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Abstract 

Cochlear implants (CI) provide useful hearing for many hearing-impaired 

individuals. The CI’s external sound processor has to be programmed to 

optimise performance. However, performance varies greatly amongst CI 

recipients.  

 

This thesis evaluated a pure-tone electrode-differentiation (PTED) pitch-ranking 

task for optimising programming. The PTED was evaluated for reliability, validity 

and clinical-suitability. PTED scores were a significant (p<0.05) predictor of 

speech-perception.  

 

The angular-depth-of-insertion for the CI array was estimated for 16 recipients, 

there was a significant correlation with speech-perception. Cone beam 

computed tomography (CBCT) increased accuracy for estimating scalar-

placement of electrodes and no association was found with speech-perception.  

 

25 unilaterally-implanted recipients received programs with indiscriminable 

electrodes deactivated based on PTED. Two programs were provided, one with 

the same rate-of-pulses-per-channel (RPC) as the clinical program and one with 

increased RPC.  Programs were evaluated in a cross-over study. Speech-

perception was evaluated using BKB (Bamford-Kowal-Bench) sentences in 

quiet and noise and the Coordinate Response Measure (CRM).  Statistically 

significant improvements were found with at least one research program on all 

measures.  

 

A pure-tone intermediate frequency (PTIF) task was conducted to compare 

pitch perception in regions of good ED with regions of poor ED. Participants 

gaining benefit from electrode deactivation had fewer intermediate frequencies 

(IF) in poor ED regions compared to good ED regions and more IF in electrode 
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deactivation regions following deactivation. This pattern was not observed in 

participants not gaining benefit from electrode deactivation.  

 

Six bilaterally-implanted participants underwent pitch matching between ears 

and new programs were created using only discriminable electrodes.  Two 

matching approaches were used; direct stimulation via clinical equipment and 

pure-tone stimulation. Significant improvements were found in localisation and 

BKB in noise with at least one research program.  

 

The results of these experiments suggest potential for improving performance 

for CI users by programming based on PTED; a clinically viable task. 
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Glossary 

nI- nAFC n interval n alternative-forced-choice task 

AAI  Age at implantation  

AB Advanced bionics 

ACE Advanced combination encoder  

AEPC Across ears pitch comparison (test) 

ADRO  Adaptive dynamic range optimization 

AGC Automatic gain control 

AI Articulation index  

ANOVA Analysis of variance 

ART Auditory nerve response telemetry 

APHAB Abbreviated Profile of Hearing Aid Benefit  

AUX Auxiliary (input only) 

BKB Bamford-Kowal-Bench 

BKB-SIN BKB-Speech In Noise test 

BPF Band pass filters  

C Comfortable level (loud but comfortable) 

CA Compressed Analog 

CBCT Cone beam computed tomography 

CI Cochlear implant 
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c.i.  Confidence interval 

CID Central Institute of Deafness (everyday sentence test) 

CIS Continuous interleaved sampling 

CNC Consonant-Nucleus-Consonant  

CPI Clinical programming interface  

CRM Coordinate response measure 

CSSS Channel specific sampling sequence 

CST Connected speech test  

CU Clinical units 

CUNY City University of New York (sentence test) 

dB Decibel  

dBA A-weighted dB (decibel) Sound Pressure Level 

DE Deactivated electrodes 

DED Direct-stimulation ED (electrode differentiation) 

DEHF Deactivated electrodes at high frequencies (> 2600 Hz) 

DELF Deactivated electrodes at low frequencies (< 2600 Hz) 

df Degree of freedom 

DIF Discriminable intermediate frequency/ies  

DL Difference limen 

DS Direct stimulation 
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E Electrode 

EABR Electric auditory brainstem response  

EAS Electro-acoustic stimulation 

ECAP Evoked compound action potential  

ED Electrode differentiation 

ENV Common environmental sounds  

EP Electrode pair 

F0 Fundamental frequency 

F2 Second formant 

F1 First formant 

FDA U.S. Food and Drug Administration 

FDL Frequency difference limen  

FM Frequency modulation 

FSP Fine structure processing  

H Higher (pitch) 

HDCIS high definition CIS (continuous interleaved sampling) 

HINT-N Hearing in Noise Test in noise  

HINT-Q Hearing in Noise Test in quiet  

HiRes High resolution  

HiRes P High resolution paired 
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HSM Hochmair- Schulz-Moser (sentence test) 

Hz Hertz 

IDR Input dynamic range  

IF Intermediate frequency/frequencies 

IIR Infinite impulse response  

ILD Interaural level difference 

IPI Inter-pulse interval  

ISI Inter-stimulus interval  

ITD Interaural time difference 

IQ Intelligence quotient  

IQ (range) Inter-quartile (range) 

L Lower (pitch) 

LM Loudness matching 

LPF Low pass filter 

M Most comfortable level 

kHz Kilohertz 

MCL Most comfortable level 

MDS Multidimensional scaling  

MDT Modulation detection threshold  

MNEP Maximum number of electrode pairs 
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MRI Magnetic resonance imaging 

ms Millisecond 

MSCT Multi slice computed tomography 

N Number of test participants or data sets 

NCIUA National Cochlear Implant Users Association  

NH Normal hearing 

NICE National Institute for Health and Clinical Excellence 

NRI Neural response imaging 

NRT Neural response telemetry 

NU-6 Northwestern University Auditory Test No. 6  

OSLA Oldenburger sentences  

PAT Pat Associate Test  

PPS Paired Pulsatile Sampler  

PPS Pulses per second 

PR Pitch ranking 

PT Pure tone 

PTA Pure tone average  

PTED Pure tone electrode differentiation 

PTIF Pure tone intermediate frequency test 

RAU Rationalized arcsine-transform units  
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RNTNEH Royal national throat nose and ear hospital 

RPC Rate per channel  

RPM Raven Progressive Matrices  

S Same (pitch) 

SAS Simultaneous analog stimulation  

SD Standard deviation 

SII Speech intelligibility index  

SLT Sequence Learning Task  

SNR Signal-to-noise ratio 

SOE Spread of excitation  

SPEAK Spectral peak  

SR Spatial resolvability  

SRM Spatial release from masking 

SRT Speech-reception threshold 

ST Scala tympani 

SV Scala vestibuli 

T Threshold 

THR Threshold 

Q1 First quartile (lower 25th quartile) 

Q3 Third quartile (upper 75th quartile) 
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VCV Vowel Consonant Vowel  

VMT Visual Monitoring Task  

WAIS-R  Wechsler Adult Intelligence Scale-Revised 

 
  



30 

 

Chapter 1 

Cochlear implants 

 

"The aspects of things that are most important to us are hidden because of their 

simplicity and familiarity." Ludwig Wittgenstein (quote). Simple things such as 

enjoying our favourite music, talking on the telephone, having a conversation in 

a busy restaurant or exchanging small talk with a neighbour are common place 

to normal hearing listeners yet they seem so difficult and sometimes impossible 

for the hearing impaired. Perhaps this is why the cochlear implant (CI) is one of 

the greatest innovations of the 20th century in the field of Otorhinolaryngology, 

helping to restore a sense of hearing to over 188,000 hearing impaired 

recipients across the world (National Institute of Deafness and other 

Communication Disorders, 2012).  

 

CIs have been recognized as a safe and effective procedure for the 

management of patients with a severe to profound hearing loss who derive 

minimal benefit from hearing aids (FDA, 1984 and Summerfield and Marshall, 

1995). CIs can provide useful hearing for adults to a level that allows normal 

conversation and even telephone use for some good performers (Brown et al., 

1985). Various studies have been conducted that provide evidence of post-CI 

benefits on many aspects of auditory detection and speech perception. (UK 

Cochlear Implant Study Group, 2004) reported speech perception changes 

following implantation for 84 post-lingually deafened adults implanted between 

1997 and 2000 in 13 hospitals in the UK; They found that the mean percentage 

correct scores achieved when listening in quiet to the Bamford-Kowal-Bench 

(BKB) sentences significantly increased from 13% pre-implantation to 57% at 9 

months post-implantation.  

  

This chapter provides a general overview of CIs how they work and the main 

parameters involved in programming them. It will start with a description of CIs 

and the basic functionality and components, followed by major design issues 
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that may affect processing and, ultimately, performance. Finally it will provide a 

general description of the main aspects of fitting CIs and programming the 

device, including signal/speech processing strategies and the basic procedures 

involved. 

1.1 The CI device  

A CI is an electronic device that helps transduce sound to electrical signals that 

directly stimulate auditory nerve fibres by bypassing the damaged cochlea hair 

cells in the peripheral auditory system. . 

1.1.1 Components of the CI device 

The CI consists of internal and external parts: 

Internal parts are the surgically implantable components and consist of an 

implant receiver (radio antenna, magnet, and a micro-computer to process the 

signal), stimulator and an array of electrodes that is inserted into the cochlea 

and stimulates the spiral ganglion. The receiver/stimulator package receives the 

electrical signal from the transmitter coil (in external parts) and processes the 

information to allow the stimulator to transmit the information as electrical 

pulses via the electrode array (see Figure 1.1). 

 

Figure 1.1 A schematic diagram of a CI; courtesy of MED-EL
TM 
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External parts comprise of the speech processor which could be either body-

worn or behind-the-ear (see Figure 1.2 for examples from different 

manufacturers). The speech processor uses a micro-computer to convert sound 

waves into electrical signals and transmit them to the implant receiver through 

the head piece which contains a transmitting coil (coil) which is a radio-signal 

transmitter with a magnet of opposite polarity to that of the implant’s receiver, 

thus allowing energy efficient signal transmission. See Figure (1.3) showing the 

internal and external components of the cochlear Freedom speech processor. 

 

Figure 1.2 Behind-the-ear speech processors; courtesy of Neurelec, Advanced Bionics (AB), MED-EL™ 
and Cochlear®. 

 

 

Figure 1.3 Picture of the CI device; (A) external behind the ear speech processor; (B) the transmitting coil 
and (C) the internal implant with the receiver, stimulator and electrode array; courtesy of Cochlear® 
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1.1.2 How the CI functions 

The main stages of the working mechanism of the CI sound processing and 

delivery are as follows: 

1. The speech processor has a microphone that picks up the sound. 

2. The speech processor converts the input sound into electrical signals 

that will be delivered within the electrical dynamic range of the listener based 

on the individualized program parameters stored in the speech processor. 

The sound processing strategy used by that particular implant system will be 

used to determine the pattern of delivery of the sound. 

3. The electrical signal is transmitted to the internal receiver via the 

transmitting coil (in the head piece) to the receiver coil as FM radio signals 

by transcutaneous communication.  

4. The implant stimulator sends the signal to the electrode array. 

5. Different electrodes are triggered differently according to the sound 

properties (frequency and level) and the speech processor’s settings. 

6. Auditory nerve endings pick up the electrical signals which travel along 

the auditory pathway to the brain where the information is decoded in the 

auditory cortex. 

Although all current day CIs have the same general structure and working 

mechanism different manufacturers use slightly different approaches for design 

and stimulus delivery. 

1.2 The CI design and specifications 

CI design has evolved since the original stimulation of the auditory nerve with 

an implanted electrode and induction coil conducted by Djourno and Eyries’s 

(1957). Numerous scientists and clinicians have contributed to the development 

of the present day CI devices. The early devices were single channel implants 

including those of Simmons (1966) and House and Urban (1973) and the 

single-channel electrode-pair implant by Robin Michelson (Michelson, 1971 and 

Schindler and Merzenich, 1974). The latter was the starting point for the 

Advanced Bionics CIs. All current day devices are multi-channel systems, 
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among the early multi-channel designs was Graeme Clark’s 20 platinum 

electrode system; the starting point for today’s Cochlear® device (Clark et al., 

1975 and Clark, 2008). Early four/ six and eight-electrode Vienna CIs by 

Hochmair, Burian and Hochmair-Desoyer developed into ME-DELTM 12-

electrode CIs (Hochmair et al., 1983) and Chouard’s work in France in the 

1970’s was the starting point for the first 15 – channel digisonic CI for Neurelec 

(Pialoux, Chouard and McLeod, 1976). The introduction of multi-channel CIs 

had a great impact on the quality of the sound perceived by CI users and was 

the greatest catalyst for improvements in speech perception. However many 

factors can have an effect on the performance and outcome with a CI and some 

of the most important and relevant design issues were characterised by 

Grayden and Clark (2006) and Zeng et al. (2008) and fall into the following 

categories:  

1. Performance. 

2. Reliability. 

3. Safety. 

1.2.1 Performance 

1.2.1.1 CI specifications and performance 

The CI devices have developed over the years into having closer specifications 

across the different manufacturers (Zeng et al., 2008). Several changes have 

been applied to the CI specifications in an attempt to enhance performance. 

These include increasing the input dynamic range (the ratio between the 

loudest and softest sounds that the speech processor will present at any given 

time), widening the frequency range stimulated by CI, increasing the rate of 

stimulation, back telemetry and practical modifications of the speech processor.  

 

There was an increase in the input dynamic range (IDR) (and the delivered 

frequency range for all systems. The IDR has increased from an initial 30 dB in 

the Nucleus 22 device (from Cochlear) to 75-80 dB with a default setting of 45-
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60 dB to better reflect the amplitude variations in real life listening situations 

(Zeng et al., 2002; James et al., 2003; Dawson et al., 2007 and Spahr et al., 

2007).  

 

The frequency range was widened and now incorporates frequencies lower 

than 300 Hz in some systems, Zeng et al. (2008) argues that these changes 

were applied in an attempt to enhance temporal pitch cues and tonal languages 

perception that require cues in the fundamental frequency (F0) range (e.g. Fu, 

Zeng, Shannon and Soli, 1998).  

 

Rate of stimulation has increased mainly for AB (e.g. Frijns et al., 2003) and 

MED-EL devices (e.g. Zeng et al., 2008) in an attempt to improve performance 

(e.g. Frijns et al., 2003) although there isn’t clear evidence supporting that 

assumption (e.g. Friesen et al., 2005). Cochlear devices on the other hand 

haven’t increased rate of stimulation mainly because in contrast to AB and 

MED-EL devices that have multiple current sources (up to 16 in AB and up to 

24 in MED-EL) Cochlear devices have only one current source (Zeng et al., 

2008).  

 

Back telemetry is an important feature that CI devices have added. It provides 

information about the integrity of the internal device, the “electrode-tissue 

interface” (Zeng et al., 2008) which include impedance telemetry (see Section 

1.3.1 for detailed description) and neural response (more recent) such as 

Neural Response Telemetry/Imaging (NRT in Cochlear and NRI in AB) and 

Auditory Nerve Response Telemetry (ART in MED-EL). Neural response tests 

(NRT/ NRI/ ART) can provide objective measures of the auditory-neural 

response to the CI electrodes’ stimulation and can help in programming of the 

speech processor especially of young children. They can also be used for 

research purposes.  

 

Other practical advancements included incorporating directional microphones 

(e.g. Cochlear’s Freedom speech processor) or water resistance features (e.g. 
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Cochlear’s Nucleus 5 speech processor’s water resistance and AB’s Neptune 

completely swimmable Neptune speech processor). 

1.2.1.2 Array design and performance 

Beyond the shift from single to multiple-electrode arrays, changes have been 

implemented to the CI array design in an attempt to (1) enhance performance 

by matching electrical stimulation to the tonotopic organisation of the cochlea 

(e.g. long and thin electrode arrays for deep insertion) or by enhancing coupling 

between electrodes and spiral ganglion (e.g. preformed arrays that hug the 

modiolus) or (2) reduce insertion trauma (e.g. flexible electrode arrays such as 

the FLEXsoft array from MED-EL). The physical attributes of the array changed 

as surgical procedures evolved along with better understanding of cochlear 

anatomical structures and electro-physiological factors that may affect CI 

performance (Zeng et al., 2008). Since electrode array design affects surgical 

insertion it will be discussed in detail in Section (2.2.4) along with surgical 

insertion aspects.  

1.2.1.3 Localization of current 

This is considered by some manufacturers to be of importance in order to 

ensure that stimulation is localized to specific regions of the auditory nerve 

fibres. Stimulation mode can be referred to as electrode coupling, which can be 

defined as “how electrodes are electrically connected to form an electrical 

circuit; all consist of active and reference electrodes” (Wolfe and Schafer, 

2010). The main types of stimulation or electrode coupling that are used are 

common ground, monopolar and bipolar (see Figure 1.4). Some companies 

such as AB have introduced what they refer to as advanced electrode coupling 

which potentially includes tripolar and quadro/partial tripolar polar coupling (e.g. 

Zhu et al., 2012 and Bierer et al., 2011) (see Figure 1.4). For a comparison 

between the different electrode coupling types see Table (1.1).  
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Figure 1.4 Current flow in monopolar, bipolar, tripolar and partial tripolar coupling, all have the same active 

electrode [black bar represents active electrode (El)], but different return electrodes (patterned bars; EL -1 

or EL+1 or extra-cochlear electrode). The solid lines indicates the electric circuit; the dashed arrow 

represents the current path from active to return electrode, with (-I) indicating the cathodic phase. n 

represents the fraction of current returning from extracochlear electrode and the rest (I-n) is divided by two 

and returned through the two adjacent electrodes. Adapted from Zhu et al. (2012). 
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Table 1.1 Summary of the different types of stimulation, current flow and advantages. 

Type of stimulation/ electrode 

coupling 
Current flow 

Advantages and/or current 

localization 

Common ground 

Occurs between one electrode 

and all the other electrodes in 

the array. 

Better current localization than 

monopolar  

Bipolar stimulation 
Occurs between a pair of 

electrodes in the array. 

Better localization than 

monopolar. 

Monopolar 

Occurs between one electrode 

in the array and at least one 

extra-cochlear electrode. 

Less localization than bipolar 

and common ground but allows 

for less energy consumption 

Tripolar 

Occurs between one electrode 

as active and the two adjacent 

electrodes in the array acting 

as ground. 

Claimed to have better 

localization than bipolar and 

common ground but greater 

energy consumption making it 

too impractical for 

implementation. 

Quadropolar/Partial tripolar 

Occurs between one electrode 

as active, the two adjacent 

electrodes in the array and an 

external electrode acting as 

ground. A combination of 

Tripolar and Monopolar. 

Claimed to have localization as 

good as tripolar but less 

energy consumption than the 

tripolar approach. 

 

1.2.1.4 Power and data transmission  

For transcutaneous transmission such as that used in current CI systems, 

signal carriers are required; great care has to be taken to ensure that it does not 

cause tissue damage; thus carriers must have as a low frequencies as possible 

(e.g. 5 MHz for Cochlear Freedom devices, 12 MHz Med-El Sonata and 49 MHz 

for AB HiRes90k). Another issue which needs to be considered is that of power 

efficiency in order to prolong battery life, this can be achieved by improving the 

transmitting and receiving coils’ designs (Zeng et al., 2008). 
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1.2.2 Reliability 

Reliability is one of the major design concerns, considering that device failure is 

the most frequent long-term complication (Parisier et al., 2001 and Cote et al., 

2007). All the CI components must endure prolonged use and frequent minute 

movements of the different internal parts for a long time without breakage 

especially at vulnerable points such as the juncture between the electrode array 

and the receiver/stimulator package. This requires robust electronic 

components and some flexibility of the moving parts to avoid wire breakage. To 

overcome wire breakage problems, wires are made longer than required to 

accommodate for movement and growth in children. Surgical techniques have 

also been developed to help protect the receiver; a bony well is usually drilled in 

the mastoid to house the receiver rather than leaving it protruding and exposed 

to impact trauma to the head. This surgical technique made it necessary for 

companies to make the stimulator smaller and thinner to ensure use in young 

children with thinner skulls, this demand affected the implant design for all 

systems. A decrease in device failure and increase in reliability is expected with 

improved technology; however design problems may still occur such as leakage 

of excessive moisture that could cause device failure (Cote et al., 2007).  

 

Failures are classified into: (1) hard failures involving malfunction of the internal 

components, (2) impact failure due to direct hits, which is more common in 

children than adults and (3) soft failures where there is a decrement in auditory 

performance, but the malfunction cannot be proven with available in-vivo tests 

(Balkany et al., 2005 and Cote et al., 2007). Figure (1.5) below shows the 

classification and definition of CI failures as categorized in the European 

consensus statement on CI failure and explantation (2005). Impact failures were 

reported to occur more frequently with ceramic implant housing as compared to 

silicone and titanium housing (Gosepath et al., 2009). Device failures require 

explantation and re-implantation of a new device which can have a negative 

impact because of the disruption caused by the device failure and waiting time 

to receive a new functioning implant. Especially in light of the finding that device 

failure was the most common reason for CI non-use among implanted adults 
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(Bhatt et al., 2005). Researchers also reported cases where full explantation of 

the electrode array was not possible due to pathology such as fibrosis, in these 

cases the contralateral ear had to be implanted (Brown et al., 2009 and Kang et 

al., 2009).                                                                       

 

Figure 1.5 European consensus statement on CI failures and explantations (2005). 

“The failure categories are based on manufacturer specification and clinical benefit showing the different 

possible assignments are explained in the lower part of the figure. A, normal functioning device; B1, 

characteristics decrement (A device with measured characteristics outside the manufacturers specification, 

but still of benefit to the patient): replacement of device not necessary as long as clinical benefit is 

preserved; B2, performance decrement (Unexplained but documented decrement in performance or a 

device that causes non-auditory sensations): explantation and reimplantation recommended; C, device 

failure (device with characteristics outside the manufacturers specification resulting in a loss of clinical 

benefit): explantation and reimplantation recommended. Report to competent authority and manufacturer 

is mandatory. Goes into cumulative survival rate calculation; D, medical reason: explantation due to 

medical problems (i.e., infections, electrode misplacement, etc.) shall be reported into a future European 

data bank; E, population of implantees who no longer show up for after care shall be reported into a future 

European data bank.”                                      

 

1.2.3 Safety 

When considering safety with CIs we have to consider:  

1. Biocompatibility: This includes three major issues: (a) the design of the 

electrode array must allow insertion without causing excess damage to 



41 

 

the cochlea (Richter et al., 2001 and Rebscher et al., 2008). This 

therefore has an interactive relationship with the surgical procedures 

used which will be discussed later in detail (Section 2.2), (b) the implant 

components must be bio-compatible without causing any adverse tissue 

reaction (toxic, immunological or injurious)  (Harnack et al., 2004 and 

Zeng et al., 2008) and (c) the material used must have certain 

mechanical, electrical properties and must ensure hermetic isolation so 

that the electrical parts are sealed and protected from bodily fluids and 

salt (Zeng et al., 2008). 

2. Sterilization: This would include the sterilization process, the material 

used, which has to be designed and manufactured in a manner that 

ensures tolerance for the sterilization process, and the implant design, 

which has to avoid any pockets or spaces that could potentially collect 

bacteria rendering the sterilization useless. 

3. Mechanical safety: to avoid tissue injury; the design must be easy to 

place and stabilize and the surface of the device must be soft, with round 

corners in order to reduce internal tissue trauma and avoid long term 

possible problems such as necrosis. This requires cooperation between 

designers and surgeons (Zeng et al., 2008). 

4. Energy exposure: Energy must be constrained to safe levels.  

The electrical charge is a product of time and current, the limit of safe 

electrical charge density (per cm2) is less than 15 to 65 μC/cm2/phase 

(Leake et al., 1990 and Zeng et al., 2008). Safe heat limits have been 

specified as no more than 39° centigrade for the internal implanted parts 

(ISO 14708-1 part 17, 2000) and up to 41° centigrade for the external 

parts contacting the skin (Zeng et al., 2008). 

1.3 The fitting (programming) of the CI device 

The CI speech processor analyses the signal and converts the acoustic input 

into an electrical signal, which is customized for the individual CI recipient to 

ensure optimised delivery of the information to the CI recipient. This is 
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accomplished by programming the CI speech processor through a designated 

fitting station for each manufacturer (e.g. Skinner et al., 1995; Holden et al., 

2002; James et al., 2003; Dawson et al., 1997; Skinner et al., 1999 and Zeng et 

al., 2008). In this section basic procedures involved in fitting will be briefly 

described, for further details of a typical programming protocol see appendix A. 

1.3.1 Impedance telemetry 

Impedance telemetry has to be measured before the fitting (programming of the 

speech processor) takes place. When measuring telemetry, resistance of each 

of the electrodes in the CI array is measured; this electrical resistance can 

affect the ability of each of the electrodes to deliver electrical stimulation to the 

surrounding tissue. Changes in surrounding tissue can affect telemetry (e.g. 

Hughes et al., 2001). Telemetry provides us with information about the function 

of the CI electrodes, including which electrodes have a short circuit 

(impedances too low), or an open circuit (impedances too high). These 

problematic electrodes are usually switched off (deactivated) during routine 

clinical fittings (e.g. Zeng et al., 2008). 

1.3.2 Creating a CI program 

When creating a CI program, certain parameters have to be set: (a) a speech 

processing strategy has to be chosen (strategies will be described at length in 

Section 1.4), (b) rate of stimulation per second can be chosen for some 

strategies for some devices, but typically the default is used. The per channel 

stimulation rate “refers to the number of biphasic pulses that are delivered to an 

individual electrode contact within one second and is specified in pulses per 

second (pps)” (Wolfe and Schafer, 2010, pp30), (c) the frequency table has to 

be selected which determines the frequency range covered by the implant and 

the frequency to electrode mapping of the stimulation (d) active electrodes, as 

mentioned earlier electrodes with an open or short circuit are deactivated and 

(e) the value of maxima or “n” in “n of m” strategies (not for all manufacturers) 

(see Section 1.4.4) the maxima value refers to the number of electrodes being 

stimulated per stimulation cycle. After choosing these parameters and a CI 
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program has been created, individualized stimulation levels have to be 

determined. 

1.3.3 Setting stimulation levels 

Stimulation level is one of the most important parameters in the programming of 

CIs. There are two stimulation levels that should be optimized for each CI 

electrode (channel); the lower threshold (T or THR) levels and the upper 

stimulation levels, also known as comfort or most comfortable (C or M or MCL) 

levels (e.g. Dawson et al., 1997; Skinner et al., 1999 and Zeng et al., 2008). 

Each manufacturer provides specific guidelines for setting these levels (see 

appendix A for manufacturer specific guidelines), most of which are related to 

the speech processing strategy employed by that specific manufacturer (Wolfe 

and Schafer, 2010). Changing the stimulation level involves either changing the 

current level or the pulse width of the electrical pulses used in stimulation. 

1.4. Signal/speech processing strategies 

The speech processing strategies and mapping options affect how the speech 

processor transforms the sound input into electrical signals. CIs and speech 

processors’ have design limitations that restrict the extent to which “normal 

hearing” can be achieved. Different CI companies aim to overcome the 

limitations with different approaches utilising different processing strategies in 

an attempt to optimise electrical signal delivery to provide the greatest 

information and thus the highest level of performance for the CI user. 

All speech processing strategies have one thing in common: they represent the 

spectral properties of sound by place of stimulation in the cochlea i.e. each 

electrode represents the information in different frequency bands. They provide 

the rules by which sounds are converted into electrical signals that stimulate the 

auditory nerve. However, they are significantly diverse; they differ in terms of 

number of stimulated electrodes in total and simultaneously, electrode to 

frequency assignment, stimulus waveform, type of compression used, what 
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particular aspects of the sound are represented and temporal representation 

across the channels.  

 

Anatomical considerations and implant design issues limit performance with CIs 

and have a restricting effect on the plausibility of certain processing strategies; 

hence the newly developed strategies are not compatible with some of the older 

models in the different makes. This section provides a brief description of the 

major and available speech processing strategies, see Figure (1.6) for 

classification of processing strategies. 

  

Figure 1.6 A classification scheme for the speech processing strategies in CIs; adapted from Zeng et al. 
(2008). 

1.4.1. Explicit feature extraction strategies 

This type of strategy was used in the wearable speech processor (WSPII) 

(Clark et al., 1984 and Zeng, 2004). In an F0/F2 strategy the fundamental 

frequency (F0) and its second formant (F2) are extracted based on the 

assumption that these formant frequencies/ spectral peaks represent the 

resonance characteristics of the vocal tract during speech production. (F0) 

which reflects voice pitch is used to determine the stimulation rate while (F2) 

determines the stimulated electrode with the underlying assumption of a 

tonotopic relationship between the location of the electrode and the stimulated 
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frequency. The first formant frequency (F1) was a later addition to Cochlear’s 

(WSPIII). Later on, Cochlear’s MPEAK strategy included up to 6 spectral peaks 

(with the highest intensity in the original signal); in addition to the (F0) (F1) and 

(F2) the amplitude of three high frequency bands (2kHz-2.8 kHz, 2.8kHz-4kHz 

and 4kHz-6kHz) were extracted (Skinner et al., 1991; Skinner et al., 1996 and 

Loizou, 1998). See appendix B for a table summarising the strategies involving 

explicit feature extraction.  

1.4.2 Simultaneous analog speech processing strategies 

This would include the Compressed Analog (CA) monopolar strategy (see 

Figure 1.8) used by the Ineraid device (an early CI that is not available today, 

Zeng et al. 2008) and Clarion’s (Advanced Bionics’) Simultaneous Analog 

Stimulation (SAS) bipolar strategy (Battmer et al., 1999 and Zeng, 2004). In 

these strategies the sound is divided into frequency bands by using band-pass 

filters, following which the narrow band signal is compressed via gain control to 

the narrow dynamic range of electrical hearing (approximately 20 dB) and is 

then transmitted as current to intra-cochlear electrodes (Zeng, 2004). The most 

apical electrode represents the lowest frequency band while the most basal 

electrode represents the highest frequency band, and the distribution of 

stimulation depends on the frequencies present in the sound/speech segment. 

In general, these simultaneous analog strategies provide more accurate natural 

representation of temporal cues compared to non-simultaneous pulsatile 

strategies, whereas the non-simultaneous pulsatile strategies provide better 

representation of the spectral cues (Battmer et al., 1999).  

1.4.3 Pulsatile speech processing strategies 

Many of the recent speech processing strategies employed by the three CI 

manufacturers Advanced Bionics, Cochlear and Med-El are pulsatile processing 

strategies. These would include the basic Continuous interleaved sampling 

(CIS) strategy, the high resolution (HiRes) strategies from Advanced Bionics, 

including those that utilise current steering technology, the high definition CIS 

(HDCIS) and the fine structure processing (FSP) strategies from Med-El.  



46 

 

1.4.3.1 Continuous interleaved sampling (CIS) 

Continuous interleaved sampling (CIS) is a non-simultaneous pulsatile strategy 

that stimulates all active electrodes for each cycle (Wilson, 1993). It is available 

on the majority of CI systems. It aims to extract and deliver temporal envelope 

cues (Wilson et al., 1991and Zeng, 2004). The sound is first pre-emphasized “to 

attenuate strong components in speech below 1.2 kHz” (Wilson and Blake, 

2008) then is passed through a number of band-pass filters (BPF) (Wilson et al., 

1991). The temporal envelope for each of those waveforms is then extracted by 

either half-wave or full-wave-rectification, followed by low-pass filtering (LPF); 

or, more recently, by the Hilbert transform (Zeng, 2004 and Wilson and Dorman, 

2008). These extracted envelopes undergo linear logarithmic compression to 

map the signal into the narrow electric dynamic range (Loizou, 1998 and Zeng 

et al., 2002). 

The compressed envelope outputs are then used to modulate biphasic pulses 

with amplitudes proportional to those of the envelopes and are delivered at a 

rate that can vary from hundreds to thousands per second (Loizou, 1998 and 

Zeng et al., 2008) see Figure (1.7). A key point in CIS is that each pulsatile 

carrier interleaves with the other bands’ pulsatile carriers; only one electrode is 

stimulated at any given time; thus, avoiding electrode interaction that could 

cause smearing of the band specific envelope cues (Zeng, 2004 and Zeng et 

al., 2008) and avoiding the problematic electrical-field interference caused by 

simultaneous stimulation which was a concern with the early analog Ineraid 

implant. Later, in Clarion’s Paired Pulsatile Sampler (PPS) and Multiple 

Pulsatile Stimulation strategies, two or more distant electrodes could be 

stimulated simultaneously by pulsatile carriers (Loizou et al., 2003). To see the 

difference between pulses used in CIS and PPS, see Figures (1.8 and 1.9). 
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Figure 1.7 Block diagram of CIS strategy adapted from Loizou (1998). 

 

Figure 1.8 Block diagram of the interleaved pulses used in a CIS strategy adapted from Loizou (1998), the 
1/rate indicates the period between pulses on each channel while (d) stands for pulse duration/phase. 
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Figure 1.9 Block diagram of the pulses used in the PPS strategy adapted from Mishra (2000). 

 

1.4.3.2 The High Resolution Strategy (HiRes) 

This strategy is available with AB devices known as the Harmony implants (CII 

and HiRes90k) and the Auria and Harmony sound processors. In this strategy in 

the pre-processing stage, the audio input is sampled at 17400 Hz and 

emphasized by the microphone (Nogueira et al., 2009). A dual loop Automatic 

Gain Control (AGC) is then used to perform a digital AGC (Firszt, 2003). An 

infinite impulse response (IIR) sixth order Butterworth filters is used to divide the 

signal into frequency bands that range from 250 Hz to 8KHz (Firszt, 2003), the 

centre frequencies for these bands are logarithmically spaced and each 

frequency band is associated with a single electrode. Each of the filter outputs 

are then half-wave rectified by setting the negative amplitudes to 0, then they’re 

averaged for a Ts duration of a stimulation cycle (Nogueira et al., 2009). The 

acoustic values obtained are then transferred into amplitudes of current that are 

used to modulate biphasic pulses (Firszt, 2003, Buechner et al., 2006).  

Since the system has 16 independent current sources, it allows for two or more 

electrodes to be simultaneously stimulated (Firszt, 2003). In HiRes S (High 

Resolution sequential) strategy all 16 electrodes are sequentially stimulated in 

each stimulation cycle; thus avoiding channel interaction. The per channel 
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stimulation rate is uniform for all channels with a maximum value of around 

2899 pulse per second (pps) (Firszt, 2003; Dunn et al., 2006 and Nogueira et 

al.,2009); see Figure (1.10). In HiRes P (High Resolution paired) two non-

adjacent pairs of electrodes are simultaneously stimulated increasing the 

maximum per channel stimulation rate to 5,156 pps (Firszt, 2003 and Dunn et 

al., 2006). 

 

Figure 1.10 Block diagram of Hi-Res strategy courtesy of AB. 

1.4.3.3 Signal processing strategies using current steering 

The Fidelity HiRes120 strategy can be used with a Harmony speech processor 

and Harmony AB implants. In this strategy it is hypothesised that frequency 

resolution is increased by using current steering. Current steering is based on 

the observation that subjects were able to distinguish several distinct pitches 

between two electrodes when these electrodes were simultaneously stimulated 

(Donaldson et al., 2005). In current steering the proportion of current is varied 

for each of the adjacent electrode pairs to create the percept of different 

pitches. 15 electrode pairs are used in stimulation when all 16 electrodes are 

switched on, 8 distinct stimulation places (bands) are created between each 

electrode pair with a maximum of 120 possible stimulation sites. See Figure 

(1.11) below demonstrating current steering. 
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Figure 1.11 A diagram of active current steering. Whereby in the first example (A), half the current (CU 
clinical units) is “steered” to each of two neighbouring electrodes so that the locus of stimulation is 
approximately halfway between the two contacts. In the second example (B), as a greater proportion of 
current is steered toward one of the electrodes, the locus of stimulation is shifted closer to that electrode. 
Courtesy of Advanced Bionics (2006). 
 

This strategy provides a higher spectral resolution than that by the HiRes 

strategy (Firszt et al., 2009). See Figure (1.12) demonstrating the 120 

stimulation sites provided by the Fidelity HiRes 120 strategy. 

 

Figure 1.12 The 120 stimulation sites provided by the Hi-Res 120 strategy. 

1.4.3.4 Med-El’s CIS+ and High Definition CIS (HDCIS) 

These strategies were designed to provide better fine spectral information than 

the old CIS strategy. This was done by employing 12 overlapping filters with bell 

shaped stimulation response which are allocated algorithmically to cover the 

frequency range (250-8500 Hz). It is assumed that this design allows the 

creation of virtual channels, hence providing a finer spectral resolution 

(Arnoldner et al., 2007 and Magnusson, 2011). A Hilbert transform is used to 

extract the envelope information within each filter band. The per-channel 
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stimulation rate is uniform across all channels and can go up to 1500 pps in the 

CIS+ strategy and up to 3000 pps in the HDCIS strategy (Magnusson, 2011).  

1.4.3.5 Med-El’s Fine Structure Processing FSP 

FSP is very similar to the HDCIS strategy with the exception of the lower 1-3 

channels which use “channel specific sampling sequence” (CSSS). Unlike 

envelope-based processing strategies, these CSSS channels were designed so 

that FSP provides envelope information as well as fine structure. The fixed 

sampling rate is substituted by CSSS, where stimulation pulses start only at 

each positive zero crossing within each frequency band’s filter output (Arnoldner 

et al., 2007 and Magnusson, 2011). The stimulation pulses for these CSSS 

channels are also interleaved with the other electrodes to avoid unwanted 

interaction. The FSP strategy usually covers the frequency range 100-8500Hz 

(Magnusson, 2011). 

1.4.4 N of m strategies 

The spectral peak (SPEAK) and advanced combination encoder (ACE) are n of 

m strategies, where (n) is the number of electrodes that is stimulated for each 

cycle and (m) is the number of filters and usually n<m. The main differences 

between a CIS strategy and an n of m strategy are: (1) the n of m strategy has a 

greater number of pass band filters than the CIS and (2) n of m is based on 

explicit temporal frames typically between 2.5-4 ms whilst the CIS strategy does 

not have an explicit frame (Zeng et al., 2008). In each frame an ‘n’ number of 

bands with the largest amplitude are selected, then envelopes of those selected 

bands are logarithmically compressed and used to determine the pulse’s 

current level for each band. Each of these biphasic pulses is interleaved from 

other bands’ pulses while the frame rate determines the per-channel stimulation 

rate. If n = m then the strategies such as SPEAK and ACE are not so different 

from a CIS strategy (Zeng et al., 2008). Among the CI manufacturers, Cochlear 

employs SPEAK and ACE strategies and Neurelec also employs an n of m 
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processing strategy. See Figure (1.13) demonstrating how the n of m strategy 

works. 

 

Figure 1.13 Block diagram of n of m strategy; courtesy of Zeng et al. (2008). 

1.4.4.1 Spectral peak (SPEAK) strategy 

This strategy was developed and used by Cochlear, it uses 20 filters covering 

the centre frequencies from 200 to 10,000 Hz; each filter has a corresponding 

electrode on the array with the lowest frequency band assigned to the most 

apical electrode (Skinner et al., 1994 and Skinner et al., 1996). Depending on 

the acoustic input, the number of spectral maxima will differ so that only those 

electrodes representing filters that have speech components with the highest 

amplitudes are stimulated in each cycle. In the SPEAK strategy maxima can 

take the values between 6 and 9 (Skinner et al., 2002). The SPEAK strategy 

has a fixed per-channel stimulation rate of 250Hz and a fixed inter-pulse interval 

(IPI) of 45 µsec; the relatively high IPI was chosen to decrease thresholds and 

current requirement (Shepherd and Javel, 1999 and Skinner et al., 2002). 

The SPEAK, in comparison to the CIS, strategy provides more spectral details 

but less temporal details due to the relatively low per-channel stimulation rate of 

250 Hz (Zeng et al., 2008). 
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1.4.4.2 Advanced combination Encoder (ACE) strategy 

ACE is a strategy also employed by Cochlear and is very similar to the SPEAK 

strategy but it has a higher range of peak selection (maxima can take the values 

between 1 and 20) and a higher rate of stimulation thus preserving more 

temporal details than SPEAK (Skinner et al., 2002). The per-channel stimulation 

rate can go up to 2400 Hz, however the total rate of stimulation is limited to 

14,400 Hz. This is accomplished by automatically limiting the number of 

maxima with higher per-channel stimulation rate (the total rate of stimulation is 

equal to the per-channel stimulation rate times the number of maxima). In an 

ACE strategy the filter bank has 22 filters rather than 20 filters which could offer 

better frequency resolution than that provided by a SPEAK strategy (Skinner et 

al., 2002; Zeng et al., 2008). In ACE the IPI is fixed at 8 µsec which is lower 

than that for SPEAK, since thresholds are usually lower with higher per-channel 

stimulation rate (Skinner, Holden, Holden, and Demorest, 2000 and Skinner et 

al., 2002). 

1.5 Summary 

The CI device is probably one of the greatest innovations of the 20th century in 

the field of Otorhinolaryngology, providing hearing restoration to the severe-to-

profoundly hearing impaired. It has two major components: the implantable 

internal part and the external speech processor. Both have gone through great 

developments in terms of design and function to ensure the safe delivery of a 

consistent clear signal. The speech processor controls receives the auditory 

sound, processes it and transforms it into electrical signals that stimulate the 

auditory nerve via the electrical contacts implanted in the cochlea. It is critical to 

carefully programme the speech processor to ensure that the delivery of the 

electrical signal is optimally mapped into each CI recipient’s electrical dynamic 

range. Optimisation of the acoustic to electrical mapping must have an impact 

on speech perception and performance for the CI user. CI The fitting of the 

device is not the only factor that has an impact on performance, other factors to 

be considered are outlined in Chapter 2. 
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Chapter 2 

Factors affecting performance with CIs 

 

Speech perception abilities of adult CI users vary widely from those with very 

little or no “open set” (not from a closed set and without cues including visual 

cues) speech understanding when listening without lip-reading to those that 

have open set speech understanding, even in the presence of competing noise. 

