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Abstract 

 

This thesis describes the use of a spatially explicit model to investigate the 

economies of scale associated with district heating technologies and 

consequently, their future technical potential when compared against individual 

building heating. Existing energy system models used for informing UK 

technology policy do not employ high enough spatial resolutions to map district 

heating potential at the individual settlement level. At the same time, the major 

precedent studies on UK district heating potential have not explored future 

scenarios out to 2050 and have a number of relevant low-carbon heat supply 

technologies absent from their analyses. This has resulted in cognitive 

dissonance in UK energy policy whereby district heating is often simultaneously 

acknowledged as both highly desirable in the near term but ultimately lacking 

any long term future. 

The Settlement Energy Demand System Optimiser (SEDSO) builds on key 

techno-economic studies from the last decade to further investigate this policy 

challenge. SEDSO can be distinguished from other models used for 

investigating UK heat decarbonisation by employing a unique combination of 

extensive spatial detail, technical modelling which captures key cost-related 

nonlinearities, and a least-cost constrained optimisation approach to 

technology selection. 

The study yields a number of original contributions to knowledge that are 

relevant for policymakers. Results described in the thesis suggest that the 

marginal economics of UK district heating schemes are significantly improved 

when compared against individual heat pumps rather than gas boilers. This is 

relevant because under current policy direction individual heat pumps are likely 

to be the major counterfactual option to district heating post-2030. Results also 

illustrate how assumptions about technology availability can drive large shifts in 

optima, and that utility-scale electric heat pumps could be a key enabling 

technology for district heating to supply a large fraction of UK heat demand in a 

post-gas heating future.  
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1.0 Chapter 1 Summary 

The decarbonisation of economic activity through increased efficiency and the 

deployment of renewable electricity and heat technologies are emerging as 

features in the national energy policies of governments around the world. 

Policymakers and energy planners are presently confronted with a potentially 

bewildering array of options regarding the technologies to be used and the scale 

at which they should be deployed, with mixed messages coming from different 

quarters regarding the “best” options to pursue. The UK is no exception. 

While there is a temptation is to look for ‘magic bullet’ solutions within narrow 

groups of technologies, the reality is that a mixture of approaches at both 

utility-scale and at the level of individual buildings is likely to be required to 

substantially decarbonise the UK energy system for a 2050 horizon. One of the 

most useful ways of evaluating the myriad potential combinations of 

technologies at different scales is to approach the problem using a 

computational model.  

This chapter gives an overview of the drivers underpinning the UK’s current 

approach to climate change mitigation within energy policy (Section 2.0). 

Technological approaches for decarbonising the stationary part of the economy, 

including buildings and industry, are discussed, and a number of major cross-

cutting uncertainties identified (Section 3.0). A number of research questions for 

this doctoral thesis are then posed (Section 4.0).  

 

2.0 Research Context 

This section gives a concise overview of the global and national context for the 

study, highlighting the challenges faced by the UK in attempting to meet 

ambitious targets for emissions reductions and exploring some of the potential 

solutions and their attendant complexities. 

 

2.1 Global Energy Context 

Since the year 1900, global energy demand has shown a rapid and sustained 

increase, growing by more than a factor of 20 (BP 2011). By the 2030s, energy 
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demand is projected to have increased by an additional 30-40% over current 

levels (IEA 2010b; BP 2011). The last century also saw the widespread 

urbanisation of human settlement patterns, a trend which continues to the 

present day. More than half of the world’s population already lives in cities, and 

over 2 billion more are projected to be added to the urban population in the 

period to 2050, mostly in Asia and Africa (UN DESA 2011). The global economy 

is transitioning from an era characterised by explosive growth and largely 

unfettered resource use to one where resources are now becoming constrained, 

a trend documented by numerous prominent thinkers since the middle of the 

20th century (Hubbert 1956; Ehrlich 1968; D. H. Meadows et al. 1972; Diamond 

2005; Bartlett 2004; Martin 2007; Friedman 2008; Klare 2008). Energy is a 

resource required for a satisfactory quality of life, as evidenced by the strong 

correlation between energy use in different countries and their respective UN 

Human Development Index rankings (Pasternak 2000; IEA 2004b; Dias et al. 

2006; Gaye 2007; Martínez & Ebenhack 2008). Forecasts point towards an 

increasing global appetite for energy resources as developing countries aspire to 

reach living standards on par with those in wealthy OECD1 nations (IEA 2009; BP 

2011).  

The explosive growth in global energy demand has had widely recognised 

environmental consequences. The links between human activity and 

anthropogenic climate change are widely accepted (IPCC 2007b). The focus of 

debate internationally is no longer fixated on the fundamental science but 

instead centres on the uncertainties surrounding the speed and severity of 

potential effects on natural ecosystems and on the level of response that is 

appropriate, given the potential threats posed to human civilization (IPCC 

2007a; Weitzman 2009) To date, a number of high profile attempts to forge a 

binding global agreement on emissions mitigation have either failed or met with 

only limited success. For example, the Copenhagen Accord, hastily produced by 

a number of UNFCCC parties in December 2009, proposes that warming of the 

planetary climate system is limited to 2°C (UNFCCC 2010) but has no binding 

                                                             

1
 Organisation for Economic Co-operation and Development (OECD), www.oecd.org 

http://www.oecd.org/
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legal basis. Current global emissions commitments are actually likely to result in 

warming of 4°C (Potsdam Institute for Climate Impact Research & Climate 

Analytics 2012). To have any chance of achieving a 2°C target, it is envisaged 

that global greenhouse gas emissions will be required to peak before 2020 and 

decrease rapidly in the following years (Met Office Hadley Centre 2009). This is 

increasingly viewed as an unlikely proposition, and some climate scientists are 

now arguing for policy to be driven by targets that are more realistic and 

achievable (Anderson & Bows 2008; Anderson & Bows 2011; Anderson et al. 

2008), regardless of whether they satisfy aspirations to limit temperatures to 

such notional target values.  

Rapidly rising energy use intensity concentrated in urban areas at a time of 

emerging resource scarcity poses significant challenges for governments and 

urban planners, as evidenced by recent high profile power outages in India 

(Nayak et al. 2012; Goswami 2012) and Brazil (Heffner et al. 2010) that have 

affected millions. Meeting a large and sustained growth in energy demand is 

already a challenge without the additional complications posed by a desire to 

mitigate against climate change risks. In recent years booming economic 

growth in developing nations effectively outstripped the capability of primary 

supply chains to meet demand, largely as a result of underinvestment in 

infrastructure, which lead to price volatility (Kesicki 2010). Long-term average 

energy prices are projected to continue escalating (IEA 2010), with an influential 

review of global oil depletion studies revealing “…a growing consensus that the 

age of cheap oil is coming to an end” (Sorrell et al. 2009, p.5). Resource security 

is high on the agenda for many countries, and an underlying current of resource 

nationalism can be observed in many high-profile international disputes 

(Lochner 2011; Benwell & Dodds 2011; Smith 2012). 

As a result of the abovementioned factors, energy as a political and social issue 

has become a subject of huge interest globally. A large body of research is 

focused on energy system change, and establishing whether or not shifts in 

established paradigms can balance the competing demands of meeting energy 

needs, limiting climate change, and maintaining acceptable prices to end users. 

Energy system change is a complex issue that has behavioural, economic, and 
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technological aspects. There appears to be little political appetite within 

developed countries to mandate or impose changes in lifestyle that would ration 

energy demand, and as a result the prevailing trend in energy policy is to focus 

research investment into technology based solutions. As a result, the focus of 

this doctoral research thesis is on the techno-economic issues surrounding 

energy system change, although this is not to diminish the importance of 

behavioural modification. 

Alternatives to fossil fuels, such as renewable systems that convert ambient 

environmental energy into electricity and heat without emissions of Greenhouse 

Gases (GHGs), are one of the main technologies of interest in energy research. 

Technologies that improve energy efficiency in the demand-supply system, 

including existing fossil generation are another. A third area of significance is on 

technologies that could potentially capture GHGs at source and then sequester 

them without any release to atmosphere. A limited number of European 

countries have to date implemented successful policies aimed at increasing the 

share of renewable energy in their supply mixes (IEA 2008a; IEA 2011a), with 

some even electing to explore the elimination of fossil fuel use from their 

economies entirely (Umweltbundesamt 2010; Rambøll Danmark & Aalborg 

Universitet 2010). 

 

2.2 UK Energy Context 

The absence of a binding global framework for climate change mitigation has 

not prevented many governments from proposing their own national targets for 

reducing GHG emissions. The rapidity and total ambition of such targets varies 

between countries, with some nations adopting absolute emission caps with 

others aiming for reductions expressed as units of GDP. If a global deal on 

climate mitigation is eventually reached, contemporary geopolitics appears to 

dictate that wealthier countries will need to ultimately contribute more to 

emissions reductions than the global average. This could well mean that 

wealthier OECD nations may eventually need to aim for total decarbonisation of 

all energy use within their borders to achieve targets on a globally equitable 

basis. The United Kingdom was the first country to commit to a legally binding 
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target on domestic greenhouse gas emissions, enshrined in the UK Climate 

Change Act 2008. The target for 2050 is currently set at a reduction of 80% 

relative to 1990 levels (HM Government 2008). This was justified on the basis 

that it would represent a proportionate response towards an overall global 

reduction of 50% below 2008 levels, providing room for relatively less stringent 

targets in the developing world (CCC 2008).  

The drive towards decarbonisation of the UK energy system is becoming 

manifest through a mixture of legislation, market interventions and prescriptive 

planning policies (DECC 2009c). The government is in the process of exploring 

different technological pathways towards achieving its targets, with 

improvements in energy efficiency likely to be required in parallel with the 

decarbonisation of energy supply (DECC 2010a). UK supply system 

decarbonisation can in principle occur not just within the electrical distribution 

network but also within gas and heat networks (Wolfe 2008). Low-carbon 

generation of energy for power, heating and cooling can be argued to fulfil the 

dual policy objectives of increasing energy security and abatement of GHGs 

(Grubb et al. 2006). 

The UK is a mature economy in an advanced state of economic and urban 

development, and is confronted by a number of particular challenges to the 

decarbonisation of its energy system. Energy distribution is achieved through 

well-established infrastructure that is supplied predominantly by fossil fuels, 

either directly or indirectly. The energy supply sector is highly liberalised and 

does not operate under direct state control, so the government cannot simply 

mandate changes to the way in which the existing system operates. Instead, 

government must legislate and develop market intervention policies with a view 

towards achieving its objectives in this area. Additionally, much of the building 

stock is ageing and was established well before the introduction of modern 

construction standards and regulations. Energy use in buildings accounts for 

44% of all UK emissions. Furthermore, at current rates of demolition and 

replacement, it is estimated that 60% or more of all existing buildings will still be 

standing in 2050, and will require significant refurbishment if substantial 
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contributions towards emissions reduction are to be achieved (The Carbon Trust 

2008).  

 

3.0 Technological Approaches to Decarbonisation 

One of the major policy challenges facing the UK is how to decarbonise energy 

used for heat in the stationary part of the economy, such as buildings and 

industry. Heat energy use is responsible for 47% of UK national GHG emissions 

(DECC 2009b). Other sectors such as transport are also significant sources of 

emissions, but may be harder to decarbonise. The heat sector is an area believed 

to offer significant reduction potential by government (DECC 2009b; DECC 

2009c; DECC 2009d; CCC 2008; CCC 2010), industry (CBI 2010; Green Alliance 

2010; IMechE 2009; UKBCSE 2010) and academia (UKERC 2009; Mackay 2008). 

Building sector heat in particular is seen as an area where deep emissions 

reductions are theoretically possible at relatively low or even negative net costs 

(McKinsey & Company 2007; Levine et al. 2007; Ürge-Vorsatz et al. 2007), 

though contextual constraints are certain to limit the extent to which these can 

be fully realised in practice (Lowe 2007a).  

As a result of the magnitude of the challenge posed by the existing building 

stock, the UK cannot simply introduce new low-energy building standards and 

hope to meet its targets through demand-side efficiency alone. Achieving heavy 

emissions reductions in the buildings sector is likely to not only require energy 

efficiency measures, but also changes in supply vectors that deliver heat from 

connected infrastructure (Shorrock et al. 2005; Johnston et al. 2005; Lowe 

2007b; Hinnells 2008). Significant shifts in established heat demand and supply 

paradigms may be necessary in the period to 2050 to achieve proposed national 

targets.  

Technological approaches under active consideration by policymakers for the 

future decarbonisation of the UK heat sector include mass deployment of 

energy efficiency measures (DECC 2009c; DECC 2010a), the electrification of 

heating with decarbonised grid electricity (CCC 2008; CCC 2010; NERA & AEA 

2010), more widespread deployment of district heating networks (HM 

Government 2011; DECC 2012c), and the injection of gasified biomass into the 
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existing gas grid (National Grid 2009; Progressive Energy & CNG Services 2010; 

Redpoint Energy 2010; Delta Energy & Environment 2012). Each technological 

approach mentioned carries with it specific risks, discussed below. 

 

3.1 Energy Efficiency 

Energy efficiency measures are key to achieving deep cuts in UK emissions 

(Ekins et al. 2013). There is however uncertainty over future rates of adoption for 

energy efficiency and whether industry and government can successfully 

incentivise their uptake through legislative or financial instruments such as the 

“Green Deal” provisions in the Energy Act 2011 (HM Parliament 2011). While 

many new electrical appliances are more energy efficient than older models, the 

appetite of consumers to utilise more and more devices in their homes shows no 

signs of slowing down. Domestic power consumption from appliances has 

doubled since the mid-1970s (EST 2006; EST 2011), and it is unknown whether 

the escalating trend will continue in the period to 2050. The ability of 

government and industry to overcome so-called “hard to treat” buildings that 

are not cost-effective for owners to retrofit is also unknown (EEPfH & Impetus 

Consulting 2008). Ownership structures in the non-domestic sector are 

particularly complex and “split incentives” between landlords and tenants may 

continue to act as a barrier to the uptake of energy efficiency (DECC 2009b). 

Finally, the extent to which the rebound effect will result in take back from 

energy efficiency as increased comfort or utility and not translate into emissions 

savings is difficult to assess (Sorrell 2007).  

 

3.2 Individual Electric Heating 

Electrical heat pump performance is temperature dependent, with air or ground 

source heat pumps achieving lower coefficients of performance in cold 

conditions. The future widespread electrification of heating using heat pumps 

raises the prospect of heavy peak demands occurring in winter, potentially 

exceeding design loads for existing power network infrastructure (Pöyry 2010; 

Speirs et al. 2010a; Lowe 2011). Reinforcement of the electrical transmission and 



 28 

distribution network will require huge investments to be made over a sustained 

period (Ofgem 2009; Ofgem 2010b). The deployment rate and costs of such grid 

reinforcement are poorly defined, and may constrain the future potential of 

individual electric heating.  

 

3.3 District Heating Networks 

Many policy scenarios show the carbon content of electricity falling rapidly in 

the period to 2030 (CCC 2010; DECC 2009c; National Grid 2012a). In the near-

term, the use of natural gas for heating offers lower CO2 emissions than 

electricity, but its abatement potential will diminish over time if the marginal 

plant becomes progressively less CO2 intensive. Beyond 2030, DECC2 and the 

CCC3 believe that heat networks will need to find alternative sources of heat 

other than gas in order to deliver emissions savings relative to grid electricity. 

There are uncertainties surrounding the future availability of low carbon 

combustible fuels such as biomass, so other sources, such as electric heat pumps 

or solar thermal generation may become part of the energy mix supplying heat 

networks. Thermal power stations are also postulated as a significant future 

source of sufficiently low cost, low carbon heat. The future potential of heat 

networks may be constrained if it becomes difficult or not cost-effective to 

strategically locate thermal power stations so that they operate in CHP mode 

and serve nearby cities with waste heat (CCC 2010; DECC 2010a), if carbon 

pricing or other restrictions on fossil-fired electricity generation limit the 

amount of electricity generated by fossil-fired CHP, or if integration with utility-

scale heat pumps, solar thermal generation, and other sources of low carbon or 

waste heat is not effectively realised. Energy efficiency measures on the 

demand side may also result in lower connected loads per customer, potentially 

                                                             

2
 The UK Government’s Department of Energy and Climate Change (DECC) 

3
 The Committee on Climate Change (CCC) is a third-party policy advisory group set up as part of 

the UK Climate Change Act 2008 to monitor and advise Government on progress towards 

meeting emissions targets 
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changing the economics of heat network deployment in favour of individual 

solutions in marginal areas. 

 

3.4 Individual Gas Heating 

As with gas-fired heat networks, a future role for individual gas heating will 

depend on its potential to deliver carbon savings relative to grid electricity. 

While at present the carbon intensity of North Sea natural gas is roughly 

200gCO2/kWh, future factors may cause the carbon content of the UK gas grid 

to rise or fall. An increase in overall intensity may result if a significant portion of 

future gas supplies come from imported LNG that has been transported over 

long distances or is obtained using energy intensive extraction processes like 

shale gas fracking. Conversely, a reduction may occur if attempts to blend 

admixtures of natural gas with biomethane or hydrogen are successful. 

Important constraints for lowering carbon intensity include the availability of 

bioenergy feedstock, the costs of biomethane or hythane production, and the 

technical viability of their transmission through the existing network. Biogas, in 

particular, may face transmission difficulties at higher pressures (NERA et al. 

2009). A large body of prominent energy system modelling work shows 

conclusively that without measures to reduce the carbon content of natural gas 

the existing gas grid can play only a limited role in decarbonising the UK 

economy in line with the targets set out in the UK Climate Change Act 2008 

(Ekins et al. 2013). 

 

3.5 Major Uncertainties 

In addition to technology specific risks discussed above, the future landscape of 

the UK energy system is subject to a number of significant uncertainties that 

may radically affect the uptake potential of all technologies. Macroeconomic 

conditions and the future performance of the UK economy will affect 

investment conditions for energy infrastructure. For example, the appetite of 

future investors to take on risk may directly influence the discount rates applied 

in project analyses and affect what financing mechanisms are available. The 
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future regulatory landscape of the energy industry, and the success of any 

measures that may be introduced to overcome institutional barriers to less-well 

established technologies, such as district heating, are unknown. 

Future energy prices are another major uncertainty. Producing forecasts of 

future fossil fuel prices is acknowledged as a significant challenge (DECC 2011a), 

where “analysis of the costs and benefits of various policies is completely 

changed by different assumptions about gas prices” (Policy Exchange 2012, p.7). 

Detailed modelling work by Anandarajah and McGlade shows a potential 1.8:1 

variation between high and low UK gas price scenarios for 2050 (Anandarajah & 

McGlade 2012) and the government’s own estimates vary by 2.2:1 between 

extremes (DECC 2011g). Future bioenergy pricing, availability, and optimal  

allocation between the transport, industry and building sectors are also highly 

uncertain (DECC 2009c; CCC 2008; CCC 2010; DECC 2010a; Slade et al. 2010; 

Slade et al. 2011; NERA & AEA 2010). As an illustration, the future availability of 

indigenous bioenergy varies by a factor of two between the “Medium 

Abatement” scenario in the CCC Fourth Carbon Budget report (CCC 2010) and 

the “Gas Futures” scenario work carried out for the Energy Networks 

Association (Redpoint Energy 2010). The availability of biomass in UK MARKAL 

modelling of low carbon futures also varies by “almost a factor of 2” (Ekins et al. 

2013, p.54). 

New generation and distribution infrastructure are highly capital intensive 

investments, with real equipment costs potentially able to rise as well as fall 

over time. The costs associated with widespread decarbonisation of grid 

electricity and the mixture of generation sources that will ultimately be 

deployed are unknown, with policymakers relying on projections from detailed 

models (Pöyry 2010). Most scenarios for grid decarbonisation rely on 

assumptions about the eventual feasibility of CCS technology and build rates for 

large-scale wind and nuclear energy production. The future viability of CCS at 

the requisite scale (UKERC 2009), the potential rates of deployment, and the 

final costs remain uncertain (CCC 2008; CCC 2010; DECC 2010a). Future 

projections of offshore wind energy deployment are uncertain, with costs 
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having already risen significantly and unexpectedly4 in the period 2005-2009 

(UKERC 2010). Construction delays and cost overruns in TVO’s Olkiluoto 3 and 

EDF’s Flamanville 3 reactors (Ruuska et al. 2011; Kessides 2012) have raised 

doubts over the long term economic viability of new nuclear power (Grubler 

2010; Thomas 2010; Thomas 2012).  

Political decisions to accelerate or delay action on climate mitigation measures 

may ultimately represent the greatest single element of uncertainty in climate 

and energy modelling (Rogelj et al. 2013). The long-term commitment of 

successive UK governments to achieving their own targets in the period to 2050 

is essentially indeterminate. The UK’s latest Electricity Market Reform White 

Paper (DECC 2011e) includes a provision for “grandfathered” permits for new 

fossil fuel power stations to emit at 450gCO2/kWh through to 2045 (DECC 

2012b). This is a move which is designed to provide policy support for gas 

generation despite concerns that this runs the risk of hugely increasing the costs 

of meeting national carbon targets in future, perhaps even making them 

ultimately impossible to achieve (Green Alliance 2011; Ekins 2012). The latest 

UK Energy Bill (HM Government 2012) has been passed without any emissions 

targets written into the legislation, with no clear targets beyond 2020 (UKERC 

2012). The CCC has strongly criticised the "apparently ambivalent position of the 

government about whether it is trying to build a low-carbon or a gas-based 

power system" (CCC 2012, p.1). UKERC5 have noted that there appear to be no 

well-founded arguments against the introduction of a decarbonisation target 

“unless the intention is to repudiate the provisions of the Climate Change Act at 

some future date” (Ekins et al. 2013, p.3). 

 

                                                             
4
 In retrospect, many of the underlying factors, such as the difficulties arising from building 

turbines in deeper and more challenging waters, could have been anticipated. 

5
 The UK Energy Research Centre (UKERC) is a flagship research consortium of major British 

university academic departments whose focus is on providing evidence for policy purposes in the 

energy field. UKERC has been in operation since 2004. 
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4.0 Research Goals 

At the time of writing, the optimal mix of heat decarbonisation technologies and 

the scale at which they are to be deployed to achieve UK national emissions 

targets remains indeterminate. There is a pressing need for further research in 

this area to support evidence based decisions for policy purposes. The potential 

of district heating networks in particular, to facilitate the abatement of 

emissions at lower costs than the alternatives in many densely populated cities, 

remains an area of on-going investigation that policymakers acknowledge to be 

under-researched in a UK context.  

District heating technology employs thermal energy from centralised plant and 

distributes it to end users using a network of hot water pipes, commonly called a 

heat network6. When deployed in appropriate areas, district heating offers a 

number of potential advantages over individual building heating. By leveraging 

economies of scale in more densely populated urban areas, district heating can 

abate carbon emissions at lower costs than alternatives (CLG & DECC 2010; 

Pöyry & AECOM 2009), and the heat network itself is an investment that is not 

tied to any particular fuel source, which lends the system great flexibility 

(Kristjansson 2009). It has been argued that district heating may offer a more 

practical solution for addressing the hardest to retrofit elements of the UK 

building stock than competing alternatives (BioRegional 2012).  

The earliest significant UK studies on district heating potential were carried out 

in the mid-1970s (Combined Heat and Power Group 1977; Combined Heat and 

Power Group 1979) and to date the majority of UK district heating schemes have 

been supplied by natural gas generators operating in Combined Heat and Power 

(CHP) mode to deliver primary fuel savings by cogenerating thermal and 

electrical energy simultaneously. Moving forward, there is increased interest in 

the potential for district heating to contribute to carbon emissions reduction 

                                                             
6
 The terms “district heating” and “heat network” are used interchangeably in this doctoral 

thesis, and are used to refer specifically to the pipe network itself which is independent of the 

heat source. Where clarity is sought regarding the heat source, any description in the text will 

refer to it explicitly i.e. “gas district heating”, “heat network supplied by utility-scale heat 

pumps” etc. 
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targets though the use of alternative fuels, such as bioenergy, large-scale solar 

thermal, and utility-scale heat pumps  (Epp 2009; Marstal Fjernvarme DK 2012; 

Dalenbäck 2012; Blarke & Lund 2007; Dyrelund & Lund 2009; Mancarella 2009; 

Girardin et al. 2010).  

District heating networks are pervasive across much of Europe and are viewed 

as a key technology for reducing emissions (IEA 2004a; Swedish District Heating 

Association 2009; Nordic Energy Perspectives 2009; Ericsson & Svenningsson 

2009). District heating however has never achieved the same level of prevalence 

in the UK. Currently it is estimated that only 2% of the UK’s total heat demand is 

met through district heating (DECC 2012c). Several useful references can give 

the reader an overview of the historical regulatory and market barriers faced by 

district heating in the UK, which can partially explain low uptake of the 

technology to date (Nelson et al. 1996; Toke & Fragaki 2008; Rüdig 1986; 

Marshall 1980; Hawkey 2009). The UK national policy on district heating 

technology suffers from a lack of clarity. On the one hand, government is keen 

to remove market barriers to heat network deployment (CLG & DECC 2010) and 

has promoted the technology as a cost-effective means of meeting “zero-

carbon” building targets (Zero Carbon Hub 2011). The government supports 

heat network deployment aggressively through prescriptive local planning 

policies in major UK cities cf. The London Plan (Greater London Authority 2011) 

and through financial mechanisms such as the Renewable Heat Incentive (DECC 

2011f) and the Community Infrastructure Levy (CLG 2011a).  

However, on the other hand, independent policy advice to government to date 

has broadly concluded that district heating is a technological dead-end, a legacy 

paradigm that is only able to offer a limited contribution towards future GHG 

reduction targets. The optimal technology development pathway to a low 

carbon economy is believed to be mass electrification of individual building 

heating systems combined with heavy decarbonisation of centralised grid 

supply (CCC 2008; CCC 2010; UKERC 2009) a paradigm which is sometimes 

referred to as the “all-electric future” (Speirs et al. 2010a). Major policymaking 

groups have advised a cautious approach towards deployment of district 

heating (CCC 2010), despite simultaneous acknowledgement from government 
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that “up to half of the heat load in England is in areas that have sufficiently 

dense heat loads to make heat networks economically viable” (DECC 2012c, 

pp.19–20). 

The apparent confusion over the extent to which government should support 

district heating as a future supply system option is born of a crisis of confidence 

over estimates of total potential. The Government’s latest carbon plan 

presented to the UK Parliament has four main scenarios for 2050, within which 

networked heat deployment varies from 0-50% of building demand (HM 

Government 2011, p.19). It is difficult to conceive how the government could 

send a more ambiguous signal regarding its long-term intentions in this area. 

There is a weak understanding of the systemic impacts of adopting district 

heating in an energy system with a high proportion of low-carbon electricity in 

the supply mix. There are also doubts as to whether the liberalised UK market 

for energy would allow the setting of adequately long contract lengths to 

support the long term investments required for heat network development.  

A major contributing factor to uncertainty over district heating uptake potential 

and the range of conflicting views over its future utility is that models used to 

establish its techno-economic viability are highly complex. Heat network 

infrastructure is an energy vector rather than a generation technology in its own 

right. The pipe network itself is largely independent of the energy inputs. 

Different prime movers and fuels can all be used to supply the heat network, 

which implies a wide variation in system costs and performance. There is a huge 

difference for example, between a network supplied by waste heat from a large-

scale thermal power station running on coal and one connected to a small 

containerised reciprocating CHP engine running on natural gas. The two 

represent quite distinct technical propositions, despite sharing the use of the 

terms “district heating” and “combined heat and power”.   

District heating cannot be assessed independently of the other system 

components involved in energy conversion and distribution, such as generators 

and end-user equipment. Whole-system analysis is required that takes into 

account the entire energy conversion chain from generation through to final 

distribution, and which captures contextual factors such as fuel pricing. 



 35 

Modelling district heating supplied by sources running in CHP mode also 

necessitates that the electricity system is adequately represented. Needless to 

say, the electricity system is already a highly complex system to model on its 

own. All of these factors conspire to make the exploration of district heating 

costs and potential inherently less analytically tractable than work which 

focuses on individual technologies in the electricity sector alone, such as recent 

levelised generation cost studies (Mott MacDonald 2010; Parsons Brinckerhoff 

2011; Arup 2011). 

Finally, the economics of heat network deployment are also dependent on local 

spatial characteristics, such as the density and clustering of heat users in 

different areas. Heat energy use crosses boundaries between the domestic, 

commercial and industrial sectors, requiring spatial data on all three to correctly 

assess the distribution of demand. This leads to models that are not only 

structurally complex, as outlined above, but data-intensive.  

Due to the complexity in modelling required, past studies of district heating 

potential have tended to frame their work within a relatively narrow field of 

possible future scenarios for the development of the UK energy system. For 

example, assumptions are generally made that fuel prices follow central trends 

and that technical performance of certain key technologies improves while unit 

costs fall. Additionally, the uncertainties around the integration of district 

heating with future low carbon heat sources has meant that some important 

technologies have been left out of many analyses. These factors have lead to 

projections of district heating potential that fall within a limited range.  

This doctoral thesis aims to explore the optimal combinations of technologies 

used for decarbonisation of the UK heat sector under a future landscape of 

uncertainty, with a particular focus on illuminating the unresolved issues 

surrounding district heating. The study utilises a spatially explicit computational 

model developed by the author, the Settlement Energy Demand Supply 

Optimiser (SEDSO). This research will inform policymaking in the built 

environment by investigating the optimal technological end states for heat 

sector decarbonisation within national constraints such as limited availability of 
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indigenously sourced biomass and a requirement to achieve an 80% reduction in 

overall emissions relative to 1990 levels by 2050. 

The key research questions posed for the study are: 

1. In 2050, how might economies of scale in heat decarbonisation 

technologies affect their suitability for deployment in different 

settlement types, characterized by spatial factors such as heat 

density? How does the tipping point between individual and 

district heating change in response to contextual factors? 

 

2. In future resource-constrained energy scenarios for the UK, 

what will be the cost-optimal balance between different 

technological approaches to heat sector decarbonisation such as 

individual electric heating, individual gas heating, and district 

heating networks? 

The study focuses specifically on exploring the research questions in the context 

of decarbonizing the UK energy system by the year 2050. This is because the UK 

Government has chosen to express its long-term environmental goals in terms 

of a quantitative reduction in emissions against a historical baseline rather than 

say, seeking to reduce or eliminate fossil fuels by a target date, or aspiring to 

limit cumulative emissions over time. Transformation of the energy system to 

achieve policy objectives is likely to incur significant costs for the economy as a 

whole and there is ongoing interest from UK policymakers on the relative costs 

of different pathways towards national targets. As a result of this national policy 

context, the doctoral study interrogates the key research questions largely from 

the perspective of economic optimisation in a decarbonised future, looking 

specifically at system costs under different carbon targets. Key endogenous 

drivers therefore include the costs of individual technologies, the level of energy 

demand in the system and the cost and carbon content of energy supplied. 

The 2050 time-horizon for the study is beyond the economic operating lifetime 

of many current technical components of the energy system. On the supply side 

for example, over the span of almost four decades it is conceivable that almost 

all of the existing generation, distribution and conversion plant and equipment 
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could be replaced. On the demand side, there is the possibility that major 

improvements in energy efficiency could be achieved. Institutional, regulatory 

and market structures could also conceivably evolve or be reformed to support 

different technological paradigms to the present day status quo. This gives 

scope for the investigation to consider major changes to the system which may 

not be feasible if the focus was on a nearer term timescale. Key factors 

considered include the unit intensity of energy demand in buildings and 

industry, the vectors by which heat demand is supplied from connected 

infrastructure, and the carbon content of grid electricity arising from the power 

sector. 
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Chapter 2 – Model Structure 
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1.0 Chapter 2 Summary 

The Settlement Energy Demand Supply Optimiser (SEDSO) is a model 

developed specifically for this doctoral study. The in-house development of such 

a model has been necessary because most prominent existing approaches to 

national energy system modelling employ conceptual architectures that limit 

their ability to map useful niches for heat network systems.  

To place the model development in context, this chapter starts by presenting a 

short literature review on energy models and the science of drawing inferences 

from modelled systems (Section 2.0). The limitations of existing modelling 

practice with regard to answering the research questions are then discussed 

(Section 3.0). The structure of the SEDSO model used for the work presented in 

this doctoral thesis is then described (Section 4.0) and the sources of data used 

are identified (Section 5.0). 

 

2.0 Philosophy of Modelling 

This section briefly addresses the underlying philosophy of model based 

knowledge and the epistemic basis for drawing conclusions from models. This is 

important because it frames the approach to be taken when interpreting results. 

 

2.1 Use of Models 

The Oxford English Dictionary defines ‘model’ as a “simplified description, 

especially a mathematical one, of a system or process, to assist calculations and 

predictions” (Simpson & Weiner 1989). Models are mathematical constructs 

that provide simplified representations of reality which can be used to better 

understand complex real-world systems (Godfrey-Smith 2006; Weisberg 2007). 

Models are now generally expressed as computer programs in order to deal with 

system complexity and facilitate their repeated use. Winsberg expresses the 

process of using computer models and drawing conclusions from the results as a 

series of multiple steps that must be performed in sequence (Winsberg 2009): 

1. Choosing a model 
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2. Finding a way of implementing that model in a form that can be 

run on a computer 

3. Studying the output of the resulting algorithm 

4. Using this entire process to make inferences 

5. Trying to justify those inferences 

An important “step zero” in the above process which Winsberg does not list 

explicitly is of course, the formulation of the question which the model hopes to 

answer. Computer models can be viewed as extensions of the “mental models” 

which humans use to construct images of the world around them and to 

perceive the interactions and relationships that take place in their daily lives 

(Forrester 1971; Sterman 2002). The human mind however, typically struggles to 

construct mental models that involve large numbers of variables interacting in a 

dynamic and non-linear fashion. By outsourcing this thinking process (steps 1-2, 

above) to a machine, the modeller’s brain is freed to study and interpret the 

output (steps 3-5, above) before using it to make a more informed decision. It 

can be argued that the use of computer models is fundamental to integrating 

complex systems into human decision-making so that long-range strategies can 

be constructed that do more than just react to recent near-term stimuli 

(Sterman 2002). Models are acknowledged as powerful decision-assist tools in 

the context of urban sustainability studies (Tweed & P. Jones 2000). Techno-

economic modelling is a well-established strategy for informing key decisions in 

the energy policy arena (Strachan et al. 2009). 

 

2.2 Drawing Inferences from Complex Models 

It has been argued that manipulating theoretical computer models to observe 

their behaviour can be just as valid from an epistemological standpoint as 

physical experimentation (Parker 2008). However this is only held to be the case 

when the computer model is able to replicate the real-world system to a very 

high level of detail (Norton & Suppe 2001). When modelling a system as large 

and as complex as the UK national heat sector, such detailed information is 

unfortunately not available. A lack of real-world data on urban energy 

consumption for model building has been identified as a significant barrier to 
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evidence-based policymaking in the UK (Shackley et al. 2002). However, real 

data is not always critical to creating useful models, provided that assumptions 

are grounded in reality and that the models achieve an “accurate representation 

of the behaviour, situations or interactions relevant for our questions” (Morgan 

2002). Modellers themselves also play a crucial role in overcoming this limitation 

during the interpretative stage of the process. Modellers should understand the 

context of how the model used differs from the real-world system, and can 

ascribe meaning accordingly to the computer generated results (Godfrey-Smith 

2006). In models where the underlying input data are uncertain, it is useful to 

focus on interpreting generalised trends and ranges of presented solutions from 

the results rather than focusing on specific data points. In this study, the relative 

changes in solutions as key inputs are varied, and the resulting shapes of the 

optimisation response surfaces generated are just as interesting as the absolute 

values produced. 

 

3.0 Limitations of Existing Practice 

Modelling of energy systems is a field with a broad application and many 

practitioners. A robust overview of the history and application of energy models 

for policy development purposes can be obtained by referring to a number of 

detailed references on the subject (Jebaraj & Iniyan 2006; Hiremath et al. 2007; 

Strachan 2009; Connolly et al. 2010). Grubb et al. developed a six-dimensional 

classification system for energy models, one of which was the level of 

aggregation used to represent the model universe. Developers of models nearly 

always face a trade-off between complexity and scale, often constrained by 

computational power, data availability, and the ability of the human mind to 

conceptualise frameworks for the analysis of nested nonlinear feedback 

systems. Grubb observed that “great detail in representing energy supply, 

conversion, and end-use markets and technologies is only possible in models 

that are specific to the energy sector, and focus on simulation rather than full 

system optimization” (Grubb et al. 1993, p.444). 

Decarbonisation of the UK economy is often approached as a national level 

constrained optimisation problem, so prominent models used to date for 
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directing UK energy policy in this area tend to cover all sectors of the economy 

and use high levels of aggregation when representing energy demand and 

supply. Notable examples include the MARKAL model family, employed 

extensively by DECC, the CCC, and UKERC (DECC 2010e; Strachan et al. 2007; 

Strachan et al. 2008; Anandarajah et al. 2009; Usher & Strachan 2010), the ETI7 

Energy System Modelling Environment (ESME), Cambridge Econometrics 

Multisectoral Dynamic Model, MDM-E3 (Junankar et al. 2007). Other notable 

highly aggregated models include the Pöyry Zephyr power sector model (Pöyry 

2010) and DECC’s own 2050 Carbon Pathways calculator (DECC 2010a). 

All of the above models aggregate to national or regional level. They trade-off 

their representation of spatial (and temporal) complexity in return for increased 

sectoral coverage and other capabilities such as detailed consideration of 

macroeconomic feedback between sectors. However, their abstractions from 

reality in the spatial dimension arguably limits their usefulness for investigating 

more localised systems such as district heating, as local demand and supply 

conditions are not represented at an appropriately disaggregated scale (IPPR 

2007; Speirs et al. 2010a). Many energy system models also represent unit 

technology costs with scale-independent values, despite the fact that prior 

studies of district heating potential have observed that costs exhibit pronounced 

economies of scale, following power law decay relationships as heat density 

increases (CIBS/IHVE 1977; Studsvik Energiteknik AB 1979a; Woods et al. 2005; 

AEA 2007; Jank 2010). 

SEDSO has been developed as a spatially explicit model that uses a 

disaggregated framework for input data. SEDSO endogenously derives whole-

system costs for competing energy vectors through detailed technical 

simulation in each input area using nonlinear functions related to density. This 

allows for variation in relative costs to be represented and evaluated against one 

another in differently characterised patterns of settlement across the country, in 

a way which is not addressed by existing work.  

                                                             
7
 The Energy Technologies Institute (ETI) is a research and development organisation funded by 

the UK Government in partnership with EDF, E.ON, BP, Shell, Caterpillar and Rolls-Royce 
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Figure 1 provides a useful method of comparing SEDSO against a number of 

other technology policy assessment tools. Different models are arranged on a 

diagrammatic space relative to one another, characterised by their degrees of 

spatial and temporal complexity. SEDSO utilises a significantly more granular 

level of spatial representation than other models, while at the same time being 

more abstract in the time dimension. There are of course, other subtleties 

between different model structures that cannot be captured on a simple 

visualisation. For example, SEDSO models only energy related carbon emissions 

and does not capture other GHGs such as methane, and the power sector is 

handled as an exogenous input rather than represented endogenously. Zephyr 

only models the electrical power sector and does not consider non-electrical 

options for heat supply. Overall, SEDSO can be distinguished from other models 

used for investigating energy decarbonisation in the UK by its unique 

combination of: 

i. Extensive use of spatially disaggregated area information covering 

the majority of the country to represent demand from both domestic 

and non-domestic buildings. 

 

ii. Nonlinear treatment of whole-system levelised costs which captures 

economies of scale for heat networks in areas of different heat 

demand density. 

 

iii. The application of a least-cost optimisation approach to technology 

selection. District heating potential is determined through explicit 

comparative analysis against the marginal costs of alternative 

technologies in individual sub-regional areas, all of which are subject 

to the same national-level inputs and constraints.  
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Figure 1 – Selected Energy Policy Models Characterised by Spatial and Temporal Detail 

 

 

4.0 SEDSO – Conceptual Architecture 

The structure of SEDSO and the underlying reasons for particular model design 

choices are discussed in the following section. The actual data used and the 

sources are discussed separately in Section 5.0. 

 

4.1 Methodological Heritage 

The methodological approach taken in SEDSO is descended from several key 

studies into the UK potential for district heating from the last decade (BRE 2003; 

AEA 2007; Pöyry & AECOM 2009). Other spatially explicit investigations of 

heating potential must also be acknowledged as having had an influence, both 

in the UK (ICE 2009; AEA 2010) and in a wider European context (Girardin et al. 

2010; U. Persson & Werner 2011; U. Persson et al. 2012). SEDSO builds on earlier 

approaches by:  

i. Endogenously deriving the heat density viability thresholds for 

networks supplied by a variety of heat sources, rather than using 

fixed historical reference thresholds based on gas-CHP. 
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ii. Considering additional low-carbon heat sources for district 

heating, such as utility-scale electric heat pumps and large-scale 

solar thermal generation. 

 

iii. Facilitating the exploration of the key uncertainties surrounding 

the marginal economics of district heating using probabilistic 

rather than deterministic inputs. 

 

iv. Facilitating a least-cost optimisation approach to determining 

total national potential for individual and district heat 

decarbonisation technologies. 
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4.2 Operation Modes for SEDSO 

SEDSO uses an underlying physical model to establish costs for different energy 

technologies in each geographical input area it is given to assess. The estimated 

cost values can then be used to compare different demand-supply paradigms 

against one another to explore variation in technology potential between areas. 

This has the potential to address a number of useful policy questions, outlined in 

Chapter 1.  

SEDSO can be run as: 

i. A pure simulation, where users can explore how energy flows 

and costs might change in different areas under varying ranges 

of input assumptions, such as technology performance and fuel 

prices (see Chapter 3); OR 

 

ii. As a simulation-optimisation, where users allow the model to 

select from a portfolio of technologies to match energy demand 

and supply in the system at the lowest computed overall cost, 

subject to constraints such as total carbon emissions and 

resource availability (see Chapter 4). 

An optimisation model is a mathematical construct that aims to select the 

“best” solution from a range of possible outcomes. Simulation optimisation is 

the practice of applying optimisation techniques to problems that are 

analytically intractable and which can only practically be represented using 

simulation models (Ammeri et al. 2011). Optimisation models have been used in 

sustainable energy studies since at least the late 1980s, with a wide-ranging 

overview given by Baños (Baños et al. 2011). To date, the use of optimisation 

models in studies related to district heating have usually occurred in the context 

of exploring plant configurations and sizing or investigating operational strategy 

issues rather than determining national technical potential (Gustafsson 1992; 

Benonysson et al. 1995; Bruckner et al. 1997; Sugihara et al. 2004; Rolfsman 

2004; Chinese & Meneghetti 2005; Li et al. 2006; Brujic et al. 2007; Mago & 

Chamra 2009; Ren & Gao 2010). 
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4.3 Sectors Modelled in SEDSO 

SEDSO is a bottom-up spatial techno-economic model that looks at scenarios of 

downstream energy demand and supply to estimate levels of future technology 

deployment. SEDSO relies on secondary data published as official statistics by 

the UK government as inputs for estimating demand. Data quality for different 

economic sectors varies and not all information is available in a format which 

facilitates a spatially disaggregated approach. For this doctoral thesis, SEDSO 

has been used to model energy demand from buildings and industry, in what 

can be termed the “stationary” parts of the economy. Energy use and GHG 

emissions from transport, such as aviation, shipping and road vehicles, is a major 

sector that does not form part of the analysis considered here. This is significant 

because future electrification of ground vehicle transport may have significant 

impacts on the operation of power networks (Strbac et al. 2010). Agricultural 

emissions and emissions associated with land use change are likewise not 

included. The effect this has on the emissions reduction targets applied in any 

constrained optimisation analyses has been considered, and is explained in the 

relevant sections. 

