhotic background 
and cirrhotic tissue (lower left and lower right) 

zoom
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Figure 34: Graph showing distribution of TLR7 expression among normal, 
cirrhosis, cirrhotic background and HCC tissues from the validation set 
expressed as the percentage of cases demonstrating no (0), weak (1), or 
high (2) expression of TLR7. TLR7 was not expressed in normal liver but a 
large proportion of HCCs demonstrated high expression of TLR7. Its 
expression was largely weak or absent in the cirrhotic background and 
cirrhosis cases. 
 

 

c) TLR9 expression in human liver tissue validation set 

 Normal liver: The 2 normal livers were both negative for TLR9 expression. 

 Cirrhosis: 2/5 cases demonstrated weak (Score 1) cytoplasmic TLR9 

expression.  The other 3 were TLR9 negative. 

 Cirrhotic background: 7/19 cases expressed cytoplasmic TLR9.  The 

expression was low (Score 1) in 6 cases and high (Score 2) in 1 case.  The 

remaining 12 cases were TLR9 negative. 

 HCC: 14/19 cases were positive for TLR9.  The expression was weak 

(Score 1) in 8 cases, high (Score 2) in 6 cases.  The remaining 5 cases were all 

negative for TLR9 expression (Fig. 35). 



Results                                                TLRs expression in human HCC tissue  
 

119 
 

 
 
Figure 35: TLR9 expression in the validation set of liver samples confirms 
the findings in the tissue microarrays. The top left image shows intense 
brown cytoplasmic staining of TLR9 in more than two thirds of the 
malignant hepatocytes - seen more clearly at higher magnification in the 
top right image. A magnified image of the cirrhotic background within the 
red zooming box can be seen to the lower left and demonstrates less 
intense cytoplasmic staining of TLR9. The image to the lower right 
demonstrates weak cytoplasmic expression of TLR9 in the liver cirrhosis 
section. 
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Figure 36: Graph showing distribution of TLR9 expression among normal, 
cirrhosis, cirrhotic background and HCC tissue from the validation set 
expressed as the percentage of cases demonstrating no (0), weak (1), or 
high (2) expression of TLR9. TLR9 was not expressed in normal liver but 
high expression was demonstrated in HCCs and cirrhotic background. 
 

4.3.3 Increased TLR7 & TLR9 expression correlates with high Ki-67 

proliferation index.   

Ki-67 index was estimated as percentage of positivity of hepatocytes nuclei 

stained with Ki-67.  By examination all HCC cores in tissue microarray and 

validation set, It was found that cases showed high expression of TLR7 (Score 

2) had high Ki-67 index.  There were a significant correlation between increased 

TLR7 expression and increased the Ki-67 index r= 0.3 and (P <0.05).  By 

investigating the correlation between Ki-67 index and TLR9 staining, I found 

that the highest proliferation index was associated with high expression of TLR9 

in HCC.  There were also close correlation between increased TLR9 expression 

in HCC cases and proliferation index r=0.5 and (P <0.0001).   
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Figure 37: High Ki-67 index was associated with high TLR7 and TLR9 
expression of  a) Cores represented different cases from TMA stained with 
immunohistochemistry technique and Ki-67 antibody showing the 
difference in Ki-67 expression.  There were no Ki-67 expression in normal, 
hepatitis and cirrhosis whereas there was high expression of Ki-67 in HCC 
core.  b) HCC section from the validation set showing the high expression 
of Ki-67 index and zooming box showing the Ki-67 in the nuclei of 
malignant hepatocytes.  c) Graph demonstrates the correlation between 
the high expression of TLR7 and TLR9 with high proliferation index 
estimated with Ki-67.   
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zoomKi-67

Increased TLR7 expression associated with high Ki-67 index
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4.3.4 Summary of TLR & Ki-67 data in human liver tissue arrays & 

validation set 

 TLR4 is not expressed in HCC cells but highly expressed in inflammatory 

cells and fibroblasts. 

 TLR7 is highly expressed perinuclear in HCC cells.  The expression is 

weak in hepatitis and cirrhosis. 

 TLR9 is expressed on the hepatocyte cell membranes in hepatitis and 

cirrhosis.  There is a shift in expression from cell membranes to the cytoplasm 

in malignant hepatocytes where it is expressed at high levels. 

 There is a positive correlation between Ki-67 proliferation index and 

expression of TLR7 and TLR9.  This suggests there may be a link between 

over-expression of these TLRs and proliferation of the tumour cells in HCC.   
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4.3.5 Discussion 

There is much evidence in the literature to suggest that increased expression of 

TLR4 and TLR9 play important roles in development of chronic liver disease 

and fibrosis (Dolganiuc et al., 2006, Seki et al., 2007 Gäbele et al., 2008, 

Stadlbauer et al., 2008, Aoyama et al., 2010 and Henao-Mejia et al., 2012).  

However, prior to the beginning of our research little if anything was known 

about the roles of TLR4, TLR7 and TLR9 in HCC pathogenesis and 

progression.  I therefore set out to determine if any relationship existed between 

these TLRs and the development of HCC in human liver.  For this purpose two 

sets of liver tissue were examined by immunohistochemistry (1) a custom made 

liver tissue microarray containing formalin fixed paraffin embedded (FFPE) liver 

samples from normal, hepatitis, cirrhosis and HCC tissue and (2) a set of liver 

samples, dubbed the validation set, consisting of FFPE tissue samples from 

normal, cirrhosis and HCC on a background of cirrhosis obtained from the 

Pathology department of the Royal Free Hospital, London.   

 

The immunohistochemistry data from the TMA samples and validation set 

revealed a very similar pattern of TLR 4 expression; TLR4 was not expressed in 

the hepatocytes from normal livers, hepatitis or HCC cases.  Only weak staining 

of hepatocytes was observed in a few cases of cirrhosis (3/24 from the TMA).  In 

contrast, however strong expression of TLR4 was visible in the fibroblasts, 

inflammatory cells and bile duct epithelium in the different types of liver tissue 

from both the TMA and validation set.  Our findings are in agreement with those 

of Vespasiani-Gentilucci, et al., 2012 who reported that the parenchymal 

elements responsible for the highest level of TLR4 expression were the hepatic 

progenitor cells and biliary epithelial cells of interlobular bile ducts in HCV related 

liver disease.  Furthermore, they found a significant correlation between TLR4 

positivity and stage of liver disease and grade of inflammation.  It was concluded 

that TLR4 expression by hepatic progenitor cells and biliary epithelial cells 

contributes to the progression of liver damage in the course of chronic HCV-

related infection.   

 

Unlike our findings, however, Wei et al., 2008 demonstrated that TLR4 is 

expressed in the cytoplasm and cell membranes of hepatocytes in normal and 

http://www.ncbi.nlm.nih.gov/pubmed?term=Vespasiani-Gentilucci%20U%5BAuthor%5D&cauthor=true&cauthor_uid=22173288
http://www.ncbi.nlm.nih.gov/pubmed?term=Wei%20XQ%5BAuthor%5D&cauthor=true&cauthor_uid=18544275
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chronic hepatitis livers.  A similar finding was reported by Benias who showed 

increased TLR4 and TLR9 expression in hepatocytes of chronic Hepatitis C liver 

(Benias et al., 2012) TLR4 expression has also been reported in focal 

hepatocytes and inflammatory cells of paediatric hepatitis C (Mozer-Lisewska et 

al., 2005).  These findings suggest some role for TLR4 in the pathogenesis of 

chronic hepatitis both in adults and children. 

 

Only one other study has so far been reported on TLR4 expression in HCC.  

(Jing et al., 2012).  However, in contrast to our findings they found that TLR4 

was expressed in the vast majority (86%) of HCCs examined.  Furthermore, 

high expression of TLR4 in the primary HCCs was shown to significantly 

correlate with HCC metastasis and recurrence.  It was therefore suggested that 

TLR4 could potentially be used as a novel prognostic marker and therapeutic 

target for HCC.  The differences in TLR4 data from our study and that of Jing et 

al. may be partly explained by differences in the sample population or 

differences in HCC aetiology.  However, the lack of TLR4 expression in our 

HCCs and its presence in inflammatory cells within or surrounding the HCC 

tissue is a finding that I previously observed in our rat animal models of HCC 

(discussed in Chapter 4.2).  It may be the case in our HCC samples that 

expression of TLR4 is not necessary for HCC pathogenesis, but this doesn’t 

rule out the possibility that TLR4 expression in the surrounding tumour 

environment might still have an immunomodulatory influence on tumour 

behaviour since inflammatory cells are known to produce signals which promote 

vital processes in tumour development, such as angiogenesis, tumour growth 

and invasion (reviewed by Hanahan and Weinberg, 2011 and Oblak and Jerala, 

2011).   

 

TLR7 expression in the normal liver tissues was weakly detectable in only 2/11 

cases (9 cases TMA and 2 cases validation set).  The staining was perinuclear 

but occurred in less than 1/3 of hepatocytes.  In the cirrhotic liver TLR7 was 

weakly expressed in 20% of cases (6/24 from the TMA set and 1/5 from the 

validation set) only one case showed strong expression (from the TMA).  In the 

hepatitis tissues, the TLR7 expression was also weak and involved only 30% of 

cases (8/26 in the TMA).  Only one case of hepatitis tissue exhibited strong 

http://www.ncbi.nlm.nih.gov/pubmed?term=Mozer-Lisewska%20I%5BAuthor%5D&cauthor=true&cauthor_uid=16253129
http://www.ncbi.nlm.nih.gov/pubmed?term=Hanahan%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21376230
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expression of TLR7.  As in the case of normal livers the pattern of TLR7 

expression was also perinuclear in the cirrhotic and hepatitis tissues. 

Unlike TLR4, the expression of TLR7 was found to be up regulated in the 

majority (85%) of HCC samples (35/41 HCCs from the TMA and 16/19 HCCs 

from the validation set).  The level of TLR7 expression was strong in 61% of 

HCCs (37/60 HCCs) and weak to moderate in 23% of all positive cases (14/60 

HCCs).  The expression was also confined to the perinuclear region of 

hepatocytes in all of 51 positive cases of HCC.  The same pattern of perinuclear 

staining was previously reported in lung adenocarcinoma and bronchial 

epithelium (Cherfils-Vicini  et al., 2010). 

 

The up regulated expression of TLR7 in HCC suggests that TLR7 may play an 

important role in HCC development and/or progression.  This is supported by 

TLR7 expression studies in other cancers e.g. in oesophageal carcinoma TLR7 

expression was found to be high and a strong correlation was found between 

the levels TLR7 of expression and tumour grade (Sheyhidin et al., 2011).  

Similarly in cervical cancer a strong correlation was reported between levels 

TLR7 expression and tumour differentiation (Hasimu et al., 2011).  In another 

study using cell lines derived from lung cancer increased TLR7 expression was 

shown to promote cell survival and tumour progression (Cherfils-Vicini et al., 

2010).  In addition, TLR7 has also been reported to promote pancreatic cancer 

growth (Ochi et al., 2012).   

 

Although few investigations have been conducted on the expression of TLR7 

protein in human liver, there has been some mRNA expression studies reported 

on ALD and HCV (Starkel et al., 2010 and Tarantino et al., 2013).  However, in 

contrast to the TLR7 immunohistochemistry findings Lin and colleagues 

reported TLR7 mRNA was significantly down regulated in neoplastic 

hepatocytes (Lin et al., 2013).  It is difficult to make direct comparisons between 

these findings and our immunohistochemistry data.  Furthermore, little is known 

about the expression of TLR7 in the liver and other human tissues and these 

will need to be determined more precisely in future before any definitive 

conclusions can be reached. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Cherfils-Vicini%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20237413
http://metalib-a.lib.ucl.ac.uk/V/4LYC8IJSKEE8DPUIG9S2H713VYV8BKFVTJN4323J5LIDE6L36Y-00164?func=quick-3&short-format=002&set_number=003345&set_entry=000007&format=999
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An examination of TLR9 in the normal livers demonstrated expression in only 

18% of cases (2/9 TMA and 0/2 from the validation set).  The expression was 

confined to the membrane of the hepatocytes in both cases.  In the hepatitis 

tissues, expression of TLR9 was seen in a total of 46% of cases (17/26 TMA).  

The staining was membranous in 12/26 cases and low cytoplasmic expression 

(Score 1) was found in 5/26.  In the cirrhotic tissues, TLR9 was expressed in 

55% of cases (14/24 TMA and 2/5 validation set).  The expression was 

membranous in 54% of TMA cases and weak cytoplasmic (Score 1) in 10% of 

all cases (1/24 TMA and 2/5 of validation set cases).  In the HCC tissues TLR9 

expression was more widespread with 71% (29/41 TMA and 14/19) 

demonstrating positivity for TLR9.  The staining was strong in 40% of cases 

(18/41 TMA and 6/19 validation set cases) and weak in the remaining 31%.  

However, the expression was mainly cytoplasmic in the HCCs although some 

membranous co-staining of TLR9 was observed in 13 / 60 (21%) of cases (9 

were associated with weak cytoplasmic staining of TLR9 and 4 cases were 

associated with strong cytoplasmic expression).   

 

During the course of my investigation, another study on TLR9 expression in 

HCC was reported.  Similar to our findings, a high percentage of HCCs (87%) 

was shown to express TLR9 (87%)  (Tanaka et al., 2010).  However, unlike our 

findings the pattern of TLR9 expression was largely membranous.  The up 

regulated expression of TLR9 in our samples and those of Tanaka suggests 

that TLR9 might have a role to play in hepatocarcinogenesis.  This is supported 

by immunohistochemistry studies in other cancers, which have demonstrated 

high levels of TLR9 expression in oesophageal, prostatic and cervical cancer 

(Takala et al., 2011, Kauppila et al., 2011, González-Reyes et al., 2011 and 

Hasimu et al., 2011).  In addition, the up regulation of TLR9 was also found to 

be associated with poor differentiation in oesophageal adenocarcinoma 

(Kauppila et al., 2011) and lymph node metastasis in cervical carcinoma 

(Hasimu et al., 2011).  Furthermore, the addition of a TLR9 agonist to a HCC 

cell line was found to increase survival of the HCC cells when treated with the 

anti-cancer drug Adriamycin (Tanaka et al., 2010). 

In order to determine whether there was any relationship between the 

expression of TLR7 or TLR9 and proliferation of HCC I also looked at the 

http://www.ncbi.nlm.nih.gov/pubmed?term=Gonz%C3%A1lez-Reyes%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20978888
http://www.ncbi.nlm.nih.gov/pubmed?term=Kauppila%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=22014045
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pattern of Ki-67 staining in all HCCs from the TMA and validation set.  I found a 

significant correlation between high proliferation index and high expression of 

TLR7 r=0.3 (P <0.05) and TLR9 r=0.5 (P <0.0001) in both sets of samples.  

These findings further strengthen the idea that TLR7 & and TLR9 are involved 

in HCC proliferation.  Further support is provided by the findings in other 

studies, For instance, Min et al., 2011 reported that high expression of TLR9 in 

human oral squamous cell carcinoma tissue was significantly associated with 

high ki-67 index.  A correlation between increased TLR7 expression and 

increased tumour proliferation has also been described in pancreatic cancer 

(Ochi et al., 2012).   