This disparity in performance can be attributed to several factors, some of which 

are related to individual characteristics (referred to as subject dependent factors 

from here on in) (e.g. Waltzman et al., 1995; Blamey et al., 1992; Friedland et 

al., 2010 and Blamey et al., 2013) and others that are device related or 

dependent upon surgical insertion (e.g. Finley and Skinner, 2008). The 

importance of identifying these factors is apparent at both the pre-implantation 

stage when considering candidacy of an individual and post-implantation for 

patient management and fitting (Summerfield and Marshall, 1995). During the 

pre-implantation evaluation candidacy may be affected by prediction of 

prognosis with CI or it may guide counselling of potential candidates to have 

realistic expectations and could assist the clinical team when choosing which 

ear to implant (Friedland et al., 2003). In the post-implantation management 

process, if factors affecting performance are identified it can help clinicians 

derive performance expectations and intervene with rehabilitation of fitting 

modifications when outcomes do not reach the expected level. (Zwolan et al., 

1997).  

2.1 Subject dependent factors 

Some individual characteristics such as age, cognitive abilities, duration of 

deafness and aetiology of deafness can have an impact on performance. 
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2.1.1 Age 

There have been several studies looking at the effect of age at implantation 

(AAI) on post CI performance among adults; they mainly compared the 

performance of younger adults versus that of older adults. However, the 

“elderly” age-group was defined differently across the studies; for example it 

was above 55 years in Chan et al.’s study (2004), just above 60 years in Shin et 

al.’s study (2000), equal to or more than 65 years in Labadie et al’s study (2000) 

and Friedland et al.’s study (2010), greater than 65 years in Pasanisi’s study 

(2003) and above 70 years in Chatelin et al. (2004), Blamey et al. (2013) and 

Lenarz et al. (2012) studies. Despite the different criteria adopted to define the 

“older” group across the different research studies conducted in this area and 

the diversity in the performance measures used in the different studies, most 

studies have found that there was a significant improvement in speech 

perception for the majority of implantees in the older group after receiving their 

CI CI(Labadie et al., 2000; Shin et al., 2000; Pasanisi et al., 2003; Chatelin et 

al., 2004; Orabi et al., 2006; Chan et al., 2007, Friedland et al., 2010 and 

Lenarz et al., 2012). 

 

Some researchers did not report a difference in post-implantation performance 

between the older and younger adults (Labadie et al., 2000; Shin et al., 2000; 

Pasanisi et al., 2003 and Chan et al., 2007). However closer inspection showed 

that some had a relatively small sample size; Shin et al. (2000) had a sample of 

27; both Labadie et al. (2000) and Pasanisi et al. (2003) had 16 elderly 

individuals and Chan et al. (2007) had a sample of 14 elderly recipients. 

Another issue is the fact that the older and younger groups were not matched 

for duration of deafness and pre-implantation audiological or speech perception 

levels in those studies. Although the groups were matched for duration in 

deafness in Chan et al.’s study (2007), however the performance measure used 

by Chan et al. allowed for a ceiling effect because the highest score given for 

speech perception was defined as speech recognition >50%; i.e. the highest 

possible score of 7 out of 7 covered a speech recognition range of 51-100% 

which will mask any differences across that large range. 
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Contrary to these findings, there was a significant difference reported between 

the older and younger adult groups with a larger sample sizes such as Chatelin 

et al. (2004), Friedland et al. (2010) and Lenarz et al. (2012) who had a sample 

of 65, 78 and 130 elderly, respectively. In 2010 a case-control retrospective 

analysis of speech perception performance among 78 elderly CI users whose 

age of implantation was 65 years or older was conducted by Friedland et al. 

(2010). They investigated the effect of age of implantation on 1-year post-

implantation speech performance. No correlation was found between pre-

implantation audiological levels, pre-implantation speech perception measures 

and AAI nor between AAI and post-implantation Consonant-Nucleus-Consonant 

(CNC) and Hearing in Noise Test in quiet (HINT-Q) scores. However there was 

a negative effect of AAI on Hearing in Noise Test in noise (HINT-N) scores. 

They also conducted a performance-matched implant patient analysis, whereby 

they compared the performance of the elderly implantees with that of younger 

adult implant recipients with an AAI less than 65 years of age. The younger 

adults were matched with the older adults based on pre-implantation 

performance on the HINT-Q and on duration of deafness. They found that the 

elderly group performance on HINT-Q and CNC test was significantly poorer 

than that of the younger adult group. Pre-implantation speech reception and 

audiological measures were significantly correlated with post-implantation 

speech reception performance in both age groups. Lenarz et al. (2012) found a 

significant difference between the older and younger adults’ performance in 

HSM (German Hochmair- Schulz-Moser) sentence test in noise but not HSM in 

quiet. 

 

Poorer performance among the elderly could be due to the fact that they require 

a longer period of adaptation to reach the level attained by the younger group. 

Another explanation could be the physiological effect of aging on central 

auditory processing (Jerger et al., 1989), and on cognitive and associative skills 

which are important factors that may affect post-implantation performance. This 

may explain the extra difficulty they found in noise (Lenarz et al., 2012). 
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Other research found that AAI had predictive power of post-implantation speech 

perception, such as Waltzman et al. (1995) Gantz et al. (1993) and Blamey et 

al. (1996 and 2013).  

 

Such findings could be of significance when considering implantation of 

progressive hearing loss cases such as presbycusis where earlier implantation 

could lead to better prognosis. These findings may provide useful predictive 

information for the provision of pre-implantation counselling by providing CI 

candidates with realistic expectations.  

2.1.2 Cognitive abilities 

For normal hearing individuals, listening in everyday environments usually 

involves effortless and automated processing. However this is not the case in 

the presence of a distorted signal due to hearing loss where listening becomes 

demanding and requires effort. Cognitive processing abilities (in particular 

verbal processing) will play a role in facilitating the efficient extraction of 

essential information from the signal.  

 

One cognitive skill that may influence post CI performance is the ability to learn 

new information, such as making sense of the new electronic signal. This ability 

is strongly correlated with IQ (intelligence quotient) and could have an impact 

on performance (Knutson, 2006). However there are inconsistencies between 

the studies relating overall intelligence when measured by WAIS-R (Wechsler 

Adult Intelligence Scale-Revised) to post CI performance. For example 

Waltzman et al. (1995) found a significant correlation between the WAIS-R 

score and post-implantation speech perception, while Knutson et al. (1991) did 

not. 

 

Despite those inconsistencies observed in studies evaluating overall 

intelligence, some specific cognitive measures have been shown to be 

consistently predictive of post-cochlear implantation speech perception e.g. the 

Visual Monitoring Task (VMT) (Knutson et al., 1991; Gantz et al., 1993), 
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Sequence Learning Task (SLT; Simon and Kotovsky, 1963), the Pat Associate 

Test [(PAT) a non-verbal memory test; Knutson et al., 1991]. These findings 

support the idea that specific cognitive abilities underpin the ability to extract 

and process information from a degraded or distorted signal, are related to post-

implantation performance. Cognitive measures such as VMT, SLT and Raven 

Progressive Matrices (RPM; Raven et al., 1977) have been found to be 

predictive of post-implantation timbre recognition (Gfeller et al., 2002a and 

Gfeller et al., 2008), appraisal of musical instruments (Gfeller et al., 2002b), 

appraisal of complex songs (Gfeller et al., 2003), and appraisal of music and 

performance on a pitch ranking task (Gfeller et al., 2008). Among the cognitive 

measures, VMT had the most predictive power of post-implantation 

performance on music perception tasks (recognition and appraisal); this could 

be because VMT is more demanding than the other measures. However, VMT 

additionally requires associative memory, working memory and correct 

processing of quickly changing signals. Speed of processing could be 

necessary to avoid “bottle neck effects” while receiving and interpreting possibly 

distorted signals. 

 

Explicit investigation of verbal cognitive abilities lend yet further support to the 

importance of working memory and fast processing capabilities in the 

performance with CIs. Internal speech functioning (use of an internal speech 

code), working memory and speed of verbal information processing were found 

to be critical predictors of post-implant performance (Lyxell et al., 1996).  

Working memory is important since the implanted individual might miss some 

pieces of information and would require the ability to temporarily store 

information while filling in the missing information (Lyxell et al., 1996 and Lyxell 

et al., 2003). Working memory has also been found to be associated with 

speech reading and audio-visual understanding of speech (Lyxell, 1994 and 

Rӧnnberg, 1993).  

 

Internal speech functioning requires the ability to match between the audible 

signal with an internal representation of sound/speech which is important in 
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interpreting the sounds and speech delivered via the CI (Lyxell et al., 1996). 

Duration of deafness was found to be negatively associated with internal 

speech (Lyxell et al., 1994). 

 

In summary, all cognitive measures that affected performance require the ability 

to quickly extract information from sequentially presented stimuli and match it to 

an existing internal representation. This ability is required for good post-

implantation perception of both speech and music. 

2.1.3 Duration of deafness 

Duration of deafness is considered to be the strongest pre-implant predictor of 

post-implant performance, with those having the longer the durations of 

deafness achieving lower levels of post-implantation outcome. Duration of 

deafness has been shown to have a significant negative correlation with or is a 

significant predictor of post-implantation performance for a variety of speech 

perception measures: (a) the Central Institute of Deafness (CID) everyday 

sentence test score (Blamey et al., 1992); (b) Consonant Nucleus Consonant 

(CNC) word scores (Rubenstein et al., 1999; Friedland et al., 2003 Gomaa et 

al., 2003; Yukawa et al., 2004 Leung et al., 2005 and Roditi et al., 2009); (c) 

CNC phoneme scores and City University of New York (CUNY) sentences in 

noise score (Yukawa et al., 2004); (d) achieving an open set speech 

understanding (Battmer et al., 1995); (e) a composite index on 5 categories: 1- 

prosodic features, 2- lip reading enhancement, 3- phonetic level, 4- spondee 

tests and 5- open-set speech recognition (Waltzman et al., 1995); (f) lip reading, 

spondee tests and open set speech recognition (Waltzman et al., 1995); (g) the 

Iowa Sentence Test Without Context-Sound only, the Iowa Videodisc Vowel 

Test, the Iowa Videodisc Medial Consonant Test, the Spondee 4-Choice In 

Noise Test and the Northwestern University Auditory Test No. 6 (NU-6) Word 

Understanding- Sound only (Gantz et al., 1993); (h) composite outcome 

measure (COMPERF) which was obtained by averaging scores on the 

Bamford-Kowal-Bench (BKB) in a sound only condition, Vowel Consonant 

Vowel (VCV) in sound only condition and common environmental sounds (ENV) 
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(Summerfield and Marshall, 1995); (i) BKB sentence score (Green et al., 2007) 

and (j) VCV and phrase speech intelligibility tests (Hiraumi et al., 2007).  

 

These findings could be explained by the effect of the duration of deafness on 

the residual auditory nerve viability and the integrity of the auditory cortex and 

memory for sound. Other supporting evidence was provided by Nadol et al. in 

1989; they found a correlation between spiral ganglion cell count and the 

duration of deafness.  

 

Spiral ganglion cell survival may affect the spectral resolution of the electrical 

signal perceived by the CI recipient. In addition, spiral ganglion cell survival has 

been hypothesised to be important for retaining the integrity of the central 

auditory pathway (Rubenstein et al., 1999). Gomaa et al. (2003) found a 

correlation between pre-implantation CID sentence perception and post-

implantation CNC scores, these findings lend support to the hypothesis that 

residual speech perception “act as a trophic factor” that protects the viability of 

the ganglion cells and subsequently the auditory pathway.  

 

However these findings should be treated cautiously, especially if we consider 

studies that have demonstrated that the effect of duration of deafness on post-

implantation speech perception is not ear specific but rather reflects the overall 

auditory function; residual hearing in the non-implanted ear has a positive effect 

on post-implantation speech perception (Friedland et al., 2003; Francis et al., 

2004). These findings may imply that the effect of duration of deafness on 

performance is due to the importance of the central auditory pathway integrity 

and memory for sound rather than spiral ganglion survival.  

 

The above findings can provide guidance during the evaluation process for 

candidacy for cochlear implantation, help predict prognosis and determine 

which ear to implant. 
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2.1.4 Aetiology of deafness 

A limited number of studies looking at factors affecting performance with CIs 

have evaluated the aetiology of deafness as a possible factor. They either found 

no significant relationship between the cause of deafness and performance 

(Blamey et al., 1992; Green et al., 2007 and Nikolopoulos et al., 2012) or 

reported a relatively weak effect (Battmer et al., 1995 and Blamey et al., 1996). 

However, there were numerous studies that have evaluated post-implantation 

performance in sub-groups with specific aetiologies such as meningitis 

(Philippon et al., 2009 and Durisin et al., 2010), otosclerosis (Rotteveel et al., 

2010), Cogan’s syndrome (Bovo et al., 2011; Kontorinis et al., 2010; Pasanisi et 

al., 2003; Wang et al., 2010), Ménière's disease (Lustig et al., 2003). They 

found that aetiology does not affect performance per se; however when 

pathological changes secondary to the aetiology of the hearing loss such as 

cochlear ossification occurred, those changes had a negative impact on post-

implantation performance. Fibrous or bone obliterations of the cochlea in 

Cogan’s syndrome, cochlear ossification in meningitis, osteospongiosis and 

sclerosis in otosclerosis may lead to difficulties in the surgical insertion of the 

array resulting in partial insertions which reduces the number of active 

electrodes; these in turn may affect performance (Cohen and Waltzman, 1993; 

Hartrampf et al., 1995; Rotteveel et al., 2005 and Rotteveel et al., 2010). These 

pathological changes may also alter the CI current distribution (Rotteveel et al., 

2010). Nadol and Hsu (1991) found a strong inverse relationship between the 

degree of calcification and spiral ganglion cell count in 6 temporal bones of 

people who had suffered from severe sensorineural hearing loss secondary to 

meningogenic labyrinthitis. Aetiology of deafness can shed some light on post-

implantation prognosis and can affect programming of CIs mainly due to the 

underlying pathology secondary to aetiology, for example the deactivation of 

electrodes in cases of facial nerve stimulation in otosclerosis (Rotteveel et al., 

2010).  



62 

 

2.2 Surgical placement of the electrode array 

Recent evidence suggests that optimum placement of the electrode array in the 

cochlea may positively affect the outcome with a CIs (Finley and Skinner, 

2008). When addressing placement of the electrode array, two related issues 

are considered: surgical aspects and electrode array design. Surgical 

techniques and considerations have developed over recent years however 

placement of the array in the cochlea is still influenced by the array design (e.g. 

Rebscher et al., 2008).  

In the following sections these surgical (Sections 2.2.1 – 2.2.3) and design 

issues (Section 2.2.4) are explored further. 

2.2.1 Scala tympani versus scala vestibuli surgical placement 

The standard surgical approach in cochlear implantation is to insert the 

electrode array into the scala tympani.  However there are situations where the 

surgeon intentionally places the electrode array in the scala vestibuli (SV), 

typically where the scala tympani (ST) is not patent. This includes obstruction 

due to fibrosis or ossification after temporal bone fracture, meningitis or severe 

otosclerosis. Typically the outcomes in these cases are comparable to those 

obtained when the electrode is placed in the scala tympani (Barrettini et al., 

2002; Kiefer et al., 2000 and Lin, 2009). However, the same is not true when 

the intended position of the array is the ST but cross-over of the array to the SV 

occurs during insertion. This typically leads to poorer speech perception scores 

(Skinner et al., 2007 and Finley and Skinner, 2008). Explanations include 

mechanical damage causing spiral ganglion cell loss, disruption of the basilar 

membrane (BM) or cross-turn stimulation. Finley and Skinner (2008) found a 

relationship between decreased speech perception (CNC word recognition 

scores) and deeper insertion of the electrode array. They also found deeper 

insertions to be associated with confused pitch of the apical electrodes in an 

electrode discrimination task. Gantz and Turner (2003) and Turner et al. (2004) 

emphasize the importance of surgical procedure, especially the positioning of 

the hybrid electrode array within the scala tympani so as not to interfere with the 

normal mechanical function of the basilar membrane and the travelling wave. 
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They took care in not damaging the round window membrane and avoiding loss 

of perilymph to preserve residual natural hearing. 

2.2.2 Depth of insertion 

There have been numerous studies that have evaluated the effect of insertion 

depth of CI arrays on speech perception. These include simulation studies on 

normally hearing individuals (Fu and Shannon, 1999a and Rosen et al., 1999) 

and in vivo studies of post-implanted individuals (Blamey et al., 1992; Yukawa 

et al., 2004; Skinner et al., 2007 and Finley and Skinner, 2008). Simulation 

studies mainly focused on the importance of matching the frequency of the 

electrical stimulation to the natural frequency of the stimulated auditory fibre. In 

order to estimate the insertion depth in implanted individuals, researchers have 

initially used an estimate based on the surgeon’s report of the number of 

electrode bands introduced in the cochlea; subsequent researchers used post-

operative radiographic images to estimate insertion depth. Three metrics have 

been used to define insertion depth radiologically: (1) angular depth of insertion, 

(2) the length of the intra-cochlear electrode array and (3) the number of active 

electrodes used by the speech processor. When estimates based on surgeons’ 

reports were used, insertion depth was reported to have no significant effect on 

speech perception (Blamey et al., 1992 and Hodges et al., 1999). However, 

surgeons’ estimates may not be as accurate as radiological measures. In 2004 

Yukawa et al. investigated the effects of insertion depth on speech perception 

with the possibility that one of the radiologically based estimators could be more 

particularly relevant to speech perception. Thus they evaluated the effects of 

insertion depth based on angle, length and number of active electrodes 

estimates on the post-operative CNC words scores (for 48 subjects), CNC 

phonemes (for 48 subjects) and CUNY sentences in noise (for 26 out of 48 

subjects). Duration of deafness, hearing aid usage, preoperative CID sentences 

scores and pure tone average (PTA) together with insertion depth were used as 

independent variables in a multiple regression analysis. Among the three 

insertion depth estimates, the angular depth of insertion was reported as the 

best predictor of post-implantation speech perception score, especially when 
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CUNY sentences in noise were used as the speech perception measure. They 

reported better performance with deeper insertion with the Cochlear device 

(Nucleus 22 and Nucleus 24). Some advocate the deeper insertion with the 

assumption that it ensures the stimulation of a wider spectral range of 

frequencies down to lower frequencies at the apical end of the cochlea, thus 

improving speech discrimination in noise (Hochmair et al. 2003). There is some 

evidence to suggest that better frequency matching between the normal 

cochlear tonotopic organization and the electrical stimulation of the CI (Baskent 

and Shannon, 2003 and 2005) is more critical for optimising performance. 

However, other researchers argue that deep insertion increases the possibility 

of mechanical trauma (Finely and Skinner, 2008) and that frequency specificity 

is lost due to cross-turn stimulation towards the apex (Gani et al., 2007 and 

Finley and Skinner, 2008). In addition there have been studies indicating that 

the CI user habituated to the frequency mapping of their CI program with 

respect to pitch perception (Reiss et al., 2008); thus matching the frequency of 

electrical stimulation to the normal tonotopic frequency organization may 

become unnecessary.  More information about insertion trauma due to depth of 

insertion is provided below in Section (2.2.3.5) when it is considered with 

respect to “soft surgery”.  

2.2.3 Soft CI surgery 

In the last few years, the concept of “soft surgery” has become more common 

practice and is an area that has received a great deal of attention. One of the 

intended goals is to preserve residual hearing in the implanted ear. With this 

approach it allows for the extension of the candidacy criteria to hearing-impaired 

individuals who are not “totally deaf”.  The soft surgery approach is essential for 

systems such as electroacoustic stimulation, which combines electrical 

stimulation of high frequencies in the basal region sometimes by using a short 

CI array whilst using acoustic auditory stimulation of low frequencies in the 

apical region. This necessitates the preservation of hearing at lower frequencies 

to be able to use the low frequency hearing. Soft surgery is not a new concept; 

it was first introduced by Lehnhardt in 1993, when the preservation of hearing 
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was considered as a backup for cochlear implantation if CI failed. In order to 

achieve soft surgery, the technique must ensure the avoidance of any 

mechanical trauma and the reduction of any factors that may cause adverse 

cochlear reactions (Friedland et al., 2009). These factors may include the route 

of insertion, location of the cochleostomy, avoidance of blood or bone dust entry 

into the cochlea, application of corticosteroid to the cochleostomy, application of 

Healon ® (a lubricant) to the cochleostomy and electrode array, electrode array 

size and depth of insertion. 

2.2.3.1 The route of insertion 

There are two main access approaches to the scala tympani for electrode array 

insertion, via a cochleostomy in the cochlear basal turn or through the round 

window, which is considered by some to be less traumatic causing less damage 

to basal turn structures (Adunka, 2004). However, contrary evidence exists 

suggesting that for some electrode arrays there is a different pattern of results; 

perimodiolar electrodes were observed to cause significantly more damage in 

the basal structures with round window insertion (Adunka et al., 2006 and 

Souter et al., 2011). Round window insertion resulted in preserved low 

frequency residual hearing by Skarzynski et al. in 2007 with the use of partially 

inserted MED-EL COMBI 40+ straight electrode array. However, Berrettini et al. 

in 2008 produced contrary evidence with a reported significant decrease in 

residual hearing caused by round window insertion though not all the soft 

surgery precautions were taken with the round window approach in this study.  

Erixon et al. (2012) provided further evidence that hearing preservation can be 

accomplished with round window insertion and the use of the flexible MED-EL 

FLEXEAS electrode array. 

2.2.3.2 Location of the cochleostomy 

The location of the cochleostomy (a drilled small opening into the cochlea) is 

thought to have an impact on the potential for damage to the spiral lamina and 

intracochlear structures. Based on the examination of 27 temporal bones, a 

cochleostomy in an anterior-inferior location in relation to the round window has 

been shown to be less likely to cause damage to the spiral lamina (Briggs et al., 
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2005). This was also true with the use of three-dimensional modelling of the 

hook region in the cochlea; Li et al. (2007) demonstrated that an anterior-inferior 

cochleostomy allows direct access to the scala tympani without contact with 

critical structures. Additional evidence for this approach comes from the 

literature on preservation of residual hearing where the anterior-inferior 

cochleostomy was compared to a strictly anterior cochleostomy (Garcia-Ibanez 

et al., 2008 and Berrettini et al., 2008) or a strictly inferior one (Garcia-Ibanez et 

al., 2008). 

2.2.3.3 Avoidance of intra-cochlear reaction  

There is some evidence that links blood entry in the scala tympani with residual 

hearing damage.  Franco-Vidal et al. (2007) looked at sudden hearing loss that 

coincided with haemorrhage into the cochlea. Other reports included sudden 

hearing loss that coincided with high intracochlear signal on 3D-FLAIR MRI 

imaging that could be indicative of haemorrhage (Otake et al., 2006 and 

Yoshida et al., 2008). Although it is difficult to establish a direct link between 

bone dust entering the cochlea and residual hearing loss as well, some 

researchers have found that using bone pate to seal the cochleostomy can 

promote bone and scar formation (McElveen et al., 1995). Intra-cochlear 

reaction to blood in the scala tympani or bone dust in the cochlea may 

adversely affect residual hearing. Thus the avoidance of intra-cochlear 

exposure to these factors is attempted during soft surgery. Electro-cautery and 

topical vasoconstrictors such as epinephrine can be used to minimise bleeding 

from surrounding soft tissue (Bas et al., 2012) while irrigation to flush away 

bone dust prior to the cochleostomy is advisable to prevent bone-dust entering 

the cochlea (Kiefer et al., 2004; Friedland and Runge-Samuelson, 2009 and 

Bas et al., 2012). 

2.2.3.4 Application of drugs at the cochleostomy and/or electrode array 

Corticosteroids are commonly used in the management and prevention of 

hearing loss. In CI surgery, corticosteroids are hypothesized to inhibit adverse 

intracochlear inflammation and molecular reactions towards the cochleostomy 

and electrode array (Friedland et al., 2009). Animal experiments have 
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demonstrated that corticosteroids can protect the cochlea from insertion 

damage and cochleostomy with intra-scalar administration of corticosteroids 

(triamcinolone Volon A®) in guinea pig ears (Kiefer et al., 2007 and Ye et al., 

2007). Within four weeks, triamcinolone partially prevented hearing loss 

secondary to cochleostomy. When considering the use of corticosteroids for 

hearing preservation during CI surgery, two factors have to be considered. 

Firstly, only intra-scalar administration showed protective effects in animals but 

the apical portion of the cochlea received little corticosteroids (Plontke et al., 

2008) minimising the corticosteroid effect on hearing preservation at lower 

frequencies. Secondly, the topical corticosteroid effect lasts less than 24 hours 

(Hargunani et al., 2006). Rather than applying corticosteroids at the 

cochleostomy in soft surgery, sodium hyaluronate gel (Healon ®) may be used. 

In Lehnhardt’s original description of soft CI surgery (1993) Healon ® 

(hyaluronic acid) was recommended to be used in the cochleostomy and on the 

electrode array. Hyaluronic acid is normally found in the extracellular matrix: it is 

used as a lubricant when inserting electrode arrays (Friedland et al., 2009 and 

Laszig et al., 2002). As a translucent viscous substance it may prevent 

perilymph leakage and prevent cochlear contamination with blood and bone 

dust without affecting visualization (Friedland et al., 2009). It has been reported 

to reduce the formation of scar tissue in the middle and inner ear (Huang et al., 

2007). Research indicates that Healon ® is most probably not an ototoxic 

substance that may help preserve hearing in humans (Skarzynski et al., 2002).  

2.2.3.5 Depth of insertion 

As discussed in Section 2.2.2, the risk of trauma has been reported to increase 

with deep insertion of the electrode array (Adunka et al., 2006; Finley and 

Skinner, 2008 and Wardrop et al., 2005a). However, this can be avoided if the 

electrode array is not inserted beyond the point of first resistance whilst 

accomplishing full insertion of the electrode array (Gstoettner et al., 1997 and 

Lenarz et al., 2006). In soft surgery, surgeons have either used partial insertion 

of electrode arrays (James et al., 2005 and Skarzynski et al., 2007), short 

electrode arrays (Gantz and Turner, 2003; Turner et al., 2004 and Lenarz et al., 

2006) or full insertions of standard-length arrays (Skarzyski et al., 2002; 
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Baumgartner et al., 2007; Prentiss et al., 2010; Bruce et al., 2011 and Erixon et 

al., 2012). The objective in soft surgery is to reach a balance between 

accomplishing an insertion depth that provides the required cochlear coverage 

and avoiding trauma to the cochlea. 

2.2.4 Electrode array design 

Electrode array design has advanced dramatically, not only in terms of number 

of electrodes but also in terms of size, shape, specificity of stimulation, 

efficiency in the use of current and the material used. Another challenge that 

faces the manufacturers is optimizing the electrode array design in order to 

minimize trauma during insertion; this is of particular importance when using the 

CI in electro-acoustic stimulation (Rebscher et al., 2008). The properties of the 

array design also influences depth of insertion due to length, thickness and 

flexibility. In the following section the various electrode physical attributes that 

may influence array placement, and outcome, will be discussed. 

2.2.4.1 Size of the electrode array 

The influence of both the length and the diameter of the array will be considered 

in the following sections. 

Electrode array length 

The length of the array varies among the different CIs and even between the 

different models for each manufacturer. The longer arrays are usually designed 

for deeper insertion, such as MED-EL’s standard 31.5 mm arrays, while shorter 

arrays were sometimes designed for electro-acoustic stimulation (EAS) where 

there is residual hearing at the low frequencies and the CI provides electric 

stimulation to the high frequencies only. An example of such an EAS array is 

Cochlear’s Hybrid-S CI 10 mm array (Gantz and Turner, 2004). The Gantz and 

Turner research highlighted the importance of the position of the electrode array 

in the cochlea and the necessity to maintain a tonotopic relationship between 



69 

 

the residual acoustic hearing and the electric stimulation provided by the CI. 

However, Reiss et al.’s research in 2006 showed that pitch perception through 

Hybrid CIs can change over time; this may undermine the importance of 

tonotopicity when it comes to CI electrode insertion. In contrast to Cochlear’s 

Hybrid-S short array (Gantz and Turner, 2004) Cochlear later introduced the 

Hybrid-L24 16 mm array and hearing conservation was possible with the use of 

a round window approach (Lenarz et al., 2009). Other researchers have also 

stressed the importance of the electrode array design (e.g. flexibility) and the 

use of an atraumatic electrode insertion procedure (soft surgery) even with an 

insertion depth of up to 18-24 mm when it came to EAS (Gstoettner et al., 

2004).  

Electrode array diameter 

The diameter of the electrode is a design issue as well; EAS systems have 

thinner electrode arrays e.g. the Iowa/Nucleus Hybrid Implant, Cochlear’s 

Hybrid-L24 and MED-EL’s PULSARCI
100 FlexEAS (Gantz and Turner, 2003; 

Turner et al., 2004; Lenarz et al., 2009 and Helbig et al., 2011). Their design 

used a thinner electrode array in order to minimize injury to hair cells and the 

Organ of Corti.  

CI manufacturers such as MED-EL and Neurelec promoted deeper insertion 

and reduced the diameter of the array to make it less traumatic.  

Some electrode arrays have a larger diameter (e.g. AB HiFocus II) and 

therefore may carry a greater risk of cochlear trauma during insertion (Eshragi 

et al., 2003; Aschendorff et al., 2003 and Wardrop et al., 2005a). However, 

these arrays were designed to (1) ensure increased efficiency of electrical 

stimulation by decreasing the volume of the surrounding conductive fluid and to 

(2) enhance frequency specificity by increasing the proximity of the electrodes 

to the spiral ganglion. In this case finding the right balance would be the target 

of future designs. 

The electrode array’s cross-sectional dimensions must not exceed that of the 

Scala Tympani otherwise there would be a high incidence of trauma 
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(Aschendorff et al., 2003, Eshraghi et al., 2003, Wardrop et al., 2005a, 

Rebscher et al., 2008). 

2.2.4.2 Preformed curved electrode arrays versus straight arrays 

Electrode array designs that allow the contacts to sit in closer proximity to the 

modiolus are intended to increase electrical stimulation efficiency and promote 

frequency specificity by positioning the electrodes closer to the auditory 

neurons. Cords et al. (2000) compared an AB modiolus-hugging position of the 

array with the use of a preformed silastic positioner to push the array closer to 

the modiolus and a straight array in six adult cats. Electric Auditory Brainstem 

Response (EABR) testing showed a significant reduction in thresholds with the 

positioner; and this was associated with shallower amplitude growth slopes 

indicating a wider dynamic range, this was most evident in the basal region. 

Early research on pre-curved arrays in humans (Taikocinski et al.,2001) such as 

Cochlear’s Contour implants found that T and C levels decreased with the use 

of the pre-curved perimodiolar array compared to the straight array; this finding 

was also replicated by (Saunders et al., 2002, Parkinson et al., 2002). Other 

supporting evidence included the observed decrease in EABR thresholds, 

shorted latencies and an increase in the amplitudes of waves III and V after the 

removal of the stylet with the use of Nucleus Contour implant (Pasanisi et al., 

2009). Some argue that electrode array designs that position the array closer to 

the modiolar wall of the scala tympani can risk damaging this thin wall; thus 

directly damaging the spiral ganglion and increasing the risk of spreading 

infection from the middle ear to the CSF (cerebro-spinal fluid) (Rebscher et al., 

2008).  

2.2.4.3 Electrode array stiffness 

The stiffness of the electrode array may have an effect on the insertion of the 

array, the final position of the array in the cochlea and the incidence of insertion 

trauma. Rebscher et al. (2008) measured the overall stiffness and the stiffness 
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on the vertical and horizontal planes of different electrode arrays from AB, 

Cochlear and Nurobiosys (a Korean CI manufacturer). They then correlated 

stiffness to results reported in previous studies reporting insertion trauma 

(Wardrop et al., 2005a and Wardrop et al., 2005b).They found that there was no 

correlation between the overall stiffness of the arrays and insertion trauma. 

However, they did show that arrays with greater stiffness on the vertical plane 

were less likely to perforate into the scala vestibuli or scala media than those 

with isotropic stiffness (equal stiffness on the vertical and horizontal planes) or 

with stiffness greater on the horizontal plane. Baumgartner et al. (2007) found 

that the MED-EL FLEXsoft electrode array with increased flexibility allowed deep 

insertion while preserving hearing for half of the 16 implanted up to one month 

and for a quarter of them up to one year post implantation. The MED-EL 

FLEXsoft produced comparable speech reception and life quality questionnaire 

results to those of COMBI 40+ and PULSARCI
100. 

2.3 Factors dependent on the CI electrodes/channels 

The electrode array contacts themselves may also play a role in affecting 

performance by altering spectral selectivity or the efficiency with which current 

is delivered. Despite the disparity in the number of electrodes that the CI 

devices from the different manufacturers have, they all provide comparable 

post-implantation results (e.g. Friesen et al., 2001 and Green et al., 2007).  

It is presumed that increasing the number of electrodes would increase the 

number of perceptual channels, this would only be the case if they provided 

distinct information to increase specificity; this however may not be the case 

(e.g. Friesen et al., 2001). Some problematic electrodes may cause distortion to 

the signal delivered via the implant which may actually lead to greater numbers 

of electrodes causing degradation in performance. Identifying these electrodes 

and finding a fitting solution to overcome the effects that they have on 

perception might have an impact on post-implantation performance. 
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2.3.1  Number of channels stimulated by the active electrodes  

Different CI systems have a different number of possible active physical 

electrodes in their devices ranging from 12 to 22. But the number of physical 

electrodes does not necessarily correspond to the number of spectral channels 

provided by the implant (Blamey et al., 1992; Zwolan et al., 1997; Fu et al., 

1998 and Friesen et al., 2001). Friesen et al. (2001) investigated speech 

perception as a function of electrodes/channels in implanted [Nucleus 22 users 

and AB CI (8 electrodes)] and normally hearing adults (using a noise band 

vocoder). They found that CI recipients were not able to fully utilise the spectral 

information provided by the full number of electrodes. They did not improve in 

terms of speech perception in noise when the number of electrodes increased 

beyond seven or eight. However normal hearing individuals continued to 

improve up to at least 20 channels. They also reported that the best implanted 

individuals performed as well as the normal hearing individuals up to 7/8 

electrodes/channels only. However, these results have to be considered with 

caution, since around half of the implanted individuals (9 of 19) had the CI 

Clarion implant that stimulated only up to 8 channels when all possible 

electrodes were switched on. In addition to that, there was a marginal significant 

difference in speech perception between the research conditions with seven 

active channels versus ten in implanted individuals with Nucleus 22 (the device 

with 20 possible active electrodes). Another factor that was not accounted for in 

this study was the discriminability of the electrodes; there was a possibility that 

non-discriminable electrodes did not add spectral information when switched 

on, in contrast to discriminable ones. Additionally CI recipient may benefit from 

a larger number of channels with more recent CI devices and strategies. 

Nonetheless, there was discrepancy between the number of electrodes and the 

number of useful perceptual channels (Blamey et al., 1992; Zwolan et al., 1997; 

Fu et al., 1998 and Friesen et al., 2001). One possible explanation for that is the 

stimulation of overlapping populations of auditory neurons by different 

electrodes (Fu and Nogaki, 2004 and Dorman and Spahr, 2006), which could 

be caused by so called dead regions in the spiral ganglion or “holes in hearing” 
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(Shannon et al., 2001) or secondary to placement issues whereby electrodes 

are placed relatively far from the spiral ganglion (Wilson and Dorman, 2008).  

This discrepancy may affect performance, since studies have shown a positive 

relationship between the number of perceptually distinct channels and speech 

perception for both adults (Collins et al., 1997; Henry et al., 1997; Nelson et al., 

1995; Friesen et al., 2001) and children (Dawson et al., 2000). 

Besides increasing the number of physical electrodes, CI manufacturers 

explored other possibilities to increase the number of distinct pitch percepts 

(perceptual channels). Current steering (described earlier in Section 1.4.3.3) 

was introduced to create virtual channels to allow the channels to be placed in 

the correct characteristic frequency region rather than at a fixed electrode site 

(e.g. Donaldson et al., 2005; Firszt et al., 2007; Koch et al., 2007; Bonham and 

Litvak, 2008 and Wilson and Dorman, 2008). Tripolar and partial tripolar 

coupling (described earlier in Section 1.2.5.) aimed to reduce current spread by 

concentrating stimulation (e.g. Bierer et al., 2005; Bonham et al., 2005; Litvak et 

al., 2007; Zhu et al., 2012) and thus creating less overlap between channels. 

Electrodes that do not provide distinct information could lead to poor perception 

because cycles of information in a CIS or n of m strategy would be wasted 

delivering duplicate information rather than unique information to enhance 

perception, these electrodes could be considered problematic and may require 

intervention. 

2.3.2  Problematic electrodes 

It is routine clinical practice that some CI electrodes are deactivated. In a 

retrospective study Stoddart and Cooper (1999) examined electrodes that 

showed complications and were subsequently deactivated in 100 adult CI 

recipients. Reasons for de-activating those electrodes within routine clinical 

practice were: (1) non-auditory stimulation mainly facial nerve stimulation and 

sometimes throat sensations, (2) poor sound quality, (3) reduced dynamic 

range or absence of loudness growth, (4) pain, (5) vibration, (6) absence of 

auditory stimulation and (7) dizziness. However, in this section, problematic 
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electrodes refer to electrodes with sub-optimal function that may not be 

deactivated in routine clinical practice.  

 

The identification of problematic CI electrodes has been explored by different 

methods. Such as frequency discrimination approaches to determine if the 

electrodes provide distinct pitch information (e.g. Zwolan et al., 1997) or 

threshold measurement with the use of focussed stimulation to identify what 

was called “poor electrode-neuron interface” (e.g. Bierer et al., 2011). Some 

researchers have used direct testing via a research interface (e.g. Zwolan et al., 

1997) while others explored indirect testing approaches, using consonant and 

vowel confusion matrices (Remus et al., 2007). The following section provides 

an overview of different methods used for identifying problematic electrodes 

with adults, including main findings and indications for possible solutions to 

improve speech perception. 

2.3.2.1 Testing methods for problematic electrodes 

2.3.2.1.1 Using electrode differentiation (discrimination) 

Several procedures have been described to test for electrode differentiation 

(discrimination). Some used a pitch ranking task (e.g. Nelson et al., 1995), while 

others determined the frequency difference limen of each electrode (Zwolan et 

al., 1997) or used a multidimensional scaling procedure (McKay and Henshall, 

2001). These procedures described below required manufacturer specific 

research interfaces that require programming and lengthy procedures rendering 

them clinically non-viable. 

Pitch ranking 

Nelson et al. (1995) described an electrode pitch ranking test administered in a 

two-interval two-forced-choice (2I-2AFC) task with the use of direct stimulation 

at loudness balanced “medium loudness” level. They used 500 ms bursts of 

current pulses and an inter-stimulus interval (ISI) of 500 ms. Stimulation was 
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delivered through the Cochlear corporation research interface to collect the 

percent correct responses for electrode pairs that were 0.75, 1.5, 3.0, and 4.5 

mm apart. Additional electrode separations of 6.0 and 7.5 mm were also tested 

if subjects did not achieve near perfect scores when the electrodes were 4.5 

mm apart. They found great variability in performance on the electrode pitch 

ranking task among the 14 Nucleus-22 adult users. They also reported that 

electrode ranking improved with increased spatial separation and suggested 

increasing the spatial separation between electrodes for subjects with poor 

ranking at smaller spatial separation; “the reduction in the number of active 

electrodes might provide a better representation of place pitch across 

electrodes for these subjects”. Later Donaldson and Nelson (2000) used the 

same procedure and found a positive relationship between place-pitch 

sensitivity, as assessed by the electrode pitch-ranking and consonant 

recognition in 12 post-lingually deafened adults, all of whom were experienced 

Nucleus 22 implant SPEAK users.  

Frequency Difference Limen (FDL) 

In 1997 Zwolan, Collins and Wakefield investigated the possibility of identifying 

indiscriminable (problematic) electrodes based on electrode discrimination in 11 

adult post-lingually deafened CI users. Two procedures were employed to 

evaluate the discriminability of each electrode at loudness balanced comfortable 

levels: (1) an adaptive 2I-2AFC procedure to determine the discrimination limen 

(DL) for each electrode; i.e. the closest discriminable electrode to a reference 

electrode in the basal or apical direction and (2) a fixed-level procedure to verify 

results from the first procedure and to provide finer estimates of the electrode 

DL. Each electrode served as a reference electrode in a DL task in at least one 

block of trials. They provided their participants with research programs based 

on the electrode differentiation results which improved speech perception for 

seven out of nine participants, for details of the research programs see Section 

(2.3.2.2). 

Electrode discrimination 
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Henry et al. (2000) used speech intelligibility index (SII) procedures to 

investigate the amount of speech information received by CI users in five 

different frequency bands and associated it with electrode discrimination in each 

band. They also compared the speech perception abilities of 15 adult post-

lingually deafened CI users with that perceived by normal hearing individuals. 