 

4.4 Space in SEDSO 

Statistical area information from the UK Office of National Statistics is used as 

the baseline data for the study. Due to a lack of data at the statistical 

geographical level, Northern Ireland has been omitted, in common with the 

approach taken by the government’s own statisticians when attempting sub-

regional estimates of national energy demand (DECC 2010c, p.27). The 

remaining constituent member nations of the United Kingdom, including 

England, Wales and Scotland comprises over 97% of the population (ONS 2008). 

In recent years, the use of statistical geography inputs for spatially explicit 

modelling has become increasingly widespread within the energy research field 

(Mavrogianni et al. 2009; Cheng & Steemers 2011). The most granular level of 

aggregation that enables settlements across the island of Great Britain to be 

characterized by their residential, commercial and industrial buildings sectors is 

the Medium Super Output Area (MSOA) level, for England and Wales, and the 
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Intermediate Geography Zone (IGZ) for Scotland. This level of representation 

uses over 8000 individual areas and is significantly more disaggregated than 

either UK regional or administrative district level, as shown in Figure 2. Note 

that although only England is illustrated in the diagram, Wales and Scotland are 

also included in the model. A more detailed overview of UK statistical 

geography and the rationale behind selecting the MSOA/IGZ framework is given 

in Appendices 7.1 – 7.3. 

 

Figure 2 – A Comparison of Spatial Boundary Classifications for England 

 

 

SEDSO intentionally uses such a high level of spatial disaggregation in its input 

data. As discussed earlier in Section 3.0, a major limitation observed in existing 

approaches is that inputs are generally insufficiently granular to adequately map 

areas of demand density where district heating can be deployed. Their ability to 

investigate sub-regional variation in energy technology strategy is therefore 

limited. The intention behind using highly disaggregated inputs in SEDSO was 

to craft a techno-economic decision-assist tool that could serve in a high-level 

guidance role for policymakers at a national level while also delivering useful 

insights into real engineering practice at a local level. In practice the model has a 

number of structural compromises arising from data availability and the limits of 

available computational power that prevented this from being effectively 

realised to the desired extent in the time available to complete the doctoral 

research study. This is reflected on extensively in Chapter 5. 
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4.5 Time in SEDSO 

SEDSO is by design, a static model which trades off complexity in the temporal 

dimension to enable more detail in the spatial dimension. This is mainly out of a 

desire to limit overall complexity and keep computational overheads to a level 

that is manageable within the time and resource constraints of a doctoral thesis. 

In order to understand the nature of the modelled output, it is important for the 

reader to understand two key ways in which the model universe simplifies the 

representation of time: 

i. Unlike highly dynamic models which focus on the operational 

management of energy technologies, the cost and performance 

inputs used in SEDSO do not vary with time, but are instead 

represented as long-term averages (such as the mean or other 

measures of central tendency like the midpoint of a known 

range).  

 

ii. Some policy models employ a longitudinal approach that invests 

in technology options in discreet time-steps (often annually) to 

arrive at a constrained optimum end-state, integrating across 

dynamic trajectories to arrive at an estimate for total 

expenditure during the analysis period. The approach in SEDSO 

is much less complex, considering annualised cost and 

performance over a single future year8. The strategic 

applicability of such an approach for long-term policymaking 

has been questioned because it can be difficult to link the 

desirable future states identified by the model to the near-term 

actions and interventions required to make those futures a 

reality (N. Hughes 2009).  

                                                             
8
 The time horizon for the scenarios considered in this study is the year 2050, because this is 

currently the target year that is ultimately driving UK climate change legislation (see Chapter 1). 
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The use of scenario methods to explore low carbon futures out to 2050 is 

challenging, not only because of the distant time-horizon, but because of the 

high degree of uncertainty involved in technological change and the sheer range 

of variables that are relevant to the question, which makes defining the scope of 

individual problems difficult (N. Hughes & Strachan 2010). SEDSO does not take 

a longitudinal pathways approach that captures the complexities of energy 

system change arising from the influence of past and present system states on 

future developments9 (Lowe et al. 2005; N. Hughes & Strachan 2009). It is not a 

model that can capture the complexities in system end-states that might result 

from the investigation of multiple branching scenario paths that explore 

iterative technology deployment over time, and it should not be viewed in this 

way. Instead, SEDSO should be viewed as a tool for exploring issues of spatial 

variation within an optimised end-state that represents a technically desirable 

future.  

Given that most technology policy assessment models must make significant 

trade-offs between spatial and temporal complexity, the temporal limitations of 

SEDSO should be viewed a function of the primarily spatial focus of the research 

questions rather than a fundamental flaw in the modelling approach. SEDSO is a 

model crafted to effectively ask the question: 

i. “What is the desirable spatial variation in technology 

deployment within a technically optimised  future end state for 

the UK energy system?”; rather than  

 

ii. “What spatial variation in technology deployment is likely to 

occur within the UK energy system over time? 

                                                             
9
 It is worth re-iterating that models that do take a complex longitudinal approach such as MDM-

E3 or MARKAL have generally made abstractions in the spatial dimension that make them 

unsuitable for representing technology potential for district heating (see Chapter 1). It is also 

important to note that comparable technology potential studies rely heavily on scenarios to 

frame their exploration of the future rather than constructing detailed evolutionary pathways 

(BRE 2003; Pöyry & AECOM 2009). 

 



 51 

Of course, abstraction in the time dimension does bring with it some important 

limitations. These are discussed extensively in the concluding chapter of the 

thesis (Chapter 5). 

 

4.6 Technology Representation in SEDSO 

SEDSO represents technology deployment choices in individual disaggregated 

sub-regional areas across the country. Some aspects of the energy system are 

explicitly represented using a physical modelling approach, and some are 

implicit and are expressed as exogenous inputs to the modelled system10. Within 

each sub-regional area, the heat and electricity supply system is represented as 

a series of defined components that have their performance and costs 

computed sequentially as part of an energy conversion chain. These include 

local district heat and electricity generation, local energy distribution pipes and 

cables, and end-user conversion devices at the individual building level. SEDSO 

explicitly models the performance and costs for the following systems, which 

form part of the simulation-optimisation process: 

i. Building End-User Equipment 

a. Individual gas boilers 

b. Individual electric heat pumps 

c. District heating heat exchangers 

 

ii. Local Distribution Infrastructure 

a. Electrical power distribution cabling 

b. Natural gas distribution pipework 

c. District heating distribution pipework 

                                                             
10

 Abstraction of technology performance and cost to unit metrics, with some parts of the 

system endogenously represented and other parts captured exogenously is a common feature 

of comparable studies. Typically, models looking at local embedded generation potential will 

abstract their representation of the national electricity system (Ren & Gao 2010; Girardin et al. 

2010). 
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iii. District Heat and Electricity Generation  

a. Natural gas district heating 

b. Natural gas district heating with electrical cogeneration 

c. Solid biomass fuel district heating 

d. Solid biomass fuel district heating with electrical 

cogeneration 

e. Solar thermal district heating 

f. Utility-scale electric heat pump district heating 

The performance and costs of other technologies are captured as exogenous 

inputs at the border of the modelled system, and do not form part of the 

automated simulation-optimisation process. They must be varied manually to 

explore optimisation of the explicitly represented systems (above) under 

different scenarios. These technologies include: 

i. National energy efficiency measures applied to demand 

ii. National gas distribution and storage 

iii. National electrical power generation and transmission 

iv. National solid biomass distribution and storage 

SEDSO explicitly acknowledges that heat distribution has a limited practical 

range which depends on a number of factors, such as heat generating capacity 

of the prime mover, operating temperatures and pressures in the network etc. 

The limits of economical heat transmission from large-scale generation in UK 

are estimated to be in the region of 10-30km (Speirs et al. 2010b; Pöyry & 

AECOM 2009; ICE 2009). SEDSO determines the number of district heating 

energy centres that would be deployed in each area by assessing their total 

surface area against a notional 10km distribution radius. Areas which are found 

to require multiple load centres have each generating plant sized on the basis of 

the total area’s peak load divided equally between them.  

Figure 3 provides a useful visualisation that shows how SEDSO represents the 

country as a series of concurrently optimised sub-regional areas, each of which 

has its own detailed physical technology deployment sub-model. The diagram 
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also makes clear which parts of the system form part of any simulation-

optimisation and which parts do not. 

 

Figure 3 – Physical Representation of Areas and Technologies 

 

 



 54 

4.7 Costs in SEDSO 

As discussed earlier in Section 2.0, computational models are commonly 

employed as decision-assist tools which provide an evidence base for 

policymaking. Of course, not all government policy decisions are taken purely 

on the basis of numerical assessments, but model outputs can be particularly 

useful for deriving insight into complex areas. The application of cost-

optimisation modelling for technology policy assessment in the GHG reduction 

field is a technique with strong precedents (Zeng et al. 2011), with the focus on 

life-cycle costing being of particular importance to the built environment sector 

(Fawcett et al. 2012). SEDSO computes estimated costs of different 

technologies as its main output, and total cost forms the objective function 

when SEDSO is operated in simulation-optimisation mode. Optimising the 

energy system on a least-cost basis reflects an assumption that limited national 

resources should be used in a rational manner. Cost-optimisation has been 

described as “simulating the behaviour of economic agents under the 

assumption that national priorities are always put in place” (Lehtilä & Pirilä 

1996, p.807). 

While it is acknowledged that not all policy decisions are taken to achieve the 

lowest possible costs, government guidance on asset purchases and major 

investments recommends that decisions are based on value for money (HM 

Treasury 2011). Costs considered in the SEDSO model are costs associated with 

energy system change in the stationary sector (as defined in Section 4.3). Costs 

in SEDSO are intended to be representative of the national costs to the country 

as a whole rather than costs incurred by specific businesses, market segments or 

individuals. The type of cost metric calculated and used in SEDSO is a deliberate 

choice and merits detailed explanation. 

 

4.7.1 The Levelised Cost of Energy (LCOE) 

The cost effectiveness of competing energy technologies can be evaluated using 

a number of different metrics, including net present value (NPV), total life-cycle 

cost (TLCC), equivalent annual cost (EAC), and the levelised cost of energy 

(LCOE) (Short et al. 1995). All represent variants of a single approach, which is 
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discounted cash flow analysis. The UK Treasury “Green Book” generally  advises 

government departments to evaluate asset purchases and investment based on 

whole life costs discounted back to the present day (HM Treasury 2011). 

Objective  comparisons of competing energy technologies however are more 

frequently carried out using values expressed per unit of production, such as 

recent work for DECC on levelised electricity generation costs (Arup 2011; 

Parsons Brinckerhoff 2011; Mott MacDonald 2010). The use of generation costs 

alone for long-term policy decision-making may be valid when no changes to 

the connected distribution system are assumed. However, if changes to one part 

of the energy system might cause substantial knock-on effects and require 

additional investment in other system components then it of course makes 

sense to evaluate them together. It has been argued for example, that cost 

comparisons of different electricity generation technologies should also include 

for the costs of associated network infrastructure (WADE 2005).  

For this study, which intends to explore the possibility of widespread changes to 

how heat and electricity are supplied in the UK, it is believed necessary to 

attempt to capture whole-system costs, including not only generation costs, but 

also those of transmission, distribution, and energy conversion devices at the 

end-user level. Valuing the whole energy conversion chain in this way arguably 

provides a more objective means of comparing technology costs. This is 

important for consideration of heat supply options, where interactions occur 

along the whole chain, and where comparisons between technologies, such as 

district heating and heat pumps, involve materially different network 

infrastructures, each with a balance of generation, distribution and end-user 

costs that is distinct from the current UK status quo. 

SEDSO uses the levelised cost of energy (LCOE) resulting from different 

combinations of technologies in each area as the metric of valuation. LCOE is a 

particular discounted cash flow metric that “allows alternative technologies to 

be compared when different scales of operation, different investment and 

operating time periods, or both exist” (Short et al. 1995, p.47). LCOE is 

effectively the net present value (NPV) of the total lifecycle cost of an 

investment spread out over a number of time periods (typically years) using an 
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annuity function, with the result then divided by the amount of delivered energy 

used in the system. This approach back-casts future costs to estimate a value 

that can be used for investment decision making in the present day when 

comparing different downstream energy supply paradigms. For example, the 

costs of supplying heat through individual distributed electrical heat pumps can 

be compared against the costs of meeting the same demand from a heat 

network with a variety of generation sources. A mathematical derivation of 

LCOE is presented in Appendix 6.4.  

Minimising LCOE as an objective function has precedents for district and 

regional energy planning studies (Cormio et al. 2003; Sugihara et al. 2004; 

Dicorato et al. 2008; Sugihara et al. 2008; Ren & Gao 2010) as well as for 

comparing technology performance under uncertainty (Park et al. 2011). 

Problem formulation using LCOE rather than total cost is employed in this study 

as a means of objectively evaluating technologies which may have very different 

up-front capital investment costs. The effect of optimising based on total costs 

rather than levelised costs is reflected on in discussion (see Chapter 5).  

 

4.7.2 Costs for Building End-User Equipment 

Costs for building end-user equipment in SEDSO include capital costs and 

operation and maintenance (O&M) costs, which are expressed as unit metrics 

related to peak power demand with assumed capacity factors. The way in which 

peak power demand is calculated is explained below in Section 4.10. Capital and 

operational costs for these system components have been treated as scale-

independent i.e. the unit cost of say, a boiler deployed in a single home in a low-

density rural area is the same as the unit cost of an identical unit installed in a 

high-density urban area. Of course in reality there are economies of scale when 

ordering large numbers of units and supply-chain considerations that may make 

deploying them in areas close to suppliers cheaper than in more remote parts of 

the country. These however are subtleties that were judged to be unnecessary 

to represent in SEDSO given the scale and focus of the research questions. 
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4.7.3 Costs for Local Distribution Infrastructure 

SEDSO assumes that all buildings in the model are connected to the electricity 

grid for power and lighting. Local low pressure gas distribution is also 

commonplace in the UK, with 91.8% of British homes in postcode areas where 

there is potential for connection (Consumer Focus 2011) and 85% of households 

currently connected (OFT 2011). For this study, existing investments in the gas 

and electrical networks are considered as sunk costs and no new capital 

investment for these elements is factored into levelised cost calculations for 

simulation or optimisation. Operational costs are however applied, to reflect the 

fact that these networks will still be subject to a degree of on-going 

maintenance and periodic replacement. In the case of electricity networks, there 

is also likely to be a requirement for local grid reinforcement in areas where heat 

demands begin to be met substantially from electricity (Speirs et al. 2010b). 

These costs are captured in the model. 

Deployment of heat networks is extremely low in the UK, comprising less than 

2% of national heat supply (DECC 2012c). SEDSO therefore assumes that new 

capital investment in heat distribution pipework will be required in any area 

where the model tries to deploy district heating. Capital costs for heat network 

infrastructure are determined in each area using a streamlined approach that 

looks at both heat demand density and the density of local road networks. This 

is elaborated on in more detail in Appendix 7.5. 

 

4.7.4 Costs for District Heat and Electricity Generation 

The calculation of peak heating demand levels for district heating is achieved 

through the application of assumed capacity factors to total demand, taking 

into account coincidence, losses in distribution and final conversion (see Section 

5.5). 

Empirical evidence from engineering practice indicates that costs for generation 

plant can show pronounced economies of scale (L. R. Christensen & W. H. 

Greene 1976; Comtois 1977). In reality, economies of scale also apply not only to 

capital expenditure but also to fixed O&M, variable O&M, and fuel supply costs. 
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SEDSO uses nonlinear functions derived from a review of the literature on 

district heating plant costs at different scales to establish capital and O&M costs 

for local heat and electricity generation (Pöyry & AECOM 2009; Danish Energy 

Agency 2010). A detailed exploration of theory and evidence in applying 

economy of scale laws to generation is given by Phung (Phung 1987). Unit 

capital costs in SEDSO take the form: 

         (1) 

Figure 4 illustrates how fixed ( ) and variable (   ) cost components can be 

derived from a plot of unit capital cost estimates for biomass CHP installations 

of different capacities. Establishing a relationship between installed capacity 

and unit cost in this way follows precedents demonstrated in recent work into 

fuel cell generation carried out by researchers at Oak Ridge National Laboratory 

(Schoots et al. 2010; D. L. Greene et al. 2011). 

Figure 4 – Unit Capital Costs for Biomass CHP Installations Plotted Against Installed Plant 

Capacity 

 

For detail of the non-linear cost functions used in SEDSO see Appendix 7.6. Non-

linear representation of costs is not commonly found in comparable studies, 

which tend to use a linear representation of costs and treat technologies of 

different scales as separate entities. The approach taken in SEDSO is intended 

to minimise the number of discrete technology classes, and therefore of 
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optimisation decision variables when the model is operated as a simulation-

optimisation. A reflection on how this design decision affected the study is 

included later in Chapter 5. 

 

4.8 Demand-Supply Matching in SEDSO 

SEDSO is an energy equilibrium model where annual demand for energy is 

matched by supply technologies in each individual MSOA area. Estimates of 

local energy consumption for both heat and electricity are first determined for 

each area following the process described below in Section 4.9. Energy supply 

for heat and electricity at a local level is then matched meet to this estimated 

demand. The model then derives peak power requirements from total energy 

supply using load profiles as described in Section 4.10. This peak power demand 

is used to determine costs for generation plant and equipment for different 

technologies. Local energy supply is used as the basis for fuel costs after 

upstream losses in the energy conversion chain are taken into account. 

 

4.9 Energy Consumption in SEDSO 

The process for obtaining future energy demand is as follows: 

i. Take existing quantitative data at the local level 

ii. Correct for growth in population and economy to the future 

time horizon (2050) 

iii. Correct for energy demand intensity arising from energy 

efficiency improvements 

SEDSO is an equilibrium model for investigating issues of scale and density 

rather than a building stock model. As such, it does not take a detailed approach 

towards representing the physical characteristics of individual buildings. Total 

annual energy consumption for each sector (domestic, commercial, industrial) 

and for each end-use category (heat, electricity) is determined from quantitative 

data associated with each MSOA area, which generally includes the number of 

dwellings, the number of commercial and industrial building premises, and their 

floor space in m2. The model relies on a limited set of representative building 
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types, with unit energy demand determined for “average” buildings, which are 

then simply multiplied by the number of buildings of each type in individual 

discrete areas to arrive at local estimates of total demand. This type of approach 

to estimating demand is common in energy planning studies (P. J. Jones et al. 

2001; Brownsword et al. 2005; Yamaguchi et al. 2007; Element Energy 2007; 

Girardin et al. 2010). SEDSO applies modifiers to baseline demand data to 

reflect both population and economic growth (Section 5.2) and the effect of 

energy efficiency measures that reduce the demand for heat and electricity at 

the building level (Section 5.3). This is kept as an exogenous process to any 

optimisation, as noted earlier (Section 4.6). In reality it is likely that building 

energy efficiency improvements and transformation of supply infrastructure will 

happen in parallel. 

Apportioning the averaged characteristics of an aggregate dataset to individuals 

within the dataset population does potentially represent an “ecological 

inference fallacy” (Robinson 1950) that must be considered when drawing 

inferences from the model results. For example, housing surveys show that 

individual dwellings in city centre and urban areas tend to use less energy on 

average than those in rural areas (CLG 2011b), yet the model relies on a single 

“average” dwelling for estimating domestic sector demand in both. This might, 

for example result in the model over-estimating domestic sector demand in 

more densely populated areas. The model also does not consider vacant 

industrial or commercial floorspace, unoccupied dwellings, or buildings that are 

not actually heated. However, given the national scale of the study and the 

broad nature of the inferences drawn from the results, these were judged to be 

acceptable risks, especially in the context of the other major uncertainties 

affecting the modelled system (Chapter 1).  

The model considers energy for space heating and hot water together, which 

limits the range of future system paradigms that the model can select. For 

example, the model cannot directly consider “dual fuel” buildings with say, low 

carbon space heating from a biomass system and instantaneous hot water 

heating from the electricity network. This is a model design decision taken to 

limit the number of decision variables and reduce computation time, particularly 
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in optimisation mode, where run times can be very long (see Chapter 4). 

Temporal dynamics in the model universe are also too limited to explore the 

detailed operation of hybrid supply systems, in any case. 

 

4.10 Peak Power Demand in SEDSO  

As a temporally static model, SEDSO does not have explicit representation of 

hourly or seasonal variation in the magnitude of different energy end-use 

demands. Instead, the model applies generalised load factors for heat and 

electricity (Section 5.4) to annual average energy consumption (Section 5.1) to 

obtain representative peak power requirements. These are then used for sizing 

plant and equipment. 

Having established sectoral energy demands for individual input areas, SEDSO 

applies typical load factors for each representative building type to separate 

energy consumption, which is used for determining fuel costs, from peak energy 

demand, which is used for plant sizing. Load profiles employed in modelling 

studies are generalised approximations of how demand varies with time for 

representative building types (Riddell & Manson 1996; Michalik et al. 1997; 

Shimoda et al. 2004; Yao & Steemers 2005; Huamani & Orlando 2007; Jardine 

2008). The shape and magnitude of a given profile will depend on how energy-

using devices are controlled by the end user, perhaps in response to time-of-use 

pricing tariffs, and whether or not there is any local energy storage. They also 

may change significantly with the application of energy efficiency measures 

such as insulation. Estimated profiles are usually derived from meter readings of 

energy use, and sometimes synthesized from thermal simulation or bottom-up 

models of building user interaction with energy using devices (which themselves 

may in-turn be based on detailed measurements of appliance energy use and 

occupancy). Figure 5 illustrates graphically the relationship between energy 

consumption, average demand, and peak demand on an example energy load 

profile. 
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Figure 5 – Illustrative Load Profile with Peak Demand, Average Demand, and Energy 

Consumption Indicated 

 

 

Where energy consumption and load factor for a given building type is known, 

peak demand can therefore be written as: 

     
 

 
[

 

       
∫    

  

  
]   (2) 

Where L is the load factor for the demand profile. Load factors used for 

determining peak service demands from annual consumption for different 

technologies are described later in Section 5.4.  

SEDSO also takes into account coincidence factors when sizing district heating 

plant, the effects of which are significant (Frederiksen & Werner 1993; Pedersen 

2007). Where detailed load profiles on the underlying demands are available, it 

is possible to establish coincidence factors for a district heating system by using 

a load aggregation model to combine profiles across the network (Pedersen, J 

Stang, et al. 2008). As an alternative, feasibility-type studies apply rule of thumb 

values to diversify the demand (Studsvik Energiteknik AB 1979b; Orchard 

Partners 1983d; Woods et al. 2005; Pöyry 2007; BRE 2003). Rule of thumb type 

coincidence factors found in the literature varied from as low as 55% (GEF & 

Ingenieurgesellschaft für Energietechnik und Fernwärme mbH. 1996) to in 

excess of 90% (Pöyry 2007), and depend on assumptions about the diurnal and 

seasonal variation in load from different domestic, commercial and industrial 

users on the network. For this study SEDSO takes a simplistic approach and uses 
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a coincidence factor of 70% (CIBSE 2006), which is in line with the midrange of 

coincidence factors used in recent UK city-scale studies (Woods et al. 2005).  

 

4.11 Conversion Efficiency in SEDSO 

The static nature of time in the model universe means that SEDSO uses 

representative annual average efficiencies to reflect losses in the energy 

conversion chain from generation through to end-use (Section 4.6). Additionally 

the model relies on fixed conversion efficiencies for each technology family and 

does not account for variation in performance with installed capacity or when 

operating at part load. The limitations imposed by this approach are covered in 

later discussion (Chapter 5). In reality efficiency levels and distribution losses 

vary in response to a whole host of different factors such as ambient 

temperature, the scale of the equipment deployed, the inclusion of energy 

storage, and the load placed on the system.  

The power to heat ratios of cogeneration plant are modelled as being constant 

regardless of plant size or operational strategy decisions. In reality power to 

heat ratios vary across both classes of technology and with size within the same 

class. Some technologies can also vary their power to heat ratios in operation. 

For example steam cycle cogeneration plant can vary their heat and electrical 

production, with total efficiency sometimes increased at the expense of 

electrical generation efficiency. Fixed power to heat ratios for individual 

technology classes (often bounded by size definitions) are common in models 

addressing high level strategic questions at a national level (Kannan et al. 2007; 

Element Energy 2007). 

 

5.0 SEDSO – Data Inputs 

This section gives an overview of the key input data that is used in SEDSO. 

Inputs for the model were selected systematically from published secondary 

data through the following process: 
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i. Search terms were defined relating to the particular cost or 

performance characteristic of interest and the technology 

component or sector in question. For example: 

a. Economic service life of district heating pipework 

b. Capital cost of biomass generation 

c. O&M cost of heat pumps 

d. UK domestic sector hot water demand 

 

ii. Search terms were then applied to a number of technical 

databases and search engines, including: 

a. Elsevier B.V. “ScienceDirect” 

b. Springer Publishing “SpringerLink” 

c. Sage Publications “SAGE Journals” 

d. Institute of Electrical and Electronics Engineers (IEEE) 

“IEEEExplore” 

e. Chartered Institute of Building Services Engineers 

(CIBSE) Publication Database 

f. Google Scholar 

g. UK Office of National Statistics 

h. IEA (International Energy Agency) Energy Conservation 

in Buildings and Community Systems (ECBCS) 

Programme Website 

i. UK Department for Communities and Local Government 

(CLG) Website 

j. UK Department for Energy and Climate Change (DECC) 

Website 

k. US Department of Energy (DoE) Website 

l. European Union “Eur-Lex” Database 

 

iii. Where search results revealed key works on individual subjects, 

other work published by the author(s) was searched for and 

reviewed where possible 
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iv. References of interest from identified key works were also 

followed up where possible 

By looking at the reference sources it was possible to determine ranges of 

possible values for any given input of interest, which are reproduced below in 

the following sections. In some cases it has been necessary to select a single 

deterministic variable from the published data. Any “judgement calls” made by 

the author are noted in the text. 

 

5.1 Baseline Consumption 

Each sector in SEDSO is modelled with its own unit energy consumption 

metrics, which are broken down into two end-use classes representing either 

demand for heat or electricity. The national demand estimates from SEDSO 

using these metrics have been compared against officially published national 

energy statistics and judged to be fit for purpose. The comparison is detailed in 

Appendix 7.7. Baseline projections for the present day are modified to arrive at 

future projections by the application of dwelling and floor area growth over time 

(Section 5.2) and making assumptions about energy efficiency (Section 5.3). 

 

5.1.1 Domestic Consumption 

Official DECC statistics produced with data from BRE and modelling by 

Cambridge Architectural Research give a breakdown of the UK domestic sector 

demand by energy end use (DECC 2011b). Dividing the total values by the 

number of homes given in the same dataset gives baseline per dwelling 

estimates for an average residence. For the purposes of this study lighting, 

appliances, and cooking demand are considered as a single energy end use 

category. In a similar fashion, space heating and hot water are also considered 

as a single category. The baseline figures that emerge from this approach are 

close to Ofgem figures for “representative” dwellings (Ofgem 2010a). 
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5.1.2 Commercial Consumption 

DECC publishes national level statistics of service-sector energy use (DECC 

2011d), which appear to be largely or entirely based on outputs from the BRE’s 

N-DEEM model (Pout 2000), and use identical building classification names. The 

UK’s Valuation Office (VOA) provides spatially disaggregated statistics on 

commercial floorspace in individual MSOA areas (OPDM 2005), from records 

that are collected for taxation purposes11. These datasets are used in 

conjunction in SEDSO to establish unit demand metrics on a per m2 basis for a 

representative “average” commercial building12 which is applied to give demand 

estimates in each area considered in the model. In-line with the approach taken 

for domestic demand, energy used for space heating and hot water are 

considered together. Space cooling and ventilation, computing, and lighting 

demands have likewise been considered as a single electrical power category.  

The baseline numbers derived from this approach (Section 5.3) are in line with 

the level of intensity that might be expected from reviewing published 

benchmarks used for producing British building display energy certificates as 

part of the UK’s compliance with the European Energy Performance of Buildings 

Directive (CIBSE 2008). They also compare well against benchmarks derived 

from one of the largest longitudinal studies of non-domestic energy 

performance, which was carried out at Sheffield Hallam University on over 700 

buildings during the 1990s (Mortimer et al. 2000). 

                                                             
11

 The VOA database does not include all of the non-domestic buildings in the country. 

Weighting factors are applied to bring the spatial distribution of non-domestic floor areas from 

the VOA database in line with the best published estimates of total floor area, as detailed in 

Appendix 7.8. 

12
 Modelling estimates of non-domestic energy demand in the built environment is a challenging 

area of research in its own right. A detailed bottom-up building stock sub-model incorporating a 

diversity of built morphologies and activity classes is beyond the scope and remit of this doctoral 

research project. A short overview of significant research efforts undertaken to characterise UK 

non-domestic energy demand and the challenges involved is given in Appendix 7.10. 
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5.1.3 Industrial Consumption 

Government statistics are available for 25 different types of industrial activity, 

broken down into 4 primary fuels and 9 end-use energy categories (DECC 

2011c). This data has been combined with factory floorspace area data from the 

VOA to establish unit metrics of industrial energy use intensity (EUI) in kWh/m2 

for application in the model. High and low-temperature industrial process heat 

alongside drying and separation processes as well as building space heating are 

considered together as a single category. Refrigeration, motive power, lighting, 

and other electricity dependent processes are grouped collectively as electrical 

energy demand. The characterisation of industrial energy demand for energy 

modelling purposes faces similar issues to modelling non-domestic energy 

demand in a more general sense, specifically data paucity and complex 

classification, reflecting complex underlying physical and engineering processes. 

Additional comments on the challenge of characterising industrial energy use 

are given in Appendix 6.11. 

 

5.2 Growth Projections 

The growth projections applied to the MSOA/IGZ baseline demand data are 

modelled as a linear annual average increase to 2050 using compound annual 

growth rates shown in Table 1. This assumes that growth follows a steady 

upward trend close to the modelled average with no major shocks, contractions 

or periods of volatility occurring. In reality, factors like housing growth rates are 

subject to large annual variations (Hicks & Allen 1999). Compound annual 

growth rates (CAGR) can be expressed as: 

         [
     

     
]
        

    (3) 

Where: 

         is the growth rate between start year   , and finish year    

      is the modelled value in the starting year 

      is the modelled value in the finish year 
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Growth trends are applied evenly across all sub-regional areas in the dataset. 

This assumes that the broad pattern of urban and population density across the 

country does not change materially over time in response to pronounced 

changes in demography, migration, and patterns of construction. In reality, 

while population projections show growth in all regions, relative rates of growth 

between areas do differ. For example in England, the Eastern and Southern 

regions are predicted to grow faster than the North, accentuating existing 

regional disparities even further (ONS 2010). 

Table 1 – Growth Projections 

Input CAGR Applied Basis 

Population 
Growth 

0.53%/year 
Matches ONS forecasts for 

total population (ONS 2008) 

Housing Stock 
Growth 

1.17%/year 
Matches CLG forecasts 

under “central estimates” (CLG 2009) 

Non-Domestic 
Stock Growth 

1%/year 

Building stock as a whole estimated to grow at 
between 1-2% annually (Ravetz 2008), 1% non-
domestic stock growth applied in latest DECC 
2050 modelling based on Carbon Trust study 

(The Carbon Trust 2009; DECC 2010a) 
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5.3 Energy Efficiency Measures 

Future changes to total built floor areas are also likely to be accompanied by 

changes to the character of energy service demands in each sector. The UK is 

already pursuing an ambitious program of energy efficiency standards for new 

buildings (Zero Carbon Hub 2011; AECOM & CLG 2011) and revised measures to 

address the existing stock have been recently signed into legislation (DECC 

2012d). For this study the future impact of energy efficiency measures is 

expressed by applying percentage reductions to the baseline unit demands. This 

follows the same approach taken by the UK government when considering the 

development of energy system pathways (DECC 2010a). Two pathways are 

considered, an “energy efficient” case and one with “reduced ambition”. 

Summaries of how these affect baseline unit energy demands are shown in  

Table 2 and Table 3. 

Table 2 – Reduced Ambition Pathway 

Sector 
Energy 
Service 

Demand 

Unit 
(kWh/dwelling/year or 

kWh/m2/year) Change Basis 

Baseline 
Future 

Projection 

Domestic 

Heat 15,005 13,982 

-23% Space 
Heat 

+50% Hot 
Water 

DECC “Level 1” 
2050 Pathway 
(DECC 2010a) 

Electricity 4,015 4,713 +20% 

Commercial 

Heat 143 143 - 

Electricity 122 159 +25% 

Industrial 

Heat 1,199 1,199 - 
3 out of 4 of 

DECC’s Pathway 
Scenarios have 

industrial energy 
demand staying 

constant at 
present levels or 

rising only 
slightly (DECC 
2010a, p.86).  

Electricity 444 444 - 
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Table 3 – Energy Efficient Pathway 

Sector 
Energy 
Service 

Demand 

Unit 
(kWh/dwelling/year or 

kWh/m2/year) Change Basis 

Baseline 
Future 

Projection 

Domestic 

Heat 15,005 9,353 

-41% 
Space 
Heat 

-25% Hot 
Water 

DECC “Level 3” 
2050 Pathway 
(DECC 2010a) 

Electricit
y 

4,015 3,142 +35% 

Commercial 

Heat 143 102 

-30% 
Space 
Heat 

-20% Hot 
Water 

Electricit
y 

122 105 -10% 

Industrial 

Heat 1,199 1,199 - 
3 out of 4 of 

DECC’s Pathway 
Scenarios have 

industrial energy 
demand staying 

constant at 
present levels or 

rising only slightly 
(DECC 2010a, 

p.86).  

Electricit
y 

444 444 - 
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5.4 Load Factors for Peak Power 

As noted in Section 4.10, peak power demand in SEDSO is determined by 

applying load factors to sectoral energy consumption data. Load factors used 

are summarised in Table 4. Additional detail can be found in Appendix 7.8. 

Table 4 – Load Factors 

Energy 
Service 

Demand 
Technology Sector 

Modelled 
Load 

Factor 
Basis 

Electrical Power 

Domestic 48% 
(Electricity Association 1997) 

Commercial 38% 

Industrial 50% (Woods et al. 2005) 

Heat  

Individual 
Gas Boilers 

Domestic 10% (NERA & AEA 2009; GASTEC at CRE 
et al. 2009; Element Energy & NERA 

2011) Commercial 20% 

Industrial 50% 
Sources show variation between 20-
80%. Mid-range value assumed for 

this study 

Individual 
Heat Pumps 

Domestic 11% 
UCL DyEMo Modelling

13
,  

(AEA 2011) 

Commercial 
35% (AEA 2011) 

Industrial 

District 
Heating 

Domestic 
20% (Woods et al. 2005; Orchard 

Partners 1983b; Pöyry & AECOM 
2009) 

Commercial 

Industrial 30% 

 

  

                                                             
13

 DynEMo is a highly dynamic energy system model currently under development at the UCL 

Energy Institute (Barrett & Spataru 2013). 
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5.5 Technology Performance and Unit Costs 

Cost and performance data for different technology components have been 

taken from a variety of sources, which are referenced in the following section.  

 

5.5.1 Building End-User Equipment 

Unit capital costs for building end-user equipment cover the purchasing and 

installation of plant, but do not include the costs of internal distribution 

associated with new or retrofit schemes (such as electrical wiring, wet heating 

distribution) which may be significant. Varying operation and maintenance costs 

(O&M) are used for different systems. Table 5 shows key assumptions relating 

to building energy conversion devices considered in this chapter. In most real-

world systems there is a substantial fixed cost which is not explicitly represented 

by using £/kW, but this is unlikely to substantially affect results due to the large 

number of buildings in even the smallest MSOA/IGZ area. 

Notably the variation in installed performance ranges for individual heat pumps 

is significant, and the extent to which this can be improved over time in UK 

buildings remains open to debate. The coefficient of performance (COP) for a 

heat pump can vary throughout the year depending on the source temperature, 

which may well be the external air temperature in a majority of cases, and the 

delivery temperature, which may also fluctuate on a daily and seasonal basis. 

Different heat pump designs from different manufacturers and the way in which 

they are integrated into the building space heating and hot water delivery 

system will also significantly affect the COP achieved in practice. SEDSO uses a 

representative annual average efficiency for heat pumps, which is sometimes 

referred to as the seasonal performance factor (SPF). Uncertainty in heat pump 

SPF values has a major impact on modeled results in SEDSO and is addressed in 

detail in the following chapters adjacent to the relevant results (Chapter 3 and 

Chapter 4). 
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Table 5 – Building End-User Equipment Performance and Cost Assumptions 

Building 
Installation 

Economic 
Service 

Life 

Conversion 
Efficiency 

Sector 
Cost 
Type 

Cost 
(~2010) 

Basis 

Individual 
Heat Pump 

20 years 

SPF 1.2-3.2  
But COP 

could drop 
close to 1 

under 
winter peak 
conditions  

Domestic 

Capital 
Cost 

£650 – 1,450 
/ kW 

(Pöyry & AECOM 
2009; CCC 2010; 
AEA 2011; EST 

2010; Lund et al. 
2010; Woods & 
Zdaniuk 2011; 

Kannan, 
Ramachandran 

et al. 2007; 
Element Energy 

2007) 

O&M 
Cost 

£9 / kW / 
year 

Non-
Domestic 

Capital 
Cost 

£452 - £600 
/ kW 

O&M 
Cost 

£2 / kW / 
year 

Gas Boiler 15 years 74-94% 

Domestic 

Capital 
Cost 

£278 / kW 

(E.ON 2006; 
GASTEC at CRE 
et al. 2009; The 

Carbon Trust 
2011) 

O&M 
Cost 

£22 / kW 
/year 

Non-
Domestic 

Capital 
Cost 

£45 / kW 

O&M 
Cost 

£3 / kW / 
year 

District 
Heating 

Heat 
Exchanger 

15 years 

Captured as 
part of 
whole 

system 
efficiency 

Domestic 

Capital 
Cost 

£256 / kW 

(Pöyry & AECOM 
2009; Euroheat 
& Power 2008) 

 

O&M 
Cost 

£22 / kW / 
year 

Non-
Domestic 

Capital 
Cost 

£221 / kW 

O&M 
Cost 

£11 / kW / 
year 

Hot Water 
Storage 

Tank 

Follows 
heat 

system 
prime 
mover 

N/A 
Domestic 
and Non-
Domestic 

Capital 
Cost 

£53 / kW 
(Danish Energy 
Agency 2012) 
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5.5.2 Local Distribution Infrastructure 

Key assumptions regarding network distribution used in this study are shown in 

Table 6. SEDSO does not size local distribution infrastructure on the basis of 

detailed engineering considerations such as system voltages, operating 

temperatures and pressures, or physical pipe and cable sizes. Parameterised 

costs linked to technically simulated metrics (generally distribution lengths in 

km) are used in the interest of keeping the computational overheads and input 

data requirements of the study down to manageable levels for this doctoral 

research project.  
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Table 6 – Local Distribution Infrastructure Performance and Cost Assumptions  

Network 
Distribution 

Economic 
Service 

Life 

Distribution 
Losses 

(Annual 
Average) 

Cost 
Type 

Cost  
(~2010) 

(1 € ≈ 1.17 £) 
Basis 

Electrical 
Power 

45 years 

8% 
(significantly 

higher at 
times of 

peak load) 
 

Figure 
intended to 
also capture 
transmission 
losses from 
outside the 

local system 
 

 
 

Capital 
Costs 

 
 

Network as 
Sunk Cost 

 
Grid 

Reinforcement 
110,000 £/MW 

(Defra & DECC 2009; 
National Grid 2009; 

Cambridge Economic 
Policy Associates et al. 

2010; Danish Energy 
Agency 2010; Davis 

Langdon 2010) 
O&M 
Costs 

2500 
£/km/annum 
(2.5% of new 

lay capex) 
 

Gas 
Distribution 

45 years 

7.5% 
(1.2% direct 

leakage, 
6.3% 

compression 
and 

pumping) 
 

Figure 
intended to 

capture 
transmission 
losses from 
outside the 

local system 
 

 
 

Capital 
Costs 

 
 

Network as 
Sunk Cost 

(National Grid 2007; 
Cambridge Economic 

Policy Associates et al. 
2010; Davis Langdon 
2010; Blackwell 2011) 

O&M 
Costs 

1350 
£/km/annum 

(1.5% of new lay 
capex) 

 

Heat 
Networks 

45 years 10-15% 

 
 

Capital 
Costs 

 
 

800,000 £/km, 
weighted for 
installation 

complexity (see 
Appendix 7.5) 

(Combined Heat and 
Power Group 1977; 

Bernsen 1993; GEF & 
Ingenieurgesellschaft für 

Energietechnik und 
Fernwärme mbH. 1996; 
EEBPP 2002; BRE 2003; 

Woods et al. 2005; C. 
Persson et al. 2005; 

Pedersen, Jacob Stang, 
et al. 2008; BSI Group 

2009; Pöyry & AECOM 
2009; NERA & AEA 

2010; Woods & Zdaniuk 
2011; Blackwell 2011; 
NERA & AEA 2009; 
BioRegional 2012) 

O&M 
Costs 

1% of capital 
costs 
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5.5.3 District Heat and Electricity Generation Plant 

Key assumptions used for generation plant are shown in Table 7. Availability of 

plant is constant in the model for technologies of the same classification. In 

reality, not only do energy plants of different size have different efficiencies, 

varying maintenance regimes and scheduled outage times, but for intermittent 

renewables, the availability of solar energy is also subject to a number of site-

specific variables that are not captured in SEDSO. This limitation is noted in 

later discussion (see Chapter 5). 

District heating systems in this study are paired with hot water storage sufficient 

to cover 12 hours of peak load operation, which is typical practice in Denmark 

(many installations will have even greater storage) and allows for a degree of 

diurnal operational flexibility as well as facilitating periodic plant shutdowns for 

repairs and maintenance (Danish Energy Agency 2012).  