 

In conclusion, my immunohistochemistry data has demonstrated that 

expression of TLR7 and TLR9 is up regulated in human HCC.  In addition, there 

is a strong association between high expression of these TLRs and high 

proliferation index.  The results suggest TLR7 and TLR9 may have an important 

role to play in HCC pathogenesis.  A role for TLR4 cannot be ruled out at this 

stage.  However, additional studies are needed to more precisely determine the 

pattern of TLR4, TLR7 & TLR9 expression in normal liver as well as diseased 

liver and HCC before I can fully appreciate their role in these different 

conditions. 



Results                                                Modulation of TLR7 and TLR9 in vitro 

128 
 

4.4 Expression of TLR7 & TLR9 in HuH7 human HCC cell line 

4.4.1 Introduction 

Over expression of TLR7 and TLR9 in human HCC has been described in the 

previous chapter.  A correlation between the high expression of these TLRs and 

high proliferation index was found suggesting that TLR7 and TLR9 may have a 

role in HCC pathogenesis.  It is well-known that both TLR7 and TLR9 localise to 

endosomal compartments in many cells (Ewald et al., 2008) and contribute to 

signal transduction in the nucleus (Platta and Stenmark, 2011).  The subcellular 

distribution of TLR9 has previously been shown to be linked to its activation 

status (Latz et al., 2004).  For example, in dendritic cells, TLR9 under resting 

conditions is located in the endoplasmic reticulum and upon stimulation, it 

translocates to the lysosomes (Latz et al., 2004).  Chloroquine is known to 

inhibit TLR7 and TLR9 signaling by altering the endosomal pH (Macfarlane and 

Manzel, 1998, Yi et al., 1998 and Kuznik et al., 2011) 

 

4.4.2 Aims 

1. Determine whether TLR7 and TLR9 expressed in HCC cell lines such as 

HuH7 and study their distribution. 

2. Determine whether TLR7 and TLR9 stimulation by using specific 

agonists such as imiquimod (IMQ) and CpG-ODN respectively or TLR7 and 

TLR9 inhibition using specific antagonists (IRS 954) or signalling inhibitor 

(chloroquine) is associated with change of their subcellular localisation.   

3. Determine whether TLR7 and TLR9 stimulation and inhibition influence 

the proliferation of HuH7 cell line.   

4.  Study the effect of TLR7 and TLR9 stimulation or inhibition on protein 

expression of some of the well-known pathways in HCC such as Akt and LC3B.  

These proteins expression were investigated for the following reasons: 

 Akt pathway has been implicated in HCC carcinogenesis and its role 

was linked to cell survival and proliferation in HCC in previous studies and 

(Chen et al., 2011 and Zhou et al., 2011) and chloroquine treatment has a 

potential effect on Akt and phosphorylated Akt (pAkt) (Loehberg, et al., 

2012). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Loehberg%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=22142888


Results                                                Modulation of TLR7 and TLR9 in vitro 

129 
 

  Chloroquine was known previously by its effect on autophagy which 

is a one of the pivotal pathways in tumourigenesis (Ding et al., 2011) and 

particularly HCC (Shimizu et al., 2012).   

 

4.4.3 Results of TLR7 & TLR9 Expression Studies in HuH7 Cells  

a) TLR7 & TLR9 distribution in untreated HuH7 cells 

Immunofluorescence staining with TLR7 or TLR9 antibodies demonstrated that 

TLR7 and TLR9 are both expressed in HCC.  TLR7 was localised mainly in the 

nucleus and for some extent in the cytoplasm of HuH7 cells whereas TLR9 was 

detected in the cytoplasm as shown in (Fig. 38).   

 

 
 
Figure 38: TLR7 and TLR9 expression in HuH7 cells and differences in 
their subcellular distribution. In HuH7 cells fixed with methanol, TLR7 was 
found mainly in the nucleus as shown in the TLR7 (white channel0. The 
merged channel shows the TLR7 in white and the nuclear Hoechst 33342 
stain in blue. TLR9 was highly expressed in the cytoplasm (white channel) 
and the location clearly appeared in merge channel with TLR9 staining 
and Hoechst 33342. 
 

This experiment confirmed the presence of TLR7 and TLR9 in HuH7 cells and 

raised an important question: does the localisation of TLR7 or TLR9 impact 

HCC progression?  

TLR9

TLR7Hoechst

Hoechst

Merge
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b) TLR7 subcellular localisation unchanged with IMQ, chloroquine or IRS 

treatment of HuH7 cells 

Having demonstrated that the intra-cellular distribution of TLR9 is altered upon 

stimulation in previous study, I investigated whether the localisation of TLR7 in 

HuH7 cells may also alter in response to treatment with IMQ (TLR7 stimulant), 

chloroquine and IRS (TLR7 inhibitors). However, no detectable changes in 

TLR7 distribution were found with any of the above treatments (Fig. 39).  

 

  
 
Figure 39: TLR7 localisation in HuH7 cells did not change with IMQ, CQ or 
IRS treatment. In methanol fixed HuH7, TLR7 was detected in the nucleus 
of HuH7 cells (white channel). The blue channel is Hoechst 33342.  The 
merge channel showed both TLR7 and Hoechst 33342. There were no 
changes observed in the localisation of TLR7 with IMQ (TLR7 agonist) or 
with chloroquine or IRS (TLR7 and TLR9 inhibitor) treatment (scale 
bar=10μm).  
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c) TLR9 expression shifts towards nucleus with CpG-ODN treatment 

of HuH7 Cells  

Subcellular distribution of TLR9 was affected by CpG-ODN treatment.  In 

untreated HuH7 cells, TLR9 was found homogenously distributed in the 

cytoplasm.  Upon treatment with CpG-ODN (TLR9 stimulant), TLR9 stained 

vesicles shifted from the cytoplasm to accumulate around the nucleus.  This 

phenomenon was not observed with chloroquine or IRS treatment (Fig.  40).  

  

 

 
Figure 40: Shifting of TLR9 stained vesicles from the cytoplasm to 
accumulate around the nucleus with CpG-ODN treatment.  Methanol fixed 
HuH7 cells and immunofluorescent staining with TLR9 antibody and 
Hoechst 33342 showed TLR9 in untreated HuH7 was found homogenously 
distributed in the cytoplasm whereas with CpG treatment there was more 
aggregation of TLR9 stained vesicles around the nucleus in the zooming 
box (yellow arrows).  With chloroquine, treatment or IRS, TLR9 was in the 
cytoplasm and there was no accumulation around the nucleus.  Scale bar 
=10μm).
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4.4.4 TLR9 does not localise to the endoplasmic reticulum in HuH7 cells   

TLR9 has previously been reported to translocate between the endoplasmic 

reticulum (ER) and endolysosomal system in response to stimulation and 

inhibition.  I therefore investigated whether the subcellular localisation of TLR9 

in HuH7 cells is altered upon treatment with CpG-ODN, chloroquine and IRS.  

Co-immunofluorescence staining of HuH7 cells with TLR9 and organelle 

markers in which TLR9 was predicted to co-localise, such as the ER marker 

calnexin and the lysosomal marker lamp-1, was performed.  In HuH7 cells 

either treated with CpG-ODN, chloroquine, IRS or untreated, there was no clear 

evidence supporting that TLR9 co-localised with the endoplasmic reticulum 

(ER) marker calnexin (Fig. 41). 

 

 

 

Figure 41:  Co-localisation between TLR9 and calnexin was not observed 
in untreated or treated HuH7 cells.  In the merge panel TLR9 green colour, 
calnexin (red colour) and (blue colour) Hoechst 33342 there was no co-
localisation observed in untreated HuH7 or with CpG, CQ and IRS 
treatment.  
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4.4.5 Limited co-localisation of TLR9 and lamp-1 in HuH7 cells   

In untreated HuH7 cells, limited co-localisation of TLR9 and the lysosomal 

marker lamp-1 was found.  This limited co-localisation did not change upon 

CpG-ODN, chloroquine or IRS treatment (Fig. 42).   

 

 
 
Figure 42: Limited co-localisation of TLR9 and lysosomal marker (lamp-1) 
found in HuH7 cells.  In methanol fixed HuH7 and double 
immunofluorescence staining with TLR9 and lamp-1 antibodies, limited 
co-localisation was found between TLR9 and lysosomal marker lamp-1 
(appeared yellow in colour in the merge channel).  There were no changes 
detected for the TLR9 and lamp-1 co-localisation associated with CpG, 
chloroquine, or IRS treatment the merge panel showing TLR9 (green 
colour), lamp-1 (red colour) and Hoechst 33342 in nucleus (blue colour). 
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4.4.6 Swelling of lysosomes in response to chloroquine treatment of 

HuH7 cells  

As it was expected from the known effect of chloroquine on lysosome, 

chloroquine treatment was associated with ballooning or swelling of the 

lysosome, which was detected with the lamp-1 staining (Fig.  43).  This effect 

was not observed with CpG-ODN, IRS treatment and control untreated cells.  

  

 
 

Figure 43: Lysosomal swelling associated with chloroquine treatment.  
Methanol fixed HuH7 stained with lamp-1 the late endosomal marker 
showing swelling of the lysosome with chloroquine treatment.  Zoom box 
showing clearly the difference between lysosome labelled with lamp-1 
with chloroquine treatment compared to the control, CpG and IRS 
treatment.

CTRL

CpG

CQ

IRS

Zoom
Lamp1



Results                                                Modulation of TLR7 and TLR9 in vitro 

135 
 

4.4.7 Results of TLR7 & TLR9 proliferation studies in HuH7 cells 

Cell proliferation was assessed by seeding 10,000 cells per well (96-well plate) 

in triplicate for each condition.  Cell viability was measured by adding 3-(4, 5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H-

tetrazolium MTS reagent (Promega) treatment details and dosages are reported 

in materials and methods section.   

   

a) TLR7 stimulation with IMQ increased proliferation of HuH7 cells 

Treatment of HuH7 cells with IMQ for 48 hours resulted in a significantly higher 

rate of cell proliferation when compared to that of untreated control cells (P 

<0.04) (t-test n=3).   

 

 

 

Figure 44: Increased HuH7 cell proliferation with IMQ treatment.  After 48 
hours incubation of 104 HuH7 cells in triplicate in 96-well plate, cell 
proliferation was measured using MTS proliferation assay.  There was a 
significant increase in absorbance reading in the wells treated with 5µg/ml 
IMQ treatment (TLR7 agonist)  compared to the untreated cells (P <0.04). 
 

b) HuH7 cell proliferation unchanged in response to TLR9 stimulation 

with CpG-ODN 

On the other hand, treatment of HuH7 cells with TLR9 ligand CpG for 48 hours 

did not show significant influence on HuH7 cell proliferation measured with the 

MTS assay.   

Effect of IMQ treatment on HuH7 cell proliferarion 
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Figure 45: Graph demonstrating CpG-ODN treatment does not increase 
proliferation of HuH7 cells.  The cells were incubated with 5 µM CpG (TLR9 
agonist) for 48 hours and their proliferation rate was then measured using 
the MTS assay. There was no significant increase of absorbance in the 
CpG-ODN treated cells compared to untreated HuH7 control cells (CTRL). 
The experiment was conducted in triplicate 
 

c) Reduction of HuH7 Cell proliferation in response to chloroquine or IRS 

treatment  

Chloroquine treatment for 48 hours inhibited the proliferation of HuH7 cells.  

The level of absorbance measured showed significant reduction with 

chloroquine treatment compared to untreated cells (P <0.003) (t test, n=3). 

 

 
 
Figure 46: Graph demonstrating chloroquine treatment inhibited HuH7 cell 
proliferation.  HuH7 cells were treated with 15 µM chloroquine for 48 hours 
and their proliferation rates were then measured by MTS assay. There was 
significant reduction of absorbance readings in the chloroquine treated 
cells compared with untreated control HuH7 cells (P <0.003). The 
experiment was conducted in triplicate. 
   

Effect of chloroquine treatment on HuH7 cell proliferarion 

Effect of CpG treatment on HuH7 cell proliferarion 
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Using MTS assay, it was found that IRS treatment for 48hours inhibited HuH7 

cell proliferation.  The inhibition of HuH7 cells proliferation with IRS treatment 

compared to the control untreated cells was significant (P <0.001) (t test, n=3).   

 

 

 

Figure 47: Graph demonstrating IRS treatment inhibited HuH7 cell 
proliferation.  HuH7 cells were incubated with 20 µg/ml of IRS for 48 hours 
and their proliferation rate was then measured by MTS assay. There was a 
significant reduction of absorbance readings in the IRS treated cells 
compared with untreated control HuH7 cells (P <0.001). The experiment 
was conducted in triplicate. 
  

d) Inhibitory effects of chloroquine & IRS on HuH7 cell proliferation are 

not due to cytotoxicity 

The inhibition of HuH7 cell proliferation associated with chloroquine and IRS 

treatment raised the question whether the effect of chloroquine and IRS 

treatments treatment was inhibitory or due to cell cytotoxicity?  To address this 

question a neutral red (NR) uptake test was performed (details in materials and 

methods section).  The principle of NR test based on the binding of cationic 

supravital dye to anionic sites in the lysosomes of viable cells; the dead and the 

injured cells did not retain the dye.   

 

 Examination of HuH7 cells by light microscopy revealed the following: 

 Treated cells with chloroquine or IRS and also untreated cells picked up and 

retained the red stain (NR) inside all the cells (Fig. 48) the red dye inside all 

HuH7 cells could be proof that all cells alive and the treatment had not a 

cytotoxic effect suggesting that chloroquine and IRS effect could be inhibitory.   

 

Effect of IRS treatment on HuH7 cell proliferarion 
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Figure 48:  Chloroquine and IRS treatment had an inhibitory but not 
cytotoxic effect on HuH7 cell proliferation. Images shown are of HuH7 
cells treated with IMQ, CpG-ODN, chloroquine (CQ), IRS or untreated 
control cells (CTRL) stained with neutral red. Uptake of the red dye can be 
seen in all cells from the different treatments indicating that they are 
viable. However, the density of cells treated with chloroquine or IRS is 
visibly less than that of control, IMQ or CpG treated HuH7 cells. 
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4.4.8 pAkt expression increased with IMQ but decreased with 

chloroquine & IRS treatment of HuH7 cells 

After 48 hours of treatment, an increase in phosphorylated Akt (Ser 473) (pAkt) 

protein expression was observed with IMQ treatment but this was clearly 

reduced with chloroquine and IRS treatment compared to control (Fig.  49). 

There was no clear difference found with CpG treatment.  These data suggest 

that inhibiting TLR7 and TLR9 may reduce cell proliferation through its effect of 

Akt pathway. 

 

 
 

Figure 49: Western blot showing increased expression of pAkt protein in 
HuH7 cells after treatment with IMQ for 48 hours and decreased 
expression of pAkt protein in response to chloroquine (CQ) and IRS 
treatment.  