The normal hearing listeners listened to filtered speech filtered into five 

frequency bands (170–570, 570–1170, 1170–1768, 1768–2680, and 2680–

5744 Hz) and the CI users listened with sequences of electrodes turned down 

to cut out those spectral components. Electrode discrimination between the 

adjacent electrodes corresponding to each frequency band was tested in a 4 

interval forced choice (4IFC) procedure in which three intervals containing 

stimulation of the more apical reference electrode and a fourth interval 

containing stimulation of the test electrode were randomly presented and 

separated by a 500 ms ISI . The participants were asked to identify the 

stimulation of the test electrode. Results indicated that the amount of speech 

information perceived by CI users was significantly less than that of normal 

hearing individuals in the low to mid frequencies 170-2680 and there was a 

significant correlation between electrode discrimination ability and the speech 

information perceived in that frequency range (170-2680 Hz) . This correlation 

was greatest with the speech information perceived in the frequency band 

1768-2680 Hz. Speech information at this frequency band was also shown to be 

more difficult to perceive by poor performers. Thus it is the most important band 

for predicting overall speech perception (i.e. whether the CI user was a good or 

a poor performer), suggesting this band (which corresponds to the region of the 

second formant) to be one of the most important perceptual regions in speech.  

Multidimensional scaling (MDS) procedure  

McKay and Henshall (2001) used a multidimensional scaling (MDS) procedure 

to choose the most discriminable electrodes which were used in their (10 

electrode) experimental programmes. The stimulus consisted of a 250 Hz pulse 

train with a 500 ms duration; all possible pairs were tested at loudness balanced 

comfort levels. The subject was asked to judge the dissimilarity of the two 
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electrodes across a scale from "exactly the same" to "the most different". Then 

the scale was converted to a numerical scale and each response was given a 

number between 0 and 100. This was done twice and two matrices were 

acquired for each individual, a repeated measure nonparametric 

multidimensional scale was applied later for analysis. The three experimental 

programmes were two ten-electrode maps, one of which had a high resolution 

for frequencies below 2.708 kHz, where 9 electrodes were assigned to that 

range and only one electrode was assigned to the higher frequency range 

(2.708-10.513 kHz), while the other 10-electrode map had evenly distributed 

frequency filters across the electrodes. The third experimental map utilized all 

possible electrodes as that in the original clinical map, but it had the same 

analysis filter as that used in the 10-electrode maps which differed from the 

usual frequency to electrode allocation used the original clinical map. 

Results demonstrated that the number of electrodes required for good speech 

perception may differ between high and low frequencies. In this study, nine 

electrodes were better than five for the perception of information below 2.6 kHz, 

and five electrodes were better than one and equivalent to nine for the 

perception of frequencies above 2.6 kHz; in other words, for optimum 

perception of speech information by CI users with Nucleus 22 systems 14 

channels of information were required. However, it should be noted that there 

was a large variability among tested individuals.  

Although the design of the study did not directly investigate the effect of the less 

discriminable CI electrodes on speech perception, it served to highlight the 

importance of spectral resolution at a specific frequency range (less than 2.6 

kHz) in order to achieve good speech perception, a finding supported by studies 

simulating “holes in hearing” or missing spectral information in both the 

implanted populations (Henry et al., 2000 and Shannon et al., 2001) and the 

normal hearing individuals via noise vocoders (Shannon et al., 2001). 

2.3.2.1.2 Using electrically evoked compound action potential (ECAP) 

As described previously, channel interaction where different electrodes across 

the array stimulate overlapping regions of auditory neurons may negatively 
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affect performance with a CI. Abbas et al. (2004) investigated the use of ECAP 

(an objective measure) to evaluate these channel interactions in Nucleus 24M 

or 24R implant users with the use of the NRT software (which provides 

objective measures of the auditory-neural response to the CI electrodes’ see 

Section 1.2.1.1). They used a “forward-masking stimulus paradigm” where the 

masker and probe pulses were delivered through different electrodes. The 

position of the masker electrode was varied for each probe electrode which 

affected the amplitude of the neural response to the probe. The amplitude of the 

neural-response to the probe depends on the extent of overlap between the 

stimulated neural regions by the masker and probe electrodes. They found that 

the ECAP revealed varying degrees of channel interaction across the different 

CI users and within-subject differences across the different electrodes. They 

also found that ECAP has the potential to identify regions with little stimulable 

neurons, but they did not correlate ECAP results with speech perception. Later, 

Hughes and Abbas (2006) tried to correlate between results of the objective 

ECAP spread of excitation (SOE) and the psychometric 2I-2AFC electrode pitch 

ranking, but they found no significant relationship between the width of the 

ECAP and the slope of the electrode pitch ranking function for the electrodes. 

However, later re-evaluation of the original ECAP and electrode pitch ranking 

data revealed a significant strong positive relationship between ECAP SOE and 

electrode pitch ranking for the electrode pairs (Hughes, 2008). In the re-analysis 

ECAP SOEs were normalised to the highest amplitude of all the ECAPs within 

the electrode array, in contrast to the first analysis where ECAP for each 

electrode was normalised individually. This allowed within subject comparison 

between the different electrodes in the re-analysis. The re-analysis also used 

the electrode pitch ranking score for each electrode pair rather than the slope of 

the electrode pitch ranking function (where the reference electrode was tested 

with several electrodes and a slope was calculated). Further research is 

warranted to associate ECAP SOE with speech perception. It is important to 

note that the NRT used in this research is specific to Nucleus devices, although 

AB and MED-EL both have their own ECAP systems  
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2.3.2.1.3 Using single electrode thresholds and electric auditory brainstem 

response (EABR) thresholds 

Variability in single-channel thresholds with the use of bipolar or tripolar (more 

focussed) stimulation techniques across the electrode array was found to be 

associated with poor speech perception (Pfingst and Xu, 2004; Pfingst et al., 

2004 and Bierer, 2007). Bierer and Faulkner (2010) and Bierer et al. (2011) 

used the more spatially focused partial tripolar stimulation (described in 1.2.5) to 

investigate the use of single-channel thresholds and EABR thresholds as a 

means of identifying poorly-differentiated electrodes. Electrodes with higher 

thresholds had steep wave V growth function and a degraded spatial/spectral 

selectivity (wave V is usually the clearest wave and has the largest amplitude). 

It was suggested that these problematic electrodes have a “poor electrode-

neuron interface” and negatively impact on performance with CI. The tripolar 

and partial-tripolar stimulation applied in this research is currently only available 

in AB devices because multiple current sources are required to deliver the 

simultaneous stimulation. 

2.3.2.1.4 Modulation detection threshold (MDT) 

The detection of frequency modulation at specific CI electrodes was 

investigated as a possible tool to predict performance with CI and to identify 

possibly problematic electrodes. Fu 2002 explored the relationship between 

temporal processing and speech perception with CI. An adaptive, three-

alternative, forced-choice procedure was used; two presentations of a 300ms 

long non-modulated steady-state biphasic pulse train and the same pulse train 

modulated by a 100 Hz sinusoid. The depth of modulation was adaptively varied 

and the threshold for detecting the modulation (modulation detection threshold) 

was established at seven different presentation levels (ranging between 10%-

90% of the dynamic range) for the middle electrode pair (10 and 12). He found 

that the mean modulation detection threshold strongly correlated with the 

phoneme recognition score. This finding was further supported by Luo et al. 

(2008), and Garadat et al. (2012). Luo et al. (2008) found a positive relationship 
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between mean MDT (at 5 different stimulation levels for electrode 10) and tone, 

consonant and sentence recognition scores in Mandarin but not with vowel 

recognition scores. The lack of correlation with vowel recognition could have 

been due to the use of one central electrode that does not represent the lower 

frequencies (vowel formants region). Garadat et al. (2012) reported significantly 

better speech perception with a research program that used the ten electrodes 

with the best MDT as compared to a research program that used the ten 

electrodes with the worst MDT; no comparison was made with the clinical 

program because they did not control all program settings. 

2.3.2.1.5 Using consonant and vowel confusion matrices 

Remus et al. (2007) proposed the use of an indirect approach employing vowel 

and consonant confusion matrices to identify indiscriminable electrodes. Their 

analysis of Zwolan et al.’s (1997) data (electrode discrimination) in addition to 

consonant and vowel confusion matrices data from six CI recipients showed 

that they can potentially identify anomalous channels (problematic electrodes) 

“above chance level”. However, the development of confusion matrices requires 

stimuli that will allow testing of each channel and the identification of problems 

associated with each particular channel. This could be especially challenging 

and prohibitively time consuming in clinical practice, especially because it would 

need to be adapted for different devices and different frequency configurations 

that each device allows. 

2.3.2.2 Deactivation of problematic electrodes to improve CI performance 

Using electrode differentiation (ED) 

Zwolan et al. (1997) identified indiscriminable (problematic) electrodes for 11 

post-lingually adult CI recipients. Indiscriminable electrodes were deactivated 

and participants were provided with experimental programs that employed 

discriminable electrodes only, thus reducing the number of active electrodes 

which is in concordance with the Nelson et al. (1995) recommendations 
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mentioned above. Stimuli used for speech testing included a medial vowel 

recognition test, a medial consonant recognition test, the NU6 Monosyllabic 

Word Test (scored for words and phonemes) and the CID Everyday Sentence 

Test. Two implanted individuals showed perfect electrode discrimination, thus 

were not given experimental programs and were not included in further testing 

and analysis. 

 

Results indicated that seven out of the nine implanted individuals showed 

significant improvement in at least three out of the five measures with the use of 

the experimental program, as compared to performance with the clinical 

program. Two implanted individuals showed a significant decline in performance 

in at least one of the tests with the experimental programme. However, it must 

be noted that one of those individuals' experimental programmes included three 

discriminable electrodes only. It could be argued that the three electrodes 

provided very limited speech information to the point that reprogramming cannot 

improve his performance. 

Using modulation detection threshold (MDT) 

Zhou and Pfingst (2012) used MDT with eight bilaterally implanted post-lingually 

deafened adults and provided them with three experimental programs. MDT 

was measured for each electrode at a presentation level of 50% of the 

electrode’s dynamic range in a four-alternative forced-choice (4AFC) with the 

use of a research interface. Four 500ms pulse trains with inter-stimulus-interval 

of 500ms were presented in each trial; one of the pulse trains was modulated by 

a 10 Hz sinusoid. MDT was measured with and without masking; the masker 

was presented on the adjacent electrode which was apical to the test electrode 

except for electrode 22 (basal) at 50% of the masking electrode’s dynamic 

range. Speech reception threshold (SRT) with the use of CUNY sentences was 

acquired for each ear with the clinical program. The MDT in masking was used 

to identify poor sites (electrodes) unless mean MDT in masking was poorer in 

the ear with the better SRT; in that case MDT in quiet was used if it agreed with 

the SRT results. In research program A, the MDT for the 22 corresponding 
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electrodes (e.g. electrode 1 in the left and electrode 1 in the right CI) were 

compared, the electrode with the higher MDT was deactivated and the 

corresponding (contralateral) electrode was kept active. Frequencies were not 

redistributed following deactivation, which meant that each frequency range was 

represented by the CI in one ear only and both ears complemented each other 

in dichotic programs; i.e. the program had spectral holes in one ear that was 

compensated by the corresponding contralateral site. In research program B, 

the electrodes were divided into five segments and the two electrodes with the 

highest MDT in each segment were deactivated, again without frequency 

redistribution (dichotic programs). Program C was similar to program B with the 

exception that frequencies were redistributed across the electrodes which 

meant that each frequency range was represented by both ears. All participants 

showed improved speech perception in noise with at least one research 

program, program B produced the best results but participants may have 

required some adaptation/training period to adjust to the new frequency 

relocation in program C. Program B was a dichotic program that did not have 

any channels with mismatched pitch across ears. However measures of 

localisation were not applied. 

2.3.2.3 Comparison between the different methods 

2.3.2.3.1 The identification of problematic electrodes 

As mentioned in Section (2.3.2.1.2), there was a strong statistically significant 

association between ED and SOE using ECAP (Hughes, 2008). Chatterjee and 

Yu, (2010) evaluated the relationship between ED and MDT in 13 implanted 

adults with Cochlear devices, ED and MDT were measured for the centrally 

located electrode 10 only at 20%, 30% and 40% of the dynamic range with the 

use of monopolar and bipolar modes of stimulation. The maximum stimulation 

level of 40% was chosen because their subjects were performing at ceiling 

levels when higher stimulation levels were used which could be due to 

restricting testing to one electrode; a possible limitation in the study. MDTs were 
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measured at two modulation frequencies; 100 Hz and 10 Hz. They found 

statistically significant correlation between ED and MDT at the lower levels of 

20% and 30% only with the use of the bipolar mode of stimulation and only at 

the 20% level with the use of the monopolar mode of stimulation. Weaker 

associations at higher levels could be due to measures approaching ceiling 

(especially for MST) thus masking inter-subject variability in performance at the 

tested electrode (10). The ED was better with the more focussed bipolar 

stimulation than monopolar stimulation. Considering that MDT testing requires 

the use of temporal cues while ED requires the use of spectral cues, the most 

likely explanation is that these tests uncovered a common underlying reason for 

both poor ED and worst MDT. Poor localised neuronal survival of the spiral 

ganglion (dead regions) would affect local sensitivity to temporal and spectral 

cues. Further support is provided by the fact that the correlation was stronger 

with the more restricted excitation patterns associated with lower presentation 

levels and with the more focussed bipolar stimulation. More restricted excitation 

can evaluate more localised regions and increase the sensitivity of the tests 

(especially MDT in this study) for local dead regions. 

 

A common underlying cause for poor ED, worst MDT (poor detection of 

frequency modulation) and wider SOE (stimulation of overlapping neural 

population by more than one electrode) is the most plausible explanation for the 

positive associations found. Cochlear regions with poor neuronal survival “dead 

regions” can cause loss of temporal and spectral cues thus affecting MDT and 

ED respectively. Such regions will also be associated with the need to increase 

stimulation levels to reach T levels (subjective and EABR) and M levels 

because they necessitate higher levels of stimulation to reach audibility. Higher 

levels of stimulation can also stimulate surrounding regions with better neural 

ganglion survival. This in turn will cause more channel interaction and the 

stimulation of overlapping neural populations by different electrodes thus 

affecting ED and SOE, which would relate increased T and M levels with poor 

ED and a wider SOE.    
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Dead regions usually refer to “Regions in the cochlea with no (or very few) 

functioning inner hair cells and/or neurons.” (Moore, 2004). In sensorineural 

hearing loss these dead regions may have damaged inner hair cell or auditory 

neurons. However since the cochlear implant device bypasses the damaged 

cochlear hair cells and stimulates the auditory nerve fibres, when referring to” 

dead regions “in cochlear implants, these refer to regions with no or few spiral 

ganglion (Shannon et al., 2001 and Baskent and Shannon, 2006). Reference to 

“dead regions” in this thesis thereafter will be in that context; i.e. regions with no 

or poor spiral ganglion survival. 

 

Another factor that may increase the T and M levels and widen the activation 

pattern of neurons (increase SOE) could be increased electrode-neuron 

distance within the cochlea which affects the electrode-neuron interface. With 

the increased electrode-neuron distance higher levels of stimulation are 

required to reach T and M levels thus spreading the width of excitation. This is 

in line with a model proposed by Goldwyn et al. (2010) where they suggested 

that along with cochlear dead regions, increasing the electrode-neuron distance 

may also increase the T and M levels especially with the use of a more focused 

mode of stimulation.  

 

In summary, the different methods used so far to identify problematic electrodes 

are affected by common underlying causes for decreased performance on 

those measures, mainly the presence of dead region in the cochlea or poor 

electrode-neuron interface. 

 

2.3.2.3.2 Practical application with the different CI devices 

When comparing between the different methods for the identification of 

problematic electrodes, correlation between results is not sufficient. The results 

provided by each method and the analysis involved to identify problematic 
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electrodes has to be considered when choosing a testing method. Additionally 

issues concerning practical application and clinical viability have to be taken into 

account. 

 

MDT has been used in the identification of the best electrodes (stimulation 

sites) relative to the other electrodes, however this can be an issue for CI 

recipients with no problematic electrodes. Deactivating electrodes with higher 

MDT in comparison to other electrodes for those recipients may not enhance 

their performance, contrary to that it may negatively affect their performance 

due to reduced spectral resolution. This holds true when applying ECAP to 

measure SOE and when using T and M levels as a means to identify 

problematic electrodes. Obtaining a score with a cutoff point that determines 

whether a particular electrode is problematic or not with the use of a preset 

pass versus fail criterion is preferable; it would allow a CI recipient to pass all 

electrodes. It can also allow for comparison with other electrodes if necessary. 

Testing electrode-pairs for ED in a 2 interval-2 alternative forced choice pitch 

ranking task could provide such a score where binomial distribution could be 

used to establish the pass cut off point.   

 

Other practical considerations may include the method’s flexibility to 

accommodate devices from different CI manufacturers without the use of 

special manufacturer-specific research interfaces or stimulation modes (e.g. use 

of partial tripolar stimulation which is available only to AB in measuring T and M 

levels). Delivering the test stimuli to the speech processor via pure-tones with 

the use of software designed to allow such flexibility can be a practical option 

that overcomes the need for research interfaces. 

 

Feasibility of use in clinical settings would also necessitate that the duration of 

testing does not exceed that routinely allocated to programming CI. The test 

method is also required to demonstrate a relationship with different speech 



86 

 

perception measures, thus relating test results with performance indicating 

potential for use as a clinical tool to enhance performance with CI.  

 

A possible method for testing that meets the above considerations is pure-tone 

ED (PTED) which tests for ED by presenting pure-tones at the electrodes’ 

centre frequencies. The use of “STAR” software via the “STAR box” [Medical 

Research Council Institute of Hearing Research (MRC IHR), Nottingham] in a 

pitch ranking task can be optimised for the application of PTED. In Chapter 3, 

PTED is described and tests of reliability, validity and clinical use feasibility are 

reported. Furthermore, Chapter 5 explores the relationship between PTED and 

speech perception and Chapter 7 applies PTED results to provide CI recipients 

with research programs and evaluates speech perception with those programs. 

  

2.3.2.4 Interim summary 

In summary problematic CI electrode contacts may affect performance, either 

indirectly because they interface with a neuronal dead region or directly by 

functioning sub-optimally. The identification of those problematic electrodes 

which are not usually identified in routine clinical practice may actually be worth 

finding and de-activating. If those problematic electrodes are identified, 

intervention targeting them through re-programming of the CI device to improve 

performance might be possible. A possible solution for those problematic 

electrodes was offered by Nelson et al. (1995); they suggested that de-

activating electrodes in subjects with poor electrode discriminability thus 

increasing spatial separation might lead to improvements in speech perception. 

This was followed by Zwolan et al.’s (1997) attempt to deactivate 

indiscriminable electrodes which improved speech perception for seven of nine 

implanted individuals. Zhou and Pfingst (2012) also demonstrated improvement 

in speech perception when the electrodes with poorer MDT were deactivated. 

Since the methods used so far have been clinically non-viable due to equipment 

and time restraints and/or are manufacturer specific, exploring other testing 
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methods such as PTED may have great impact on post-implantation 

performance.  

2.4 Second CI 

Wilson and Dorman (2008) considered that bilateral electrical stimulation as one 

of the recent advances that “produced significant improvements in the overall 

(average) performance of implant systems”. It is argued that the second CI 

would provide the CI recipient with additional benefit mainly by providing 

binaural hearing and improved spatial listening. These in return would translate 

to the real world with improved localisation skills (e.g. Kerber and Seeber, 2012) 

and better speech perception especially in noise (e.g. Litovsky et al., 2006). 

Localisation is also important for CI users to aid them in the identification and 

orientation towards a specific talker among several talkers. The impact of 

having a second implant is clear if we consider how crucial sound localisation is 

for safety reasons, in order to avoid hazardous situations especially for the deaf 

and blind. It also guarantees that the better ear receives an implant, which 

maybe vital in post-meningitic cases for instance, where urgent intervention 

before ossification occurs could greatly improve prognosis. 

2.4.1  Speech perception with bilateral CIs 

In normal hearing listeners, speech perception is greatly enhanced in binaural 

versus monaural hearing in noise and in quiet (e.g. Bronkhorst and Plomp, 

1992). Hence, speech perception is expected to improve in both quiet and noise 

when listening through bilateral CI in comparison to unilateral (monaural) CI. 

Although some of the studies comparing bilateral CI with unilateral CI listening 

conditions have reported improvement in speech perception in quiet (Mosnier et 

al., 2009; Tyler et al., 2007; Eapen et al., 2009; Dunn et al., 2010 and Litovsky 

et al., 2006) and in noise when both speech and noise were presented from the 

front (at 0  a imuth) (Schleich et al., 2004; Ramsden et al., 2005; Eapen et al., 

2009 and Wackym et al., 2007). This was not always true; some have found 

that speech perception did not necessarily improve in quiet (Ramsden et al., 
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2005 and Laszig et al., 2004) or in noise when both speech and noise were 

presented from the same direction (at 0  a imuth) (Las ig et al., 2004; Litovsky 

et al., 2006). This discrepancy could be explained by the lack of a strong 

“binaural summation” effect which is found in normal hearing due to redundant 

information from both ears. In normal hearing binaural summation improves 

speech perception in quiet and in noise even when both (speech and noise) are 

presented from the same direction. On the other hand, evidence shows that 

there seems to be consistent improvement in speech perception with bilateral 

CI in noise when speech and noise are spatially separated; i.e. speech and 

noise are not coming from the same direction (Laszig et al., 2004; Schleich et 

al., 2004; Eapen et al., 2009; Litovsky et al., 2006 and Ricketts et al., 2006). 

This could be explained by the “head shadow” effect which is a purely physical 

advantage whereby the head shadows one of the ears to the sound or noise 

coming from the contralateral side. The head shadow effect does not require 

binaural integration of the signal to occur. In summary, there is a bilateral 

advantage in adults when it comes to speech perception, most of which is 

secondary to the head shadow effect with only some of the bilaterally implanted 

individuals showing evidence of binaural summation. See Table (2.1) for 

summary of major studies comparing unilateral CI with bilateral CI in adults and 

have a sample large enough to allow comparison and generalisation (N ≥ 6 was 

chosen). 

2.4.2  Localisation with bilateral CIs 

If spatial listening improves with the provision of bilateral implantation, it’s 

expected to lead to better localisation when both implants are active in 

comparison to monaural conditions. There were several studies that have found 

better sound source localisation among implanted individuals in the bilateral 

versus the monaural condition (Kerber and Seeber, 2012; Laszig et al., 2004; 

Mosnier et al., 2009; Neuman et al., 2007; Schleich et al., 2004; Seeber et al., 

2004 ; Tyler et al., 2007 and Verschuur et al., 2005). This advantage was 

reported for localisation with the use of different stimuli and tasks in both quiet 

and noise (Table 2.1 for summary). It must be noted that localisation abilities 
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varied greatly among bilaterally implanted adults (Mosnier et al., 2009) and that 

no correlation was found between localisation and speech perception in noise 

(Kerber and Seeber, 2012).  

 

2.4.3 Interim summary 

In summary a second CI should have a positive impact on perception, 

especially in terms of localisation and speech perception in noise. The benefit 

will not enable perception similar to that of normal binaural hearing, for example 

there is evidence suggesting that little or no binaural summation occurs for 

adults with bilateral CI. Variability in performance among the bilaterally 

implanted is also an issue; some clues of why that is the case were offered by 

Ramsden et al. (2005) “Most subjects were able to integrate the two signals, but 

there was an issue with some subjects reporting very large overall pitch 

differences between the ears. Subjective reports also indicate that initially, if the 

performance of the second ear is poor, it takes time to learn to ignore it and can 

be quite distressing.” 

 

If we consider the lack of a strong summation effect and the difficulties of pitch 

mismatches between the ears it may well point to the need for better matched 

implants for bilateral CI users in an attempt to help them use the important 

timing and level cues that are available for good binaural listening. Using pitch 

perception to match electrodes between the two implants might improve 

performance by facilitating integration of the two signals among the bilaterally 

implanted. Matching the bilateral CIs for pitch can be accomplished either via 

direct stimulation or via pure tone presentations. In Chapter 9 a study evaluating 

the effects of matching the bilateral CIs for pitch with both methods is described. 
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Table 2.1 Comparison between unilateral and bilateral CI performance. 

Study Sample  Testing measures Findings/ conclusions 

Dunn et al. (2010)   
 
 
 
 
 
Eapen et al. (2009) 
 
 
 
 
Kerber and Seeber (2012)   
 
 
 
 
 
Laszig et al. (2004)  
 
 
 
 
 
 
 
 
 
 
 
 

30 unilaterally implanted 
30 bilaterally implanted 
 
 
 
 
9 bilaterally implanted 
 
 
 
 
6 normal hearing 
4 unilaterally implanted 
10 bilaterally implanted 
 
 
 
37 bilaterally implanted 
 
 
 
 
 
 
 
 
 
 
 

Speech perception in noise: 
Speech reception threshold (SRT) 
with Cuing-the-Listener and 
Multiple- Jammers and Cognitive 
loading. 
 
Speech perception of (CNC) in 
quiet and (CUNY) sentences in 
noise. 
 
Speech reception thresholds (SRT) 
with the use of HINT. 
Localisation of sonorous source 
with the use of pulses in noise 
“spatial resolvability”

 
(SR)

 
was used 

as a measure. 
 
Speech perception in quiet and in 
noise with Freiburger monosyllabic 
words, Oldenburger sentences 
(OSLA), and the Hochmair-Schulz-
Moser (HSM) sentences. 
Localisation of speech. 
 
 
 
 
 
 

Bilaterally implanted significantly better on 
all measures 
 
 
 
 
Bilateral CI condition better speech 
perception than unilateral CI. 
 
 
Normal hearing performed best followed by 
the bilaterally implanted followed by the 
unilaterally implanted individuals for SRT 
and localisation. 
No significant correlation between speech 
perception and localisation. 
 
No significant difference between bilateral 
and unilateral condition (with better ear) in 
quiet or noise when both noise and speech 
presented from the front with HSM. 
Significant difference between bilateral and 
unilateral condition (with better ear) when 
both noise and speech presented from the 
front with OSLA and when speech and 
noise spatially separated (reported head 
shadow effect with bilateral CI). Localisation 
better for bilateral CI condition than 
unilateral CI 
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Table 2.1 (continued) Comparison between unilateral and bilateral CI performance  

Study Sample  Testing measures Findings/ conclusions 

Litovsky et al. (2006) 
 
 
 
 
 
 
 
Mosnier et al. (2009) 
 
 
 
 
 
Neuman et al. (2007) 
 
 
Nopp et al. (2004) 
 
 
 
 
Ramsden et al. (2005) 

34 bilaterally implanted 
 
 
 
 
 
 
 
27 post-lingually deafened 
bilaterally implanted adults 
 
 
 
 
8 bilaterally implanted 
 
 
20 bilaterally implanted 
 
 
 
 
29 post-lingually deafened 
bilaterally implanted adults  

Speech perception in quiet: HINT 
sentences and (CNC). 
Speech perception in noise: BKB-
SIN test (BKB-Speech In Noise) for 
SRT. 
Abbreviated Profile of Hearing Aid 
Benefit (APHAB) questionnaire.  
 
Comparison between monaural 
(left and right) and bilateral. 
Speech perception of disyllabic 
words in quiet and noise. 
Localisation of speech in noise. 
 
Localisation of speech and pink 
noise.  
 
Localisation of speech-shaped 
noise bursts. 
 
 
 
Speech perception in quiet: CUNY 
sentences and (CNC). 
Speech perception in noise: CUNY 
sentences. 

All subjects showed benefit in at least 
measure. 
Main benefit from head shadow effect. 
Reported benefit in questionnaire. 
 
 
 
 
Bilateral CI condition significantly better than 
unilateral CI with the better ear for speech 
perception in quiet and in noise and for 
localisation. 
 
 
Localisation better for bilateral CI condition 
than unilateral CI. 
 
18/20 localisation better for bilateral CI 
condition than unilateral CI. 
The other 2 had long duration of deafness. 
 
 
Bilateral CI condition significantly better than 
unilateral CI for group. 
Not all showed benefit (noise not spatially 
separated from speech). 
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Table 2.1 (continued) Comparison between unilateral and bilateral CI performance  

Study Sample  Testing measures Findings/ conclusions 

Ricketts et al. (2006) 
 
 
 
Schleich et al. (2004) 
 
 
 
 
Tyler et al. (2007) 
 
 
 
 
Wackym et al. (2007) 
 
 
 
 
 
 
Verschuur et al. (2005) 
 
 
 
               

16 post-lingually deafened 
bilaterally implanted adults. 
 
 
21 bilaterally implanted 
 
 
 
 
7 bilaterally implanted 
 
 
 
 
7 bilaterally implanted 
 
 
 
 
 
 
20 post-lingually deafened 
bilaterally implanted adults 

Speech perception in noise: SRT 
with HINT and connected speech 
test (CST) at fixed SNR. 
 
Speech perception in noise: SRT 
with Oldenburg sentences. 
 
 
 
Speech perception of (CNC) in 
quiet and (CUNY) sentences in 
noise. 
Localisation of everyday sounds. 
 
Speech perception in quiet: CNC 
and HINT sentences.  
Speech perception in noise: HINT 
and speech perception in noise 
(SPIN).  
APHAB questionnaire. 
 
Localisation of five stimuli (speech, 
tones, noise, transients, and 
reverberant speech). 

Bilateral CI condition significantly better 
than unilateral CI (noise spatially separated 
from speech). 
 
Bilateral CI condition significantly better 
than unilateral CI. Statistically significant 
head shadow and binaural summation. 
Small benefit from squelch. 
 
Bilateral CI condition better speech 
perception than unilateral CI in 4/7.  
Localisation better for bilateral CI condition 
than unilateral CI. 
 
Bilateral CI condition better than unilateral 
CI for all measures, statistical comparison 
not applied due to “limited number and 
variance in performance”. 
 
 
 
Bilateral CI condition significantly better 
than unilateral CI. 
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2.5 Summary  

 Central cognitive and central auditory processing is integral for good post 

CI performance; this is apparent when examining the effect of AAI and 

cognitive abilities.  

 Among subject dependent factors, duration of deafness seems to have 

the strongest impact on performance with CI; this could be secondary to 

spiral ganglion cell loss. 

 The duration of deafness effect on CI performance isn’t ear specific, 

providing yet further support for the importance of the integrity of the 

central auditory pathway and processing. 

 The aetiology of deafness can affect performance with CI because of the 

underlying pathological disease process associated with some conditions 

and can cause ossification or fibrosis, and may affect surgical insertion of 

the CI and post-implantation audiological management. 

 Optimum surgical placement of the CI array is crucial, in terms of ST 

versus SV insertion or crossing over between them, depth of insertion, 

proximity to the modiolus and insertion trauma with its impact on hearing 

preservation. 

 Soft CI surgery was introduced with hearing preservation as a priority, 

which is essential in cases of EAS. It requires the CI electrode array to 

meet certain specification as well including size and flexibility to avoid 

insertion trauma. 

 The number of perceptual channels may be different to the number of 

active electrodes; this could be due to the inherent limitations of the 

electric stimulation or due to neuronal dead regions or secondary to 

problematic or indiscriminable electrodes. 

 Some electrodes are deactivated in routine audiological practice but there 

might be some problematic electrodes that remain active; identifying them 

and deactivating them might improve performance. 
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 Several methods and procedures have attempted to identify those 

potentially problematic electrodes, but none of them were clinically viable 

and compatible with the different CI devices. 

 Electrodes which are indiscriminable and potentially problematic might be 

so due to neuronal loss “dead region” causing them to stimulate 

overlapping auditory neurons or due to electrodes sub-optimally 

functioning. 

 Zwolan et al’s study (1997) Zhou and Pfingst (2012) were the only studies 

that not only identified the indiscriminable electrodes but also explored a 

possible solution, which was to deactivate them. This is in line with 

Nelson et al.’s (1995) suggestion to increase spatial separation between 

electrodes in regions of poor discrimination.  

 A clinically viable procedure is still not available, but such a procedure 

has potential to influence clinical management of CI if proven beneficial; 

this necessitates exploring possible intervention or solutions after 

identifying the problematic/indiscriminable electrodes. 

 For some CI recipients the situation is further complicated because they 

have bilateral CIs. The second implant should provide the CI recipient 

with great advantages in localisation and speech perception, especially in 

noise. 

 The bilateral advantage of the second CI so far does not match that of 

binaural hearing, which may indicate the need for investigation. 

 Programming of bilateral CIs may require modification to incorporate 

matching across the ears for pitch and loudness level to maximise results 

and potentially improve outcomes. 

 

2.6 Conclusion 

It is important for the CI team to know the factors that may impact on post CI 

implantation performance and understand how they affect it. Generally, these 

factors interact with each other: a too deep surgical insertion of the CI array 

for example can cause damage to the cochlea and/or the electrode array. 
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When faced with a sub-optimally performing CI user, one must investigate 

possible underlying reasons in order to target them with a possible 

intervention that may rectify or partially relieve the problem. Radiological 

evaluation may be indicated to examine electrode placement, for example, to 

confirm a kink in the electrode array or the number of electrodes lying inside 

the cochlea in cases of partial insertion of the array. These electrodes would 

be usually deactivated, thus radiological evaluation can affect programming 

of the CI device. The same is true when we understand how the pathological 

changes associated with meningitis or otosclerosis can affect the spread of 

electrical current hence influencing the programming of the CI. Again de-

activation of some problematic electrodes in those cases can prevent facial 

nerve stimulation for instance or enhance performance.  

 

Thus a review of the literature has exposed some problems with achieving 

optimal performance with CI.  Pitch perception analysis might be a valid tool 

in determining electrode discrimination.  Poorly functioning electrodes, if 

deactivated might improve overall speech perception in CI users.  However, 

testing methods in the unilaterally implanted so far have been clinically non-

viable due to equipment and time constraints thus the PTED pitch ranking 

test can be a clinically viable option. Reprogramming of the CI with the use of 

tonotopic electrodes only may provide improvement. Among the bilaterally 

implanted using pitch perception to identify problematic electrodes must take 

into consideration matching pitch across ears since mismatch in pitch 

perception across ears can negatively affect performance. Reprogramming 

with the use of electrodes which are tonotopic in relation to the other ear as 

well may provide benefit. To measure performance with CI the widely used 

BKB sentence test in quiet and in noise (provides contextual cues that allows 

participants to fill in the blank) in addition to the Coordinate response 

measure [(CRM) an adaptive speech in speech test that introduces both 

energetic and informational masking and does not provide contextual cues] 

will be used to assess speech perception additionally localisation will be 

assessed in the bilaterally implanted individual. 
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This thesis will address the following research questions: 

 

Q1: The main research question “Can testing for pitch perception guide 

programming of CI to improve performance?” which will be mainly addressed 

in Chapters 7, 8 and 9. 

Q2: Is PTED a valid, reliable and clinically viable test? (Chapter 3) 

Q3: What is the minimum clinically significant change in CRM in the normal 

hearing and CI users? Is it different between these two groups? (Chapter 4) 

Q4: Is there a relationship between the percentage of discriminable 

electrodes as identified via PTED and speech perception (BKB in quiet and 

in noise and CRM threshold)? If so, is the relationship stronger at specific 

frequency ranges (is good spectral resolution at certain frequencies more 

important for good speech perception)? (Chapter 5) 

Q5: Are there other factors that contribute to speech perception with CI? 

(Chapters 5 and 6) 

Q6: Are deeper insertions of the CI electrode array associated with better or 

worst speech perception? If so, is there a relationship between speech 

perception and the mismatch between the characteristic frequency 

stimulated by the most apical electrode and the electrically stimulated 

frequency? (Chapter 6) 

Q7: Are deeper insertions of the CI electrode array associated with poor ED 

of the most apical electrodes? (Chapter 6) 

Q8: Can cone beam computed tomography (CBCT) be used to estimate 

scalar placement of individual CI electrodes? If so, does scalar placement 

affect speech perception or ED? (Chapter 6) 

Q9: Will deactivating indiscriminable electrodes as identified via the PTED in 

the unilaterally implanted improve speech perception? (Chapter 7) 

Q10: Is there a difference in using pitch information (number of discriminable 

intermediate frequencies) between regions of discriminable versus 

indiscriminable electrode-pairs? If so, do participants showing benefit after 

deactivating indiscriminable electrodes demonstrate a different pattern as 

compared to those showing no benefit following the deactivation of 

indiscriminable electrodes? (Chapter 8) 
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Q11: Is there a difference in using pitch information (number of discriminable 

intermediate frequencies) between regions of indiscriminable electrode-pairs 

before and after deactivation? If so, do participants showing benefit after 

deactivating indiscriminable electrodes demonstrate a different pattern as 

compared to those showing no benefit following the deactivation of 

indiscriminable electrodes? (Chapter 8) 

Q12: Will deactivating electrodes which are indiscriminable or non-tonotopic 

in relation to the contralateral ear in the bilaterally implanted improve speech 

perception and/or localisation? (Chapter 9) 
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Chapter 3 

Validity and reliability of the pure-tone electrode 

differentiation in CIs 

Abstract 

 
The pure-tone electrode-differentiation (PTED) test is potentially a clinically 

viable test for determining electrode differentiation (ED). It is based on a 

pitch ranking task using pure-tone presentation. Each pure-tone is presented 

at the estimated centre frequency of one of the CI filters, such that each 

frequency should predominantly stimulate a different CI electrode. The 

validity, reliability and feasibility of clinical use of the PTED were evaluated in 

this study. The PTED’s validity was determined by comparing the results to a 

direct-stimulation electrode differentiation approach that used the same 

response procedure but the stimuli were delivered using the CI fitting station. 

The results showed that the PTED has good validity (γ = 0.88, n = 104, p < 

0.001). PTED demonstrated good test-retest reliability (γ = 0.95, n = 108, p < 

0.001) and was clinically viable in terms of equipment and time requirements. 

3.1 Introduction 

One of the goals of CI development is to increase the number of distinct pitch 

percepts for the CI recipient. To date, the approach adopted has been to 

increase the number of physical electrode contacts on the array, or to create 

virtual channels by trying to focus electrical stimulation between electrode 

contacts (Donaldson et al., 2005; Firszt et al., 2007; Koch et al., 2007; 

Bonham and Litvak, 2008; Wilson and Dorman, 2008). Additional 

approaches have been made to reduce current spread by concentrating the 

stimulation, using bipolar or tripolar stimulation techniques (Bierer et al., 

2005; Bonham et al., 2005; Litvak et al., 2007). 
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As discussed in Chapter 2 (see Section 2.3) for many CI users, the number 

of perceptually-distinct channels can differ greatly from the number of active 

electrodes, or channels, on their implanted device (Blamey et al., 1992; 

Zwolan et al., 1997; Fu et al., 1998 and Friesen et al., 2001). In adult 

listeners, a positive relationship exists between the number of perceptually-

distinct channels and speech perception scores (Collins et al., 1997; Henry 

et al., 1997 and Nelson et al., 1995). There is some evidence that the same 

is true in children despite the inherent difficulties in assessing electrode 

differentiation (Dawson et al., 2000). This discrepancy between the number 

of channels and number of active electrodes could be attributed to 

problematic or indiscriminable electrodes. As discussed in Section 2.3.2.3 

the indiscriminable electrodes may arise as a consequence of placement of 

electrodes relatively far away from the spiral ganglion cells (Wilson and 

Dorman, 2008) or the existence of neuronal dead regions “holes in hearing” 

(Shannon et al., 2001). With CIs, dead regions usually refer to regions with 

no or few spiral ganglion (Shannon et al., 2001 and Baskent and Shannon, 

2006).  

 

In summary, a range of methods have been employed to demonstrate a 

strong, positive relationship between ED and speech recognition, and there 

is some evidence that an improvement in performance occurs when only 

discriminable electrodes were used in the CI programme (Zwolan et al., 1997 

and Zhou and Pfingst 2012). Despite this, methods employed to date 

(described in Section 2.3.2.1) are largely inappropriate in a clinical setting 

due to time constraints and their reliance on a research interface to make the 

assessment. Hence there is a need for a clinically viable test for ED; PTED is 

proposed as a potential clinically viable test for identifying problematic 

electrodes which could be indicative of problematic neural regions. 

 

The study described in this chapter was conducted to validate a new 

potentially clinically viable testing procedure (PTED) for the identification of 

problematic electrodes via ED and to assess its clinical viability.  
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3.1.1 The development of the PTED test 

The PTED test was developed with collaboration between the UCL Ear 

Institute and the Medical Research Council Institute of Hearing Research 

(MRC IHR), Nottingham. Development involved the author, Dr. Debi Vickers, 

Dr. Victor Chilekwa and Prof. David Moore. The author was the software’s 

beta tester and worked very closely with the programmer (Dr. Victor 

Chilekwa) in choosing the test tasks and the test protocol administered in 

each task and in ensuring that the software ran those tasks as required 

without crashing (debugging of the program).  

 

The number of trials per electrode pair and the pass/fail criteria were 

determined based on binomial distribution. The testing protocols and the 

starting presentation levels used in the test protocols were modified based 

on pilot testing to reduce testing time (e.g. if the comfort level was 

determined at 65dB for the first electrode, the initial loudness level of the 

adjacent electrode used in the loudness balance task was not as low as 

40dB). 

 

In the pilot phase, eight CI recipients from the three CI manufacturers (AB, 

Cochlear and Med-El) underwent both pitch ranking and pitch discrimination 

testing at various degrees of roving. 