As is the case with individual building systems, the SPF of utility-scale heat 

pumps may vary on an installation-by-installation basis. Uncertainty in 

performance is considered when generating results, as described in later 

sections of the thesis (see Chapter 3 and Chapter 4) 

Heat-to-power ratios for cogeneration plant are fixed at nominal values. The use 

of indicative heat to power ratios to determine electricity production while 

assuming that heat production matches demand is not without precedent in UK 

technology policy assessment (Element Energy 2007). A review of installed 

schemes in the UK shows average ratios of 5.1 for back-pressure steam turbines, 

2.7 for condensing turbines and 1.5 for gas-fired CCGT systems (DECC 2012a). 

For this study however it is more appropriate to use values for future installed 

systems in the 2030s and the 2040s rather than historical averages. Heat-to-

power ratios for gas CCGT plant can already be as low as 0.67:1 (Pöyry 2008), 

while larger-scale (>80MW) biomass steam turbines can approach 1:1 (VTT & 

Finnish District Heating Association 2004). Values have been chosen that reflect 

the use of CHP in large-scale deployment. This is because a large proportion of 

the UK population is in areas of high heat demand density where large-scale 

heat networks can be deployed (Chapter 3.0, Section 8.0) 
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Solar thermal heat generation capital costs are determined on a unit energy 

basis rather than a unit power basis. The sizing methodology reflects the fact 

that these systems are most likely to be employed as a source of renewable heat 

in conjunction with heat storage and other forms of generation like CHP plant 

rather than being sized to cover peak demand on their own. A notable omission 

from solar thermal generation costs in the model is the land value associated 

with the solar collection arrays. The may be significant as the land-take for solar 

thermal generation is likely to be much greater per unit of heat production than 

the other heat supply generators considered here. 
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Table 7 – District Heat and Electricity Generation Plant  

Generation 
Economic 

Service 
Life 

Capacity 
Factor 

Conversion 
Efficiency 

(Gross C.V.) 

Cost 
Type 

Cost Range 
(~2010) 

(1 € ≈ 1.17 £) 
Basis 

Biomass 
Heat-Only 

Boiler 
20 years 90% 87% 

Capital 
Costs 

257,000 – 
599,000 

£/MW 
(Pöyry & AECOM 

2009; Danish 
Energy Agency 

2010) 
O&M 
Costs 

15,400 – 
24,800 

£/MW/annum 

Biomass 
CHP 

20 years 84% 

 
49% 

thermal  
 

40% 
electrical  

 
Heat:Power 
Ratio 0.83:1 

Capital 
Costs 

 
For 30MW> 
1,027,000 – 
1,455,000 

£/MW 
 

(VTT & Finnish 
District Heating 

Association 2004; 
EPA 2008; Pöyry 
& AECOM 2009; 
Danish Energy 
Agency 2010; 
DECC 2012a) 

O&M 
Costs 

 
£/MW/annum 

For 30MW> 
22,000 – 
50,000 

£/MW/annum 
 

Gas Heat-
Only Boiler 

20 years 90% 85% 

Capital 
Costs 

50,000 – 
100,000 
£/MW 

 
(Pöyry & AECOM 

2009; Danish 
Energy Agency 
2010; Woods & 
Zdaniuk 2011) 

 

O&M 
Costs 

1,000 – 5,000 
£/MW/annum 

Gas CHP 20 years 91% 

36% 
thermal 

 
54% 

electrical 
 

Heat:Power 
Ratio 0.67:1 

Capital 
Costs 

436,000– 
1,711,000 

£/MW 

 
(Pöyry 2008; EPA 

2008; Pöyry & 
AECOM 2009; 
Danish Energy 

Agency 2010; IEA 
ETSAP 2010; 
DECC 2012a) 

 

O&M 
Costs 

30,000 – 
115,000 

£/MW/annum 

Utility-Scale 
Heat Pump 

20 years 90% 

SPF 3.0-3.5 
 

(Dependent 
on source 

temp.) 

Capital 
Costs 

340,000 – 
600,000 

£/MW 

(Blarke & Lund 
2007; Stene 

2008; Danish 
Energy Agency 

2010; Girardin et 
al. 2010; Lund et 
al. 2010; Woods 
& Zdaniuk 2011; 

Østergaard & 
Lund 2011) 

 

O&M 
Costs 

2,000 – 4,000 
£/MW/annum 

Utility-Scale 
Solar 

Thermal 
20 years 6% 80% 

Capital 
Costs 

292 £/MWh/ 
annum (Danish Energy 

Agency 2012) O&M 
Costs 

0.49 £/MWh 
/annum 

Hot Water 
Storage 

20 years N/A N/A 
Capital 
Costs 

46,000 £/MW 
(Danish Energy 
Agency 2012) 
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5.6 Fuel Costs 

As described in Section 4.6, levelised costs for energy supplied from the national 

electricity and gas networks are captured as exogenous inputs to the system 

along with the price of solid biomass fuel. The value of the electricity generated 

from district heating with cogeneration is also an input that the user can specify. 

As previously discussed (Chapter 1) energy prices are one of the areas of 

greatest uncertainty when producing future estimates of technology 

deployment potential. Projected ranges from reference sources can be used to 

test the response of the modelled outcomes under future price scenarios that 

carry with them implicit assumptions about technology and policy development. 

Table 8 covers the range of potential price inputs and describes their origin. 

While this study aims to consider a 2050 time horizon, the 2030s is the furthest 

into the future that much of the reviewed literature will attempt to project.  

Table 8 - Fuel Price 

Input Range Basis 

Grid Electricity Price 79-97 £/MWh 

Future estimates of wholesale electricity costs in 
2030 and 2050 for an energy system with substantial 

electrification of heat and transport are given by 
Pöyry. Electricity generation mixes which give these 

price ranges are dependent on wind, nuclear, gas 
with carbon capture and storage and coal with 

carbon capture and storage (Pöyry 2010). These 
projections are consistent with National Grid’s own 

“Gone Green” scenario for 2030 (National Grid 
2012b), although unlike Pöyry, National Grid do not 
currently project to 2050, so Pöyry figures are used 

here.  

Natural Gas Price 15-34 £/MWh 

DECC’s long term gas price projections extend as far 
as 2030 and range from 15 – 34 £/MWh (45-100 

p/therm) subject to considerations such as linkage of 
the gas market to oil prices and the availability of 

future sources of supply (DECC 2011a).  

Biomass Price 13-40 £/MWh 

Estimates of delivered costs for solid biomass vary 
significantly between different studies, with 2030 

being the furthest into the future that the reviewed 
literature will project. For the 2030s, some supply 

curve studies project steep price falls in costs down 
to 13.3-14.5 £/MWh (E4Tech 2009), while others 

take a more conservative approach, with projections 
between 26-40 £/MWh (NERA & AEA 2009). The 
latest projections used in work carried out for the 

CCC Fourth Carbon Budget report gives a range of 
31-37 £/MWh (NERA & AEA 2010). 
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5.7 Carbon Content of Fuel 

This study employs carbon emissions as a constraint during optimisation 

(Chapter 4) and so the carbon emissions associated with energy use must be 

calculated for the energy system in SEDSO. The carbon content of grid 

electricity in particular remains a major uncertainty for the UK energy system 

(see Chapter 1). SEDSO assumes that biomass is a zero carbon fuel and does not 

account for emissions resulting from fuel production and transport, a limitation 

which is shared by MARKAL (Ekins et al. 2013). 

Table 9 - Carbon Content 

Input Range Basis 

Carbon Content, Grid Electricity 27 – 450 g/kWh 

27 g/kWh is consistent with the 
midrange of Pöyry projections for 
2050, 450g/kWh is the upper limit 
of the UK Emission Performance 
Standard from UK Government’s 
Electricity Market Reform White 

Paper 
(Pöyry 2010; DECC 2011e) 

Carbon Content, Natural Gas 204 g/kWh 
Total GHG equivalent, net CV basis 

(Defra & DECC 2009) 
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Chapter 3 – Research Question 1 
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1.0 Chapter 3 Summary 

This chapter describes the use of the SEDSO model to investigate economies of 

scale in heat decarbonisation technologies using sub-national regional areas 

characterised by varying demand densities. Techno-economic Monte Carlo 

simulation of levelised system costs is computed for a variety of decarbonised 

energy vectors with uncertain inputs. Results obtained provide an insight into 

the future geography of regional approaches to heat decarbonisation. Model 

results suggest that future planning of district heating schemes should not rely 

on arbitrary notions of suitable heat density, but instead must consider the 

marginal cost of alternatives under future fuel pricing scenarios to determine 

economic viability and risk. Specifically, the use of heat pumps rather than gas 

boilers as a counterfactual individual building heating technology leads to 

significantly different results in economic cross-comparisons with district 

heating. 

The remainder of this chapter is structured as follows. The research question to 

be addressed is replicated in Section 2.0. Section 3.0 gives a brief literature 

review on spatial variation in the deployment of individual and district heating 

technologies. Section 4.0 describes the simulation methodology used for 

exploring the research question. Section 5.0 explores variation in system costs 

with respect to heat density and demonstrates the response of the model to a 

number of key input factors. Section 6.0 provides a relative comparison of costs 

between individual and district heating technologies under Monte Carlo 

analysis. Section 7.0 shows a technology comparison using entirely 

deterministic inputs. Finally, Section 8.0 summarises the main findings of the 

chapter. 
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2.0 Research Question 1 

The first research question posed for this study is: 

“In 2050, how might economies of scale in heat decarbonisation technologies 

affect their suitability for deployment in different settlement types, 

characterized by spatial factors such as heat density? How does the tipping 

point between individual and district heating change in response to contextual 

factors?”  

 

3.0 Literature Review 

The formulation of regional planning strategies that optimize the use of energy 

resources and minimize environmental impacts has historically been termed 

"energy planning" (Swedish Council for Building Research 1984; Kron et al. 1986; 

di Nallo & Canella 1986; Jank et al. 1994; Jaccard et al. 1997; Jank 2000; Faber 

Maunsell 2005; TCPA & CHPA 2010). Local government authorities in the UK 

already have powers to direct and incentivise strategic deployment of energy 

infrastructure and can accept or reject planning applications on the basis of their 

environmental credentials. A number of UK industry and government bodies 

have strongly advocated that regional authorities use their planning and 

development control powers to take an area-based approach to the delivery of 

low-carbon cities (Shaw et al. 2006; TCPA & CHPA 2008a; TCPA & CHPA 2008b; 

TCPA & CHPA 2010; Buro Happold 2010; SDC 2010; UK-GBC & Zero Carbon Hub 

2010). It is within this context that the study seeks to explore the question of 

spatial variation in optimal technology deployment.  

Urban planners and government administrative bodies have developed a variety 

of systems for classification of settlements (see Appendix 8.1). For the purposes 

of addressing the research question however, urban density is one of the most 

interesting metrics for exploration. This is because above certain critical 

densities district heating becomes a cheaper option for energy supply than 

individual heating solutions. An interesting question for energy planners is 

therefore to understand what levels of demand density might be required for 
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district heating deployment, not just in the present day with current technology 

costs and performance levels, but also in the future. 

Local energy planning studies often employ the concept of “heat density” when 

seeking to establish the viability of district heating deployment. A number of 

different conventions exist for discussing heat density in relation to district 

heating. As well as areal heat density in km2 or m2, linear heat density is also 

used frequently to express energy (kWh, GJ) or power (kW) as a function of the 

length of installed pipework in km or m. Line heat density is the preferred metric 

for real-world design and deployment of heat network systems, while area heat 

density is relied on for higher level studies where the precise morphological 

characteristics of the area being considered are unknown. Unless otherwise 

explicitly stated, the units of heat density used in this study are peak thermal 

power per unit area, expressed as MWPeak/km2, which is identical to the W/m2 

units that are commonly applied for design-stage sizing of plant and equipment 

in building services engineering. 

Traditional Scandinavian energy planning practice is to seed networks in core 

areas exceeding 50 kWh/m2, which is judged as being on the “safe side” of 

profitable investment, with the lower limit being around 30 kWh/m2 (Zinko et al. 

2008, p.5). Taking into account typical peak heat load factors for cogeneration 

system sizing of around 20% (Orchard Partners 1983c; Woods et al. 2005; Pöyry 

& AECOM 2009), these figures equate to peak heat densities of approximately 

29 MWPeak/km2 and 17 MWPeak/km2 respectively. Other published viability 

thresholds for district heating also coalesce around the 20-30 MWPeak/km2 range 

in different countries (Sargsyan & Nunyan 2006; Grontmij | Carl Bro A/S 2008; 

Norsk Energi & Centre for Climate Change 2011). In the UK, general guidance for 

the Department of Energy and Climate Change (DECC) suggests that economic 

viability of district heating is worth investigating above heat densities of around 

3 MWAverage/km2 (SQW Energy, 2010). A recent study by Pöyry Energy 

Consulting and AECOM investigated domestic heat densities at or above 3 

MWAverage/km2 and also established a threshold of 5 MWAverage/km2 for exploring 

non-domestic schemes in dense urban locations (Pöyry & AECOM 2009). At 
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typical system load factors these values equate to peak heat demand densities 

of around 15 MWPeak/km2 and 25 MWPeak/km2. 

Historical target figures for heat network system planning, like those discussed 

above, are useful for guiding policy on energy technology deployment. They are 

however, essentially rules of thumb derived from empirical observation of 

existing schemes rather than techno-economic absolutes that will remain fixed 

ad infinitum. They may not translate directly from country to country where 

different energy market regimes are in place and where the costs of plant, 

equipment, labour and money (i.e. the discount rate) may vary. As historical 

benchmarks, they are also unlikely to apply in the event that significant shifts in 

underlying drivers occur, because fundamental assumptions about energy and 

carbon pricing, technical performance, financing and risk, and the marginal 

costs of alternatives will have all changed relative to one another. The Energy 

Saving Trust in the UK already acknowledges that historical heat density 

thresholds for district heating may not be relevant for new build construction 

and where carbon emissions reduction is a design goal (EST 2008). More work in 

this area is clearly required if the UK is to quantify the potential benefits of 

district heating in achieving national decarbonisation targets. 

When seeking to estimate future technology deployment in an environment 

with a high degree of uncertainty, it is useful for strategies to be formulated 

using a range of possible input values rather than a set of deterministic 

absolutes (Fawcett et al. 2012). For this reason, the approach taken in this 

chapter is to explore simulated future costs for the energy system using Monte 

Carlo techniques, as described below. 

 

4.0 Approach for Addressing Research Question 1 

Investigating the research question involves comparing how simulated costs for 

different individual and district heating technologies may vary in relation to heat 

density in UK settlements. For a detailed description of how the SEDSO model 

operates, the rationale behind the approach taken, and to see the baseline data 

used, refer back to Chapter 2. 
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4.1 Spatial Representation and Visualisation 

To investigate this research question, SEDSO has been applied in a simulation-

only mode without mathematical optimisation of solutions. The country is 

represented as a series of over 8000 Medium Super Output Areas (MSOA) and 

Intermediate Geography Zones (IGZ) with whole system levelised costs of 

energy (LCOE) determined for each area as described in Chapter 2. LCOE 

outputs are then explored for a variety of future energy supply arrangements. 

Results are visualised in 2 dimensions, with the heat density of each area in 

MWPeak/km2 arranged on the x-axis and the computed LCOE for each technology 

type in £/kWh for each area plotted on the y-axis. This enables the cost of 

deploying different technologies in areas of different heat demand density to be 

directly compared. The use of probabilistic inputs (as described below) 

facilitates the exploration of uncertainty in the projections. 

 

4.2 Sensitivity Analysis 

In answering the research question, the author has sought to explore different 

contextual scenarios by varying some model inputs and allowing others to be 

expressed as uncertain numbers in a Monte Carlo type exercise. SEDSO uses 

over 100 separate input variables to simulate the costs and performance of the 

various technologies it considers in each area. Plausible input values for all 

inputs have been based on a systematic review of available data sources as 

described in Chapter 2. 

As the analysis method chosen is computationally intensive, it is most useful to 

concentrate on exploring variation in those inputs that produce the greatest 

change in output rather than those that have only a minimal effect. The relative 

significance of different input variables cannot always be assumed in complex 

modelling. While it may seem intuitive to suggest that fuel costs, for example, 

are likely to be important to the results of the model calculations, the relative 

importance of other input parameters is not so immediately obvious. Before 

attempting to explore the problem space therefore, it is useful to systematically 

and rigorously explore the effect of variation with all input parameters. 
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The uncertain inputs to be explored in this chapter were selected on the basis of 

a global sensitivity analysis rather than a perfunctory “one at a time” approach 

(Saltelli & Annoni 2010; Saltelli 2004). The analysis is presented in Appendix 7.2. 

This revealed that the model outputs are most sensitive to assumptions about 

fuel pricing, the conversion efficiencies of different system components, and 

economic analysis parameters such as the choice of discount rate applied. 

Factors which determine demand, such as unit energy consumption levels for 

different sectors are also significant to all systems. For district heating, levelised 

costs show a low but measurable sensitivity to the unit pricing of heat 

distribution pipework. For cogeneration plant, the sale cost of CHP electricity 

was found to be extremely significant. For solar thermal generation, the amount 

of sunlight received during the year was found to be crucial to determining 

levelised costs, as might be expected. 

 

4.3 Monte Carlo Simulation Method  

Individual simulations for different supply arrangements are carried out for 

multiple trials with uncertain inputs as per traditional Monte Carlo analysis. 

Regression lines are fitted to the statistically generated outputs to visualise the 

range between the minimum and maximum values. This gives a statistical range 

of possible outcomes that can be interpreted for policy purposes as indicative of 

the level of uncertainty surrounding individual projections (Stern 2006).  

Key assumptions to note are that: 

i. Uncertain inputs are modelled with uniform distributions, with 

no assumptions made about the individual likelihood of values 

between the maximum and minimum end of the range. In 

objective Bayesian thinking, the use of uniform distributions as 

mathematical statements of ignorance is well-established 

according to the “principle of indifference” (Keynes 1921).  
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ii. Uncertain inputs are generally not correlated in the simulation 

i.e. individual inputs are varied independently of one another14. 

Where this may be significant to the modelled outcomes it is 

discussed in the following analysis.  

 

The number of iterations required for each Monte Carlo run is determined on the 

fly in software by testing for convergence periodically. Convergence is deemed 

to have occurred when enough information had been gathered to estimate the 

mean for each distribution to within 3% of its true value with a 95% confidence 

interval. For the model runs described below, this typically results in around 

2000 individual trials per simulation. A 95% confidence interval can be argued to 

be sufficiently robust for the purposes of exploring the research question, 

especially when the wider uncertainties in the model universe are taken into 

account. Major uncertainties affecting the UK energy system, not all of which 

are captured in the model universe, have been discussed previously in Chapter 1. 

 

4.4 Selection of Inputs 

Uncertainty in the system is approached by treating some of the significant 

(Section 4.2) unknown factors as randomised Monte Carlo parameters. A 

number of unknown factors are held static for all scenarios. Unless otherwise 

mentioned they assume values as presented in Chapter 2: 

i. Economic evaluation parameters, such as economic service lives 

of plant and equipment, are fixed. All technologies are assessed 

at a discount rate of 3.5% in line with UK government guidelines 

on risk modelling for policy assessment (HM Treasury 2011). 

Although the model output is sensitive to these parameters, the 

values they assume are ultimately at the discretion of the 

assessor, reflecting for example, investor appetite for risk. The 

                                                             
14

 The one exception is the sale price of CHP electricity, which is given an equal value to the grid 

sale price on every Monte Carlo trial. 
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decision has therefore been made here to assess all options on 

the basis of guidelines used by the UK government. 

 

ii. The unit input cost of district heating pipework is fixed because 

although it is significant to model output, variation in costs with 

respect to heat density is already handled within the model 

calculation itself (see Chapter 2). 

 

iii. The unit reinforcement costs of the local electrical distribution 

network are fixed because the sensitivity analysis undertaken 

has shown that model output is overwhelmingly driven by other 

factors. 

 

iv. Losses in the gas and district heating distribution networks are 

fixed because the sensitivity analysis does not find them to be 

major determinants of overall system costs, with power network 

losses being much more significant. 

 

v. Losses in the power network are fixed because although the 

model is highly sensitive to this factor, it is not considered to be 

a major future uncertainty in the energy system. 

 

vi. The capital and operational costs of building end-user 

equipment are fixed because the model output is not very 

sensitive to their variation. 

 

vii. The conversion efficiency of gas and solid biomass technologies 

is fixed for all scenarios. Although a significant parameter, the 

efficiencies of these technologies are largely proven through 

their widespread deployment. Their performance is also not 

dependent on environmental or technical factors such as 

operating temperatures in the same way as for example, electric 

heat pumps. 
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viii. Performance of solar thermal district heating is fixed. This is 

because SEDSO is a static model and also one which does not 

include spatial variation in meteorological data. It is difficult to 

generalise upper and lower bounds for solar energy availability 

without an understanding of how it varies spatially between the 

different areas of the country present in the model. 

 

5.0 Variation in System Costs with Heat Density 

The graphs below have been produced with the costs of key variables allowed to 

vary between their upper and lower limits as defined in Chapter 2. These 

performance parameters are summarised in Table 10. The demand side of the 

system is assumed to have followed an energy efficient pathway as defined in 

Chapter 2. It is worth noting that exogenous gas price variation is not correlated 

with electricity price variation in this case. The results in this section are 

intended to explore the shape of the cost curves and to get a sense of the 

general spread of uncertain outputs. Later analysis (Section 6.0 and 7.0) deals 

with internally consistent scenarios and compares different technologies against 

one another. 

Table 10 – Key Performance Parameters for Monte Carlo Simulation 

Input 
Value in Monte 

Carlo Simulation 
Basis 

Discount Rate 3.5% (HM Treasury 2011) 

Grid Electricity 79-97 £/MWh 

See Chapter 2, Section 5.6 Natural Gas 15-34 £/MWh 

Biomass 13 – 40 £/MWh 

Individual Heat Pump 
Performance 

SPF 1.2 – 3.2 

See Chapter 2 Section 5.5 
Individual Gas Boiler 

Efficiency 
74 – 94% 

Utility-Scale Heat Pump 
Performance 

SPF 3.0 – 3.5 
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Figure 6 and Figure 7 illustrate variation in the levelised cost of energy with peak 

heat demand density for individual and district heating technologies. The darker 

shaded areas correspond to the fit curves of simulated outputs falling between 

the 5th and 95th percentile range, while the lighter shaded areas represent the 

extent of the simulated maxima and minima. 

Figure 6 – Variation in System LCOE with Heat Density for Individual Heating 

 

 

The profile of individual heating system unit costs is mostly flat when compared 

against heat density. There is a small uplift in the sub-5 MWPeak/km2 range that 

can be attributed to an absence of commercial and industrial properties in these 

areas, which have lower unit costs for building level plant (see Chapter 2). The 

profiles of district heating unit costs, on the other hand, show significant 

economies of scale at higher heat densities for all heat sources. Costs for both 

individual and district heating options are generally dominated by fuel costs, but 

there is variation in the balance of investment in plant and network 

infrastructure that it is useful to highlight. A breakdown of costs shows that for 

district heating options expenditure on network infrastructure is significantly 

higher at lower densities due to the need to construct more extensive heat 

networks (Appendix 7.3).  
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Figure 7 – Variation in System LCOE with Heat Density for District Heating 
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5.1 Impact of Varying Electricity Costs 

The change in mean LCOE resulting from fixing the exogenous grid electricity 

costs either at their lower or higher estimates is illustrated below in Figure 8 and 

Figure 9. Electricity costs affect all system supply arrangements, as even supply 

paradigms with heating from gas or biomass still require electricity to meet 

power and lighting demands for end users. It can be seen that the mean system 

LCOE for all options increases as the cost of grid electricity increases, with the 

exception of CHP technologies, where mean system LCOE falls instead. This is 

because the value of CHP electricity is linked to the exogenous grid price. As the 

exogenous power price rises, these options show lower overall costs as the value 

of their exported electricity is increased. 

Figure 8 – Mean System LCOE for Individual Heating, Varying Electricity Cost 
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Figure 9 – Mean System LCOE for District Heating, Varying Electricity Costs 
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5.2 Impact of Solid Biomass Fuel Costs 

The change in mean LCOE for biomass technologies resulting from moving from 

the low to the high cost estimate is shown below in Figure 10. As might be 

expected, an increase in biomass fuel costs leads to an increase in overall 

levelised system costs for both heat-only and CHP systems. 

Figure 10 – Mean System LCOE for Biomass Technologies, Varying Biomass Cost 
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5.3 Impact of Natural Gas Fuel Costs 

Varying the exogenous cost of natural gas supply between the low and high 

estimates increases mean system costs for individual gas boilers and gas district 

heating both with and without CHP. This is illustrated in Figure 11. 

Figure 11 – Mean System LCOE for Natural Gas Technologies, Varying Gas Cost 
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5.4 Impact of CHP Electricity Sale Cost 

The change in system LCOE arising from varying the value assigned to CHP 

electricity in the model is illustrated in Figure 12. As noted in earlier chapters, 

SEDSO is a static model and values assigned to fuel costs must represent long-

term annualised averages. SEDSO is not an agent-based model and the 

electricity produced by local CHP generators is not actually traded back to the 

national system in a true transactional fashion. Instead, in each area the model 

subtracts the cost of locally generated electricity from the costs that would 

otherwise have been met by power from the grid. This is a technique used in 

comparable studies (Element Energy 2007; NERA & AEA 2010). 

In the real world the value of CHP electricity varies dynamically depending on 

what cost it can be sold for on the national electricity system, where electricity 

costs vary seasonally and diurnally depending on the mix of generators used. In 

the UK, CHP operators have historically received lower electricity prices from 

trading on the market than might be expected from the value associated with 

displacing grid electricity (BRE 2003; AEA 2007). This is because UK CHP plant 

have tended to be small-scale and on heat-led sites where electricity production 

is highly variable, leading to bid prices as low as 40% below grid average (AEA 

2007). The operational flexibility to sell electricity at times of high demand is 

dependent on the ability to store any resulting increase in local heat generation 

in thermal accumulators (Fragaki et al. 2008; Toke & Fragaki 2008). The absence 

of true temporal dynamics in SEDSO makes assigning representative values of 

CHP electricity difficult. Precedent energy model studies have used dynamic 

system buy costs, as calculated under the Balancing and Settlement Code 

(Elexon Ltd. 2009) , as a proxy for revenue earned from CHP electricity sales 

(Fragaki & Andersen 2011). 

Future large-scale CHP plant in the UK with appropriately-sized thermal storage 

should be able to sell power at above grid average costs for enough of the year 

to compensate for those time periods when the local area must take electricity 

from the grid. This would allow the long term average value of CHP electricity to 

at least equal that of the grid average, and is the default approach taken in the 

analysis presented. However it is useful to illustrate the effects of adopting 
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higher and lower CHP values relative to the grid average. In reality the value of 

CHP electricity may be significantly affected by non-technical factors such as 

power market regulatory structure, tariffs, subsidies and other financial 

incentives and transaction costs. 

Figure 12 illustrates the effect on total system costs when CHP electricity is 

valued at 20% above and 20% below the grid average. It can be seen that 

increasing the average value of CHP electricity produces large cost reductions 

for both biomass and natural gas generators. 

 

Figure 12 – Mean System LCOE for CHP Technologies, Varying CHP Electricity Cost 
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6.0 Monte Carlo Comparison 

Having explored the impacts of various key input parameters on the shape of 

system costs in Section 5.0, it is useful to now explore the relative tipping points 

between different technologies. To do so in a useful fashion it has been 

necessary to introduce some additional conditionality to the analysis. As noted 

in Chapter 1, future UK gas price projections are highly uncertain and vary by up 

to a factor of ≈2:1. Future uncertainty in gas pricing may also affect the power 

sector, depending on the proportion of gas generation. Without framing the 

analysis as a set of narrower conditions, the uncertainty in resulting outputs is so 

large that it is difficult to investigate cross-comparisons of district heating 

against different counterfactual individual heating technologies15.  

The following Monte Carlo comparisons keep the same parameter values as 

those in Section 5.0, but employ a fixed cost for future gas prices consistent with 

DECC “central” projections in order to align with the grid electricity prices used 

(Pöyry 2010; DECC 2010b). This section compares the relative costs of individual 

and district heating arrangements in areas of different peak heat demand 

densities for different narrative cases. Specifically: 

i. Individual electric heat pumps are compared against district 

heat from various heat sources in the context of an energy 

system with a largely decarbonised grid, where individual gas 

boilers have ceased to be a dominant supply technology in the 

energy system. 

 

ii. Individual gas boilers are compared against different district 

heating options in the context of an energy system where the 

existing gas grid continues to play a substantial role. 

  

                                                             

15
 This is of course a useful observation in its own right. 
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6.1 Individual Heat Pumps vs. District Heating 

Key policy advice produced for the UK government has determined that mass 

electrification of heating demand accompanied by simultaneous 

decarbonisation of the power sector represents the lowest cost technology 

pathway towards a low carbon economy (CCC 2008; CCC 2010). Following this 

route, fossil fuel resources such as natural gas would need to be utilised in future 

at centralised locations with carbon capture and storage (CCS). In this case, 

there would be no future role for unabated natural gas combustion in individual 

distributed boilers or even district level systems, as if CCS can be made to work 

is only likely to be viable at scale16. Under these conditions the main individual 

building heating technology is likely to be electric heat pumps.  

The results presented here explore the possible niche available for district 

heating in an “all-electric” future by explicitly modelling the tipping points at 

which the economics become favourable. This is deemed to occur where total 

system LCOE for district heating is lower than that for heating and power using 

individual heat pumps. Of course, the economic cost alone does not take into 

account the CO2 mitigation potential of technologies into the comparison, but 

this is addressed in the following discussion. The use of carbon emissions as an 

optimisation constraint is explored in Chapter 4. 

Cost and performance inputs have been allowed to float between their upper 

and lower bounds in the Monte Carlo simulation as discussed in Section 5.0. CHP 

electricity costs are assumed to equal the grid average. It is worth re-iterating 

that costs for the power network itself are treated as sunk costs as described in 

Chapter 2. Figure 13 compares the simulated system LCOE range falling 

between the 5th and 95th percentiles for district heating networks supplied from 

                                                             
16

 A major limitation for deployment of CCS is the storage element. While pre-combustion and 

post-combustion carbon capture techniques might be scalable to district scale plant, the 

practicalities and economics of having to transport and store the captured carbon are likely to 

mean that CCS, if ever viable, will remain a large-scale operation. It may even be geographically 

restricted to coastal locations where pipelines can link readily to depleted off-shore gas 

reservoirs in the British North Sea, which are postulated as the most likely storage locations. 
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different heat sources, and compares them directly against individual heat 

pumps.  

It can be immediately observed that the uncertainty range in cost projections 

makes the drawing of precise conclusions about tipping points difficult for many 

technologies. The overlapping ranges do however serve to illustrate the levels of 

heat density where direct competition between technologies on a cost basis is 

worthy of further investigation. Deployment potential within these ranges may 

ultimately be decided by non-cost related factors such as resource availability 

and the requirement to mitigate CO2 emissions. 

Figure 13a shows that the total system costs of heat networks supplied from 

biomass boilers start to enter competition with heat pumps from very low heat 

densities of around 2 MWPeak/km2. However the biomass boiler district heating 

option only starts to conclusively outperform heat pumps under the range of 

uncertainties considered from around 90 MWPeak/km2. Figure 13b shows that 

biomass CHP district heating is in competition with individual heat pumps across 

the full heat density range considered. However, due to the uncertainties in 

future biomass and electricity pricing there is no decisive point under 100 

MWPeak/km2 where it would be economically advantageous to deploy a heat 

network supplied from biomass CHP over individual heat pumps. 

Figure 13c illustrates that projected cost range for gas boiler district heating 

draws level with that for heat pumps around 10 MWPeak/km2. However, as 

discussed previously, this purely economic comparison ignores the fact that the 

individual heat pump option could have lower emissions than the gas district 

heating option. Figure 17d demonstrates that gas CHP district heating is likely to 

be a lower cost option than individual heat pumps at all heat densities 

considered, owing to the value placed on exported electricity. As with gas boiler 

district heating however, this modelled estimate does not take into account 

carbon emissions which are likely to play a significant role in technology 

selection. 

Figure 13e shows that solar thermal district heating is cost competitive with 

individual electric heat pumps from heat densities as low as 5 MWPeak/km2. It 

should be noted however that system costs in this case do not account for the 
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value of the land occupied by the solar thermal system, which may be significant 

at higher densities. Figure 13f indicates that utility-scale heat pump district 

heating definitively outperforms individual heat pumps on a cost basis from 

around 20 MWPeak/km2. Utility-scale heat pumps supplying district heating are 

an interesting competitor for individual building heat pumps, as they may be 

able to take advantage of future reductions in grid carbon content in a way that 

is not possible for gas-based technologies. 
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Figure 13 – Monte Carlo Comparison of Individual Heat Pumps Against District Heating 
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6.2 Individual Gas Boilers vs. District Heating 

The “all-electric future” is by no means a certain outcome for the development 

of the UK energy system. Technological improvements in upstream processing 

have recently made large reserves of unconventional gas economically 

exploitable, most notably in the United States. It is estimated that this may 

increase global reserves of gas by up to 50% (McGlade et al. 2012). Whether or 

not gas costs in global markets will decouple from oil over the long term outside 

of the United States remains to be seen, but the IEA considers that abundant 

gas has the potential to reshape established energy markets once dominated by 

coal-fired generation (IEA 2011b; IEA 2012).  

As originally noted in Chapter 1, the long-term commitment of successive UK 

governments to achieving national emissions targets cannot necessarily be 

taken for granted. It is entirely plausible that the UK energy system of 2050 will 

have reduced emissions targets compared to those that form the basis of official 

policy today. This may enable gas-fired technologies such as individual boilers 

and gas district heating (with or without CHP) to remain major supply options in 

future. 

Future infrastructure paradigms that extend the life of the UK gas network are 

being actively championed by industry players with significant investments in 

gas transmission and distribution. Proposals for lowering the carbon content of 

the natural gas grid have been discussed in Chapter 1. Recent studies for the 

Energy Networks Association postulate a variety of scenarios in which low 

carbon gas might deliver significant cost savings against alternatives while still 

enabling the UK to meet its national carbon abatement targets for 2050 

(Redpoint Energy 2010; Delta Energy & Environment 2012). 

Gas technologies warrant further investigation on this basis. The following set of 

scenario runs helps to scope the future role for district heating by establishing a 

first-approximation of the demand densities where the technology offers a 

lower total system LCOE compared with individual gas boiler heating. Monte 

Carlo simulation has been carried out with the same parameters used in Section 

6.1. The gas network is modelled as an existing asset, with no capital costs 

associated with its construction. The resulting comparison of simulated system 
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LCOE for individual gas boilers against different district heating technologies is 

illustrated in Figure 14. 

Figure 14a shows that there may be some overlap in costs between district heat 

from biomass boilers and individual gas heating starting at heat densities 

around 20 MWPeak/km2, but the heat network is never likely to be a cheaper 

means of providing heat given the inputs considered here. Figure 14b can be 

interpreted to mean that heat networks supplied by biomass CHP may enter 

competition with individual gas boilers from around 5 MWPeak/km2 but do not 

emerge as a clearly lower cost solution at any density level considered. 

Figure 14c indicates that total system LCOE for gas district heating may start to 

match that for individual gas heating from peak heat densities of 20 

MWPeak/km2, becoming definitively cheaper at 80 MWPeak/km2. Figure 18d 

demonstrates that heat networks supplied by gas CHP could be immediately 

cost competitive with distributed gas heating at very low heat densities and 

should be economically advantageous to deploy at all densities above around 5 

MWPeak/km2. 

Figure 14e shows that the simulated cost curve for solar thermal district heating 

becomes competitive with individual gas boiler heating from around 10 

MWPeak/km2 and is lower cost from 30 MWPeak/km2. As mentioned previously 

however, these costs do not include for land values which may be significant at 

higher densities for solar thermal systems. Figure 14f illustrates that heat 

networks supplied from utility-scale heat pumps start to draw level in terms of 

costs from around 60 MWPeak/km2 but are not conclusively cheaper at any point 

under 100 MWPeak/km2. As with the prior comparison, it is worth noting that 

deployment of technologies may also be influenced by considerations such as 

emissions and resource availability as well as costs. 
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Figure 14 – Monte Carlo Comparison of Individual Gas Boilers Against District Heating 
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7.0 Deterministic Comparison 

As shown above in Section 6.0, Monte Carlo simulation introduces significant 

uncertainty into projections, which makes the drawing of precise conclusions 

challenging. The sensitivity analysis described in Appendix 7.2 shows that a large 

degree of the uncertainty in modelled outputs can be attributed to exogenous 

factors like fuel prices.  These uncertainties cannot be reduced without reliance 

on other complex models which poses a challenge for modellers seeking to 

provide an evidence base for policy making. 

In many studies of future energy technology deployment it is common for the 

authors to address uncertainty by considering variation in unknown inputs as 

entirely separate conditional scenarios. Often key inputs are given deterministic 

values and designated as “high”, “low”, or even “medium”. This is not 

necessarily bad practice, as in any given conditional scenario the value of key 

inputs, such as the price of natural gas would be “unknown a priori but becomes 

known once the market of action has been chosen i.e. when the model is then to 

be applied” (Saltelli et al. 2004, p.162).  

When modelling sufficiently complex systems with high degrees of uncertainty, 

however, there is a significant danger that modellers or their intended audiences 

may begin to ascribe a greater degree of significance or likelihood to different 

scenarios based on their names, for example a “central” or “reference case” 

scenario. A scenario described as “central” is not necessarily more epistemically 

valid or more likely to occur than other possible outcomes just because the 

modeller has named it so. In these cases, the way in which the inputs have been 

chosen is crucial to interpreting the output in context. Conditional scenarios can 

be useful provided that they are correctly interpreted for what they are; 

conditional cases where exogenous assumptions assume fixed values chosen by 

the modeller. Scenarios should not be presented as a group of “quasi-forecasts, 

one of which may be right” but should rather have their inputs selected so that 

the “major forces driving the system, their interrelationships, and the critical 

uncertainties” can be illuminated for discussion (Wack 1985, p.146). This is the 

approach taken for the scenarios presented in the following chapter (Chapter 4). 
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For this study, the degree of uncertainty in projections has already been 

illustrated in Section 6.0 using probabilistic inputs. For the optimisation work 

presented in the next chapter  however, limits on available computer power 

have meant that deterministic combinations of single values have to be used. To 

understand the tipping points used by the optimisation model, it is useful to 

explore technology comparisons with the same fixed inputs. The data presented 

have been generated using the mid-range of the projections that were 

previously considered. This is nothing more than a conditional scenario falling 

within a range of possibilities, and should be interpreted as such.  

 

7.1 Individual Heat Pumps vs. District Heating 

All of the caveats regarding the presentation of the data discussed earlier in the 

Chapter still hold true. Gas-fired technologies show favourable costs, but may 

well have any deployment restricted by limits on total carbon emissions rather 

than just on a cost basis.  

Figure 15a shows heat networks supplied by biomass boilers breaking even on a 

cost basis with individual heat pumps at around 5 MWPeak/km2 and becoming the 

cheaper of the two options above this level. Figure 15b indicates that biomass 

CHP district heating is a lower-cost option than individual heat pumps at all but 

the very lowest heat density areas. 

Figure 15c demonstrates heat-only gas district heating becoming cheaper than 

heat pumps from around 2 MWPeak/km2 and above. Figure 15d projects that gas 

CHP district heating is economically advantageous when compared against 

individual heat pumps at all densities. 

Figure 15e illustrates that solar thermal district heating is cheaper than 

individual heat pumps except at very low densities. Figure 15f shows that utility-

scale heat pump district heating has an almost identical cost curve to that for 

heat networks supplied by gas boilers, and offers a lower whole system LCOE 

than individual heat pumps at heat densities of 2 MWPeak/km2 and above. 
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Figure 15 – Deterministic Comparison of Individual Heat Pumps Against District Heating 
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7.2 Individual Gas Boilers vs. District Heating 

The charts shown in Figure 16a and Figure 16b show that biomass heating 

technologies do not offer lower system costs than gas boilers at any point on the 

0-100 MWPeak/km2 range considered. The case for their deployment against gas 

heating may therefore be influenced on the basis of their emissions reduction 

potential alone. 

Figure 16c shows that gas district heating reaches a tipping point when 

compared against individual gas boilers at a heat density of 35 MWPeak/km2. 

When gas is used to cogenerate heat and power together (Figure 16d), there are 

cost savings over individual gas heating at all heat densities.  

Solar thermal district heating (Figure 16e) shows lower costs than individual gas 

boilers at heat densities of 12 MWPeak/km2 and above. Heat networks supplied by 

utility-scale heat pumps (Figure 16f) have lower total system costs than 

individual gas heating at from heat densities of around 45 MWPeak/km2 and 

above. 
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Figure 16 – Deterministic Comparison of Individual Gas Boilers Against District Heating 
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8.0 Chapter 3 Main Findings 

“In 2050, how might economies of scale in heat decarbonisation technologies 

affect their suitability for deployment in different settlement types, characterized 

by spatial factors such as heat density? How does the tipping point between 

individual and district heating change in response to contextual factors?”  

Researchers and engineering practitioners have observed that the viability of 

heat network schemes in competition with distributed systems occurs at some 

level of critical heat load density (Fröling 2004; Kristjansson et al. 2004; Brkic 

2008; Fröling et al. 2006) . Until now however, no study has attempted to 

confirm critical heat load densities quantitatively in a UK-specific context when 

evaluated against the future marginal costs of other technologies.  

This chapter demonstrates the use of the SEDSO model for establishing techno-

economic tipping points between competing technologies for supplying heat 

and power in areas of different heat demand density. The methodology used 

allows this territory to be explored in greater detail than is possible by relying on 

empirical observation of past installations. SEDSO determines the tipping point 

between individual and district technologies by performing marginal cost 

comparisons using a discounted cash flow technique and finding the lowest cost 

options for heat and electricity supply at any given heat density. Economic 

viability in the real world is subject to a number of factors that are not modelled 

in the study, including regulatory challenges, specific local geographical 

conditions and individual project financing arrangements. However, the results 

are still useful for addressing the research question. 

The Monte Carlo analysis performed in Section 6.0 shows that, as expected, 

economies of scale in district heat generation technologies and lower network 

costs per unit of heat delivered (Appendix 7.3) favour their deployment in areas 

of higher heat demand density. The results of the sensitivity analysis (Appendix 

7.2) also show that fuel costs and the discount rate applied in the economic 

assessment can be as significant as technical performance parameters used in 

influencing the outcome. 

Section 6.0 indicates that, when considering a 2050 timeframe, future 

uncertainties surrounding fuel costs make the drawing of precise conclusions 
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regarding tipping points difficult, even when technologies are assessed at a fixed 

social discount rate of 3.5%. The only way to establish a fixed-point in a heat 

density range where district heating outperforms individual heating is to define 

conditional future scenarios where unknown variables are fixed in a 

deterministic manner, as demonstrated in Section 7.0. While useful for 

informing policy, scenarios should not be treated as forecasts. Future fuel costs 

remain uncertain and are essentially indeterminate across a wide range despite 

efforts to establish upper and lower boundaries in other modelling studies. 