 
4.4.9 Expression of LC3B autophagy marker increased with chloroquine 

treatment of HuH7 cells 

The expression of LC3B protein increased with chloroquine treatment (Fig.  50) 

and this can be explained by the fact that chloroquine is known to inhibit 

autophagic degradation by preventing the fusion of lysosomes with 

autophagosomes, this lead to accumulation of LC3B protein without consuming 

and the net result is inhibition of autophagy despite the high level of LC3B 

expression.  There was no expression of LC3B in control HuH7 cells suggesting 

that there is no role for autophagy in proliferation in these cells.   
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Figure 50: Western blot showing increased expression of LC3B protein 
in HuH7 cells after 48 hours of treatment with chloroquine. There was 
no expression of LC3B in the control untreated cells or in cells treated 
with CpG. The IMQ and IRS treated HuH7 cells expressed very low 
levels of LC3B. 
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4.4.9 Discussion 

Following the immunohistochemistry data which showed up regulation of TLR7 

and TLR9 in the HCC tissue samples in Chapter 4.3, this section was 

concerned with looking at expression of these two markers in the human 

carcinoma cell line HuH7.  I was particularly interested in studying the effect of 

TLR7 and TLR9 agonists and antagonists on HuH7 proliferation and whether 

these treatments change their sub-cellular localisation. 

 

The expression of TLR7 and TLR9 was initially examined using 

immunofluorescence staining with antibodies against each TLR.  TLR7 was 

found to be expressed mainly in the nucleus whereas TLR9 expression was 

mainly cytoplasmic.  There have been no reports of TLR7 studies in human 

hepatocellular carcinoma cell lines.  A study by Tanaka and colleagues 

examined TLR9 expression in HCC cell lines, such as HuH7 and HepG2.  They 

reported that membranous and cytoplasmic TLR9 expression was detected in 

HCC cell lines and may play an important role in tumourigenesis (Tanaka et al., 

2010).   

 

The sub-cellular localisation of TLR9 within cells has been shown alter in 

response to certain stimuli.  Specifically, in dendritic cells TLR9 translocates 

from the ER to the endosomes upon stimulation with its CpG-ODN ligand.  This 

translocation results in the activation and recruitment of the dendritic cells (Latz 

et al., 2004).  As with TLR9, TLR7 is also known to localise within the 

endosomal compartments of many cells (Ewald et al., 2008) and contributes to 

signal transduction in the nucleus (Platta and Stenmark, 2011).  For this reason, 

I decided to examine the effect of certain agonists and antagonists of TLR7 and 

TLR9 in the human HCC cell line HuH7 to see if these had any effect on the 

sub-cellular localisation of these TLRs.  This was done by treating the HuH7 cell 

line with imiquimod (IMQ), TLR7 agonist, CpG (TLR9 agonist) chloroquine 

(Yasuda et al., 2008) and IRS (the latter are each inhibitors of TLR7 and TLR9) 

and comparing the sub-cellular distribution of each TLR in the treated and non-

treated control cell lines by immune-fluorescence staining and laser-scanning 

confocal microscopy. 
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The distribution of TLR7 in the treated cells remained in the vicinity of the 

nucleus despite stimulation with IMQ or inhibition with chloroquine or IRS.  The 

TLR7&TLR9 inhibitors chloroquine and IRS also had no effect on the 

cytoplasmic distribution of TLR9.  However, the sub-cellular localisation of TLR9 

was found to alter in response to CpG-ODN stimulation resulting in TLR9 

staining vesicles accumulating around the Hoechst dyed nuclei.  This change 

from a cytoplasmic to nuclear distribution of TLR9 has never been described in 

humans although it finding has been reported in equine lung (Schneberger et 

al., 2009). 

 

TLR9 was shown in previous studies to be localised in the ER in macrophages 

and dendritic cells (Latz et al., 2004) and in Hela cells prior to TLR9 stimulation 

(Leifer et al., 2004).  For my study the localisation of TLR9 within the cytoplasm 

in response to its stimulation (with CpG-ODN) with inhibition (using IRS and 

chloroquine) in HuH7 cells was examined to see if TLR9 co-localised with the 

endoplasmic reticulum marker calnexin under any of these different conditions.  

This was done by dual immunofluoresence staining using a TLR9 marker in 

addition to the endoplasmic reticulum marker calnexin.  I found no evidence of 

co-localisation between TLR9 and calnexin in HuH7 cells in any of my 

experiments.  The undetctable co-localisation between TLR9 and calnexin in 

the HuH7 cells might be explained by the fact that TLR9 can locate to different 

compartments within different cell types e.g. TLR9 is found translocate from the 

cell membranes to nuclei of equine lung tissue (Schneberger et al., 2009) 

whereas in human dendritic cells and macrophages it is found in the 

endoplasmic reticulum (Latz et al., 2004). 

 

Another possibility may be that TLR9 is already maximally stimulated and 

located outside the endoplasmic reticulum in HuH7 cells.  This is not an 

unreasonable prospect since it has previously been reported that DNA from 

damaged cells can also act as a stimulator of TLR9 (Basith et al., 2012). 

 

In addition to the endoplasmic reticululm, subcellular localisation of TLR9 has 

also previously been reported in the endo-lysosomal system.  For this reason I 

decided to look for any co-localisation of TLR9 with the lysosomal marker lamp-
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1 within HuH7 cells under the different experimental conditions.  I found limited 

co-localisation of TLR9 and lamp-1 markers regardless of stimulation or 

inhibition of TLR9 suggesting that TLR9 may reside in the lysosomes of HuH7 

cells.  The translocation of TLR9 from the ER to lysosomes in response to 

stimulation (de Jong et al., 2010) has previously been reported in human 

dendritic cells and macrophages (Latz et al., 2004).  The co-localisation of TLR9 

and lamp-1 in HuH7 cells is therefore consistent with the idea that TLR9 is 

already stimulated within these cells. 

 

The effect of TLR7 and TLR9 stimulation or inhibition on proliferation of HuH7 

cells was examined by treating these cells with IMQ, CpG-ODN, choroquinie or 

IRS over a time course of 72 hours and measuring cell proliferation at intervals 

of 24, 48 and 72  hours using the MTS assay.  Using the TLR7 agonist IMQ, a 

significant increase in cell proliferation was found at 48 hours of treatment (P 

<0.04) (Fig.  44).  In vivo studies in a mouse model of pancreatic cancer has 

previously shown that stimulation of TLR7 vigorously accelerated tumour 

progression and induced the activation of a variety of oncogenes and loss of 

number tumour suppressor genes (Ochi et al., 2012).  They concluded that 

TLR7 may be a useful target against which to develop a therapeutic treatment 

in pancreatic cancer.  This may also hold true for HCC. 

 

Treatment of HuH7 cells with the CpG-oligodeoxynucleotide (CpG-ODN), a 

TLR9 agonist did not result in a significant increase in cell proliferation at any of 

the measured time points.  This is consistent with the findings of Tanaka et al. 

who also failed to detect any significant increase in proliferation of HCC cells in 

response to CpG-ODN treatment alone (Tanaka et al., 2010).  However, they 

did find it that CpG-ODN treatment was able to reduce the cytotoxic effects of 

the anti-cancer drug Adriamycin on the HCC cells.  This effect was achieved via 

the up regulation of various apoptosis inhibitors such as Survivin, Bcl-xL, XIAP 

and cFLIP (Tanaka et al., 2010).  One possible explanation for the lack of 

increase in proliferation of HuH7 and other HCC lines in response to CpG-ODN 

stimulation of TLR9 by may be that TLR9 is already working at maximum 

capacity within these cells and is therefore unable to respond to any additional 

stimulatory signals.   
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Treatment of Huh 7 cells with the TLR7 and TLR9 inhibitors chloroquine or IRS 

resulted in a significant reduction in cell proliferation after 48 hours of treatment 

(P <0.003 and P <0.001 respectively).  The effect of IRS treatment on cell 

proliferation in cancer has not previously been reported.  However, the inhibitory 

effect of chloroquine treatment on cell proliferation has been demonstrated in 

other cancer cell lines derived from the lung and colon (Fan et al., 2006 and 

Zheng et al., 2009).  These findings along with those from our present study 

strongly support a role for TLR7 and TLR9 in the promotion of HCC 

proliferation. 

 

The process by which chloroquine and IRS bring about a reduction in HCC 

proliferation was examined more closely by conducting a viability assay using 

neutral red on HuH7 cells following 48 hours of treatment with chloroquine, or 

IRS.  The uptake of neutral red was found to be retained in the lysosomes of all 

cells treated with choroquine or IRS and it was no different from that of 

untreated HuH7 cells or those treated with CpG-ODN or IMQ.  In other words 

the inhibitory effect on proliferation of HuH7 cells following treatment with 

chloroquine or IRS was not due to cell death resulting from any cytotoxic effect 

of these drugs.  A previous study on systemic lupus reported that using IRS 954 

had no cytotoxic effect on cells (Guiducci et al., 2010).   

 

In order to decipher more accurately the mechanisms by which IMQ, CpG, 

chloroquine, IRS exert their effects on cell proliferation I decided to look for 

signaling pathways through which they may operate.  Akt has considered as 

one of the most activated proteins in many of human cancers and its activity in 

cancer cells could be explained by its ability to promote cell survival (Bhaskar 

and Hay 2007).   Furthermore, chloroquine has been shown to be an effective 

chemosensitizer when used in combination with PI3K/Akt inhibitors (Loehberg 

et al., 2012).  For this reason I decided that to examine the effects of 

chloroquine, IRS, CpG-ODN and IMQ treatment on the pAkt pathway in HuH7 

cells.  This was carried out by Western blot analysis using a pAkt antibody, 

which is the active form of Akt, on HuH7 cells from the different treatment 

groups.  pAkt expression was markedly reduced in the HuH7 cells in response 

http://www.ncbi.nlm.nih.gov/pubmed?term=Zheng%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=19194831
http://www.ncbi.nlm.nih.gov/pubmed?term=Loehberg%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=22142888
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to treatment with chloroquine or IRS for 48 hours.  This suggests that inhibition 

of Huh 7 proliferation by chloroquine and IRS is brought about via their action 

on the Akt pathway.  In comparison with untreated HuH7 cell the levels of pAkt 

expression in the IMQ-treated cells was found to be increased.  However, no 

obvious difference was detected in the CpG-ODNs treated cells.  Our Western 

blot data would suggest that proliferation of HuH7 cells involves TLR7 and 

TLR9 and that these exert their effects by acting via the Akt pathway.  This 

concept is supported by other studies, Ochi and colleagues found markedly 

increased expression of pAkt in response to stimulation of TLR7 with ssRNA40 

in K-ras transformed mouse pancreatic cells (Ochi et al., 2012).  In a model of 

sepsis–induced cardiac dysfunction, CpG–ODN was found to significantly 

increase the level of pAkt in mouse cardiomyocytes (Gao et al., 2013).  In vitro 

studies by the same group also demonstrated that CpG-ODN promoted the 

association of TLR9 with Ras and that this resulted in phosphorylation of Akt.  In 

another study by Sester and colleagues, CpG DNA-induced survival of murine 

bone marrow-derived macrophages was shown to be completely dependent on 

TLR9.  Furthermore, this survival effect was abrogated by the inhibition of 

PI3K/Akt pathway (Sester et al., 2006). 

 

As well as being an inhibitor of TLR7 and TLR9, it is well established that 

chloroquine can act as an inhibitor of autophagy in cells.  Many cancers rely on 

the processes of autophagy to promote their growth and survival under stressful 

conditions (Pivtoraiko et al., 2009 and Janku et al., 2011).  The inhibitory effects 

of chloroquine on cell proliferation were therefore examined in relation to 

autophagy in the HuH7 cells.  Using western blot analysis the expression of 

LC3B, which is a marker of autophagy, was examined in HuH7 cells under the 

different treatment conditions.  The expression of LC3B was found to be low in 

untreated HuH7 cells and in HuH7 cells treated for with IRS, CpG-ODN or IMQ 

for 48 hours, which would suggest that these cells are not relying on autophagy 

for their proliferation.  However, the expression of LC3B was up regulated in 

HuH7 cells in response to treatment with chloroquine.  This result is not unusual 

since enhanced expression of LC3B and concomitant inhibition of autophagy 

has been reported by others (Boya et al., 2005, and Ramser et al., 2009).  Our 

western blot data would suggest that the reduction in proliferation of HuH7 cells 
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in response to treatment with chloroquine is not associated with inhibition of 

autophagy.  These results support the hypothesis that TLR7 and TLR9 play an 

important role in cell proliferation.  However, these in vitro studies need to be 

confirmed in vivo.   
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4.5 Examination of TLR7&TLR9 in animal models of HCC 

4.5.1 Introduction 

Enhanced expression of TLR7 and TLR9 and their impact on tumour 

progression has been reported in hepatocellular carcinoma (HCC) and 

pancreatic cancer in previous studies (Tanaka et al., 2010 and Ochi et al., 

2012). Inhibition of these receptors therefore can potentially retard the rate of 

growth of these tumours and delay progression. This effect has been observed 

in studies where adjunctive therapy with chloroquine, a non-specific inhibitor of 

TLR7 & 9, resulted in enhanced effect of traditional anticancer drug regime in 

the treatment of HCC (Ding et al., 2011 and Shi et al., 2011).  Along with these 

studies, the effect of chloroquine and IRS (inhibitors for TLR7 and TLR9) on 

HCC cell line, HuH7, had been investigated in the previous chapter.  We found 

that chloroquine or IRS treatment significantly reduced HuH7 cell proliferation 

after 48 hours compared to untreated cells.  These observations led to the 

present set of experiments, which were aimed at studying the effect of 

chloroquine and IRS treatment on tumour growth in vivo.  The effect of using 

TLR7- and TLR9-specific antagonists (IRS) or non-specific inhibitor 

(chloroquine) was studied in two animal models of HCC (xenograft model and 

chemical induced HCC).   

 

4.5.2 Effect of chloroquine and IRS in mouse xenograft model of HCC  

A xenograft model of HCC was used to clarify the effect of chloroquine and IRS 

treatment on tumour volume.  Two HCC cell lines were used (HuH7 and 

HepG2).   

 

a) Method  

The material and method of surgery, injection of the cells and the tumour 

formed had been described in detail in chapter one.  The animals divided into 

four groups. Each group contained 4-7 NOD-SCID mice: 

 Group one (control): Intrahepatic injection of 5x106 cells either HepG2 or 

HuH7 cells in mice with in 100μl of saline.  These mice didn’t receive any 

treatment.  Mice injected intrahepatic with HepG2 n=5 and with HuH7 n=7 

 Group two:  The same as group one but received chloroquine in the form 

of 130 mg of chloroquine dissolved in one litre water and supplied as drinking 
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water.  Mice injected intrahepatic with HepG2 n=5 for 60 days and with HuH7 

n=6 for 35 days.   

 Group three: the same as group one and injected with IRS-954 100μg (in 

100μl) IP once per week.  HepG2 n=4 for 60 days and with HuH7 n=7 for 35 

days. 

 

 Measurement of tumour volume from mouse xenografts 

The tumour masses formed from cell injections were found: 

 Inside the liver (intra-hepatic) and/or  

 Attached to the muscle of the abdominal wall overlying the liver (extra-

hepatic).   

 

As described previously, the volume of each mass was measured separately by 

multiplying it three dimensions and the total volume was calculated by 

summation of the two volumes formed intrahepatic and extra-hepatic.   

Results were presented as mean +/- SD.  To compare between groups, 

unpaired t-test was used to compare one group of treatment to untreated 

control group.     

 

b) Results from the mouse xenograft models 

I. Histopathology of liver tumours derived from HepG2 and HuH7 injected 

mice  

Histological assessment revealed that the masses formed inside and outside 

the liver formed of malignant cells with nuclear atypia, increased nucleo-

cytoplasmic ratio and atypical mitotic figures.  The microscopic features of the 

cells suggested features of malignant hepatocytes.  Inside the tumours there 

were areas of haemorrhage and necrosis. 
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II. Volume of liver tumours from HepG2 injected mice  

HepG2 injected mice developed both intra-hepatic and extra-hepatic tumours.  