 

The pitch ranking in a 2 interval-2 alternative forced choice (2I-2AFC) task 

was chosen for PTED rather than pitch discrimination in an odd one out 3I-

3AFC task because it requires that the CI recipients identify each 

presentation’s pitch while pitch discrimination does not. CI recipients (in the 

pilot phase) reported that some tone presentations (at electrodes’ centre 

frequencies) were distorted and sounded like noise while other presentations 

sounded like tones with specific pitches associated with them. In those cases 

a CI recipient passed the pitch discrimination task but not the pitch ranking 

task. These distortions could be associated with malfunctioning electrodes or 
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electrodes stimulating regions of poor spiral ganglion cell count (dead 

regions) hence the pitch ranking task is superior to the pitch discrimination 

task. Additionally some CI recipients reported that the 3I-3AFC used in pitch 

discrimination had a higher demand for auditory memory than the 2I-2AFC 

used in ranking and that they could not remember the first presentation 

which adds an additional variable (i.e. auditory memory). 

 

An ‘adjacent reference method’ (further described in Section 3.2.2.2) was 

chosen for loudness balancing because it ensures –as much as possible- 

that presentations of adjacent electrode-pairs (which will be tested for pitch 

ranking) are balanced for loudness to reduce loudness cues, in addition to 

that roving was added to further control for loudness cues. A 2 -dB- level 

rove (ranging from -1 to +1dB with a 1 dB step resolution) was chosen 

because some CI recipients (in the pilot phase) complained that a range of -2 

to +2dB and of -3 to +3dB was too confusing.   

3.1.2 Aims and hypothesis 

The aim was to determine if the PTED was a valid and reliable tool for 

assessing pitch-ranking (direction) ED (PTED) and whether it was sufficiently 

quick for use in clinical practice. The accepted standard approach for 

determining ED based on pitch ranking has been direct-electrical-stimulation 

[direct electrode discrimination (DED)] (Collins et al., 1997; Henry et al., 

1997; Nelson et al., 1995; Dawson et al., 2000 and Zwolan et al., 1997) An 

approach utilising DED was used to validate the pure-tone method PTED. In 

addition, test-retest reliability of the PTED was measured, and the testing 

time and ease of testing of the PTED were also evaluated. 

 

The rationale of PTED was that the acoustic stimuli (pure tones at the centre 

frequency of each electrode’s filter) should stimulate the appropriate 

electrode. Concurrent validity of the PTED procedure was established by 

comparing the results to those of the DED procedure testing the same 

electrodes in the same person. Concurrent validation is demonstrated when 
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there is significant correlation between scores on two measures that test the 

same construct (e.g., Shuttleworth, 2009). Results of the PTED and DED 

were compared for all tested electrode pairs.  

 

The PTED was tested during two different test sessions, PTED’s test-retest 

reliability was carried out, and PTED’s scores were compared across 

sessions for all tested electrode pairs.  

 

PTED’s clinical use feasibility was assessed; testing duration of all tasks 

involved were measured and both average and maximum possible testing 

durations for the different devices were calculated based on the median, the 

25th quartile and 75th quartile of testing times per electrode pair.  

 

Main research hypotheses: 

H1: There will be a relationship between PTED and DED. 

H2: There will be a relationship between PTED in first and second sessions. 

 

Sub-hypotheses are: 

H1: There will be a relationship between PTED and DED in classification of 

electrode-pairs into pass versus fail. 

H2: There will be a relationship between PTED and DED in classification of 

electrodes into problematic versus non-problematic. 

H3: There will be a relationship between PTED in the first and second 

sessions in classification of electrode-pairs into pass versus fail. 

H4: There will be a relationship between PTED in the first and second 

sessions in classification of electrodes into problematic versus non-

problematic. 

It was considered that if the testing duration for the PTED tasks for the 

different devices would not exceed the 1 hour clinical slot allocated for 
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routine CI programming that this would be clinically appropriate if the results 

are useful. 

3.2 Method 

NHS ethical approval (09/H0714/17) and Research and Development 

agreement were obtained for this project from the Royal Free Hampstead 

NHS Trust. All participants gave written consent and received 

reimbursements for the cost of travel. 

3.2.1 Participants 

Participants were recruited from the Royal National Throat Nose and Ear 

Hospital (RNTNEH) and through the National Cochlear Implant Users 

Association (NCIUA) by advertisement in its newsletter. One participant 

(participant 2) had a history of cochlear ex-plantation and re-implantation and 

one participant (participant 5) had a rolled over electrode array tip at 

insertion.  

15 adult CI recipients with acquired deafness were recruited. 

 

The inclusion criteria were that the participants had: 

1. A minimum of six months CI experience. 

2. An aural-oral mode of communication. 

3. English as a first language. 

 

Participants’ demographics are shown in Table (3.1). Details for determining 

some of the individual categories and summary of demographics were as 

follows: 

(1) Duration of deafness was calculated for each participant from the date of 

diagnosis of a bilateral profound sensorineural hearing loss, it ranged from 2 

to 53 years. (2) Age at testing ranged between 24 to 83 years with a mean of 

63 years (± 14). (3) The aetiology of the hearing loss was unknown in 7 out 
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of the 15 participants. (4) Cochlear implant experience was calculated from 

date of switch on of the currently used implant; this ranged from 6 to 168 

months with a mean of 66 months and median of 48 months. (5) The hearing 

loss was progressive for all of the participants. (6) All were post-lingually 

deafened except participants 3, 4 and 8 who had progressive onset from 

childhood. (7) Participants recruited had CI devices from Advanced Bionics 

(AB), MED-EL™ and Cochlear®. 
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Table 3.1 Participants’ demographics 

Participant Aetiology Progressive 
Age in 
years 

Age at 
implant 
in years 

Duration 
of 

Deafness 
in years 

Implant 
experience 
in months 

Type of implant 

1  

Post 
general 

anaesthesia 
in 3

rd
 

decade 

Yes 63 61 12 18 MED-EL™ SONATATI
100 

2  Unknown Yes 68 57 19 18 AB HiRes 90K 

3  
Pyrexia at 8 

months 
Yes 53 49 ? 48 Nucleus®

 
Freedom 

4  

 
Head injury, 
age 5 years 

 

 
Yes 

56 46 3 6 
MED-EL™  PULSARCI

100
  

standard 

5  Unknown Yes 50 48 2 24 AB HiRes 90K 

6  
Sickle cell 
anaemia 

Yes 24 20 9 48 
MED-EL™  PULSARCI

100
  

standard 

7  
Typhoid 

Otosclerosis 
Yes 72 61 40+ 132 

MED-EL™ Combi 40+ 

 

8  
Measles, 

age 5 years 
Yes 66 59 25 89 MED-EL™ Combi 40+ 

 

9  Unknown Yes 71 70 5 13 
MED-EL™  PULSARCI

100
  

standard 

10  Unknown Yes 78 64 53 168 Nucleus® 22 

11  Hereditary Yes 62 57 6 62 AB HiRes 90K 

12  Unknown Yes 63 57 5 60 
MED-EL™  PULSARCI

100
  

standard 

13  Unknown Yes 64 51 33 153 MED-EL™ Combi 40+ 

 

14  Unknown Yes 71 69 9 25 MED-EL™ Combi 40+ 

 

15  
Noise 

induced and 
otosclerosis 

Yes 83 72 40+ 123 Nucleus® CI 24M 

 

3.2.2 Test battery 

The PTED was validated against the DED approach; details of both 

procedures are shown below. 
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3.2.2.1 Direct electrode differentiation (DED) 

The DED was measured by directly stimulating electrodes using standard CI 

fitting software. The procedure examined all adjacent active electrodes, to 

assess which were discriminable. Identical methods were used for all 

adjacent electrode pairs at loudness-balanced levels, with subjects having to 

judge which presentation (electrode) had the higher pitch. All pairs were 

presented 5 times in random order. Pairs scoring ≤ 80% were tested 5 more 

times to give a score for 10 trials, if they scored greater or equal to 80%, this 

was seen as significantly different (binomial p<0.05; Skellam, 1948). 

Although the DED procedure was believed to be effective in identifying 

problematic electrodes, it was not deemed clinically useful because it 

required two clinicians to conduct testing and calculate scores. However, the 

approach was considered to be effective test for ED and it was therefore 

used to validate the PTED which employs pure tone ED testing. 

3.2.2.2 Pure tone electrode differentiation (PTED) 

To assess ED without direct stimulation, pure tones that corresponded to the 

centre frequencies of the processing filters within a participant’s individual CI 

program were presented through a specifically designed sound box [Medical 

Research Council Institute of Hearing Research (MRC IHR), Nottingham, 

‘STAR box’]. The purpose of this USB-connected box was to present high 

fidelity sounds that bypassed the host computer’s sound card. All filter centre 

frequencies associated with switched-on electrodes were used. The audio 

and graphical presentation was controlled through STAR software (MRC 

IHR; Barry et al., 2010; Halliday et al., 2012). 

 

Measurements of electrode activation spread were made for the Advanced 

Bionics (at M-level) and MedEl (at C-level) systems by directly measuring the 

outputs from all channels on a multi-channel oscilloscope.  Stimuli were 

presented at 60dBSPL.  For both systems the stimuli were presented 

through a speech processor which went to a “dummy” implant in a box 
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attached to a load board with outputs permitting direct measurements of the 

activation in different channels.  A criterion level of 6dB down was used as a 

cut-off for considering that current had spread to adjacent electrodes from 

the main stimulating electrode.  For both of these implants there was some 

spread to the very next electrode above and below the stimulating electrode 

but no further than that, this was considered acceptable.  For the Cochlear 

device, stimuli were routed through an experimental speech processor, the 

sound processing strategy was set to use only one maxima.  The output was 

verified using a dummy cochlear implant and a research interface with an 

“Electrodogram” programme developed by Cochlear Corporation that creates 

a frame-by-frame listing of the output of the implant transmitter coil and 

generates an electrodogram illustrating visually the output of each electrode 

within a specific time window.  The results of the electrodogram analysis 

demonstrated that the stimuli only activated one channel at a time for the 

cochlear device when using the single maxima sound processing 

programme. 

 

The duration of the pure tones was 400 ms with 50 ms onset and offset 

cosine ramps and an inter-stimulus interval of 500 ms. The stimuli were 

presented directly to the speech processor as an auxiliary audio input with a 

2 -dB- level rove (ranging from -1 to +1dB with a 1 dB step resolution) in 

order to remove the impact of loudness cues without unduly disturbing pitch 

perception. Verification of accuracy of frequency, duration of stimulation and 

level of presentation was determined using an Oscilloscope (model: Philips 

PM 3070, 100 MHz) prior to testing. 

 

Stimuli were delivered at a comfortable level from a desktop PC via the IHR 

soundbox to the participant’s CI ‘auxiliary’ input lead. Comfort level was 

established for one frequency representing the centre electrode in the CI 

electrode array. Loudness matching was then conducted at both increasing 

and decreasing test frequencies (across the electrodes) to ensure that stimuli 

were all equally loud. An ‘adjacent reference method’ for loudness balancing 
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(Throckmorton and Collins, 2001) was used where each electrode was 

sequentially balanced to its adjacent, previously balanced electrode. A two 

interval forced choice task was used, in which the participant was presented 

with two pure-tones representing two adjacent electrodes and had to say 

whether the second tone was louder, softer or same loudness level as the 

first tone. A simple up-down staircase adaptive procedure was followed. Step 

size started at 5 dB and was halved after the second reversal, testing 

stopped after the participant indicated that the second tone had same 

loudness level as the first tone for three times. The average loudness level of 

those three responses judged as having the same loudness was taken as 

the loudness balanced level. 

 

The pitch-ranking task employed a 2I-2AFC paradigm in which the listener 

responded to the statement “which sound has the higher pitch?” A visual cue 

was given with each pure-tone presentation; two animated figures 

representing the two tones are presented on the computer monitor (see 

Figure 3.1) and one figure would jump up on the screen with each pure-tone 

presentation (see Figure 3.1). A mouse was used to click on the animated 

figure representing the pure-tone presentation with a higher pitch. Each pair 

of adjacent active electrodes was tested for a minimum of 5 consecutive 

trials. If the participant scored 80% or lower (i.e. was correct on 4 or fewer 

trials), a further five trials were carried out giving ten successive trials in total. 

As mentioned earlier, this was based on binomial distribution calculation of 

minimum correct responses required to achieve significance at the p<0.05 

level (Skellam, 1948). The STAR software provided automated delivery and 

scoring (percent correct and pass or fail categorization) for each electrode 

pair, thus avoiding bias. 
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Figure 3.1 The animated figures (foxes) used for testing and collecting responses, which appeared on 

the monitor during testing for PTED. A) The two animated figures before pure-tone presentation. B) 

The two animated figures (foxes) during the second pure-tone presentation, the second fox is jumping 

up and opening its mouth during pure-tone presentation. 

3.2.3 Procedure 

All testing was performed in a 2×2.5 m double-walled sound booth. Scoring 

for the PTED was automatically calculated via the testing software and the 

DED and PTED calculations were derived independently to ensure that the 

testers were blind to the results of the other test. Certain adjustments to the 

speech processor’s program settings (see Section 1.3.2 for speech 

processor programming) had to be applied before administering the PTED 

test. See Figure (3.2) for outline of the study protocol. 
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Figure 3.2 Outline of the study protocol to evaluate validity and reliability of the PTED. 

 

3.2.3.1 Adjusting the speech processor for testing PTED 

The program used when running the PTED tasks was the participant’s 

preferred clinical program. For participants with Cochlear® devices, the 

number of maxima (see Section 1.3.2.3) was adjusted and set to the value of 

1 to ensure that only one electrode, the test electrode, was stimulated. Both 

the threshold and highest comfort level were increased with this maxima 

setting by 15% in the participant’s testing program. Care was taken that 

levels did not cause non-auditory stimulation and were comfortable before 

conducting loudness balancing and pitch ranking. ADRO (Adaptive dynamic 

range optimization) (James et al., 2002) was deactivated because it may 

affect testing loudness levels. Mixing between the auxiliary and the 

microphone was set on a maximum mixing ratio for the auxiliary input. For 

the AB devices, testing was administered with a program having an audio 

output setting of “AUX” only, in line with manufacturers’ recommendations. 
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 For both the AB and MED-EL™ devices it was not possible to avoid 

stimulation spreading to adjacent electrode sites. 

3.2.3.2 Validation of the PTED procedure  

Eight participants (2 with Cochlear®, 3 with MED-EL™ and 3 with AB 

implants) were tested with both the DED and the PTED test for the same 

electrode configurations and frequency tables (frequency to electrode 

allocation in the CI program; Section 1.3.2). The pass/fail scores for all 

electrode pairs that were tested with both procedures were compared, using 

a pass level of 80%. Furthermore all individual electrodes were categorised 

into problematic versus non-problematic and comparison was made across 

procedures. 

3.2.3.3 Reliability of the PTED procedure  

Inter-session test-retest reliability of the PTED was established using the 

same electrode pairs, the same programs and the same frequency tables 

(for program and frequency table see Section 1.3.2). Ten participants 

conducted two test sessions each that were at least one month apart. All 

electrode pairs and electrodes were compared across sessions and the ED 

pass level was, again, 80%. Furthermore all individual electrodes were 

categorised into problematic versus non-problematic and comparison was 

made across sessions. 

3.2.3.4 Clinical use feasibility of PTED via STAR software 

To evaluate potential feasibility of PTED in a clinical setting in terms of 

testing time, the median duration of testing per frequency pair was measured 

for both the loudness matching and the pitch ranking task. Loudness 

matching data for 2458 trials of 351 frequency pairs and pitch ranking data 

for 6927 trials were collected and used in the analysis. In contrast to the fixed 

number of trials per electrode pair in the pitch ranking task (five or ten), the 
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number of trials per electrode pair in the loudness matching varied more 

widely and thus affected testing time. Therefore, number of loudness 

matching trials per electrode pair was also measured. 

3.3 Analyses 

Statistical analysis was conducted to assess the following: 

1. Whether there was a significant relationship between DED and PTED 

results for the tested electrode pairs and for identification of 

indiscriminable electrodes. 

2. Whether there was a significant relationship between the test-retest 

PTED results for the tested electrode pairs and for the identification of 

indiscriminable electrodes without demonstration of a learning effect. 

3. Whether the testing duration of both PTED tasks (loudness matching 

and pitch ranking) renders PTED a clinically practical/feasible 

procedure. 

IBM SPSS STATISTICS 21 for windows was used to carry out the analyses, 

p values are two tailed and significance is reported when p<0.05. 

3.3.1 Validation of the PTED procedure  

3.3.1.1 Categorisation of electrode-pairs into pass or fail   

All PTED and DED scores for all electrode pairs were categorized as pass or 

fail; resulting data was categorical ordinal data with one category (pass) 

more common than (fail), hence Goodman-Kruskal Gamma (a test of 

association that can be used with categorical ordered data (Agresti and 

Finlay, 1997) was used with the group results to determine agreement. 

Group and individual agreement results in addition to the upper and lower 

quartiles of agreement per participant were also calculated.  
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3.3.1.2 Categorisation of individual electrodes into problematic versus 

non problematic 

Since the goal of developing a tool to assess the ED of the CI device is to 

identify indiscriminable/problematic electrodes, the categorical data was 

further analysed. Each electrode was identified as either non-problematic or 

problematic, The Goodman-Kruskal Gamma was then used to evaluate for 

agreement between DED and PTED on problematic versus non-problematic 

electrodes.  

In an indiscriminable electrode pair, the electrode was considered 

problematic according to the following criteria: 

1. If an electrode is common to two failing electrode-pairs. 

2. Both electrodes in an indiscriminable pair if both have the same score 

with the adjacent electrodes on either side. 

3. The poorer electrode in an indiscriminable pair; the electrode with a 

poorer score with the adjacent electrode. 

4. The electrode at the end of electrode array in an indiscriminable pair. 

3.3.2 Test-retest reliability of the PTED procedure 

3.3.2.1 Categorisation of electrode-pairs into pass or fail  

PTED scores for all electrode-pairs from both sessions were categorized as 

pass or fail; resulting data was categorical ordinal data with one category 

(pass) more common than (fail), hence Goodman-Kruskal Gamma was used 

with the group results. Group and individual agreement results, in addition to 

the upper and lower quartiles of agreement per participant, were also 

calculated. To exclude a learning effect, a Wilcoxon signed test was 

administered with the use of the actual scores (percent correct) obtained in 

both PTED testing sessions.  
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3.3.2.2 Categorisation of electrodes into problematic versus non 

problematic  

As mentioned earlier, the aim of an ED test is to identify 

indiscriminable/problematic electrodes. Each electrode was identified as 

either non-problematic or problematic, and the Goodman-Kruskal Gamma 

was used to evaluate for test-retest agreement. The categorisation criteria of 

indiscriminable/problematic electrodes described in Section (3.3.1.2) were 

used. 

3.3.3 Clinical use feasibility of the PTED via STAR software  

Total testing duration and testing duration per PTED task was reported for 

each participant, median, lower quartile (Q1) and higher quartile (Q3) and 

interquaurtile (IQ) range was calculated for the group. The median, Q1, Q3 

and IQ range was also calculated for per test-trial testing duration of both 

PTED tasks, loudness balance and pitch ranking. Estimates of average and 

maximum testing durations required for the different CI devices were 

calculated based on median, Q1 and Q3 values and the number of tested 

electrode pair in each device. 

3.4 Results 

3.4.1 Validation of the PTED procedure  

Results obtained with both DED and PTED procedures were compared for 

the same electrodes that were tested in both procedures in the same person 

based on the pass/fail categorisation.  

3.4.1.1 Categorisation of electrode-pairs into pass or fail 

Group results (all electrode pairs of the eight participants as one group): 

Goodman-Kruskal Gamma, revealed a significant strong correlation between 

the DED and PTED (γ = 0.88, N = 104, p < .001), thus the hypothesis H1 was 

accepted. 
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The percentage of electrode pairs that fell in the same category (pass versus 

fail) across the two procedures (DED and PTED) was 80% (Table 3.2). 

There were 21 electrode-pairs that showed disagreement between DED and 

PTED, closer evaluation revealed no trend in the direction of disagreement; 

10 pairs passed PTED and failed DED while 11 pairs failed DED and passed 

PTED. 

 

Individual results: The percentage of electrode pairs that fell in the same 

category across the two procedures (DED and PTED) for each participant 

was calculated to derive the individual agreement score (Table 3.2, median = 

81%, interquartile range = 9.75, Q1 = 75, Q3 = 85, N = 8). See Figure (3.3) 

for an example of one data set.  

Table 3.2 The percentage agreement (pass versus fail) of all tested electrode-pairs between DED and 

the PTED and for all participants.  

Participant 
No. Electrode 

pairs 
No. electrode 

pairs agreement 

No. electrode 
pairs 

disagreement 

% agreement 
of electrode 

pairs 

2 11 9 2 82% 

3 21 16 5 72% 

4 7 6 1 86% 

5 12 11 1 92% 

6 11 9 2 82% 

7 8 6 2 75% 

10 19 14 5 74% 

11 15 12 3 80% 

Total 104 83 21 80% 
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Figure 3.3 Example of raw percentage DED and PTED pitch ranking scores for each electrode pair in 

participant 9 to show agreement. The passing cut off point at 80% to show agreement in terms of pass 

versus fail. All electrode pairs are in agreement except pair 7 and 8. 

3.4.1.2 Categorisation of electrodes into problematic versus non 

problematic  

Group results (all electrodes of the eight participants): Goodman-Kruskal 

Gamma, revealed a significant strong association between the DED and 

PTED (γ = 0.85, N = 112, p < .001), thus the hypothesis H2 was accepted. 

 

In summary, the validation results showed that the PTED scores were highly 

associated with DED scores with respect to identifying indiscriminable CI 

electrodes. 

3.4.2 Test-retest reliability of the PTED procedure 

Test-retest of the PTED results for the same subject and the same 

electrodes at two different test sessions one month apart were compared.  
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3.4.2.1 Categorisation of electrode-pairs into pass or fail 

Group results (all electrode pairs of the ten participants as one group): 

Goodman-Kruskal Gamma analysis revealed a highly significant association 

between the two test sessions (γ = 0.95, n = 108, p < 0.001), thus the 

hypothesis H3 was accepted. 

The percentage of electrode pairs that fell in the same category (pass versus 

fail) across the two test sessions for all tested electrode pairs was also 

calculated and was 90% (Table 3.3). 

 

Individual results: Individual test-retest agreement score are shown in Table 

3.3 (median = 88.5%, interquartile range = 18, Q1 = 82, Q3 = 100, N = 10). 
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Table 3.3 The percentage agreement (pass versus fail) of all tested electrode pairs between the test-

retest sessions with the PTED -while using the same test map and frequency table- for all participants. 

Participant 
No. Electrode 

pairs 
No. electrode 

pairs agreement 

No. electrode 
pairs 

disagreement 

% agreement 
of electrode 

pairs 

1  8 6 2 75% 

5  12 10 2 83% 

6  11 9 2 82% 

7 8 7 1 88% 

8  9 8 1 89% 

9  11 9 2 82% 

12  11 11 0 100% 

13  11 11 0 100% 

14  9 8 1 89% 

15  18 18 0 100% 

Total 108 97 11 89% 

 

Examining those electrode pairs where discrepancies occurred, 8/11 were as 

a result of improvements in discrimination performance in the second 

session. A Wilcoxon signed test was applied to the raw scores obtained for 

all electrode pairs in both sessions to determine if there was a learning 

effect. There was no significant difference between the two sessions (Z = -

1.55, N = 108, p = 0.122), which indicated that in general a learning effect 

was not apparent.  

3.4.2.2 Categorisation of electrodes into problematic versus non 

problematic 

Group results (all electrode pairs of the ten participants): Goodman-Kruskal 

Gamma, revealed a significant strong association between the DED and 

PTED (γ = 0.98, N = 118, p < .001), thus the hypothesis H4 was accepted.  

In summary, the test-retest reliability of the PTED was high and no significant 

learning effect was seen.  
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3.4.3 Clinical use feasibility of the PTED via STAR software 

A clinically-viable test must be able to be carried out within the time frame of 

a typical CI fitting session and the test must be sufficiently easy to use with 

CI users with different devices and settings. The testing and scoring was 

automated once the frequency test settings were entered. All participants 

were able to follow instructions and complete the tasks without difficulty. 

Testing duration of both tasks together (loudness balancing and pitch 

ranking) for all participants was recorded and are shown in Table (3.4).  

 

Table 3.4 Testing duration per participant for each of the PTED tasks (loudness matching and pitch 

ranking) and the total testing duration; values are rounded up to the nearest minute.  

Subject 
Loudness matching 

testing duration 

Pitch ranking testing 

duration 

Total testing duration 

in minutes 

1 10 7 17 

2 13 14 27 

3 32 25 57 

4 10 9 19 

5 13 11 24 

6 10 12 22 

7 19 10 29 

8 12 9 21 

9 4 11 15 

10 15 20 35 

11 15 9 24 

12 5 7 12 

13 19 9 28 

14 11 8 19 

15 16 15 31 

 

The duration taken to conduct the loudness matching task ranged from 4 to 

32 minutes and for the PTED’s pitch ranking task ranged from 7 to 25 

minutes. Total testing duration for both tasks ranged from 12 to 57 minutes 

(see Table 3.5 for descriptive statistics).  
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Table 3.5 Descriptive statistics of testing duration per participant for each of the PTED tasks (loudness 

matching and pitch ranking) and the total testing duration; values are rounded up to the nearest 

minute. 

Task Median IQ range Q1 Q3 

Loudness matching (LM) in minutes 13 6  10 16 

Pitch ranking (PR) in minutes 10 5 9 14 

LM and PR in minutes 24 10 19 29 

 
 

An estimate of test duration per electrode pair was calculated with the use of 

group values. Based on which further estimations of the average and the 

maximum possible duration it would take to test participants with different CI 

devices were made. Further analysis of duration per trial (one presentation of 

two stimuli for one electrode pair and the associated response) detailed data 

showed that: (a) for loudness matching, the median duration for balancing 

each electrode pair was 40.3 seconds, and the median number of trials that 

was required to match the loudness of an electrode pair was 6.5 trial (see 

Table 3.6 for descriptive statistics). The average and maximum testing 

duration of all adjacent electrodes was calculated for each CI device and is 

shown in Table (3.7), (b) for pitch ranking, 17 response time measurements 

were removed due to participants stopping the task and restarting after a 

break. This reduced the total number of the pitch ranking trials used in 

analysis from 6927 to 6910. The median duration for running each trial was 

4.37 seconds (see Table 3.6 for descriptive statistics). Based on the median 

per-trial testing duration, the average and maximum expected testing 

duration of all adjacent electrodes was calculated for each CI device and is 

shown in Table (3.8). 

 

Table 3.6 Descriptive statistics of testing duration per electrode pair for each of the PTED tasks (LM 

and PR) and number of LM trials per electrode pair. Durations are shown in seconds. 

Variable Median 
IQ 

range 
Q1 Q3 N 

LM duration per electrode pair (EP) in seconds 40.3 43.7 24.3 68 351 

Number of LM trials per EP in number of trials 6.5 5.8 3.8 9.6 351 

PR duration per test trial in seconds 4.37 2.1 3.8 5.9 6910 
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Table 3.7 Average and maximum testing duration in minutes for PTED’s loudness matching task in the 

different devices based on the lower 25
th

 and upper 75
th

 quartile (Q1 and Q3) in minutes; average is 

calculated with the assumption that each electrode pair will be tested in five trials which is the minimum 

number of trials and the maximum is calculated with the assumption that each electrode pair will be 

tested in ten trials which is the maximum number of trials. 

Device 
Maximum 
number of 
electrodes 

Maximum 
number of 

electrode pairs 
(MNEP) 

Average test 
duration in 

minutes         
(Q1 x MNEP) 

 

Maximum test 
duration in 

minutes         
(Q3 x MNEP) 

 

MED-EL™ 12 11 4.5 12.5 

AB 16 15 6.1 17 

Cochlear® 22 21 8.5 23.8 

 

Table 3.8 Average and maximum testing duration in minutes for PTED’s pitch ranking task in the 

different devices based on the lower 25
th
 and upper 75

th
 quartile (Q1 and Q3); average is calculated 

with the assumption that each electrode pair will be tested in five trials which is the minimum number of 

trials and the maximum is calculated with the assumption that each electrode pair will be tested in ten 

trials which is the maximum number of trials. 

Device 
Maximum 
number of 
electrodes 

Maximum 
number of 

electrode pairs 
(MNEP) 

Average test 
duration in 

minutes         
(Q1 x MNEP) 

 

Maximum test 
duration in 

minutes         
(Q1 x MNEP) 

 

MED-EL™ 12 11 3.5 11 

AB 16 15 4.75 14.75 

Cochlear® 22 21 6.65 20.65 

3.5 Discussion 

PTED was shown to have the potential to be a clinically-useful testing 

approach for CI users. To be able to have confidence in the results of a 

procedure it has to be valid, show good reliability, and be clinically 

practicable.  
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3.5.1 Validation of the PTED procedure 

To validate the PTED it was compared to the DED, a test which used direct-

electrical-stimulation. Results of this direct stimulation ED (DED) procedure 

were shown by Vickers et al. (in preparation) to be highly correlated with 

speech perception scores using the BKB sentences both in quiet and in 

noise (speech-spectrum shaped noise at 10dB signal-to-noise ratio).  This 

finding was in keeping with the previous literature using procedures based on 

direct stimulation using a research interface (e.g. Collins et al., 1997; Henry 

et al., 1997; Nelson et al., 1995 and Dawson et al., 2000). Improvements in 

performance were also observed for some listeners who had poorly 

differentiated electrodes deactivated (Vickers et al., in preparation). This 

study demonstrated that the PTED is a valid method of stimulus delivery to 

test for ED, based on a strong and significant correlation between ED across 

DED and PTED and both hypotheses H1 and H2 were accepted.  

 

The PTED has advantages over the DED because it allows for amplitude 

roving of presented stimuli without the requirement of a research interface. 

Furthermore, it requires just one person to perform the task. Additionally, the 

STAR software randomizes stimuli presentation and follows the pre-defined 

rules for pass/fail criteria and stimuli presentation, thus avoiding human error.  

3.5.2 Test-retest reliability of the PTED 

For PTED to be employed clinically it must be reliable across test sessions. 

More importantly it must consistently identify the same electrodes as 

problematic or indiscriminable. The test-retest inter-session reliability showed 

a strong and significant agreement across sessions for tested electrode pairs 

and for identification of indiscriminable electrodes and both H3 and H4 were 

accepted.  

 

Although the PTED categorisation of electrode pairs into pass or fail was 

highly correlated across sessions, the PTED’s nomination of problematic 
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electrodes was even more so. The reason for that is because problematic 

electrodes are common to two test electrode pairs, an adjacent electrode on 

each side. So it may pass with one adjacent electrode but fail with the other, 

or it may fail with both neighbouring electrodes. There were cases (5 of 11 

discrepancies) where a problematic electrode was consistently (in both 

sessions) indiscriminable with one adjacent electrode but showed 

disagreement (pass versus fail) when tested with the adjacent electrode on 

the opposite side of the electrode array. For example, electrode 9 in 

participant 16; the participant failed to differentiate between electrode pair 9 

and 10 in both sessions but correctly differentiated between electrode pair 8 

and 9 in one session and failed in the other sessions (causing disagreement 

between sessions for electrode pair 8 and 9). Despite the apparent 

disagreement, the same poorly-differentiated electrode (electrode 9) was 

identified in both sessions. Hence, PTED was found to be a highly reliable 

tool in identifying indiscriminable electrodes. 

3.5.3 Clinical use feasibility of the PTED 

For this procedure to be employed as a clinical tool to identify electrodes with 

poor pitch differentiation and guide programming, it is necessary to ensure 

that the tested subjects are able to perform the task and can correctly rank 

pitch. Amongst the participants tested here, all were able to rank pitch and 

none of them reported finding the approach difficult. Consequently, 

participants at this stage were not regularly provided with a training trial.  

 

It is also essential that the procedure be time efficient. Total testing duration 

for loudness matching and PTED’s pitch ranking tasks ranged from 12 to 57 

minutes and would therefore not exceed the time currently allocated in the 

NHS for a routine CI fitting session (around 60 minutes). Finally, the 

procedure also requires sufficient flexibility to accommodate the different 

frequency tables used by different CI recipients. Frequency tables are the 

frequency range and frequency-electrode mapping in the CI program which 

differ between manufacturers and fitting settings. The results of this study 
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showed that the PTED provided sufficient flexibility. The PTED can thus be 

used clinically for ED without undue prolongation of clinical visits.  

3.6 Conclusion 

The present study demonstrated that presenting ED test stimuli via STAR 

software provides a clinically-viable solution that allows a valid, practical and 

flexible procedure for mapping the frequency table. It also provides a tool 

that could potentially help us improve performance with CIs, guided by ED 

results. However, it is important to prepare the test programme settings, 

speech processor settings and software settings to ensure the testing of ED 

of the CI electrodes rather than a general ability to rank pitch.  

3.7 summary 

 Several studies have employed different testing methods to identify 

indiscriminable/problematic electrodes. They were clinically non-viable 

due to time and/or equipment requirement. 

 The standard test for the identification of indiscriminable electrodes 

has been direct stimulation of the CI electrodes. 

 PTED, a new test for electrode differentiation employing pure tones at 

the electrodes centre-frequencies was evaluated for validity and 

reliability. 

 PTED’s validity was assessed by comparing it to a direct-stimulation 

electrode differentiation test, the DED and proved to be a valid test.  

 PTED’s test-retest reliability was evaluated and it showed high 

reliability. 

 PTED’s clinical use feasibility was evaluated, testing duration (both 

recorded and estimated) were within the time routinely allocated for 

programming CI. Everyone was able to perform the tasks and the 

software (STAR) was flexible enough to accommodate the different 

devices and settings. 
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 PTED was found to be a valid and reliable clinically viable test for the 

identification of indiscriminable electrodes. 
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Chapter 4 

Test-retest reliability of the Coordinate Response 

Measure (CRM) speech perception test 

Abstract 

The coordinate response measure (CRM) is an adaptive speech perception 

test with competing speakers as the masker. This study determined the test-

retest reliability of the CRM with normal hearing (NH) and adults with CIs. 

The replicability, variability and stability of the CRM were evaluated for the 

two groups separately. CRM had a better replicability, stability and lower 

variability for the CI adults compared to NH adults. 

4.1 Introduction  

After establishing the PTED’s validity and reliability in Chapter 3, before 

applying it to identify problematic electrodes and reprogramming based on its 

results, the speech perception test battery had to be developed. One 

consideration was that different types of masking have distinct effects on 

speech perception and some make the test more sensitive for picking up 

small changes in performance. In order to evaluate the efficacy of 

reprogramming based on pitch perception (including PTED), the coordinate 

response measure [(CRM) a speech on speech test] was used in addition to 

the widely used BKB sentence test that contains strong contextual cues. The 

CRM evaluates speech perception in the presence of a competing talker and 

is potentially more sensitive to changes in the spectral resolution (Stickney et 

al., 2004). Additionally CRM is not influenced by learning effects to the same 

extent that the more context heavy more predictable speech perception tests 

are. Prior to using the CRM the test-retest reliability and the minimum 

clinically significant difference had to be established because this information 

was not available for the test. 
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Speech perception in noise is especially challenging for CI recipients, but it is 

of vital importance if we consider everyday listening situations which are 

rarely quiet (e.g. Friesen et al., 2001). Background noise and conflicting 

speech cause some of the information in the target speech signal to be 

masked, making it very difficult to recognise and understand speech. 

Competing speech is especially difficult because of the combined effect of 

energetic and informational masking (e.g. Freyman et al., 1999 and Kidd et 

al., 1998; Arbogast et al., 2002; Brungart, 2001a and 2001b). Energetic 

masking occurs at a more peripheral level when both the masker (e.g. noise) 

and speech simultaneously carry energy at the same critical frequency 

bands rendering portions of speech inaudible. Informational masking occurs 

at a more central higher level when both the masker and target speech are 

audible but the listener is unable to segregate the elements of the target 

speech from that of the “similarly sounding” masker (e.g. Doll and Hanna, 

1997; Kidd et al., 1994; Kidd et al., 1995; Watson, Kelly, and Wroton, 1976). 

Speech perception tests are used clinically to evaluate speech recognition 

for the hearing impaired and the CI users, as a means to evaluate functional 

listening and to gain a good understanding of an individual’s everyday 

listening ability. Some tests such as the BKB and the CUNY sentence tests 

are routinely used. These sentence tests can be administered in both quiet 

and in noise, and allow the listener to use contextual cues because the 

sentences are meaningful and the listener can fill in the part they miss by 

using the context of the words that they do detect. Typically the speech 

perception tests are conducted in the presence of an interfering noise such 

as a white, pink or speech shaped noise. The effect of using different types 

of masking on speech perception has been highlighted by some studies (e.g. 

Hawley et al., 2004; Arbogast et al., 2005; Stickney et al., 2004 and Qin and 

Oxenham, 2003). For some people with good listening skills it could be 

beneficial to test in the more challenging listening situations for example with 

one or more competing speakers. This competing masker not only provides 

some energetic masking from the excitation of the masker but also could 

potentially provide informational masking. Energetic masking is widely 

defined as peripheral masking that occurs because of energy overlap 

between the target and masker both spectrally and temporally while 
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informational masking is widely thought of as a competition between the 

target and the masker at a central level of processing (Brungart, 2001b). 

Hornsby et al. (2006) found that speech on speech masking had a greater 

masking effect than speech-modulated noise for both NH and hearing 

impaired individuals using hearing aids. They contributed the increased 

difficulty to the combined effect of informational masking and energetic 

masking. The CRM is administered to evaluate speech perception in the 

presence of a competing talker; it is an adaptive test that requires limited 

vocabulary which makes it suitable for listeners that do not have English as 

their first language. The noise is adapted for positive signal-to-noise ratios 

(SNR) and once 0dB SNR is reached the speech is adapted for the negative 

SNRs. It can be used in conjunction with other speech perception measures 

where each test can evaluate different aspects and provide a more complete 

picture of the performance of the CI recipient. 

4.1.1 The CRM speech perception test 

The CRM was initially developed by the American Air Force Research 

Laboratory (Moore, 1981) to test speech intelligibility in a multi-talker 

environment. Stimuli consisted of low redundancy phrases in the following 

form ‘‘Ready call sign go to colour number now’’, e.g. “Ready Charlie go to 

Green Four now”. A target “call sign” which participants listened for was 

selected and the participant had to respond by correctly identifying the colour 

and number following the target “call sign”. However it has been used as a 

speech recognition test outside of its initial military context (Brungart, 2001a 

and 2001b; Brungart et al., 2001 and Kitterick et al., 2010). Brungart (2001a), 

investigated the relationship between the CRM stimuli (corpus) and the 

articulation index (AI) and found that within extremely difficult listening 

environments (noisy environments), CRM has high sensitivity to small 

intelligibility changes. Kitterick et al. (2010) tested 41 NH adults and used an 

array of 13 loudspeakers at 15° separation and found that CRM SRT 

(speech reception threshold) was better when each talker spoke one at a 

time in comparison to two talkers speaking in pairs. They also found that 

knowing “who” the talker saying the target phrase is, “where” the target 
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phrase will be presented and “when” the target phrase will be presented 

improved CRM SRTs when pairs of talkers started speaking at the same 

time. When each talker started speaking one at a time only knowing “who” 

was marginally beneficial. They concluded that masking and attention are 

important factors in listening in multi-talker environments. However when 

testing CRM with two talkers simultaneously presented (both from the same 

speaker), knowing “where” or “when” do not become variables and knowing 

“who” does not affect performance (Brungart et al., 2001). This may indicate 

that using two talkers presented simultaneously from the same speaker may 

reduce the effect of attention; a listener attending to the wrong talker can 

simply switch to the second talker after hearing the wrong “call sign” used.  

 

It must be noted that it was found that in the NH, reducing the intensity of the 

target in comparison to the masker (negative signal to noise ratio) improved 

speech perception in CRM because the listener was able to tune their 

attention to the softer sound (Brungart, 2001b). In other words, the difference 

in intensity provided a cue to distinguish between the target and masker 

which outweighed the advantage provided by a larger SNR (signal to noise 

ratio). This advantage may not be available to the CI recipients because their 

speech reception thresholds are unlikely to be at a negative SNR (i.e. 

speech at a lower presentation level to the noise). 

 

Competing speech maskers have a more detrimental effect on speech 

perception for listeners with a CI when compared with other maskers such as 

modulated (speech-spectrum-shape) noise or steady state noise (Stickney et 

al., 2004). This same effect has been demonstrated in simulations with the 

use of noise-vocoders, with NH individuals (Qin and Oxenham, 2003 and 

Stickney et al., 2004). They found that a competing talker negatively affects 

speech perception with a CI when compared with NH and more than other 

maskers would (Stickney et al., 2004). These results were also replicated in 

the simulated condition (Qin and Oxenham, 2003 and Stickney et al., 2004). 

They concluded that this happened because of a combined effect of 
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energetic and informational masking in addition to the reduced spectral 

resolution and fine structure of the speech signal provided by the CI. The 

reduced spectral resolution provided by the CI might have impaired the 

listeners’ ability to distinguish between components of the target speech and 

those of the competing speech. If so, then enhancing spectral representation 

of the signal provided by the CI might improve speech perception in the 

presence of a competing talker; this could be measured by a test such as the 

CRM. An added benefit of using CRM in the evaluation of CI recipients would 

be the introduction of new test material and avoidance of learning effects.  

 

CRM can potentially be used as a clinical tool but it is necessary to establish 

the test-retest reliability and the minimum clinically significant change in the 

CRM speech reception threshold (SRT) if it were to be used as a speech 

perception assessment test.  