Rather than establishing an exact tipping point, the Monte Carlo simulations 

described in Section 6.0 generally identify future ranges of heat density where 

the levelised costs of individual and district heating overlap. Overlap regions 

indicate areas or settlements where district heating deployment would merit 

further investigation on a more detailed basis when real projects are being 

assessed. There are also a number of cases where heat network deployment 

costs, as modelled, are definitively the cheapest option i.e. the upper boundary 

of projected costs for district heating is below the lower boundary of projected 

costs for individual heating. Table 11 summarises the observations that can be 

made regarding the heat density thresholds where individual and district 

options break even (or not) in terms of whole system LCOE.  
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Table 11 – Heat Density Threshold Observations 

District 
Heating 

Heat Source 

Compared with  
Individual Gas Boilers 

Compared with  
Individual Heat Pumps 

Biomass  
(Heat-Only) 

Competitive from >20 MWp/Km
2
 

Competitive from 2-90 MWp/Km
2 

Cheapest option >90 MWp/Km
2
 

Biomass 
CHP 

Competitive from >5 MWp/Km
2
 Competitive from >2 MWp/Km

2
 

Gas  
(Heat-Only) 

Competitive from 20 – 80 MWp/Km
2
 

Cheapest option >80 MWp/Km
2
 

Competitive at all densities  
Cheapest option > 10 MWp/Km

2
 

Gas CHP 
Competitive at all densities  

Cheapest option >5 MWp/Km
2
 

Cheapest option at all densities 

Solar 
Thermal 

Competitive from 10-30 MWp/Km
2
 

Cheapest option >30 MWp/Km
2
 

Competitive at all densities  
Cheapest option >5 MWp/Km

2
 

Utility-Scale  
Heat Pumps 

Competitive from >10 MWp/Km
2 Competitive at all densities  

Cheapest option >20 MWp/Km
2
 

 

As noted in Section 3.0, international energy planning practice shows district 

heating being economically deployed, at least for initial “anchor loads”, in areas 

with heat densities of 20-30 MWPeak/km2. Empirical guidance suggests that 

district heating begins to be worth investigating in the UK at densities as low as 

15 MWPeak/km2. It is not known what technology is considered as a 

counterfactual to arrive at this figure, but historically district heating in the UK 

has been in competition with individual gas boilers rather than say, oil heating.  
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Table 11 shows that in 2050 gas district heating may be worth investigating 

when compared against individual gas boilers from heat densities of 20 

MWPeak/km2, which is close in absolute terms to the published historical 15 

MWPeak/km2 figure17. The analysis for 2050 shows biomass heat-only boilers 

being worthy of investigation from 20 MWPeak/km2. Modelled CHP options are 

viable at low densities (from 5 MWPeak/km2) owing to the reduction in total 

system costs associated with electricity exports in the model. Of course this may 

be sensitive in reality to electricity spot pricing and how the unit is operated to 

compete in that market18. The modelled low carbon heat sources, namely solar 

thermal and utility-scale heat pumps, both start to appear potentially 

competitive with individual gas heating from 10 MWPeak/km2.  

In future, the counterfactual individual heating technology against which district 

heating may need to compete in the UK may be individual electric heat pumps. 

What Table 11 shows immediately is that district heating starts to be cost 

competitive against individual electric heat pumps at much lower demand 

densities than gas boilers for any given heat source. This suggests that in future, 

heat networks may be a cheaper solution than individual heating even at lower 

densities than is commonly supposed to be the minimum threshold today. 

Another factor to consider is that a greater proportion of the UK demand in 

2050 may be found in higher heat density areas in than in the present. As 

detailed in Chapter 2, the study takes baseline statistical area information and 

projects it to 2050 along an assumed energy efficiency pathway. The result on a 

per area basis can be visualised below in Figure 17. Population growth, housing 

growth, and growth in the non-domestic sector are assumed to occur with the 

same spatial distribution as the present day, and although there are unit 

reductions in demand for electricity and heat, the density of demand increases 

markedly in many areas.  

                                                             
17

 Referring back to Section 3.0, the reader should note that 15 MWPeak/km
2
 is inferred from an 

average heat density figure of 3000 kW/km
2
. 

18
 A discussion on the limitations of the model with regard to representing CHP electricity sales 

was covered in Section 5.4, and Chapter 5 reflects more widely on the challenge of using a static 

model for this study rather than a dynamic one. 
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Figure 17 – Visualisation of MSOA Population against Heat Density, Baseline Data and Future 

Projections 

 

This can be further illustrated by organising all of the MSOA/IGZ areas in Great 

Britain into representative heat density bandings and comparing them side-by-

side. For Figure 18, heat density bandings from a typical city energy planning 

study are used (Studsvik Energiteknik AB 1979b). The projections applied in 

SEDSO for this study, using an energy efficient pathway for modelled demand 

sectors (Chapter 2), result in an increase in the population living at heat densities 

of 25 MWp/km2 and above. Fully two-thirds of the UK population in 2050 are 

anticipated to live at heat densities above 10 MWp/km2. 
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Figure 18 – Visualisation of UK Population at Different Heat Density Ranges in Baseline Data and 

Projections 

 

 

These findings are valuable for parties involved in energy planning and the 

physical zoning of technical decarbonisation strategies. Various groups have 

strongly advocated that regional authorities use their planning and 

development control powers to direct and incentivise strategic deployment of 

future energy infrastructure using an area-based approach (Shaw et al. 2006; 

TCPA & CHPA 2008a; TCPA & CHPA 2008b; TCPA & CHPA 2010; Buro Happold 

2010; SDC 2010; UK-GBC & Zero Carbon Hub 2010). The results of the study 

strongly suggest that future planning of heat network schemes should consider 

the marginal cost of alternatives under future fuel pricing scenarios to 

determine economic viability and risk, rather than encouraging deployment 

based on arbitrary heat density thresholds based on historical observations.  
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Chapter 4 – Research Question 2 
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1.0 Chapter 4 Summary 

The deployment of district heating technology in the UK offers significant 

benefits in the context of near-term efforts to reduce carbon emissions. 

However, the longer term future prospects for district heating are uncertain, 

with estimates of future potential ranging from 10-50% of national heat 

demand. Due to the complexity in modelling required, past studies of district 

heating potential have tended to frame their work within a relatively narrow 

field of possible future scenarios for the development of the UK energy system. 

These necessarily lead to projections of district heating potential that fall within 

a limited range. This chapter describes the use of the SEDSO model in 

simulation-optimisation mode as a means of exploring the national potential for 

district heating under a large number of possible futures, facilitating insights 

into a wider spectrum of possible outcomes. 

The remainder of this chapter is structured as follows: Section 2.0 re-states the 

original research question which the work presented in this chapter is designed 

to address. Section 3.0 presents a literature review of key precedent studies in 

this field, identifying avenues of investigation that have been left largely 

unexplored to date. Section 4.0 describes the analysis methodology utilised in 

this study and the input data used. Section 5.0 presents the results of 

optimisation scenario runs which explore variation in the uptake of different 

heating technologies in relation to changing national emission targets and the 

level of grid decarbonisation achieved in the power sector. Section 6.0 directly 

compares the results of different scenarios in terms of their relative costs, their 

levels of district heating deployment, and the densities at which district heating 

has been deployed. Section 7.0 demonstrates the possible impacts on the 

optimisation solutions of making changes to a number of key exogenous inputs. 

Finally, Section 8.0 summarises the main findings of the work presented in this 

chapter. 
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2.0 Research Question 2 

The research question addressed in this thesis chapter is: 

“In future resource-constrained energy scenarios for the UK, what will be the 

cost-optimal balance between different technological approaches to heat sector 

decarbonisation such as individual electric heating, individual gas heating, and 

district heating networks?” 

 

3.0 Review of Recent UK District Heating Potential Studies 

As discussed in Chapter 1, the uncertainties facing the UK energy system are 

significant and all technologies that offer pathways towards heat sector 

decarbonisation carry with them specific risks. District heating is an energy 

vector which can be supplied by various heat sources, using different fuels with 

different costs and carbon intensities. The economics and technical 

performance of district heating systems therefore may vary significantly 

between different heat sources at different scales, and also may also be 

dependent on interactions with the electricity system if generators are 

operating in CHP mode. The future deployment potential of district heating is 

actually therefore not straightforward to analyse, as it depends on a significant 

number of variables which may themselves require a significant modelling effort 

to endogenise. Within this context it is easy to appreciate why establishing solid 

projections of district heating potential is a challenging task.  

As noted in Chapter 3, district heating viability is usually estimated using the 

concept of heat load density. Energy planners looking to roll out district heating 

typically map heat demand in urban environments, targeting areas for heat 

network development above benchmarked heat density thresholds. Modelled 

systems usually have a heat density tipping point where district heating 

becomes economically more attractive than individual heating. National 

technical potential is often simply established as the sum of the demands in all 

of the areas which fall above the established heat density threshold. However, in 

an uncertain future, these historical tipping point benchmarks may well no 

longer apply, especially as a result of changes to the relative costs and 

performance of the competing technologies available for deployment. 
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Methodologies used in past studies of district heating potential have not 

necessarily been structurally equipped to explore this degree of variation. 

Current penetration of district heating in the UK heat market is estimated at 2% 

(DECC 2012c). Total potential for district heating has been estimated in the past 

at between 11 – 114 TWh in a study by the Building Research Establishment, and 

0.63 – 230 TWh in a study by AEA, depending on the discount rates applied in 

the analysis (BRE 2003; AEA 2007). When considering the latest DECC estimates 

of national heat demand (DECC 2009a), projected potential is between 1 – 14% 

for the BRE study and 0.1 – 29% for the AEA study. Both reports however made 

their estimates based entirely on gas-fired technologies only, and neither study 

was carried out in the context of meeting the UK’s current national emissions 

target for 2050, which was only legislated for in 2008. They are therefore not 

considered further here. 

Current UK government policy thinking on district heating has been shaped 

strongly by two major reports. The first for the Department of Energy and 

Climate Change (DECC) by Pöyry (Pöyry & AECOM 2009) and the second for the 

government’s independent advisory body, the Committee on Climate Change 

(CCC), by NERA (NERA & AEA 2010). These studies put district heating potential 

at 83-90 TWh, which is 10-11% of current UK demand as estimated by DECC. 

Both studies have an arguably constrained view of the potential landscape for 

future district heating deployment, which arises from their methodological 

approaches. Specifically, they use only a restricted range of future heat sources 

for network supply, apply the heat density viability threshold for district heating 

exogenously, use a simulation-only approach to exploring the problem space, 

employ spatial characterisations of demand that makes it difficult to relate 

outputs to real-world heat densities, and consider only a limited range of 

narrative scenarios in their analyses.  

 

3.1.1 Restricted Range of Heat Sources 

As noted in Chapter 1, important technical options for supplying low carbon 

heat to future district heating systems include the use of utility-scale heat 

pumps to drive heat networks from low carbon electricity (Blarke & Lund 2007; 



 122 

Dyrelund & Lund 2009; Mancarella 2009) and the use of solar thermal heat (Epp 

2009; Dalenbäck 2012; Marstal Fjernvarme DK 2012; Steinbeis Research 

Institute for Solar and Sustainable Thermal Energy Systems 2012). Utility-scale 

heat pumps are mentioned in the NERA report but are not explicitly deployed as 

part of any modelled estimates of district heating potential. Utility-scale heat 

pumps are also absent from the Pöyry study. Finally, neither the NERA nor the 

Pöyry study appears to consider large-scale solar thermal heat as a potential 

supply source for heat networks. The author believes it is important to consider 

both of these technologies in order to obtain a well-rounded view of future UK 

district heating potential out to 2050, given the frequency with which they 

appear in other European studies and the tentative nature of estimates of the 

role and desirable extent of district heating in mid-21st Century scenarios for the 

UK. 

 

3.1.2 Exogenous Application of Heat Density Viability Thresholds 

The models used by NERA and Pöyry cannot endogenously determine the 

location of the techno-economic tipping points between different heat supply 

technologies as contextual factors change. Both studies make the implicit 

assumption that district heating systems are economically viable above fixed 

total heat density thresholds that are based on empirical observations of past 

schemes. These are 50 MWPeak/km2 for the NERA study and 3-5 MWAverage/km2 

for the Pöyry study, depending on sector.  

However, as discussed previously (Chapter 3), the use of exogenous heat density 

thresholds restricts the validity of the estimates produced to cases where the 

techno-economic break-even points between district heating and individual 

heating remain the same in the future as they have in the past. This may not be 

appropriate for 2050, especially if heat network supply sources change from gas-

fired technologies to low carbon alternatives. The conclusions regarding heat 

network potential from these studies may therefore only be valid for a narrow 

and relatively uninteresting range of conditional futures. 
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3.1.3 Simulation-Only Approach to Exploring Problem Space 

The methods used in the studies described can be characterised as pure 

simulation rather than optimisation. The authors describe a range of possible 

futures, select inputs accordingly to represent these futures, and establish 

technology potential in each case. It is difficult to objectively determine which of 

these scenarios is “best” or more desirable than the others, because no criteria 

are employed to rank presented solutions against one another. 

This simulation-only approach, combined with the inability of the models to 

endogenously determine district heating potential based on heat density, leads 

to difficulties in interpreting the presented results in some cases. For example, 

NERA present a “high district heating” scenario, in which certain demand 

segments in the model become artificially reserved for heat networks (NERA & 

AEA 2010, p.112). This artificial intervention is necessary because the model 

cannot determine potential in these areas on its own through endogenous 

calculation. However, this approach raises more questions than it answers. What 

contextual factors (such as fuel prices) might lead to this “high district heating” 

scenario occurring in future? Is the “high district heating” scenario more 

desirable or less desirable than other cases? While there is of course value in 

applying expert judgement it is clear that gaining insights into this problem 

might benefit from a more objective numerical approach19. 

 

3.1.4 Spatial Characterisation of Demand 

The NERA and Pöyry studies leave significant scope for further investigation 

when exploring area-based variation in technology potential from a practical 

energy planning perspective. The Pöyry study characterises domestic and non-

domestic demand into 50 community “tranches” based on conurbation size and 

settlement classes. The NERA study uses over 200 demand segments. Both 

                                                             
19

 In fairness, the emphasis of the NERA study is on quantifying abatement potential for low 

carbon heating technologies rather than just on establishing national district heating potential, 

and the authors do correctly identify a number of gaps in research on district heating potential 

(NERA & AEA 2010, p.131)  
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studies segment demand using nominal area classifications such as “rural”, 

“suburban”, and “urban” in their results, which appear to be based on data from 

the English Housing Condition Survey (EHCS) and its successor, the English 

Housing Survey (EHS).  

There is a major pitfall surrounding the use of this data for characterising urban 

areas. The design of the survey form shows clearly that responsibility for 

urban/rural classification is left to the discretion of individual survey assessors 

(CLG 2008b; CLG 2008a) rather than being established objectively from 

meaningful quantitative geographical data. This makes it impossible to relate 

the nominal EHS demand classifications of “rural”, “suburban” and “urban” to 

real-world heat densities. The EHS work also focuses entirely on the domestic 

sector, so no information is available regarding the characteristics of how non-

domestic demand might relate to notional “rural” or “urban” area types. As a 

result, the abovementioned studies have had to make significant assumptions 

to match demand from non-domestic sectors to fit their demand segments. For 

example, the Pöyry study filtered their input data on non-domestic heat above a 

certain level and assumed the location of the remaining demand to be in “city 

centre or urban locations” (Pöyry & AECOM 2009, p.75). The NERA study also 

had to assume location classifications for commercial (NERA & AEA 2010, p.10) 

and industrial demand which they acknowledge “may need to be revised as 

better information becomes available” (NERA & AEA 2010, p.14). 

The segmentation used in both studies cannot be linked directly to actual built 

densities. This means that the nominal settlement classifications represent 

subjective notions of urbanity rather than hard data for energy planning 

purposes. While these limitations of course do not necessarily invalidate the 

method or conclusions drawn from prior work, it is clear that there is potential to 

refine the spatial characterisation of demand used in future studies. 

 

3.1.5 Limited Range of Narrative Scenarios 

Scenarios considered in the above studies generally allow for decarbonisation of 

the grid and explore district heating potential in the context of the “all-electric 

future” described in Chapter 3. However, as previously discussed, there are 
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plausible future scenarios for the development of the UK energy system in 

which full decarbonisation of the electrical grid does not occur, and in which 

national ambition for reducing carbon emissions is marginally or significantly 

reduced from current targets. What is the potential for district heating in these 

cases? Neither the NERA study nor the Pöyry study addresses this question. In 

particular, the economics and deployment potential of CHP technologies are 

sensitive to the carbon content of grid electricity, as the CO2 abatement 

potential of gas or biomass generation improves significantly when supplying a 

high-carbon grid. 

 

3.1.6 Research Gaps for SEDSO Model 

In summary, both prior studies investigate a limited set of conditional outcomes 

for district heating deployment under a limited set of input assumptions. There 

is some cause for concern that heat network potential in both studies is 

effectively based on empirical observations of past projects, which might restrict 

the validity of technical potential estimates to gas-fired schemes. Historical 

benchmarks may not necessarily serve as a reliable guide for the future in all 

cases, particularly if large changes to technology costs and performance occur in 

the period to 2050, both of which are plausible. 

In both the NERA and Pöyry studies, the authors employ narrative structures to 

establish what they believe is likely to happen to the energy system. In each 

case, inputs are adjusted accordingly to vary district heating uptake, thus 

establishing its total national potential. This is of course a valid approach, and 

expert judgement of this nature has an important role to play in technology 

policy assessment. However, describing “how much district heating one judges 

might be deployed” is a different proposition from attempting to discover “how 

much district heating it is desirable to deploy” in future, under a clearly stated 

set of assumptions. Both prior studies address the former question but not 

necessarily the latter, which is effectively the focus of the research question 

considered here. 
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The SEDSO model overcomes some of the limitations of other approaches with 

regard to spatial characterisation of demand20. SEDSO determines heat 

demand density from statistical geographical data, and as a result, the spatial 

variation in the model can be directly related to real-world cities and 

settlements if required. When operated as a simulation-optimisation, SEDSO 

freely chooses between different individual and district heating technologies to 

minimise total costs while respecting constraint caps on CO2 emissions and fuel 

resource consumption. The cost-minimisation approach allows different heat 

supply paradigms to be directly compared on the basis of which is likely to offer 

better value for money, which facilitates evidence-based policy decisions when 

determining “how much district heating it is desirable to deploy”. 

The analysis framework employed in SEDSO determines technology 

deployment by simultaneously comparing the marginal costs of alternatives in 

all areas of the country. This obviates any requirement for exogenous district 

heating viability thresholds to be input on the basis of expert judgement, 

removing the risk of future deployment potential being incorrectly extrapolated 

based on past performance. 

Finally, SEDSO can be used to quickly perform an extensive quantitative 

exploration of the problem space, facilitating a wide-ranging exploration of how 

district heating potential may change under a broader spectrum of possible 

inputs compared with a typical “high”, “medium”, “low” scenario approach. A 

wider view of possible outcomes is valuable for policymakers, given the level of 

future uncertainty in the development of the UK energy system. Exploring a 

broad range of futures also offers a demonstrably robust approach to exploring 

the research question presented in this chapter (Section 2.0).  

 

4.0 Approach for Addressing Research Question 2 

This chapter approaches the research question by optimising the selection of 

heat supply technologies in SEDSO using a metaheuristic algorithm (Section 

                                                             
20

 It should be noted that spatial complexity is achieved at the expense of detail in other areas 

(see Chapter 5) 
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4.2). The levelised cost of energy (LCOE) for the entire represented system is 

minimised under scenarios with different constraints. For each solution, the 

contribution from each of the modelled energy technologies to national heat 

supply is recorded. For a detailed overview of the conceptual architecture of the 

SEDSO model, see Chapter 2. When compared to the approach taken in Chapter 

3, a number of changes to the method are required: 

i. The model is operated as a simulation-optimisation instead of a pure 

simulation. 

 

ii. Spatial characterisation of demand is simplified through aggregation, 

although it remains adequately detailed. This change is implemented 

to limit computational time and is not a theoretical limit of the 

approach; the level of aggregation can be adjusted. 

 

iii. The model is run using single values for all inputs rather than the 

probabilistic approach demonstrated previously. Again this is a 

function of the limited computational resources available for 

performing the work.  
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4.1 Aggregation 

The computational demands of an optimisation model are significantly higher 

than a simulation model. It was possible with available hardware to simulate all 

8000+ input areas for the work presented previously in Chapter 3. However, as a 

result of limits on available computer processing power it is necessary to employ 

a degree of aggregation to reduce the number of input variables to a 

manageable level when performing a simulation-optimisation. A key concern 

was to establish a means of aggregating the baseline area data together in such 

a fashion so as not to lose adequate spatial detail. 

The number of input classes that would be appropriate for the study was 

determined by systematically testing the system hardware and the optimisation 

software with different aggregations. Variations with 8000, 1000, 100, 50, 25, 10 

and 5 classes were tested and their computational run times compared. The 

largest number of heat density classes that was found to be practical to run was 

25. This is significantly more than is typical in typical city-scale heat mapping 

studies, which might use as few as 5 classes (Studsvik Energiteknik AB 1979b). 

A 2-stage approach to aggregation was employed to reduce 8000+ baseline 

inputs to 25 final input classes: 

i. Aggregation by administrative district 

ii. Aggregation by peak heat demand density 

Although it does not make use of the full granularity offered by a representation 

of the country using 8000+ areas, this approach nevertheless results in a much 

more disaggregated level of input than most national energy system models, 

which Speirs argues are limited in their ability to consider widespread changes 

to heat supply because of their high level of aggregation (Speirs et al. 2010a) 

and which IPPR have also noted do not model decentralised energy well (IPPR 

2007). The segmentation of demand used in this study directly relates costs to 

real-world heat density and is not inferred by proxy as is the case with other 

studies (Section 3.0).  
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4.1.1 Aggregation by Administrative District 

A visualisation of the aggregation approach used is shown in Figure 19. Baseline 

input MSOA/IGZ areas were aggregated first into the 480 administrative 

districts that comprise Great Britain. This level of aggregation is a useful first 

step because all of the MSOA areas within a given district are geographically 

contiguous to one another. By looking at the resulting surface area of the whole 

district an estimate can be made of the number of load centres that might be 

required for any prospective heat network (see Chapter 2 for detail). 

 

4.1.2 Aggregation by Peak Heat Demand Density 

The 480 district level groupings were then further aggregated into a 25 regions 

of different peak heat demand density. Using heat density as an aggregation 

metric links the approach taken for investigating the first research question 

(Chapter 3) with the second. The user can observe trends in heat density and 

technology deployment in the solution sets determined by the model under 

optimisation. For example, the user can immediately see at what heat densities 

the model chooses to deploy different technologies.  

The heat density bandings for each input class were then selected systematically 

to produce a set of input classes where no more than 3-5% of total national 

demand would be present in each one. This is deliberate. Ensuring that each 

density band covers a low percentage of total national demand prevents any 

one class from becoming overwhelmingly important during the optimisation 

search process. If for example, a single density banding accounted for 40% of 

national heat demand, then it is likely that the optimisation would allocate a 

disproportionate level of importance to this class, possibly distorting results.  
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Figure 19 – Diagrammatic Representation of Aggregation Approach 

 

 

  



 131 

4.2 Optimisation 

As described in Chapter 2, SEDSO can be operated as a simulation-optimisation, 

rather than a pure simulation. Rather than being used to investigate “what 

might happen if…” given human selected inputs, this allows the model to 

explore “what might be the best solution if…” subject to a user-defined 

objective and constraints.  

In this study SEDSO aims to deliver a set of solutions that meets user-defined 

carbon emission limits and national resource constraints at the lowest cost while 

matching energy demand and supply in all input classes it considers. This 

ensures that the model selects local sub-regional solutions that are not only 

cost-optimal for individual areas, but which must also fit within a coherent 

overall national strategy.  

Unlike preceding works on district heating potential, this enables the overall 

costs of possible futures with large penetrations of district heating to be 

compared against the costs of scenarios that rely on more individual heating 

technologies such as gas boilers and heat pumps. Comparing the costs in this 

way gives one possible indication of which solution set might be objectively 

“best” or “more desirable”, which helps address the research question for this 

chapter. 

 

4.2.1 Selection of Algorithm 

SEDSO incorporates non-linear functions to describe technology costs, which 

significantly increases computational run times compared to linear 

programming approaches commonly found in energy system models. The non-

linearity of the optimisation response surface means that the global optimality 

of generated solutions effectively can never be proved, and also makes the use 

of gradient-search and differential optimisation methods difficult. Metaheuristic 

algorithms are a popular tool for exploring large and complex non-linear 

problem spaces. Metaheuristics are a family of computational methods that 

includes well known approaches such as genetic algorithms (Holland 1975), 

scatter search (Glover 1977), simulated annealing (Kirkpatrick et al. 1983), tabu 
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search (Glover 1989; Glover 1990), and particle swarm optimisation (Kennedy & 

Eberhart 1995).  

Palisade21 Evolver 6.0 and Frontline Systems22 Risk Solver Platform 11.0 were 

both identified as software optimisation environments which would handle non-

linear optimisation and fall within project budget constraints. Both packages 

were trialled extensively with early builds of SEDSO to establish their 

capabilities. Due to the requirement to obtain results within a reasonable 

timeframe a key criterion for selection during evaluation was that the model 

would converge to a near-optimum solution within 12 hours. Following 

systematic evaluation, optimisation of the target system was realised in 

Palisade Evolver 6.0. For optimisation purposes, SEDSO employs OptQuest, a 

popular commercial metaheuristic search algorithm that has been used 

effectively for simulation optimisation in a number of software packages (April 

et al. 2003) and applied successfully to a number of recent renewable energy 

planning studies (B. Y. Ekren & O. Ekren 2009; Mazhari et al. 2011; Novoa & Jin 

2011; Bhattacharya & Kojima 2012; Sáenz et al. 2012). This gives computational 

run times of typically 10-12 hours per optimisation sequence per computer, 

using the aggregated input classes described in Section 4.1. The work presented 

in this chapter required multiple23 workstations to generate the hundreds of 

optimisation runs required to explore the problem space. 

The exact formulation of the OptQuest algorithm remains a commercial secret 

(Kleijnen & Wan 2007) but its creators are open to discussing the techniques 

applied at a high level. While primarily based on scatter search principles 

(Laguna & Martí 2003), the version of OptQuest employed in this study 

integrates several advanced heuristic methods like tabu search, neural 

networks, satisfiability data-mining and Markov Blankets (Laguna 2011). 

 

                                                             

21
 Palisade Corporation http://www.palisade.com/ 

22
 Frontline Systems Inc. http://www.solver.com/ 

23
 4-6 workstations run independently and concurrently, with each unit working on a single set of 

optimization conditions at any one time 

http://www.palisade.com/
http://www.solver.com/
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4.2.2 Convergence Criteria 

As noted above, finding a global minimum for a large nonlinear, non-convex 

optimisation problem is computationally expensive, with the global optimality 

of final results impossible to prove. A useful discussion of convergence criteria in 

metaheuristic analysis is given by Ólafsson (Ólafsson 2006), who acknowledges 

that absolute convergence proofs are often of limited value in the practical 

optimisation of complex problems. In this study, OptQuest is used to determine 

low cost solutions, which are not guaranteed to be global minima on the 

optimisation surface. They are however, often better and sooner found than 

solutions generated using human trial-and-error.  

To determine convergence criteria for the study the model was systematically 

tested with stopping conditions where no improvement is seen for 10,000, 

20,000, 30,000, 40,000, 60,000, 70,000, 80,000, 100,000 and 200,000 trials. The 

results and run times are shown in Appendix 9.1. For practical purposes the 

optimisation process is stopped when no improvement above 0.001% is seen for 

100,000 trial solutions. At this point the successive iterations may produce 

improvements but the model has generally entered a “long tail” where the 

incremental value of the reductions is minimal. The implications of this when 

interpreting results is discussed further in Chapter 5. To mitigate against the 

possibility of premature convergence all optimisations presented in this chapter 

are actually run twice, with the lower of the two objectives selected for 

presentation as results. 

 

4.2.3 Objective Function 

SEDSO aims to minimise the objective function, which in this case is the total 

levelised cost of energy, LCOE (Short et al. 1995) in all sub-regions considered. 

The rationale behind using LCOE has been outlined earlier in Chapter 2.  

 

4.2.4 Decision Variables 

Optimisation decision variables for each of the 25 input classes include: 

i. 3 possible selections for building end-user equipment: 
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a. Individual gas boilers 

b. Individual electric heat pumps 

c. District heating heat exchangers 

 

ii. 6 possible heat sources for district heating 

a. Heat-only gas boilers 

b. Gas combined heat and power (CHP) plant 

c. Heat-only biomass boilers 

d. Biomass combined heat and power (CHP) plant 

e. Utility-scale electric heat pumps 

f. Large-scale solar thermal 

Building end-user equipment in the model must take an integer form i.e. 

deployment must be provided 100% from one of the building technologies. The 

model cannot for example, deploy 50% individual heat pumps and 50% district 

heating in the same area. The reasoning behind this is that area based 

deployment of heat networks is likely to aim for high levels of penetration in 

areas where it is deemed to be viable. For district heat sources, the model can 

vary the decision variables in 10% increments, reflecting the fact that a local 

heat network can be supplied by a variety of heat sources at a single energy 

centre.  

 

4.2.5 Constraints 

The optimisation meets constraints at two levels: 

i. At a local level, for each input area individually 

ii. At a national level, for all areas concurrently 

Local constraints ensure demand-supply matching. When generating trial 

solutions the optimiser must ensure that all heat and electricity demand is met 

by the selected supply technologies. This is a hard constraint and the optimiser 

must reject solutions that do not meet these criteria from the trial pool. This 

constraint is essential for the model; there is no value in considering solutions 

where supply does not meet energy demand. Thermal energy provision from 
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solar thermal district heating is capped at 10% of demand in any given area, 

which is typical of systems without inter-seasonal storage (Danish Energy 

Agency 2012). Heat networks with inter-seasonal storage can accommodate 

much larger fractions of supply from solar energy, as high as 50% (Steinbeis 

Research Institute for Solar and Sustainable Thermal Energy Systems 2012). The 

omission of inter-seasonal storage from the model is one of the limitations of 

the study covered in Chapter 5. 

National constraints are user defined and can be varied between optimisation 

runs to explore how the system optimises technology selection when faced with 

different future scenarios. National constraints include the total emissions of 

CO2 permitted from the sectors represented by SEDSO, the amount of solid 

biomass fuel available, and the maximum permissible amount of generation 

from CHP, which cannot exceed total demand. The latter constraint is included 

because no export beyond UK territorial boundaries is reflected in the model.  

Resource and emission limits are expressed as soft constraints that are 

subjected to a penalty function during the search. The model can consider and 

iterate from future solutions produced by trial sets that breach these criteria, 

but is unlikely to substantially breach them because the penalty function sharply 

increases the value of the objective function. National constraints are handled in 

this way because early testing often showed that the optimisation algorithm 

would struggle to find any solutions at all if it was not able to “learn” from 

solutions where national constraints were not met. 
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4.3 Overview of Process 

Before presentation of results, it is useful to visualise all of the steps that are 

applied to the base statistical area data to generate solutions. Figure 20 contains 

a methodological flow diagram that illustrates the whole process: 

 

Figure 20 – Flow Diagram Illustrating Study Methodology 

 

Statistical information on disaggregated regional areas is first assembled into a 

relational database representing the UK in the present day (1). Long-term 

projections are applied to the historical information (2) for key items of data 

such as population and housing numbers to create a synthetic dataset that 

represents future UK energy demand, including assumptions about adopted 

energy efficiency measures (3). This data is then aggregated (4) by peak heat 

demand density to represent the country as a series of heat density bands with 

similar total demand levels (5). Technical simulation (6) is then used to represent 

the varying performance and costs of different heat technologies in each heat 

density band (7). Finally, an optimisation process (8) is applied with scenario-
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specific exogenous inputs and boundary constraints to explore the technology 

options in each heat density band that minimise total annual system costs 

nationally (9). 

 

4.4 Selection of Input Data 

The potential pitfalls of using deterministic input data have been discussed in 

Chapter 3. Due to the computationally intensive nature of optimisation 

problems the work considered in this chapter deals with a relatively low number 

of scenario outputs generated from deterministic inputs with no random 

element. The architecture of SEDSO has been designed to enable it to be run in 

a simulation-optimisation mode with uncertain inputs using Monte Carlo 

methods, but this is not a practical approach for this study when considering our 

available hardware and software24.  

Unless otherwise specified in the following text, technology costs and 

performance estimates are held static and taken as the midrange of published 

estimates described in Chapter 2. Notably for the optimisation series presented, 

biomass costs from the midrange of published estimates are used, gas prices 

follow “central” government projections and power prices are representative of 

those in a low-carbon electricity system (see Table 12). As discount rate of 3.5% 

has been used for analysis purposes, following UK government guidelines for 

technology policy assessment (HM Treasury 2011). 

 

 

                                                             
24

 The work presented in this chapter is the culmination of hundreds of optimisation runs which 

have been carried out to explore the problem posed by the research question. Each optimisation 

sequence requires hundreds of thousands of iterations before convergence to a near optimal 

solution is achieved. Further introducing Monte Carlo techniques into this process would 

produce a combinatorial explosion in the number of calculations by requiring each optimisation 

sequence to be performed hundreds of times (perhaps thousands) in order to obtain output 

distributions where the estimated mean might lie within a reasonable range of the true mean.  
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Table 12 – Summary of Fuel Prices and Carbon Content Applied in Optimisation 

Input Value/Range Basis 

Grid Electricity Price 88 £/MWh 
Midrange of projections for 2050,  

(Pöyry 2010) 

Natural Gas Price 25 £/MWh 
DECC Central Gas Projection for 
2030 of 70 p/therm (DECC 2011g) 

Biomass Price 27 £/MWh 
Midrange of projections, (E4Tech 

2010; NERA & AEA 2010) 

Carbon Content, Grid 
Electricity 

Varied between 
model runs 

27 – 450 g/kWh 

27 g/kWh consistent with midrange 
of Pöyry projections for 2050, 

450g/kWh is the upper limit of UK 
Emission Performance Standard 

from UK Government’s Electricity 
Market Reform White Paper (Pöyry 

2010; DECC 2011e) 

Carbon Content, Natural Gas 204 g/kWh 
Total GHG equivalent, net CV basis 

(Defra & DECC 2009)  

 

The number of possible permutations of uncertain variables (see Chapter 3) is 

sufficiently large to make their complete exploration impractical here. Instead, 

the future landscape of uncertainty is investigated in terms of two main factors, 

those being the carbon content of grid electricity and the target national 

emissions reduction level. The potential future changes in grid carbon content 

have sometimes been ignored by modellers (Lowe 2007a), even in influential 

studies (Boardman et al. 2005; Boardman 2007) and are important to consider 

here.  

 

4.4.1 National Emissions Reduction Target 

National carbon emission caps ranging from 500 MtCO2 to 55 MtCO2 are 

explored in the following analysis, which correspond to a -6 – 88% reduction in 

CO2 emissions compared to 1990 levels for those sectors modelled by SEDSO. 

For SEDSO modelled sectors, an 88% reduction is approximately equivalent to 

the 2050 national cap on emissions recommended by the CCC25 (CCC 2010) for 

achieving the overall 80% target. Lower levels of emission reduction are 

explored because of the uncertainty surrounding whether the UK government 

                                                             
25

 This figure is not explicitly stated, but can be inferred by subtracting non-modeled sectors like 

agriculture and transport from the CCC totals 
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will ultimately remain committed to achieving its legislated 2050 targets 

(Chapter 1). 

 

4.4.2 Carbon Content of Grid Electricity 

The UK government is currently sending “mixed messages…” about “its 

intentions for the power sector, which signal a 2030 carbon intensity of anything 

from 50 to 200+ gCO2/kWh” (CCC 2012). The CCC has always maintained that 

the 2030 trajectory for grid decarbonisation has a strong bearing on what can 

ultimately be achieved for 2050 (CCC 2008; CCC 2010). For this study, therefore 

the annual average carbon content of grid electricity in 2050 is varied between a 

lower extreme of 27 g/kWh and an upper extreme of 450 g/kWh: 

i. A grid carbon level of 27 g/kWh is the midrange of Pöyry 

projections for 2050 (Pöyry 2010) and is consistent with the grid 

electricity price applied (they are taken from the same 

scenarios). The power sector considered in these optimisations 

is implicitly supplied largely by wind, nuclear and gas, with 

marginally more nuclear generation and significantly more wind 

generation assumed if carbon capture and storage (CCS) does 

not become viable for 2050. This is a deeply decarbonised 

electricity system and is consistent with UK policy objectives for 

the power sector. 

 

ii. A grid carbon level of 450 g/kWh is considered an upper limit as 

it is legislated in the government’s latest Energy Bill (HM 

Government 2012). This is likely to represent a future power 

sector which is remains largely dependent on natural gas 

generation. 
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4.4.3 Bioenergy Supply Availability 

Biomass availability is constrained in the model runs shown. A review of 

available literature revealed no estimates for UK biomass availability specifically 

for 2050, so estimates from the 2030s are used as the nearest approximation. 

There is a wide range of uncertainty regarding the future availability of biomass 

and also, how much might be available for decarbonising the heat sector. Total 

estimates of UK national potential in the 2030s from a comprehensive UKERC 

study range from 400 PJ – 1100 PJ (111 – 306 TWh), with the higher number 

representing a very extreme case that involves removal of many barriers and 

which might imply difficult compromises being made on land use and lifestyles 

(Slade et al. 2010). The IEA “Blue Map” scenario (IEA 2008b; IEA 2010a) gives 

320 TWh for the UK’s primary bioenergy supply. E4Tech have estimated the 

total UK resource of solid biomass in 2030 at around 200 TWh (E4Tech 2009). In 

their work for the CCC, NERA use 200 TWh as a constraint on total bioenergy 

availability (NERA & AEA 2010). The most recent carbon budget report from the 

CCC assumes that between 50-200 TWh of bioenergy will be available to the 

heat sector (CCC 2010) but acknowledge that biomass power generation with 

CCS (for sequestration), liquid biofuels for aviation and transport, and high 

temperature heat in industry are also areas in direct competition for the same 

resource (CCC 2011a). Going beyond 200 TWh is believed to be possible but is 

likely to require conversion of land that would otherwise be used for agricultural 

or biodiversity conservation processes and is not considered an appropriate 

basis for strategic planning by the CCC (CCC 2011b). For the results presented in 

the next section, biomass availability was constrained at 200 TWh, which is 

judged to represent an upper theoretical limit. 

 

4.4.4 Treatment of Natural Gas 

No constraints are placed on the availability of natural gas to the heating sector 

in the following optimisation runs. Decarbonisation of the gas supply through 

biomethane injection or hydrogen mixing is not considered due to project time 

constraints.  
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4.4.5 Energy Efficiency 

For the following scenarios, energy demand from the present day to 2050 is 

assumed to follow a highly energy efficient pathway as described in Chapter 2. A 

review of prominent UK technology policy assessment studies using MARKAL 

shows that a high degree of energy efficiency emerges as a common theme in 

all deeply decarbonised futures (Ekins et al. 2013). Energy efficiency in buildings 

and industry has been identified as offering one of the lowest cost paths to 

achieving emissions reductions (Levine et al. 2007; McKinsey & Company 2007; 

Ürge-Vorsatz et al. 2007) even if there are acknowledged barriers to practical 

deployment that may ultimately prevent the full potential from becoming 

realised (Lowe 2007a). A number of possible barriers have already been 

discussed in Chapter 1. The effect of selecting a less energy efficient pathway on 

optimisation model results is also explored later in Section 7.0. 

 

4.4.6 Treatment of CHP Electricity 

The value of CHP electricity in the results presented in the following section has 

been assumed to be equal to the grid time-weighted average, in line with the 

approach explored in Chapter 3. The effect of valuing CHP generated electricity 

above the grid time-weighted average on optimisation model results is however 

explored later in Section 7.0.  

 

4.4.7 Individual Heat Pump Seasonal Performance 

While heat pump manufacturers typically quote COP for heat pumps in the 3 – 5  

range, it is important to distinguish both between instantaneous performance 

and seasonal average performance, and between the performance of the pump 

itself and the performance of the whole heating system as installed in the 

building. It is important to note that COP of heat pumps may fall close to 1 

under UK winter peak load conditions (Speirs et al. 2010a; Strbac et al. 2010; 

Hawkes et al. 2011). 

Recent UK field trials for individual heat pumps in 83 buildings have revealed 

installed seasonal performance factors (SPF) between 1.2 and 3.2 with mid-
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range values at around 2.2-2.5, depending on whether the pump is an air-source 

or a ground-source unit26 (EST 2010). Manufacturers of heat pumps are 

confident that annual average COP can be improved by +1.0 over the next 10 

years (AEA 2011), but this is by no means guaranteed. Swiss researchers made 

rapid gains (above 20%) in heat pump performance in the period 1993-1996 but 

these then plateaued out with no tangible increases occurring since 1996 (Neij 

et al. 2008). When considering future heat pump deployment in the UK, 

installers must also contend with retrofitting of units into existing housing stock 

as well as new build construction, which may affect the SPF. For example, in 

some retrofit cases heat pumps may need to supply legacy wet radiator systems 

rather than low temperature underfloor heating (Pöyry & AECOM 2009). 

Individual heat pumps have been modelled in other techno-economic studies 

with seasonal performance factors of 1.9 -2.6 for air source units or 2.4 – 3.2 for 

ground source units (Element Energy 2007; Kannan, Ramachandran et al. 2007; 

Pöyry & AECOM 2009; Lund et al. 2010; Woods & Zdaniuk 2011). The SPF for 

individual heat pumps in this scenario is set at 2.5 for 2050, which allows for 

some improvement over current observed performance in the EST field trials 

(around 14-15%). This is notably more conservative than core assumptions 

found in some other studies (NERA & AEA 2010), although NERA do also have a 

scenario where improvements in seasonal COP are capped at 0.5 (NERA & AEA 

2010, p.111).  

 

  

                                                             
26

 It is worth noting that the EST study found only a single air source unit out of the 28 

installations actually had a measured SPF of 3.0 (3 installations were estimated to have an SPF of 

3.2). Overall, only 13% of all pumps in the EST field trial achieved SPF of 3.0 or greater. 



 143 

4.4.8 Utility-Scale Heat Pump Seasonal Performance 

Utility-scale electric heat pumps which draw on ambient heat sources are 

quoted as having similar theoretical COP levels as individual building units. 

However while the thermodynamics are the same for both, the former should 

perform better at the same input and output temperatures, and have a higher 

overall SPF over the year. This is because of physical scaling laws and because 

large machines can use more sophisticated engineering components (e.g. multi 

stage compressors) and controls, all other factors being equal. Furthermore, 

utility-scale units are often designed to take advantage of boreholes or large 

bodies of water which provide higher winter or more stable source temperatures 

compared to individual heat pumps, which are likely to be air source units.  