The mean total tumour volume at the time of sacrifice was lower in both treated 

groups compared with the untreated group; control: 2.2±1.5; chloroquine: 

0.4±0.3 and IRS: 0.6±0.3 cm3 respectively. 

 

Table 12: Volume of HepG2 derived tumours from mouse xenograft 
models of HCC in response to different treatments. 

 
Tumour volume (Mean±SD) cm3 P value 

 Intrahepatic  Extrahepatic Total 

Control 0.99±0.6 1.2±1.1 2.2±1.5  

Chloroquine 0.2±0.3 0.3±0.35 0.4±0.3 0.03* 

IRS 0.06±0.1 0.6±0.3 0.6±0.3 0.06 

 

There was a significant reduction of total tumour volume (summation of 

intrahepatic and extrahepatic) with chloroquine treatment compared to control 

untreated mice (P <0.03) (Fig. 52). Although there was no significant reduction 

in total tumour volume between IRS treated group and control, the tumours 

formed intrahepatic in the group treated with IRS were the smallest volume 

between all the groups.  It was noticed that even the largest tumour volume in 

the groups treated with either chloroquine or IRS showed marked necrosis 

compared to control. 

 

 

 
Figure 51: Graph demonstrating total volume of HepG2 derived tumours 
(both intra- and extra-hepatic) in the mouse xenograft models of HCC. 
There is a significant reduction of total tumour volume in the chloroquine 
treated mice compared to that of untreated control group (P =0.03). 
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 Figure 52: Tumour volume decreased in response to chloroquine and IRS 
treatment in the HepG2 derived mouse xenograft model of HCC. Black 
arrows point to intra-hepatic and red arrows point to extra-hepatic 
tumours. The intra-hepatic tumour is visibly larger in the liver of the 
untreated control mouse compared to that in chloroquine and IRS treated 
mouse. The H & E stained sections to the right show the histopathological 
features of the tumours. 
 
 

Control

Chloroquine

IRS
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III. Volume of liver tumours from HuH7 injected mice  

HuH7 injected mice developed both intrahepatic and extrahepatic tumours 

(attached to the abdominal wall) in the animals with or without treatment.  The 

mean tumour volume was lower in both the treated groups compared with the 

untreated group; control 2.3±1.3 cm3, chloroquine 0.9±0.97cm3.and IRS: 0.9 ± 

0.7 cm3  

 

Table 13: Volume of HuH7 derived tumours from mouse xenograft 
models of HCC in response to different treatments. 

 
 

 

 

 

 

 

The mice treated with chloroquine developed a borderline significant smaller 

tumour compared to untreated mice (P =0.05).  However, a significant reduction 

of tumour volume was associated with IRS treated treatment (P <0.03) (Fig.  

54). There was extensive necrosis with the treated groups either with 

chloroquine or IRS more than control in tumour with the largest tumour volume. 

 

 

 

Figure 53: Graph demonstrating total volume of HuH7 derived tumours 
(both intra- and extra-hepatic) in mouse xenograft models of HCC. There 
is a significant reduction of total tumour volume in IRS treated mice 
compared to that of untreated controls group (P =0.03). 
 

 

Tumour volume (Mean±SD) cm3 P 
value 

 Intrahepatic  Extrahepatic Total 

Control 0.96±1.2 1.3±1.5 2.3±1.3  

Chloroquine 0.6±0.55 0.4±0.5 0.9±0.97 0.051 

IRS 0.6±0.6 0.3±0.2 0.85±0.7 0.026* 
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Figure 54: Tumour volume decreased in response to chloroquine and IRS 
treatment in the HuH7 derived mouse xenograft model of HCC. Black 
arrows point to intra-hepatic and red arrows point to extra-hepatic 
tumours. The intra-hepatic tumour is visibly larger in the liver of the 
untreated control mouse compared to that in chloroquine and IRS treated 
mice. The H&E stained sections on the right show the histopathological 
features of the tumours. There was necrosis in the tumour mainly the big 
one treated with chloroquine or IRS.  Orange arrow points to the necrotic 
area. 
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Choloroquine

IRS

Control
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4.5.3 Effect of chloroquine in a chemical-induced rat model of HCC 

a) Method 

Materials and steps of developing the model has been described in details in 

chapter one. 

The animals divided into three groups of Fischer rats 

 Group one: DEN and NMOR (carcinogens) treated rats (n=15).   

 Group two:  the same as group one but received chloroquine (Sigma, 

UK) 25mg/kg once a day by gavage for 14 weeks (n=20). 

 Group three: naïve rat without treatment (n=4).    

The development of HCC was assessed with macroscopic features and 

Haematoxylin and Eosin staining on liver rat.  The assessment was performed 

on 8th, 10th and 12th and 16th weeks of treatment on selected rats from group 

one and group two. 

 

b) Results from DEN & NMOR Rat Model of HCC 

I. Histopathological assessment of rat livers 

 Macroscopic & Microscopic appearance of rat livers  

 Livers from rats treated with DEN&NMOR ± chloroquine were collected 

on 8, 10, 12 weeks after administration of DEN. After 16 weeks the rest of 

rats were culled. All rats were terminated under terminal anaesthesia.  Livers 

from all groups were examined grossly and then liver sections were 

investigated under the light microscope.  

 After 8 weeks of treatment with carcinogen (DEN&NMOR): liver section 

obtained from both groups treated with carcinogen with or without 

chloroquine did not show any evidence of HCC. However, liver sections from 

rats treated with carcinogen (n=3) had atypical cells in each liver with the 

following percentage 40%, 20% and 20%. The rats that received chloroquine 

(n=4) showed less atypical cells in 3 rats 5%, 5% and 20%. 

 After 10 weeks of carcinogen treatment: two out of three of rats treated 

with carcinogen alone developed foci of HCC on a background of atypical 

cells. One out of three rats that received chloroquine showed one focus of 

dysplastic cells and not HCC on a background of atypical cells whereas the 

other two had normal liver. 
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 After 12 weeks of carcinogen treatment: all the rats of group one 

developed multiple nodules of HCC, which were seen macroscopically with 

variable sizes. Under the microscope there were multiple foci of HCC with a 

diameter of 2mm on a background of high-grade atypia in 90% of the cells 

and inflammation in the form of inflammatory cells infiltration with areas 

showing bridging necrosis and necroinflammatory foci scattered in the 

intralobular area.  In chloroquine treated group, there was no evidence of 

malignancy.  However, there were atypical cells which varied from 5% to 

10%. 

 At the end of the experiment after 16 weeks, all of the animals in group 

one developed multiple large nodules of HCC which were macroscopically 

visible (Fig. 55).  Under the microscope there were multiple diffuse nodules 

up to 11 foci of HCC.  The background liver was dysplastic and in some 

cases there were evidence of vascular invasion (Fig. 57).  In group two, two 

out of seven animals developed small nodules of HCC (2 nodules each), the 

largest nodule did not exceed 1.4 mm. 5/7 had no evidence of HCC with 

normal hepatocytes and mild inflammation.  
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Figure 55: Livers from DEN&NMOR induced rat models of HCC 
demonstrating inhibition of tumour development in response to 
chloroquine treatment. a) The livers from DEN & NMOR only treated rats 
are pale in colour with nodules visible on the outer surface (white 
arrows) and in the cut section (black arrows). b) The livers from the 
chloroquine treated rats were brighter in colour with a smooth outer 
surface and no nodules visible in the cut section. 

 

 

Figure 56: Graph showing the differences in the percentage of 
tumours developed in the livers of rats treated with 
DEN&NMOR±chloroquine.  The percentage was calculated from the 
total size of HCC foci/ normal liver   under microscopic examination of 
the slides from different time point of treatment (ttt: treatment). 

 

b)

DEN&NMOR

DEN&NMOR +chloroquine

a)
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Table 14: Data showing the difference in tumour development in the 
livers of rats treated with DEN&NMOR±chloroquine, (ttt: treatment) 

 

 DEN&NMOR 

Mean±sd 

 

DEN&NMOR+C

Q 

Mean±sd 

 

P Value 

Percentage of tumour  

(tumour nodules sizes per 

tissue section/ size of 

tissue section *100) 

12 weeks ttt 

23.49±20.21 

 

 

14 weeks ttt:  

61.64±20.44 

  

12 weeks ttt 

0 

 

 

14 weeks ttt: 

4.540±8.1 

 

 

 

 

0.003** 

Perentage of normal 

tissue in background 

tissue.   

12 weeks ttt 

7.50±5  

 

 

14 weeks ttt 

38.00±16.4 

 

  

12 weeks ttt 

80±33.7 

 

 

14 weeks ttt: 

85.71±7.87 

0.008** 

 

 

 

0.003** 

Percentage of Atypical 

tissue in background 

tissue 

12 weeks ttt 

92.50±5  

 

14 weeks ttt 

62.00±16.4 

 

  

12 weeks ttt 

20.00±33.7 

 

14 weeks ttt: 

14.29±7.87 

0.02* 

 

 

0.003** 
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Figure 57: H&E stained liver sections from DEN&NMOR induced rat 
models of HCC at different stages of development. Foci of HCC (black 
arrows) are visible in the liver of the rat treated with DEN & NMOR for 8 
weeks. After 14 weeks of treatment vascular invasion by malignant cells is 
observed (red arrows). The liver from a rat treated with DEN & NMOR plus 
chloroquine appears normal after 8 weeks of treatment. After 14 weeks of 
treatment small foci of HCC (black arrows) are visible in the rat liver 
 

II. Assessment of liver fibrosis  

Reticulin staining was performed on liver sections obtained from rats treated 

with DEN&NMOR±chloroquine.   

 

 Reticulin staining in non-chloroquine treated rat livers 

 On 8th week of treatment: Severe inflammation in the liver, in the form of 

portal tract expansion and bridging necrosis.   

 On 12th week the inflammation progressed to fibrosis and formed 

incomplete septum. 

  After 16 weeks: Severe fibrosis and incomplete cirrhosis (Fig. 58 and 

Fig.  59) 

DEN&NMOR 8weeks DEN&NMOR 14 weeks

DEN&NMOR+CQ  

8weeks

DEN&NMOR+CQ  

14 weeks

10x

10x

20x

20x
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 Reticulin staining chloroquine-treated Rat livers 

 After 8 weeks, liver sections showed histology varying from normal to 

mild inflammation (from 0 to 1).   

  After 12 weeks of treatment, inflammation progressed to moderate 

inflammation up to 2. 

 After 16 weeks the score of fibrosis found was 3/6-4/6. 

   
  

Figure 58:  Reticulin staining showing reduction in fibrosis with 
chloroquine treatment in chemical induced HCC model.   

DEN&NMOR 14 weeks

DEN&NMOR+CQ  

14 weeks
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Table 15: The difference in the degree of liver inflammation and 
fibrosis between groups treated with DEN&NMOR±chloroquine.  
There was a significant reduction of fibrosis with chloroquine 
treatment 

 

 Weeks of 

treatment  

 DEN&NMOR  DEN&NMOR+ chloroquine 

8 The degree of inflammation 

varied portal expansion to 

portal expansion with 

bridging fibrosis from (2/6 -

4/6) 

There was no fibrosis there 

was portal expansion only in 

some cases  and it was mild 

inflammation (0/6-1/6)  

10 From bridging fibrosis portal 

to portal or portal to central 

and incomplete cirrhosis in 

one case (4/6-5/6)  

 The inflammation varied from 

no inflammation up to portal 

expansion with occasional 

bridging (0/6-3/6)  

12 Incomplete cirrhosis marked 

bridging to occasional nodule 

(5/6) 

 From no inflammation to portal 

expansion with occasional 

bridging fibrosis (0/6- 3/6) 

14 Incomplete cirrhosis (5/6)  Inflammation varied from 

portal expansion with 

occasional bridging fibrosis in 

some cases to marked 

bridging fibrosis with features 

or regressive (the bridging 

septa is incomplete) (from3/6-

4/6) 
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 Picro-Sirius Red staining in chloroquine & non-chloroquine rat livers 

Sirius red stain confirms the finding of reticulin stain.  There was reduction of 

liver fibrosis score with chloroquine treatment.  The fibrous tissue stained red in 

colour.  There was bridging fibrosis after 10 weeks of treatment with 

DEN&NMOR, which progressed to incomplete nodule (pre-cirrhosis) after 14 

weeks of treatment. 

 

 

 

Figure 59: Sirius red staining showing levels of fibrosis in the liver of rats 
treated DEN&NMOR alone or with chloroquine. Rats treated with 
DEN&NMOR alone show evidence of liver fibrosis (red stain) after 10 
weeks of treatment which progressed to pre-cirrhotic fibrosis after 14 
weeks of treatment. The liver from the chloroquine treated rat showed no 
evidence of fibrosis after 10 weeks of treatment and the level of fibrosis 
was only moderate after 14 weeks.  
 

 

DEN&NMOR 10 weeks DEN&NMOR 14 weeks

DEN&NMOR+CQ  

10 weeks

DEN&NMOR+CQ  

14 weeks
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Figure 60: Graph showing the difference in liver fibrosis score between 
rats treated with DEN&NMOR±chloroquine.  There was significant 
reduction of fibrosis with chloroquine treatment compared to the 
untreated group. 
 

4.5.4 Improvement of rat liver enzymes in response chloroquine 

treatment  

There was evidence of abnormal liver enzymes and bilirubin between the 

chloroquine treated and untreated groups. There was a significant reduction of 

alanine aminotransferase (ALT) (P <0.002), aspartate aminotransferase (AST) 

(P <0.001) and bilirubin (P <0.002) in group two that was treated with 

chloroquine compared to untreated group. 

 

Table 16: Table showing improvement of liver enzymes and bilirubin with 
chloroquine treatment compared to the untreated group in HCC model.  
Results are presented as Mean±SE.  ALT: alanine transaminase, AST: 
aspartate aminotransferase. 
 

Test Control  

 

DEN&NMOR 

 

DEN&NMOR 

+chloroquine 

 

ALT 95.63±10.51 116±7.38 80±7.31 

AST 98±5.63 109±3.47 90±2.072 

Billirubin 1.2±0.06 1.6±0.089 1.2±0.05 
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4.5.5 TLR7 & TLR9 expression in livers of chloroquine and untreated rats 

a) TLR7 expression in rat livers 

 TLR7 was found only perinucleir in malignant cells and juxtanuclear area.TLR7 

was very high in intensity and distribution (Score 2) in liver sections obtained 

from  chloroquine untreated group. With chloroquine treatment, TLR7 was found 

only in the areas with the small foci of HCC in 3 livers and with few cells (Score 

1) and the rest livers from this group showed no staining of  TLR7.  Normal rat 

liver was negative for TLR7 (Fig. 61). 
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Figure 61: Immunohistochemistry staining of TLR7 in the DEN&NMOR 
HCC model.  Liver section showing positive TLR7 in the nuclei of tumour 
areas induced with DEN and NMOR treatment (Score 2).  With chloroquine 
treatment in addition to DEN&NMOR liver section revealed scattered cells 
stained with TLR7 in the nucleus of the cells less than 1/3 of the 
hepatocytes (Score 1).  Liver section of naïve rat showing negative TLR7 
staining.  
  