4.1.2. Aims and hypothesis  

This study evaluated the test-retest reliability of the CRM test for NH adults 

and CI recipients. The aim was to collect data and determine the minimum 

clinically significant difference for the CRM SRT by establishing replicability, 

variability and stability, so it could be later used to analyse individual 

performance changes in studies looking at reprogramming of the CI speech 

processor. Both NH and CI users were tested to determine whether the 

increased difficulty faced by CI users (Qin and Oxenham, 2003 and Stickney 

et al., 2004) can affect test-retest reliability.  

 

Main research hypotheses: 

H1: NH will have significantly different CRM SRTs in comparison to CI 

recipients. 

H2: CRM SRTs will correlate across sessions for both the NH and the CI 

recipient groups. 
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4.2 Method 

4.2.1 Participants  

The CI recipients were recruited from the RNTNEH and through the NCIUA.  

13 adult (CI) recipients with acquired deafness were recruited, four of whom 

were male and nine were female. 

 

The inclusion criteria were that the participants had: 

1. A minimum of 18 months CI experience. 

2. An aural-oral mode of communication. 

3. English as a first language. 

Age at testing ranged between 27 to 77 years with a mean of 60 years (± 

12). Among the participants recruited 4 had AB, 4 had MED-EL™ and 5 had 

Cochlear® devices. 

The NH adult volunteers were native English speakers recruited from 

University College London (UCL). 33 adults aged 24 to 59 years with a mean 

of 38 years (± 10) were recruited; they had pure-tone thresholds ≤ 15 dB HL 

at octave frequencies between 0.25 and 8 kHz, inclusive, measured using 

the British Society of Audiology guidelines (1981). There were 19 females 

and 14 males. All the volunteers had their hearing evaluated on the day of 

CRM testing to confirm normal thresholds at the time of testing; this means 

that their hearing was tested twice once at the original test session and once 

at the re-test session.  

4.2.2 Test battery 

Coordinate Response Measure (CRM) 

The CRM with two talkers was used. This test was used within our standard 

test battery when a participant scored over 50% in the BKB sentences in 

speech-spectrum shaped noise at 10dB SNR. CRM was a more difficult task 
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than the BKBs because it avoided contextual cues. The CRM sentence 

corpus used consisted of 128 phrases spoken by eight native British English 

speakers, four of which were female and four were male. Stimuli consisted of 

low redundancy phrases in the following form ‘‘Ready call sign go to colour 

number now’’, e.g. “Ready Charlie go to Green Four now”. The target “call 

sign” which participants listened for was “Baron”. In each trial two talkers; 

one male and one female uttered the stimuli which were presented from the 

same speaker, directly ahead of the participant (at 0   a imuth). There were 

seven possible distractor call signs ‘‘charlie,’’ ‘‘arrow,’’ ‘‘eagle,’’ ‘‘hopper,’’ 

‘‘laker,’’ ‘‘ringo,’’ ‘‘tiger’’. There were four colour options ‘‘blue,’’ ‘‘green,’’ 

‘‘red,’’ ‘‘white’’, and four numbers (one, two, three and four) which were 

randomly assigned. The participant had to listen to the phrase containing 

“Baron” and choose the colour and number combination presented in that 

phrase by selecting from a button on the touch screen; e.g. “Ready Baron go 

to Red Four”, the participant was required to choose “Red Four” for the 

response to be considered correct. The test started at a SNR of 30dB (target 

phrase presented at 60 dB SPL, non-target phrase presented at 30 dB SPL). 

Positive SNR was achieved by attenuating the noise and negative SNR by 

attenuating the target phrase thus the maximum presentation level of the 

target phrase was reached at 0dB SNR. A simple up-down staircase 

adaptive procedure was followed to determine the CRM SRT, in which three 

reversals occurred before obtaining the threshold. Step size started at 10dB 

and was halved twice after a reversal occurred to reach the smallest step 

size of 2.5dB. The threshold was estimated based on the SNR of the 15 trials 

following the third reversal and the outcome score was a threshold in dB at 

which the colour and number in the target phrases were correctly chosen at 

a 50% accuracy level.  

4.2.3 Procedure  

Testing took place in a 3.7×3.25 m double-walled sound booth where the 

participant was seated 1 metre in front of an ear level loud speaker (Plus 

XS.2, Canton) from which the speech and noise were presented. The stimuli 

were stored (16 bits), sampling rate (44.1 kHz), presented using the AB-York 
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Crescent of Sound (Kitterick et al., 2011). The participants used a touch 

screen monitor to respond, and the software ran the test presentation and 

scoring in an automated fashion. 

 

The participants underwent two testing sessions at least one month apart; 

participants were tested twice for CRM in each session and an average CRM 

SRT was obtained in each session for each participant. The CI recipients 

were experienced CI users who have been using their CI program used 

during testing for a minimum of two months prior to testing. 

4.2.4 Analyses 

The analyses aimed to establish: 

1. Whether there was a significant difference in the CRM SRT between 

NH participants and participants with a CI.  

2. Whether there is a strong relationship between CRM SRTs across 

sessions for both groups; the NH and the CI recipients (as part of the 

test-retest reliability analysis). 

3. Minimum clinically significant change which was calculated as part of 

establishing the test-retest reliability. 

IBM SPSS STATISTICS 21 for windows was used to carry out the analyses. 

CRM SRT average per session for each participant was used for analysis. 

According to Shapiro-Wilk’s test, all CRM SRTs for both groups were 

normally distributed so parametric statistical tests were used.  

 

An independent t-test was used to compare CRM SRTs between groups and 

the Pearson product-moment correlation coefficient was used to establish 

the relationship between scores obtained in the two sessions for each group. 

4.2.4.1 Test-retest reliability 

Three measures were used to evaluate test-retest reliability, which were 

proposed by Summerfield et al. (1994). Not only do they evaluate the 
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relationship between the test-retest CRM SRTs but they also provide a value 

of the minimum clinically significant difference. 

Replicability: measured as the correlation coefficient between pairs of CRM 

SRTs, which establishes whether the second score can be predicted from 

the first.  

Variability: measured as the within-subjects standard deviation (σ) of across-

sessions scores. When an individual is tested twice by the same tool in 

similar conditions, a reliable test would produce the same results giving rise 

to a smaller σ. In this case we are more interested in the group results; 

hence a mean within-subjects standard deviation (σw) was calculated. The 

following equation adopted from Summerfield et al. (1994) was used.   

   √
∑ ∑ (      )

  
   

 
   

 (   )
 

Where k is the number of the participants, n is the number of test trials,     is 

the ј th  CRM SRT of the ith participant and µ is the mean threshold for the ith 

participant. Any score for any randomly chosen participant should lie within 

±1.96 σw of that participant’s mean score with a p≥ 95; i.e. the 95% 

confidence interval. 

Stability: measured as the standard deviation of the difference (σ ) in 

thresholds collected twice under similar conditions. If the difference between 

thresholds is equal or more than 1.96 σ then it is significant with p≥ 95. 

4.3 Results  

4.3.1 Difference between NH and CI recipients 

All CRM SRTs obtained in both sessions were used in the comparison. The 

group results of the CRM SRTs of the NH and CI recipients are shown in 

Figure (4.1). When thresholds from both sessions were clustered per group, 

the between-subjects variance was greater in the CI recipients’ group, 
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indicating a disparity in performance among the CI recipients as compared to 

the NH and the assumption of homogeneity of variances was violated, as 

assessed by Levene's Test for Equality of Variances (p < 0.001). The NH 

performed significantly better than the CI recipients t (31.16) = -23.91,  

p<0.001 (Table 4.1) and H1 was accepted. Since CRM SRTs for both 

populations are normally distributed, a 95% interval was calculated for each 

group, mean ± 1.96 SD. Based on the mean and standard deviation values, 

there is a 95% possibility that thresholds for the NH would fall in the range (-

23.65 to -22.17 dBA) and thresholds for the CI recipients would fall in the 

range (2.28 to 6.6 dBA). 

Table 4.1 Descriptive statistics of the CRM SRTs for each group; mean and standard deviation in dBA. 

Group Mean Standard deviation N 

NH -22.91 .37 66 

CI recipient 4.44 1.08 26 

 

Figure 4.1 Results of the CRM test in dBA for each group, the NH and the CI recipients. Values above 
0dB line indicate thresholds at a positive SNR and values below 0dB line indicate thresholds at a 
negative SNR. The bars show mean scores, error bars show ± 2SE. 
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4.3.2 Test-retest reliability of the CRM 

There was a significant positive relationship between the test-retest CRM 

SRTs for both groups, which was moderate (r=0.5, p<0.005, N=33) for the 

NH and strong for CI recipients (r=0.95, p<0.001, N=13). See Figure (4.2) for 

results of the NH and the CI recipients groups. Hence the H2 was accepted 

for both groups. 

Figure 4.2 The relationship between CRM SRTs in dBA in the first trial and the second trial among the 

NH and CI recipients. CRM SRT in dBA in the first trial on the y axis versus the CRM SRTs in dBA in 

the second trial on the x axis showing a positive relationship between the CRM SRTs across sessions. 

 

All the test-retest reliability statistics are shown in Table (4.2). As previously 

explained, a single threshold from a randomly chosen CI recipient should lie 

within ±1.96σw (in this case 2.12dB) of that recipient’s true mean threshold 

with a probability ≥0.95. If a CI recipient was tested under two different 

conditions (e.g. two different programs) a change in CRM is considered 

significant (at p<.05) if the change is greater than 1.96 σ  (in this case 4dB). 

 

 

 



Page 137 of 393 

Table 4.2 Test-retest statistics of the CRM test for the NH and the CI recipients groups. The Pearson 

product-moment correlation coefficient (r), the within-subjects standard deviation of thresholds (σw), the 

standard deviation of the differences between participants’ first and second thresholds (σ ) and the 

sample number for each group. 

Measure 

Groups 

NH CI recipients 

Reproducibility (r) 0.5 0.95 

Variability σw (dB) 2.24 1.44 

1.96σw (dB) 4.39 2.8 

Stability σ  (dB) 3.06 2.05 

1.96 σ  (dB) 6 4.03 

Number of sample 33 13 

4.4 Discussion 

The NH group performed significantly better than the CI recipients on the 

CRM test, which is expected particularly in this situation using speech on 

speech masking (Qin and Oxenham, 2003 and Stickney et al., 2004). Due to 

the poor spectral resolution of CI users the task is not necessarily an 

informational masking task but most likely an energetic masking task in 

which the CI users are unable to benefit from listening in the gaps of the 

interfering speech signal in the same way that NH listeners can. Hence the 

hypothesis H1 was accepted. 

 

As hypothesised (H2) there was a significant correlation between CRM SRT 

across-sessions for both NH and CI recipients. The larger between-subjects 

variance in the CI group as compared to the NH listeners is in line with 

previous reports of variability in performance among the CI population (see 

Chapter 2). Another important finding is that there is a 95% probability for the 

CI user to have a CRM SRT in the range (2.28 to 6.6 dB); i.e. the threshold 
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will most likely be at a positive SNR. In this case it will be highly unlikely for 

CI recipients to be able to use the intensity cue, which a negative SRM could 

provide the NH (see 4.1.1) where CRM improved because the listener was 

able to tune their attention to the softer signal (Brungart, 2001b).  

 

In contrast to the CI group, the ability of the NH to utilise the intensity cues at 

a negative SNR could add an extra variable that may account for the higher 

within-subject variability in the NH group. This may help explain the larger 

within-subject variability as displayed by a lower correlation coefficient and a 

higher variability (σw) and stability (σ ) values for that group. The minimum 

clinically significant change (at p < 0.05) in CRM SRTs among CI users was 

found to be > 4dB, and > 6 dB for the NH if an individual were to be tested 

under two different conditions.  

 

CI recipients exhibited less within-subject variability than the NH group, 

potentially due to not being able to utilize the intensity cues effectively. 

Hence, it was decided that for the minimum significant CRM SRT change for 

CI users would be based purely on the data obtained from the CI recipients 

within this study.  

4.5 Conclusion 

The trends in the CRM results are consistent with previous literature; the NH 

had significantly lower thresholds than the CI recipients t (31.16) = -23.91, 

p<0.001. There was higher between-subject variability among the CI 

recipients as compared to the NH. In addition, loudness cues at negative 

SNR increased within-subjects variability among the NH. The minimum 

clinically significant change (at p < 0.05) in CRM SRTs among CI users was 

found to be > 4dB, and > 6 dB for the NH.  
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4.6 Summary 

 CRM is an adaptive speech perception test that utilises speech on 

speech masking, which resembles real life listening situation and is 

especially difficult for CI users. 

 CRM test-retest reliability was measured in NH and CI recipients 

groups. 

 CRM SRTs are lower and have higher within-subject variability among 

the NH in comparison to CI recipients. 

 The CI users are more likely to have CRM SRTs at positive SNR in 

contrast with the NH group whose CRM SRTs were at negative SNR. 

 The higher within-subject variability in CRM SRT among the NH could 

be due to the additional variable added by the intensity cue at 

negative SNR. 

 The minimum significant change (at p < 0.05) in CRM SRT among CI 

users is > 4dB, if a CI user were to be tested under two different 

conditions. 
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Chapter 5 

The relationship between PTED and speech 

perception 

Abstract 

The association between ED measured via PTED (described in Chapter 3) 

and speech perception scores (BKB in quiet and in pink noise and the CRM 

test) was evaluated. In line with earlier literature, there was a positive 

relationship between the percentage of discriminable electrodes and the 

different speech perception measures (R2 ranging from 0.36 – 0.55). 

Stronger associations were found between the percentage of discriminable 

electrodes at the lower frequency range (≤ 2600 H ) than at higher 

frequencies. Multiple regression tests revealed that the percentage of 

discriminable electrodes especially at the low frequency range (< 1000 Hz) is 

a significant predictor of speech perception performance and the models 

accounted for up to 68% of variance in CRM SRTs. Findings from this study 

along with findings from Chapter 3 provide evidence of the validity for the 

PTED test as a test for ED. 

5.1 Introduction 

CI recipients hope to hear, listen and make sense of what is being heard, be 

it speech or everyday sounds. As discussed there in Chapter 2, there is a 

wide variance in the speech perception ability of the CI recipient population. 

Among the factors discussed, the number of perceptually distinct channels is 

considered to be a contributor to performance level (see Section 2.3.1). 

Studies have shown better speech perception with a higher number of 

perceptually distinct channels (Collins et al., 1997; Henry et al., 1997; Nelson 

et al., 1995; Friesen et al., 2001 and Dawson et al., 2000). It would therefore 

be expected that any valid and reliable test of ED would show a positive 

relationship with speech perception. After establishing the validity and 
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reliability of the PTED in Chapter 3 and the reliability of the speech 

perception test CRM in Chapter 4, the PTED results were correlated with the 

speech perception tests. A relationship between the PTED and speech 

perception would indicate the validity of the measure PTED as an ED test. 

Additionally many authors (Skinner et al., 1995; Henry et al., 2000; Fourakis 

et al., 2004 and Fourakis et al., 2007) have shown that the lower frequency 

range (frequencies ≤ 2600 Hz) and in particular the first formant region ≤ 

1000 Hz requires a larger number of electrodes to convey the information 

than is required for the higher frequency regions for good speech perception. 

This suggests that ED and spectral resolution in the low frequency range 

may have a greater impact on speech perception than they do in the high 

frequency range. Thus a valid test of ED that reflects the spectral resolution 

of the signal provided by the CI should demonstrate the need for better 

spectral resolution at low frequencies.  

 

A study addressing the relationship between ED results as measured via 

PTED in three different frequency ranges and speech perception is 

described in this chapter. Additionally, the effect of other factors that may 

affect speech perception with CI (in Chapter 2) is evaluated. 

5.1.1 Aims and Hypotheses 

The data collected in the first session of the studies described in Chapters 7 

and 8 were analysed specifically to look at the association between the 

estimated ED results obtained from the PTED procedure and the different 

speech perception measures. Analysis of ED results was conducted using 

estimates across the entire electrode array (at all frequencies) and in three 

frequency ranges (≤1000H , 1000 H  - 2600 Hz and >2600Hz). These 

frequency ranges were chosen because of the different contributions that 

they have on speech perception (Miller and Nicely, 1955; Shannon et al., 

2001; Skinner et al., 1995; Henry et al., 2000; Fourakis et al., 2004 and 

Fourakis et al., 2007). 

Main research hypotheses: 
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H1: There will be a correlation between the percentage of discriminable 

electrodes identified by the PTED test and speech perception with CI (BKB in 

quiet and in noise and CRM-SRT). 

H2: The correlations with speech perception (BKB in quiet and in noise and 

CRM-SRT) will be different across the three different frequency regions for 

the ED results.  

H3: The percentage of discriminable electrodes identified by the PTED 

especially at frequencies below 1000 Hz test will be a significant predictor of 

speech perception with CI (BKB in quiet and in noise and CRM-SRT). 

 

Previous studies in the field identifying the number of perceptually distinct CI 

channels and associating it with speech perception employed direct 

stimulation and used lengthy procedures. Finding an association between 

the clinically-viable procedure described in Chapter 3 (PTED) and speech 

perception would provide further support to PTED’s potential functional use. 

5.2 Method  

5.2.1 Participants 

Participants were recruited from the RNTNEH and through the NCIUA.  

36 adult CI recipients with acquired deafness were recruited. 

The inclusion criteria were that the participants had: 

1. A minimum of six months CI experience. 

2. An aural-oral mode of communication. 

3. English as a first language. 

 

Participants’ demographics that were collected were: 

(1) Duration of deafness which was calculated for each participant from the 

date of diagnosis of a bilateral profound sensorineural hearing loss, it ranged 

from 1 to 53 years. (2) Age at testing ranged between 19 to 83 years with a 
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mean of 59 years (± 15.86). (3) The aetiology of the hearing loss was 

unknown in 16 out of the 36 participants. (4) CI experience was calculated 

from date of switch on of the present implant; it ranged from 8 to 204 months, 

with a mean of 67 months (± 47) and a median of 57 months. (5) The hearing 

loss was progressive for all of the participants.  (6) Among the participants 

there were 11 AB, 12 MED-El™ and 13 Cochlear® CI recipients. 

 

Five participants had a pre or peri-lingual onset of hearing loss (before 5 

years old) (participants 3, 4, 9, 26 and 31). Two participants (2 and 7) had a 

history of cochlear explantation and re-implantation and participant 5 had a 

“rolled over” electrode tip at insertion. Table (5.1) provides details of 

participants’ demographics. Participant 34 was excluded due to being 

diagnosed with dementia.  
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Table 5.1 Participants’ demographic details; duration of deafness was calculated from the date of 
diagnosis of a bilateral profound sensorineural hearing loss to time of receiving an implant. 

Participant Aetiology 

 

 

Progressive 

Age in 

years 

Age at 

implant 

in years 

Duration 

of  

Deafness 

in years 

Implant 

experience in 

months 

 

Type of implant 

1  

Post general 
anesthesia in 

3
rd
 decade 

 

Yes 63 61 12 18 MED-EL™ SONATATI
100

 

2  Unknown Yes 68 57 19 18 AB HiRes 90K 

3  
Meningitis at 

8months 
Yes 53 49 ? 48 Nucleus®

 
Freedom 

4  

 
Head injury, 
age 5 years 

 

Yes 56 46 3 120 
MED-EL™  PULSARCI

100
  

standard 

5  Unknown Yes 50 48 2 24 AB HiRes 90K 

6  Unknown Yes 65 61 ? 48 AB HiRes 90K 

7  
Hereditary 

started at age 7 
years 

Yes 54 44 4 

1st implant 24 

2nd implant 
104 

MED-EL™ Tempo+ 

 

8  Unknown Yes 
 

80 
 

78 
 

25 
24 MED-EL™ SONATATI

100
 

9  
Unknown 

at age 9mths? 
Yes 41 40 15 17 Nucleus® CI 512 

10  
Endolymphatc 

Hydrops 
Yes 48 47 6 8 Nucleus® CI 512 

11  Sickle cell 
anemia 

Yes 24 20 9 48 
MED-EL™  PULSARCI

100
  

standard 

12  
Typhoid and 
Otosclerosis 

Yes 72 61 40+ 132 MED-EL™ Combi 40+ 

 

13  Unknown Yes 52 47 ? 57 AB HiRes 90K 

14  Meniers Yes 71 70 5 13 
MED-EL™  PULSARCI

100
  

standard 

15  Unknown Yes 31 22 15 100 Nucleus® CI 24R(CS) 

16  Unknown  Yes 64 52 6 172 Nucleus® 22 

17 Measles, age 5 
years 

Yes 66 59 25 89 MED-EL™ Combi 40+ 
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Table 5.1 (continued) Participants’ demographics. 

Participant Aetiology 
 
 

Progressive 

Age in 
years 

Age at 
implant 
in years 

Duration 
of  

Deafness 
in years 

Implant 
experience in 

months 

 

Type of implant 

18 Unknown Yes 75 70 1 57 
MED-EL™  PULSARCI

100
  

standard 

19 Unknown Yes 78 64 53 168 Nucleus® 22 

20 Hereditary Yes 62 57 6 62 AB HiRes 90K 

21 Unknown Yes 63 57 5 60 
MED-EL™  PULSARCI

100
  

standard 

22 Unknown Yes 64 51 33 153 MED-EL™ Combi 40+ 

23 Unknown Yes 71 69 9 25 MED-EL™ Combi 40+ 

24 
Noise induced 

and 
otosclerosis 

Yes 83 72 40+ 123 Nucleus® CI 24M 

25 
Genetic started 
at age 20 years 

Yes 77 73 7 48 AB HiRes 90K 

26 Measles, age 
5.5 years 

Yes 62 57 6 62 Nucleus® CI 24R(CS) 

27 Typhoid Yes 27 15 5 144 AB CI 

28 Unknown Yes 67 66 ? 12 Nucleus® CI 512 

29 
Genetic started 
at age 40 years 

Yes 59 60 7 72 Nucleus® CI 24R(CS) 

30 
Endolymphatic 

Hydrops 
Yes 42 39 1 34 Nucleus®

 
Freedom (CA) 

31 Genetic Yes 19 2 1 204? Nucleus® 22 

32 Unknown Yes 60 56 ? 42 AB HiRes 90K 

33 Otosclerosis Yes 69 63 7 71 Nucleus®
 
Freedom 

34 Genetic Yes 71 67 10 45 AB HiRes 90K 

35 Unknown Yes 69 63 12 38 Nucleus®
 
Freedom (CA) 

36 Otosclerosis Yes 67 58 2 106 AB HiRes 90K 
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5.2.2 Test battery 

The PTED (described in Section 3.2.2.2) in addition to three speech 

perception measures were used in testing, the CRM (described in Section 

4.2.2) and the BKB sentence test in quiet and in speech-shaped noise at a 

10dB SNR (signal-to-noise ratio). 

BKB sentence test 

The Bamford Kowal Bench (BKB) sentence test (Bench, Kowal, and 

Bamford, 1979) had 20 possible lists, each containing 16 sentences and 50 

key words. The sentences were presented by a male speaker at a level of 

70dBA, and participants were asked to repeat the sentences and the number 

of key words correct was scored. It was administered in quiet for all 

participants and was also administered in speech-spectrum shaped noise at 

a SNR of +10dB if the participant's BKB score in quiet was higher than 50%. 

Two sentences were presented per condition and participants never received 

the same list twice. 

5.2.3 Procedure 

Testing took place in a 3.7×3.25 m double-walled sound booth where the 

participant was seated 1 metre in front of an ear level loud speaker (Plus 

XS.2, Canton) from which the speech and noise were presented. The stimuli 

were stored (16 bits), sampling rate (44.1 KHz) presented digitally using the 

AB-York Crescent of Sound (Kitterick et al., 2011).  

 

For CRM the participants responded using a touch screen monitor and the 

software ran the test presentation and scoring in an automated fashion as 

the SNR varied adaptively. During BKB testing, the tester entered the 

participants’ verbal response by selecting the correct key words on the 

tester’s monitor. 
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All participants underwent BKB and PTED testing, CRM SRTs were 

measured for 19 out of the 35 participants. CRM was added to the testing 

protocol once the test-retest reliability had been established, it was 

necessary to incorporate the test because some participants were achieving 

scores falling within the ceiling range for BKB scores in quiet and in noise. All 

testing took place in one session with the same CI program which had been 

used by the participant for a minimum of two months prior to testing.  

5.3 Analyses  

BKB scores were converted to rationalized arcsine-transform units (RAU) 

before conducting statistical analysis (Studebaker, 1985) to reduce the 

impact of floor and ceiling effects. Percentage of discriminable electrode 

pairs was calculated for each participant using the same pass/fail criteria 

described in Chapter 3 (Section 3.2.3.2) to categorise all tested electrode 

pairs via the PTED for each participant. This was done to establish the 

percentage of discriminable electrode pairs for all tested frequencies (overall 

percentage) and for the frequency ranges (1) frequencies ≤ 1000 H , (2) 

1000 H  < frequencies ≤ 2600 H  (3) frequencies > 2600Hz. For each 

participant AAI (see Section 2.1.1) was categorised as younger than or older 

than 65 years (similar to Friedland et al., 2010) and duration of deafness 

(see Section 2.1.3) was categorised to less than or equal to 15 years and 

more than 15 years. The aetiology of deafness (see Section 2.1.4) was 

categorised to either causing possible cochlear pathological changes such 

as fibrosis or calcification (e.g., meningitis might cause ossification) or 

aetiology that is not associated with such cochlear pathological changes. The 

presence or absence of cochlear pathology that could be detected by 

radiological evaluation (fibrosis, ossification or calcification) was also 

determined based on radiological evidence (e.g. fibrosis following 

explantation of a CI before re-implantation) for all participants.   
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The statistical analysis was conducted to assess the following: 

1. Whether there was a correlation between PTED’s overall percentage 

of discriminable electrode pairs for the entire array and speech 

perception (BKB in quiet and in noise and CRM SRT). 

2. Whether there was a correlation between PTED’s percentage of 

discriminable electrode pairs within different frequency bands 

(≤1000Hz, 1000 Hz - 2600 Hz and >2600Hz) and speech perception 

(BKB in quiet and in noise and CRM-SRT). 

3. Whether there is a significant correlation between PTED’s percentage 

of discriminable electrode pairs at all frequencies (overall percentage) 

and at each frequency band and CRM-SRT (lower thresholds indicate 

better results). 

4. Whether the percentage of discriminable electrode pairs for the entire 

array and within different frequency bands (≤1000H , 1000 H  - 2600 

Hz and >2600Hz), AAI, duration of deafness, aetiology of deafness or 

presence of confirmed cochlear pathology can be used to predict 

speech perception (BKB in quiet and in noise and CRM-SRT). 

 

 

IBM SPSS STATISTICS 21 for windows was used to carry out the analyses. 

Shapiro Wilk’s test revealed that BKB (RAU) scores in quiet and noise and 

CRM SRT were normally distributed. It also revealed that PTED scores were 

normally distributed for the group of 20 participants tested with CRM and for 

the groups of 29 and 36 tested with BKB (RAU) scores in quiet and noise 

respectively. Hence Pearson’s correlation coefficient was used to determine 

the relationship between speech perception measures [BKB (RAU) scores in 

quiet and noise and CRM-SRT] and PTED. 

 

Stepwise multiple regression was used with each of the speech perception 

measures separately [BKB (RAU) scores in quiet and in noise and CRM] as 

the dependent variable and the percentage of discriminable electrode pairs 

for the entire array and within different frequency bands, the AAI, the 

duration of deafness, the aetiology of deafness and the presence of 
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confirmed cochlear pathology as the independent variables. See Appendix C 

for data used in analyses. 

 

5.4 Results 

The results of the PTED test and the three speech perception tests are 

shown in Table (5.2) and Figure (5.1). Among the 20 participants, only one 

participant had a CRM SRT at a negative SNR, representing only 5% of the 

tested CI population. Performance on ‘BKB in quiet’ was better than ‘BKB in 

noise’. 

 

Table 5.2 Results of the PTED, BKB (RAU) scores in quiet and in noise and the CRM SRT. 

Percentage of discriminable electrode pairs reported for PTED, RAU of percentage correct key words 

reported for BKB (range -23 to +123) and CRM SRT are reported in dBA. The descriptive statistics are 

the 25
th
 percentile (Q1), the 50

th
 percentile (median), the 75

th
 percentile (Q3) and the number of 

participants contributing the data (N).  

Test  Q1 Median Q3 N 

PTED 64.16 81.08 100 35 

BKB in quiet 68.75 79.41 90.91 35 

BKB in noise 48.14 72.21 87.36 29 

CRM SRT in dBA 1.45 5.7 9 19 

 

 

 

Figure 5.1 Results of the BKB tests in quiet and in noise in rationalized arcsine-transform units (RAU), 

the CRM SRT in dBA and the percentage of discriminable electrodes. The bars represent mean 

scores and the error bars show 95% confidence intervals.  
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There was a significant relationship between the percentage of discriminable 

electrode-pairs and all speech perception measures, which was strong with 

‘BKB in quiet’ (Pearson’s r = 0.6, p < 0.001, N=35) (Figure 5.2) very strong 

with ‘BKB in noise’ (Pearson’s r = 0.74, p < 0.001, N=29) (Figure 5.3) and 

very strong with CRM SRT (Pearson’s r = -0.74, p < 0.001, N=20) (Figure 

5.4). The hypothesis H1 was accepted and a positive correlation was found 

between the percentage of discriminable electrode-pairs and all speech 

perception measures.  

 

See Table (5.3) for correlation results between PTED’s percentage of 

discriminable electrode pairs at each frequency range and each speech 

perception measure. ‘BKB in noise’ significantly correlated with the 

percentage of discriminable electrode-pairs at all frequency ranges however 

‘BKB in quiet’ and CRM SRT significantly correlated with the percentage of 

discriminable electrode-pairs at the low to mid frequency ranges (≤1000H , 

1000 Hz - 2600 Hz) but  not with the percentage of discriminable electrode-

pairs at the higher frequency range (>2600Hz). Thus the H2 was accepted for 

‘BKB in quiet’ and CRM SRT but not for ‘BKB in noise’. 
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Figure 5.2 The relationship between BKB scores in quiet (RAU) and the PTED’s percentage of 

discriminable electrodes. BKB scores in quiet (RAU) on the y axis versus PTED’s percentage of 

discriminable electrode pairs on the x axis showing a moderate positive relationship. Without the 

outliers, the Pearson’s r = 0.6 p < 0.001, N=33. 

Figure 5.3 The relationship between BKB scores in noise (RAU) and the PTED’s percentage of 

discriminable. BKB scores in noise (RAU) on the y axis versus PTED’s percentage of discriminable 

electrode pairs on the x axis showing a strong positive relationship. Outliers are shown in grey. Without 

the outliers, the Pearson’s r = 0.74 p < 0.001, N=27. 
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Figure 5.4 The relationship between CRM SRT and the PTED’s percentage of discriminable. CRM 

SRT on the y axis versus PTED’s percentage of discriminable electrode pairs on the x axis showing a 

strong negative relationship between the CRM SRTs across sessions. 

 

Table 5.3 Correlation results between PTED’s percentage of discriminable electrode pairs at each 

frequency range [(1) frequencies ≤ 1000 H , (2) 1000 H  < frequencies ≤ 2600 H  (3) frequencies > 

2600Hz and (4) all frequencies] and each speech perception measure (BKB in quiet and in noise and 

CRM). 

Percentage 
discriminable 
electrodes at 

BKB in quiet 
Pearson’s 

 
BKB in noise 
Pearson’s 

 
CRM SRT 
Pearson’s 

r p  r p  r p 

Frequencies≤1000H  0.6** < 0.001  0.65** < 0.001  -0.67** < 0.005 

1000 Hz < frequencies 
≤ 2600 H  

0.58** < 0.001  0.61** < 0.001  -0.51* < 0.05 

Frequencies >2600Hz 0.12 0.5  0.49** < 0.005  -0.28 0.25 

All frequencies 0.6** < 0.001  0.74** < 0.001  -0.74** < 0.001 
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5.4.1 Results of multiple regression models 

5.4.1.1 Results of multiple regression models using overall percentage 

of discriminable electrode pairs as a potential predictor 

Stepwise multiple regression analyses were carried out to determine the 

predictors for ‘BKB in quiet’ (RAU), ‘BKB in noise’ (RAU) and CRM SRT. 

Factors were added to each model one at a time starting with the best 

predictor followed by the second best predictor and so on. The emphasis 

was on finding the best predictors at each stage and the model was tested 

for significance at each stage. Factors were added to maximize the Pearson 

r coefficient and the goodness of fit of the model (ANOVA analysis).  If two 

predictors were highly correlated with each other and with the dependent 

variable, often only one variable was chosen as a predictor in the model and 

the other variable was not. This indicated that the latter variable did not 

provide additional contribution to the model.  

 

For ‘BKB in quiet’ (RAU), the independent variables entered were: the 

percentage of discriminable electrodes for the full electrode array, the 

presence of pathology, the AAI, the duration of deafness (as a categorical 

and as a continuous variable) and the aetiology of deafness (as a categorical 

and as a continuous variable). The only predictors reaching significance level 

were the percentage of discriminable electrodes and the presence of 

pathology. The prediction model contained these two predictors and was 

reached in two steps. The model was statistically significant, F(2, 28) = 

15.03, p < .01, and accounted for approximately 48% of the variance of ‘BKB 

in quiet’ (RAU) (R2 = 0.52, Adjusted R2 = 0.48). ‘BKB in quiet’ (RAU) was 

primarily predicted by the percentage of discriminable electrodes and to a 

lesser extent by the presence of pathology. The raw and standardized 

regression coefficients of the predictors are shown in Table (5.4). All other 

variables (the AAI, the duration of deafness and the aetiology of deafness) 

were non-significant predictors. The AAI and the duration of deafness were 

non-significant when included as continuous or categorical variables. 
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Table 5.4 Results of step-wise multiple linear regression: the dependent variable was BKB score in 

quiet. The value of the adjusted R
2
 for the model was 0.48 (p < 0.01).The unstandardised regression 

coefficient, B (with 95% confidence interval c.i. in parentheses, which indicate that the true coefficient 

of the predictor falls in this range at a 95% confidence level), and the standardised regression 

coefficient β, are listed for each significant variable in the model. 

Dependent variable B (95% c.i.) β p 

Percentage discriminable 
electrode-pairs 

0.85 (0.49 to 1.2) 0.65 < 0.001 

Pathology 28.58(9.33 to 47.84) 0.40 < 0.01 

For ‘BKB in noise’ (RAU), the independent variables entered were: the 

percentage of discriminable electrodes for the full electrode array, the 

presence of pathology, the AAI, the duration of deafness (as a categorical 

and as a continuous variable) and the aetiology of deafness (as a categorical 

and as a continuous variable). The only predictor reaching significance level 

was the percentage of discriminable electrodes. The prediction model was 

statistically significant, F(1, 24) = 26.95, p < .001, and accounted for 

approximately 51% of the variance of ‘BKB in noise’ (RAU) (R2 = 0.53, 

Adjusted R2 = 0.51). ‘BKB in noise’ (RAU) was predicted by the percentage 

of discriminable electrodes. The raw and standardized regression 

coefficients of the predictors are shown in Table (5.5). All other variables (the 

presence of pathology, the AAI, the duration of deafness and the aetiology of 

deafness) were non-significant predictors. The AAI and the duration of 

deafness were non-significant when included as continuous or categorical 

variables. 

 

Table 5.5 Results of step-wise multiple linear regression: the dependent variable was BKB score in 

noise. The value of the adjusted R
2
 for the model was 0.51 (p < 0.001).The unstandardised regression 

coefficient, B (with 95% confidence interval c.i. in parentheses, which indicate that the true coefficient 

of the predictor falls in this range at a 95% confidence level), and the standardised regression 

coefficient β, is listed for each significant variable in the model. 

Dependent variable B (95% c.i.) β p 

Percentage discriminable 
electrode-pairs 

1.15 (0.69 to 1.6) 0.73 < 0.001 
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For CRM SRT, the independent variables entered were: the percentage of 

discriminable electrodes for the full electrode array, the presence of 

pathology, the AAI, the duration of deafness (as a categorical and as a 

continuous variable) and the aetiology of deafness (as a categorical and as a 

continuous variable). The only predictors reaching significance level were the 

percentage of discriminable electrodes and the AAI (as a categorical 

variable). The prediction model contained these two predictors and was 

reached in two steps. The model was statistically significant, F(2, 12) = 

15.65, p < 0.005, and accounted for approximately 68% of the variance of 

CRM SRT (R2 = 0.72, Adjusted R2 = 0.677). CRM SRT was primarily 

predicted by the percentage of discriminable electrodes and to a lesser 

extent by the AAI categorical variable. The raw and standardized regression 

coefficients of the predictors are shown in Table (5.6). All other variables (the 

presence of pathology, the duration of deafness and the aetiology of 

deafness) were non-significant predictors. The duration of deafness was 

non-significant when included as continuous or categorical variables. 

 

Table 5.6 Results of step-wise multiple linear regression: the dependent variable was CRM SRT. The 

value of adjusted R
2
 for the model was 0.68 (p < 0.005).The unstandardised regression coefficient, B 

(with 95% confidence interval c.i. in parentheses, which indicate that the true coefficient of the 

predictor falls in this range at a 95% confidence level), and the standardised regression coefficient β, is 

listed for the only significant variable in the model. 

Dependent variable B (95% c.i.) β p 

Percentage discriminable 
electrode-pairs 

-0.51 (-0.71 to -0.3)  
-0.85 

 
< 0.001 

AAI 8.84 (1.06 to 16.61)  0.39 < 0.05 

5.4.1.2 Results of multiple regression models using the percentage of 

discriminable electrode pairs at each frequency band as a potential 

predictor 

Stepwise multiple regression analyses were carried out to determine the 

predictors for ‘BKB in quiet’ (RAU), ‘BKB in noise’ (RAU) and CRM SRT. 

Factors were added to each model one at a time starting with the best 
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predictor followed by the second best predictor and so on. The emphasis 

was on finding the best predictors at each stage and the model was tested 

for significance at each stage. Factors were added to maximize the Pearson 

r coefficient and the goodness of fit of the model (ANOVA analysis).  If two 

predictors were highly correlated with each other and with the dependent 

variable, often only one variable was chosen as a predictor in the model and 

the other variable was not. This indicated that the latter variable did not 

provide additional contribution to the model.  

 

For ‘BKB in quiet’ (RAU), the independent variables entered were: the 

percentage of discriminable electrodes within each of different frequency 

bands (≤1000H , 1000 H  - 2600 Hz and >2600Hz), the presence of 

pathology, the AAI, the duration of deafness (as a categorical and as a 

continuous variable) and the aetiology of deafness (as a categorical and as a 

continuous variable). The only predictors reaching significance level were the 

percentage of discriminable electrodes at the lower frequency range (≤ 1000 

Hz) and the presence of pathology. The prediction model contained these 

two predictors and was reached in two steps. The model was statistically 

significant, F(2, 28) = 16.35, p < .001, and accounted for approximately 51% 

of the variance of ‘BKB in quiet’ (RAU) (R2 = 0.54, Adjusted R2 = 0.51). ‘BKB 

in quiet’ (RAU) was primarily predicted by the percentage of discriminable 

electrodes at the lower frequency range (≤ 1000 Hz) and to a lesser extent 

by the presence of pathology. The raw and standardized regression 

coefficients of the predictors are shown in Table (5.7). All other variables 

[discriminable electrodes at the mid and at the high frequency range (> 1000 

Hz and > 2600 Hz respectively), AAI, duration of deafness and aetiology of 

deafness] were non-significant predictors. AAI and duration of deafness were 

non-significant when included as continuous or categorical variables. H3 was 

accepted for ‘BKB in quiet’ because the percentage of discriminable 

electrodes especially at the lower frequency range (≤ 1000 Hz) was a 

significant predictor of ‘BKB in quiet’. 
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Table 5.7 Results of step-wise multiple linear regression: the dependent variable was BKB score in 

quiet. The value of the adjusted R
2
 for the model was 0.51 (p < 0.001).The unstandardised regression 

coefficient, B (with 95% confidence interval c.i. in parentheses, which indicate that the true coefficient 

of the predictor falls in this range at a 9 5% confidence level),  and the standardised regression 

coefficient β, are listed for each significant variable in the model. 

Dependent variable B (95% c.i.) β p 

Percentage discriminable 
electrode-pairs at the low 
frequency range (≤ 1000 H ) 

0.56 (0.34 to 0.79) 0.67 < 0.001 

Pathology 27.65 (8.87 to 46.43) 0.39 < 0.005 

 

For ‘BKB in noise’ (RAU), the independent variables entered were: the 

percentage of discriminable electrodes within each of different frequency 

bands (≤1000H , 1000 H  - 2600 Hz and >2600Hz), the presence of 

pathology, the AAI, the duration of deafness (as a categorical and as a 

continuous variable) and the aetiology of deafness (as a categorical and as a 

continuous variable). The only predictor reaching significance level was the 

percentage of discriminable electrodes at the lower frequency range (≤ 1000 

Hz). The prediction model was statistically significant, F(1, 24) = 19.39, p < 

.001, and accounted for approximately 42% of the variance of ‘BKB in noise’ 

(RAU) (R2 = 0.45, Adjusted R2 = 0.42). ‘BKB in noise’ (RAU) was predicted 

by the percentage of discriminable electrodes at the lower frequency range 

(≤ 1000 Hz). The raw and standardized regression coefficients of the 

predictors are shown in Table (5.8).  