There are a number of other reasons for assuming better seasonal performance 

from larger-scale heat pumps. Utility-scale heat pumps at dedicated energy 

centres providing a stable heat supply (rather than used as peaking plant) are 

almost certain to be designed with sufficient heat storage, which further helps 

stabilise source temperatures, whereas individual units in buildings may or may 

not have dedicated heat storage due to spatial constraints in dwellings. Finally, 

large-scale units will have more stable heat demands and sink temperatures as 

heat is supplied to a network of hot water pipes serving a variety of end users. 

Fluctuations in individual end-user demands are therefore more likely to be 

smoothed out when viewed from the energy centre. Individual heat pumps may 

need to switch between space heating and intermittent hot water delivery, so 

sink temperatures are likely to fluctuate more, which further impacts seasonal 

performance.  

For the reasons outlined above, it is difficult to conceive of a scenario where 

utility-scale heat pumps would offer lower seasonal performance than individual 

units. It is possible that in some cases supply temperatures from larger units 

might need to be higher if the heat network contained a significant proportion 

of older housing, leading to higher heat losses and lower overall performance. 

This could be overcome through energy efficient retrofit of the older stock or 

through the use of optimum supply temperatures across most of the network 

with final temperature lift for the poorly performing buildings from other, less 
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temperature dependent heat sources. Nearly all modelled scenarios for SEDSO 

assume that energy efficient measures will be implemented across the UK 

building stock for 2050. 

Utility-scale heat pumps with ambient heat sources are typically modelled with 

SPF values at around 3.0 – 3.5 (Blarke & Lund 2007; Danish Energy Agency 2010; 

Lund et al. 2010; Woods & Zdaniuk 2011; Østergaard & Lund 2011). Large-scale 

heat pumps may also be able to exceed SPF levels of 3.5 at installations that can 

take advantage of storage in deep aquifers or with geothermal heat as a source. 

For example, the district heating and cooling system at Oslo Gardermoen 

Airport operates with a SPF of 5.527 (Stene 2008). The performance of large-

scale heat pumps is expected to improve by “as much as 20% by 2030” (Blarke 

and Lund, 2007), so it is appropriate to take some improvement into 

consideration when considering 2050. For this study an SPF of 3.0 has been 

assigned to utility-scale heat pumps with a sensitivity test carried out to see the 

impact of moving to 3.5. 

 

5.0 Optimisation Scenario Results 

As noted above, the results considered in this Chapter explore changes in 

technology potential according to variation in grid carbon content and the 

desired emissions reduction target for those sectors modelled in SEDSO. It is of 

course possible to use SEDSO to explore the optimisation response surface 

across a wide spectrum of possible conditions using for example, 3D mesh charts 

like those shown in Figure 21. These illustrate28 variation in the cost-optimal 

                                                             
27

 Admittedly, it is not clear from the citation how much of the overall seasonal performance has 

been calculated on the basis of heating and how much is a contribution from cooling, but it does 

serve to illustrate that high technical performance is possible from utility-scale heat pumps 

coupled to aquifer thermal energy storage systems in a way that is not possible with individual 

building heat pumps 

28
 These charts were produced using an earlier version of the model during design development 

and testing and have different input assumptions to those optimisation runs considered in this 

Chapter. They are therefore intended for illustrative purposes only. 
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market share of different heating technologies across a grid of 35 different 

optimisation scenarios. 

 

Figure 21 – Illustrative Exploration of Optimisation Response Surface in 3 Dimensions 

 

 

However, not all of these scenarios are equally useful to explore in the context of 

current UK policy conditions (Chapter 1). For example, it seems unlikely that 

deep cuts in power sector emissions will occur without there also being 

ambitious national carbon reduction targets in place. Conversely, it seems less 

likely that deep reductions in total emissions will be mandated without any 

efforts to reduce the carbon content of grid electricity. Therefore, for the 

purposes of carrying out optimisation runs in this doctoral thesis, scenarios have 

been chosen such that targets corresponding to deep cuts in emissions have 

been paired with low grid carbon content levels, and vice versa. This can be 
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thought of as a 2 dimensional slice or transect through the 3 dimensional 

optimisation surfaces shown above.  

Two possible sets of future conditions are considered below for simulation-

optimisation in SEDSO: 

A. A scenario where heat sources for district heating are restricted to gas 

or biomass.  

 

B. A scenario where heat networks can additionally be supplied by solar 

thermal energy and ambient energy upgraded using utility-scale 

electric heat pumps.  

Results are presented graphically. To view the data in tabular form please refer 

to Appendix 9.2. 

 

5.1 Scenario A 

This scenario restricts district heating to natural gas or solid biomass as fuels. It 

is intended to represent a possible future where district heating supplied from 

solar thermal or utility-scale heat pump sources cannot be developed in the UK. 

As noted previously (Section 3.0), most UK studies targeted at providing 

evidence for policymakers on district heating potential have not considered 

these technologies (BRE 2003; AEA 2007; Pöyry & AECOM 2009; NERA & AEA 

2010). The rationale behind Scenario A is to illustrate the type of result that 

might be expected using assumptions that have informed policy discussions on 

UK district heating futures to date. Figure 22 shows that:  

i. At emissions reduction levels of -6-11% and with grid carbon at 

350-450 g/kWh the model is essentially unconstrained by CO2 

emissions. It therefore invests in the cheapest solutions, which 

are a mixture of gas CHP district heating and individual gas 

boilers.  

 

ii. At a 47% emissions reduction level and with grid carbon at 250 

g/kWh, the model invests in a mixture of district heating 



 147 

supplied from gas CHP and biomass CHP as well as a large 

proportion of individual electric heat pumps. Individual gas 

boilers play almost no role.  

 

iii. For a 57% emissions reduction level, and with a 200 g/kWh grid 

carbon level, the same three technologies dominate, although 

gas CHP deployment is significantly lower and individual heat 

pump uptake is significantly higher than before.  

 

iv. At carbon reductions of 67 – 88% and as the grid almost 

completely decarbonises, gas CHP district heating is almost 

eliminated and increased deployment of electric heat pumps 

continues. Interestingly, individual gas boilers start to reappear 

in the modelled solutions. This is because the low carbon 

content of the grid actually gives the model some headroom to 

reduce overall costs further by deploying carbon intensive (but 

very cheap) gas boilers. It’s likely that with an even more 

ambitions emissions reduction target (>90%) these may be 

eliminated. 
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Figure 22 – Scenario A 

 

 

Figure 22 shows a number of specific trends that are important to highlight: 

i. For futures with high grid carbon content and modest emissions 

reduction targets, the optimiser supplies 100% of national heat 

demand from gas-fired technologies. However, as emissions 

targets are tightened and the grid becomes increasingly 

decarbonised, gas-fired technologies begin to decline and 

become replaced with lower carbon alternatives; electric heat 

pumps for individual heating and biomass for district heating.  

 

ii. Another observable trend is that as emissions targets are 

tightened and grid carbon content reduces, district heating also 

makes up less and less of the national heat demand. For the 

scenario that is consistent with the UK achieving an 80% 

reduction in national emissions with a largely decarbonised 

electricity grid, it can be seen that district heating supplies only 

8% of national heat demand. This is similar in absolute terms to 

the 10-11% found in the NERA and Pöyry studies discussed 

earlier (Section 3.0). 
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These findings are broadly consistent with work carried out by the CCC on 

behalf of the UK government, which has gone a long way to forming the current 

“all-electric future” consensus view that district heating is unlikely to be a major 

technology for decarbonising UK heat demand for 2050 in line with targets. The 

perceived risk is that district heating is a potential “cul-de-sac” or a “blind alley” 

technology that has no future beyond gas and may ultimately become a 

stranded asset if too much is built in the near term. 

 

5.2 Scenario B 

This scenario enables district heating to be supplied from two low carbon heat 

sources that were not enabled in Scenario A, namely solar thermal district 

heating and district heating with utility-scale electric heat pumps. As mentioned 

frequently in preceding chapters, these technologies are being adopted in 

Europe (Epp 2009; Marstal Fjernvarme DK 2012; Dalenbäck 2012; Blarke & Lund 

2007; Dyrelund & Lund 2009; Mancarella 2009; Girardin et al. 2010) for district 

heating supply but appear to have not received significant attention to date in 

UK policy modelling and policy making circles. The chart shown in Figure 23 

shares many similarities with the equivalent data for Scenario A. Specifically:  

i. The model shows a similar deployment of gas CHP district 

heating and individual gas boilers up to and including emission 

reduction levels of 36% and grid carbon levels of 350 g/kWh. It is 

likely that variation in the precise deployment levels of the 

respective gas technologies are a function of the nature of the 

nonlinear optimisation rather than because there are 

fundamental differences in potential between scenarios. This is 

reflected on in more detail in Chapter 5, Section 3.3. A 

contributing factor to greater variation between solutions in this 

part of the response surface could be the relatively 

unconstrained nature of the optimisation. 

 

ii. At a 47% emissions reduction level and with grid carbon at 250 

g/kWh, deployment levels of individual gas boilers and gas CHP 
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district heating become markedly reduced, in common with the 

equivalent case in Scenario A. The market share lost by these 

gas-fired technologies is taken up by biomass CHP district 

heating and individual electric heat pumps. 

 

iii. Moving to a 57% emissions reduction target, and with a 200 

g/kWh grid carbon level, gas CHP deployment continues to 

decline, being replaced largely by heat from individual electric 

heat pumps. Biomass CHP district heating deployment remains 

roughly stable, while small fractions of demand start to be met 

by heat networks supplied with solar thermal heat and energy 

converted using utility-scale heat pumps. 

 

iv. At carbon reductions of 67 – 88% and as the power grid almost 

completely decarbonises, gas CHP forms only a small fraction 

(4%) of the overall heat supply mix. However, a significant 

proportion of national heat demand is still met by district 

heating via utility-scale heat pumps and biomass CHP. This 

comes at the expense of individual heat pumps, which supply a 

smaller fraction of demand than the equivalent case in Scenario 

A. As before, the headroom afforded by the low grid carbon 

level means that the model does still deploy some gas boilers 

(4% of demand) as a means of reducing overall system costs. 
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Figure 23 – Scenario B 

 

 

General trends that can be seen from Figure 23: 

i. As is the case with Scenario A, gas fired technologies are 

favoured for their low costs when the model does not need to 

meet stringent emissions targets and when the power grid is 

high in carbon. As carbon targets are made more challenging, 

the model switches to other fuels including biomass and low 

carbon electricity. Ultimately, 83% of the demand in the final 

case is met electrically. 

 

ii. Unlike Scenario A however, the reduction in national district 

heating potential is not as extreme as emissions targets are 

increased and grid carbon content is reduced. This is because 

the model is able to take advantage of low-carbon heat from 

large-scale electric heat pumps, which were not available in 

Scenario A. 
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6.0 Comparison of Optimisation Scenarios 

 

6.1 Relative Costs 

The graph in Figure 24 depicts the relative increase in the whole system 

levelised cost of energy (LCOE) as emissions reduction targets are made more 

aggressive and the grid is decarbonised. The changes in costs shown are only as 

a result of endogenous changes in the model i.e. the choice of heating 

technologies. For both scenarios costs begin to increase rapidly with the 

introduction of non-gas heating technologies. This occurs from the case with a 

47% reduction in emissions and a grid carbon content of 250 g/kWh onwards. 

Ultimately, when hitting the UK emissions reduction targets for 2050, costs are 

increased by a factor of 2 between the high carbon and deeply decarbonised 

cases. Results indicate that Scenario B, which leverages low carbon heat supply 

and uses more district heating, is fractionally cheaper than Scenario A in the 

highly decarbonised cases. However given the other uncertainties and the 

limitations imposed by the model structure, the significance of the small 

difference between Scenario A and Scenario B for policymaking is open for 

debate (see Chapter 5). 

Figure 24 – Relative Increase in Costs 

 



 153 

6.2 District Heating Penetration 

The graph in Figure 25 illustrates the difference in district heating uptake 

between Scenario A and Scenario B. As noted previously, district heating 

potential drops in both scenarios, but there is an expanded future for heat 

networks beyond gas in Scenario B as the model is able to take advantage of low 

carbon electricity to supply district heating using utility-scale heat pumps. 

Figure 25 – District Heating Potential (% National Heat Supply) 
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6.3 Heat Density Required for District Heating Deployment 

The graph in Figure 26 illustrates the variation in the approximate “break even” 

point in terms of heat density between individual and district technologies. The 

chart shows that when emissions targets are low and the grid is high in carbon, 

the model considers district heating to provide a lower LCOE option than 

individual heating even in settlements with heat densities as low as 1-2 

MWp/km2. However, it can be seen that district heating requires higher and 

higher heat densities in order to break even against individual heating as carbon 

emissions targets are made more difficult.  

In Scenario A, the costs of biomass generation and the limited availability of 

bioenergy leads to district heating only being viable at high heat densities above 

60 MWp/km2 for an 88% reduction in sectoral emissions. However in Scenario B, 

district heating takes advantage of low carbon grid electricity to run high 

efficiency utility-scale heat pumps, and is viable from 30 MWp/km2 when hitting 

the 2050 targets. 

 

Figure 26 - District Heating Viability Threshold (MWp/km
2
) 
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7.0 Impact of Changes to Optimisation Scenarios 

A number of changes to the exogenous inputs used to produce the two main 

optimisation scenarios (described in Section 5.0) are explored here. Impacts are 

evaluated separately from one another, one at a time. In reality multiple 

combinations of changes to the baseline case might occur simultaneously. This 

exercise does not replace a true sensitivity analysis in that the relative 

importance of the inputs explored cannot be ranked against one another. It does 

however give an indication of how the model might respond to single 

exogenous variable changes. A global sensitivity analysis based on Monte Carlo 

techniques was carried out for the work described in Chapter 3 and can be found 

in Appendix 7.2. To view the data for the charts displayed below in tabular form 

please refer to Appendix 9.2. 
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7.1 Impact of Reduced Bioenergy Resource 

Results for the scenarios presented in Section 5.0 were produced assuming a 

constraint of 200 TWh. As noted in Section 4.4.3, 200 TWh is at the upper end of 

published CCC projections regarding bioenergy availability in the UK heat 

sector. An illustrative case for discussion purposes is presented in Figure 27, 

using a constraint of 50 TWh, which is at the lower range of CCC estimates.  

Reducing bioenergy supply to the model has the expected effect of limiting 

biomass district heating deployment, which drops from consistently supplying 

8% of demand down to 2% of demand in those solution sets where it appears. 

However, overall district heating potential remains very similar, as utility-scale 

heat pumps and solar thermal generation fill most of the gap left by the biomass 

technologies. Individual heat pumps appear in the solution set at slightly lower 

levels of emissions reduction, at the 36% target rather than at 47%. Utility-scale 

heat pump district heating appears at lower levels of emission reduction (47% 

rather than 57%) and in greater quantities. For example, at carbon targets of 47-

57% reduction, utility-scale heat pumps form around 16% of total heat demand 

rather than 5%. At an 88% reduction target, utility-scale heat pumps form 24% 

of total heat demand rather than 14%. Potential for solar thermal district 

heating appears to increase fractionally where it appears in solution sets from 0-

2% to 2-3%, but this may not be significant given the nature of variability 

between optimisation runs. In the high carbon cases, there is some variation in 

the results sets regarding the exact split between individual gas boilers and gas-

fired CHP district heating, but this is likely to be an artefact of the optimisation 

process rather than as a result of changes to input variables. 
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Figure 27 – Effect of Reduced Biomass Resource 
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7.2 Impact of Reduced Energy Efficiency 

As originally noted in Chapter 3, exogenous energy demand has a significant 

effect on the model output. Results shown in Section 5.0 are based on the model 

following a highly energy efficient pathway in all demand sectors. The effect of 

performing the same analysis with the less efficient pathway (Chapter 2, Section 

5.3) are shown below in Figure 28. 

Reduced energy efficiency effectively means that the model is dealing with 

higher heat loads from domestic, commercial and industrial buildings in the 

model. This appears to result in a more rapid switchover from gas-fired 

technologies to their lower carbon alternatives as decarbonisation targets are 

increased. The decline in gas-fired CHP for example, is much more pronounced, 

dropping to 6% of demand at a carbon reduction target of 47%, whereas 

previously it did not fall to this level until a carbon target of 79%.  

Another effect of higher heating loads is that when the model does switch to 

low carbon options at carbon reduction targets of 47% and above, the potential 

for district heating is increased overall. Biomass CHP is still limited by resource 

availability but utility-scale heat pumps and solar thermal generation see 

increased deployment levels in the counterfactual compared with the baseline. 

This is not surprising as prior work shown in Chapter 3 shows that economies of 

scale generally make district heating more cost-effective at serving higher heat 

density areas. The main effect of reducing energy efficiency will be to increase 

the proportion of areas in the model which are at these higher heat load 

densities. 
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Figure 28 – Effect of Reduced Energy Efficiency 
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7.3 Impact of Improving Performance Utility-Scale Heat Pumps 

A key inference that may be drawn from comparison of Scenario A and Scenario 

B shown in Section 5.0 is that utility-scale heat pumps may be important for 

future viability of district heating in 2050. The seasonal performance of heat 

pumps in any installed case is complex and does depend on factors that are not 

captured in SEDSO. For the reasons outlined in Section 4.4.8, the seasonal 

performance of utility-scale heat pumps was assessed at an annual average COP 

of 3.0. However, as noted previously some improvements in seasonal 

performance might occur over time. It is therefore useful for discussion purposes 

to explore the impact of increasing the SPF of utility-scale heat pumps from 3.0 

to 3.5.  

Figure 29 shows that the overall pattern of technology deployment potential is 

actually very similar between the two scenarios. There is some variation in gas 

CHP (<10%), and solar thermal (<3%) district heating potential up to carbon 

reduction targets of 47%, which could well be down to the model converging to 

different optima in close proximity to one another.  

Total potential for utility-scale heat pump district heating appears to be slightly 

increased, up from 6% to 14% in the 67% reduction case and up from 14% to 

19% of total heat demand in the 88% carbon reduction case. These changes are 

not large, so it is difficult to conclude definitively that they are the result of the 

variation in input conditions. However, it might be expected that marginal 

improvements in SPF would lead to marginal improvements in deployment 

potential for this technology. It may be that larger changes to SPF would be 

needed to produce more conclusive results in optimisation. Certainly, utility-

scale heat pump units may be able to take advantage of heat sources that are 

above ambient temperature, which might drive SPF values above 3.5. These are 

not explored here however, as the availability and distribution of higher 

temperature heat sources in relation to demand is not captured in SEDSO. 
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Figure 29 – Scenario B Effect of Increased Utility-Scale Heat Pump Performance 
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7.4 Impact of Increasing CHP Electricity Value 

As noted in Section 4.4.6, the value of CHP electricity in the optimisation work 

shown so far has assumed that costs are at parity with the power sector 

average. The rationale for adopting this approach has already been covered in 

Section 4.4.6 and also in Chapter 3. For discussion purposes the effect of valuing 

CHP generated electricity above the grid time-weighted average cost is shown 

below in Figure 30. There may be cases where heat demand and electricity 

demand are correlated together, for example in UK winter evening periods. At 

times of high demand for heat and electricity, CHP generators may be able to 

sell back to the grid at above-average (i.e. peak power market) prices. Whether 

these conditions can occur for enough of the year to push the annual average 

value of CHP generated electricity above the grid mean is debatable and can 

only be comprehensively explored with a more dynamic model than SEDSO. 

However it is still useful to investigate the model sensitivity to variation in CHP 

electricity value for discussion purposes. Figure 30 shows that: 

i. At emissions reduction levels of 36% and with grid carbon at 350 

g/kWh the model is not constrained by CO2 emissions in either 

case. Results apparently show that the higher power price for 

CHP electricity enables the model to drive down costs by 

investing in slightly more gas-fired CHP relative to the Scenario 

B case at carbon reduction levels of 11% and 36%. 

 

ii. In the counterfactual scenario, the transition between gas 

heating and low carbon alternatives is slightly different. Utility-

scale heat pumps and solar thermal district heating appear at 

carbon reduction levels of 67% rather than 57%, with most of 

that market share lost to individual heat pumps. There is also 

fractionally more gas-CHP district heating, which could be as 

result of the increased value of CHP electricity, although the 

increase is not large. 
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iii. For hitting the UK 2050 targets with an 88% reduction in 

SEDSO-modelled sectoral emissions and grid carbon at 27 

g/kWh, technology deployment is identical29 in both cases. Gas-

fired CHP deployment in this case is heavily constrained by 

emissions so it is not surprising that no change is observed in the 

counterfactual scenario. 

Increasing the value of CHP generated electricity should significantly improve 

the economics of district heating supplied from CHP technologies, as 

demonstrated in Chapter 3. As biomass CHP potential is constrained by resource 

availability, this only manifests in solutions as an apparent increased 

deployment of gas-fired CHP. As with the other counterfactuals explored so far 

however, care must be taken to avoid confirmation bias when interpreting 

results. Overall, it is difficult to conclude definitively based on these outputs that 

a 20% increase in the value of CHP electricity has a measurable effect. While this 

is the only solution set where gas-CHP deployment goes above 95% of total 

heat demand, it is difficult to rule out the possibility that the levels of variation 

at other points in the optimisation response are the result of convergence to 

different (but similar) local optima. Increasing the value of CHP electricity by an 

even greater amount might produce more conclusive shifts, but this was not 

tested. It may be that in the very low heat density areas of the model, the 20% 

increase in CHP electricity value is not high enough to provide a definitively 

lower system LCOE than individual gas boilers and ensure consistent selection 

by the optimisation algorithm. 

                                                             
29

 The apparent 1% difference in solar thermal district heating deployment that appears in the 

graphs at the 88% carbon reduction level is attributable to a rounding artefact in the plot data 

that causes Scenario B to appear to have only 99% of heat demand covered. 
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Figure 30 – Effect of Increased CHP Electricity Value 
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7.5 Impact of Increasing Grid Reinforcement Costs 

The cost of grid reinforcement is sometimes noted as an important factor in 

assessing the whole system costs of moving to an energy system where heat is 

highly electrified. Future costs are uncertain and likely to vary significantly 

between different areas particularly on the 230/400V side of the network. Costs 

will depend on the age and design loads of existing electrical distribution as well 

as the character and density of local buildings. As a sensitivity check, costs for 

grid reinforcement were doubled and the results can be seen in Figure 31. 

There appear to be only minor differences between the two cases. These could 

be down to convergence rather than a fundamental shift in optima. This result 

tallies with the findings of the sensitivity analysis carried out in Chapter 3, where 

computed LCOE in the model did not vary significantly in response to changes in 

reinforcement costs. The inconclusive results may well be because costs for 

distribution reinforcement in the model are currently applied equally to both 

utility-scale heat pumps and individual building heat pumps on a per MW basis. 

This is discussed in more detail as a limitation of the study in Chapter 5. 
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Figure 31 – Effect of Increasing Grid Reinforcement Costs 
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7.6 Impact of Reduced CHP Power to Heat Ratios 

The power to heat ratio of CHP technology options has been shown to be an 

important factor in determining levelised system costs (Appendix 7.2). Unlike 

capital and operational costs, heat to power ratios applied in SEDSO are fixed 

and do not vary with scale. The power to heat ratios applied in SEDSO are 

intended to reflect the performance characteristics of large scale plant (Chapter 

2, Section 5.5.3). Smaller scale biomass CHP plant tend to produce less 

electricity per unit of heat output (VTT & Finnish District Heating Association 

2004). While SEDSO does not utilise performance curves to reflect how heat to 

power ratios may vary with plant of different scales, the effect of reducing 

power to heat ratio can be explored here by changing input assumptions.  

The base case has power to heat ratios of 1.5:1 for gas CHP and 1.2:1 for biomass 

CHP (Chapter 2). The counterfactual explored here uses 1:1 for gas CHP and 

0.5:1 for biomass CHP which is a significant drop in both cases. These reflects a 

power to heat ratio consistent with historical CHP plant deployed in the 20-40 

MW range (perhaps as a series of smaller units) rather than large thermal power 

stations operating in cogeneration mode. 

Figure 32 shows that the reduction in electrical power output per unit of heat 

has a large impact on deployment of gas CHP, with its market share significantly 

lowered even at an 11% carbon reduction level. It can also be seen that gas CHP 

becomes displaced entirely in some optimisation solutions by heat-only gas 

boilers, notably at carbon reduction targets of 36% and 67%. There are also 

some instances where biomass heat-only boilers are deployed, a choice which 

appears to occur largely at the expense of gas CHP. Biomass CHP appears to be 

less affected by the reduction in electricity production, maintaining similar 

deployment levels to the Scenario B case.  

Another observation is that the reduction in gas CHP potential forces an earlier 

uptake of low carbon heating technologies relative to the Scenario B case. 

Individual heat pumps and biomass heat sources for district heating appear at a 

36% reduction target rather than 47%. Utility-scale heat pumps and solar 

thermal district heating also appear at the 36% reduction level as opposed to 

being introduced at the 57% target.  
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The overall balance between individual and district heating in the most heavily 

decarbonised case (88% reduction, 27 gCO2/kWh) remains very similar between 

Scenario B and the counterfactual scenario. From these results it can be 

observed that the power to heat ratio of gas CHP is key to maintaining any cost 

advantage over individual gas boilers at low levels of emissions reduction. It can 

also be seen that biomass CHP deployment is less sensitive to variation in 

electricity output as the main benefit from its deployment would appear to be 

emission reduction in order to meet targets rather than lowering system costs. 
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Figure 32 – Effect of Reduced CHP Power to Heat Ratios 
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7.7 Impact of Adopting Investor Perspective for Discount Rates 

The sensitivity analysis carried out for the work in Chapter 3 reveals that the 

economic evaluation criteria used for assessing the LCOE of different 

technologies is one of the most significant input variables. The analysis 

presented earlier values all investments at a social discount rate of 3.5%, 

following UK government guidelines. However in reality, successive UK 

governments since the privatisation of the power sector have historically left 

much of the investment required to market forces. At the time of writing the 

government shows no sign of changing course in future.  

Prior studies have noted the importance of discount rates on district heating 

viability (BRE 2003; AEA 2007; Pöyry & AECOM 2009). District heating is highly 

capital intensive and private investors in the UK market at the time of writing 

are likely to assess economic viability with discount rates in the range of 10-15% 

(AEA 2007) rather than 3.5%. In future the government may be able to “de-risk” 

the investment proposition for district heating through regulation and market 

incentives but the extent to which this will be possible is by no means clear in 

the UK. Individual technologies like heat pumps may be significantly easier to 

roll out, due to the lower perception of risk associated with systems that have 

smaller capital sums per project. The deployment of heat pumps may not 

require large-scale changes to regulation and established market structures, 

with the roll out occurring effectively through “a retail market for consumer 

durables” (NERA & AEA 2010, p.99). 

For discussion purposes it is therefore useful to examine the impact of adopting 

an “investor perspective” when evaluating the cost optimality of future 

technology deployment. Figure 33 illustrates a case where district scale 

technologies are assessed at 10% and individual heating technologies are 

assessed at 5% (Ernst & Young 2007). Figure 33 illustrates the comparison 

against the equivalent set of results for Scenario B, which used 3.5% for all 

technologies. It can be observed that:  

i. At low levels of carbon ambition (-6-36% reduction) and grid 

decarbonisation (350-450 gCO2/kWh), the counterfactual 
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scenario shows a reduction in deployment potential for gas-CHP 

and an increased uptake of individual gas boilers. 

 

ii. Adoption of utility-scale heat pump district heating in the 

counterfactual scenario occurs at carbon reduction targets of 

67% rather than 57% but is nearly identical in deeply 

decarbonised cases (79-88% reduction). 

 

iii. Deployment of biomass CHP district heating remains the same 

in both scenarios. The model is attempting to use as much 

bioenergy as resource limits will allow. 

 

iv. Deployment of individual heat pumps remains almost identical 

between scenarios. 

Ultimately, results show that adopting an investor perspective does not appear 

to materially alter the overall pattern of technology change as the model moves 

from carbon intensive to deeply decarbonised conditions. The change in 

investment conditions appears to mostly have the effect of reining in gas CHP 

deployment in high carbon cases.  
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Figure 33 – Effect of Adopting Investor Perspective for Discount Rates 
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8.0 Chapter 4 Main Findings 

“In future resource-constrained energy scenarios for the UK, what will be the cost-

optimal balance between different technological approaches to heat sector 

decarbonisation such as individual electric heating, individual gas heating, and 

district heating networks?” 

The work presented in this chapter offers perspectives on the techno-economic 

potential of district heating networks within the context of a future UK energy 

system in varying stages of decarbonisation. The use of simulation-only 

techniques and fixed heat density thresholds for district heating viability has 

restricted prior studies to exploring a narrow conditional range of possible 

outcomes regarding district heating deployment. The optimisation model 

described in this study can endogenously derive the costs of heat network 

deployment on an area-by-area basis and compare it against the marginal cost 

of alternatives to generate a least cost solution within a wide range of possible 

futures.  

The results of the optimisation series described above show that national 

potential for district heating is strongly linked to the severity of the emissions 

cuts required, and the rate at which the electrical grid can be decarbonised. 

District heating deployment in the results set ranged from 8% to over 80% of 

total heat supply. 

An initial scenario was presented which reinforces the consensus view that an 

“all-electric” future with widespread decarbonisation of the grid and individual 

electric building heating offers the lowest cost path to meeting UK emissions 

targets. Under this scenario the majority of heat is supplied using individual 

electric heat pumps and district heating plays only a limited role in the energy 

system. These findings are in line with the approach recommended by the 

government’s independent advisors (CCC 2008; CCC 2010), and in the results of 

most of the key MARKAL policy model outputs30 for 2050 (Ekins et al. 2013). 

                                                             
30

 6 out of the 9 main MARKAL model runs for 2050 reviewed by Ekins et al. 2013 have almost no 

district heating in them at all for the residential sector (between 0-4%) while the remaining 3 

have penetrations of between 21-35% 



 174 

However, an alternative scenario was also demonstrated showing district 

heating supplying a significant fraction (>25%) of national demand in 2050. The 

key difference was that in the alternative case, the model was able to supply 

heat networks with low carbon electricity via utility-scale heat pumps, a 

technology that has received little attention in key UK modelling studies 

reviewed to date and which is not available in UK MARKAL. 

Both scenarios also show that district heating has significant potential in cases 

where grid electricity is not fully decarbonised and/or when emissions targets 

are relaxed. The results show that in a world with modest emissions targets, 

gas-fired CHP district heating competes well on cost with distributed gas 

heating above certain threshold demand densities. Results also demonstrate a 

compelling argument for the deployment of biomass CHP district heating, 

which is consistently chosen by the model at both modest and high levels of 

emission reduction, supplying as much heat as available resources will allow. 

Biomass CHP potential appears resistant to changes in the power to heat ratio 

achieved and also to changes in discount rates. 

Further scenario modelling confirmed the robustness of the above findings. 

Varying the availability of bioenergy to the heating sector does not significantly 

change the overall potential for district heating, as the model selects other heat 

sources which provide comparable costs. District heating potential is also 

increased in the event that efforts to improve the energy efficiency of the 

building stock fall short of ambitions. Adopting an investor perspective and 

using commercial discount rates of 10% for district heating rather than a social 

discount rate of 3.5% also does not appear to materially alter the pattern of 

technology deployment, particularly in the most deeply decarbonised cases. 

These results will be of interest to policymakers and investors in the UK energy 

sector. The work shows a possible long-term future for district heating, even in 

the absence of gas as a heat supply source. However, this will only be realised in 

practice if barriers to deployment can be addressed, de-risking the investment 

proposition sufficiently to place heat network infrastructure on a more even 

footing vis-à-vis perceptions of risks from individual heating technologies.  
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Chapter 5 - Conclusions 
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1.0 Chapter Summary 

Section 2.0 discusses the limitations of the study in detail. Section 3.0 reflects on 

the approach taken to various aspects of the study, and how these structural 

decisions may affect interpretations of results. Section 4.0 summarises the key 

findings of the study for both research questions. Section 5.0 discusses the 

overall significance of the results, to what extent they represent a useful body of 

new knowledge, and how they might be interpreted for policy purposes.  

 

2.0 Limitations 

SEDSO as a model is subject to a number of limitations that must be taken into 

account when interpreting the outputs of the study. These include issues with 

the quality of cost data, limitations regarding the spatial characterisation of 

demand, effects arising from a simplified representation of technology 

performance, and finally a reliance on static inputs and exogenous fuel costs. 

 

2.1 Cost Data 

 

2.1.1 Technology Costs 

Several factors compound to make establishing authoritative costs for energy 

system components a particularly difficult task. Broad technology category 

classifications such as “individual heat pumps” can sometimes mask a variety of 

system configurations with different energy conversion processes and even 

fuels. Market prices for equipment can change both seasonally and annually, 

influenced by factors like material availability, labour costs, and consumer 

demand. There are also project specific factors to consider such as the suppliers 

used during procurement and the negotiated contractual specifics regarding 

warranties and aftermarket service. Finally, there are project related costs such 

as design fees, obtaining planning and consent for construction, and on-site 

installation.  

The practice of quantity surveying and contract estimation represents an entire 

profession unto itself, which would not exist unless establishing costs for 
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construction projects was an extremely complex endeavour. Reliable unit cost 

data is also difficult to obtain for academic use because this information is 

commercially advantageous to keep confidential in a power sector or 

construction industry context. Engineering services firms typically keep internal 

databases of project costs, which are commercially confidential, jealously 

guarded, and rarely released unless first anonymised so that the useful 

contextual information is stripped away.  

The focus of much recent research work has been into UK levelised costs in the 

area of electrical power generation, in successive reports to DECC by different 

consulting firms. These reports acknowledge “huge uncertainty in any estimates 

of levelised costs, even for the mature technologies” (Mott MacDonald 2010, 

p.3) and that “there is no ‘right’ answer for the cost of a given technology” with 

estimates only possible for costs that lie “within a range that is representative of 

what can be expected in a typical competitive tendering process at a given point 

in time” (Parsons Brinckerhoff 2006, p.9). Companies undertaking studies of 

levelised costs are sometimes unable to investigate economies of scale for 

certain technologies due to limited real-world examples of completed 

installations (Arup 2011).  

The authors of the abovementioned studies acknowledge that their cost data in 

many cases are generated from reference international projects with exchange 

rates converted to pound sterling, from historically indexed values converted to 

present day costs, from cost databases held by specific engineering design 

software packages, and from in-house estimates informed by “expert opinion” 

where no other data is available (Parsons Brinckerhoff 2011). Such studies 

combine datasets from different time periods, collected by different parties, 

using different methodologies, without making public their information 

processing methodology and framework. In many academic disciplines such a 

level of un-auditable data manipulation might well be considered to border on 

falsification, and could render any conclusions drawn from the data 

epistemically inadmissible.  

Nevertheless, these shortcomings do not appear to have precluded the use of 

such cost data in formulating government policy to date, and this study must 
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proceed on the understanding that these data are the best available for the 

doctoral research project. However, as the accuracy and precision of the cost 

measurements are rarely given by the sources and in most cases are not known 

or described, they cannot be comprehensively audited in a rigorous academic 

fashion and must be treated with caution. A useful discussion on the limitations 

of using “real” cost data when modelling for policymaking purposes has been 

covered by UKERC who also reflect on the difficulties of obtaining “real 

numbers” when the information is owned by actors who have a “commercial 

incentive to keep the data out of the public domain” (UKERC 2007, p.2). 

 

2.1.2 Grid Reinforcement Costs 

Grid reinforcement costs are determined in SEDSO using a blanket 

methodology. A cost of GBP£110,000 per MW (€130,000/MW) is applied in each 

Settlement Archetype to the coincident peak of all heating demand supplied 

from electrical systems (Danish Energy Agency 2010). No other references were 

found during the course of the study that specifically linked electrical network 

reinforcement to peak electrical power demand (examples using other units, for 

example, per kWh were found).  

This is a conservative approach towards establishing costs, as it assumes that 

network reinforcement is required in all cases where electric heating is 

deployed. In reality the future electrification of heat will have varying effects on 

the timing of coincident peak loads in different local branches and feeders on 

the distribution system. Some may require reinforcement and others may not. 

The impact on local networks might also be mitigated in future through demand 

side management techniques such as time-of-use tariff structures or the use of 

energy storage systems to shift peak loads. However it is believed that the 

conservative approach taken in the SEDSO model is justified on the basis that 

power utilities might well price-in the cost of grid reinforcement using just such 

a blanket methodology.  

The analysis carried out in Chapter 4 shows that a doubling of reinforcement 

costs does not substantially affect the pattern of technology deployment for the 

constrained 2050 case. This is because all technologies used are electric, with 
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reinforcement costs for large-scale heat pumps assessed with the same unit 

costs as individual heat pumps. In fact, utility-scale heat pumps would likely only 

require reinforcement at 11kV whereas individual heat pumps might require 

both the high voltage and the 230/400V side of the system to be reinforced also. 

This is difficult to address in SEDSO with current cost data because the balance 

of future reinforcement costs between 11kV and at 230/400V is unknown. 

 

2.2 Spatial Characterisation  

 

2.2.1 Density 

An overview of UK statistical geography and the data available is given in 

Appendices 7.1 – 7.3. Medium Super Output (MSOA) areas are used in this study 

as the best available spatially disaggregated framework for characterising both 

domestic and non-domestic energy demand across most of the country. 

However, the boundaries of MSOA areas are not necessarily matched well to the 

boundaries of real-world urban agglomerations in all cases. Some MSOA 

boundaries may bisect a cluster of buildings that might otherwise be viewed as a 

contiguous grouping for energy planning purposes. Other MSOA areas might 

include regions of high urban density but also large amounts of open space. 

Land areas included in MSOA statistics may also include land that cannot 

effectively be developed, such as the low tide line in a coastal town. This means 

that urban density on paper used in the model may not reflect the real world 

density in all cases. This is a function of the data framework used, and is difficult 

to mitigate without access to primary data on building locations. Mapping and 

geographical information companies hold this data, so there may be merit in 

future studies attempting to produce a base dataset that is more representative 

of real world building groupings. This would require a more data-intensive 

model however. The trade-offs between available data and complexity in this 

kind of study is discussed later in Section 3.1. 
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2.2.2 Urban Form 

The SEDSO model incorporates limited detail on urban form and layout, and as 

such can only provide a first-approximation of distribution costs in each input 

area. In reality, costs of heat networks are significantly affected by the exact 

routing and method of installation of distribution pipework which depends on 

detailed local factors such as topography, land ownership, road widths, the 

presence of other existing utility services, geographical features such as river 

and rail crossings etc. The distance of buildings from the road has also been 

found to affect costs for final connections (Woods et al. 2005; Pöyry & AECOM 

2009). A parameterised method for dealing with spatial variation in distribution 

costs was utilised in SEDSO and is described in Appendix 7.5. The limitations of 

SEDSO in representing urban form are down to the input data framework used. 

As is the case with urban density, a more detailed geographical dataset could be 

developed in theory for use with SEDSO, but there are important considerations 

to bear in mind with more data intensive models (Section 3.1). 

 

2.2.3 Contiguity 

SEDSO does not capture contiguity between areas, with costs within the 

boundary of each individual MSOA area considered separately. The model 

universe is effectively a mosaic made of different tiles with the least cost 

technology selected for each tile, regardless of what happens in the adjacent 

tiles. In reality, there exist areas of reduced marginal district heating connection 

costs on the periphery of existing networks. This makes it possible to extend 

existing networks to serve communities that could otherwise not be 

economically supplied by district heating. This limitation arises from the 

structure of the MSOA boundary data used, which does not specify which areas 

are adjacent to one another. The optimisation of a system where costs of 

networked heat supply in each area tile were interdependent on those in 

adjacent tiles might also result in a large increase in computational 

requirements (Section 3.1). 

The problem of arbitrarily defined boundaries in studies of heat network 

deployment is nothing new. AEA’s work for Defra described the distortion in 
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estimates of potential resulting from contiguity noting that “In reality an area of 

high CHP/CH potential may straddle two postcodes, but in this analysis neither 

postcode, when taken as a whole, may be economic” (AEA 2007, p.16). 

The result of an inability to represent contiguity is that in some cases, SEDSO 

may be giving an underestimate of total district heating potential, but using the 

current data structure means that it is difficult to determine where this occurs 

and how it can be addressed without further work. In future iterations of the 

model it might be possible to georeference individual MSOA areas against one 

another. 

 

2.2.4 Spatial Distribution of Energy Resource Potential 

Fuel resources in SEDSO are available equally to all areas and are capped where 

specified by the user at a national level. This does not reflect the reality that in 

some cases, resources might not be equally available in all areas of the country. 

For example, SEDSO does not include meteorological data that would enable 

energy resource potential for renewable energy systems, such as solar thermal, 

to be calculated for each spatially disaggregated area being considered. SEDSO 

also does not currently have a means of representing spatial variation in 

geothermal potential or the costs of drilling boreholes in different types of rock 

strata. Large high temperature heat sources such as power stations or industrial 

areas are not explicitly mapped31. Finally, SEDSO does not include information 

on regional availability or costs of biomass fuel. The real world economics of 

bioenergy supply depend significantly on the distance transported from source. 

These limitations may mean that results in SEDSO could be conservative with 

respect to estimates of district heating potential, given the number of potential 

heat sources that are not represented. However, it is difficult to quantify this 

qualitative conclusion without better modelling of the costs of accessing power 

station and geothermal heat. Geothermal costs in particular are driven by 

                                                             
31

 It is estimated that around 30 TWh might be available in the present day just from existing 

thermal electric power stations (James & Bahaj 2009). 
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borehole capex, which varies depending on the geology of the area and the 

depth at which useful heat can be extracted. 

Another related issue is that the model assumes gas infrastructure is available in 

all areas of the country. While it is true that over 90% of domestic buildings are 

in areas with access to the piped gas grid (Consumer Focus 2011) this is not the 

same as the 100% coverage assumed in the model. When used for optimisation 

(see Chapter 4), SEDSO tends to deploy gas boilers in the lower density areas of 

the country, which may be precisely those areas that are not on the existing gas 

grid, or likely to be connected to the gas grid in future. SEDSO may therefore be 

overestimating deployment of individual gas boilers, particularly in the highly 

constrained cases where the model must meet UK 2050 targets. In these cases 

low density areas may be more likely to be supplied by individual heat pumps, or 

other heating technologies not considered in the model such as individual oil or 

biomass, boilers, LPG or even direct electric heating. 

 

2.3 Technology Performance 

 

2.3.1 Efficiency 

SEDSO adopts a streamlined approach to representing the conversion 

efficiencies of the different technology types which it considers. Technologies 

are grouped into representative categories and assigned typical performance 

characteristics drawn from a review of available literature (see Chapter 2). In 

reality the efficiency of plant varies with scale, with larger units tending to be 

more efficient. The characteristics of large-scale plant have generally been 

adopted in this study because projections show that in 2050 around 66% of the 

UK population may live at heat demand densities above 10 MWPeak/Km2 

(Chapter 3, Section 8.0), which makes deployment of city-scale heat networks 

viable. 