DEN&NMOR

DEN&NMOR+CQ

Naive



Results                                           Effect of TLR7 and TLR9 inhibition in vivo 

164 
 

b) TLR9 expression in rat livers 

Hepatic localisation of TLR9 was different in each group.  In the normal rat liver, 

TLR9 expression was very faint and located around the central vein only.  With 

HCC development in the untreated group the distribution changed to surround 

the tumour nodules and was found in any zone of the liver including the portal 

area.  The intensity of TLR9 staining varied from (++ - +++) and total Score was 

2.  Then with chloroquine treatment TLR9 was found around the central vein 

and the intensity was  (++) and total Score was 1 (Fig. 62). 



Results                                           Effect of TLR7 and TLR9 inhibition in vivo 

165 
 

 

 

Figure 62: TLR9 expression in liver from DEN&NMOR induced rat models 
of HCC with or without chloroquine treatment and in normal untreated rat 
liver. TLR9 was highly expressed in the tumour and surrounding tissue of 
the liver from the DEN & NMOR treated rat. In the chloroquine treated rat, 
moderate expression of TLR9 was visible around the central vein only. 
Faint staining around the central vein was also be seen in the normal 
untreated rat liver. 
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4.5.6 Reduced expression of NF-кB in livers of rats treated with 

chloroquine  

The expression of NF-кB, Akt and pAkt proteins were studied using western blot 

technique on liver lysate from DEN&NMOR treated rats, DEN&NMOR 

+chloroquine and Naïve animal.  β-actin or α-tubulin was used as control for the 

loading proteins.    

 

NF-кB protein expression was increased in liver lysate obtained from DEN and 

NMOR treated rats compared to naïve untreated animals.  In liver lysates 

obtained from rats treated with chloroquine in addition to DEN and NMOR, 

NFкB expression was significantly reduced compared to DEN and NMOR only 

treated rats (P <0.05)  

 

 

 

Figure 63: Western blot showing the effect of chloroquine on reduction of 
NF-кB in DEN and NMOR induced HCC compared to the untreated group. 
 

 
 

Figure 64: Densitometry results of the NF-кB Western blot from the DEN & 
NMOR induced rat model of HCC. Results are expressed as the ratio of 
NF-кB relative to β-actin signal. The graph demonstrates a significant 
reduction of NF-кB expression in response to chloroquine treatment in the 
DEN & NMOR rat model. 
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4.5.7 Reduced expression of Akt in livers of rats treated with chloroquine  

Akt expression was increased with the progression of the tumour in HCC model 

as there was less in expression at 8 weeks compaired with of 14 weeks DEN 

and NMOR treatment.  The effect of chloroquine in HCC model showed 

reduction of Akt expression compared with untreated animals at the same time 

points (P <0.001).  pAkt/Akt ratio did not change between DEN and NMOR with 

or without treatment.  Although there was a reduction of pAkt this could be due 

to of a reduction of Akt expression. 

 

 

 

Figure 65: Decreased Akt expression in HCC model with chloroquine (CQ) 
treatment.  Akt increased with tumour progression.  14 weeks treatment 
with DEN and NMOR showed increase in Akt expression compared with 8 
weeks treatment. Chloroquine decreased the expression of Akt compared 
with untreated animals.  There was reduction of pAkt with chloroquine 
treatment compared to DEN and NMOR without chloroquine. 
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Figure 66: Chloroquine treatment reduced Akt and pAkt expression.  
Densitometric analysis of Akt/αtubulin  and pAkt/αtubulin expression in 
HCC model, showing increased in the expression of Akt and  pAkt in liver 
of DEN&NMOR treated rats and this high expression of Akt and pAkt 
significantly decreased with chloroquine treatment (P <0.03) and (P <0.03) 
respectively.  
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4.5.8 Discussion 

The data from the immunohistochemical analysis of the human HCC tissue 

samples and the in vitro results from the HuH7 human HCC cell line 

experiments (Chapter 4.4) suggested that TLR7 and TLR9 may have an 

important role to play in HCC proliferation.  The immunohistochemical data 

demonstrated increased expression of TLR7 and TLR9 in HCC.  In addition, 

there was a good correlation between expression of these markers and the Ki-

67 proliferation index.  The results of the HuH7 cell culture studies 

demonstrated that the inhibition of TLR7 and TLR9 leads to suppression of cell 

proliferation.  In order to confirm these findings in vivo, the effects TLR7 and 

TLR9 inhibition using chloroquine and IRS were investigated in the HCC mouse 

xenografts and chemically induced HCC rat models developed earlier in 

Chapter (4.1). 

 

The mouse xenograft models consisted of two groups of NOD-SCID mice that 

had been injected with either HuH7 or HepG2 human HCC cells in their liver.  

The mice in each group were administered with either chloroquine in their 

drinking water or injected with IRS a day following the implantation of the HuH7 

or HepG2 cells (described in Chapter 4.1).  A control group of untreated HuH7 

or HepG2 injected mice were also included in the study.  At the end of the 

treatment period (35 days for the HuH7 mice and 60 days for the HepG2 mice) 

the animals were culled and their livers examined for tumours.  Tumours were 

visible in the livers of all animals, both treated and untreated.  In some mice, 

extra-hepatic tumours, attached to the abdominal wall were also observed.  

These are believed to have arisen as a result of leakage of tumour cells at the 

site of injection or direct tumour invasion.  However, the mean tumour volume 

measured at the time of sacrifice was found to be lower in the animals 

administered either chloroquine or IRS when compared with the tumours from 

untreated mice.   

 

The reduction in tumour volume was significant in the chloroquine-treated 

HepG2 injected mice (P =0.03) but only reached borderline significance in the 

HuH7 derived tumours (P =0.05).  In the IRS treated mice the reduction in 

tumour volume was significant in the HuH7 derived tumours (P =0.02) but not 
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significant in the HepG2 derived tumours (P =0.06).  However, the number of 

animals in the latter group was very small (only 4 mice) due to the fact that 

some of the mice in this group died during the course of the study.  The results 

from these in vitro experiments are consistent with the TLR7 and TLR9 data 

from the human HCC immunohistochemistry and HuH7 cell culture studies and 

provide additional support to the hypothesis that TLR7 and TLR9 play an 

important role in HCC proliferation.  The inhibitory effect of chloroquine on HCC 

development has previously been demonstrated both in vitro and in vivo by 

Ding et al. and Shi et al.  Specifically, the combined use of chloroquine with 

either oxaloplatin or sorafanib resulted in an enhancement of cell death in 

human HCC cultures and a more pronounced tumour suppression of HCC 

xenografts (Ding et al., 2011, Shi et al., 2011 and Shimizu et al., 2012).   

 

Tumour xenograft models are a useful for examining human cancer behaviour 

in vivo.  However, the need to establish them in immune-compromised animals 

means that any modulatory effect the immune system might have on tumour 

development is not accurately represented.  Chemical-induced cancers in 

animal models provide an alternative means of studying tumour development 

within the environment of a fully functioning immune system.  For this reason, 

the Fischer rat HCC model developed earlier, using DEN and NMOR, was also 

used to examine the effects of chloroquine on HCC development.  DEN & 

NMOR rats were gavaged with chloroquine on a daily basis over a 14 week 

period then sacrificed at different time points (8, 10, 12, and 16 weeks) to 

examine their livers.  A similar group of DEN & NMOR rats, which were not 

administered chloroquine, was also included in the study.  Blood was taken 

from the animals prior to sacrifice to assess liver injury by measurement of the 

AST, ALT and bilirubin levels. 

 

At 8 weeks from the start of the experiment no tumours were detected either 

macroscopically or histologically in any of the rat livers.  In the chloroquine 

treated group 2 out of 4 rat livers were histologically normal but the other 2 

showed signs of atypia involving 5 - 20% of hepatocytes.  Mild inflammation of 

the liver was also seen in 2 cases.  The liver inflammation was more severe and 

http://www.ncbi.nlm.nih.gov/pubmed?term=Shimizu%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21858812
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the atypia more widespread involving 20 - 40% of hepatocytes in all 3 cases 

from the untreated group.   

 

At 10 weeks multiple tumours were macroscopically visible in 2 of 3 livers from 

the untreated rats.  Liver inflammation was severe and atypia more extensive 

involving 90-100% of rat hepatocytes in all 3 cases.  However, no tumours were 

detected in any of the rat livers, either macroscopically or microscopically from 

the chloroquine treated group although some atypia and mild to moderate 

inflammation was visible in 3 of 4 cases.  One liver was completely normal on 

examination.   

 

At 12 and 16 weeks multiple tumours were macroscopically visible in all livers 

from the untreated rats and the cellular atypia was even more pronounced 

involving 50-90% of the background liver in all cases.  This was accompanied 

by incomplete cirrhosis (5/6 according to the Ishak criteria) in all livers.   

In the chloroquine treated group no tumours were visible at 12 weeks but atypia 

involving 5-10% of hepatocytes was seen in all 4 cases.  At 16 weeks 2 of the 7 

chloroquine treated rat livers developed tumours (2 nodules each) on a 

background cellular atypia involving 20-30% of hepatocytes. 

The results from the rat HCC model above demonstrates that chloroquine 

treatment has a significant inhibitory effect on the development of inflammation 

or fibrosis (P <0.0001) and HCC (P <0.0001).  The HCC in vivo data from the 

chemically induced rat model are similar to those from our mouse xenograft 

model and demonstrate that the inhibition of TLR7 and TLR9 leads to 

suppression of tumour growth regardless of an effective immune system.  

Furthermore, administration of chloroquine had a significantly beneficial effect 

on liver enzymes and bilirubin levels (all decreased to nearly normal levels) in 

the carcinogen treated rats suggesting that inhibition of TLR7 and TLR9 not 

only suppresses tumour growth (both frequency and size of tumours) but also 

has a protective effect on the liver from damage induced by carcinogens.   

Overall the results from both the mouse xenograft and chemical-induced rat 

models of HCC further reinforce the concept that TLR7 and TLR9 play an 

important role in HCC growth.  Furthermore, the data are a strong indicator that 
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the pathways to liver inflammation, fibrosis and hepatocarcinogenesis are 

closely linked to TLR7 and TLR9.   

I demonstrated in previous section a significant effect of IRS 954 on inhibiting 

cell proliferation of HuH7 cells and this effect was translated into inhibitory effect 

on tumour masses in mice. 

 

The effect of chloroquine on reducing liver fibrosis is demonstrated for the first 

time in this study.  However, a previous study had shown that administration of 

chloroquine to chronic active hepatitis B patients returned AST and ALT values 

to normal levels (Kouroumalis and Koskinas et al., 1986).  Another study in SLE 

patient diagnosed with autoimmune liver disease, chloroquine treatment was 

found to be effective in treatment of inflammatory conditions through its 

inhibitory effect on TLRs expressed on the dendritic cells (Efe et al., 2011) .     

Several lines of investigation indicate that TLR9 is also up regulated in chronic 

liver diseases and promotes the development of non-alcoholic steatohepatitis 

and hepatic fibrosis (Gäbele et al., 2008, Stadlbauer et al., 2009 and Henao-

Mejia et al., 2012).  Increased circulating bacterial DNA is a hallmark of cirrhosis 

and the unmethylated CpG containing DNA serves as a potential ligand of TLR9 

(Seki et al., 2012).  Therefore, the inhibitory effect of chloroquine on fibrosis can 

be due to its inhibitory effect on TLR9.   

 

In order to determine whether the action of chloroquine on the livers of the 

DEN&NMOR rat models of HCC was brought about through inhibition of TLR7 

and TLR9 I also looked at the expression of these molecules by 

immmunohistochemisty.  In normal naïve rats the expression of TLR9 was 

found to be extremely weak and confined to the central veins.  However, in the 

DEN&NMOR treated rats expression of TLR9 was high (Score 2) and not 

confined to any particular region of the liver.  In the rat livers which developed 

HCC, TLR9 was weakly detected within the tumours but its expression was high 

and heterogeneous in the surrounding liver tissue (Score 2).  In the chloroquine 

treated rats, TLR9 staining was found to be weak (Score 1) but slightly higher 

than in the livers of normal naïve rats.  It was also confined to the central veins.  

In the two chloroquine treated rats, which developed HCC, TLR9 was weakly 

present within the tumours but its expression was high in the immediate vicinity 

http://www.ncbi.nlm.nih.gov/pubmed?term=Efe%20C%5BAuthor%5D&cauthor=true&cauthor_uid=21348808
http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Efe%2C+Cumali%29
http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Efe%2C+Cumali%29
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of the tumour and in the hepatocytes around the central veins.  Overall, it would 

appear that chloroquine treatment inhibits liver inflammation, fibrosis and 

tumourigenesis by inhibiting the expression of TLR9.  However, its lack of 

expression within the rat tumours would suggest that TLR9 is not necessary for 

tumour growth.  The results appear to contradict the data from the human HCCs 

and cell culture studies (Chapter 4.4) in which TLR9 is more highly expressed.  

One possible explanation for this discrepancy could be that TLR9 plays an 

important role during liver inflammation and initial stages of liver carcinogenesis 

in this rat model but its expression may not be necessary for tumour 

proliferation later on.  Other TLRs or pathways could possibly take on more 

important roles during the later stages of tumour development and progression 

in these animals.   

 

The expression of TLR7 was found to be completely absent in the livers of 

naïve rats.  In the DEN & NMOR treated rats the expression of TLR7 in the 

early weeks was weak and involved less than one third of the hepatocyte nuclei 

(Score 1).  However, TLR7 expression was higher in the tumours, which 

developed in later weeks (more than two thirds of malignant hepatocyte nuclei 

were positive for TLR7) (Score 2), although it remained low in the surrounding 

liver.   

In the chloroquine treated group of rat livers, the expression of TLR7 was also 

absent in the early weeks of the experiment.  As the weeks progressed, the 

expression of TLR7 increased slightly but still involved no more than one third of 

the hepatocyte nuclei (Score 1).  In the livers and tumours, which developed in 

later weeks, the expression of TLR7 remained low (Score 1). 

 

The TLR7 data in the carcinogen-induced rat model of HCC is more consistent 

than the TLR9 data with our findings in human HCC tissues and cell lines and 

provides further evidence that the inhibitory action of chloroquine on liver 

inflammation and tumour development is brought about through its inhibition of 

TLR7.  Recent work that supports our findings comes from a study of pancreatic 

cancer in which TLR7 was shown to be highly expressed in the transformed 

epithelial cells as well as peritumoural inflammatory cells (Ochi et al., 2012).  

TLR7 expression was reported to be absent from the normal pancreas in 
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human and murine systems and furthermore, inhibition of TLR7 was shown to 

protect against development of pancreatic cancer.  The authors concluded that 

TLR7 could be a potential target for treatment of pancreatic cancer in humans 

(Ochi et al., 2012).  However, in contrast to the above, TLR7 activation has also 

been demonstrated to have antitumour properties and TLR7 agonists have 

been used as effective treatments for basal cell carcinoma (Tandon and Brodell, 

2012)  as well as melanoma (Adams et al., 2008).  In order to explain these 

seemingly contradictory roles of TLR7, Ochi et al. proposed that in malignancies 

which are not associated with an inflammatory component TLR7 stimulation 

may elicit antitumour immune responses.  However, malignancies that arise on 

a background of inflammation such as pancreatic cancer associated with 

chronic pancreatitis, TLR7 activation may have a pro-tumourigenic effect.  