 

All other variables [the percentage of discriminable electrodes at the mid and 

at the high frequency range (> 1000 Hz and > 2600 Hz respectively), the 

presence of pathology, the AAI, the duration of deafness and the aetiology of 

deafness] were non-significant predictors. The AAI and the duration of 

deafness were non-significant when included as continuous or categorical 

variables. H3 was accepted for ‘BKB in noise’ because the percentage of 

discriminable electrodes especially at the lower frequency range (≤ 1000 Hz) 

was a significant predictor of ‘BKB in noise’. 
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Table 5.8 Results of step-wise multiple linear regression: the dependent variable was BKB score in 

noise. The value of the adjusted R
2
 for the model was 0.42 (p < 0.001).The unstandardised regression 

coefficient, B (with 95% confidence interval c.i. in parentheses, which indicate that the true coefficient 

of the predictor falls in this range at a 95% confidence level), and the standardised regression 

coefficient β, is listed for each significant variable in the model. 

Dependent variable B (95% c.i.) β p 

Percentage discriminable 
electrode-pairs at the low 
frequency range (< 1000 Hz) 

0.79 (0.42 to 1.15) 0.67 < 0.001 

 

For CRM SRT, the independent variables entered were: the percentage of 

discriminable electrodes within each of different frequency bands (≤1000H , 

1000 Hz - 2600 Hz and >2600Hz), the presence of pathology, the AAI, the 

duration of deafness (as a categorical and as a continuous variable) and the 

aetiology of deafness. The only predictors reaching significance level were 

the percentage of discriminable electrodes at the lower frequency range (≤ 

1000 Hz). The model was statistically significant, F(1, 13) = 9.196, p = 0.01, 

and accounted for approximately 37% of the variance of CRM SRT (R2 = 

0.41, Adjusted R2 = 0.37). CRM SRT was primarily predicted by the 

percentage of discriminable electrodes at the lower frequency range (≤ 1000 

Hz). The raw and standardized regression coefficients of the predictors are 

shown in Table (5.9). All other variables [the percentage of discriminable 

electrodes at the mid and at the high frequency range (> 1000 Hz and > 

2600 Hz respectively), the presence of pathology, the AAI, the duration of 

deafness and the aetiology of deafness) were non-significant predictors. The 

AAI and the duration of deafness were non-significant when included as 

continuous or categorical variables. H3 was accepted for ‘CRM SRT’ 

because the percentage of discriminable electrodes especially at the lower 

frequency range (≤ 1000 Hz) was a significant predictor of ‘CRM SRT’. 

 

 

 

 



Page 159 of 393 

Table 5.9 Results of step-wise multiple linear regression: the dependent variable was CRM SRT. The 

adjusted value of R
2
 for the model was 0.37 (p < 0.05).The unstandardised regression coefficient, B 

(with 95% confidence interval c.i. in parentheses, which indicate that the true coefficient of the 

predictor falls in this range at a 95% confidence level), and the standardised regression coefficient β, is 

listed for the only significant variable in the model. 

Dependent variable B (95% c.i.) β p 

Percentage discriminable 
electrode-pairs at the low 
frequency range (≤ 1000 H ) 

-0.18 (-0.3 to -0.05) -0.64 < 0.01 

 

5.5 Discussion 

There was great variability in  the speech perception scores for CI recipients 

which was reflected in the results of our participants’ BKB scores and CRM 

SRTs, this is in line with previous reports by other research groups (see 

Chapter 2; e.g. Wiltzman et al., 1995; Blamey et al., 1992; Summerfield and 

Marshall, 1995 and Friedland et al., 2010). There was also a large variability 

in the participants’ performance on the PTED pitch ranking task, ranging 

from perfect scores (100%) to extremely poor (24%) indicating that more 

than a third of the electrodes in the CI electrode array were affected, 

consistent with previous studies (reported in Section 2.3; e.g. Nelson et al., 

1995; Zwolan et al., 1997; Henry et al., 2000).  

 

The CI recipients’ performance on the speech perception measures were 

consistent with previous reports, BKB in quiet scores were better than BKB in 

noise. Understanding BKB sentences in noise requires the CI recipient to 

receive the sound with a higher spectral resolution; thus the decrease in 

performance (e.g. Friesen et al., 2001). 

In line with the data in Chapter 4, the majority (95%) of the CI population 

tested had a CRM SRT at a positive SNR (above 0 dB). 

 

In accordance to earlier studies (Collins et al., 1997; Henry et al., 1997; 

Nelson et al., 1995 and Dawson et al., 2000), there was a positive 
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relationship between speech perception and the number of perceptually 

distinct channels stimulated by the CI (H1 was accepted). The PTED 

procedure was able to define pitches that could not be discriminated which 

more likely corresponded to channels that were indistinguishable; hence 

there was a positive relationship between the number of discriminable 

electrode pairs and speech recognition scores. This is also in line with 

Friesen et al. (2001) who reported that CI performers with good speech 

perception were able to utilise more channels of spectral resolution than poor 

CI performers, although there might be some dispute on what the limit of 

channels that the CI recipient can utilise (discussed in Section 2.3.1).  

 

When evaluating the relationship between PTED results at the different 

frequency ranges (low, mid and high) and speech perception, results were in 

accordance to previous studies (e.g. Miller and Nicely, 1955 and Shannon et 

al., 2001; Skinner et al., 1995; Henry et al., 2000; Fourakis et al., 2004 and 

Fourakis et al., 2007). The association between speech perception as 

measured via BKB in quiet and CRM and the proportion of discriminable 

electrodes was significant at low and mid frequency range (≤ 2600 H ) but 

not at the higher frequency range (> 2600 Hz). This reflects the importance 

of the lower frequency range (≤ 2600 H ) to speech perception in 

comparison to the higher frequency range (e.g. Miller and Nicely, 1955 and 

Shannon et al., 2001). It’s also in line with (Skinner et al., 1995; Henry et al., 

2000; Fourakis et al., 2004 and Fourakis et al., 2007) who found that the CI 

recipient requires a larger number of electrodes in the lower frequency 

region; hence a larger proportion of discriminable electrodes in that region (≤ 

2600 Hz) was associated with better BKB in quiet and CRM. This concurs 

with Henry et al. (2000) where a significant association between the ability to 

discriminate electrodes and the amount of speech information perceived was 

found in the frequency range in frequencies 170Hz – 2680 Hz but not in the 

higher frequency range > 2680 Hz.  

 



Page 161 of 393 

For good speech perception a larger number of discriminable electrodes is 

required in the lower frequency range (≤ 2600 H ) in comparison to higher 

frequencies (>2600 Hz). This region requires higher spectral resolution not 

only because it provides vowel formant information but also because it 

provides information of phonemic voicing, nasal and place of articulation 

features (e.g. Miller and Nicely, 1955). The region of the first formant (≤ 1000 

Hz) is also particularly important for nasal and voicing cues (e.g. Miller and 

Nicely, 1955). The region (≤ 2600 H ) is critical for detecting formant 

transitions, which are acoustic cues involving rapidly changing spectral 

patterns (Munson and Nelson, 2005). Formant transitions were found to be 

the most vulnerable speech feature to degradation in noise among CI users 

(Munson and Nelson, 2005). Additionally the perception of place of 

articulation for plosives, fricatives and affricates and of the voicing feature is 

also at least in part dependent on vowel formant transitions (e.g. Cooper et 

al., 1952; Benki, 2001 and Hedrick and Carney, 1997). Frication (manner of 

articulation feature) is the only phonemic feature that relies on information 

usually solely provided by the higher frequency region (> 1000 Hz) spreading 

up to 8 to 10 kHz. But the detection of “random noise” above 1 kH  is 

sufficient to perceive this phonemic feature and unlike other phonemic 

features does not require high spectral resolution (Wright, 1997). 

 

The association between the proportion of discriminable CI electrode pairs 

and speech perception was stronger for BKB in noise than in quiet, which is 

most likely due to BKB in noise test’s increased demand for spectral 

resolution (e.g. Qin and Oxenham and Fu and Nogaki, 2004). This higher 

demand for spectral resolution was also reflected in the association between 

BKB in noise and the proportion of discriminable electrodes at different 

frequency ranges (low, mid and high). Again, this supports the idea that the 

percentage of discriminable electrodes reflects the degree of spectral 

resolution that a CI recipient has. This could be related to neuronal survival, 

electrode placement issues or other device related issues (see Section 2.3). 
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Results of the multiple regressions showed a similar picture; the PTED’s 

percentage of discriminable electrodes not only correlated with all speech 

perception measures used, it was the main significant predictor in all models 

(H3 was accepted). With the use of the overall discriminable electrodes at all 

frequencies, the models predicted over 50 % and reaching up to 66 % of the 

variance in the speech perception measures used (BKB in quiet, in noise and 

CRM). With the use of the percentage of discriminable electrode pairs at 

each frequency band in step-wise multiple regression, the models predicted 

over 41 % and reaching up to 53 % of the variance in the speech perception 

measures used (BKB in quiet, in noise and CRM). Results showed that the 

percentage of discriminable electrodes at the low frequency range (≤ 1000 

Hz) was the only significant predictor for CRM and BKB in noise and was the 

main significant predictor for BKB in quiet. Findings of multiple regression 

testing emphasize the expected importance of low frequency range 

contribution to speech perception (e.g. Miller and Nicely, 1955; Shannon et 

al., 2001; Skinner et al., 1995; Henry et al., 2000; Fourakis et al., 2004 and 

Foukaris et al., 2007). Other contributing variables to the models included the 

presence of pathology for predicting BKB in quiet, which is consistent with 

studies evaluating the effect of aetiology on CI performance and found that 

pathological changes such as calcification led to decreased performance 

(Cohen and Waltzman, 1993; Hartrampf et al., 1995; Rotteveel et al., 2005 

and Rotteveel et al., 2010). This finding is also in agreement with Nadol and 

Hsu (1991) who reported a negative correlation between calcification and 

spiral ganglion cell count. The interesting finding here is that pathology (as 

defined in Section 5.3) did not only include cases of pathological changes 

(ossification, calcification and fibrosis) to the cochlea secondary to aetiology 

of the hearing loss but also included cases of confirmed fibrosis following 

device failure and infection. Despite reports of comparable results for CI 

performance before and after explantation and reimplantation (e.g. Saeed et 

al., 1995; Alexiades et al., 2001; Parisier et al., 2001 and Cote et al., 2007) 

pathological changes such as fibrosis may have a negative impact on 

performance. In our test population, the presence of fibrosis was confirmed 

for two participants who had an infection that prevented re-implantation at 

the time of explantation and caused partial insertion of the CI array for one of 
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them. Evidence suggests that the presence of pathology is a more important 

factor affecting performance than either aetiology or explantation-

reimplantation on its own. 

 

When the percentage of discriminable electrodes in each frequency range 

was considered as an independent potential predictor, the AAI was a 

significant predicting factor for CRM SRT, this is in line with previous findings 

(Waltzman et al.,1995; Gantz et al., 1993; Blamey et al., 2013; Chatelin et 

al., 2004; Friedland et al., 2010 and Lenarz et al., 2012) who found an AAI 

effect on CI performance. The presence of an AAI effect on CRM SRT only 

and not BKB scores could be due to the relative small number of participants 

and the nature of speech-on-speech masking in CRM. Speech-on-speech 

masking was reported to be more detrimental for older listeners (over 60 

years) as compared to younger listeners making the effect for the AAI larger 

in CRM than BKB in quiet or in noise (e.g. Helfer et al., 2010 and Helfer and 

Freyman, 2008). 

 

These findings indicated that having indiscriminable electrodes can affect 

speech perception with CIs. This in return provided further support to the 

potential importance of research actively searching for problematic 

electrodes in CIs with the goal of improving performance (e.g. Zwolan et al., 

2007 and Zhou and Pfingst, 2012). 

5.6 Conclusion  

Results of this present study are in concordance with previous studies. CI 

recipients showed better performance in quiet than in noise. A relationship 

was found between PTED’s results especially in the lower frequency range 

(≤ 2600 Hz) and the various measures of speech perception and the 

percentage of discriminable electrodes especially at lower frequencies (≤ 

1000 Hz) was a significant predictor of speech perception. It also indicated 
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that PTED -being a clinically viable test- potentially has a clinically relevant 

function to speech perception with CI.  

5.7 Summary 

 CI recipients showed better performance in quiet than noise. 

 The majority of CI recipients had CRM SRTs at positive SNR. 

 There was a positive association between percentage of discriminable 

electrode pairs as identified via PTED and all speech perception 

measures used (BKB in quiet and in noise and CRM). 

 The strongest association between PTED and speech perception was 

found when speech testing took place in noise; test requirement for 

higher spectral resolution might be the reason. 

 Having a larger proportion of discriminable electrodes at the lower 

frequency range (≤ 2600 Hz) was more important for speech 

perception than it was at the higher frequency range.  

  Results provide further evidence validating the PTED as a clinical tool 

with functional potential that relates to speech perception with CI. 
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Chapter 6 

The relationship between CI electrode array 

placement, electrode differentiation and speech 

perception  

Abstract 

This chapter describes a study that evaluates the association between scalar 

electrode array placement, the angular depth of array insertion, pure-tone 

electrode differentiation (PTED) results and speech perception. The outcome 

measures were BKB in quiet, BKB in noise and CRM. 16 individuals were 

evaluated for angular depth of insertion. Statistically significant correlations 

were found for BKB in quiet (Pearson’s r = 0.57*, p < 0.05) and BKB in noise 

(Pearson’s r = 0.71**, p < 0.01). No correlation was found with ED in the 

most apical electrodes. In addition the characteristic frequency of the most 

apical electrode was estimated and the “frequency shift” was calculated as 

the difference between the characteristic frequency and the centre frequency 

of the filter assigned to the corresponding electrode. Strong correlations were 

found for BKB in noise (Pearson’s r = -0.63*, p < 0.05) but not for BKB in 

quiet. These results indicate the positive effect of increased angular depth of 

insertion may at least be in part due to the frequency shift. Cone beam 

computed tomography (CBCT) provides high quality images that in this study 

allowed two highly experienced physicians to identify in-vivo scalar-

placement of electrode arrays in nine implanted individuals. A significant 

correlation was not found between scalar placement in the scala tympani 

(ST) versus scala vestibuli (SV) with speech perception or between scalar-

placement of each electrode with ED for the corresponding electrodes. 

However PTED results of electrodes at inter-scalar cross-over points 

between ST and SV showed pitch confusion. This indicated that PTED 

identified dead regions at points of inter-scalar cross-over. The lack of 
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correlation between PTED results and scalar-placement in this study 

population may also indicate the absence of trauma associated with SV 

placement.  

6.1 Introduction 

As discussed in the literature review in Chapter 2 (Section 2.2), the CI 

electrode design and the surgical insertion of the electrode array may affect 

post-implantation outcome (e.g. Aschendorff et al., 2007 and Finley and 

Skinner, 2008). Depth of insertion and scalar placement of the CI array might 

be factors that affect speech perception with CI. Although some researchers 

reported adverse effects of deeper insertions (Gani et al., 2007 and Finley 

and Skinner, 2008), it was also associated with poor ED of the apical 

electrode. Only two studies investigated the effect of scalar placement of the 

individual electrodes into the scala vestibuli (SV) versus the scala tympani 

(ST) (Aschendorff et al., 2007 and Finley and Skinner, 2008), but they did not 

investigate the relationship between scalar placement and ED.  PTED results 

along with radiological imaging can shed some light on the effect of array 

placement (depth of insertion and scalar placement) on ED and speech 

perception with CI.  

 

Deep insertion had been advocated by some researchers in order to widen 

the range of stimulated frequencies in the cochlea (e.g. Hochmair et al., 

2003) and to match the stimulated frequency of the electrical signal and the 

normal tonotopic organisation of the cochlea (e.g. Baskent and Shannon, 

2003 and 2005). However, associated with this is an increased possibility of 

insertion trauma (e.g. Finley and Skinner, 2008; Adunka et al., 2006 and 

Wardrop et al., 2005a) and the loss of frequency specificity due cross-turn 

stimulation as demonstrated by poor ED of the apical electrodes (Gani et al., 

2007 and Finley and Skinner, 2008) may indicate the need to accomplish a 

balance between a sufficient depth of insertion and the avoidance of trauma. 

Another issue that has been evaluated was the scalar positioning of the array 
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(Skinner et al., 2007 and Finley and Skinner, 2008). Since the deliberate 

insertion into the SV in certain cases has been reported to produce 

comparable results to insertion into the ST (Barrettini et al., 2002; Kiefer et 

al., 2000 and Lin, 2009) it is stipulated that underlying mechanical damage to 

the spiral ganglion in cases of inter-scalar cross over (from ST to SV) may be 

the reason for the decreased performance reported by Finley and Skinner 

(2008) when the electrodes were placed in SV. Aschendorff et al., (2007) 

reported a significant difference in speech perception between intentional ST 

and unintentional SV array placement which they attributed to the difference 

not only in scalar placement but due to the trauma associated with insertion. 

Finley and Skinner (2008) also reported poor ED at the apical electrodes 

associated with positioning them in SV. Thus the evaluation of CI array 

positioning in the cochlea and its effect on performance may further inform 

surgical techniques and future CI electrode array design (e.g. Aschendorff et 

al., 2007). This is one of the drivers behind the development of imaging 

techniques that provide high quality images to allow adequate evaluation 

without artefacts while maintaining safety (relatively low radiation) and 

controlling for cost. CBCT has been suggested as an alternative to multiple 

slice CT (MSCT) in the field of otorhinolaryngology  for the management of 

the hearing impaired (Gupta et al., 2004; Bartling et al., 2006; Rafferty et al., 

2006; Faccioli et al., 2009; Hodez et al., 2011). It also has been evaluated for 

pre-cochlear implantation assessment (Barker et al., 2009) and for post-

implantation assessment of the CI electrode array position in the cochlea 

(Gupta et al., 2004; Bartling et al., 2006; Ruivo et al., 2009; Trieger et al., 

2010; Cushing et al., 2012 and Güldner et al., 2012). 

 

This study examines the use of imaging to look at electrode placement and 

correlate this with the ED results obtained from PTED procedure in adults 

with CIs. 
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6.1.1 CBCT use with CI 

CBCT is an “x-ray based volume acquisition method” (Hode  et al., 2011) 

that utilises a motorised rotating x-ray emitting tube and a parallel flat panel 

detector turning around the participant’s head. The computer then processes 

the images captured by the panel detector to construct a cylindrical volume, 

within this cylindrical volume each unit “voxel” is cubic and the cylindrical 

volume is considered “isotropic” which ensures constant spatial resolution 

regardless of slice orientation. Similar to MSCT it allows 3D multi-planar 

(axial, coronal, sagittal) reconstruction in addition to oblique reconstruction. It 

was initially intended for dental use but due to technological advances and 

improvement in imaging quality it has been suggested as a low-radiation 

alternative for MSCT to capture images of the bony structures especially in 

the head and neck region (e.g. Gupta et al., 2004; Bartling et al., 2006; 

Rafferty et al., 2006; Faccioli et al., 2009; Hodez et al., 2011; Ruivo et al., 

2009; Cushing et al., 2012 and Güldner et al., 2012). The Advantages of 

using CBCT with CI include that it has: 

(1) Lower-radiation exposure in comparison to MSCT; Ruivo et al., (2009) 

reported an effective dose of 80 Sv with the use of CBCT in 

comparison to an effective dose of 3,600 Sv for the 16-slice MSCT 

and 4,800 Sv for the 4-slice MSCT in an in vivo post-CI imaging. 

(2) Reduced sensitivity to metallic artefacts in comparison to MSCT 

allowing for placement assessment for each individual CI electrode 

(Ruivo et al., 2009). 

(3) Higher spatial resolution, which is determined by the “voxel” si e, with 

smaller voxels the spatial resolution of bony structures can be as good 

as that of MSCT (Hodez et al., 2011). In addition to that, isotropicity 

ensures high resolution in all directions. 

(4) Lower cost (e.g. Ruivo et al., 2009; Hodez et al., 2011 and Cushing et 

al., 2012), shorter testing time (Rafferty et al., 2006) and a more 

comfortable open testing environment than MSCT (Ruivo et al., 2009). 
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While CBCT has several advantages over MSCT, it has some disadvantages 

due to reduced radiation intensity; in addition to the increased noise levels, 

evaluation of fine soft tissue details cannot be conducted (e.g. Miracle and 

Mukherji, 2009; Hodez et al., 2011 and Cushing et al., 2012). Another 

disadvantage is the lack of unified terminology and settings across the 

different CBCT devices; this makes it difficult to draw generalised 

conclusions and comparisons in addition to the absence of standardised 

protocols to evaluate the CI array position for example. Despite these 

disadvantages, CI placement examination in temporal bones and cadaveric 

human heads (Bartling et al., 2006; Cushing et al., 2012 and Güldner et al., 

2012) and in vivo studies such as (Ruivo et al., 2009 and Tieger et al., 2010) 

have demonstrated the potential of using CBCT for the evaluation of CI 

electrode placement within the cochlea. 

It has been reported that CBCT can provide high quality images of CIs that 

allow the distinct identification of single CI electrodes (Gupta et al., 2004; 

Bartling et al., 2006; Ruivo et al., 2009; Tieger et al., 2010; Cushing et al., 

2012 and Güldner et al., 2012). CBCT was also used to (1) measure precise 

in vivo anglular depth of insertion for 15 implanted individuals (Tieger et al., 

2010), (2) detect kinking and number of intra-cochlear contacts (Ruivo et al., 

2009 and Cushing et al., 2012) and (3) determine scalar position (Cushing et 

al., 2012). However Güldner et al. (2012) reported up to 51% artefact exist 

on the measurement of the electrode diameter particularly with the apical 

electrodes. This has raised doubts about CBCT for determining scalar 

position of electrodes in deep insertions beyond the basal medial turn of the 

cochlea. In Güldner et al.’s study (2012) 3 cadaveric human heads and one 

specific CT scanner was used. The authors did not attempt to evaluate 

scalar position of the individual electrodes. In contrast Cushing et al., (2012) 

used CBCT to evaluate the individual electrodes scalar position and showed 

similar results to those obtained via histopathological analyses with the use 

of 11 human temporal bones implanted with a straight research array (SRA) 

from Cochlear®. 
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CBCT application with regards to CI may potentially have surgical, clinical 

and research uses. Further evaluations of CBCT use with CI and future 

optimisation of CBCT testing protocol may be warranted. 

6.1.2 Aims and hypotheses 

This chapter describes a study that addresses the use of imaging with CI. 

The first part evaluates the effect of angular depth of insertion of the CI array 

-as measured via plain x-rays and/or CBCT- on CI performance and the 

relationship between the angular depth of insertion and PTED at the apical 

electrodes. The relationship between the frequency shift of the most apical 

electrode and speech perception was also evaluated to investigate the 

contribution of the frequency shift to speech perception with CI. The second 

part evaluated the use of CBCT to determine the scalar placement of each 

CI electrode and the relationship between scalar placement, speech 

perception and PTED results. 

 

Main research hypotheses were that:  

H1: There is a correlation between depth of insertion of the CI electrode array 

and post CI speech perception. 

H2: There is a correlation between depth of insertion of the CI electrode array 

and the percentage of discriminable electrodes as identified by the PTED 

with particular reference to the apical electrodes. 

H3: There is a correlation between the frequency shift (of the most apical 

electrode) and post CI speech perception. 

H4: There is a correlation between scalar positioning of the CI electrodes in 

the cochlea (in ST versus SV) and post CI speech perception. 

H5: There is a correlation between scalar positioning of the CI electrodes in 

the cochlea and the ED. 
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H6: There is a correlation between the number of interscalar cross-overs 

(between ST and SV) of the CI electrode array as identified with CBCT and 

post CI speech perception. 

H7: There is a relationship between the interscalar cross-overs (between ST 

and SV) of the CI electrode array as identified via CBCT and the ED in that 

region. 

6.2 Method 

6.2.1 Participants 

Out of the 36 participants that were recruited for the study described in 

Chapter 5, participants from the RNTNEH who had their post-implantation 

plain x-ray films available were included in this study. Additionally 9 out of the 

36 participants who were recruited had also undergone CBCT scanning. 17 

adult CI recipients with acquired deafness in total were recruited for this 

study. 

The same inclusion criteria described in 5.2.1 were used.  

Participants’ demographics:  

(1) Duration of deafness was calculated for each participant from the date of 

diagnosis of a bilateral profound sensorineural hearing loss. (2) Age at 

testing ranged between 24 to 80 years with a mean of 58 years (±14.44). (3) 

The aetiology of the hearing loss was unknown in 6 out of the 17 

participants. (4) CI experience was calculated from date of switch on of the 

currently used implant; it ranged from 8 to 172 months, with a mean of 47 

months (±42) and a median of 45 months. (5) The hearing loss was 

progressive for all of the participants. (6) Among the participants there were 

7 AB CI recipients, 5 MED-El™ CI recipients and 5 Cochlea® CI recipients. 

Three participants had a pre or peri-lingual onset (before 5 years old) hearing 

loss (participants 3, 4 and 8). Two participants (2) had a history of cochlear 

explantation and re-implantation and participant 5 had a rolled over electrode 
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tip at insertion. Participant 17 was subsequently diagnosed with dementia 

which may have affected the speech perception assessments and the PTED 

procedure at the time of recruitment, thus her speech perception measures 

and PTED results were excluded from analysis. Table 6.1 details 

participants’ demographics.  
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Table 6.1 Participants demographic details, the duration of deafness was calculated from the date of 

diagnosis of a bilateral profound sensorineural hearing loss to time of receiving an implant. 

Participant Aetiology Progressive 
Age in 

years 

Age at 

implant 

in years 

Duration 

of  

Deafness 

in years 

Implant 

experience in 

months 

 

Type of implant 

1 

Post general 
anesthesia in 

3
rd
 decade 

 

Yes 63 61 12 18 MED-EL™ SONATATI
100 

2 Unknown Yes 68 57 19 18 AB HiRes 90K 

3 
Meningitis at 

8months 
Yes 53 49 ? 48 Nucleus®

 
Freedom 

4 

 
Head injury, 
age 5 years 

 

Yes 56 46 3 120 
MED-EL™  PULSARCI

100
  

standard 

5 Unknown Yes 50 48 2 24 AB HiRes 90K 

6 Unknown Yes 65 61 ? 48 AB HiRes 90K 

7 Unknown Yes 
 

80 
 

78 
 

25 
24 MED-EL™ SONATATI

100
 

8 
Unknown 

at age 9mths? 
Yes 41 40 15 17 Nucleus® CI 512 

9 
Endolymphatc 

Hydrops 
Yes 48 47 6 8 Nucleus® CI 512 

10 Sickle cell 
anemia 

Yes 24 20 9 48 
MED-EL™  PULSARCI

100
  

standard 

11 Unknown Yes 52 47 ? 57 AB HiRes 90K 

12 Meniers Yes 71 70 5 13 
MED-EL™  PULSARCI

100
  

standard 

13 Unknown Yes 64 52 6 172 Nucleus® 22 

14 Hereditary Yes 62 57 6 62 AB HiRes 90K 

15 Hereditary Yes 77 73 7 48 AB HiRes 90K 

16 
Endolymphatic 

Hydrops 
Yes 42 39 1 34 Nucleus®

 
Freedom (CA) 

17 Genetic Yes 71 67 10 45 AB HiRes 90K 
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6.2.2 Test battery 

The PTED (described in Section 3.2.2.2) in addition to three speech 

perception measures were used in testing, the CRM (described in Section 

4.2.2) and the BKB sentence test in quiet and in speech-spectrum shaped 

noise at a 10dB (described in Section 5.2.2). 

6.2.2.1 Plain x-ray 

Post CI plain x-rays of CI placement (a modified Stenver’s view) are 

undertaken routinely at the RNTNEH; these films were used in this study. A 

modified Stenver’s view provided a direct image of the intra-cochlear 

electrode array. 

6.2.2.2 CBCT 

The CBCT assessment of CI electrode array placement was performed with 

the use of 3D Accuitomo (J. Morita MFG. Corp., Kyoto, Japan) at Cavendish 

Imaging. Imaging protocol applied: tube current 6mA, tube voltage 90kV, 

acquisition time of 17.4sec, rotation of 360 ° tomography, field of view (FOV) 

was small cylindrical (6 x 6 X 6 cm) with 3D isotropic 0.125 x 0.125 x 0.125 

mm voxels.  

 

The images were analysed with bespoke software (idixel One Volume 

Viewer, V 1.6.0.20, J. Morita MFG. Corp., Kyoto, Japan) which enabled a 

360-degree 3-D visualisation of the CI electrode array in the cochlea. 

Submillimeter multiplanar reconstructions with a slice thickness of 0.25 mm 

were undertaken. 

6.2.3 Procedure 

Testing for speech perception took place in a 3.7×3.25 m double-walled 

sound booth where the participant was seated 1 metre in front of an ear level 
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loud speaker (Plus XS.2, Canton) from which the speech and noise were 

presented. The stimuli were stored (16 bits), sampling rate (44.1 KHz) 

presented digitally using the AB-York Crescent of Sound (Kitterick et al., 

2011). Testing for PTED took place in a double-walled sound booth. 

 

For CRM the participants used a touch screen monitor to respond and the 

software ran the test presentation and scoring in an automated fashion. 

During BKB testing, the tester recoded the participants’ verbal response by 

selecting the correct key words in each sentence presented. 

All participants underwent BKB and PTED testing, CRM SRTs were 

determined for 6 out of the 17 participants.  

 

The angular depth of insertion of the CI electrode array was judged by a 

highly experienced consultant ENT and CI surgeon for all 17 participants. 

The angular insertion depth of the electrode array tip was estimated relative 

to rotation about the mid-modiolar axis starting at the cochlear canal basal 

end. (See Figure 6.1 for example demonstrating the angular depth of 

insertion). 
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Figure 6.1 Post CI plain X-ray (Stenvers view) showing a CI electrode array with an angular depth of 

insertion estimated at 540°. The X-ray shows the implanted transmitter, receiver and the electrode 

array. The X-ray is showing electrode array as it enters the basal turn and the angular depth of 

insertion of the tip of the electrode array was estimated at 540° from the round window (one and a half 

turn). 

 

The CBCT images acquired for the 9 participants were examined to establish 

scalar positioning of the CI electrode array. Scalar position of each electrode 

was judged by two independent raters; a highly experienced consultant ENT 

and CI surgeon and a highly experienced consultant neuro-radiologist. Each 

electrode was assigned a value (- 4 for extra-cochlear, -3 kinked, -2 definitely 

in SV, -1 query in SV, 0 query, +1 query in ST, +2 definitely in ST). 
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6.3 Analyses 

BKB scores were converted to rationalized arcsine-transform units (RAU) 

before conducting statistical analysis (Studebaker, 1985) to reduce the 

impact of floor and ceiling effects.  

 

The same pass/fail criteria described in Chapter 3 (Section 3.2.3.2) was used 

to categorise all tested electrode pairs via the PTED for each participant. In 

addition to that an ED score was calculated for each electrode which was the 

mean ED for each electrode and the adjacent electrodes on either side 

(except for the most apical and most basal electrode where only the ED 

score with the adjacent electrode was used). These scores were also 

categorised according to the same pass/fail criteria. 

 

The CI devices were categorised according to make (1 for AB, 2 for Cochlear 

and 3 for Med-El). 

 

The two expert image reviewers analysed the CBCT images using a scale 

for establishing accuracy of placement. They were asked to estimate which 

scalar the electrodes fell within and the confidence with which they made the 

estimate, the categories used were: -2 definitely in SV,  -1 possibly in SV, 0 

not sure which scala, +1 possibly in ST, +2 definitely in ST).  

 

For the final analyses the -2 and -1 responses were combined into one 

category (-1 for SV) and the +1 and +2 were grouped into one category (+1 

for ST). For inter-rater agreement on scalar position, responses of 0 were 

removed to evaluate if the two raters agreed on assignment of electrodes to 

ST versus SV. In addition to that, the categories - 3 for extra-cochlear and -2 

kinked were also used in analysis. 
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6.3.1 Angular depth of insertion 

The frequency-position map of the spiral ganglion proposed by Sridhar et al. 

(2006) and Stakhovskaya et al. (2007) was used to estimate the 

characteristic frequency associated with the most apical active electrode for 

each participant based on the angular depth of insertion. The difference 

between the characteristic frequency and the centre frequency of the filter 

assigned to the corresponding (most apical) electrode was calculated, this 

difference will be called the “frequency shift” of the most apical electrode. Fu 

and Shannon (1999a) have indicated that the frequency shift at the apical 

electrodes had a greater effect on speech perception than the more basal 

electrodes. The estimated angular depth of insertion for the most apical 

active electrode was categorised into one of the three ranges (similar to 

Lazard et al., 2012): < 370°, 370°- 539° and > 540°. Both the estimated 

angular depth of insertion values and categories were used in analyses. 

 

The statistical analysis was conducted to assess the following: 

1. Whether there is a significant relationship between the angular depth 

of insertion in degrees and the percentage of discriminable electrode 

pairs at all frequencies and at the two and four most apical electrode-

pairs. 

2. Whether there is a significant relationship between angular depth of 

insertion in degrees and speech perception (BKB in quiet, BKB in 

noise and CRM). 

3. Whether there is a significant relationship between angular depth of 

insertion (as categorical data) and PTED’s percentage of 

discriminable electrode pairs at all frequencies and at the two and four 

most apical electrode-pairs. 

4. Whether there is a significant relationship between angular depth of 

insertion (as categorical data) and speech perception (BKB in quiet, 

BKB in noise and CRM). 

5. Whether there is a CI manufacturer effect on the angular depth of 

insertion. 
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6. Whether there is a significant relationship between the frequency shift 

and speech perception (BKB in quiet, BKB in noise and CRM). 

7. Whether there is a CI manufacturer effect on the frequency shift. 

 

The Shapiro Wilk’s test revealed that BKB (in quiet and in noise) in RAU, the 

angular depth of insertion (for the 16 participants) and the frequency shift 

were normally distributed. Hence Pearson’s correlation coefficient was 

applied to establish the relationship between the angular depth of insertion 

and BKB and between the frequency shift and BKB. While Spearman’s rho 

was applied to establish the relationship between the angular depth of 

insertion and (PTED and CRM) results and between the frequency shift and 

(PTED and CRM) results. Spearman’s rho was also applied to establish the 

relationship between the angular depth of insertion (categorical ordinal data) 

and (PTED, BKB in quiet, BKB in noise and CRM) results. One way ANOVA 

was conducted to evaluate whether there is a difference in the angular depth 

of insertion between the different CI manufacturers (AB, MED-El, Cochlear) 

and to evaluate whether there was a difference in the frequency shift 

between the different manufacturers. 

6.3.2 Scalar placement of the CI electrodes (CBCT results) 

For scalar placement cases of discrepancy between raters or cases where 

an electrode was assigned the category (0) by both raters were excluded 

from analyses. The number of electrodes placed in the ST and SV were 

counted and proportions were calculated for each subject. Inter-scalar cross-

overs of the CI electrode array were also identified. Inter-scalar cross-overs 

were defined as the point between two adjacent electrodes when one 

electrode was judged to be placed in ST and the other electrode in SV. 

Finley and Skinner (2008) defined the “scalar pattern” as the region “where 

the array first enters SV” and labelled them as Basal (B), Middle (M) and 

Apical (A). A scalar pattern was determined for each participant based on 

dividing the intra-cochlear portion of the array into three parts basal, middle 

and apical. 
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The statistical analysis was conducted to assess the following: 

1. Whether there would be a significant inter-rater agreement on scalar 

positions of the CI electrodes. 

2. Whether there would be a significant and positive relationship 

between the proportion of CI electrodes inserted in ST as identified 

using CBCT and speech perception (BKB in quiet, BKB in noise and 

CRM SRT). 

3. Whether there would be a significant and positive relationship 

between the number of interscalar cross-overs (between ST and SV) 

of the CI electrode array as identified via CBCT and speech 

perception (BKB in quiet, BKB in noise and CRM). 

4. Whether there would be a significant and positive relationship 

between the scalar positioning of the CI electrodes as identified using 

CBCT and ED of corresponding electrodes using PTED. 

 

For CBCT results, percentage inter-rater agreement was calculated and 

Cohen’s Kappa was also used to assess the inter-rater agreement on scalar 

positioning of the CI electrodes. The Shapiro Wilk’s test revealed that only 

BKB (in quiet and in noise) in RAU and the angular depth of insertion were 

normally distributed. Hence Spearman’s rho was applied to establish the 

relationship between the percent electrodes placed in ST and BKB (in quiet 

and in noise in RAU), the angular depth of insertion and PTED) results. 

Spearman’s rho was also applied to establish the relationship between the 

scalar positions of each electrode (ST versus SV) and the ED for the 

corresponding electrode and between the number of number of inter-scalar 

cross-overs and (BKB (in quiet and in noise) and the angular depth of 

insertion).  

 

Since the electrodes’ ED scores were not normally distributed, the Mann-

Whitney was used. It was applied to determine if scalar placement of the 

electrodes has an effect on ED scores (percentage) or ED score category 
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(pass versus fail).  The Lambda test was applied to evaluate whether there is 

a relationship between make and scalar pattern, since they were both 

categorical nominal variables. 

 

At points of inter-scalar cross-overs the ED score for the electrode pairs in 

those regions was evaluated (pass versus fail) to establish whether inter-

scalar cross-overs affected ED. 

 

IBM SPSS STATISTICS 21 for windows was used to carry out the analyses 

except for Cohen’s Kappa which was carried out with the use of STATA 12 

because SPSS doesn’t run Kappa if one rater used a category that was not 

used by the other rater. p values are two tailed and significance is reported 

when p<0.05. 

6.4 Results  

6.4.1 Angular depth of insertion 

The angular depth of insertion ranged from 270°- 720° with a mean of 425° 

(± 125°). The MED-EL array with the deepest insertion ranging from 360°- 

720°, AB ranging from 270°- 540° and Cochlear 270°- 450°. Table 6.2 details 

correlation results between angular depth of insertion and other variables 

(BKB in quiet, BKB in noise, CRM, the percentage of discriminable electrode-

pairs and percentage discriminable electrode-pairs of the two most apical 

two and four most apical electrode-pairs). Table 6.3 details correlation results 

between angular depth of insertion (categorical data) and other variables 

(BKB in quiet, BKB in noise, CRM, the percentage of discriminable electrode-

pairs and percentage discriminable electrode-pairs of the two most apical 

two and four most apical electrode-pairs). See Figures (6.2 and 6.3) for 

correlations between angular depth of insertion and BKB in quiet and in 

noise respectively. There was a significant positive moderate to strong 

correlation between the angular depth of insertion and BKB in quiet and in 
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noise, thus the hypothesis H1 was accepted. Considering that only six 

participants had CRM SRTs being underpowered might explain why such a 

correlation was not found between CRM SRT and the angular depth of 

insertion. There was not a statistically significant correlation between the 

angular depth of insertion and the percentage of discriminable electrodes 

(across the array and at the most apical electrode-pairs). 

 

The one-way ANOVA with angular depth of insertion as the dependant and 

the make as the factor revealed a statistically significant difference between 

manufacturers (F (2, 13) = 4.58, p = 0.03). A Tukey post-hoc test revealed 

that the angular depth of insertion was statistically significantly higher for 

MED-EL implants (540°± 127°, p = .04) compared to AB implants (360°± 

110°). There were no statistically significant differences between the MED-

EL and Cochlear devices (360°± 75°, p = .98) or between the AB and 

Cochlear devices (p = .07). Although there was a significant difference 

between the angular depth of insertion across the CI manufacturers, a one-

way ANOVA revealed no significant difference between BKB scores in quiet 

across the different manufacturers (F(2,13) = 0.41, p = 0.67) nor was there a 

significant difference between BKB scores in noise across the different 

manufacturers (F(2,13) = 2.03, p = 0.18). 
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Table 6.2 correlation results between the angular depth of insertion in degrees and the other variables 

(BKB in quiet (RAU), BKB in noise (RAU), CRM SRTs in dBA, percentage of discriminable electrode-

pairs for all electrodes and percentage of discriminable electrode-pairs for the two most apical and four 

most apical electrode-pairs). 

Variable 

Correlation with the angular depth of insertion 

Coefficient p N 

BKB in quiet Pearson’s r = 0.57* < 0.05 16 

BKB in noise Pearson’s r = 0.71** < 0.01 13 

CRM  Spearman’s rs 
 
= -0.17 0.74 6 

Percentage discriminable 

electrode-pairs 
Spearman’s rs 

 
= 0.09 0.75 15 

ED of the most apical four 

electrode-pairs 
Spearman’s rs 

 
= -0.18 0.53 15 

ED of the most apical two 

electrode-pairs 
Spearman’s rs 

 
= -0.23 0.42 15 
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Figure 6.2 The relationship between BKB scores in quiet (RAU) and the angular depth of insertion. 

Angular depth of insertion on the y axis versus BKB scores in quiet (RAU) on the x axis showing a 

moderate positive relationship. 

 

Figure 6.3 The relationship between BKB scores in noise (RAU) and the angular depth of insertion. 

Angular depth of insertion on the y axis versus arcsine transformed BKB scores in noise on the x axis 

showing a moderate positive relationship.  
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Table 6.3 correlation results between the angular depth of insertion category and the other variables 

(BKB in quiet, BKB in noise, CRM SRTs in dB, percentage of discriminable electrode-pairs for all 

electrodes and percentage of discriminable electrode-pairs for the two and four most apical electrode-

pairs). 