SEDSO may overestimate technical performance of district heating for 

technologies where efficiency varies significantly with scale, such as with 

biomass plant. This may lead to more optimistic costs for biomass plant at low 
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densities in the curves shown in Chapter 3. However, the complexity of 

interactions between different modelled variables means that it is difficult to 

prove this conclusively without actually performing the analysis.  

Adapting SEDSO so that conversion efficiency of equipment varies with the 

scale of plant deployed could be handled using non-linear functions in the same 

way as capital and operational costs are already treated by the model. This 

would require a further review of available cost and performance data, for which 

better access to real world manufacturer data would be immensely useful. A 

significant increase in computational resources available to the study may also 

be necessary (Section 3.1). 

It should be noted that efficiency also varies depending on how plant is 

operated, with part-loads usually leading to lower efficiencies. The static nature 

of time in SEDSO has meant that representative seasonal average performance 

inputs are used. The limitations of SEDSO with regard to dynamics and how this 

has impacted the study is discussed below in Section 2.4. 

 

2.3.2 Heat to Power Ratio 

As well as efficiency being constant between plant of different scales, power to 

heat ratios of cogeneration plant are also modelled as being fixed regardless of 

plant sizes or operational decisions. In reality not only do plants of different size 

have different thermal and electrical efficiencies from one another but there is a 

measure of flexibility in operation also. For steam cycle cogeneration plants 

connected to heat networks, for example, it is possible to vary their heat and 

electrical production, with total efficiency sometimes increased at the expense 

of electrical generation efficiency. As shown in Chapter 4, deployment of CHP 

technologies is sensitive to the assumed power to heat ratio and the amount of 

electricity produced has a major bearing on total system costs. As noted earlier, 

this study projects that around two-thirds of the UK population in 2050 will be in 

high heat density areas that can be served by city-scale heat networks. The 

power to heat ratios used in the study are selected to be representative of large-

scale power station sized cogeneration schemes. In reality, smaller-scale CHP 

plant produce less electricity per unit of heat, but SEDSO does not have a 
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performance curve that takes this into account. This may lead to optimistic 

costs for CHP deployment at lower densities in the curves shown in Chapter 3. It 

is not an issue in the optimisations shown in Chapter 4 however. While the 

lowest aggregated density banding is using unit costs for heat network energy 

centres with peak capacities of around 60 MW, all other 24 bands use unit costs 

for plant that are at least 200 MW in size. 

 

2.3.3 Energy Efficiency 

As noted in Chapter 2, sectoral energy demands in SEDSO are exogenously 

determined by the user prior to simulation or optimisation, following assumed 

pathways for energy efficiency.  This means that it is not possible, for example, 

to investigate the trade-offs that might be made between investment in energy 

efficient retrofit of buildings and investment in new infrastructure or renewable 

energy supply systems. 

Ultimately this limitation results from data availability, time available to carry 

out the doctoral thesis work, and available computational power. Building 

retrofit is a highly heterogeneous area with multiple methods available for 

reducing building energy demand. Appropriate measures vary not only by 

sector, but also within sectors. The potential for energy efficiency in different 

domestic dwellings for example, may vary significantly with building age, 

construction materials, morphology, occupancy and usage patterns. Similar 

complexity is found in the commercial and industrial sectors. The impact of 

individual measures is difficult to generalise as typically whole-building retrofits 

requiring a number of specific interventions may be required to significantly 

improve energy efficiency of the building stock. These interactions are a 

complex area to model in their own right, and could effectively form an entire 

doctoral thesis on their own. 

A more limited approach might be possible in SEDSO. For example, it might be 

possible to produce a parameterised curve for each sector showing levels of 

energy demand reduction against unit costs for each sector. This would allow 

energy efficiency to form part of the optimisation studies possible in SEDSO. 

However, producing such a parameterised curve would require an extensive 
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review of costs and performance to be carried out and may be difficult to 

generalise across whole sectors. It would also require a more data intensive and 

computationally demanding model (Section 3.1).  

The case can also be made that energy efficiency measures are so cost effective 

that the rationale for maximising their deployment is clear and it is not 

necessary to include them in optimisation analyses (Barrett & Spataru 2012). A 

high degree of energy efficiency has been recommended by all major low-

carbon UK 2050 policy scenario studies using UK MARKAL (Ekins et al. 2013). 

 

2.4 Dynamics 

As stressed repeatedly throughout this doctoral thesis, SEDSO in its current 

form is a temporally static model with dynamics addressed solely by the use of 

annual load factors. This necessitates compromises regarding how input data 

are expressed. For example, almost all inputs must take a form that represents 

an annual average value. Early models developed during the course of this 

doctoral research project included multiple time steps, up to 8760 hours in some 

cases. However, as the study progressed it became clear that it would not be 

possible to explore the research questions with a model that was both high in 

spatial detail and high in dynamic detail. This is primarily a result of the time 

available to carry out the project and also as a result of the heavy computational 

requirements of a highly dynamic, spatially detailed nonlinear optimisation 

model. 

SEDSO cannot be used to investigate a number of complex areas that are 

dependent on temporal dynamics. The flexibility of heat networks as a 

distribution vector means that energy centres with multiple heat sources can 

operate in parallel, leading to many interesting possibilities regarding 

operational strategy. For example, different generators with different 

performance characteristics can be operated at different times of day to better 

match demand and supply while minimising fuel consumption and emissions 

produced (Chicco & Mancarella 2009). Electric heat pumps can be operated in 

parallel with gas engine CHP, using flue gases as a high temperature source to 

boost overall heat production levels when required (Blarke & Lund 2007).  
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The dynamics of integrating energy storage, both thermal and electrical, in the 

energy system are areas which SEDSO cannot currently represent. SEDSO 

currently uses district heating costs that include for an element of diurnal 

storage but cannot vary deployment of storage to suit different combinations of 

heat generators operating at different times of day or in different periods 

throughout the year. For example the use of heat networks as storage for 

intermittent renewable electricity in power systems with large proportions of 

wind energy cannot be explored (Lund 2005; Dyrelund & Lund 2009; 

Klimakommissionen 2010; Woods & Turton 2010; Woods & Zdaniuk 2011). The 

effect of using inter-seasonal storage in conjunction with solar thermal 

generation can also not be investigated. Such stores might offer interesting 

possibilities as elevated temperature heat sources for utility-scale district 

heating heat pumps. Other forms of energy storage which are not in the model 

are electrochemical devices or systems which electrolyse hydrogen for later use 

in fuel cells. 

In reality, dynamic operation with multiple fuels is not only limited to district 

heating. Some studies have proposed the use of individual heating solutions 

that co-fire natural gas and electricity, with electric heat pumps providing 

baseload heat supply and gas boilers meeting peak loads (Redpoint Energy 

2010; Delta Energy & Environment 2012). At the domestic scale, the use of large 

“cupboard sized” heat stores32 for use in conjunction with individual building 

heating systems has been suggested as a means of shifting peak loads (Danish 

Energy Agency 2012; NERA & AEA 2010). 

Modelling such interactions between multiple generators and storage systems 

may require that SEDSO be modified as an hourly dynamic model such as 

EnergyPLAN (Lund 2005; Lund 2011; Lund & Mathiesen 2009). This is likely to 

increase compuational requirements if used for simulation-optimisation rather 

than pure simulation. A less complex, but potentially effective alternative 

                                                             
32

 The Danish Energy Agency discuss heat stores in the 400-600 litre range (Danish Energy 

Agency 2012, pp.170–171) while NERA model the use of hot water tanks of the order of 2500 

litres in conjunction with individual building heat pumps for achieving peak electrical load shifts 

of 5 hours (NERA & AEA 2010, p.43).  
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method of representing dynamics in SEDSO might be to introduce load duration 

curves. 

 

2.5 Exogenous Costs 

A major limitation of this study is the use of fixed cost inputs for the electrical 

power sector and to a lesser extent, for gas and bioenergy supply. Defining 

plausible ranges of exogenous inputs that represent the wider development of 

the UK energy system are left up to the end user to define. 

The Monte Carlo simulation method applied in the study does not correlate 

variation in prices of different fuels, as might be expected in reality. The effect of 

this limitation is seen in Chapter 3, Section 5.0. Here, the model may be 

estimating unnecessarily high uncertainty ranges, because combinations of 

input variables that have low real-world potential for occurring simultaneously 

are just as likely to be trialled by the model as more plausible combinations. For 

example, the model may run trials with a high power sector cost but with low 

costs for both natural gas and bioenergy. This may be unlikely to occur in a 

system where gas and/or bioenergy form part of the grid generation mix. For 

the purposes of interpreting the study results therefore, the reader can infer that 

the uncertainty range in terms of how costs vary with density, presented in 

Chapter 3, may be narrower in reality. However, better modelling of the wider 

energy system, particularly the power sector and upstream resource supply 

chains would be needed to explore this definitively. The most obvious way to 

address this in future could be to “soft-link” the inputs to SEDSO from the 

outputs of another model.  

Another limitation of exogenous representation of these key inputs becomes 

apparent during cost-optimisation, presented in Chapter 4. During the process 

of locally optimising individual and district heat supply technologies, SEDSO 

cannot on its own change the national costs of electricity, gas, and biomass 

supply systems in response to endogenous changes that occur. For example, 

high endogenous deployment of CHP as part of the optimisation process does 

not provide a feedback signal that affects the exogenous costs of grid electricity. 

Another example might be that utilising bioenergy for local heating would 
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reduce its availability to the power sector, potentially affecting the costs and 

carbon content of grid electricity.  

Capturing this in any future work would require a more detailed representation 

of the power sector in SEDSO. It is very difficult to speculate what the exact 

effect on results might be from implementing this change. It would affect all 

modelled costs, not only those with a high deployment of CHP technologies, 

because all solution sets actually require electricity to meet demand for power 

and lighting. One of the strengths of comprehensive energy system models like 

MARKAL is that these types of interaction are captured. 

The exogenous representation of the power sector brings with it other 

limitations. During simulation-optimisation, SEDSO does not have the option of 

buying different electrical power generation technologies at the grid level, nor 

does the delivered cost of grid electricity or its carbon content vary if more 

renewable capacity is brought online at the local level. As a result, the trade-offs 

between investing in district heating or purchasing more low carbon electrical 

capacity (wind, nuclear etc.) in the highly constrained regions of the model 

space cannot be comprehensively explored. As noted previously, there may be 

value in future work which would add capabilities to SEDSO in order to better 

represent the electrical power sector, or an approach that soft-links a detailed 

power sector model to SEDSO. This would require more data, a more complex 

model and greater computational power (Section 3.1). 

 

3.0 Reflections on Study Approach 

 

3.1 Complexity 

As originally discussed in Chapter 2, “models” as defined in this study are 

computational tools used to investigate problems which are difficult for the 

human mind to explore independently. Models are simplified representations of 

reality that can allow a route towards better understanding of complex real-

world systems (Godfrey-Smith 2006; Weisberg 2007). 
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In the absence of unlimited computational power, the application of models to 

real world problems always requires trade-offs to be made in terms of which 

areas of reality are represented in great detail and which areas are made more 

abstract. Many of the limitations of SEDSO have arisen as a result of conscious 

trade-offs between the representation of space and the representation of time 

in the modelled system. Other areas such as representation of energy demand 

and the representation of energy generation and supply infrastructure could 

also have been made more complex, but were also deliberately simplified.  

One reason for such abstraction was certainly the requirement to compute 

useful outputs within constraints such as the computer hardware and software 

available, the programming skills of the study author33, and the timeframe 

available for completing the doctoral research. However, availability of data and 

the structure of the information available also play a significant role in 

determining how the model is expressed.  

In principle an energy system model which combines sub-hourly temporal 

dynamics with georeferenced spatial data for all demand loads and supply 

sources in the country can be imagined. Such a model would in theory afford the 

user insights of unparalleled depth, and although the hardware required to run 

such a model would be expensive in purely financial terms, it does in all 

likelihood exist. However, it is far easier to create complex computational 

structures than it is to populate them with meaningful data that can be used to 

derive useful conclusions. Increasingly complex model representations require 

more complex data inputs.  

Discussion on some of SEDSO’s limitations (see Section 2.0) concludes in many 

cases that the issues could be addressed in principle by more data intensive and 

more complex modelling. This is however contingent on detailed additional data 

being available, often in a useful spatially disaggregated format. Obtaining such 

data may require significant additional primary data collection. Even if such data 

                                                             
33

 The operator is an important part of the equation and can be viewed as a human bottleneck on 

the overall performance and capabilities of the model. 
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could be collected, there are additional complexities and uncertainties involved 

in projecting spatial growth trends out to a 2050 time horizon. The complexity of 

the simulation work presented and the depth of the inferences drawn in this 

study would certainly appear to be close to the limits of what is possible given 

the data used. 

The modelling carried out in this project has been a compromise between 

complexity, available data and the need to address the research questions in the 

time available. The real measure of a model for scientific research is not how 

detailed, complex or accurate it is, but whether or not it is useful (Sterman 

2002), for representing the “behaviour, situations or interactions relevant for our 

questions” (Morgan 2002, p.56). The role of the human modeller in the process 

of interpreting the data produced by the computer and mapping meaning and 

inference to outputs should also not be underestimated (Godfrey-Smith 2006). 

As noted by Jay W. Forrester, the father of systems thinking, “The key to 

success is not in having a computer; the important thing is how the computer is 

used” (Forrester 1971, p.4). 

 

3.2 Treatment of Uncertainty 

An issue related to data availability is the treatment of uncertainty in the work 

presented in this doctoral thesis. The dangers of relying on outputs from so-

called “central” scenarios or outputs produced with deterministic inputs based 

on the “central” scenario outputs of other models has already been discussed in 

Chapter 3. 

The use of Monte Carlo techniques in this study (Chapter 3) was intended to 

avoid the drawing of false inferences about the suitability of different 

technologies against a future landscape of uncertainty. However, adopting a 

probabilistic approach in the modelling of exogenous variables presented its 

own problems. While many key inputs are acknowledged to be uncertain, there 

is little real-world information available about the probability distribution of 

these uncertain variables or how they might be correlated together. The same 

problem has been faced by other built environment studies due to a lack of data 

(Fawcett et al. 2012). For this study uniform distributions were applied according 
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to the “principle of indifference” (Keynes 1921). It is possible that other 

distributions (normal, gamma) might have been more appropriate, but no data 

was available to corroborate this supposition. Zeng reflects on the dangers of 

generating detailed probabilistic distributions based on assumptions (Zeng et al. 

2011). 

For the optimisation work presented in Chapter 4, computational limitations 

necessitated that all inputs to the model be reduced to deterministic values. 

This means that valuable information surrounding the likelihood of the 

outcomes presented as “near-optimal” solutions in Chapter 4 has been lost. The 

uncertainty cannot be propagated through the analyses presented. For this 

reason the optimisation results must be recognised as conditional scenarios and 

interpreted in this context. Especially in the context of a study that projects 

nearly four decades into the future to 2050, with all the attendant uncertainties 

which this entails, it is almost certainly more useful to draw inferences from the 

examined trends in these results and the shape of the optimisation response 

rather than fixating on absolute values. 

 

3.3 Cost-Minimisation as an Approach and the Choice of Objective 

Function 

The second research question for this study has been approached as a 

constrained optimisation problem, in which the objective function to be 

minimised is the levelised cost of energy (LCOE) across the national system. The 

choice of objective function is significant to the study results. The levelised cost 

of energy is not the same as the total cost of investment required in the system. 

What has been minimised is effectively the cost to the nation of meeting 

demand once a future steady state has been reached rather than how much the 

country has to pay to get there. The formulation of LCOE has capital cost 

components captured in it so it seems likely that switching from LCOE to total 

capital cost may well not make a difference to the trends observed in this study. 

However this cannot be examined in SEDSO at present with a trivial swap of 

objective, because as explained in Chapter 2, the model is designed to represent 

costs and performance over a single future year rather than to longitudinally 
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calculate investment requirements over multiple years. An approach that may 

be useful to consider in any future studies could be the application of multi-

objective optimisation, for example, a Pareto type analysis seeking to 

simultaneously minimise the levelised cost of energy and total investment costs 

in the system over time. This is however, significantly beyond the scope of 

addressing the research questions defined for this study. 

Another issue worth highlighting when interpreting study results is that the use 

of cost optimisation as an approach has its own limitations. SEDSO identifies 

the technology with the lowest LCOE in any given area and assumes that the full 

potential of that technology is realised with appropriate investment. This 

assumes that all actors in the system are implicitly acting in an economically 

rational manner in a perfect market for the common good of everyone in the 

country, which may not the case in reality (Lehtilä & Pirilä 1996; Watson 2012). 

Government may also ultimately take policy decisions directed by 

socioeconomic factors rather than merely acting on a pure cost basis. 

Finally, it is useful to demonstrate how near-optimal solution sets in SEDSO are 

often very close to one another in absolute terms. Figure 34 examines the 

approach towards the objective for a selection of representative optimisation 

runs. Typically the optimisation algorithm rapidly reduces costs in a fraction of 

the total number of iterations before entering a “long tail”, where many 

solutions are attempted for only a small relative improvement in the value of the 

objective. What this means for policy purposes is that “near-optimal” solutions 

sets are unlikely to be significantly more expensive than the theoretical “best” 

solution. In reality, once the cost of options falls into the “long tail” area, 

technology options are likely to depend on non-modelled factors and 

constraints like the availability of land, availability of roof space for locating 

plant, or local air pollution and noise regulations. The likely errors in the 

exogenous inputs used in this study are almost certain to be more significant 

than incremental improvements resulting from optimisation in the “long tail” 

area, especially given the 2050 time horizon. 
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Figure 34 – Approach towards Objective, Illustrative Optimisation Runs  

 

3.4 Non-Linear Optimisation 

The use of non-linear costs in SEDSO is a key feature that differentiates the 

model from similar studies. The use of non-linear functions was intended to 

capture the complexities of how costs for district-scale systems vary with heat 

demand density in as few mathematical expressions as possible i.e. one cost 

curve per technology category. It was initially expected that by minimising the 

number of decision variables in the optimisation problem this would help to 

keep optimisation run time to a minimum. The non-linear approach to 

establishing costs also worked well for producing cost curves in the Monte Carlo 

simulation exercise presented in Chapter 3. 

However on reflection, and having performed the analysis, an alternative 

approach which may have benefitted the study could have been to formulate 

the optimisation as a mixed integer linear problem (MILP) rather than a mixed 

integer non-linear problem (MINLP). Similar levels of detail on the variation of 
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technology costs with installed capacity could have been captured by using a 

large number of discrete technology variables at different scales for a given 

family of systems, rather than relying on the use of fewer non-linear variables. 

This may have resulted in faster optimisation run times, although without 

revising the model to test this hypothesis it is impossible to prove either way. 

Certainly, for the aggregations of demand used in Chapter 4, most areas could 

have been supplied by district heating plant with unit costs consistent with 

equipment in the 200 MW+ capacity range. Most of the economies of scale for 

capital expenditure on plant would therefore already have been realised by this 

point. An illustration of how the same baseline data could have been used to 

make a linear model is compared with the approach that was actually taken for 

the non-linear one in Figure 35. 

Figure 35 – Derivation Non-Linear Cost Function Compared with Linear Costs from the Same 

Base Data 

 

4.0 Summary of Key Findings 

This doctoral thesis has explored the uncertainties surrounding area-based 

deployment of heat supply technologies in the context of the UK energy system 

in 2050, which is the legislated target date for UK emissions to reduce by 80% 

on 1990 levels. The levelised costs of various individual and district heating 

technologies were compared at different demand densities to explore the 
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effects of economies of scale on deployment. Monte Carlo analysis allowed the 

comparison to be carried out under conditions of uncertainty, with a global 

sensitivity analysis enabling further investigation of the most significant 

variables. A cost minimising mixed-integer non-linear optimisation model was 

then used to establish near-optimal heat supply solution sets for an abstract 

representation of the country which characterised settlements by their heat 

demand density. This enabled estimates of future technology potential to be 

compared under different contextual scenarios. 

A number of key features enable SEDSO to offer insights in territory that major 

national energy system models have had trouble representing to date. These 

include the use of highly disaggregated input data and handling of non-linear 

capital costs in relation to peak demand at different scales of aggregation. 

SEDSO can also be differentiated from past precedent studies on UK district 

heating potential by its explicit spatial representation of demand linked to heat 

density, the use of computational optimisation as a means of arriving at 

solutions, and the inclusion of utility-scale electric heat pumps as a possible 

supply source for future heat networks. 

The work presented in this thesis serves to illustrate the highly conditional 

nature of technology deployment projections resulting from complex techno-

economic models. District heating potential can be shown to be extremely large 

or almost non-existent subject to the contextual framing of key inputs. 

Policymakers would do well to reflect that “such models have many degrees of 

freedom and, with judicious fiddling, can be made to produce virtually any 

desired behaviour, often with both plausible structure and parameter values” 

(Hornberger & Spear 1981). While this does not invalidate the use of models as a 

useful means of thinking about the future, it does caution against false 

confidence in the precision of modelled projections from studies which rely on 

the future validity of fixed assumptions.  

The risk is always that a false illusion of precision is ascribed to modelled 

outputs, which themselves are generated from uncertain inputs. Many of the 

key inputs used in this study are highly uncertain when attempts to project them 

out to 2050 are made, even by experts using complex approaches. As noted in 



 196 

Chapter 2, when modelling under conditions of considerable uncertainty, there 

is therefore more value in examining broad trends rather than fixating on 

absolute values. In this context, the key findings of the study can be summarised 

as follows: 

 

i. Future uncertainty in fuel pricing means that there may in fact 

be no precise point in a given heat density range where the 

levelised costs of district heating are certain to be lower when 

compared to individual heating. However, the economics of 

district heating compare more favourably against individual 

heat pumps than they do against individual gas boilers. This is 

interesting because in deeply decarbonised futures out to 2050, 

the marginal alternative to district heating may well be 

individual electric heat pumps rather than individual gas boilers. 

 

ii. Merely heat mapping an urban area and looking for regions of 

heat density above an arbitrary published benchmark is a gross 

oversimplification of the complexities involved in establishing 

economic viability of heat networks. Published heat density 

benchmarks for district heating viability are based on empirical 

observations of past schemes and are not necessarily a guide to 

future potential out to 2050. Energy planning assessments of 

district heating systems should be undertaken on the basis of 

marginal cost comparison against individual heating alternatives 

using up-to-date cost and performance data.  

 

iii. To obtain a more representative picture of long-term 

performance for district heating, assessments of heat demand 

density should include projections of future load growth out to 

2050, incorporating assumptions about changes to the energy 

efficiency of the building stock.  
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iv. Basing techno-economic assessment of district heating on gas-

CHP alone is not a useful way of thinking about district heating 

potential in 2050. Assessments should also take into account the 

potential for district heating schemes to evolve away from gas-

fired heat sources and utilise future low carbon heat 

technologies in the energy supply strategy. Utility-scale heat 

pumps supplied by decarbonised grid electricity may enable 

district heating to supply significant (modelling results show 

>25%) fractions of national heat demand at comparable costs to 

alternative solutions that rely exclusively on individual electric 

heating. There may be value in exploring pathways that involve 

installation of gas-fired CHP in the near term and fuel switching 

in future to low carbon alternatives. This has already been 

discussed in a UK context by others (Woods & Zdaniuk 2011). 

 

v. District heating may have a large (>50%) potential role to play in 

national heat supply in 2050 in the event that the grid cannot be 

decarbonised in line with current aspirations or in cases where 

the UK ambition for emissions reductions is reduced.  

 

vi. District heating potential will ultimately be limited in all cases if 

regulatory and market barriers to deployment cannot be 

removed and the perceived investor risk differential between 

heat networks and individual heating remains high.  
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5.0 Significance of Outputs 

Many of the key findings of this study are not new. The reader may well have 

seen similar conclusions reached in other publications and studies. Experts in the 

field have certainly suspected for some time that published benchmarks on 

district heating density thresholds need additional work in a UK context. Many 

have also argued that district heating could have an important future role to 

play in the UK energy system if barriers to deployment can be overcome. 

The value in this work is that it reaches these same conclusions as the product of 

a detailed and auditable numerical process which has sought to be as objective 

as possible in the analysis applied. Too often in UK technology policy debate the 

arguments are skewed by lobbying and special interest groups who have vested 

interests in the promotion of specific outcomes for the national energy system. 

This study is also one of the few which considers a 2050 time horizon and 

explicitly takes into account constraints imposed on district heating potential 

resulting from a possible phasing-out of gas-fired heat sources. 

The research presented also shows that it is possible for national optimisation 

models to utilise highly spatially disaggregated inputs. This allows for more 

detailed simulation of the characteristics of demand and supply at a local level, 

and appears to be crucial for the technical potential of heat networks to be 

adequately represented in any computational cost-minimisation exercise. 

 

5.1 Implications for Future UK Energy System Modelling 

SEDSO is a static model which considers a future snapshot in time for the 

purposes of exploring desirable end-states for the UK energy system. Such a 

model cannot replace the insights generated from energy system models which 

capture macroeconomic feedback between different sectors and consider true 

longitudinal pathways across multiple time periods (see Chapter 2 for a detailed 

discussion). 

However, the work carried out for this doctoral thesis does highlight the 

importance of using spatially disaggregated data for informing sub-regional 

energy planning as part of establishing a national technology strategy for the 
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heat sector. The performance and costs of district heating are complex and 

require a more detailed spatial representation than is common in current energy 

system models. Such tools typically take a highly abstract view of district 

heating, but in doing so lose vital information about variation in costs with 

respect to scale and density of demand, and the ability of heat networks to be 

supplied from multiple heat sources. DECC notes that “most models do not 

address network solutions such as… heat networks in the same way as building-

level technologies” (DECC 2012c, p.9).  

Projections of deployment potential found in the literature are frequently found 

to be based on gas-fired or biomass CHP alone. Doing so excludes the possibility 

of heat networks being integrated in future with large-scale heat pumps, solar 

thermal generation, or waste heat from power stations, and offers a misleading 

view of future potential to non-experts. This thesis concurs that for different but 

easily understood reasons, neither gas-fired or biomass CHP heat sources can 

play a major part in deeply decarbonised futures for the UK energy system, but 

at the same time shows that district heating is still viable when linked to low or 

zero carbon sources of supply. The omission of such low carbon options in 

existing literature exploring UK district heating potential is hard to understand 

(Chapter 4).  

There is no doubt that it is difficult in absolute terms to create and simulate a 

detailed model of local district heating potential alongside a detailed model of 

the national electrical power sector. Existing models tend to be well equipped to 

model the electrical grid and handle the real world complexities of district 

heating systems poorly. District heating is sometimes excluded from analysis 

altogether, on the assumption that it will be redundant by 2030 because the 

electrical grid will be fully decarbonised and there is no marginal benefit from 

CHP generation. This erroneously conflates district heating with fossil-fired CHP 

and ignores potential for district heating to be supplied from decarbonised grid 

electricity as demonstrated in this study. It is not useful to treat utility-scale heat 

pump district heating as if it will not exist at all in 2050, certainly not when there 

are real world examples in operation today. Stockholm’s district heating 
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network for example, has around 27% of its total heat demand met by a 180 MW 

seawater heat pump array that has been in operation since the 1980s34. 

There is clearly a place for further detailed technical modelling of the buildings 

sector from a spatial energy planning perspective in parallel with the use of 

multi-sectoral models. In future it may be possible for the approaches 

demonstrated in SEDSO to inform development of more spatially detailed 

integrated heat sector sub-models in existing systems such as ESME and 

MARKAL. 

 

5.2 Implications for UK Energy Policy 

At the time of writing, the government acknowledges that “up to half of the 

heat load in England is in areas that have sufficiently dense heat loads to make 

heat networks economically viable” (DECC 2012c, pp.19–20). The optimisation 

results of this study show large fractions of district heating in the national heat 

supply mix under certain conditions, comparable to the levels of deployment in 

European countries such as Sweden (50%, Ericsson & Svenningsson 2009), 

Finland (49%, Pöyry 2011), and Denmark (62%, Danish District Heating 

Association 2010). The results therefore can be added to the body of evidence 

supporting the government’s view that district heating has a high technical 

potential in the UK. They also show that while total technical potential may fall 

in future because gas-fired generation becomes constrained by emissions and 

biomass-fired generation becomes constrained by fuel availability, district 

heating could still be a significant fraction of the total heat market. 

In Europe district heating is considered an important technology for making 

efficient use of primary energy resources (Lehtilä & Pirilä 1996). European 

debate is often focused on how to develop or increase market share for district 

heating, whereas in the UK discussion is more frequently on whether district 

                                                             
34

 Manufacturer Friotherm AG claims that Stockholm’s Värtan Ropsten Plant, operated by 

Fortum Oyj comprises 2,600 GWh of heat supplied to the total 5,700 GWh system, and 60% of 

this is supplied by 6 no. 30 MW Unitop 50FY heat pumps http://www.friotherm.com/webautor-

data/41/vaertan_e008_uk.pdf:  

http://www.friotherm.com/webautor-data/41/vaertan_e008_uk.pdf
http://www.friotherm.com/webautor-data/41/vaertan_e008_uk.pdf
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heating has a future at all in the context of decarbonisation of the economy. The 

results of this study show that not only is potential for district heating significant 

when meeting UK 2050 targets on emissions reduction with a decarbonised 

electrical grid, but that potential is also high in scenarios where the UK does not 

fully decarbonise the power sector or when emissions targets are scaled-back 

from those stipulated in legislation, both of which are distinct possibilities.  

The analysis carried out in this study does not show that the levelised cost of 

energy from a system with a high proportion of district heating is dramatically 

lower than that of an equivalent system which relies on individual heating alone. 

However, it does demonstrate that levelised costs are comparable between 

cases. This is important because the solution with a higher proportion of district 

heating may have a number of significant ancillary benefits that are not 

captured in the cost analysis. These include the ability to better integrate 

intermittent generation from renewable energy (Lund 2005; Dyrelund & Lund 

2009; Klimakommissionen 2010; Woods & Turton 2010; Woods & Zdaniuk 

2011), the energy security benefits of greater fuel flexibility (Kristjansson 2009), 

the capability to better decarbonise hard-to-treat parts of the building stock 

(BioRegional 2012), and the potential to hedge against the high costs that may 

be associated with grid reinforcement for individual heat pumps (Speirs et al. 

2010a).  

It can additionally be argued that building and financing heat networks on the 

basis of gas-fired operation in the near term and switching them to low carbon 

heat sources in future will save more cumulative carbon emissions over time 

than a direct move to individual electric heating using heat pumps (Woods 

2012). Cumulative emissions do not affect UK legislated targets, which are 

based on 2050 reductions only, but are significant in the context of climate 

change mitigation. There is evidence to support the view that short-term 

emissions may be more important than emissions in the long-term because of 

time lags in the earth’s ocean-atmosphere system. Carbon dioxide produced in 

the present as a result of fossil fuel burning has a potential atmospheric lifetime 

of hundreds of years, with recent research even suggesting that a large portion 
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of current emissions could effectively remain trapped in the atmosphere forever 

(Archer 2005).  

An important role for government is to provide sufficient certainty regarding 

energy technology policy to reduce where possible the number of uncertain 

variables and to signal clearly to investors what the ultimate goals are and what 

long term support will be available. The UK has sometimes had a poor track 

record of doing so in the past (Mitchell & Connor 2004). An aversion to “picking 

technology winners” has resulted in “a shortfall in generation, higher costs (than 

in other countries) and lack of diversity in supply” (Lipp 2007, p.5490). However, 

there are signs that the environment is changing and government is 

aggressively pursuing research into which technology pathways might best 

meet the targets. Government is making efforts to incentivise network solutions 

to decarbonisation through measures such as the Renewable Heat Incentive 

(DECC 2011f) and the Community Infrastructure Levy (CLG 2011a), measures 

which are designed to reduce the perception of investment risk in major capital 

projects35. 10 out of the 15 largest settlements in the UK have prescriptive 

planning policies aimed at supporting district heating in new developments 

(Appendix 10.1), although specific policy support for retrofit is less clear. The 

work presented in this doctoral thesis might therefore be viewed as an 

extension and qualification of the UK government’s current approach. 

The EU Energy Efficiency Directive mandates that member states engage in 

detailed energy planning for the implementation of national heating and cooling 

plans by the end of 2015 (European Parliament 2012, Article 14). It also 

stipulates that all new generation plant above 20MW should be cogeneration 

plant unless a cost-benefit analysis demonstrates that costs are greater than 

providing individual building heating. The work demonstrated in this thesis 

illustrates the importance of the choice of counterfactual individual heating 

technology in any such analysis. In the near term, it may be simple to carry out 

the required comparison and show that individual gas boilers are the cheapest 

                                                             
35

 Many studies have identified that the application of high discount rates in the economic 

assessment of capital intensive projects such as city-wide heat networks significantly curtails 

their deployment potential. 
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solution, but this is to ignore all of the anticipated future constraints shaping the 

development of the UK energy system in the period to 2050. Given the long 

economic lifetimes of energy network and generation assets, this should not be 

overlooked. 

 

6.0 Future Work 

Subject to funding and resources, the logical progression for development of the 

model is as follows: 

i. To linearise model elements such as capital and operational costs as 

described in Section 3.4, a change which would increase the total 

number of decision variables in the optimisation but also one which is 

likely to reduce computational run times to minutes rather than hours. 

This change should enable additional dimensions of spatial and temporal 

complexity to be added to the model without making the analysis 

computationally intractable. 

 

ii. To investigate the potential benefits of implementing the model in an 

integrated mathematical modelling and optimisation environment such 

as AIMMS or GAMS, which may speed up computational run times and 

ultimately enable scaling to more powerful hardware i.e. Beowulf 

clusters or other highly parallel processing platforms. 

 

iii. To improve the geographical characterisation of MSOA areas to take 

into account adjacency and contiguity, therefore endogenising the 

spatial aggregation of demand for heat network sizing. All possible 

combinations of individual MSOA regions would be assessed to 

determine the optimum allocation of plant size to areas, running as a 

nested process within the main simulation and optimisation program 

loop. A logical means of achieving this is to either use a grid type 

coordinate system or to link the MSOA area database to a GIS mapping 

module. AIMMS might prove to be a useful development environment as 

the latest version at the time of writing has an integrated GIS package.  
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iv. To improve temporal representation of energy demand and supply using 

load duration curves. This would allow the model to effectively consider 

hybrid heating approaches such as the combination of domestic solar 

thermal with heat pumps and/or gas boilers. It would also improve the 

characterisation of multi-fuelling in district heating systems. 

 

v. To improve the way in which the performance and costs of energy 

storage are represented in the model. Following implementation of the 

geographical and temporal improvements described above, it should be 

possible to endogenously determine the cost-optimal sizing of heat 

storage systems, not only for daily load shifting but even taking into 

account inter-seasonal storage. 

 

In terms of publications, the work carried out in this doctoral thesis should form 

the basis of an academic journal paper that would be of interest to the energy 

modelling and energy policy communities both in the UK and internationally. 

The paper would give a brief overview of the model architecture, highlighting 

the unique elements which distinguish it from prior approaches to investigating 

the future of heating, before showcase its capabilities with a number of case 

study optimisations and using them to draw useful  conclusions for policy. Such 

a paper is in preparation at the time of writing and it is anticipated that 

publication can be achieved in the latter half of 2013 or during the first half of 

2014.  
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7.0 Chapter 2 Appendices 

 

7.1 UK Administrative and Statistical Geography 

The United Kingdom is a nation that is itself comprised of four constituent 

countries: England, Wales, Northern Ireland, and Scotland. The naming and 

composition of administrative sub-divisions in each of these countries is not 

uniform, although many classifications are broadly comparable. In addition to 

classifying areas by the boundaries of local government responsibility, the UK 

also uses a specific system of area classifications for the purposes of statistical 

monitoring. The statistical geography, as it is termed, has boundaries and 

regions that are distinct and separate from those used for government 

administration. The use of a statistical geography system is intended to avoid 

the two main problems that can occur when using administrative geography for 

policymaking purposes, namely that administrative regions vary significantly by 

size and that their boundaries can change over time. 

Unfortunately, as is the case with UK administrative boundaries, the naming and 

composition of UK statistical areas is different for individual member countries. 

The UK Office for National Statistics36 (ONS) operates the Neighbourhood 

Statistics Service37 (NeSS), which has published a hierarchy of how statistical 

and administrative geographies relate to one another as a means of alleviating 

confusion. This is shown in Figure 36. 

It can be seen that the smallest individual unit of administrative geography is 

the individual Local Authority. In England and Wales these have several names, 

being termed Metropolitan District, Non-Metropolitan District, London 

Borough, or Unitary Authority. In Scotland, the term used is Council Area, while 

the label District Council Area is applied in Northern Ireland. On statistical 

datasets Local Authority (LA) areas are sometimes referred to as Local 

Government Departments (LGD) or Local Administrative Units (LAU). LGD / LA 

                                                             
36

 Office for National Statistics (ONS), http://www.statistics.gov.uk/ 

37
 Neighbourhood Statistics Service (NeSS), http://www.neighbourhood.statistics.gov.uk/ 

http://www.statistics.gov.uk/
http://www.neighbourhood.statistics.gov.uk/
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areas are administrative geographies, and within each is nested a set of 

statistical geographical divisions.  

 

Figure 36 – Office for National Statistics (ONS) Neighbourhood Statistics Service (NeSS) 

Geographical Policy Map, in Effect from 2009 Onwards 

 

 

 



 239 

 

Table 13 gives an overview of the statistical geographic sub-divisions used in 

different UK countries38.  

Table 13 – Statistical Geography Classifications in UK Member Countries 

Country Organisation 
Statistical 

Sub-Divisions 
Number of 
Divisions 

Population 
Size Covered 

England 

Office for National Statistics: Neighbourhood 
Statistics: 

http://www.neighbourhood.statistics.gov.uk/ 

Lower Super 
Output Areas 

(LSOA) 
34,378 

Minimum 1,000 
residents / 400 

households, 
average ≈1,500 

residents 

Wales 
Middle Super 
Output Areas 

(MSOA) 
7,193 

Minimum 5,000 
residents / 2000 

households, 
average ≈7,200 

residents 

Scotland 
Scottish Executive: Scottish Neighbourhood 

Statistics: http://www.sns.gov.uk/ 
 

Data Zones 
(DZ) 

6,505 
Between 500 – 
1000 residents 

Intermediate 
Geography 
Zone (IGZ) 

1,235 

Between 2,500 
– 6000 

residents, 
average 4000 

residents 

Northern 
Ireland 

Northern Ireland Statistics and Research 
Agency (NISRA): Northern Ireland 

Neighbourhood Information Service (NINIS): 
http://www.ninis.nisra.gov.uk/ 

Super Output 
Areas (SOA) 

890 

Minimum 1,300 
residents, 

average 2000 
residents 

 

  

                                                             
38

 It should be noted that the terms MLSOA and MSOA, as well as LLSOA and LSOA appear to 

be used interchangeably across different government agencies but refer to the same types of 

areas. 

http://www.neighbourhood.statistics.gov.uk/
http://www.sns.gov.uk/
http://www.ninis.nisra.gov.uk/
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7.2 Review of Data Sources for Spatially Explicit Energy Modelling 

 

7.2.1 Office of National Statistics (ONS) 

The Office of National Statistics (ONS), through its Neighbourhood Statistics 

service, collects and publishes demographic and business data for England and 

Wales, and recently administered collection of information under the 2011 

Population Census. The ONS publishes socioeconomic data grouped by 

administrative and statistical regions, notably on dwelling numbers, population, 

and vehicle ownership. 

The ONS only publishes socioeconomic information on England and Wales, with 

data from other agencies needed to build up a picture of the UK as a whole. The 

ONS also republishes data for England and Wales from the Department of 

Energy and Climate Change39 (on energy use), the Department of Communities 

and Local Government40 (on land use), and the Valuation Office Agency41 (on 

business sites), which are described separately.  

For the purposes of modelling studies, the ONS socioeconomic data can be 

combined with other information as a useful means of classifying different area 

types. Information on dwelling numbers might also be useful for estimating 

domestic energy use.  

 

  

                                                             
39

 Department of Energy and Climate Change (DECC), http://www.decc.gov.uk/ 

40
 Department for Communities and Local Government (CLG), http://www.communities.gov.uk/ 

41
 Valuation Office Agency (VOA), http://www.voa.gov.uk/ 

http://www.decc.gov.uk/
http://www.communities.gov.uk/
http://www.voa.gov.uk/
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7.2.2 The Scottish Executive 

The Scottish Government42 operates its own Scottish Neighbourhood 

Statistics43 (SNS) service, which fulfils a similar function to the Neighbourhood 

Statistics section of the ONS for England and Wales. Information is available on 

population, dwelling and car ownership, as well as land area. 

The SNS service also gives data on the number of businesses present in different 

areas and their type. No information however is available on floor areas for 

individual classes of organisation, as the Scottish Assessors Association44 (SAA), 

which is the Scottish equivalent of the Valuation Office Agency (VOA), does not 

publish rateable value statistics based on floor area. 

For research purposes, the SNS data can be used to characterise different 

settlements by dwelling or population density. Information on dwelling and 

business numbers may also be useful for estimating energy use in the domestic 

and industrial/commercial buildings sector. 

 

7.2.3 General Register Office for Scotland (GROS) 

The General Register Office for Scotland45 holds historic information from the 

2001 Population Census relating to vehicle ownership at spatially disaggregated 

levels that is currently not available from the Scottish Neighbourhood Statistics 

service. This was instead obtained from the organisation’s Scotland's Census 

Results OnLine46 (SCROL) service. 

 

                                                             
42

 Scottish Government, http://www.scotland.gov.uk/ 

43
 Scottish Neighbourhood Statistics (SNS), http://www.sns.gov.uk/ 

44
 Scottish Assessors Association (SAA), http://www.saa.gov.uk/ 

45
 General Register Office for Scotland (GROS), http://www.gro-scotland.gov.uk/ 

46
 Scotland’s Census Results OnLine (SCROL), http://www.scrol.gov.uk/ 

http://www.scotland.gov.uk/
http://www.sns.gov.uk/
http://www.saa.gov.uk/
http://www.gro-scotland.gov.uk/
http://www.scrol.gov.uk/
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7.2.4 Northern Ireland Statistics and Research Agency (NISRA) 

NISRA47 operates the Northern Ireland Neighbourhood Information Service48 

(NINIS), which is directly analogous to Neighbourhood Statistics for England 

and Wales, or Scottish Neighbourhood Statistics for Scotland. Socioeconomic 

information is available on population, households and vehicle ownership, as 

well as land area. 

NINIS gives data from the Northern Ireland Inter-Departmental Business 

Register (IDBR) owned by the Northern Ireland Department of Enterprise, Trade 

and Investment49 (DETI) on the number of businesses in different areas and their 

type, although not on their floor areas. NINIS also makes available information 

on road lengths from the Northern Ireland Department for Regional 

Development50 (DRDNI) Roads Service. 