Furthermore, TLR7 activation was found to stimulate tumour development in 

colon cancer and lung cancer by promoting inflammation as well as tumour cell 

survival (Grimm et al., 2010 and Cherfils-Vicini et al., 2010).  The latter process 

seems also to apply to TLR7 and HCC.   

 

The links between TLR9 and HCC have been discussed previously in Chapter 

4.3 in light of Tanaka‘s study which reported that CpG-ODN promotes HCC 

proliferation and survival (Tanaka et al., 2010).  In other cancer studies TLR9 

activation was linked to promotion of cancer invasion in the prostate (Ilvesaro et 

al., 2007), breast (Merrell et al., 2006) in lung cancer cells, stimulation of the 

TLR9 pathway using CpG was recently shown to enhance tumour growth 

(Wang et al., 2012).   

 

The mechanism of how TLR7 and TLR9 produce HCC is not completely 

clarified in this thesis.  It is possible that the initial insults leading to liver 

inflammation leads to partial breakdown of the liver tissue which in turn leads to 

the release of ssRNA and unmethylated CpG DNA which act as stimulators of 

TLR7 and TLR9 respectively (Barrat et al., 2005).  This in turn leads to the 

release of other pro-inflammatory cytokines and/or chemokines, which 

exacerbate the liver inflammation and increase the risk of developing of HCC.  

The inhibitory action of chloroquine on TLR7 and TLR9 may therefore help to 

http://www.ncbi.nlm.nih.gov/pubmed?term=Tandon%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23031368
http://www.ncbi.nlm.nih.gov/pubmed?term=Brodell%20RT%5BAuthor%5D&cauthor=true&cauthor_uid=23031368
http://www.ncbi.nlm.nih.gov/pubmed?term=Brodell%20RT%5BAuthor%5D&cauthor=true&cauthor_uid=23031368
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break this vicious circle by reducing the liver inflammation and thereby reduce 

the chances of developing HCC.   

 

The expression of NF-kB protein in The DEN&NMOR rat model of liver 

inflammation and HCC was examined at the end of the experimental period, i.e. 

16 weeks, in regions of liver tissue which were macroscopically free of tumour.  

Using Western blot analysis the expression of NF-kB in the liver of the DEN & 

NMOR only treated rats was seen to be higher than in the livers of naïve rats.  

However, this up regulated expression of NF-kB was diminished in the livers of 

the chloroquine treated rats.  These findings are another confirmation that the 

reduced liver inflammation in response to chloroquine treatment occurs via a 

decrease in TLR7 and TLR9 stimulation leading to inactivation of the 

downstream NF-kB pathway.  These results are consistent with the known 

action of TLRs in inflammatory pathways, which all culminate in the activation of 

NF-kB protein.  The inhibition of TLR7 and TLR9 stimulation by chloroquine has 

previously been shown to significantly reduce the downstream activation of NF-

kB in a human embryonic kidney cell line (HEK293) and human B cell line cell 

(Ramos) (lee et al., 2003).  Furthermore, chloroquine has been shown to inhibit 

CpG-DNA–driven activation of NF-κB activation by acting as a TLR9 antagonist.  

Specifically, chloroquine inhibited binding of CpG to the TLR9 ectodomain 

(Kuznik et al., 2011).  Our in vivo findings in the rat model of liver inflammation 

and HCC are consistent with the previous in vitro studies in the human cell lines 

and support the idea that NF-kB may act as a central link between hepatic 

injury, fibrosis and HCC as proposed by Luedde and Schwabe (2011). 

 

One of the most frequently observed alterations in human cancer is the 

activation of the protein kinase Akt.  This protein regulates a variety of cellular 

processes involved in cell survival and metabolism.  The inhibition of Akt kinase 

previously has been shown to induce apoptosis and suppress the growth of 

human ovarian cancer cells in vivo and in vitro (Choi et al., 2008).  In addition, 

chloroquine has been shown to reduce cell proliferation in a mouse colon 

carcinoma cell line and this effect was shown to be associated with a decreased 

level of pAkt (Zheng et al., 2009).  Moreover, PI3k/Akt pathway inhibitors in 

combination with chloroquine have been shown to promote γ-irradiation-induced 

http://en.wikipedia.org/wiki/Serine/threonine-specific_protein_kinase
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cell death in primary stem-like glioma cells (Firat et al., 2011).  Furthermore, 

CpG-ODN was shown to induce a protection against myocardial 

ischemic/reperfusion injury through activation of PI3K/Akt (Cao et al., 2013).   

 

A link between Akt and TLR9 was demonstrated in the study by Guiducci et al., 

(2008) in which Akt phosphorylation was observed in human plasmacytoid 

predendritic cells following TLR9 stimulation with CpG.  In light of the above 

information an investigation of Akt expression levels in our rat model was clearly 

warranted.  The data from our study demonstrated a significant reduction in the 

levels of total Akt (P =0.03) and pAkt (P =0.03) in the livers of chloroquine 

treated rats when compared with the untreated rats.  It is difficult to determine 

from our results whether the reduction in pAkt is just a reflection of the 

decreased total Akt levels or whether it is due to a direct reduction in Akt protein 

phosphorylation.  Whichever the case, the findings are in keeping with the 

hypothesis that TLR7 and TLR9 up regulation play an important role in HCC by 

induction of Akt phosphorylation.  Furthermore, the inhibition of these pathways 

could provide a novel approach to the treatment of HCC. 
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4.6 TLR expression in cholangiocarcinoma 

4.6.1 Introduction 

Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are primary liver 

cancers; CC is a malignant tumour that derives from cholangiocytes of either 

small intrahepatic bile ducts or ductules (intrahepatic cholangiocarcinoma; ICC), 

or of large extrahepatic bile ducts (extrahepatic cholangiocarcinoma; ECC).  

ICC and ECC differ in morphology, pathogenesis, risk factors, treatment and 

prognosis. However, some of the risk factors for ICC and HCC are the similar 

such as cirrhosis, chronic hepatitis B and C, alcohol use, diabetes, and obesity 

are major risk factors for ICC (Charbel and Al-Kawas, 2011).  Moreover, there 

were recorded cases of mixed HCC and CC (Yano et al., 2003 and Chantajitr et 

al., 2006). This phenotypic overlap between HCC and CC is histopathologically 

an intermediate form between HCC and CC.  In addition, there is a novel 

subtype of HCC was identified as cholangiocarcinoma like-HCC, which is 

believed to be derived from biliary lineage cells (Woo et al., 2010). These data 

suggest a common pathogenesis of primary intrahepatic epithelial cancers 

(HCC and ICC) (Palmer and Patel, 2012). I have shown previously that 

inhibition of TLR4 reduced liver fibrosis, which is one of the risk factors for 

developing HCC and ICC; also, I have shown that inhibition of TLR7 and TLR9 

reduced the incidence and growth of HCC in animal models and in vitro. 

Unfortunately, there is not enough data supporting the role of toll-like receptors 

in CC development except in few studies on cholangiocarcinoma. These studies 

demonstrated that the carcinogenic effect of liver fluke Opisthorchis viverrini 

could be through chronic inflammation and stimulation of TLR2 or TLR4 (Pinlaor 

et al., 2005 and Ninlawan et al., 2010). Our aims in this chapter were to 

determine whether a) TLR4, TLR7 and TLR9 are up regulated in human CC. b) 

whether inhibition of the up regulated TLR signaling in CC reduced cell 

proliferation in vitro and tumour growth in vivo. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Ninlawan%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20887801
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4.6.2 Results from human cholangiocarcinoma tissues 

a) Results from tissue microarrays  

By using immunohistochemistry technique and tissue microarray platform, ten 

cases of CC were compared with bile ducts in normal liver caes as control. 

 

I. Decreased expression of TLR4 in cholangiocarcinoma 

The normal bile duct epithelium was strongly positive (Score 2) for TLR4 in 80% 

and was moderately positive (Score 1) in 20% of cases. In CC, reduced TLR4 

staining was observed compared to normal controls; 60% were negative and 

10%-30% of cases stained for TLR4 (Score 2) (Score 1) respectively. 

 

 

Figure 67: TLR4 expression analysis in normal liver and 
cholangiocarcinoma (CC). a) Normal liver section from the tissue 
microarray showing high expression of TLR4 in the bile duct epithelium 
but no expression in the hepatocytes. b) The area within the zooming box 
of image (a) is seen at higher (40x) magnification and shows more clearly 
the TLR4 expression in the bile ducts. c) CC section from the tissue 
microarray showing no expression of TLR4 in the malignant cells. d)At 
higher (40 x) magnification of the CC section, TLR4 expression is clearly 
visible in the inflammatory cells scattered within the tumour background. 
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Figure 68: Graph showing the expression of TLR4 in normal bile duct and 
CC.  There is up regulation of TLR4 in normal bile duct epithelium and 
down regulation in CC.  
 

II. Increased expression of TLR7 in cholangiocarcinoma 

All the normal bile duct epithelium were negative for TLR7 expression among 

the CC cases; 20% cases showed no staining of TLR7 while 30% cases had 

positive perinuclear staining of TLR7 in less than 1/3 of the tumour nuclei 

(Score 1) and 50% cases showed positive TLR7 in more than 2/3 of the CC 

nuclei (Score 2).  
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Figure 69: TLR7 expression in CC and normal bile duct epithelium: a) 10x 
core of tissue microarray of normal liver, showing negative TLR7 in bile 
duct epithelium, c) 10x of core of tissue microarray of CC, showing 
strongly positive TLR7 in nearly all acini.  d) 40x of CC showing strongly 
positive of TLR7 in nuclear membrane of CC in 90% the malignant cells. 
 

 
 
Figure 70: Distribution of TLR7 expression in normal bile duct and CC 
cases. There is significant up regulation of TLR7 in CC. Only 20% of cases 
were negative TLR7 staining. More than 50% of cases of CC had (Score 2) 
TLR7 and 30% of cases showed (Score 1). Normal bile duct epithelium 
was negative in all cases. 
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III. Increased expression of TLR9 in cholangiocarcinoma 

The normal bile duct epithelium was mainly negative for TLR9 staining only 

one case (10%) stained with TLR9 (Score1), however, CC samples showed 

cytoplasmic TLR9 expression only 20% cases were negative, 30% were 

scored as Score 1 depending on the intensity and distribution of TLR9 

staining. and 50% were scored as Score 2.   

 

 

 
Figure 71: TLR9 expression in CC and normal bile duct epithelium: a) 10x 
core of tissue microarray of normal liver, showing negative TLR9 in bile 
duct epithelium, c) 10x core of tissue microarray of CC, showing strongly 
positive TLR9 in nearly all acini.  d) 40x of CC showing strongly positive of 
TLR9 in the cytoplasm (Score 2) of CC in nearly all the malignant cells. 
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Figure 72:  TLR9 expression in normal bile duct and CC samples. There is 
up regulation of TLR9 in CC. 
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4.6.3 TLR7 & TLR9 expression studies in the human HuCCT1 

cholangiocarcinoma cell line  

The observed overexpression of TLR7 and TLR9 in CC specimens led me to 

investigate their expression also in cholangiocarcinoma (HuCCT1 cell line).  

Similarly to what was found in the tissue sample by immunohistochemistry, 

confocal microscopy analysis in HuCCT1 showed a nuclear TLR7.  On the other 

hand TLR9 was shown to be expressed in the plasma membrane, in the 

cytoplasm and in the nucleus (Fig. 73). 

 

  

 

Figure 73: TLR7 and TLR9 were expressed in HuCCT1 cells.  
Immunofluorecense staining of TLR7 and TLR9 in methanol fixed 
HuCCT1.  TLR7 was mainly expressed in the nucleus of HuCCT1 with 
residual expression in the cytoplasm. Merge of the staining of TLR7 
(white) and nuclear staining Hoechst 33342  (blue).  TLR9 (white) colour 
expressed in the plasma membrane, cytoplasm and nucleus.  Merge 
channel of the TLR9 (white) and nuclear staining Hoechst 33342 (blue) 
(scale bar =10μm). 
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4.6.4 Subcellular localisation of TLR7 unchanged in response to IMQ, 

chloroquine or IRS treatment of HuCCT1 cells 

HuCCT1 cells stained for TLR7 mainly in the nucleus and to some extent in the 

cytoplasm.  No clear change in TLR7 localisation was observed with IMQ 

treatment (TLR7 stimulant), chloroquine or IRS treatment (TLR7 inhibitors) (Fig.  

74). 

 

 

 

Figure 74: TLR7 expressed in HuCCT1 mainly in the nucleus with residual 
expression in the cytoplasm. Immunofluorescence staining of methanol 
fixed HuCCT1 showed that TLR7 distribution and localisation did not 
change with IMQ, chloroquine or IRS treatment TLR7 (white colour) and 
nuclear staining Hoechst 33342 (blue) (scale bar =10μm). 
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4.6.5 TLR9 expression shifts towards the nucleus in HuCCT1 treated with 

CpG or chloroquine  

HuCCT1 cells stained with TLR9 showed diffuse localisation in the cell 

membrane, cytoplasm and the nucleus.  CpG-ODN treatment resulted in TLR9 

crowding around and inside the nucleus.  The perinuclear accumulation was 

observed also with chloroquine treatment.  IRS treatment did not induce any 

change TLR9 localisation compared to control (Fig. 75).   

 

 

 
Figure 75: Immunofluorescence staining of TLR9 in HuCCT1 showing 
the localisation difference upon stimulation and inhibition.  In control 
untreated cells, TLR9 was found in the cell membrane, cytoplasm and 
nucleus.  With CpG stimulation there was more nuclear TLR9. With 
chloroquine, TLR9 was perinuclear while with IRS the staining was the 
same as the control TLR9 (white) and nuclear staining Hoechst 33342 
(blue) (scale bar =10μm). 
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4.6.6 Increased co-localisation of TLR9 with the endoplasmic reticulum 

marker calnexin in response to chloroquine & IRS treatment  

 The subcellular distribution TLR9 was changed with CpG and with chloroquine 

treatment.  Co-staining of HuCCT1 cells with TLR9 and cell organelle markers 

was performed using immunofluorescence staining. Confocal microscopy 

analysis revealed that there were limited co-localisation between TLR9 and 

endoplasmic reticulum marker calnexin in untreated HuCCT1. With CpG-ODN 

treatment, this limited co-localisation was not detected. However with 

chloroquine and IRS treatment this localisation was clearly detected (Fig. 76).   

 

 
 
Figure 76: Co-localisation between TLR9 and calnexin with chloroquine 
and IRS treatment. Co-immunofluoresence staining of endoplasmic 
reticulum marker calnexin and TLR9 in methanol fixed HuCCT1.  There 
was focal co-localisation between TLR9 and calnexin in untreated 
HuCCT1. With CpG treatment no co-localisation was observed. With 
chloroquine and IRS treatment, co-localisation was detected. The merge 
channel showing the calnexin (green color), TLR9 (red color) and Hoechst 
33342 (blue). Zooming box showing the individual green and red granules. 
No yellow staining detected with CpG treatment. With chloroquine and IRS 
treatment there were yellow granules showing the co-localisation between 
TLR9 and calnexin. 