Variable 

Correlation with the angular depth of insertion category 

Coefficient p N 

BKB in quiet Spearman’s rs 
 
= -0.05 0.87 15 

BKB in noise Spearman’s rs 
 
= 0.73** < 0.01 13 

CRM  Spearman’s rs 
 
= -0.17 0.75 6 

Percentage discriminable 

electrode-pairs 
Spearman’s rs 

 
= 0.19 0.51 15 

ED of the most apical four 

electrode-pairs 
Spearman’s rs 

 
= -0.02 0.94 15 

ED of the most apical two 

electrode-pairs 
Spearman’s rs 

 
= -0.3 0.28 15 

6.4.1.1 The frequency shift  

The frequency shift ranged from -91 Hz – 1296 Hz with a mean of 524 Hz (± 

116 Hz). Table 6.4 details correlation results between the frequency shift and 

other variables ‘BKB in quiet’, ‘BKB in noise’, CRM and the percentage of 

discriminable electrode-pairs. There was significant correlation between the 

frequency shift and ‘BKB in noise’ but not with ‘BKB in quiet’ and H3 was 

accepted for ‘BKB in noise’ but not for ‘BKB in quiet’.  Again being 

underpowered might explain correlation was not found between CRM SRT 

and the frequency shift. 
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A one-way ANOVA revealed no significant difference between the frequency 

shift across the different CI manufacturers (F (2, 12) = 1.23, p = 0.33). 

 

Table 6.4 correlation results between the frequency shift in Hz and the other variables (BKB in quiet, 

BKB in noise, CRM SRTs in dB and percentage of discriminable electrode-pairs for all electrodes).  

Variable 

Correlation with the frequency shift 

Coefficient p N 

BKB in quiet Pearson’s r = -0.5 0.06 15 

BKB in noise Pearson’s r = 0.63* < 0.05 12 

CRM  Spearman’s rs 
 
= 0.09 0.87 6 

Percentage discriminable 

electrode-pairs 
Spearman’s rs 

 
= 0.24 0.42 14 

6.4.2 Scalar placement of the CI electrodes (CBCT results) 

CBCT images allowed judgment regarding the intra-cochlear placement of 

individual electrodes in ST versus SV and the identification of extra-cochlear 

electrodes without the interference of metallic artefacts. See Figures (6.4 and 

6.5) for examples of CBCT images allowing placement judgment of individual 

electrodes with low metallic artefacts and an example of an MSCT image 

with metallic artefacts. Inter-rater agreement was 95.31 %, kappa revealed 

“almost perfect” inter-rater reliability for the raters (Landis & Koch, 1977), 

kappa = 0.83 (p <.0.001), 95% c.i. (0.66, 0.99).  
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Figure 6.4 CBCT mid-modiolar reconstruction (axial-view) showing the position of MED-EL™ 

SONATATI
100 electrodes in scala tympani. Low metallic artefacts allow estimation of scalar placement of 

the individual electrodes. 

 

 

Figure 6.5 Examples of post CI CBCT and MSCT images. A) CBCT image of in an AB HiRes 90K 

implant electrode array which allowed the identification of individual electrode placement including the 

four extracochlear electrodes (as judged independently by both consultants and concurred later with 

the surgeon’s report). B) MSCT image of a Nucleus® 22 electrode array intra-cochlear placement, 

individual electrode placement cannot be determined due to metallic artefacts. 
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For further statistical analyses, in cases of discrepancies between raters (ST 

versus SV), those electrodes (6 out of 130) were excluded from further 

analyses. Because of the substantial inter-rater agreement, it was decided 

that one rater’s judgement about scalar placement of an electrode is 

sufficient in case the other rater assigned it a (0). 11 electrodes were not 

assigned either ST or SV by any rater and were excluded; they were the six 

most apical electrodes for participant 3 who had a history of meningitis and 

five out of 22 electrodes in a participant that moved during testing. Table 6.5 

details correlation results between proportion of electrodes placed in ST and 

other variables (BKB in quiet, BKB in noise, percentage discriminable 

electrode-pairs, ED of the most apical two and angular depth of insertion). 

There were no significant correlations between the proportion of electrodes 

placed in ST and any of the test variables.  

 

Table 6.5 correlation results between the percentage of electrodes placed in ST and the other 

variables (BKB in quiet, BKB in noise, percentage of discriminable electrode-pairs for all electrodes, 

percentage of discriminable electrode-pairs for the two most apical and angular depth of insertion in 

degrees). 

Variable 

Correlation with the percentage of electrodes placed in ST 

Coefficient p N 

BKB in quiet Spearman’s rs 
 
= -0.07 0.86 8 

BKB in noise Spearman’s rs 
 
= 0.46 0.43 5 

Percentage discriminable 

electrode-pairs 
Spearman’s rs 

 
= -0.06 0.88 8 

ED of the most apical two 

electrode-pairs 
Spearman’s rs 

 
= -0.25 0.58 8 

Angular depth of insertion Spearman’s rs 
 
= 0.28 0.54 8 
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A Mann-Whitney test revealed that there was not a statistically significant 

difference between the scalar placement of the electrodes in ST versus SV 

median ED score (U = 1119, p = 0.77). No significant correlation was found 

between the number of inter-scalar cross-overs and CI performance nor with 

angular depth of insertion (see Table 6.6 for results). However a closer 

evaluation of PTED’s results of the electrode-pairs in the region of inter-

scalar cross-overs was warranted. Among the 9 participants there were 5 

who had at least one inter-scalar cross-over. Participants 2, 3, 4 and 6 had 

one inter-scalar cross-over and participant 8 had two (the electrode array 

crossed from ST to SV then back again to ST). PTED results revealed that 

participants failed ED in those regions for all inter-scalar cross-over except 

for participant 2, who had fibrosis. The H7 was accepted because a 

relationship was found between inter-scalar cross-overs and ED results. 

 

Table 6.6 correlation results between the number of inter-scalar cross-overs and the other variables 

(BKB in quiet, BKB in noise and angular depth of insertion in degrees). 

Variable 

Correlation with the number of inter-scalar cross-overs 

Coefficient p N 

BKB in quiet Spearman’s rs 
 
= -0.24 0.58 8 

BKB in noise Spearman’s rs
  
= 0.05 0.93 5 

Angular depth of insertion Spearman’s rs 
 
= 0.53 0.18 8 

6.4.2.1 Scalar-pattern of insertion 

A one-way ANOVA revealed no significant difference between BKB scores in 

quiet across the different scalar-patterns of insertion (F (3, 4) = 1.53, p = 

0.34) nor was there a significant difference between BKB scores in noise 

across the different scalar-patterns of insertion (F (2, 2) = 1.26, p = 0.44). 

However a Lambda test revealed a significant association between scalar-
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pattern of insertion and manufacturer, λ = 0.73, p < 0.01 (see Table 6.7 for 

number of devices demonstrating each scalar-pattern). 

 

Table 6.7 The number of participants demonstrating each of the scalar-patterns per manufacturer 

Scalar-pattern 

Number of participants demonstrating the scalar-pattern 

AB Cochlear MED-EL 

Full insertion in ST 0 2 0 

Apical scalar-pattern 3 0 0 

Medial scalar-pattern 0 1 2 

Basal scalar-pattern 1 0 0 

6.5 Discussion 

There was a significant positive strong and positive very strong relationship 

between the angular depth of insertion and BKB in quiet and BKB in noise 

respectively, which is in line with previous studies that advocate a deeper 

electrode array insertion (e.g. Fu and Shannon, 1999a; Skinner et al., 2002; 

Hochmair et al. 2003; Baskent and Shannon, 2003 and 2005; Yukawa et al., 

2004 and Lazard et al., 2012). In addition the lack of correlation between the 

angular depth of insertion and ED of the most apical electrode-pairs may 

indicate that deep insertions for the participants in this study were achieved 

without causing insertion trauma in the apical region of the cochlea. This may 

explain why the negative effects of deep insertion on performance reported 

by Gani et al. (2007) and Finley and Skinner (2008) were not replicated in 

this study. Gani et al. (2007) and Finley and Skinner (2008) found that deep 

insertions were associated with increased pitch confusion of the apical 

electrodes. This most likely indicated insertion trauma (mechanical damage 

associated with surgical insertion of the CI array) at the apical region of the 

array rather than cross-turn stimulation. CRM SRTs were not correlated with 
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the angular depth of insertion; this could be due to the small number of 

participants who had CRM SRTs (underpowered). 

 

There was a manufacturers’ effect on angular depth of insertion, a significant 

difference was found between MED-EL and AB devices’ angular depth of 

insertion which could mainly be attributed to the longer MED-EL array and 

thicker AB array. However, there was no manufacturers’ effect on 

performance which concurred with previous findings (e.g. Friesen et al., 2001 

and Green et al., 2007). A possible explanation for a manufacturers’ effect on 

angular depth of insertion but lack of a manufacturers’ effect on performance 

could be provided by the frequency shift results. There was a strong 

significant negative relationship between the frequency shift and BKB in 

noise which is in line with previous findings (e.g. Baskent and Shannon, 2003 

and 2005). The absence of a statistically significant relationship between the 

frequency shift and BKB in quiet may indicate that other factors may 

contribute to CI performance (e.g. dead regions or ED). This pattern of 

results may reflect the BKB in noise requirement for better spectral 

representation than BKB in quiet and concurs with Whitford et al. (1993) who 

found an effect of better frequency alignment (between the characteristic and 

stimulated frequencies) on speech perception in noise but not in quiet.  

 

There was no manufacturers’ effect on frequency shift, the lack of difference 

between the different manufacturers could be caused by the lower centre 

frequency stimulated by the most apical electrode in MED-EL (with the 

deepest angular depth of insertion) in comparison to the higher centre 

frequency stimulated in AB devices (with the most shallow angular depth of 

insertion in the study). This was supported by the lack of a manufacturers’ 

effect on the frequency shift.  

 

The combined results of the angular depth of insertion and frequency shift 

indicated that the main effect of angular depth of insertion on performance 
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could be at least partly contributed to the frequency shift in the absence of 

cochlear apical insertion trauma. In other words better frequency alignment 

between the cochlear normal tonotopic organization and the electrical 

stimulation of the CI without trauma at least partially contributed to better 

performance with CI.  

 

There was no association between the frequency shift and the percentage of 

discriminable electrode-pairs which may indicate that the frequency shift 

doesn’t impact negatively on pitch ranking of the electrical stimulation. 

 

The high inter-rater agreement on electrodes’ scalar-placement with the use 

of CBCT, provided further support to the functional potential of CBCT as an 

imaging tool for the evaluation of CI electrode placement. A finding which is 

supported by reports of high correlation between scalar placement 

judgements of CI electrodes made based on CBCT and histopathological 

evaluation of the corresponding electrodes (Saeed et al., personal 

communication). Additionally, only 11 out of a total of 130 electrodes scalar-

placement could not be determined by either raters, five electrodes were for 

a participants that had movement artefact (moved during CBCT). The other 

six were the most apical electrodes of a Nucleus Freedom implant in a post-

meningitic participant. Güldner et al. (2012) reported higher artefact with 

CBCT for the more apical electrodes in comparison to basal electrodes 

which was the case for this participant but it must be noted that the scalar 

position of the apical electrode (at an angular depth of 540°) for participant 1 

was judged as definitely in ST by both raters. Meningitis may have caused 

pathological changes making it more difficult to identify scalar-placement of 

the apical electrodes for participant 3. In addition to that, electrodes of the 

Cochlear CI are larger in number and are closer to each other than other CI 

devices possibly increasing artefacts. 
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In contrast to Aschendorff et al.’s (2007) and Finley and Skinner’s (2008) 

findings, the results of electrodes scalar-placement in this study indicated 

that placement in ST versus SV had no effect on CI performance. The lack of 

a relationship between scalar-placement and ED of the corresponding 

electrodes or the percentage of discriminable electrodes may shed some 

light on the matter. It may indicate that in the absence of mechanical damage 

secondary to SV electrode placement, scalar-placement in ST versus SV 

may not have a significant impact on performance which was observed in 

this study’s population.  

 

However when it came to inter-scalar cross-over of the array, close 

inspection revealed an association between inter-scalar cross-over and ED 

results of the corresponding electrodes. All seven observed inter-scalar 

cross-over points were associated with electrode pairs that failed ED in those 

regions except for participant 2 who had fibrosis which may have affected the 

reading of the CBCT regarding scalar placement. There are two possible 

explanations for failing ED in those regions of inter-scalar cross-over: one is 

that the electrode placed in the SV would be in closer proximity to the 

ganglion cells (SG) located adjacent to the next higher cochlear turn thus 

stimulating lower frequencies than ST placement and affecting ED. However, 

if this were the case it would mean that the direction of cross over from ST 

placement (of a more basal electrode) to SV placement (of a more apical 

electrode that stimulates SG in the higher cochlear turn) would not cause ED 

to fail. While crossover from SV placement (of a more basal electrode 

stimulating SG in the higher cochlear turn) to ST placement (of a more apical 

electrode stimulating SG in the implanted turn) would cause ED to fail. This 

was not observed and the direction of inter-scalar crossover did not have this 

effect on ED results. There were four points of crossover from ST to SV that 

failed ED. The second explanation for failing ED at regions of inter-scalar 

crossover is mechanical damage (insertion trauma) at those points which 

may affect SG survival (Finley and Skinner, 2008) or may affect current 

distribution of the CI stimulation at those points. In the absence of a 
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difference between cross-over from ST to SV and cross-over from SV to ST, 

the direct mechanical damage caused by inter-scalar cross-over is the more 

plausible explanation for the failed ED. This indicates that ED can be used to 

identify points of mechanical damage due to insertion trauma, ED fails at 

those points. 

 

Underlying neural survival could be associated with factors other than scalar-

placement; this may explain the lack of general association between the 

number of inter-scalar cross-overs and CI performance. In addition to that 

numbers may have been too small to reach statistical significance.  

  

In this study population, there was no association between the percentage of 

electrodes placed in ST and the angular depth of insertion or ED at the apical 

electrodes. Considering that ED identified points of mechanical damage due 

to insertion trauma, this may lend some support to the absence of trauma 

caused by forced insertion in cases where electrodes were placed in SV. 

However some indicator may be the results of insertion pattern which is 

indicative of where the inter-scalar cross-over occurred; insertion pattern was 

found to have a statistically significant association with the CI device 

manufacturers. Hence, the inter-scalar displacement that occurred within this 

study population could’ve been at least partially caused by mechanical 

attributes of the CI array, an argument proposed by Rebscher et al. (2008) 

and Finley and Skinner (2008) and seemed to hold true in this study. Only 

one out of nine participants exhibited a basal insertion pattern which may be 

associated with a cochleostomy that is too high on the lateral wall of the 

cochlea (Finley and Skinner, 2008). 

6.6 Conclusion  

In the absence of insertion trauma, increasing the angular depth of insertion 

of the CI array and decreasing the frequency shift had a positive impact on 
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CI performance. However in the absence of trauma, scalar placement in ST 

versus SV did not affect performance. ED was affected at inter-scalar cross-

over indicating trauma and loss of spiral ganglion which was identified via 

PTED. There was no correlation between scalar placement in ST versus SV 

and ED, this may indicate that there might be dead regions or poorly 

differentiated electrodes that cannot be explained by surgical placement 

only, identifying those regions and addressing those regions in 

reprogramming might be beneficial. Given the considerably lower radiation 

exposure of CBCT in comparison to MSCT and the high definition of CBCT, 

it seems to be an imaging tool with great potential for clinical and research 

use.  

6.7 Summary 

 Evidence suggests that insertion trauma (mechanical damage 

associated with surgical insertion of the CI array) is a major factor with 

a negative impact on CI performance. 

 In the absence of insertion trauma, increased angular depth of 

insertion has a positive effect on CI performance. 

 In the absence of insertion trauma, there was no effect of scalar 

placement in ST versus SV. 

 CBCT seems to be an imaging tool that provides high quality images 

with relatively low radiation exposure. 

 PTED identified “dead” regions at inter-scalar cross-over; therefore 

PTED might be used to identify other dead regions across the CI 

electrode array which could further guide programming of the CI to 

enhance performance. A study evaluating the use of PTED to guide 

programming of CI is described in Chapter 7. 
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Chapter 7 

Programming of CIs based on PTED results in 

unilaterally implanted recipients 

Abstract 

The effect of deactivating indiscriminable CI electrodes was evaluated using 

speech perception tests in quiet and noise for unilaterally implanted adults. 

The CI recipients underwent testing with PTED, BKB sentences test in quiet 

and in noise (whenever possible) and the adaptive CRM test. Each CI 

recipient who failed PTED in at least one electrode-pair received two 

research programs to try out in a cross-over study design. Research 

programs either employed discriminable electrodes only or the most 

discriminable two-thirds of the electrodes in the electrode array for CI 

recipients failing PTED for more than a third of the electrodes. The 

participants were also asked to subjectively report improvement of or decline 

in sound quality in everyday listening situations. There was significant 

improvement in CRM SRT, and BKB sentence scores in quiet and in noise 

after deactivating indiscriminable electrodes. Individually, 20 out of 25 

participants who received the research programs reported and/or showed 

significant improvement with at least one research program. Only the five 

participants who had cochlear calcification or fibrosis or had placement 

issues showed no improvement, or reported no improvement, with the 

research programs. The findings show that the identification of discriminable 

electrodes in a clinically-viable procedure such as the PTED can potentially 

be used to enhance speech perception with CI. 
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7.1 Introduction 

A priority for all CI manufacturers is to achieve maximal speech 

understanding for the CI recipients. One approach that manufacturers have 

adopted to attempt to enhance post-cochlear implantation performance is to 

increase the number of distinct pitch percepts (see Chapter 2),  either by 

increasing the number of physical contacts, extending to 22 active 

electrodes, or by using “current steering” (described in Section 1.4.3.3) to 

focus stimulation and create a larger number of pitch percepts via virtual 

channels (Donaldson et al., 2005; Firszt et al., 2007; Koch et al., 2007; 

Bonham and Litvak, 2008; Wilson and Dorman, 2008). This approach may 

not always be effective if we consider that the number of perceptual channels 

is often less than the number of active CI channels (Blamey et al., 1992; 

Zwolan et al., 1997; Fu et al., 1998 and Friesen et al., 2001). Explanations 

for this discrepancy include the possibility that CI channels stimulate 

overlapping neuronal populations (Fu and Nogaki, 2004; Dorman and Spahr, 

2006), which could be the result of neural “dead regions”, or due to 

electrodes being placed relatively far from the spiral ganglion neurons 

(Wilson and Dorman, 2008). 

 

A second approach to producing distinct pitch percepts is the use of bipolar 

and tripolar CI stimulation (described in Section 1.2.5) to create more 

focused stimulation and reduce the spread of current (Bierer et al., 2005; 

Bonham et al., 2005; Litvak et al., 2007; Zhu et al., 2012). Because bipolar 

and tripolar coupling provides more focused stimulation, they could be more 

sensitive to the presence of dead regions (with little or no functioning spiral 

ganglion cells), making them useful stimulation modes for identifying such 

regions (Bierer and Faulkner, 2010 and Bierer et al., 2011). In Chapter 3, 

PTED a new, clinically-viable method for the identification of problematic 

electrodes was proposed, described and evaluated for reliability and validity. 

Further validation was offered to the PTED in Chapter 5, where a positive 

association was found between the percentage of discriminable electrodes 
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as identified by PTED and three different speech perception measures. This 

finding is consistent with previous studies that have reported a positive 

relationship between the number of distinct perceptual channels and speech 

perception (Collins, et al., 1997; Henry, et al., 1997; Nelson, et al., 1995; 

Friesen et al., 2001). However, the question remains, “how might speech 

perception with CI be improved after identifying regions with poor spectral 

resolution or problematic electrodes?” Nelson et al. (1995) proposed the 

reduction of the number of the active CI electrodes in regions with poor 

spectral selectivity. This was confirmed by Zwolan et al.’s (1997) study that 

showed improvement among seven of nine CI recipients following the 

deactivation of indiscriminable electrodes. However the testing method that 

Zwolan et al. (1997) used was clinically non-viable, requiring a research 

interface and eight to ten testing trials that lasted between two to four hours 

each. The PTED may offer a clinically-viable alternative procedure due to the 

fact that it does not require a research interface, and takes less than an hour 

to complete. In addition, all the recruited CI recipients in Zwolan et al.’s study 

(1997) had the Cochlear Nucleus 22 device, and this thesis aims to 

investigate the effect of deactivating indiscriminable electrodes across 

different CI devices employing different strategies. The PTED procedure 

permits this. 

 

In summary, evidence exists to demonstrate a positive relationship between 

the number of perceptually-distinct CI channels and speech perception. 

However, discrepancies between the number of CI channels and distinct 

pitch percepts are probably due to cochlear dead regions and placement 

issues. The identification of suspected dead regions with poor spectral 

selectivity or of channels that do not provide distinct pitch may be potentially 

used to improve the programming of the CI device. 

This chapter describes a study that evaluated the impact of identifying (using 

PTED) and deactivating indiscriminable CI electrodes on speech perception 

of unilaterally implanted adults.  
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7.1.1 Aims and hypotheses  

This study evaluated the use of CI recipients’ ability to differentiate between 

the different CI electrodes in the identification of regions of poor ED by 

finding indiscriminable electrodes. The PTED procedure was used to assess 

ED and the effect of deactivating the indiscriminable electrodes was 

evaluated. A cross-over study design was used to compare speech 

perception with the everyday clinical program to speech perception with the 

two research CI programs. 

 

In line with previous studies (Zwolan et al., 1997), it was predicted that 

deactivating indiscriminable electrodes (that stimulate suspected dead 

regions with poor spectral selectivity or of channels that do not provide 

distinct pitch) in the CI research program would improve speech perception 

with CIs. Delivery of information, that would otherwise be lost due to the 

distortions caused by dead regions, can improve speech perception with CIs 

as demonstrated in simulation studies (Smith and Faulkner, 2006). The 

clinical programme would be assessed at the beginning and end of the study 

to ensure that learning effects are accounted for. Main research hypotheses: 

H1: The CI recipients will have significantly different BKB scores (in quiet and 

in noise) with at least one research program (with deactivated indiscriminable 

electrodes) as compared to the clinical program (at the beginning and end of 

the study). 

H2: The CI recipients will have significantly different CRM SRTs with at least 

one research program (with deactivated indiscriminable electrodes) as 

compared to the clinical program (at the beginning and end of the study). 

H3: The CI recipients will report objective improvement in the sound quality 

delivered by the CI with at least one research program (with deactivated 

indiscriminable electrodes) as compared to the clinical program. 
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7.2 Method 

7.2.1 Participants 

Participants were recruited from the RNTNEH and through the NCIUA.  

35 adult CI recipients with acquired deafness were recruited. 

The inclusion criteria were that the participants had: 

1. A minimum of six months CI experience. 

2. An aural-oral mode of communication. 

3. English as a first language. 

 

Participants’ demographics: 

(1) Duration of deafness was calculated for each participant from the date of 

diagnosis of a bilateral profound sensorineural hearing loss, it ranged from 1 

to 53 years. (2) Age at testing ranged between 19 to 83 years with a mean of 

59 years (± 16). (3) The aetiology of the hearing loss was unknown in 15 out 

of the 35 participants. (4) CI experience was calculated from date of switch 

on of the present implant; it ranged from 8 to 204 months, with a mean of 68 

months (± 48) and a median of 57 months. (5) The hearing loss was 

progressive for all of the participants. (6) Among the participants there were 

10 AB CI recipients, 12 Med-El™ CI recipients and 13 Cochlear® CI 

recipients. 

Five participants had a prelingual or perilingual onset (before 5 years old) 

hearing loss (participants 3, 4, 9, 26 and 31). Two participants (2 and 7) had 

a history of cochlear explantation and re-implantation and participant 5 had a 

folded over electrode tip at insertion. Table (7.1) details participants’ 

demographics. Participant 34 was excluded due to being diagnosed with 

dementia and participant 15 retracted from the research because she had to 

travel after first session. 
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Table 7.1 Participants’ demographics, duration of deafness was calculated from the date of diagnosis 

of a bilateral profound sensorineural hearing loss to time of receiving an implant. 

Participant Aetiology 

 

 

Progressive 

Age in 

years 

Age at 

implant 

in years 

Duration 

of  

Deafness 

in years 

Implant 

experience in 

months 

 

Type of implant 

1  

Post general 
anesthesia in 

3
rd
 decade 

 

Yes 63 61 12 18 MED-EL™ SONATATI
100

 

2  Unknown Yes 68 57 19 18 AB HiRes 90K 

3  
Meningitis at 

8months 
Yes 53 49 ? 48 Nucleus®

 
Freedom 

4  

 
Head injury, 
age 5 years 

 

Yes 56 46 3 120 
MED-EL™  PULSARCI

100
  

standard 

5  Unknown Yes 50 48 2 24 AB HiRes 90K 

6  Unknown Yes 65 61 ? 48 AB HiRes 90K 

7  
Hereditary 

started at age 7 
years 

Yes 54 44 4 

1st implant 24 

2nd implant 
104 

MED-EL™ Tempo+ 

 

8  Unknown Yes 
 

80 
 

78 
 

25 
24 MED-EL™ SONATATI

100
 

9  
Unknown 

at age 9mths? 
Yes 41 40 15 17 Nucleus® CI 512 

10  
Endolymphatc 

Hydrops 
Yes 48 47 6 8 Nucleus® CI 512 

11  Sickle cell 
anemia 

Yes 24 20 9 48 
MED-EL™  PULSARCI

100
  

standard 

12  
Typhoid and 
Otosclerosis 

Yes 72 61 40+ 132 MED-EL™ Combi 40+ 

 

13  Unknown Yes 52 47 ? 57 AB HiRes 90K 

14  Meniers Yes 71 70 5 13 
MED-EL™  PULSARCI

100
  

standard 

15  Unknown Yes 31 22 15 100 Nucleus® CI 24R(CS) 

16  

Post general 
anesthesia in 

3
rd
 decade 

 

Yes 64 52 6 172 Nucleus® 22 

17 
Measles, age 5 

years 
Yes 66 59 25 89 MED-EL™ Combi 40+ 
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Table 7.1 (continued) Participants’ demographics. 

Participant Aetiology 

 
 

Progressive 
Age in 
years 

Age at 
implant 
in years 

Duration 
of  

Deafness 
in years 

Implant 
experience in 

months 
 

Type of implant 

18  Unknown Yes 75 70 1 57 
MED-EL™  PULSARCI

100
  

standard 

19  Unknown Yes 78 64 53 168 Nucleus® 22 

20  Hereditary Yes 62 57 6 62 AB HiRes 90K 

21  Unknown Yes 63 57 5 60 
MED-EL™  PULSARCI

100
  

standard 

22  Unknown Yes 64 51 33 153 MED-EL™ Combi 40+ 

23  Unknown Yes 71 69 9 25 MED-EL™ Combi 40+ 

24  
Noise induced 

and 
otosclerosis 

Yes 83 72 40+ 123 Nucleus® CI 24M 

25  
Genetic started 
at age 20 years 

Yes 77 73 7 48 AB HiRes 90K 

26  Measles, age 
5.5 years 

Yes 62 57 6 62 Nucleus® CI 24R(CS) 

27  Typhoid Yes 27 15 5 144 AB CI 

28  Unknown Yes 67 66 ? 12 Nucleus® CI 512 

29  
Genetic started 
at age 40 years 

Yes 59 60 7 72 Nucleus® CI 24R(CS) 

30  
Endolymphatic 

Hydrops 
Yes 42 39 1 34 Nucleus®

 
Freedom (CA) 

31 Genetic Yes 19 2 1 204 Nucleus® 22 

32  Unknown Yes 60 56 ? 42 AB HiRes 90K 

33  Otosclerosis Yes 69 63 7 71 Nucleus®
 
Freedom 

34 Genetic Yes 71 67 10 45 AB HiRes 90K 

35 Unknown Yes 69 63 12 38 Nucleus®
 
Freedom (CA) 
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7.2.2 Test battery 

Three speech perception measures were used for testing, the BKB sentence 

test in quiet, BKB in speech-shaped noise at a 10dB SNR (described in 

Section 5.2.2), and the adaptive CRM test (described in Section 4.2.2). 

7.2.2.1 PTED 

As described in Section (3.2.2.2), each pair of adjacent electrodes was 

tested for a minimum of 5 consecutive trials. If the participant scored 80% or 

lower, the test trials were increased to ten successive trials.  This cut off 

point will be referred to as an “adjacent electrode pair passing criterion”. 

Additional testing was also conducted with non-adjacent electrodes when 

two adjacent electrodes failed the 80% passing criterion level; this was 

referred to as the “non-adjacent electrode passing criterion”.  

 

The following example will clarify the rules for non-adjacent electrode testing.  

If a participant scored less than 80% on an electrode-pair let us say 

electrode 1 (E1) and electrode 2 (E2) then testing continued between the 

electrode with the lower pitch in the first test-pair which is E1 in the example 

and the next electrode on the array which would be E3 in this case. See 

Figure (7.1) for a diagram of this example demonstrating the test hierarchy of 

non-adjacent electrode pairs. 
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Figure 7.1 Example of rule hierarchy for testing electrode-pairs.   

7.2.3 Procedure 

Testing for PTED took place in a 2 x 2.5 m double-walled sound booth while 

testing for speech perception took place in a 3.7×3.25 m double-walled 

sound booth where the participant was seated 1 m in front of an ear level 

loud speaker (Plus XS.2, Canton) from which the speech and noise were 

presented. The stimuli were stored (16 bits), sampling rate (44.1 kHz) 

presented using the AB-York Crescent of Sound (Kitterick et al., 2011).  

For CRM the participants used a touch screen monitor to respond and the 

software ran the test presentation and scoring in an automated fashion. 

During BKB testing, the tester recoded the participants’ verbal response by 

selecting the correct key words in each sentence presented. 

 

Test electrode pair   
E1 and E2  

 

Score < 80%            
Test E1 with next non-
adjacent electrode pair 

E1 and E3 

Score ≥80%             
Test next adjacent 

electrode pair  
E2 and E3 

 

Score < 80%            
Test E1 with next non-
adjacent electrode pair 

E1 and E4 

Score ≥80%             
Test next adjacent 

electrode pair  
E2 and E3 
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All participants underwent BKB and PTED testing, CRM SRTs were 

determined for 15 out of the 25 participants who received research 

programs. CRM was not used for participant testing at the beginning of the 

study but was introduced because some participants were performing at 

ceiling level of the BKB sentence test in quiet and in noise. Additionally, test-

retest reliability had to be determined prior to initiating testing. 

 

If a participant failed PTED for at least one electrode pair then they were 

included in the cross-over section of the study in which indiscriminable 

electrodes were deactivated. The rules for the deactivation of indiscriminable 

electrodes were: 

1. If a participant failed pitch ranking for an electrode pair, scores of 

adjacent electrode pairs were reviewed. The more basal electrode or 

the electrode at the end of the electrode array (the most apical or 

most basal) in a single adjacent electrode pair was deactivated. If two 

adjacent pairs failed then the electrode common to both failed pairs 

was deactivated.  

2. No more than one third of the total electrodes of the electrode array 

was deactivated for any participant at any time; this maintained a 

minimum of eight active electrodes for any participant which fits with 

the number of contacts required for good speech perception 

recommended by Friesen et al. (2001). 

3. If a participant failed pitch ranking in electrode pairs that involved 

more than a third of the total number of electrodes then regions of 

failed pairs were identified. Then electrodes that failed ranking with a 

larger number of non-adjacent electrodes were deactivated in each 

region. 

 

A cross-over study design was used (see Figure 7.2 for outline of the 

procedure). In the first session speech perception was assessed with the 

participant’s clinical program and the participant was provided with the first 
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research program; either program A or program B (details given in Section 

7.2.4) based on the PTED task. After one month trial use the participant 

returned for speech perception testing with the first research program; the 

participant was then provided with the second research program. The 

participant returned after a one month trial use for the final session. Speech 

perception testing was carried out with the original clinical program and the 

second research program. Final programming of the participant's speech 

processor was conducted, based on both performance and preference. The 

participant was also asked for feedback on each research program after 

each one-month trial; this provided valuable information on sound quality in 

different day-to-day listening situations. All participants were tested with BKB 

in quiet with the clinical program at the first and third sessions and once with 

each research program after the one month trial period. Participants who 

scored higher than 50% in their BKB test in quiet were tested for BKB in 

noise with the clinical program at the first and third sessions and once with 

each research program after the one month trial period. CRM SRTs were 

obtained twice in each session with the clinical program and with each 

research program at the end of the one-month trial period. 
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Figure 7.2 Outline of the cross-over study design, research program A with deactivated indiscriminable 

electrodes and increased rate per channel and research program  B with deactivated indiscriminable 

electrodes while maintaining original rate per channel (original rate per channel is the rate of the 

original pre-research clinical program). 

 

7.2.4 Research programs 

Program options provided in the cross-over study were as follows: 

Program (A) had the indiscriminable electrodes deactivated and an increase 

in stimulation rate per channel (RPC). For AB and Med-El devices, this rate 

increase occurred automatically once electrodes were deactivated. The rate 

per channel was manually increased in Cochlear participants to the 

maximum rate without M levels coming out of compliance for any of the 

electrodes. 

Program (B) had the indiscriminable electrodes deactivated, but retained the 

original RPC, the same RPC as the pre-research clinical program. This 

meant the RPC was maintained on the original default settings for the 
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Cochlear devices and was manually decreased in AB and Med-El devices by 

increasing the pulse width.  

7.2.4.1 Participants with different research programs 

There were three participants with Cochlear® devices where program (A) 

had a lower Maxima (keeping same proportion of Maxima to number of 

active electrodes after deactivating indiscriminable electrodes) because we 

could not increase RPC due to technical reasons or because the participant 

refused to listen with an increased RPC.  

7.3 Analyses 

As mentioned, above, each participant was tested with the clinical program 

both at the beginning and end of the study to control for learning effects, and 

once with each research program following a one-month trial. The best 

speech perception results (BKB score in quiet and noise and CRM SRT 

average) achieved with the clinical program were compared with the speech 

perception results (BKB score in quiet and noise and CRM SRT average) 

obtained with the best research program for each participant.  

 

Statistical analysis was conducted to assess the following: 

1. Whether there was a significant change in BKB in quiet after 

deactivating indiscriminable electrodes. 

2. Whether there was a significant change in BKB in noise after 

deactivating indiscriminable electrodes. 

3. Whether there was significant change in CRM after deactivating 

indiscriminable electrodes. 

4. Whether participants reported changes in sound quality after 

deactivating indiscriminable electrodes. 
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5. Whether there was a significant difference between research 

programs A and B. 

7.3.1 Analyses of group results 

BKB scores were converted to rationalized arcsine-transform units (RAU) 

before conducting statistical analysis (Studebaker, 1985) in order to include 

scores that were reaching ceiling. See Appendix D for raw BKB scores in 

quiet and in noise and figures. 

All 25 participants who took part in the cross-over study received two 

research programs with the exception of participants 18 and 27. For these 

two participants it was not possible to apply any changes to pulse width, 

RPC or Maxima so they received program B only. Of those 25, participants 

26, 29 and 30 received program A with the reduced Maxima. Group results 

were analysed for two sub-groups: 

Group I included all 25 participants, group II was exclusively for the 20 

participants who received both programs A (with increased RPC) and B. 

 

According to the Shapiro Wilk’s test, BKB scores in quiet and in noise were 

normally distributed for all three groups; hence t-tests were conducted to 

compare the clinical and research programs. While the Wilcoxon signed 

ranks test was used to analyse the CRM SRTs because they were not 

normally distributed.  

7.3.2 Analyses of individual results 

Each participant’s results were analysed and comparisons were made on an 

individual basis comparing clinical and research programs to investigate any 

underlying patterns. Exploration of the frequency region of the deactivated 

electrodes was also evaluated. 
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7.3.2.1 Participant’s report 

Each participant that received a research program was asked to report on 

the sound quality with the research programs in day-to-day listening 

situations. If the participant reported improvement in quality and reported 

better hearing/speech understanding in everyday listening situations that was 

considered as a positive report. If the participant either reported that they did 

not like the sound quality or reported a decline in hearing/speech 

understanding in everyday listening situations that was considered as a 

negative report. If the participant reported that there was no difference 

between the different programs they were recorded as equal. 

7.3.2.2 CRM SRTs 

Test-retest reliability of CRM SRTs was evaluated in Chapter 4 to calculate 

the minimum significant difference. As indicated in Chapter 4, the minimum 

significant change (at p< 0.05) in CRM SRTs among CI users is > 4dB. 

7.3.2.3 BKB 

For BKB scores, a 10% difference was considered significant. This value 

was based on calculations of the minimum significant difference (Skinner et 

al., 1995) which was >8.89% and an estimate of test-retest reliability of 7.6% 

(Sarant et al., 2001). In Sarant et al.’s study the estimate was based on (1) 

an inter-list variability of 10.1% across 126 pairs of BKB Sentences and (2) 

an inter-transcriber standard deviation across 160 lists of 5.7%. Based on the 

above, it was decided to consider a 10% difference as significantly different. 
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7.3.2.4 Risk of not showing benefit following deactivation of 

indiscriminable electrodes with and without cochlear pathological 

changes. 

In order to calculate the risk of not showing benefit following the deactivation 

of indiscriminable-electrodes, all 26 participants who received a research 

program with deactivated indiscriminable-electrodes, were categorized 

according to change in performance. Those showing post-deactivation 

benefit in one category if they showed significant benefit in either, their 

subjective report, CRM SRTs or BKB in quiet or in noise in one category and 

those who did not show post-deactivation benefit in any of the above in 

another category. The presence of confirmed cochlear pathological changes 

secondary to aetiology (meningitis and otosclerosis) or confirmed radiological 

changes (e.g. fibrosis secondary to explantation) were considered as risk 

factors for showing no benefit following the deactivation of indiscriminable 

electrodes. STATA 12 was used in analysis with the absence of post-

deactivation benefit as the “case variable” and the presence of cochlear-

pathological changes as the “exposed variable” (risk factor).  

7.3.3 Comparison between program A with increased RPC and 

program B with a maintained RPC 

All 20 participants (group II) who received both programs A (with increased 

RPC) and B (with maintained RPC) underwent BKB testing in quiet. BKB 

scores in quiet were converted to rationalized arcsine-transform units (RAU) 

and used in analysis. In order to evaluate whether program A or B provided 

the best results, a mixed-design ANOVA was applied additionally the 

individuals’ preferred research program and the research program providing 

better speech perception was reported and grouped per CI manufacturer. 
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7.4 Results 

7.4.1 Group results 

The t-test was conducted on the BKB scores in quiet (RAU) for the two 

groups; group I with all participants, group II which exclusively included the 

participants who received both programs A (with increased RPC) and B. The 

t -tests showed significant improvements with the best research program 

compared to the best BKB score (RAU) with the clinical program for group I 

(t = -3.47, df = 24, p < 0.005 with p = 0.002). This was also significant for 

group II (t = -2.88, df = 19, p < 0.05 with p = 0.01) (See Figure 7.3 for 

results). Thus the hypothesis H1 was accepted for all groups. 

 

Figure 7.3 Mean BKB Sentence Test in quiet (RAU) for the two sub-groups with the use of the clinical 

program (dark grey bars) and the best research program (light grey bars).The bars show mean scores, 

error bars show ± 2SE. 

The t-tests conducted on BKB scores in noise (RAU) revealed a significant 

improvement with the best research program compared to the best BKB 

score with the clinical program in group I (t = -2.91, df = 19, p < 0.01 with p = 
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0.009). This was also significant in group II (t = -2.64, df = 16, p < 0.05 with p 

= 0.018) (See Figure 7.4 for results). Thus the hypothesis H2 was accepted 

for all groups. 

 

 

Figure 7.4 Mean BKB Sentence Test in noise (RAU) for the two sub-groups with the use of the clinical 

program (dark grey bars) and the best research program (light grey bars).The bars show mean scores, 

error bars show ± 2SE. 

 

For CRM SRT results see Table (7.2). The Wilcoxon signed ranks test was 

used to analyse CRM SRTs and showed significant improvement with the 

best research program compared to the best CRM SRT with the clinical 

program in group I (Z = -3.17, N = 15, p < 0.005 with p = 0.002). This was 

also significant in group II (Z = -2.81, N = 10, p < 0.01 with p = 0.005) (See 

Figure 7.5 for results). Thus the hypothesis H3 was accepted for all groups. 
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Table 7.2 Results of the best clinical and the best research CRM SRTs reported in dBA. Descriptive 

statistics: the 25
th

 percentile (Q1), the 50
th

 percentile (median), the 75
th

 percentile (Q3) and the number 

of participants contributing the data (N). Results are reported for the different groups [group I for all 

participants and group II who received both research programs A (with increased RPC)]. 

Group 
Clinical program  Research program 

N 
Q1 Median Q3  Q1 Median Q3 

Group I 4.38 6.88 14.38  1.25 2.81 7.19 15 

Group II 3.76 6.88 11.1  -.47 1.57 3.52 10 
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Figure 7.5 Results of the CRM SRTs in dBA for the two sub-groups with the clinical program (dark grey 

boxes) and the research program (light grey boxes), the boxes represent the range between the 25
th
 

and 75
th

 percentiles and the line in the box represents the median. The whiskers show the 10
th

 and the 

90
th

 percentiles. 

7.4.2 Individual results 

Participants were divided according to CI manufacturer to investigate 

patterns relating to electrode array design, such as the number of electrodes 

and the frequency to electrode assignment. Participants’ data were 

organized according to change in performance, starting with participants 

showing the greatest benefit down to participants showing no benefit from 

the research program. Individual speech perception results and subjective 

reports (improvement versus decline versus no significant difference), the 

deactivated electrodes (DE) in the research programs, the number of DE at 

low frequencies < 2600Hz (DELF) and the number of DE at high frequencies 
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> 2600 Hz (DEHF) can be seen in Tables (7.3, 7.4 and 7.5) for Cochlear, 

MED-EL and AB respectively.  