For the purposes of techno-economic modelling, the NINIS data can be used to 

characterise different settlements by population or other measures. The 

information on dwelling and business numbers could be used for estimating 

energy use in the buildings sector. Information on road lengths may be useful for 

estimating distribution network lengths for utility infrastructure. 

 

7.2.5 Department of Energy and Climate Change (DECC) 

National level information on energy use has been published by the UK 

Government under different departments for many years. The quarterly 

publication “Energy Trends” is currently managed by the Department of Energy 

and Climate Change (DECC) and publishes national level statistics on energy 

generation, fuel consumption, and carbon emissions. Energy Trends represents 

                                                             
47

 Northern Ireland Statistics and Research Agency (NISRA), http://www.nisra.gov.uk/ 

48
 Northern Ireland Neighbourhood Information Service (NINIS), http://www.ninis.nisra.gov.uk/ 

49
 Northern Ireland Department of Enterprise, Trade and Investment (DETI), 

http://www.detini.gov.uk/ 

50
 Northern Ireland Department for Regional Development (DRDNI), http://www.drdni.gov.uk/ 

http://www.nisra.gov.uk/
http://www.ninis.nisra.gov.uk/
http://www.detini.gov.uk/
http://www.drdni.gov.uk/
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a potentially useful source of historical information showing changes to the 

energy system composition over time. 

More recently, DECC have begun to publish energy statistics at a sub-national 

level, using administrative and statistical geographical regions. The UK Statistics 

Authority (UKSA) has audited DECC’s sub-national work with all datasets at 

MSOA level and above since 2005 considered to be official National Statistics 

(DECC 2010c, p.26). Several datasets are available covering electricity use, gas 

consumption, road transport fuel use, and a category called “residual fuels” that 

includes petroleum, coal, manufactured solid fuels, and renewables. 

Electricity consumption data is based on real electrical measured MPAN meter 

readings that are mapped to geographical locations (provided from Germserv 

and ECOES databases). A domestic/non-domestic split is applied in each 

geographical region. For domestic energy consumption, the meter readings are 

annualised using standard domestic and economy 7 usage profiles (UK 

Electricity Association Profiles 1 and 2). For non-domestic energy consumption, 

the meter readings are annualised based on UK Electricity Association Profiles 3 

and 8 for non-half hourly meters and based on actual usage for half-hourly 

meters. The DECC data notably excludes certain large industrial consumers 

classed as Central Volume Allocation (CVA) users, who are not metered in the 

same way as half-hourly or non-half hourly customers. DECC estimates that 

CVA accounts for 1.5% of electricity sales (DECC 2010c, p.27). Data 

confidentiality means that some commercial/industrial energy use data in 

certain area cases has been merged with that of adjacent areas to prevent 

specific organisations being identified. 

DECC’s gas consumption data is based on real readings mapped to geographical 

locations of MPRN meters (provided by xoserve). Annual estimates of 

consumption are produced based on actual meter readings that are then 

weather corrected. A domestic/non-domestic split is applied using the industry 

standard cut-off of 73,200 kWh. DECC acknowledge that there are certain 

difficulties in allocating customers to each sector in this way, with a significant 

number of small industrial/commercial users likely to be incorrectly classified as 

domestic users. DECC note that certain large industrial consumers and power 
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stations that are connected directly to National Grid’s National Transmission 

System are excluded from the gas consumption estimates. Gas use for certain 

industrial / commercial users is merged with that of adjacent areas to protect 

data confidentiality. 

For the purposes of the research project, DECC’s sub-national electricity and gas 

estimates as well as their other fuel use data has the potential to provide useful 

benchmarks for modelling work. 

In terms of future releases from DECC, it is anticipated that the organisation will 

continue to provide updated sub-national figures for electricity and gas 

consumption by administrative and statistical region over time. It is not 

expected that DECC will release information on industrial/commercial energy 

use below MSOA level, as data confidentiality codes of practice would appear to 

make this impossible. It is expected that DECC’s information will continue to be 

refined for accuracy and that there may be underlying methodological changes 

to the way data is collected and processed. 

 

7.2.6 Department for Communities and Local Government (CLG) 

CLG supply the ONS with detailed information on land use, which only covers 

England. CLG also process information on business sites and their floor areas 

which originates from the Valuation Office Agency (VOA), described separately. 

The Generalised Land Use Database (GLUD) classifies land use in an automated 

fashion using Ordinance Survey mapping data. CLG acknowledge that it does 

not always correctly distinguish between domestic and non-domestic land use, 

but the database would appear to differentiate clearly between built up areas 

and open spaces. 

For the purposes of carrying out modelling studies, the land use information 

available from CLG might be used an important means of characterising 

different settlement archetypes. Built area density is expected to be a key 

metric used to differentiate between different types of sub-national region and 

density is a function of land surface area. It is not expected that CLG will expand 
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the Generalised Land Use Database work to cover UK regions outside of 

England within the foreseeable future. 

 

7.2.7 Valuation Office Agency (VOA) 

The Valuation Office Agency (VOA) keeps database records of business land use 

for the purposes of taxation in England and Wales. This data is processed by 

CLG and geographically referenced before being made available from the Office 

of National Statistics (ONS) Neighbourhood Statistics website. Information on 

the number of individual hereditaments as well as on floor area is included in the 

dataset.  

CLG acknowledge some difficulties within annual datasets, for example, a large 

number of premises might fall interchangeably into either the office or retail 

classifications. Classifications can also change over time, with CLG noting for 

example that car showrooms were classed as retail premises by the VOA 

between 200-2004, but in more recent years classed instead as warehouses. 

Certain types of land use are not taxed in the same way as most businesses and 

do not appear on the database, notably public houses. Other land use types are 

exempt from taxation and are therefore absent from the statistics, such as 

churches and other places of worship, parks, agricultural buildings, and certain 

facilities that offer services to disabled persons. 

For the purposes of techno-economic modelling, the business land use 

information available from the VOA / CLG could be useful for classifying 

individual settlement archetypes as well as for estimating non-domestic energy 

consumption in England. It is not expected that the VOA will expand their remit 

beyond England and Wales and begin publishing information on other UK 

regions as this is currently outside of their scope of responsibility. 
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7.2.8 Department for Transport (DfT) 

The UK Department for Transport51 (DfT) publishes information on transport 

related energy use and emissions as well as information on transport network 

infrastructure. For the purposes of creating energy models, the DfT’s detailed 

information on highway network lengths for different types of road transport 

route in different sub-national areas could be useful for formulating a 

relationship between built density and utility distribution lengths.  

 

  

                                                             

51
 Department for Transport (DfT), http://www.dft.gov.uk/ 

http://www.dft.gov.uk/
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7.2.9 Available Data Classified by Geographical Framework 

Information collated to date from the above sources is summarised in Figure 37 

and categorised by their administrative and / or statistical levels of 

disaggregation. 

Figure 37 – Summary of Available Data by Area 

Data 

Statistical / Administrative Geographical Sub-Division 

Dates Source England and Wales Scotland 
Northern 

Ireland 

LSOA MSOA LGD DZ IGZ LGD SOA LGD 

Population ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

2001 
2002-
2008 

DECC Publication 
URN 10D-601 - Socio-

economic data for 
MLSOA, IGZ and 

LLSOA electricity and 
gas estimates 

England and Wales 
Neighbourhood 
Statistics – 2001 

(Census) 
Scottish 

Neighbourhood 
Statistics – 2001 

(Census) 
Northern Ireland 
Neighbourhood 

Information Service – 
2001 (Census), 2002-

2008 (Estimates) 

Land Area ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

2001 
2005 
2008 

DECC Publication 
URN 10D-601 - Socio-

economic data for 
MLSOA, IGZ and 

LLSOA electricity and 
gas estimates 

England and Wales 
Neighbourhood 

Statistics – 2001, 2005 
Scottish 

Neighbourhood 
Statistics – 2005 
Northern Ireland 
Neighbourhood 

Information Service - 
2008 

Number of Dwellings ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

2001 
2003-
2009 

DECC Publication 
URN 10D-601 - Socio-

economic data for 
MLSOA, IGZ and 

LLSOA electricity and 
gas estimates 

England and Wales 
Neighbourhood 
Statistics – 2001 

(Census) 
Scottish 

Neighbourhood 
Statistics – 2003 – 

2009 
Northern Ireland 
Neighbourhood 

Information Service – 
2001 (Census) 

Percentage of Households 
with Access to No Cars 

✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ 
2000-
2008 

Scottish 
Neighbourhood 

Statistics  
Percentage of Households 

with Access to 1 Car 
✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ 
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Percentage of Households 
with Access to 2 or more 

Cars 
✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ 

Households Owning No 
Cars or Vans 

✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ 

2001 

England and Wales 
Neighbourhood 
Statistics – 2001 

(Census) 
General Register 

Office for Scotland, 
Scotland’s Census 
OnLine (SCROL) – 

2001 (Census) 
Northern Ireland 
Neighbourhood 

Information Service – 
2001 (Census) 

Households Owning 1 Car 
or Van 

✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ 

Households Owning 2 Cars 
or Vans 

✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ 

Households Owning 3 Cars 
or Vans 

✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ 

Households Owning 4 or 
more Cars or Vans 

✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ 

Total Households Owning 
Cars or Vans 

✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ 

Land Area, Domestic 
Buildings 

✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

2001 
2005 

England and Wales 
Neighbourhood 

Statistics - 
Generalised Land Use 

Database – 2001, 
2005 

Note: ENGLAND 
ONLY 

Land Area, Non-Domestic 
Buildings 

✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

Land Area, Road ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

Road Length: Trunk 
Motorways 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

2005 
2006 
2007 
2008 
2009 

DfT Publication 
RDL0202: Road 
lengths by local 
authority, Great 

Britain- since 2005 
(kilometres) 

Road Length: Total Rural 
Trunk Road 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Rural Trunk 
Road, Dual Carriageway 

(sub-set of total) 
✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Total Urban 
Trunk Road 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Total Urban 
Trunk Road, Dual 

Carriageway (sub-set of 
total) 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Principal 
Motorway 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Total 
Principal Rural Road 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Total 
Principal Rural Road, Dual 

Carriageway (sub-set of 
total) 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Rural B Road ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Urban B 
Road 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Rural C Road ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Urban C 
Road 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Rural 
Unclassified Road 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Urban 
Unclassified Road 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ 

Road Length: Motorway ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 

Northern Ireland 
Neighbourhood 

Information Service 

Road Length: A Road, Dual 
Carriageway 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Road Length: A Road, 
Single Carriageway 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Road Length: B Road ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Road Length: C Road ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Road Length: Unclassified 
Road 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Retail Premises Floorspace 
(m2) 

✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

2005 

CLG Commercial and 
Industrial Floorspace 
and Rateable Value 

Statistics (2005 
Revaluation), 2008 

Offices Floorspace (m2) ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

Factories Floorspace (m2) ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

Warehouses Floorspace 
(m2) 

✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 
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Other Bulk Premises 
Floorspace (m2) 

✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

Number of Retail Premises 
Hereditaments 

✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

Number of Offices 
Hereditaments 

✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

Number of Factories 
Hereditaments 

✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

Number of Warehouses 
Hereditaments 

✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

Number of Other Bulk 
Premises Hereditaments 

✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ 

Number of business sites: 
manufacturing 

✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ 

2007 
2008 
2009 
2010 

Scottish 
Neighbourhood 

Statistics: Business 
Sites by Sector 

Number of business sites: 
Construction 

✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ 

Number of business sites: 
Wholesale, retail and 

repairs 
✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ 

Number of business sites: 
Hotels and restaurants 

✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ 

Number of business sites: 
Transport storage and 

communication 
✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ 

Number of business sites: 
Finance Intermediation, 
real estate, renting and 

business activities 

✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ 

Number of business sites: 
Education Health and 

social work 
✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ 

Number of business sites: 
Other community, social 

and personal services 
✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ 

Number of Business Units 
in Manufacturing 

✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ 1998 
1999 
2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 

Scottish 
Neighbourhood 

Statistics: Businesses 
in Construction, 

Manufacturing, and 
Services Industries 

Number of Business Units 
in Construction 

✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ 

Number of Business Units 
in Services 

✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ 

Number of businesses: 
Agriculture, forestry & 

fishing 
✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

2008 
2009 
2010 

Northern Ireland 
Statistical 

Information Service – 
Inter Departmental 
Business Register 
(IDBR) Number of 
VAT and/or PAYE 

Registered Businesses 

Number of businesses: 
Production 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Construction 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Motor trades 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Wholesale 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Retail 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Transport & storage (inc. 

postal) 
✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Accommodation & food 

services 
✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Information & 

communication 
✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Finance & insurance 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Property 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 
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Professional, scientific & 
technical 

Number of businesses: 
Business administration 

and support services 
✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Public administration and 

defence 
✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Education 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Health 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Number of businesses: 
Arts, entertainment, 
recreation and other 

services 

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ 

Industrial Petroleum 
Consumption 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

2005 
2006 
2007 
2008 

DECC Publication 
URN 10D/1001: Sub-
national estimates of 

non-gas, non-
electricity, and non-
road transport fuels: 

2005, 2006, 2007, 
2008 

Commercial Petroleum 
Consumption 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Domestic Petroleum 
Consumption 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Public Administration 
Petroleum Consumption 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Agricultural Petroleum 
Consumption 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Rail Sector Petroleum 
Consumption 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Industrial / Commercial 
Coal Consumption 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Domestic Coal 
Consumption 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Industrial Manufactured 
Solid Fuel Consumption 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Domestic Manufactured 
Solid Fuel Consumption 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Renewables & Wastes 
Consumption 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Transport Fuel 
Consumption: Buses 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

2005 
2006 
2007 
2008 

DECC Publication 
URN 10D/699: 

Regional and Local 
Authority Road 

Transport 
Consumption 

Statistics: 2005, 2006, 
2007 and 2008 

Transport Fuel 
Consumption: Diesel Cars 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Transport Fuel 
Consumption: Petrol Cars 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Transport Fuel 
Consumption: Motorcycles 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Transport Fuel 
Consumption: HGV 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Transport Fuel 
Consumption: Diesel LGV 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Transport Fuel 
Consumption: Petrol LGV 

✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ 

Total Ordinary Domestic 
Electricity Consumption 

✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

2005 
2006 
2007 
2008 
2009 

DECC Publication 
URN 10D/999: Sub-
national Authority 

Electricity 
Consumption 

Statistics: 2005, 2006, 
2007, 2008, 2009 
DECC Publication 

URN 07/1424: Middle 
Layer Super Output 
Area (MLSOA) and 

Intermediate 
Geography Zone 

(IGZ) Electricity and 
Gas Data 2005 

DECC Publication 
URN 08/P50: Middle 
Layer Super Output 

Total Economy 7 Domestic 
Electricity Consumption 

✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

Number of Ordinary 
Domestic Electricity 

Meters 
✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 
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Number of Economy 7 
Domestic Electricity 

Meters 
✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

Area (MLSOA) and 
Intermediate 

Geography Zone 
(IGZ) Electricity and 

Gas Data 2006 
DECC Publication 

URN 09D/P50: Middle 
Layer Super Output 
Area (MLSOA) and 

Intermediate 
Geography Zone 

(IGZ) Electricity and 
Gas Data 2007 

DECC Publication 
URN 10D/943: Lower 
Layer Super Output 

Area (LLSOA) 
Electricity Estimates 
2008: England and 

Wales 
DECC Publication 

URN 10D/945: Middle 
Layer Super Output 

Area (MLSOA) 
domestic electricity 

estimates 2008: Great 
Britain 

DECC Publication: 
Middle Layer Super 

Output Area 
(MLSOA) domestic 

electricity estimates 
2009: Great Britain 
DECC Publication: 
Lower Layer Super 

Output Area (LLSOA) 
domestic electricity 

estimates 2009: 
England and Wales 

Average Ordinary 
Domestic Electricity 

Consumption per Meter 
✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

Average Economy 7 
Domestic Electricity 

Consumption per Meter 
✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

Total Domestic Gas 
Consumption 

✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

2005 
2006 
2007 
2008 
2009 

DECC Publication 
URN 10D/1000: Sub-

national gas sales and 
numbers of 

customers: 2005, 
2006, 2007, 2008, 

2009 
DECC Publication 

URN 07/1424: Middle 
Layer Super Output 
Area (MLSOA) and 

Intermediate 
Geography Zone 

(IGZ) Electricity and 
Gas Data 2005 

DECC Publication 
URN 08/P50: Middle 
Layer Super Output 
Area (MLSOA) and 

Intermediate 
Geography Zone 

(IGZ) Electricity and 
Gas Data 2006 

Number of Domestic Gas 
Meters 

✘ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

http://www.decc.gov.uk/media/viewfile.ashx?filetype=4&filepath=Statistics/regional/mlsoa_2009/1601-mlsoa-electricity-domestic-gb.xls&minwidth=true
http://www.decc.gov.uk/media/viewfile.ashx?filetype=4&filepath=Statistics/regional/mlsoa_2009/1601-mlsoa-electricity-domestic-gb.xls&minwidth=true
http://www.decc.gov.uk/media/viewfile.ashx?filetype=4&filepath=Statistics/regional/mlsoa_2009/1601-mlsoa-electricity-domestic-gb.xls&minwidth=true
http://www.decc.gov.uk/media/viewfile.ashx?filetype=4&filepath=Statistics/regional/mlsoa_2009/1601-mlsoa-electricity-domestic-gb.xls&minwidth=true
http://www.decc.gov.uk/media/viewfile.ashx?filetype=4&filepath=Statistics/regional/mlsoa_2009/1601-mlsoa-electricity-domestic-gb.xls&minwidth=true
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Average Domestic Gas 
Consumption per Meter 

✘ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

DECC Publication 
URN 09D/P50: Middle 

Layer Super Output 
Area (MLSOA) and 

Intermediate 
Geography Zone 

(IGZ) Electricity and 
Gas Data 2007 

DECC Publication 
URN 10D/944: Lower 
Layer Super Output 

Area (LLSOA) gas 
estimates 2008: 

England and Wales 
DECC Publication 

URN 10D/946: Middle 
Layer Super Output 

Area (MLSOA) 
domestic gas 

estimates 2008: Great 
Britain 

DECC Publication: 
Middle Layer Super 

Output Area 
(MLSOA) domestic 
gas estimates 2009: 

Great Britain   
DECC Publication: 
Lower Layer Super 

Output Area (LLSOA) 
domestic gas 

estimates 2009: 
England and Wales 

Total Industrial / 
Commercial Electricity 

Consumption 
✘ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

2005 
2006 
2007 
2008 
2009 

DECC Publication 
URN 10D/999: Sub-
national Authority 

Electricity 
Consumption 

Statistics: 2005, 2006, 
2007, 2008, 2009 
DECC Publication 

URN 07/1424: Middle 
Layer Super Output 
Area (MLSOA) and 

Intermediate 
Geography Zone 

(IGZ) Electricity and 
Gas Data 2005 

DECC Publication 
URN 08/P50: Middle 
Layer Super Output 
Area (MLSOA) and 

Intermediate 
Geography Zone 

(IGZ) Electricity and 
Gas Data 2006 

DECC Publication 
URN 09D/P50: Middle 

Layer Super Output 
Area (MLSOA) and 

Intermediate 
Geography Zone 

(IGZ) Electricity and 
Gas Data 2007 

DECC Publication 
URN 10D/947: Middle 
Layer Super Output 
Area (MLSOA) non-
domestic electricity 

estimates 2008: Great 
Britain 

DECC Publication: 
Middle Layer Super 

Output Area 

Number of Industrial / 
Commercial Electricity 

Meters 
✘ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

Average Industrial / 
Commercial Electricity 

Consumption per Meter 
✘ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

http://www.decc.gov.uk/media/viewfile.ashx?filetype=4&filepath=Statistics/regional/mlsoa_2009/1603-mlsoa-gas-dom-gb.xls&minwidth=true
http://www.decc.gov.uk/media/viewfile.ashx?filetype=4&filepath=Statistics/regional/mlsoa_2009/1603-mlsoa-gas-dom-gb.xls&minwidth=true
http://www.decc.gov.uk/media/viewfile.ashx?filetype=4&filepath=Statistics/regional/mlsoa_2009/1603-mlsoa-gas-dom-gb.xls&minwidth=true
http://www.decc.gov.uk/media/viewfile.ashx?filetype=4&filepath=Statistics/regional/mlsoa_2009/1603-mlsoa-gas-dom-gb.xls&minwidth=true
http://www.decc.gov.uk/media/viewfile.ashx?filetype=4&filepath=Statistics/regional/mlsoa_2009/1603-mlsoa-gas-dom-gb.xls&minwidth=true
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(MLSOA) non-
domestic electricity 

estimates 2009: Great 
Britain 

Total Industrial / 
Commercial Gas 

Consumption 
✘ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

2005 
2006 
2007 
2008 
2009 

DECC Publication 
URN 10D/1000: Sub-

national gas sales and 
numbers of 

customers: 2005, 
2006, 2007, 2008, 

2009 
DECC Publication 

URN 07/1424: Middle 
Layer Super Output 
Area (MLSOA) and 

Intermediate 
Geography Zone 

(IGZ) Electricity and 
Gas Data 2005 

DECC Publication 
URN 08/P50: Middle 
Layer Super Output 
Area (MLSOA) and 

Intermediate 
Geography Zone 

(IGZ) Electricity and 
Gas Data 2006 

DECC Publication 
URN 09D/P50: Middle 

Layer Super Output 
Area (MLSOA) and 

Intermediate 
Geography Zone 

(IGZ) Electricity and 
Gas Data 2007 

DECC Publication 
URN 10D/942: Middle 

Layer Super Output 
Area (MLSOA) non-

domestic gas 
estimates 2008: Great 

Britain 
DECC Publication: 

Middle Layer Super 
Output Area 

(MLSOA) non-
domestic gas 

estimates 2009: Great 
Britain 

Number of Industrial / 
Commercial Gas Meters 

✘ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 

Average Industrial / 
Commercial Gas 

Consumption per Meter 
✘ ✔ ✔ ✘ ✔ ✔ ✘ ✘ 
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7.3 Choice of Geographical Framework for Research Project 

It is immediately apparent from a review of the information presented that the 

availability of spatially disaggregated data in the United Kingdom is 

unfortunately not uniform across the administrative and geographical 

boundaries of individual member countries. For the purposes of carrying out the 

research study, which focuses on representing spatial information at a greater 

level of resolution than typical national level energy modelling approaches, and 

seeks to differentiate between different types of settlement, it will be useful to 

use the smallest level of data aggregation that is available. In order that the 

research can have a direct impact on government policy making, it will also most 

pertinent to utilise the same statistical geography that is used by government 

departments as the base unit of analysis. 

This initially would suggest using information aggregated to the LSOA / DZ / 

SOA statistical geography level as the base units for constructing settlement 

archetypes. A significant amount of information is provided at the LSOA level 

for England and Wales, and would enable the investigation and characterisation 

of different settlements based on their residential energy use characteristics. 

However, as has made clear in the research questions, the nature of the 

problems being investigated goes beyond the residential sector and also into 

the industrial and commercial sectors. For data confidentiality reasons, no 

information on non-domestic energy consumption is made available below 

MSOA / IGZ level. There is also a paucity of potentially useful information 

available at the Scottish DZ level for both the domestic and non-domestic 

sectors, and in Northern Ireland the majority of useful data is published currently 

at local government authority level. 

The small size (500 people minimum) of Scottish DZ areas presents particular 

problems for maintaining data confidentiality, and it is unlikely that useful 

information will be published at this level within the lifetime of the research 

project. It is also unlikely that DECC will change their current position and 

publish commercial and industrial level information below the MSOA / IGZ 

levels. 
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The reference database therefore has initially been constructed using MSOA / 

IGZ level information. This is the smallest level of spatial disaggregation that will 

enable settlements in England, Wales and Scotland to be characterised by their 

residential, commercial, and industrial sectors, and covers the entire island of 

Great Britain. The use of statistical geography at this level ensures that any 

future data that becomes published can be incorporated into the same body of 

work. 

Information on Northern Ireland has not been included in the study, as the 

majority of useful information for the province was only available at LA level 

during the project lifetime. Using MSOA/IGZ areas the following metrics can be 

estimated, determined or calculated for individual areas and used as a means of 

characterisation for settlements: 

 Total Area (km2) 

 Total Population (persons) 

 Population Density (persons/km2) 

 Total Number of Dwellings 

 Residential Site Density (dwellings/km2) 

 Total Number of Non-Residential Sites 

 Non-Residential Site Density (sites/km2) 

 Total Number of Commercial Sites 

 Commercial Site Density (sites/km2) 

 Total Number of Industrial Sites  

 Industrial Site Density (sites/km2) 
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7.4 Derivation of Levelised Cost of Energy (LCOE) 

 

I  Capital costs 

O&M  O&M and fuel costs 

n  Present value year 

N  Economic service life 

d  Discount rate 

Q  Annual energy demand 

TLCC  Total life-cycle cost 

UCRF  Uniform capital recovery factor 

 

For a modelled system with a constant annual energy demand the LCOE is 

expressed as: 

 

     
    

 
       (1) 

 

Total life-cycle costs (TLCC) are assumed based on a cash flow profile that 

requires capital costs of all system components to be invested up-front (i.e. in 

year zero) with O&M and fuel costs spread out in equal amounts across the 

entire economic service life of the asset. This means that the TLCC for the 

system will be equal to its up-front capital cost plus the sum of the present value 

of the O&M and fuel costs for each year i.e. 

       ∑
     
      

 
     (2) 

 

Uniform capital recovery factor can be expressed as: 

     
       

        
   (3) 
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LCOE for the system can therefore be written as: 

 

     
  (∑

     
      

 
   )

 
   

       

        
            (4) 

 

In practice SEDSO derives the LCOE for each system component (generation, 

distribution, building equipment) independently before summing them 

together. This enables components with different economic service lives and 

discount rates to be considered in the model. The formulation of LCOE 

described above effectively represents the costs seen by the builders/operators 

of each energy system component. It currently excludes the influence of 

taxation, inflation rates and the potential for future capital recovery through 

sale/scrappage but in principle could be extended to include for these. 

 

7.4.1 Uniform Capital Recovery Factor 

A series of annual equal payments that eventually repays a loaned sum of 

money at the end of a given analysis period can be written as: 

  

                             

                                                        

 

If equal annual repayments are invested in a fund earning a fixed rate of interest 

over the analysis period then: 
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which can be expressed as: 

                                    

where 

  Equal Annual Repayment 

  Interest Rate Earned on Repayment Investment Fund 

  Initial Value Loaned 

  Analysis Period (Years) 

 

The above can be simplified to: 

   [                            ]    

 

Assuming that the loan issuer has access to the same investment environment 

as the borrower, then in practice, the total investment costs to be repaid are 

actually equal to the initial value of the loan plus interest accrued over time so 

that: 

   [                            ]          

 

Rearranging for   gives: 

    
       

[                            ]
 

 

This can be rearranged to obtain an expression for the ratio of the equal annual 

repayment to the initial value loaned. This is known as the uniform capital 

recovery factor (UCRF). 
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7.5 Approach for Determining Capital Costs of Heat Network 

Infrastructure 

The most advanced heat network costing methodologies applied to date in UK 

studies have used hydraulic network design software to establish optimum 

physical pipe sizes for representative heat grids of different sizes, before 

applying £/m costs to these grids in order to establish a parametric relationship 

between street density and network costs that takes into account variations in 

operating temperature and pressure (BRE 2003; Woods et al. 2005; Pöyry & 

AECOM 2009; AEA 2007). For this study, SEDSO adopts a streamlined approach 

to heat network costing based on the Woods methodology: 

i. Road network length is used as a proxy for the extent of the 

energy distribution infrastructure in each area, a precedent for 

which exists in a previous study of UK cogeneration potential 

(BRE 2003). Pipework is assumed to be installed in the road, 

with the potential cost benefits of running mains in green verges 

or in gardens not taken into account. Linear measurements of 

total road network length are published by the Department for 

Transport at Local Authority level (DfT 2011). This can be 

plotted against dwelling density to obtain a smooth function 

that can be used to approximate the road network length in 

each area, as shown in Figure 38. The use of allometric 

relationships such as this in urban transport studies follows a 

number of useful precedents (Bon 1979; Samaniego & Moses 

2008). 
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Figure 38 – Dwelling Density vs. Total Road Length Density for Local Authorities in England 

 

 

ii. Unit costs are then applied that are representative of pre-

insulated steel pipe systems to BS EN 253 (BSI Group 2009) 

operating with design temperatures under 100°C and with 

constant working temperature differentials of 30°C, for example 

95°C flow / 65°C return, with pressures between 6-10 

bar(gauge). These temperatures and pipework systems have 

been chosen because prior British studies have noted that they 

would simplify retrofit in buildings by being compatible with 

most existing UK domestic wet central heating systems. In 

reality, pipe diameters of individual heat distribution loops may 

vary on a street-by-street basis depending on factors like local 

peak heat demand and distance from the pumping station, with 

sizes typically in the range 50mm – 200mm. Without a hydraulic 

sub-model to determine pipe sizes at different levels of heat 

density and for different street grids, a conservative estimate 

has been made to use average unit pipe costs of £800/m. This is 

around the middle of the range of recent UK estimates that put 

the costs of local heat pipe distribution at between £500 - 

£1000/m (NERA & AEA 2009) and close to the average UK costs 

found from other studies (Woods et al. 2005). 
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iii. Finally, unit pipe costs are weighted for installation complexity 

depending on the average heat demand density, using values 

taken from best practice as shown in Table 14. These cost 

weighting factors are judged to be conservative estimates of 

variation due to complexity. Other studies have shown that 

complexity cost factors associated with the installation of heat 

pipework in roads can actually be as high as 200% (Orchard 

Partners 1983a).  

 

Table 14 - Heat Network Installation Complexity Weighting 

Average Heat Density of 
Distribution Area 

Weighting Factor Applied 
to Heat Network 

Distribution Costs 

< 8 MW/km2 95% 

8 – 12 MW/km2 100% 

12 MW/km2> 130% 

 

iv. An additional 10% premium on distribution infrastructure is 

levied to cover costs for regional transmission pipelines, which 

in reality will vary depending on the position and distance of 

heat sources relative to demand load centres. Transmission 

costs for an IEA study investigating district heating deployment 

in a modelled “average” UK city represent just under 10% of 

investment in the energy distribution network (Woods et al. 

2005). 
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7.6 Non-Linear Cost Functions Used for Capital and O&M Costs of District 

Heating Plant 

Unit capital costs in SEDSO take the form: 

         (1) 

y  Unit capital cost 

x  Plant capacity 

α, β  Empirical constants for a particular generation technology 

ɣ  Empirical scale exponent for a particular generation technology 

 

The formulation of the non-linear equation ensures that a minimum unit cost 

component is always present in the analysis. Therefore, when SEDSO evaluates 

plant costs for areas with very large plant capacity requirements, the unit costs 

asymptote towards the minimum fixed unit cost. Another way of expressing this 

is that areas with high capacity requirements have their costs established as if 

they were supplied using multiple units of the largest scale plant for which cost 

data are available. The procedure for establishing a non-linear cost function for 

capital and O&M costs was to: 

i. Source cost data for plant of different technology classes at 

different sizes. Much of the data has come from the Danish 

Energy Agency using an assumed €/£ exchange rate of 1.17 

 

ii. Plot a line of best fit to relate size/cost together for individual 

technology classes 

 

iii. Establish the fixed and variable components of a representative 

non-linear function that can approximate the form described in 

(1) (Phung 1987). 

The Danish Energy Agency data often gives a range of costs for a given range of 

plan capacities. As a result of physical scaling laws it is assumed that the higher 

capacity plant corresponds to the lower unit costs and vice versa. In some cases 
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O&M costs that were originally expressed in units of energy (MWh) rather than 

power (MW) have been converted to the latter using capacity and availability 

data. 

 

7.6.1 Biomass Heat-Only Generation 

Limited cost data were available on this type of installation across a wide range 

of scales, with the largest unit cost information available for boilers of 50 MW in 

size.  

Table 15 – Biomass Heat-Only Generation 

Description 
Capital Cost 

(£/MW) 
O&M Cost 

(£/MW) 
Basis 

Biomass District Heating Boiler, 
100kWth> 

615,000 15,000 
(Pöyry & 

AECOM 2009) 

District Heating Boiler, Wood Chips, 
50 MW 

256,681  15,401 
(Danish Energy 
Agency 2010) District Heating Boiler, Wood Chips, 

1 MW 
598,923 24,813 

 

Assuming a power law relationship between the admittedly limited data points 

gives the chart shown below for capex costs. 

Figure 39 – Biomass Heat-Only Generation, Fixed and Variable Capex Formulae 
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7.6.2 Biomass CHP Generation 

A wide range of data on various biomass CHP installations was found, ranging 

from small air turbines up to 400 MW power plants. 

Table 16 – Biomass CHP Generation 

Description 
Capital Cost 

(£/MW) 
O&M Cost 

(£/MW) 
Basis 

Biomass Air Turbine CHP, Small 
100kWe> 

4,000,000 180,000 

(Pöyry & 
AECOM 2009) 

Biomass Steam Turbine CHP, Medium, 
8MWe> 

3,500,000 80,000 

Biomass Steam Turbine CHP, Large, 
30MWe> 

1,780,000 80,000 

Biomass Steam Turbine CHP, Medium, 
Wood Chips, 10-100 MW 

1,368,967 21,586 

(Danish Energy 
Agency 2010) 

Biomass Steam Turbine CHP, Medium, 
Straw, 100 MW 

1,454,528 41,148 

Biomass Steam Turbine CHP, Medium, 
Straw, 10 MW 

2,310,132 41,148 

Biomass Steam Turbine CHP, Small 
Back-Pressure, Straw, 10 MW 

2,909,055 143,742 

Biomass Steam Turbine CHP, Small 
Back-Pressure, Straw, 8 MW 

3,764,660 184,811 

Biomass Steam Turbine CHP, Small 
Back-Pressure, Wood Chips, 4.3 MW 

2,823,495 105,239 

Biomass Steam Turbine CHP, Small 
Back-Pressure, Wood Chips, 0.6 MW 

3,935,781 191,655 

Staged Down Draft Gasifier CHP, Solid 
Biomass, 10 MW 

1,967,890 79,554 

Staged Down Draft Gasifier CHP, Solid 
Biomass, 1 MW 

2,481,253 79,554 

Updraft Counter Current Gasifier CHP, 
Solid Biomass, 0.035 - 1.4 MW 

3,080,176 274,781 

Advanced Pulverised Fuel Power Plant 
- Wood Pellets, 250 - 400 MW 

1,197,846 49,842 
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Fitting a power law relationship to the data points gives the following empirical 

constants and scale exponent for use in estimating plant unit capital costs. 

Figure 40 – Biomass CHP Generation, Fixed and Variable Capex Formulae 

 

For biomass CHP, O&M costs are also assumed to be non-linear due to the 

variation seen in the source data, so a similar approach is taken although the 

correlation between points is significantly weaker. 

Figure 41 – Biomass CHP Generation, Fixed and Variable Opex Formulae 
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7.6.3 Gas Heat-Only Generation 

Limited cost data were available specifically for heat-only district heating 

boilers. Most UK studies focus on providing district heating from gas-CHP only. 

Table 17 – Gas Heat-Only Generation 

Description 
Capital Cost 

(£/MW) 
O&M Cost 

(£/MW) 
Basis 

District Heating Boiler, Gas Fired, with  
Heavy Fuel Oil Backup, 10 MW 

51,336 1,027 (Danish 
Energy 

Agency 2010) 
District Heating Boiler, Gas Fired, with  

Heavy Fuel Oil Backup, 0.5 MW 
102,673 5,134 

 

Although there are only 2 data points it is reasonable to assume that a similar 

physical scaling law will apply to gas boilers as to that applied to other forms of 

generation in this study. As such, a power law correlation was also applied for 

the purposes of estimating variation in plant costs with scale. 

 

Figure 42 – Gas Heat-Only Generation, Fixed and Variable Capex Formulae 
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7.6.4 Gas CHP Generation 

Gas-fired CHP generation costs are available for a wider range of plant sizes 

than heat-only gas boilers, with cost data for units up to 400 MW in size. 

Table 18 – Gas CHP Generation 

Description 
Capital Cost 

(£/MW) 
O&M Cost 

(£/MW) 
Basis 

Gas CHP (Small GT), 52 MW, Medium 
Estimate 

811,100 46,154 (Parsons 
Brinckerhoff 

2011) 
CCGT CHP, 463 MW, Medium 

Estimate 
627,700 34,341 

Combined Cycle Gas Turbine, Small-
Scale 50MWe> 

805,000 32,000 
(Pöyry & 

AECOM 2009) Combined Cycle Gas Turbine, 
Medium-Scale 90MWe> 

758,000 32,000 

Steam Turbine, Natural Gas Fired, 
Advanced Steam Process 

795,712 36,180 

(Danish Energy 
Agency 2010) 

Combined Cycle Gas Turbine, 
Small/Medium Plant, Back-Pressure, 

10-100 MW 
581,811 29,590 

Combined Cycle Gas Turbine, Large 
Plant, Steam Extraction, 400 MW 

436,358 29,590 

Combined Cycle Gas Turbine, Large 
Plant, Steam Extraction, 100 MW 

547,587 29,590 

Micro Gas Turbine, Single Cycle, 0.1 
MW 

1,026,725 80,947 

Micro Gas Turbine, Single Cycle, 0.01 
MW 

1,026,725 114,675 

Mini Gas Turbine, Single Cycle, 5 MW 1,112,286 59,961 

Mini Gas Turbine, Single Cycle, 0.1 
MW 

1,711,209 59,961 

Medium Scale Gas Turbine, Single 
Cycle, 40 MW 

581,811 99,134 

Medium Scale Gas Turbine, Single 
Cycle, 5 MW 

855,605 111,276 

Large Scale Gas Turbine, Single Cycle, 
125 MW 

444,914 80,119 

Large Scale Gas Turbine, Single Cycle, 
40 MW 

530,475 106,336 
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As with other generation classes, empirical constants and the scale exponent are 

established by fitting a power law trend line to the data points. 

Figure 43 - Gas CHP Generation, Fixed and Variable Capex Formulae 

 

 

For gas CHP, source data show significant variation in O&M costs at different 

scales. In this study, O&M costs for gas CHP are modelled as non-linear using a 

similar form to that used in capex unit costs. 

Figure 44 – Gas CHP Generation, Fixed and Variable Opex Formulae 
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7.6.5 Utility-Scale Heat Pump Generation 

Utility-scale heat pumps, like gas heat-only boilers, were not found to have 

information on unit costs across a wide range of plant capacities in the sources 

reviewed. 

Table 19 – Utility-Scale Electric Heat Pump Generation 

Description 
Capital Cost 

(£/MW) 
O&M Cost 

(£/MW) 
Basis 

Large District Heating Heat Pumps, 
Electric, Ambient Temperature Source, 

1 MW 
342,242 4,021 

(Danish Energy 
Agency 2010) Large District Heating Heat Pumps, 

Electric, Ambient Temperature Source, 
10 MW 

598,923 1,968 

 

As with other technology classes where only limited data were available, a 

power law trend was fitted for the purposes of cost estimation on the strength 

of the same trend being seen in other power plant types. 

Figure 45 – Utility-Scale Heat Pump Generation, Fixed and Variable Capex Formulae 

 

 

  



 270 

7.6.6 Solar Thermal Generation 

Solar thermal generation costs are generally available from UK sources only for 

very small scale installations (Ernst & Young 2007; Element Energy 2008; AEA 

2011). These do not necessarily serve as a good indicator of costs for the type of 

installation that is likely to be attractive when connected to a district heating 

network. For these installations the costs are determined on a unit energy basis 

using Danish data as described in Section 5.5.3. 

 

7.6.7 Heat Storage 

The Danish Energy Agency notes that thermal storage sufficient to cover 10-12 

hours of full peak load is typical to allow for maintenance shutdowns. For this 

study it is assumed that 12 hours peak load is a minimum heat storage provision 

for all district heating systems. The techno-economics of larger-scale storage 

and inter-seasonal storage are not considered. Costs for thermal storage range 

from between 160-260 €/m3 (Danish Energy Agency 2012).  

Assuming a midrange cost of 210 €/m3 converted to GBP at a rate of 1.17 gives 

an approximate unit cost of 180 £/m3. Assuming a 40°C temperature difference 

and a heat storage capacity of 167 MJ/m3 this equates to a requirement for a 

260m3 tank for each MW of plant capacity at a cost of approximately 46,000 

£/MW.  

 

 

  



 271 

7.7 Comparison of SEDSO Estimates against Government Statistics 

SEDSO’s overall demand estimates can be corroborated by comparing them 

against officially published figures for sub-national domestic and non-domestic 

gas and electricity demand (DECC 2010d; DECC 2009a). As illustrated in Figure 

46 and Figure 47, overall national electricity projections are within 1%, and total 

heat projections are within 15% of published statistics. It would of course be 

possible to scale the baseline loads in SEDSO up or down to exactly match the 

national statistics. However, in the context of this study, where the aim is to 

explore spatial variation in technical solutions on a demand density axis that can 

span a 10:1 range, this manipulation was judged to be unnecessary. One must 

consider that the nationally published statistics are themselves merely the 

product of other models, which are also subject to error, and may be no more or 

less fit for purpose than those derived using the methodology described above. 

 

Figure 46 – Modelled Electricity Demand Projections vs. DECC Statistics 

 

 



 272 

Figure 47 – Modelled Heat Demand Projections vs. DECC Statistics 

 

 

7.8 Load Factors 

 

7.8.1 Electrical Power 

Load factors for domestic electricity demand have been derived from 

generalised demand profiles used by network operators in Great Britain for 

billing customers who do not possess half-hourly metered supplies (Electricity 

Association 1997; Elexon Ltd. 2008). The methodology for generating these 

profiles is unfortunately not available in the public domain for detailed scrutiny. 

However, their inclusion in the Balancing and Settlement Code for the UK 

electricity trading market shows that energy companies who ultimately derive 

revenue from their application must deem them to be sufficiently representative 

of actual demand, or else, an alternative method would surely have been found. 

Figure 48 shows the weekly and seasonal variation in daily profiles for domestic 

customers with an unrestricted price tariffs (i.e. no time of day pricing). Weekly 

and seasonal load profiles were combined together to obtain an annual load 

profile for a representative year. A load factor of 0.48 was then determined from 

the peak and average demand. 
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Figure 48 – Electricity Association Profile “Class 1” – Daily Demand by Weekday and by Season 

 

 

Non-domestic electrical load profiles are difficult to generalise because of their 

heterogeneity. Time series information showing daily or seasonal variation in 

demand in UK non-domestic buildings are not widely published, mainly due to a 

“dearth of detailed utility data, supported by adequate information on the 

building, available for research” (Brown et al. 2010). Electricity load profiles are 

however available grouped according to pricing tariff and the maximum 

demand level recorded at the customer meter (Elexon Ltd. 2008). Constructing 

annual load profiles for a representative year out of each of the 6 non-domestic 

profile classes, and obtaining the average and peak demands for each reveals 

that electrical peak loads vary from between 1.3 to 3.0 times the average. For 

modelling of the commercial sector in SEDSO the load factor has been taken 

from “Class 3”, which is a profile applied to generic non-domestic customers 

when maximum demand is not known. This is illustrated in Figure 49, and has 

been interpreted as a load factor in SEDSO of 0.38.  
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Figure 49 - Electricity Association Profile “Class 3”, Daily Demand by Weekday and by Season 

 

Published guidance shows that industrial electrical load profiles generally 

resemble those for the commercial sector, having similar peak times but higher 

base loads and consequently relatively lower peaking factors (Hanson 2007). 