Hoechst TLR9 mergeCalnexin zoom
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4.6.7 Swelling of lysosomes in response to chloroquine treatment of 

HuCCT1 cells 

With CpG-ODN and IMQ treatment of HuCCT1 there was no change in the 

morphology of lysosome labeled with lamp-1 compared to the untreated cells.  

Alongwith what was previously demonstrated in HuH7 cells, chloroquine 

treatment was associated with lysosomal swelling detected with lysosomal 

marker lamp-1 (Fig. 77). 

 

 

Figure 77: Immunofluorescence staining of the lysosomal marker lamp-1 
in HuCCT1 cells demonstrates increased lysosomal swelling in response 
to chloroquine treatment. The Hoechst 33342 stained nuclei appear blue 
and the lamp-1 stained lysosomes appear as white granules surrounding 
the nuclei. No change in lysosomes was seen with CpG, IMQ or IRS 
treatment of the HuCCT1 cells (scale bar =10μm). 
 

4.6.8 LC3B expression increased with chloroquine and CpG treatment of 

HuCCT1 cells but disappeared in response to IRS 

The autophagic marker LC3B protein was detected in the cytoplasm of 

untreated cells or HuCCT1 cells treated with CpG-ODN as a scattered punctae 

mainly around the nucleus.  However, LC3B protein was not detected using the 

same settings with IRS treatment. However, with chloroquine treatment there 
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CQ

IRS

IMQ

lamp-1 lamp-1zoom zoom
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were larger size granule accumulation in the juxtanulear area. This disappeared 

from the cytoplasm (Fig. 78). 

 

 

 

Figure 78: Immunofluorescence analysis of the autophagy marker LC3B in 
HuCCT1 cells. The cell nuclei are stained blue with Hoechst 33342. A 
slight increase in the white LC3B stained granules can be seen in 
response to CpG treatment of HuCCT1 cells.  With chloroquine treatment 
there is an accumulation of LC3B around the cell nuclei and with IRS 
treatment the expression of LC3B disappeared completely (scale bar 
=10μm). 

LC3B MergeHoechst
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4.6.7 TLR7 & TLR9 stimulation and inhibition affect HuCCT1 cell 

proliferation  

Cell proliferation was assessed by seeding 10,000 cells /well (96-well plate) in 

triplicate for each condition.  Cell viability was measured by adding MTS reagent 

(Promega), 24h, 48h and 72h after treatment.  Details for treatment and 

dosages are reported in materials and methods (Chapter 3). 

 

a) IMQ treatment increased proliferation of HuCCT1 cells 

Treatment of HuCCT1 cell with IMQ (TLR7 stimulant) resulted in a significant 

increase in cell proliferation compared to untreated controls after 48h (P <0.03).   

 

 

Figure 79: Increased proliferation of HuCCT1 cells in response to 
treatment with IMQ.  HuCCT1 cells were treated with 5μg/ml of IMQ for 48 
hours and their proliferation rate was then measured using the MTS 
assay. A significantly higher rate of cell proliferation was observed in the 
IMQ treated cells when compared with that of untreated HuCCT1 cells (P 
<0.03) 
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b) CpG-ODN treatment increased proliferation of HuCCT1 cells 

After 48 hour stimulation of TLR9 using CpG-ODN treatment resulted in 

significant increase in HuCCT1 cell proliferation when compared to untreated 

controls (P <0.002). 

 

 

Figure 80: Increased proliferation of HuCCT1 cells in response to 
treatment with CpG-ODN. HuCCT1 cells were treated with 5μM of CpG-
ODN for 48 hours and their proliferation rate was then measured using the 
MTS assay. A significantly higher rate of cell proliferation was observed in 
the CpG-ODN treated cells when compared with that of untreated HuCCT1 
cells (P < 0.002). 
 

c) Proliferation of HuCCT1 cells increased in response to treatment 

with chloroquine but not IRS  

Chloroquine treatment of HuCCT1 cells for 48 hours had no effect   on HuCCT1 

cell proliferation.  However, 72 hours of chloroquine treatment resulted in 

significant inhibition of HuCCT1 cell proliferation P<0.02 (t test, n=2). 
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Figure 81: Inhibition of HuCCT1 cell proliferation in response to 
chloroquine treatment.  Cells were treated with 15μM chloroquine for 72 
hours and their proliferation rate was then measured using the MTS 
assay.  A significant reduction of cell proliferation rate was observed in 
the chloroquine treated cells compared with that of untreated HuCCT1 
cells (P <0.02). 
 

IRS (TLR7 and TLR9 antagonist) treatment for 48 or 72 hours did not inhibit 

HuCCT1 cell proliferation (n=2) 

 

 

Figure 82: IRS treatment does not inhibit HuCCT1 cell proliferation.  Cells 
were treated with 20μg/ml of IRS for 72 hours and their proliferation rates 
were then measured using the MTS assay.  No difference in cell 
proliferation rate was observed between IRS treated and untreated 
HuCCT1 cells. 
 

4.6.8 Effect of TLR7&TLR9 inhibition in a xenograft model of 

cholangiocarcinoma 

 A xenograft model of cholangiocarcinoma was established with injection of 

5x106 HuCCT1 cells into NOD-SCID mice livers details about the procedure and 

the tumour formation were reported in Chapter 4.1.  The mice were divided into 
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groups and administered with either chloroquine in their drinking water 

(130mg/L) or injected with IRS-954 100μg (in 100μl) IP once per week a day 

following the implantation (control (untreated) n=7, chloroquine treated group 

n=4 and IRS treated group n=5).   

 

Sixty days later after the intra-hepatic sub-capsular injection of HuCCT1 cells, 

tumour masses were formed.  The masses were firm in consistency white in 

colour.  The tumours were found outside the liver, and attached to the muscle of 

the abdominal wall.  Tumour volume was calculated by measuring the three 

dimensions and they were multiplied.  There were reduction in the tumour 

volume found in mice treated chloroquine and IRS.  The mean tumour volume 

formed in control was (1.4±0.01) cm3 whereas with chloroquine and IRS 

treatment this was reduced significantly to (0.5±0.03) and (0.6±0.1) cm3 (P 

<0.01) and (P <0.003) respectively. 

 

 

Figure 83: Chloroquine and IRS treatment reduced tumour growth in a 
xenograft model of cholangiocarcinoma.  Tumours were measured 60 days 
after intra-hepatic injection of HuCCT1 cells into NOD-SCID mice. The liver 
tumour volume from the chloroquine and IRS treated mice was significantly 
smaller than from the non-treated control mice. 
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4.6.8 Discussion  

I have previously shown in chapters 4.3, 4.4 and 4.5 that expression of TLR7 

and TLR9 is up regulated in HCC and that inhibition of this expression can 

reduce cancer cell proliferation and growth. However, TLR4 expression was 

shown to be high in normal bile duct epithelium and inflammatory cells 

surrounding HCC but not in the malignant hepatocytes. These findings 

encouraged us to test whether a similar effect occurred with CC. The same 

experimental approach used in these studies have been now been applied 

examine expression of these TLRs in a small panel of cholangiocarcinoma 

tissue and cholangiocarcinoma cell line. The tissue microarray data revealed 

high expression of TLR4 (Score 2) in liver bile duct epithelium in the majority 

(80%) of normal liver tissue samples whilst its expression was (Score 1) in the 

bile ducts of the remaining cases. In contrast, TLR4 was absent from the 

majority (60%) of CC cases and only mildly or moderately expressed in the 

remainder (40%). Our results would suggest that the loss of TLR4 expression in 

cholangiocytes may promote tumour progression but our sample size is too 

small to reach any precise conclusion.  

 

Only two studies of TLR4 in human cholangiocytes have been reported in the 

literature. Using RT-PCR and immunohistochemistry demonstrated TLR4 

mRNA expression in 2 human intrahepatic cholangiocarcinoma (CC) cell lines, 

CCKSl and HuCCT1 lines and a murine biliary epithelial cell line. They 

speculated that TLR4 in biliary epithelial cells may play a role in the 

immunopathology of the intrahepatic biliary tree in vivo (Harada et al., 2003). 

Another study showed that increased TLR4 mRNA expression and activation of 

NF-kB could be induced in the immortalised human cholangiocyte cell line (H69 

cell line) in response to stimulation by excretory/secretory products of the liver 

fluke O. viverrini.  They proposed that TLR4 recognition of O. viverrini products 

could contribute to the severe inflammation associated with 

cholangiocarcinogenesis (Ninlawan et al., 2010). 

 

The expression of TLR7 was found to be negative in the normal bile ducts of all 

normal livers examined by immunohistochemistry. TLR9 expression was also 

absent in the majority of cases; only one of 10 normal livers in the tissue array 
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demonstrated weak expression of TLR9 in the bile duct epithelial cells.  In 

contrast, however, TLR7 or TLR9 were expressed in the majority (80%) of CC 

and moreover the expression of TLR7 or TLR9 was high in 50% of cases. The 

pattern of expression was predominantly perinuclear for TLR7 and confined to 

the cytoplasm in the case of TLR9, as was previously found in the HCC tissues 

(Chapter 4.3). A similar pattern of TLR7 and TLR9 expression was 

demonstrated in the HuCCT1 cholangiocarcinoma cell line i.e. peri-nuclear 

expression of TLR7 and cytoplasmic expression of TLR9. In addition expression 

of TLR9 was also seen in the membranes of HuCCT1 cells. Altogether these 

findings would suggest that TLR7 and TLR9 might play important roles in the 

progression of CC as was observed with HCC.  

 

The intracellular distribution of TLR7 in the HuCCT1 line was not found to alter 

in response to treatment with IMQ (TLR7 agonist), chloroquine or IRS (both 

antagonists of TLR7 and TLR9). However, a shift in TLR9 distribution from the 

cytoplasm towards the nucleus was observed in response to chloroquine and 

CpG-ODN (TLR9 agonist) treatment. This same observation was previously 

made in the HuH7 hepatocellular carcinoma cell line in response to CpG-ODN. 

The findings would suggest that relationship between TLR9 activity and 

subcellular location is not a simple one. 

In order to throw more light on the subcellular distribution localisation of TLR9, 

co-localisation experiments using markers of endoplasmic reticulum, lysosomes 

and TLR9 were conducted on the HuCCT1 cell line using immunofluorescence 

staining. Analysis of these markers by confocal microscopy revealed a limited 

co-localisation between TLR9 and the endoplasmic reticulum marker calnexin in 

the untreated cell line suggesting that some of the TLR9 is located within the 

ER. The co-localisation of TLR9 with calnexin was more obvious in the 

presence of the TLR9 inhibitors chloroquine or IRS but completely undetected 

in the presence of the TLR9 agonist CpG. These findings would suggest that 

the inactive form of TLR9 is located within the ER and its active form is outside 

of the ER.  These findings are similar to those previously observed in dendritic 

cells and macrophages where TLR9 was reportedly located in the endoplasmic 

reticulum under resting condition and translocated to endolysosomal system 

upon stimulation (Latz et al., 2004 and Leifer et al., 2004). 
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The effects of stimulating or inhibiting TLR7 and TLR9 expression in the 

HuCCT1 cells were examined in order to assess any role these TLRs might 

play in cholangiocarcinogenesis. A significant increase in HuCCT1 proliferation 

was found after 48 hours of treatment with either IMQ (P <0.03) or CpG-ODN (P 

<0.002); TLR7 and TLR9 agonists respectively.  Treatment of the cell line with 

chloroquine for 72 hours resulted in a highly significant reduction in cell 

proliferation. However, no change in the level of cell proliferation was detected 

with IRS treatment after 72 hours treatment. This pattern of expression is similar 

to what was previously seen in the HCC cell line HuH7 and would suggest that 

expression of TLR7 and TLR9 play an important role in the proliferation of CC 

as well as HCC. Autophagic pathway is important in tumourigenesis and LC3B 

protein was highly expressed in CC cell line (Huang and Hezel, 2012). 

Therefore, I studied LC3B expression using immunofluorescence staining; I 

found that in chloroquine treated HuCCT1 cells, LC3B protein was accumulated 

in one pole of the nuclei, whereas with IRS treatment there was no LC3B 

detection. Increased LC3B expression with chloroquine treatment was 

previously reported and it was associated with lysosomal swelling. This was 

confirmed (Yoon et al., 2010).  Increased TLR7 and TLR9 expression in CC and 

undetectable LC3B in IRS (TLR7 and TLR9 inhibitor) treated HuCCT1 or arrest 

of autophagy with chloroquine treatment suggests that TLR7 and TLR9 might 

have role in CC carcinogensis through autophagy. Previous study reported that 

TLR9 is required for autophagy and CpG stimulation induced autophagy in 

cancer (Bertin and Pierrefite-Carle 2008).  The effect of chloroquine on 

inhibition of lung and colon cancer was mentioned (Fan et al., 2006 and Zheng 

et al., 2009).  Another recent study suggested that pancreatic carcinogenesis is 

regulated by TLR7 and its inhibition is protective against tumour progression 

(Ochi et al., 2012).  

 

In order to determine whether the inhibition of TLR7 and TLR9 had the same 

effects on CC proliferation in vivo as well as in vitro, the mouse CC xenograft 

model developed in Chapter 1 was treated for 60 days with either IRS or 

chloroquine.  A significant reduction in tumour volume was found with both 

chloroquine (P <0.01) and IRS (P <0.05) thus giving additional support to the 

idea that TLR7 and TLR9 signaling plays a role in the development of CC. 
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Our data suggest that TLR7 and TLR9 might have a pivotal role in cellular 

proliferation in HuCCT1 cells. Furthermore, chloroquine or IRS treatment 

reduced CC tumour volume in our xenograft model.  These findings merit 

further studies to explore the possibility of exploiting it as a potential target for 

future therapy in CC patients 
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5. General discussion 

HCC is one of the commonest cancers worldwide and one which has a very low 

five year survival rate.  Understanding the mechanisms by which this cancer 

arises are vital if more effective treatment strategies are to be developed.   

The major risk factor for HCC is chronic liver damage caused by viral infection, 

excessive alcohol intake, aflatoxicosis, diabetes or metabolic syndrome.  These 

conditions often result in liver inflammation and cirrhosis, which can persist for 

many years prior to development of HCC or CC.  Chronic liver inflammation is 

therefore considered to be the main predisposing factor for initiation of 

hepatocarcinogenesis.   

 

Disturbances in the gut micro flora are common feature in patients with chronic 

liver disease.  The overgrowth of gut bacteria and increased translocation of 

bacteria from the intestinal lumen to the systemic circulation is believed to 

exacerbate the inflammatory state in patients with chronic liver disease 

(Weistand Garcia 2005 and Almeida et al., 2006).  This has been demonstrated 

in animal models of chronic liver injury in which bacterial translocation has been 

shown to promote liver fibrosis (Seki et al., 2007).  In addition, bacterial 

translocation has been shown to increase with progression of liver fibrosis and 

cirrhosis (Fukui et al., 1991, Lin et al., 1995).  The mechanism of bacterial 

translocation is not entirely clear and probably multifactorial including gut barrier 

dysfunction, bacterial overgrowth and loss of systemic and local immune 

surveillance.   