Unlike domestic and commercial buildings no general guidance on typical UK 

industrial electrical demand profiles is published by Elexon under the provisions 

of the Balancing and Settlement Code because industrial customers are billed 

using data from half-hourly meters or under other tariff structures. As billing is 

direct, estimating industrial energy consumption based on assumed profiles of 

usage is generally not necessary for utility firms. Guidance on appropriate 

industrial load factors for the purposes of sizing energy distribution 

infrastructure in SEDSO has therefore been sought from past energy modelling 

studies (Orchard Partners 1983c; Woods et al. 2005). Electrical power is 

modelled with a load factor of 0.5 for the industrial sector. 

 

7.8.2 Gas Boilers 

Natural gas supply systems have a much greater degree of storage in them than 

electricity networks, making day-to-day variation in demand at the hourly or 
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half-hourly level less of a concern for network design and planning. Methods of 

estimating gas consumption therefore tend to rely more on weather related 

factors that influence overall fuel use on a seasonal basis rather than 24-hr 

profiles of consumer demand that direct attention towards the magnitude and 

timing of peak periods. 

Annual load factors for installed domestic boilers can be as low as 2.5% 

(GASTEC at CRE et al. 2009). Models developed for UK policy assessment 

typically use domestic load factors in the range of 3%-10%, with commercial 

boilers typically around 20% and industrial boilers showing variation between 

20-80% (NERA & AEA 2009; Element Energy & NERA 2011). 

 

7.8.3 Heat Pumps 

Load factors for heat pumps are sensitive to whole system factors such as the 

design of the heating system and the thermal performance of the building 

fabric. Domestic heat pump load factors used in UK policy assessment 

modelling have ranged from 10-24% depending on the source (AEA 2011). For 

SEDSO, a representative stock average load factor of 11% is applied based on 

the performance of domestic heat pumps in DynEmo, a highly dynamic energy 

model under development at the UCL Energy Institute. 
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7.8.4 District Heating 

Figure 50 shows a representative combined space heating and hot water 

domestic load profile for a dwelling with a metered supply and time controls, 

taken from work carried out as part of the International Energy Agency’s District 

Heating and Cooling project (Woods et al. 2005). Peak demand is 3.5 times the 

average. The same study however actually used a load factor of 0.2 for 

modelling of residential dwelling peaks, presumably to guard against periods of 

cold weather in sizing the heat supply equipment and infrastructure. This 

compares well with a load factor of 0.24 used in another cogeneration study 

(Orchard Partners 1983c). 

 

Figure 50 – Domestic Heat Demand Profile, Average UK Dwelling, Communal Block 
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A detailed study of heat load profiles for hospital, education, office, hotel and 

restaurant buildings were developed from metered district heating data at the 

Norwegian University of Science and Technology (NTNU) over a 3 year period 

(Pedersen 2007). These profiles have load factors in the range of 0.5 – 1. For 

illustrative purposes, an office heat load profile from the study is shown in Figure 

51. However, while similar load shapes may apply to British buildings, load 

factors inferred from the NTNU study data are not necessarily appropriate for 

application in a UK context. The climatic conditions, thermal construction 

standards, and system operating modes found in Trondheim are unlikely to be 

representative of those for most UK buildings. SEDSO follows the conversion 

established in past UK cogeneration studies, which generally use heat load 

factors close to 0.2 for non-domestic buildings and 0.3 for industrial loads when 

estimating peak demand for infrastructure sizing purposes (Orchard Partners 

1983c; Pöyry & AECOM 2009; Woods et al. 2005). 

Figure 51 - Office Heat Demand Profile, Norwegian Office Building, Trondheim 
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7.9 Use of Valuation Office (VOA) Database Information in SEDSO 

Obtaining representative kWh/m2 values for national commercial sector 

demand is not as straightforward as merely using the Valuation Office 

floorspace data directly in the SEDSO model. There are various data quality 

issues with VOA information (OPDM 2005): 

 The VOA does not rate certain types of non-domestic, non-industrial 

buildings. Defence establishments, law courts and prisons are 

examples.  

 

 The VOA Rating Lists of premises are not used for all ratings, 

particularly when large or unusual properties are being valued for 

taxation purposes. Examples given in the literature include 

superstores and car manufacturing plants. 

 

 The VOA database does not contain floorspace data for around 

400,000 so called “non-bulk” premises, which represent around 25% 

of the hereditaments in England and Wales. These include facilities 

such as sports centres, schools, hospitals, museums libraries and 

pubs. 

 

 Different measures of floor space are used in the VOA database. 

Warehouse and factory bulk classes are measured for the purposes of 

taxation as gross internal areas (GIA), while other classes use net 

internal areas (NIA). Net internal areas often do not include for 

example, common areas in buildings with multiple occupants.  

 

The total floor area for all non-domestic buildings in the country has been 

estimated at 900km2 in an exhaustive study compiled from a list of numerous 

sources (Bruhns, Steadman, Herring, et al. 2000). Subtracting total VOA 

“factory” bulk class floor space from this number leaves around 700km2 for the 

commercial sector.  
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Only around 550km2 of floorspace is present in the VOA database data broken 

down by bulk class for individual MSOA areas. The actual spatial distribution of 

non-rated floorspace is unknown so the assumption has been made that it 

parallels that of rated floorspace. In order to obtain useful disaggregated 

floorspace numbers for modelling purposes the floorspace in each MSOA area is 

increased by a weighting factor of 1.64 prior to any projection or aggregation 

processes taking place. This artificially brings the national total to 900km2 in 

line with the best published estimates. The number of individual building 

hereditaments from the VOA data (used in determining network length) has 

also been increased by the same proportion. 

 

7.10 Challenges for Characterising Energy Demand in the Non-Domestic 

Sector 

The non-domestic sector poses many challenges from a building energy 

modelling perspective. Domestic sector buildings vary mostly by built form, 

essentially all sharing common usage activities. Non-domestic buildings on the 

other hand, are much less homogeneous, comprising a variety of built forms and 

activity classes, with multiple identification tags usually required to achieve in-

depth classification (Bruhns, Steadman & Herring 2000).  

In the UK, efforts to build databases of non-domestic building stock have been 

underway since at least the early 1990s (Steadman 1993). Compared to the 

domestic sector, researchers in the non-domestic sector know very little about 

how performance varies across the stock. Not only are insufficient records 

normally kept, but where data does exist it’s availability is limited by commercial 

interest or confidentiality reasons (Brown et al. 2010). As a result, most 

significant research to date has modelled energy use in sample datasets on real 

non-domestic buildings and then made inferences to scale results to regional 

and national level. 

Research models for estimating non-domestic energy consumption in buildings 

often closely mirror contemporary engineering design practice, likely as a result 

of joint industry and academic collaboration in the past. Values of Energy Use 

Intensity (EUI) in kWh/m2/year are collected from published guidance on 
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performance of “typical” building types or empirically derived from monitored 

data on groups of buildings of similar character. Models then group non-

domestic buildings within the target area into archetypal categories and assign 

them appropriate EUI values before multiplying by floor areas to obtain a total 

estimate. Most models use EUI values that are deemed to represent measures 

of central tendency for each building archetype, but some recent work has 

examined the use of Bayesian distributions to express the variation in kWh/m2 

within building categories (Choudhary 2012). 

The number of building archetypes used varies between models. The 

Cogeneration Market Assessment Database developed at Lawrence Berkeley 

National Laboratory used 9 major building categories (J. Huang et al. 1991). The 

N-DEEM52 model developed by the Building Research Establishment proposed 

10 categories (Pout 2000), while the model used for the influential Carbon 

Reduction in Buildings (CaRB) programme used 11 main classes (Bruhns 2008). A 

detailed activity based model of England and Wales developed as an interim 

stage during the CaRB project used “four primary divisions, 13 bulk types, some 

70 primary types, along with numerous subtypes and primary components” 

(Bruhns et al. 2006). 

 
7.11 Comments on Characterisation of Industrial Energy Use in SEDSO 

The blanket term “industrial energy use” is applied to cover a wide variety of 

energy using activities, usually broken down by Standard Industrial 

Classification (SIC) code. SIC codes describe the economic sector served by the 

industrial building being classified, which does not necessarily reveal the nature 

of the equipment or the type of fuel used in industrial processes, as noted by 

Steadman (Steadman 1993). Industrial sites may incorporate some 

characteristics of commercial sector buildings for part of their energy use, 

especially for example where manufacturing plant and offices are co-located. A 

factory classified as a steelmaking plant might use coal blast furnaces or electric 

arc furnaces, which are two completely different technologies. The CaRB non-

domestic stock model conspicuously did not include industrial process energy 

                                                             
52

 National Non-Domestic Energy and Emissions Model (N-DEEM) 
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use (Bruhns 2008). At the time of writing on-going efforts to improve the 

characterisation of industrial energy demand in UK energy system modelling are 

being undertaken by UKERC53 funded researchers. 

 
  

                                                             

53
 UKERC Research Fund Project: Industrial Energy Use from a Bottom-up Perspective, 

http://www.ukerc.ac.uk/support/RF2IndustrialEnergyUse&structure=Research 

http://www.ukerc.ac.uk/support/RF2IndustrialEnergyUse&structure=Research
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8.0 Chapter 3 Appendices  

 

8.1 Overview of Settlement Classification Systems 

 

8.1.1 Architectural and Planning Classifications 

Much architectural and planning research has considered urban built form and 
patterns of land use, particularly in the United States. Researchers seeking to explain 
the growth and layout of human settlements have developed many urban planning 
models over time, with a sample of different approaches shown in Table 20.  
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Table 20 – Sample Overview of Urban Planning Models, 1925 - 2002 

Area 
Characteristics 

 
Models and Named Areas 

 

Concentric 
Zone Model 

(Burgess 1925) 

Sector Model  
(Hoyt 1939) 

Multiple Nuclei 
Model  

(Harris & 
Ullman 1945) 

 
Duany Plater-

Zyberk & Co (DPZ) 
Transect Model  

(Duany 2000; 
Duany & Talen 

2002b; Duany & 
Talen 2002a) 

 

Central 
Business 
District, 

Commercial 
and Retail Area 

The "Loop" 

The "Financial and 
Office Zone and 

the Retail 
Shopping Zone" 

“CBD” 
“Urban Core (T6)” 

“Urban Centre 
(T5)” 

Light 
manufacturing, 
limited housing 

The "Zone in 
Transition" 

The "Wholesale 
and Light 

Manufacturing 
Zone" 

“Light Industry” - 

Residential 
Areas classified 

by numerous 
factors 

including: 
Rental Cost, 

Age of 
Building, 

Structural 
Condition 

Owner 
Occupancy, 

Ethnic 
Composition 

The "Zone of 
Workingmen's 

Homes" 

“Low Rent 
Residential Area” 

“Low Class 
Residential” 

“General Urban 
(T4)” 

The "Residential 
Zone" 

“Intermediate Rent 
Residential Area” 
(City Periphery) 

“Medium Class 
Residential” 

The 
"Commuters 

Zone" 

“Intermediate Rent 
Residential Area” 
(Adjacent to High 

Rental Area) 

“High Class 
Residential” 

“High Rent 
Residential Area” “Residential 

Suburb” 
“Sub-Urban (T3)” 

“Highest Rent 
Residential Area” 

Heavy 
Industrial 

- 
The "Heavy 

Manufacturing 
Zone" 

“Heavy 
Industry” 

- 
“Industrial 

Suburb” 

Commercial 
Business Park 

- - 
“Outlying 
Business 
District” 

- 

Low 
Development 

or 
Undeveloped 
Open Space 

- - - 

“Rural Reserve 
(T2)” 

“Rural Preserve 
(T1)” 

 

Generally speaking, the more classical models explain urban layout and form 

largely though land use, while more contemporary models reflect the trend 

towards increasingly mixed development zoning and therefore rely more on 

factors like built density to differentiate between character areas. The models 
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reviewed generally do not rely on quantitative metrics to explain the difference 

between areas, which limits their application to the social and cultural contexts 

in which they were developed. 

 

8.1.2 Classification by Total Population 

The hierarchy of government organisations is often based on the total 

population that falls under its decision-making aegis. The European Union 

employs 3 main population bands to define the territorial regions of member 

states. The NUTS  system (European Council & European Parliament 2003) 

captures many different regional hierarchies. For the purposes of collecting 

statistics and carrying out regional policymaking the EU generally defines: 

 NUTS 1: Regions/states with populations between 3-7m. In 

England for example, this corresponds broadly to Government 

Office Regions (the North-West, the South-East etc.) 

 

 NUTS 2: Provinces/counties with populations between 0.8-3m. 

In England this level corresponds to geographical Counties 

(Kent, Cumbria etc.). 

 

 NUTS 3: Districts/prefectures/municipalities with populations 

between 0.15-0.3m people. In England this is handled by a 

multiplicity of different official bodies but as a generalisation 

can be said to refer to Local Authority areas where local 

government is responsible for provision of services (The London 

Borough of Hammersmith and Fulham, Manchester City 

Council, etc.) 

In the UK, CLG has in the past recommended a population threshold of 10,000 

as the cut-off point to distinguish an urban area from a rural one in statistical 

reporting (CLG 2002). 
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8.1.3 Classification by Population Density 

Density is sometimes used as a means of differentiating between urban and 

rural areas for policy purposes. The English Housing Survey (EHS) defines three 

classes of rural area and three classes of urban area, but unfortunately no 

meaningful quantitative data is used to distinguish between the six area types, 

with responsibility for classification apparently left to the discretion of individual 

survey assessors (CLG 2008b; CLG 2008a). 

The UK Office for National Statistics has reflected on the difficulty of defining 

urban areas in Britain in the 21st century, noting that traditional notions of what 

constitutes a “town” have become blurred with continuous built-up areas of 

varying density and levels of urban function becoming the norm across much of 

the country. The ONS defines “urban” areas as being contiguous built 

settlements of at least 20 hectares in size, with populations greater than 1,500 

people (ONS 2004) implying a population density of 7,500 people/km2 or above.  

 

8.2 Model Sensitivity Analysis 

This section describes a global sensitivity analysis that has been carried out in 

order to establish which of the input variables to the SEDSO model has the 

greatest effect on whole system levelised costs when different technologies are 

selected. Simulation of the levelised cost of energy (LCOE) in the modelled 

system has been carried out for multiple trials with all inputs expressed as 

uncertain distributions. This produces a series of large datasets for which the 

variation in the output can be explored vis-à-vis variation in each input. 

All inputs are modelled with uniform distributions i.e. on each individual trial run 

there is an equal probability of parameters assuming a value at any point 

between their user-defined minima and maxima. This follows the “principle of 

indifference” in objective Bayesian thought (Keynes 1921), and is judged to be 

appropriate given the long time horizon for the projections (around four 

decades from the time of writing to 2050). Variation in inputs is not correlated 

for the analysis and with all parameters varied independently. 
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Upper and lower bounds for each parameter were established from reference 

sources (see Chapter 2) where possible. For parameters where only a single 

estimate was available from references, an arbitrary range spanning +/- 10% of 

the known value was used. Use of wider uncertainty ranges than +/-10% was 

ruled out on the basis that it would imply a severe lack of confidence in the 

accuracy of the source information. This would effectively render the sensitivity 

exercise meaningless i.e. there is little benefit in testing the sensitivity of a 

modelled system when the analyst cannot attach any credibility to the input 

ranges. 

Calculations for the sensitivity analysis were realised in Palisade Systems @Risk 

Industrial 6.0. Monte Carlo simulations were carried out for a number of 

different scenarios where energy supply to the modelled area was supplied by 

each of the technology classes in SEDSO (see Chapter 2). The total number of 

iterations carried out was determined by setting convergence criteria which are 

evaluated in software on each successive Monte Carlo trial. For these simulation 

runs, convergence was deemed to have occurred when enough information had 

been gathered to estimate the mean to within 0.1% of its true value with a 

99.9% confidence interval. This typically resulted in around 50,000 trials per 

simulation. 

The large volume of data gathered enables the different model inputs to be 

ranked according to the amount of variation they produce in the output. Two 

so-called “tornado chart” visualisations are presented below for each 

technology. The first ranks input parameters by their Spearman rank correlation 

coefficient, showing the degree of monotonic correlation between each input 

and the output. This is useful for understanding whether the inputs are 

positively or negatively correlated. The second visualisation ranks each input by 

the magnitude of the effect their variation has on the output mean. Alongside 

the tornado charts, qualitative interpretations as to the importance of different 

modelled variables are described below for each technology. 
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8.2.1 Individual Gas Boilers and Grid Electricity 

As might be expected, levelised system costs in areas where gas boilers are 

deployed show a strong monotonic correlation with the exogenous gas price 

and a weaker, although arguably significant correlation with unit electricity 

costs. Gas boiler efficiency and unit demand inputs show low but measurable 

correlations. 

Figure 52 – Gas Boilers, Tornado Chart, Spearman Rank Correlation Coefficient 

 

Figure 53 – Gas Boilers, Tornado Chart, Inputs Ranked by Effect on Output Mean 

 

  



 288 

8.2.2 Individual Heat Pumps and Grid Electricity 

The levelised system costs of areas supplied by individual electric heat pumps 

are most strongly affected by the discount rate used in the analysis. The capital 

costs attributed to each heat pump represents the second most important 

parameter. Also significant are the unit costs of grid electricity, the power losses 

in the distribution network, and the annual seasonal coefficient of performance 

of the heat pump. 

Figure 54 – Individual Heat Pumps, Tornado Chart, Spearman Rank Correlation Coefficient 

 

Figure 55 – Individual Heat Pumps, Tornado Chart, Inputs Ranked by Effect on Output Mean 
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8.2.3 Heat-Only Biomass District Heating and Grid Electricity 

Areas supplied by biomass district heating have the exogenous biomass unit 

cost as their most important system cost determinant. The discount rate used in 

economic evaluation, the costs of grid electricity, power distribution losses, 

boiler efficiency and the unit costs of heat network pipes are also significant. 

Figure 56 – Heat-Only Biomass District Heating, Tornado Chart, Spearman Rank Correlation 

Coefficient 

 

Figure 57 – Heat-Only Biomass District Heating, Tornado Chart, Inputs Ranked by Effect on 

Output Mean 
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8.2.4 Biomass CHP District Heating and Grid Electricity 

Total LCOE for this option is affected strongly by biomass costs and the 

discount rate. The next most important parameters are the value of CHP 

electricity, the generation efficiency of the CHP unit, the unit costs of grid 

electricity, and the extent of losses in the electrical grid. Of low but measurable 

significance are the heat-to-power ratio of the CHP unit and the unit costs of 

heating pipework. 

Figure 58 – Biomass CHP District Heating, Tornado Chart, Spearman Rank Correlation 

Coefficient 

 

Figure 59 – Biomass CHP District Heating, Tornado Chart, Inputs Ranked by Effect on Output 

Mean 
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8.2.5 Heat-Only Gas District Heating and Grid Electricity 

Areas supplied by grid electricity and gas district heating with heat-only boilers 

have levelised costs that are affected most significantly by exogenous fuel costs 

(for gas and electricity) and the discount rate applied in the evaluation. Also 

important are losses in the electrical distribution network, the conversion 

efficiency of the boiler, the unit costs of the heat network itself and the level of 

energy demand from individual buildings. 

Figure 60 – Heat-Only Gas District Heating, Tornado Chart, Spearman Rank Correlation 

Coefficient 

 

Figure 61 – Heat-Only Gas District Heating, Tornado Chart, Inputs Ranked by Effect on Output 

Mean 
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8.2.6 Gas CHP District Heating and Grid Electricity 

The system costs of areas supplied by gas CHP district heating are heavily 

influenced by the CHP electricity sale price, and the exogenous price of gas. Of 

secondary importance are the heat-to-power ratio, the discount rate applied, 

the conversion efficiency of the plant, the cost of grid electricity and the losses 

in the electricity network. 

Figure 62 – Gas CHP District Heating, Tornado Chart, Spearman Rank Correlation Coefficient 

 

Figure 63 – Gas CHP District Heating, Tornado Chart, Inputs Ranked by Effect on Output Mean 
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8.2.7 Solar Thermal District Heating and Grid Electricity 

Areas with heat supplied by solar energy have their costs most strongly affected 

by the amount of sunlight they receive over the year (this is not varied in the 

study due to a lack of spatial meteorological data, as discussed in Chapter 5), 

and the economic service life of the panels themselves. The discount rates used 

in the economic analysis, electricity costs and network losses are of secondary 

importance. 

Figure 64 – Solar Thermal District Heating, Tornado Chart, Spearman Rank Correlation 

Coefficient 

 

Figure 65 – Solar Thermal District Heating, Tornado Chart, Inputs Ranked by Effect on Output 

Mean 
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8.2.8 Utility-Scale Heat Pump District Heating and Grid Electricity 

Areas with heat supplied by utility-scale electric heat pumps and grid electricity 

have their costs most strongly influenced by the unit electricity price. The next 

most important parameters are the discount rate used in the analysis and the 

losses in the power network. Also significant is the annual average coefficient of 

performance of the heat pump, the costs of the distribution pipework, and the 

level of demand from end-user buildings. 

Figure 66 – Utility-Scale Heat Pump District Heating, Tornado Chart, Spearman Rank 

Correlation Coefficient 

 

Figure 67 – Utility-Scale Heat Pump District Heating, Tornado Chart, Inputs Ranked by Effect on 

Output Mean 
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8.2.9 General Observations 

For most technologies, fuel costs, conversion losses in the energy supply chain 

and economic analysis parameters are the input variables which most strongly 

influence the model output. Most district heating technologies demonstrated 

that their overall costs show some sensitivity to per metre pricing of distribution 

pipework, with the value of CHP electricity very important for cogeneration 

plant. The influence of demand-side parameters such as unit energy 

consumption and load factor are consistent across all technologies at a low 

level. 

 

8.2.10 Glossary of Model Variables Found in Sensitivity Analysis 

Variable Description 

EXOGENOUS_GRID_ELECTRICITY_UFC Exogenous Cost of Grid Electricity 

EXOGENOUS_GRID_BIOMETHANE_UFC Exogenous Cost of Natural Gas 

EXOGENOUS_GRID_BIOMASS_UFC Exogenous Cost of Solid Biomass 

CHP_ELECTRICITY_UFC Value of Grid Electricity 

D_LF_SH Domestic Heat Load Factor 

C_LF_SH Commercial Heat Load Factor 

I_LF_SH Industrial Heat Load Factor 

D_AEC_SH Unit Heat Energy Consumption Per Dwelling 

C_AECPM2_SH Unit Heat Energy Consumption per m2 Commercial 

D_AEC_EA Unit Electrical Energy Consumption Per Dwelling 

C_AECPM2_EA Unit Electrical Energy Consumption per m2 Commercial 

ECD_ASHP_CE Efficiency of Individual Heat Pumps 

ECD_DHG_CE Efficiency of Building Heat Exchangers 

ECD_GB_CE Efficiency of Gas Boilers 

ECD_ASHP_ESL Economic Service Life of Individual Heat Pumps 

ECD_DHG_ESL Economic Service Life of Building Heat Exchangers 

ECD_ASHP_DR Discount Rate Applied to Individual Heat Pumps 

ECD_DHG_DR Discount Rate Applied to Building Heat Exchangers 

ECD_ASHP_D_UCX Unit Capital Cost of Individual Heat Pumps, Domestic 

ECD_DHG_D_UCX Unit Capital Cost of Building Heat Exchangers, Domestic 

ECD_DHG_D_UOX Unit O&M Cost of Building Heat Exchangers, Domestic 

ECD_ASHP_C_UCX Unit Capital Cost of Individual Heat Pumps, Commercial 

ECD_DHG_C_UCX Unit Capital Cost of Building Heat Exchangers, Commercial 

ECD_DHG_C_UOX Unit O&M Cost of Building Heat Exchangers, Commercial 

N_PN_DE Distribution Efficiency of Electrical Power Network 

N_PN_UCX_RX Electrical Network Reinforcement Costs 

N_DHN_UCX Unit Capital Cost of District Heating Distribution 

N_DHN_UOX Unit O&M Cost of District Heating Distribution 

N_DHN_ESL Economic Service Life of District Heating Distribution 

N_DHN_DR Discount Rate Applied to District Heating Distribution 

G_STH_CF_H Capacity Factor Applied to Solar Thermal Generation 

G_BMGH_CE_H Efficiency of Biomass Heat-Only Boilers 
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G_BMGCHPH_CE_H Efficiency of Biomass CHP 

G_BGGH_CE_H Efficiency of Gas Heat-Only Boilers 

G_BGGCHPH_CE_H Efficiency of Gas CHP 

G_USHPH_CE_H Efficiency of Utility-Scale Heat Pumps 

G_BMGCHPH_HPR Heat-to-Power Ratio of Biomass CHP 

G_BGGCHPH_HPR Heat-to-Power Ratio of Gas CHP 

G_STH_UOX_H Unit O&M Cost of Solar Thermal Generation 

G_BMGCHPH_ESL Economic Service Life of Biomass CHP 

G_STH_ESL Economic Service Life of Solar Thermal Generation 

G_STH_DR Discount Rate Applied to Solar Thermal Generation 
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8.3 Breakdown of Costs for Individual and District Heating Options 

 

8.3.1 Individual Heating 

The breakdown of costs for individual gas boilers and grid electricity as a supply 

system is shown in Figure 68. As the model treats network investment in gas 

and electrical infrastructure as a sunk cost, there are no network capex or opex 

components in the following chart. 

 

Figure 68 – Cost Breakdown, Individual Gas Heating with Grid Electricity 
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In comparison with gas boilers, a greater proportion of costs for individual heat 

pumps come from capital expenditure on the plant itself as shown in Figure 69. 

There is also a degree of cost uplift associated with grid reinforcement which 

leads to small but noticeable capital expenditure on network infrastructure 

appearing in the chart. 

Figure 69 – Cost Breakdown, Individual Heat Pumps with Grid Electricity 

 

 

8.3.2 District Heating 

The cost breakdown charts for district heating options show that at lower 

densities, there is a large increase in capital expenditure on network 

infrastructure as a proportion of total costs. This results from the requirement to 

construct a more extensive heat network in less dense areas. While capital 

expenditure on the heat network represents only a small fraction of total costs 

in the highest density MSOA areas, it can rise to be more than half of total costs 

in the lower density areas. 
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Figure 70 – Cost Breakdown, Biomass Heat-Only District Heating with Grid Electricity 

 

 

Figure 71 – Cost Breakdown, Biomass CHP District Heating with Grid Electricity 
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Figure 72 – Cost Breakdown, Gas Heat-Only District Heating with Grid Electricity 

 

 

Figure 73 – Cost Breakdown, Gas CHP District Heating with Grid Electricity 
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Figure 74 – Cost Breakdown, Solar Thermal District Heating with Grid Electricity 

 

 

Figure 75 – Utility-Scale Heat Pump District Heating and Grid Electricity 
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9.0 Chapter 4 Appendices 

 

9.1 Convergence Criteria Testing 

Systematic testing for a representative model dataset was carried out with 

different stopping conditions to establish an appropriate cut-off point for the 

objective when determining solutions.  

The settings used for these particular tests are among some of the more 

challenging conditions for the optimiser. They correspond to a scenario with all 

technology options available, with the carbon emissions target and the carbon 

content of grid electricity set around the middle of their input ranges (see 

Chapter 4). This produces a situation where the optimiser is not obviously 

constrained in any particular direction and where there are many valid 

combinations of both low carbon and fossil fuel options that meet the system 

constraints. Out of all of the trials carried out in this study this represents the 

objectively most difficult scenario to optimise, based on user experience to date. 

As such it is ideal for testing convergence criteria to see what the trade-off is 

between computational run time and improvement in the objective function. 

Results are detailed below: 
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Table 21 – Convergence Criteria Testing 

Number of Trials 
with No 

Improvement 
before Stopping 

Test 
Total 
Trials 

Time to Find 
Best Value 

(Hours:Min:Sec) 

Total Run Time 
(Hours:Min:Sec) 

Final Result 
(p/kWh) 

10,000 

1 27,189 00:49:28 01:16:41 7.5711 

2 22,605 00:26:50 00:59:13 7.5165 

3 26,203 00:38:57 01:01:24 7.5769 

20,000 

1 43,825 01:01:39 01:55:16 7.9543 

2 21,441 00:09:26 00:55:30 8.4196 

3 32,252 00:31:11 01:27:35 7.9764 

40,000 

1 52,893 00:39:17 03:02:47 8.3812 

2 194,599 07:22:20 09:20:27 7.5094 

3 107,849 03:13:36 05:19:39 7.5272 

60,000 

1 81,954 00:57:40 03:53:51 8.0881 

2 247,389 08:02:10 10:53:22 7.4949 

3 164,710 04:35:21 07:19:17 7.4997 

80,000 

1 175,790 04:16:50 08:01:36 7.6147 

2 279,195 08:11:31 11:20:06 7.4774 

3 134,018 02:28:06 06:07:39 7.5207 

100,000 

1 291,590 09:27:18 13:32:12 7.5338 

2 224,211 06:38:34 09:53:16 7.5499 

3 136,743 01:45:34 04:48:49 7.3322 

200,000 

1 403,121 09:12:23 18:28:19 7.4909 

2 674,449 23:45:52 32:45:53 7.4767 

3 662,466 26:34:45 31:57:39 7.4732 

 

It can be seen that the metaheuristic nature of the search algorithm results in 

variation between tests with otherwise identical settings, both in terms of the 

final answer achieved and the number of trials / run time required. It can also be 

seen that there are diminishing returns from specifying additional trials before 

convergence is deemed to have occurred. Incremental improvements in 

percentage terms are small for significant additional computation time.  

The shape of most optimisation curves is for a rapid initial reduction in objective 

followed by a plateau stage where only very small improvements are obtained 

for a very large number of additional trials. For complex non-linear 

optimisations where the global minimum cannot be proved, what is arguably 

most important is that a working combination of decision variables is found that 

takes the objective into this “long tail” zone (see Figure 76). This is also 

discussed in the main body of the thesis under Chapter 5, Section 3.3. 
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Figure 76 - Approach towards Objective, Illustrative Optimisation Runs 

 

For this particular test the longest convergence test trials (with 200,000 trials 

before stopping) indicate that the global minimum lies somewhere below 7.5 

p/kWh. Most of the trial tests performed lie within 1% of this value. However it 

can be seen that several tests have converged prematurely to solutions that are 

close to 8p/kWh, namely: 

 20,000 Trials Test 1 

 20,000 Trials Test 2 

 20,000 Trials Test 3 

 40,000 Trials Test 1 

 60,000 Trials Test 1 

In these cases the optimiser has clearly not had the opportunity to carry out a 

sufficient number of trials to bring the objective into the long tail zone and has 

converged to an intermediate stage. On the basis of these tests, a practical 

balance between total run time and improvement of the minimum value 
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achieved was judged to be using a convergence criterion of 100,000 trials for the 

optimisations described in Chapter 4. Given that the test conditions used are 

amongst the most challenging faced in the study, this was judged to be 

sufficient across a wide range of scenario constraints. 

 

9.2 Optimisation Scenario Data Tables 

The numerical data used to plot optimisation charts in Chapter 4 are collected 

here for reference. 

Table 22 – Plot Data, Scenario A 

Scenario 
Inputs 

Reduction on 
1990 Levels (%) 

-6% 11% 36% 47% 57% 67% 79% 88% 

Grid Carbon 
Content 
(g/kWh) 

450 450 350 250 200 150 100 27 

Heat 
Supply 
Mix (%) 

Heat-Only Gas 
District Heating 

0% 0% 0% 0% 0% 0% 0% 0% 

Gas CHP District 
Heating 

89% 81% 92% 51% 20% 9% 0% 1% 

Heat-Only 
Biomass District 

Heating 
0% 0% 0% 0% 0% 0% 0% 0% 

Biomass CHP 
District Heating 

0% 0% 0% 8% 8% 8% 8% 7% 

Solar Thermal 
District Heating 

0% 0% 0% 0% 0% 0% 0% 0% 

Utility-Scale 
Electric Heat 
Pump District 

Heating 

0% 0% 0% 0% 0% 0% 0% 0% 

Individual Gas 
Boilers 

11% 19% 8% 3% 4% 7% 11% 11% 

Individual Heat 
Pumps 

0% 0% 0% 37% 68% 75% 81% 80% 
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Table 23 - Plot Data, Scenario B 

Scenario 
Inputs 

Reduction on 
1990 Levels (%) 

-6% 11% 36% 47% 57% 67% 79% 88% 

Grid Carbon 
Content 
(g/kWh) 

450 450 350 250 200 150 100 27 

Heat 
Supply 
Mix (%) 

Heat-Only Gas 
District Heating 

0% 0% 0% 0% 0% 0% 0% 0% 

Gas CHP 
District Heating 

89% 85% 85% 45% 21% 12% 4% 4% 

Heat-Only 
Biomass District 

Heating 
0% 0% 0% 0% 0% 0% 0% 0% 

Biomass CHP 
District Heating 

0% 0% 0% 8% 8% 8% 8% 8% 

Solar Thermal 
District Heating 

0% 0% 0% 0% 2% 1% 0% 0% 

Utility-Scale 
Electric Heat 
Pump District 

Heating 

0% 0% 0% 0% 4% 6% 14% 14% 

Individual Gas 
Boilers 

11% 15% 15% 7% 4% 4% 4% 4% 

Individual Heat 
Pumps 

0% 0% 0% 40% 61% 69% 69% 69% 

 

Table 24 – Plot Data, Impact of Reduced Bioenergy Resource 

Scenario 
Inputs 

Reduction on 
1990 Levels (%) 

-6% 11% 36% 47% 57% 67% 79% 88% 

Grid Carbon 
Content 
(g/kWh) 

450 450 350 250 200 150 100 27 

Heat 
Supply 
Mix (%) 

Heat-Only Gas 
District Heating 

0% 0% 0% 0% 0% 0% 0% 0% 

Gas CHP 
District Heating 

73% 81% 80% 25% 11% 7% 2% 5% 

Heat-Only 
Biomass District 

Heating 
0% 0% 0% 0% 0% 0% 0% 0% 

Biomass CHP 
District Heating 

0% 0% 0% 2% 2% 2% 2% 2% 

Solar Thermal 
District Heating 

0% 0% 0% 0% 2% 1% 2% 1% 

Utility-Scale 
Electric Heat 
Pump District 

Heating 

0% 0% 0% 0% 12% 17% 26% 19% 

Individual Gas 
Boilers 

27% 19% 16% 4% 4% 4% 4% 0% 

Individual Heat 
Pumps 

0% 0% 4% 69% 69% 69% 65% 73% 
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Table 25 – Plot Data, Impact of Reduced Energy Efficiency 

Scenario 
Inputs 

Reduction on 
1990 Levels (%) 

-6% 11% 36% 47% 57% 67% 79% 88% 

Grid Carbon 
Content 
(g/kWh) 

450 450 350 250 200 150 100 27 

Heat 
Supply 
Mix (%) 

Heat-Only Gas 
District Heating 

0% 0% 0% 0% 0% 0% 2% 0% 

Gas CHP 
District Heating 

76% 92% 84% 6% 1% 2% 0% 2% 

Heat-Only 
Biomass District 

Heating 
0% 0% 0% 0% 0% 0% 0% 0% 

Biomass CHP 
District Heating 

0% 0% 0% 7% 7% 7% 7% 7% 

Solar Thermal 
District Heating 

0% 0% 0% 11% 2% 2% 2% 2% 

Utility-Scale 
Electric Heat 
Pump District 

Heating 

0% 0% 0% 11% 17% 16% 15% 24% 

Individual Gas 
Boilers 

24% 8% 8% 4% 4% 4% 0% 4% 

Individual Heat 
Pumps 

0% 0% 8% 69% 69% 69% 74% 60% 

 

Table 26 – Plot Data, Impact of Improving Performance of Utility-Scale Heat Pumps 

Scenario 
Inputs 

Reduction on 
1990 Levels (%) 

-6% 11% 36% 47% 57% 67% 79% 88% 

Grid Carbon 
Content 
(g/kWh) 

450 450 350 250 200 150 100 27 

Heat 
Supply 
Mix (%) 

Heat-Only Gas 
District Heating 

0% 0% 0% 0% 0% 0% 0% 0% 

Gas CHP 
District Heating 

81% 80% 81% 54% 18% 12% 4% 4% 

Heat-Only 
Biomass District 

Heating 
0% 0% 0% 0% 0% 0% 0% 0% 

Biomass CHP 
District Heating 

0% 0% 0% 8% 8% 8% 9% 8% 

Solar Thermal 
District Heating 

0% 0% 0% 0% 1% 1% 1% 0% 

Utility-Scale 
Electric Heat 
Pump District 

Heating 

0% 0% 0% 0% 0% 14% 13% 19% 

Individual Gas 
Boilers 

19% 20% 19% 4% 7% 4% 4% 4% 

Individual Heat 
Pumps 

0% 0% 0% 30% 65% 60% 69% 64% 
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Table 27 – Plot Data, Impact of Increasing CHP Electricity Value 

Scenario 
Inputs 

Reduction on 
1990 Levels (%) 

-6% 11% 36% 47% 57% 67% 79% 88% 

Grid Carbon 
Content 
(g/kWh) 

450 450 350 250 200 150 100 27 

Heat 
Supply 
Mix (%) 

Heat-Only Gas 
District Heating 

0% 0% 0% 0% 0% 0% 0% 0% 

Gas CHP 
District Heating 

84% 92% 96% 40% 23% 12% 6% 4% 

Heat-Only 
Biomass District 

Heating 
0% 0% 0% 0% 0% 0% 0% 0% 

Biomass CHP 
District Heating 

0% 0% 0% 8% 8% 8% 8% 8% 

Solar Thermal 
District Heating 

0% 0% 0% 0% 0% 1% 1% 1% 

Utility-Scale 
Electric Heat 
Pump District 

Heating 

0% 0% 0% 0% 0% 6% 11% 14% 

Individual Gas 
Boilers 

16% 8% 4% 11% 0% 4% 0% 4% 

Individual Heat 
Pumps 

0% 0% 0% 41% 68% 69% 73% 69% 

 

Table 28 – Plot Data, Impact of Increasing Grid Reinforcement Costs 

Scenario 
Inputs 

Reduction on 
1990 Levels (%) 

-6% 11% 36% 47% 57% 67% 79% 88% 

Grid Carbon 
Content 
(g/kWh) 

450 450 350 250 200 150 100 27 

Heat 
Supply 
Mix (%) 

Heat-Only Gas 
District Heating 

0% 0% 0% 0% 0% 0% 0% 0% 

Gas CHP 
District Heating 

82% 89% 89% 41% 24% 12% 6% 4% 

Heat-Only 
Biomass District 

Heating 
0% 0% 0% 0% 0% 0% 0% 0% 

Biomass CHP 
District Heating 

0% 0% 0% 7% 8% 8% 8% 8% 

Solar Thermal 
District Heating 

0% 0% 0% 0% 1% 1% 1% 1% 

Utility-Scale 
Electric Heat 
Pump District 

Heating 

0% 0% 0% 0% 1% 6% 11% 17% 

Individual Gas 
Boilers 

18% 11% 11% 8% 0% 4% 0% 4% 

Individual Heat 
Pumps 

0% 0% 0% 43% 66% 69% 73% 65% 
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Table 29 – Plot Data, Impact of Reduced CHP Power to Heat Ratio 

Scenario 
Inputs 

Reduction on 
1990 Levels (%) 

-6% 11% 36% 47% 57% 67% 79% 88% 

Grid Carbon 
Content 
(g/kWh) 

450 450 350 250 200 150 100 27 

Heat 
Supply 
Mix (%) 

Heat-Only Gas 
District Heating 

0% 0% 13% 0% 0% 13% 0% 0% 

Gas CHP 
District Heating 

78% 58% 0% 12% 6% 0% 4% 2% 

Heat-Only 
Biomass District 

Heating 
0% 0% 2% 4% 0% 0% 2% 0% 

Biomass CHP 
District Heating 

0% 0% 7% 6% 8% 7% 7% 7% 

Solar Thermal 
District Heating 

0% 0% 2% 4% 0% 1% 2% 0% 

Utility-Scale 
Electric Heat 
Pump District 

Heating 

0% 0% 4% 4% 9% 6% 12% 17% 

Individual Gas 
Boilers 

22% 42% 4% 11% 11% 4% 0% 8% 

Individual Heat 
Pumps 

0% 0% 69% 62% 66% 69% 73% 65% 

 

Table 30 – Plot Data, Impact of Adopting Investor Perspective for Discount Rates 

Scenario 
Inputs 

Reduction on 
1990 Levels (%) 

-6% 11% 36% 47% 57% 67% 79% 88% 

Grid Carbon 
Content 
(g/kWh) 

450 450 350 250 200 150 100 27 

Heat 
Supply 
Mix (%) 

Heat-Only Gas 
District Heating 

0% 0% 0% 0% 0% 0% 0% 0% 

Gas CHP 
District Heating 

65% 66% 74% 29% 19% 4% 4% 4% 

Heat-Only 
Biomass District 

Heating 
0% 0% 0% 0% 0% 0% 0% 0% 

Biomass CHP 
District Heating 

0% 0% 0% 8% 8% 8% 8% 8% 

Solar Thermal 
District Heating 

0% 0% 0% 0% 0% 0% 1% 2% 

Utility-Scale 
Electric Heat 
Pump District 

Heating 

0% 0% 0% 0% 0% 2% 13% 12% 

Individual Gas 
Boilers 

35% 34% 26% 19% 4% 16% 4% 4% 

Individual Heat 
Pumps 

0% 0% 0% 44% 69% 69% 69% 69% 

 



 310 

10.0 Chapter 5 Appendices 

 

10.1 UK Planning Support for District Heating  

At the time of writing 10 out of the 15 largest UK settlements (ONS 2005) have 

prescriptive planning policies aimed specifically at supporting district heating for 

new developments. These include: 

 London (Greater London Authority 2011) 

 Birmingham (Birmingham City Council 2010) 

 Manchester (Manchester City Council 2012) 

 Newcastle (Newcastle City Council 2011) 

 Nottingham (Nottingham City Council 2012) 

 Sheffield (Sheffield City Council 2009) 

 Bristol (Bristol City Council 2011) 

 Brighton (Brighton & Hove City Council 2012) 

 Leicester (Leicester City Council 2010) 

 Edinburgh (City of Edinburgh Council 2010a; City of Edinburgh 

Council 2010b) 

The remaining 5 large UK cities without explicit support for district heating in 

their existing planning documentation are: 

 Leeds  

 Glasgow 

 Liverpool 

 Belfast  

 Portsmouth 
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