 

TLRs are known to play a crucial role in the induction of innate immunity against 

microbial pathogens. TLR4, in particular, is activated by the LPS contained 

within the walls of gram negative bacteria which are often elevated in the blood 

of patients with chronic liver disease.  Much evidence has accumulated in 

recent years of an important role for TLR4 signaling in the pathogenesis of 

chronic liver disease.  Mice with mutations in TLR4, for example, are found to 

develop less inflammation and fibrosis in their livers compared to wild type mice 

(Seki et al., 2007 and Aoyama et al., 2010). 
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A number of studies on the effects of gut bacterial translocation and TLR4 

signaling on liver inflammation and cirrhosis have been reported in the literature 

but their effects on pathogenesis of liver cancer have not previously been 

examined.  I therefore set out to study the effects of gut decontamination on 

TLR4 signaling and hepatocarcinogenesis in vivo using a rat model of HCC on 

a background of liver inflammation.  The model was developed by administering 

rats with the carcinogens DEN&NMOR and then examining the effects of 

selective gut decontamination using Norfloxacin on liver inflammation, fibrosis 

and tumourigenesis.  I found Norfloxacin treatment led to a reduction in the level 

of blood endotoxins and a decrease in the expression of hepatic TLR4.  A 

concurrent reduction in liver inflammation and fibrosis was also observed.  

However, the Norfloxacin treatment had no visible effect on the size or 

frequency of tumours developing in the rat livers.  Closer examination of the rat 

livers by immunohistochemistry revealed the malignant hepatocytes do not 

express TLR4 whereas it was expressed in the surrounding inflammatory cells 

and fibroblasts.  A similar pattern of expression was found in the human HCC 

tissues; TLR4 was not expressed in the malignant hepatocytes but it was 

expressed in the inflammatory cells within or surrounding the malignant tumour.  

These findings suggest that TLR4 expression has some role to play in liver 

inflammation and fibrosis but its expression within HCCs does not appear to be 

necessary for their progression.  However, this is does not rule out the 

possibility that TLR4 expression within hepatocytes could have a protective 

effect against malignancy, perhaps, by activating vital tumour suppressor 

pathways or by not allowing the malignant cells to escape immune surveillance.   

 

Following the above findings with TLR4 I examined the possibility that other 

TLRs could be involved in HCC pathogenesis.  A variety of TLRs have been 

implicated in human cancers but few studies have examined the role of TLRs in 

HCC.  I decided to focus our attention on the expression of TLR7 and TLR9 in 

HCC since these have been implicated in a variety of chronic liver diseases and 

liver fibrosis (Gäbele et al., 2008, Stadlbauer et al., 2008, Stärkel et al., 2010, 

Henao-Mejia et al., 2012 and Tarantino et al., 2013).  In addition, TLR7 and 

TLR9 have also been reported to be up regulated in a wide variety of human 

cancers including pancreatic cancer (Ochi et al., 2012), oesophageal cancer 

http://www.ncbi.nlm.nih.gov/pubmed?term=St%C3%A4rkel%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20658750
http://www.ncbi.nlm.nih.gov/pubmed?term=Tarantino%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23489702
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(SHeyhidin et al., 2011), prostate cancer and (González-Reyes et al., 2011).  

Our immunohistochemistry data demonstrated a very strong association 

between high expression of TLR7 and TLR9, and HCC where it was shown to 

be expressed in the vast majority of tumours.  Very little expression of these 

markers was found in normal, cirrhotic or hepatitis human liver.  I also 

demonstrated a significant correlation between high Ki-67 proliferation index 

and high expression of TLR7 and TLR9.  Overall the immunohistochemistry 

data suggested that the expression of TLR7 and TLR9 in HCCs may play a role 

in enhancing HCC proliferation and growth.   

 

Having established a strong link between high expression of TLR7 and TLR9 

and HCC in human liver tissues, in vitro studies were carried out on the HuH7 

human HCC cell line in order to determine whether stimulation or inhibition of 

TLR7 or TLR9 activity has any effect on cell proliferation or whether it can 

influence the activity of other pathways that are known to be involved in HCC 

pathogenesis.  I found that stimulation of TLR7 with IMQ resulted in a significant 

increase in HuH7 cell proliferation but this effect was not seen when the cells 

were treated with the TLR9 agonist CpG-ODN.  The inhibition of TLR7 and 

TLR9 with IRS and chloroquine, respectively, however, resulted in a significant 

reduction in the proliferation of HuH7 cells.  In addition, the data showed that 

the decrease in levels of proliferation were not due to cell death resulting from 

any cytotoxic effect of the drugs. 

 

Our next step was to determine whether the actions of TLR7 and TLR9 on cell 

proliferation were being exerted via activation of the Akt pathway, which is one 

of the most commonly activated pathways human cancer (Chen et al., 2011, 

Zhou et al., 2011 and Xu et al., 2013).  The expression of pAkt protein, which is 

the active form of Akt, was found to disappear almost completely in HuH7 cells 

in response to treatment with the TLR7 and TLR9 inhibitors chloroquine and 

IRS, respectively.  In addition, a slight increase in pAkt protein expression was 

detected in response the TLR7 agonist IMQ.  The inferences I drew from these 

findings was that the proliferation of human HCC cells were under the control of 

TLR7 and TLR9 and that these may be exerting their actions by influencing the 

Akt pathway.   

http://www.ncbi.nlm.nih.gov/pubmed?term=Gonz%C3%A1lez-Reyes%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20978888
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As well as acting as an inhibitor of TLR7 and TLR9 chloroquine is also known to 

interfere with the autophagic pathway which is often used by cancer cells as a 

cyto-protective mechanism at times of stress.  I therefore examined the HuH7 

cells for expression of LC3B which is a marker of autophagy but found no 

evidence that this pathway was activated in this cell line.  Furthermore, it could 

not be induced in response to activation of TLR7 or TLR9 by IMQ and CpG-

ODN, respectively.  These findings were further evidence that proliferation of 

HuH7 cells was under the control of TLR7 and TLR9 and was not being 

influenced by the autophagic pathway.   

 

Following the in vitro work on TLR7 and TLR9 in the human liver tissues and 

HuH7 cell line I wanted to see if the results obtained from these studies could 

be confirmed in vivo using a mouse xenograft model of human HCC and a DEN 

& NMOR-induced rat model of human HCC with cirrhosis.  The administration of 

TLR7 and TLR9 inhibitors led to a significant reduction in liver tumour growth in 

both models of HCC.  In addition, chloroquine treatment was found to have a 

significantly beneficial effect on liver inflammation and fibrosis as well as a 

beneficial effect on liver function in the rat model.  Furthermore, the expression 

of TLR7, TLR9 and NF-kB, Akt and pAkt were found to be reduced in response 

to chloroquine treatment in the livers of the rat HCC model.  These findings 

were concordant with the in vitro data and provided further support for a role for 

TLR7 and TLR9 in HCC pathogenesis.   

 

My studies in CC revealed a similar pattern of TLR expression to the one found 

in the HCCs.  TLR4 was not expressed in the majority of CC but highly 

expressed in the bile duct epithelial cells.  TLR7 and TLR9 were also found to 

be expressed in the majority of cholangiocarcinoma.  Stimulation of TLR7 and 

TLR9 with IMQ or CpG, respectively, resulted in increased proliferation of the 

HuCCT1 cells and inhibition of these TLRs with chloroquine led to a reduction in 

cell proliferation.  Furthermore, inhibition of TLR7 or TLR9 with chloroquine and 

IRS, inhibited tumour growth in a mouse xenograft model of CC.  However, 

unlike the HCC HuH7 cells, the autophagy pathway was also found to be 

activated in the HuCCT1 cell line and treatment of these cultures with the TLR9 
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agonist CpG resulted in elevated expression of the autophagy marker LC3B in 

addition to increasing cell proliferation.   

 

In summary, TLR7 and TLR9 are highly up regulated in human HCC tissues 

and cultures as well as animal models of HCC but their expression is low in 

normal, cirrhotic or hepatitis human livers.  Inhibition of TLR7 and TLR9 is 

associated with a marked reduction in proliferation of human HCC cell cultures 

and xenograft models of human HCC.  It was also associated with a reduction 

in liver inflammation, fibrosis and tumour growth, as well as decreased 

expression of Akt and NF-кB in the animal models of HCC.  Stimulation of TLR7 

resulted in increased proliferation of human HCC cultures.  TLR4 is not 

expressed in human HCC or animal models of HCC.  However, gut 

decontamination led to a decrease of TLR4 and NF-кB expression and a 

reduction in liver inflammation and fibrosis in the animal models.  The pattern of 

TLR4, TLR7 and TLR9 expression and the effects of up regulating or down 

regulating TLR7 or TLR9 in the cholangiocarcinoma were also similar those in 

the HCCs. 

 

Our findings would suggest that the inhibition of TLR7 and TLR9 using 

chloroquine or other antagonists of these TLRs may serve as novel approaches 

for the treatment of HCC and CC.  However, before translation into the clinical 

arena, a more thorough investigation of the precise role(s) played by these 

TLRs in HCC and CC pathogenesis is essential since any therapeutic 

intervention involving the immune system can sometimes lead to unpredictable 

and harmful consequences.  Also, since a large proportion of HCCs and CCs 

arise as within the context of HBV or HCV infection in humans, the effects of 

TLR7 or TLR9 inhibition on viral propagation is another important factor that 

needs to be taken into consideration in any future therapies that may target  

these TLRs. 
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Future research  

The focus of any future studies should include an examination of the following: 

 

 The pattern of TLR4, TLR7 and TLR9 expression in a much larger group 

of human HCCs and CCs from a variety of aetiologies in order to identify more 

precisely the liver cells involved and examine any correlation between tumour 

grade, stage or metastasis and expression of these TLRs.  

 Studies to understand the ligands for TLR7 and TLR9 that may drive 

their stimulation in chronic hepatic inflammation.  

 The effects of TLR4, TLR7 and TLR9 stimulation or inhibition in a much 

larger group of animals and over a longer period of time to look for any 

unforeseeable side effects. 

 The optimum dose of chloroquine which can give a maximum therapeutic 

result without any harmful side effects in animal models. 

 HCC and CC development within TLR4, TLR7 and TLR9 knockout 

animals in order to understand the relationship between the tumour and its 

environment with respect to expression of these TLRs.  

 The links between TLR7 and TLR9 expression and the PIk3/Akt/mTOR 

pathway in order identify the exact targets within these pathways that can elicit 

tumour inhibition 
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Conclusion 

The results presented in this thesis suggest that modulation of TLR7 and TLR9 

may provide a safe and effective approach to the treatment of HCC and CC. 

Appropriate clinical trials should be planned after consideration of the pending 

issues. 
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7. Appendix 

1. Reticulin stain reagents  

- Acidified potassium permanganate 5% potassium permanganate 5ml, 

2% hydrochloric acid 3ml, Distilled water 42 ml.   

- 1%aqueous oxalic. 

- 2.5% ferric ammonium sulphate. 

- Ammonical silver nitrate: in fume hood 10% silver nitrate 5ml then 

concentrate cold ammonium hydroxide was added drop by drop until the formed 

precipitate just redissolve (clear colour).  3%aqueous sodium hydroxide 5ml 

then added to the sliver and ammonium hydroxide and a dark precipitate was 

formed.  Redissolve the precipitate by adding ammonium hydroxide but stop 

adding the ammonium hydroxide with few precipitate granules remaining.  

Dilute to 50 ml with distilled water. 

-  10% formalin in tap water. 

 

2. Picro-Sirius Red staining reagents 

To prepare Sirius red stain: 1% aqueous Sirius RedF3B 10ml was added to 

aqueous picric acid (90ml).  The two solutions were mixed together and allowed 

to stand for 24 hours before use.  The collagen and reticulin were stained red 

with this stain. 

 

3. Endotoxin kinetic LAL assay measurement reagents and material 

 Endotoxin free tips were used for this experiment,  

 LAL Reagent Water, Lyofilized Limulus Amebocyte Lysate LAL reagent 

 Standard Endotoxin (Endosafe Endochrome-K ).   

 Flat bottomed 96 well plate. 

 Endotoxin free basin. 

 

4. Tissue Lysis Buffer 

 0.3gm of Trizma base in 45ml deionised H2O  PH:7.4 

 2.1 ml of 1 molar HCL      

 1 mM EDTA (Sigma) = 19 mg 

 20 µl/ml Protease Inhibitor Cocktail (Sigma)* Added just before use. 

 100 mM Phenylmethanesulfonyl fluoride (PMSF)   
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(10µl / ml stock solution prepared by dissolving 0.172 in 10 ml Ethanol). 

 

5. Preparation of Biuret solution reagents 

 0.75gm of Copper (II) sulfate (CuSO4),  

 3gm of NaK tartarate,  

 25gm of NaOH and  

 500ml deionised water 

 Copper II sulphate (CuSO4) and potassium sodium tartarate (NaK 

tartarate) were added together in 400ml of de-ionised water in a flask and 

placed on hot plate.  Then sodium hydroxide (NaOH) was added slowly with 

constant stirring.  When this was dissolved de-ionised water was added to make 

up 500ml of solution. 

 

6.  Tris-Buffered Saline and Tween 20 (TBST) buffer 

 20 ml of 1M Tris-HCl  pH 7.5      

 29g of  NaCl   

 1 ml of Tween 20  

 De-ionised H2O to 1 litre  

 

7. TNF- α ELISA reagents 

1- Coating Buffer: 0.1M Sodium Carbonate = 7.13g NaHCO3, 3.56g 

Na2CO3 in 1L of deionised H2O pH 9.5 

2-  Phosphate Buffer Solution (PBS) :  8g NaCl, 0.2g KCl, 1.15g Na2HPO4, 

0.2g KH2PO4 (for 10x) in 1L of dioniesed H2O then 1X was prepared by dilution 

1:10 H2O PH 7.4 

3- Wash Buffer: 0.05% Tween 20 in PBS, pH 7.4.   

4- Assay Diluent: 1% Bovine serum albumin (BSA) in PBS, pH 7.2 – 7.4 

(1g/100ml) 

5- Substrate Solution : O-Phenylenediamine dihydrochloride.  (Dissolve 1 

tablet in 0.05M phosphate citrate buffer, add 1 tablet, at final moment add 40uL 

of 30% hydrogen peroxide)(1 tablet dissolved phosphate citrate buffer dissolved 

in 100ml of distilled water). 

6- Stop Solution: 1M H2SO4 (2ml H2SO4 added to 34ml water ). 

http://en.wikipedia.org/wiki/Tris-Buffered_Saline
http://en.wikipedia.org/wiki/Tween_20
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8. Immunohistochemistry antibodies 

Human tissue antibodies 

Rabbit polyclonal anti TLR4 (1:100) was purchased from Lifespam, UK.  Rabbit 

polyclonal anti TLR7 (1:100), mouse monoclonal anti TLR9 (1:200), rabbit 

polyclonal anti ki-67 (1:100) and rabbit polyclonal anti VEGF (1:100) were 

purchased from Abcam, UK. 

Animal tissue antibodies 

Antibody for animal tissue; Rabbit polyclonal anti TLR4 Lifespam, UK, TLR7, 

TLR9 and smooth muscle actin (SMA) (1:100) (Abcam, UK). 

 

9. Micro BCA Kit Reagents (Pierce, thermoscientific, UK) 

Reagent A 

 NaOH solution.  containing: 

 Na carbonate  

 Na bicarbonate 

 BCA 

 Na tartrate 

Reagent B 

4% cupric sulphate 

 