Eight out of the nine Cochlear participants either reported improvement, 

and/or showed significant improvement in at least one speech perception 

measure, and none showed significant decline. Five of those eight 

participants received significant benefit in speech perception. The two 

Cochlear participants who received significant benefit in both BKB tests in 

quiet and in noise had the majority of the indiscriminable electrodes in the 

frequency range below 2600 Hz and they both had adjacent electrodes 

deactivated at certain regions. 

Table 7.3 Individual results for Cochlear® devices (BKB in quiet and noise, CRM SRTs and subjective 

report) and DE region, symbols used are: (=) for no significant difference, (+) for significant 

improvement which is a higher BKB score and a lower CRM SRT followed by change in score if any,  

(-) for significant decline, ceiling indicates BKB scores were at ceiling level for clinical and research 

programs and N/A indicates scores not available. Adjacent DE are shown in red to highlight when a 

region of electrodes were deactivated. 

Participant 
BKB in 
quiet 

BKB in 
noise 

CRM 
SRT in 

dBA 
Report DE DELF DEHF 

10 (+) 20 (+) 26 N/A (+) 
1,2,5,11,16,17 

& 20 
4 3 

9 (+)18 (+)12 N/A (+) 
1,6,10,14, 15 

& 20 
4 2 

30 (+) 14 (=) (+) 5.48 (+) 1,4 &9 1 2 

28 (=) (=) (+) 5.31 (+) 1,2,6&17 1 3 

29 (=) N/A (+) 15.93 (+) 7,14,16,17&19 1 4 

26 Ceiling (=) (=) (+) 4,8,19 & 21 2 2 

35 Ceiling Ceiling (=) (+) 2,6,8&16 2 2 

16 (=) (=) (=) (+) 1,14,17& 20 3 1 

3 (=) (=) N/A (=) 
1,2,5,11,16, 17 

& 20 
3 4 
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Eight out of the ten MED-EL participants either reported improvement, and/or 

showed significant improvement in at least one speech perception measure, 

and only one participant showed significant decline. Seven of those eight 

participants received significant benefit in speech perception. The MED-EL 

participants who received significant benefit in both BKB tests in quiet and in 

noise either had all or at least half of the indiscriminable electrodes in the 

frequency range below 2600 Hz and the participant receiving most benefit 

had adjacent electrodes deactivated at a certain region. 

Table 7.4 Individual results for MED-EL™ devices (BKB in quiet and noise, CRM SRTs and subjective 

report) and DE region, symbols used are: (=) for no significant difference, (+) for significant 

improvement which is a higher BKB score and a lower CRM SRT followed by change in score if any, (-

) for significant decline followed by change in score if any, ceiling indicates BKB scores were at ceiling 

level for clinical and research programs and N/A indicates scores not available. Adjacent DE are 

shown in red to highlight when a region of electrodes were deactivated 

Participant 
BKB in 

quiet 

BKB in 

noise 

CRM 

SRT in 

dBA 

Report DE DELF DEHF 

8 (+) 27 (+) 44 N/A (+) 4&5 2 0 

1 (+) 10 (+) 19 N/A (+) 2&10 1 1 

18 Ceiling Ceiling (+) 10 (+) 5&10 1 1 

14 (+) 16 (=) N/A (+) 3,4,9 &11 2 2 

17 Ceiling Ceiling (+) 5.32 (+) 9 0 1 

23 (=) (=) (+) 5.6 (+) 10 (most 
basal) 

0 1 

22 Ceiling Ceiling (+) 5.63 (+) 12 0 1 

11 Ceiling Ceiling (=) (+) 10 & 12 0 2 

7 (=) (=) N/A (=) 1&2 2 0 

12 (-)15 N/A N/A (=) 5&9 1 1 
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Six out of the eight AB participants reported improvement and showed 

significant improvement in at least one speech perception measure and only 

one participant reported a decline. The AB participant who received the 

largest benefit in both ‘BKB in quiet’ and in CRM SRT had the indiscriminable 

electrode in the frequency range below 2600 Hz. 

 

Table 7.5 Individual results for Advanced Bionics devices (BKB in quiet and noise, CRM SRTs and 

subjective report) and DE region, symbols used are: (=) for no significant difference, (+) for significant 

improvement which is a higher BKB score and a lower CRM SRT followed by change in score if any, (-

) for significant decline followed by change in score if any, ceiling indicates BKB scores were at ceiling 

level for clinical and research programs and N/A indicates scores not available. 

Participant 
BKB in 

quiet 

BKB in 

noise 

CRM 

SRT in 

dBA 

Report DE DELF DEHF 

27 (+) 13 N/A (+) 10.9 (+) 2 1 0 

25 Ceiling (+) 21 (+) 4.27 (+) 4, 14&16 1 2 

13 Ceiling Ceiling (+) 11.57 (+) 1,2,13&15 2 2 

6 (=) (+) 10 N/A (+) 13&16 0 2 

2 (=) (=) N/A (=) 7&8 2 0 

5 (=) (=) N/A (-) 4&16 1 1 

 

7.4.2.4 Risk of not showing benefit following deactivation of 

indiscriminable electrodes with and without cochlear pathological 

changes. 

In this population, with the use of STATA, the risk of not showing benefit 

following the deactivation of indiscriminable electrodes was calculated with 

and without the presence cochlear pathological changes. The presence of 
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cochlear pathological changes was entered as a risk factor. Results indicated 

that the risk (probability) of not showing benefit if pathological changes are 

present is 1 (i.e. 100%) and is 0.047 (i.e. 4.7%) in the absence of 

pathological changes. 

7.4.3 Comparison between program A (increased RPC) and 

program B (maintained RPC) 

A mixed-design ANOVA with the research program (program A- with 

increased RPC- and program B) as a within-participants factor and order 

(program A first or program B first) as a between-subjects factor was applied 

on BKB scores in quiet. It revealed no main effect of research program, F (1, 

18) = 0.025, p = 0.88 and no significant order effect F (1, 18) = 3.08, p = 

0.09. This indicated that there was no general pattern indicating that one 

research program was consistently better than the other. Therefore, 

individual results of the research program that provided the better outcome 

for participants who have received benefit were grouped by manufacturer. 

Table (7.5) summari es each participant’s manufacturer, the preferred 

research program and the program that provided better speech perception in 

at least one measure (only significant differences are reported) for the 15 

participants that received benefit and received program A (increased RPC 

ranging from 1653 to 4000 pps) the preferred program also gave better 

speech perception, except for participants 1 and 23 who both chose 

programs with RPC around 2000 pps. Individual results and results per 

manufacturer will be discussed later. 
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Table 7.6 Summary of RPC and participants’ preferred research program and the program that 

provided better speech perception (only significant differences are reported) for the 15 participants that 

showed benefit and received both programs A and B. The preferred program is the program that the 

participant requested to take home, for some participants they took both programs A and B. When A 

and B are indicated under the program with better performance; it means that both programs had 

equally good speech perception measures. RPC is reported in pulse per second (pps). 

Participant 

RPC for 

program 

A 

RPC for 

program 

B 

Research 

program 

with better 

performance 

Preferred 

research 

program 

Manufacturer 

9 1800 900 A&B B Cochlear® 

10 1800 900 A A Cochlear® 

28 2400 900 A&B A&B Cochlear® 

29 1800 1200 A&B A&B Cochlear® 

35 1800  900 A&B A&B Cochlear® 

8 2281 2013 A A MED-EL™ 

1 2564 1961 A B MED-EL™ 

14 2198 1531 B B MED-EL™ 

22 1653 1515 A A MED-EL™ 

17 2020 1818 A&B B MED-EL™ 

23 2034 1770 B A MED-EL™ 

11 1326 1170 A&B B MED-EL™ 

25 1947 1586 A&B B AB 

13 2109 1513 A&B B AB 

6 4000 2566 B B AB 

 

7.5 Discussion 

This study showed statistically-significant improvements for the group as a 

whole in all speech perception measures (BKB in quiet, BKB in speech-

shaped noise and CRM SRTs) when indiscriminable electrodes were 

deactivated (H1, H2 and H3 were accepted).  
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These results indicated that ED assessment might be a useful aide to guide 

programming of CIs in order to maximize performance.  

Group results for the 25 participants who received at least one research 

program with indiscriminable electrodes deactivated showed a significant 

improvement with the best research program compared to the best score 

with a clinical program. This improvement was reflected in both BKB scores 

in quiet and in speech-shaped noise and for CRM SRTs, this was consistent 

with findings reported by Zwolan et al. (1997) when they deactivated 

indiscriminable electrodes. 

 

A closer evaluation of each individual participant’s results provided more 

information. In our study 20 out of the 25 participants receiving research 

programs reported improvement in hearing or improved sound quality 

perception when indiscriminable electrodes were deactivated.  Sixteen of the 

25 (64%) showed significant improvements in at least one speech perception 

measure (BKB in quiet, BKB in noise and/or CRM).  Four of the participants 

who did not show a statistically-significant change in performance reported 

better sound quality that included (1) reduced noise, (2) improved 

environmental sounds perception, (3) less reliance on their induction loop 

system, (4) better speech understanding in noisy environments or public 

places such as church or (5) more refined hearing e.g. one participant 

reported hearing the hoarseness in their own voice for the first time. Three 

out of those four participants (participants 11, 26 and 35) had at least one 

BKB score at ceiling and two of them (participants 11 and 35) had BKB 

scores at ceiling with their clinical programs in both quiet and noise. This 

may have indicated that the speech perception tests were not sensitive 

enough to detect the differences between the clinical and research programs 

or that some of the incorrectly ranked electrodes may have affected sound 

quality without significantly affecting speech perception. For one of these four 

participants (participant 11) the indiscriminable electrodes fell in the 

frequency range higher than 2600Hz and for two of these participants (26 

and 35) half of the indiscriminable electrodes fell in the region above 
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2600Hz. This frequency region was reported to be of less importance to 

speech perception than the lower frequency range (Shannon et al., 2001; 

McKay and Henshall, 2001) and thus is less likely to have an impact on 

speech compared with the lower frequency region. For the fourth participant 

(16), it might have been that the speech perception tests used were not 

sufficiently sensitive to highlight differences, this participant also suffered 

from a strange change in the quality of sound after continuous CI use for 

several hours which might have influenced her speech perception results. 

 

A closer inspection of the individual participant’s frequency region for 

indiscriminable (deactivated) electrodes and the associated speech 

perception scores in Tables (7.3, 7.4 and 7.5) revealed consistent patterns. 

The eight participants who showed BKB scores at ceiling with their clinical 

programs (participants 11, 17, 18, 22, 23, 25, 26 and 35) had at least half of 

their indiscriminable electrodes in the frequency range higher than 2600Hz. 

Three out of those eight participants (11, 17 and 22) showed indiscriminable 

electrodes only in the high frequency range (>2600Hz), and no participant 

showed more than two indiscriminable electrodes for frequencies lower than 

2600Hz. On the other hand, participants who had indiscriminable electrodes 

in the low frequency range only (< 2600 Hz), or who had the majority of the 

indiscriminable electrodes involving the low frequency range, were poorer 

performers and none of them reached ceiling BKB scores with their clinical 

programs. The biggest improvements in speech perception scores were 

observed after deactivating indiscriminable electrodes either only in the low 

frequency range (participant 27 with AB and participant 8 with Med-El) or 

when more than half of the deactivated electrodes were in the low frequency 

range (participants 9 and 10 with Cochlear® and participant 2 with Med-El). 

This again is consistent with previous research highlighting the importance of 

the low frequency range (< 2600 Hz) for speech perception (Shannon et al., 

2001; McKay and Henshall, 2001).  
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In order to evaluate the difference between the higher RPC and the lower 

RPC a closer evaluation of the 15 participants who showed a significant 

improvement in at least one speech perception measure and have received 

both programs (A and B) with program A having a higher RPC was 

warranted.  A closer inspection of the preferred program and the better 

program in terms of performance on the speech perception measures with 

each of the different manufacturers might shed some light on the matter. 

Three out of the seven participants implanted with MED-EL™ devices 

(participants 1, 8 and 22) performed better with program A where the default 

increase in RPC that occurred when the indiscriminable electrodes were 

deactivated was allowed. While two out of seven (participants 14 and 23) 

performed better with program B where RPC was maintained and two 

participants (participants 11 and 17) did just as well with either program. Out 

of those seven, four (participants 1, 11, 14 and 17) preferred program B 

(maintaining the original clinical RPC) even when the participant did better 

with program A as seen in participant (1) or equally as well with program B 

(participant 17). Three participants preferred program A (participants 8, 22 

and 23), two of them did better with program A (participants 8 and 22) and 

one (participant 23) did better with program B. So out of the seven Med-El 

participants, only two of them selected the program that was not necessarily 

the best program (participant 1 and 23) in terms of speech perception. This 

highlights two issues (1) the implanted individual preference may not always 

be reflected in speech perception measures and that sound quality should be 

considered as well (participant 1 thought program A with higher rate was 

squeaky), (2) the RPC that both of these participants preferred was around 

2000 pps, participant 1 preferred the original RPC of 1961 pps over the 

faster rate of 2564 pps and participant 23 preferred the faster rate of 2094 

pps over the original rate of 1770 pps. For the other participants (8, 11, 14, 

17 and 22) their choice concurred with the speech perception measure, none 

of them chose an RPC >2300 and the participant who did equally well with 

programs A and B (participant 17) chose program B with RPC of 1531 over 

program A with RPC 2198. For participant 17 it could have been an 
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adaptation issue but it must be noted that she thought program A was 

squeaky; the same remark that participant 1 had about program A with the 

faster RPC, again this highlighted the importance of quality and may have 

indicated that the preferred RPC could be subject-dependent; each 

participant has an upper limit for what is an acceptable RPC. However, no 

adjustments were applied to T or MCL levels to following the deactivation of 

the indiscriminable electrodes to ensure that other factors were not 

confounding the results. It is possible that adjusting these levels may have 

improved sound quality. 

 

There was not any clear pattern of results observed with Cochlear® 

participants however it must be noted that RPC never exceeded 1800 pps 

except for participant 28. In participants with AB participants always 

preferred program B (6, 13 and 25) with the lower RPC over program A with 

the faster RPC, however we must point out (1) that we cannot generalize 

results on such a small number, (2) that their preferred program was either 

the program that they performed best with or did just as equally as well with; 

there was no disagreement between the preferred research program and the 

better program in terms of speech performance and (3) better performers 

may benefit from higher rates.  

Out of the twenty five participants who have received at least one research 

program only five did not report or show significant improvement in the 

speech perception measure. Four out of the five participants who did not 

show improvement after deactivating indiscriminable electrodes reported no 

difference between the research programs and the clinical program and one 

participant showed significant decline in at least one speech perception 

measure. Among those five; participant 3 had a history of meningitis, 

participant 12 had otosclerosis, participants 2 and 7 had a history of 

explantation and re-implantation with radiologically confirmed fibrosis in 

participant 2 and participant 5 had radiologically confirmed CI placement 

issues including a fold over electrode array tip. In participants (3, 12, 2 and 7) 

etiology, history and in some cases radiology suggested the possibility for 
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the presence of fibrosis or calcification in the cochlea. Calcification, fibrosis 

or cochlear pathology in those cases may have altered the electrical current 

flow in the cochlea (e.g. Rotteveel et al., 2010) rendering ED an ineffective 

tool to identify problematic or dead regions in the cochlea. This highlights the 

importance of checking the etiology and medical history when assessing 

electrode differentiation. These results also demonstrate that there are 

different types of indiscriminable electrodes, and deactivating each electrode 

might produce different results. 

 

The risk of not showing benefit after deactivating indiscriminable-electrodes 

based on PTED in the presence and absence of cochlear pathological 

changes indicates that the presence of pathological changes is a 

contraindication for the use of PTED. However the risk (probability) of not 

showing benefit after deactivating indiscriminable-electrodes is very small 

(4.7%) in the absence of cochlear pathological changes and it reflects the 

post deactivation lack of improvement in participant 5 with placement issues. 

This minimum risk of not showing improvement, provides further support to 

the identification of indiscriminable-electrodes via PTED as a procedure with 

potential to be used to enhance CI programming. In other words the 

deactivation of indiscriminable electrodes identified via PTED will most likely 

(95.6% probability) cause improvement in performance with CI. 

 

The improvement in sound quality and speech perception observed in this 

research was not dependent on a certain device or a particular strategy. 

Hence it indicated that testing for indiscriminable electrodes uncovered an 

underlying cause or pathology that affected pitch perception for those 

electrodes. Dead regions or holes in hearing may have been a plausible 

explanation, some support could be provided by examining results of 

implanted participants with the Cochlear device since it had the largest 

number of electrodes which are closer in proximity to one another. An 

examination of the results revealed that the two participants who received 

the greatest benefit with the greatest improvement in BKB scores (in quiet 
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and in noise) after deactivating indiscriminable electrodes had adjacent 

electrodes deactivated. Deactivating electrodes that stimulated dead regions 

might have improved performance because the information would have been 

lost when they were active and deactivating them redirected the information 

around those dead regions. This is consistent with the findings of Smith and 

Faulkner (2006) where redirecting information around a simulated dead 

region improved speech perception. Those two participants might have had 

larger dead regions than other participants and the information that was lost 

when electrodes falling in the dead region were activated affected their 

speech perception. Hence a large improvement was observed when those 

electrodes were switched off and the information was redirected around that 

relatively large dead region. More support to this explanation was provided 

by the patterns that were discussed above (1) three out of the eight 

participants who had pre-study BKB scores at ceiling had all their 

indiscriminable electrodes in the basal region and at least half of the 

indiscriminable electrodes were basal electrodes in the remaining five, (2) 

None of the participants with all or the majority of the indiscriminable 

electrodes in the apical region had ceiling pre-research BKB scores. These 

two findings were consistent with Shannon et al.’s (2001) study where holes 

in the apical region of the cochlea were more devastating to speech 

perception than holes in the basal region.  

 

For those showing benefit, PTED might have uncovered underlying dead 

regions and deactivating the indiscriminable electrodes in those regions 

redirected the information around the dead region which could have been the 

cause of improvement seen. When there was cochlear pathology such as 

fibrosis or calcification it may have affected the effectiveness of the electrode 

differentiation test in identifying those dead regions. This in return could have 

been the cause of lack of improvement in participants suffering from those 

cochlear pathologies. As discussed earlier in Section 2.3.2.3.1 the presence 

of dead regions can affect ED, the presence of such dead region not only 

drops information delivered to those regions. But it also can cause distortion 
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because of the need for higher stimulation levels for electrodes stimulating 

those regions in order to reach T and M levels thus stimulating surrounding 

spiral ganglion. Overlapping neural populations would be stimulated by 

different electrodes negatively affecting speech perception.  

 

Based on this, indiscriminable electrodes identified by PTED can be broadly 

categorised into 1) indiscriminable electrodes stimulating dead regions (with 

little or no functioning spiral ganglion) and 2) indiscriminable electrodes 

stimulating regions with viable spiral ganglion. The second type of 

indiscriminable electrodes would include cases of cochlear pathology 

(ossification, calcification and fibrosis) and surgical placement issues.  

7.6 Conclusion 

PTED can be used to identify regions of poor ED and deactivating 

indiscriminable electrodes can potentially lead to improvements in speech 

perception. Greater improvement was observed when the deactivated 

indiscriminable electrodes fell in the region representing frequencies below 

2600 Hz which is more important for speech perception. No improvement 

was observed in cases of cochlear pathology most likely due to the abnormal 

spread of current in those cases due to pathology. Sound quality 

improvement was not always reflected in performance on speech perception 

measures highlighting the importance of subjective reports and possibly 

indicating the insensitivity of the speech perception tests. 

The electrode differentiation pitch ranking task alone in its current format 

took between 20 minutes to one hour, depending on how many electrode 

pairs fail and the number of electrodes on the array.  This is still too long for 

clinical practice but the results would suggest that sufficient information can 

be obtained by testing adjacent electrodes only (similar to the protocol used 

in Chapter 3) and not moving to non-adjacent electrodes when an electrode-

pair fails (as was used in the protocol in Chapter 7).  
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7.7 Summary 

 Deactivating indiscriminable electrodes can lead to improvements 

in speech perception 

 Indiscriminable electrodes in the apical region were more 

detrimental to speech perception than those in the basal region. 

 Deactivating indiscriminable electrodes improved speech 

perception to a greater extent when all or the majority of 

deactivated electrodes (more than 50%) fell in the frequency range 

lower than 2600 Hz, i.e. mostly apical electrodes. 

 Deactivating indiscriminable electrodes can sometimes improve 

perceived sound quality even if it was not reflected in the speech 

perception scores, possibly due to the region of deactivation being 

higher than 2600 Hz.  Even though the higher frequency region is 

less critical for speech it does have importance for sound quality 

and also music perception, which we did not test here.  It may also 

be an indication that the speech perception measures that we 

used were not sufficiently sensitive to demonstrate changes. 

 Aetiology, medical history and electrode placement could be 

contributing factors in the success of deactivating indiscriminable 

electrodes (e.g. calcification and fibrosis can affect the spread of 

electrical current). 

 The improvements seen after deactivating indiscriminable 

electrodes were not device or strategy related which may have 

indicated a common underlying cause for the indiscriminable 

electrodes; dead regions might be a plausible explanation. The 

difference between indiscriminable electrodes falling in the apical 

versus the basal region provided further support to this 

explanation. 

 The PTED test has the potential to become a clinically viable tool 

to improve performance with CIs. 
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Chapter 8 

Comparison of pitch ranking ability between different 

electrodes in discriminable and indiscriminable 

electrode regions 

Abstract 

The ability to utilise pitch information and rank pitch correctly in regions of 

discriminable electrodes (electrode-pair A) was compared to regions of 

indiscriminable electrodes (electrode-pair B). Additionally, to evaluate the 

effect of deactivating indiscriminable electrodes, the ability to pitch rank 

before and after deactivation of indiscriminable electrodes (electrode-pairs B 

and C respectively) was evaluated. The change in performance following the 

deactivation of indiscriminable electrodes was evaluated, and a 

“performance score” was assigned to each CI recipient. Additionally, the CI 

recipients were divided into three groups: those showing benefit following the 

deactivation of indiscriminable electrodes, recipients showing post-

deactivation decline in performance and those showing limited post-

deactivation benefit. Each group showed different patterns of pitch ranking 

ability when tested in the three different electrode-pairs, participants showing 

post deactivation benefit had a lower ability to rank pitch in electrode-pairs B 

and C than in electrode-pair A, while those showing limited benefit or decline 

did not. The performance score was also found to be significantly associated 

with the difference between electrode-pairs A and B (γ = 0.59, N = 18, p < 

.05) and with the difference between electrode-pairs C and B (γ = 0.95, N = 

13, p < .001). 
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8.1 Introduction 

In Chapter 7, following deactivation of indiscriminable electrodes, the CI 

participants showed different patterns of results with respect to those gaining 

or not gaining benefit from de-activation. Some participants achieved big 

improvements in performance while others, such as those with pathological 

changes secondary to meningitis or otosclerosis received no benefit. A 

possible explanation for those obtaining benefit was that the identification of 

indiscriminable electrodes helped identify underlying dead regions (Moore, 

2004). Reprogramming by deactivating those electrodes allowed the speech 

information to be redirected to functional neural regions, giving rise to 

improvement in speech performance. This is in line with studies that 

simulated “dead regions” and found that redirecting the information that 

would have been otherwise dropped (lost) around those spectral holes (dead 

regions) provided better performance (Smith and Faulkner, 2006 and 

Faulkner, 2006). To explore this hypothesis it was predicted that CI 

participants showing benefit from deactivating indiscriminable electrodes 

would be poorer at discriminating pitch information delivered in between 

electrodes identified as indiscriminable with the PTED procedure compared 

to regions of discriminable electrodes. Additionally, those recipients should 

be better able to process pitch information when indiscriminable electrodes 

are deactivated in contrast to when those electrodes are active, while CI 

recipients showing no benefit or a decline in performance from deactivating 

indiscriminable electrodes would be equally able to discriminate pitch 

information delivered to regions of electrode-pairs identified as 

indiscriminable with the PTED procedure compared to regions of 

discriminable electrode-pairs. It was also predicted that those recipients 

(showing no benefit or a decline) would not be able to process pitch 

information when indiscriminable electrodes are deactivated, in contrast to 

when those electrodes are active.  
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There is a body of evidence to suggest that for all implant systems 

intermediate pitch percepts should be perceived between the physical 

contacts of the CI. For the AB system, intermediate pitches should be 

perceived due to current steering, but it has also been demonstrated that 

stimulation of electrode pairs produced perceptions of intermediate pitches 

for the Cochlear and MEDEL CIs (McDermott and McKay, 1994; Donaldson 

et al., 2005; Kwon and van den Honert, 2006 and Nobbe et al., 2007).  

These intermediate pitches were produced with simultaneous stimulation of 

electrode-pairs (Donaldson et al., 2005 and Nobbe et al., 2007) and with 

sequential stimulation of electrode-pairs as well (McDermott and McKay, 

1994; Kwon and van den Honert, 2006 and Nobbe et al., 2007). There was 

no significant difference between simultaneous and sequential stimulation of 

electrode-pairs in terms of the frequency difference limen or the number of 

intermediate pitch percepts elicited (Donaldson et al., 2005 and Nobbe et al., 

2007). The difference limen and number of intermediate pitch percepts 

varied between CI recipients and, within participants, between the different 

electrode-pairs at different points on the array (McDermott and McKay, 1994; 

Donaldson et al., 2005; Kwon and van den Honert, 2006 and Nobbe et al., 

2007). Hence, the CI recipient ability to utilise pitch information at specific 

regions of specific electrode-pairs could be evaluated by testing for 

discriminable intermediate frequencies.   

 

This chapter describes two studies; the first study compared the ability to 

rank pitch in regions of indiscriminable electrodes versus regions of 

discriminable electrodes for CI users with different patterns of post-

deactivation results (showing benefit versus showing little or no benefit). The 

second study evaluated the difference between the CI recipients’ ability to 

utilise pitch information delivered to regions of indiscriminable electrodes 

both before and after electrode deactivation for CI users with different 

patterns of post-deactivation results (showing benefit versus showing little or 

no benefit). 
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8.2 Experiment I: Comparison between discriminable and 

indiscriminable electrode-pair regions (A and B) 

8.2.1 Introduction aims and hypotheses 

This study evaluated the CI recipients’ ability to utilise pitch information in 

regions of both discriminable and indiscriminable electrode-pairs in a pitch 

ranking (direction) task of pure-tone presentations, using the PTED 

procedure described in Chapter 3. The change in performance and sound 

quality for those participants following the deactivation of indiscriminable 

electrodes was categorised according to the type of change (positive versus 

negative) and degree of change. The first objective of this study was to 

compare between the CI recipients’ ability to utilise pitch information in 

regions of discriminable versus indiscriminable electrode-pairs. This was 

evaluated with the use of a pitch ranking task of pure-tones presented at the 

centre frequencies of the tested electrode-pair and three frequencies 

intermediate to them. The second objective was to categorise the change in 

CI performance of participants following the deactivation of indiscriminable 

electrodes (in Chapter 7). Then evaluate if the change in performance 

(degree of benefit; ranging from deterioration in more than one measure to 

achieving significant improvement in more than one measure) was 

associated with the difference between their ability to rank pitch in regions of 

discriminable versus regions of indiscriminable electrode-pairs. The third 

objective was to evaluate whether pitch ranking of intermediate frequencies 

(IF) can potentially be used to improve CI programming, especially in cases 

of discrepancy between indications of the PTED and the IF testing. It was 

hypothesised that participants showing benefit following the deactivation of 

indiscriminable electrodes would not be able to rank intermediate 

frequencies in regions of indiscriminable electrodes in comparison to regions 

of discriminable electrodes because indiscriminable electrodes uncovered 

dead regions. While participants showing no or little benefit will be able to 

rank intermediate frequencies equally well in both regions because 

indiscriminable electrodes did not uncover dead regions. 
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Main research hypothesis:  

H1: There will be significant correlation between change in performance 

following the deactivation of indiscriminable electrodes and the difference in 

number of IF in regions of discriminable electrodes versus those of 

indiscriminable electrodes.  

Different participants were hypothesised to demonstrate different patterns in 

terms of their pitch ranking abilities in regions of discriminable versus 

indiscriminable electrode-pairs. See Figure 8.1 for a diagram demonstrating 

the hypothesised difference between participants showing benefit following 

deactivation of indiscriminable electrodes and participants showing little or no 

post deactivation benefit. 

 

 

Figure 8.1 Example demonstrating the hypothesis. The number of discriminable IF for electrode-pairs 

(A and B) for participants showing post deactivation benefit versus those showing no post deactivation 

benefit; the centre-frequencies of the electrode pair are shown in black and the three IF in blue. 

Discriminable IFs are shown with blue lines and indiscriminable IFs are shown with red lines. 
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8.2.2 Method 

8.2.2.1 Participants 

The participants for this study were recruited for the study described in 

Chapter 7, in addition to two additional participants that were recruited from 

the RNTNEH and through the NCIUA. Participants 9 and 13 could not come 

for the two follow up appointments (required for the study described in 

Chapter 7) but were particularly recruited for this study because they had 

otosclerosis and meningitis, respectively, as their aetiology of deafness; 

these aetiologies of deafness were associated with limited benefit following 

the deactivation of indiscriminable electrodes (Chapter 7) and were of special 

interest. 

 

22 adult CI recipients with acquired deafness were recruited. The same 

inclusion criteria for participants in the studies reported in Chapters 5 and 7 

were used, with the addition of having a clear concept of pitch without the 

need for training and/or are musically trained. To ensure that all participants 

had a clear understanding of pitch, the three participants (5, 7 and 19) who 

had a prelingual or perilingual onset of hearing loss were recruited because 

they were previously musically trained. Participants 1-18 received at least 

one research program with the indiscriminable electrodes deactivated, and 

participants 19-22 were star performers who passed PTED for all electrode-

pairs and had BKB scores in noise approaching ceiling at a SNR of 10dB 

and 5dB one. The star performers had CI devices from the three different CI 

manufacturers, one had an AB device, one had a MED-El™ device and two 

had Cochlear® devices. The participants for this study were recruited for the 

study described in Chapter 7, in addition to two additional participants. 

Participants 9 and 13 could not come for the two follow up appointments 

(required for the study described in Chapter 7) but were particularly recruited 

for this study because they had otosclerosis and meningitis, respectively, as 

their aetiology of deafness; these aetiologies of deafness were associated 
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with limited benefit, following the deactivation of indiscriminable electrodes 

(Chapter 7) and were of special interest. 

 

Participants’ demographics: 

(1) Duration of deafness was calculated for each participant from the date of 

diagnosis of a bilateral profound sensorineural hearing loss; it ranged from 2 

to 53 years. (2) Age at testing ranged between 19 to 77 years, with a mean 

of 59.5 years (± 15) and a median of 63.5 years. (3) The aetiology of the 

hearing loss was unknown in 9 out of the 22 participants. (4) CI experience 

was calculated from date of switch on of the present implant; it ranged from 

12 to 204 months, with a mean of 63 months (± 48) and a median of 52.5 

months. (5) The hearing loss was progressive for all of the participants 

except participant 13. (6) Among the participants, there were 5 AB CI 

recipients, 9 MED-EL™ CI recipients and 8 Cochlear® CI recipients. Table 

(8.1) details participants’ demographics.  
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Table 8.1 Participants’ demographics; duration of deafness was calculated from the date of diagnosis 

of a bilateral profound sensorineural hearing loss to time of receiving an implant. 

Participant Aetiology 

 

 

Progressive 

Age in 

years 

Age at 

implant 

in years 

Duration 

of  

Deafness 

in years 

Implant 

experience in 

months 

 

Type of implant 

1  Unknown Yes 75 70 1 57 
MED-EL™  Pulsar ci 100 

standard 

2  Unknown Yes 67 66 ? 12 Nucleus® CI 512 

3  Sickle cell 
anemia 

Yes 24 20 9 48 
MED-EL™  Pulsar ci 100 

standard 

4 Unknown Yes 64 51 33 153 MED-EL™ Combi 40+ 

 

5  Measles, age 
5.5 years 

Yes 62 57 6 62 Nucleus® CI 24R(CS) 

6 Unknown Yes 50 48 2 24 AB HiRes 90K 

7 Measles, age 5 
years 

Yes 66 59 25 89 MED-EL™ Combi 40+ 

 

8 Unknown Yes 71 69 9 25 MED-EL™ Combi 40+ 

 

9 Otosclerosis Yes 67 58 2 106 AB HiRes 90K? 

10 Unknown Yes 69 63 12 38 Nucleus®
 
Freedom (CA) 

11  
Endolymphatic 

Hydrops 
Yes 42 39 1 34 Nucleus®

 
Freedom (CA) 

12  
Hereditary 

started at age 
40 years 

Yes 59 60 7 72 Nucleus® CI 24R(CS) 

13   Meningitis No 47 44 3/12 27 Nucleus® 22 

 14 Unknown Yes 52 47 ? 57 AB HiRes 90K 

 15 
Genetic started 
at age 20 years 

Yes 77 73 7 48 AB HiRes 90K 

16 
Typhoid and 
Otosclerosis 

Yes 72 61 40+ 132 MED-EL™ Combi 40+ 

 

17 

Post general 
anesthesia in 

3
rd
 decade 

 

Yes 63 61 12 18 MED-EL™ Sonata 

18 Meniers Yes 71 70 5 13 MED-EL™  Pulsar ci 100standard 
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Table 8.1 (continued) Participants’ demographics; duration of deafness was calculated from the date of 
diagnosis of a bilateral profound sensorineural hearing loss to time of receiving an implant. 

19 Unknown Yes 63 57 5  60 MED-EL™  Pulsar ci 100standard 

20  Genetic Yes 19 2 1 204 Nucleus® 22 

21 Unknown Yes 60 56 ? 42 AB HiRes 90K 

22 Otosclerosis Yes 69 63 7 71 Nucleus®
 
Freedom 

8.2.2.2 Test battery 

The PTED test (described in Section 3.2.2.2) was used to detect 

indiscriminable electrodes and speech perception tests (BKB test in quiet 

and in noise (described in Section 5.2.2) and the CRM test (described in 

Section 4.2.2) were delivered to determine the change in performance 

following deactivation of indiscriminable electrodes. The pure-tone IF testing 

was administered (described in the following section).  

8.2.2.2.1 Pure-tone Intermediate Frequency (PTIF) testing 

The intention was that the PTIF testing protocol would have potential future 

clinical use and could be used with devices from the different manufacturers 

without the use of a research interface. In line with the PTED testing 

protocol, the same setup, instructions and software were used. The PTIF 

testing protocol including the number of IF and scoring of discriminable 

versus indiscriminable frequencies was based on a pilot study.  

Pilot study 

The pilot study involved the four star performers (participants 19-22) and two 

good performers (BKB in quiet > 85) who had at least one indiscriminable 

electrode-pair. In the pilot phase the participants underwent pitch ranking of 

three and of seven IF between the centre frequencies of two active 

electrodes. Testing was conducted at loudness balanced levels for all test 
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frequencies and was applied with electrode-pairs in the apical, mid and basal 

regions of the electrode array. An IF which was correctly ranked with at least 

two other test frequencies (PTIF ≥ 80%) and did not show reversal (PTIF ≤ 

20%) with any IF was considered discriminable. The four star performers 

(with no indiscriminable electrodes) had up to 7 discriminable IF (DIF) in 

each of the three regions except for participant 19 (a telephone user) who 

had 3 DIF only in the basal region. The two good performers (with at least 

one indiscriminable electrode) did not have more than three DIF at any 

region (average of 2 DIFs) and found testing with seven IF very difficult. 

Based on these findings it was determined that three IF will be sufficient for 

testing, especially since a star performer who was a telephone user had 

three DIFs only at one of the tested regions and none of the good performers 

had more than three DIFs. 

PTIF testing protocol 

Pure tones that corresponded to the centre frequencies of the processing 

filters of the test electrode-pair and three frequencies intermediate to those 

two centre frequencies were presented through the same STAR software 

and sound box used in Chapters 5-7 (Medical Research Council Institute of 

Hearing Research (MRC IHR), Nottingham – ‘STAR box’). The three 

intermediate frequencies were determined by equally dividing the frequency 

range between the centre-frequencies of the test electrode-pair by 

calculating the geometric mean, giving a total of five test-frequencies, the two 

centre-frequencies of the test electrode-pair and three IF (see Figure 8.2 for 

example). 
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Figure 8.2 Example demonstrating the test-frequencies for an electrode-pair; the centre-frequencies of 

the electrode pair are shown in black and the three IF in blue. Frequencies are in Hz, and 390 Hz is the 

mid IF. 

 

Similar to the PTED, the duration of the pure tones was 400 ms, with 50 ms 

onset and offset cosine ramps and an inter-stimulus interval of 500 ms. The 

stimuli were presented directly to the speech processor as an auxiliary audio 

input with a 2 -dB- level rove (ranging from -1 to +1dB with a 1 dB step 

resolution) in order to remove the impact of loudness cues. Stimuli were 

delivered at a comfortable level from a desktop PC via the IHR soundbox to 

the patient’s CI ‘auxiliary’ input lead. Comfort level was established for one 

frequency representing the mid (2nd) IF. Loudness matching was then 

conducted at both increasing and decreasing test-frequencies to ensure that 

stimuli were all equally loud. An ‘adjacent reference method’ for loudness 

balance (Throckmorton and Collins, 2001) was used where each test-

frequency was sequentially balanced to its adjacent, previously balanced 

test-frequency in a procedure similar to that used in PTED testing (see 

Section 3.2.2.2). 

 

The pitch-ranking task employed a 2I-2AFC paradigm in which the listener 

responded to the statement “which sound has the higher pitch?” All possible 

test-frequency pairs were tested (i.e., each frequency is tested with the four 

other frequencies) for a minimum of 5 consecutive trials. If the participant 

scored 80% or lower, a further five trials were carried out giving ten 

successive trials in total. As mentioned earlier, this was based on binomial 

distribution calculation of minimum correct responses required to achieve 

2 3 

501 442 390 344 303 

Test electrodes 

Test frequencies 
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significance at the p<0.05 level (Skellam, 1948). The STAR software 

provided automated delivery and scoring (percent correct and pass or fail 

categorization) for each test-frequency pair, thus avoiding bias. 

8.2.2.3 Procedure 

The testing protocol for PTED, BKB (in quiet and in noise) and CRM testing 

described in Section (7.2.3) was applied, and the same rules for deactivating 

indiscriminable electrodes were used in the research program. Data 

previously collected in Chapter 7 was used with the addition of PTED, BKB 

(in quiet and in noise) and CRM pre and post-deactivation results for 

participants 9 and 13 who weren’t participants in the study described in 

Chapter 7. Participants 9 and 13 were each provided with one research 

program with deactivated indiscriminable electrodes while maintaining the 

clinical rate of stimulation (similar to program B described in Section 7.2.4) 

and were tested for speech perception (BKB in quiet and in noise and CRM), 

following a one-month trial period to evaluate post-deactivation change in CI 

performance.  

 

Testing for PTIF took place in a 2 metre by 2.5 metre double-walled sound 

booth. Certain adjustments to the speech processor’s programming (see 

Section (8.2.2.3.1) below for speech processor programming) had to be 

applied before administering the PTIF test. For each participant PTIF was 

conducted for:  

(1) For at least one control discriminable electrode-pair (electrode-pair A), 

which was in the mid-section of the electrode array to avoid placement 

issues. In this control electrode-pair, both electrodes must have passed 

PTED with the adjacent electrodes on both sides at a level > 90%.  

(2) For at least one indiscriminable electrode-pair (electrode-pair B).  

 



241 

 

8.2.2.3.1 Research program based on PTIF results in electrode-pair B 

Participants who had some indiscriminable electrode-pairs with a number of 

IF equal to the number of IF for the discriminable electrode-pairs received a 

new research program where those indiscriminable electrodes were re-

activated. In the extra research program based on PTIF results not all 

indiscriminable electrodes in the PTED were deactivated; i.e. only 

indiscriminable electrode-pairs with a number of DIF < number of DIF in 

electrode-pair A were deactivated. The participants were tested for speech 

perception (BKB in quiet and in noise and CRM) after a one month trial 

period. Testing was conducted in noise if BKB in quiet > 50. 

8.2.2.3.1 Adjusting the speech processor for testing PTIF 

The program used when running the PTIF tasks was the participant’s original 

clinical program. Testing program settings were similar to those used for 

PTED testing (see Section 3.2.3.1) except for maxima settings in Cochlear® 

implantees. For participants with Cochlear® devices, the number of maxima 

(see Section1.3.2.3) was adjusted and set to the value of 2 to ensure that the 

two test electrodes were successively stimulated/stimulation cycle to produce 

the IF (McDermott and McKay (1994) and Kwon and van den Honert (2006) 

found that intermediate pitch percepts can be elicited by successive 

stimulation of two adjacent electrodes in Cochlear® devices).  

8.2.3 Analyses 

All participants with at least one indiscriminable electrode-pair and have 

received at least one research program with deactivated indiscriminable 

electrodes (participants 1-18) were scored for post-deactivation change in CI 

performance. Each electrode-pair tested for PTIF in electrode-pairs A and B 

was assigned a score. Statistical analysis was conducted to assess whether 

there is a significant relationship between post-deactivation change in 
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performance and the difference between number of IF in electrode-pairs A 

and B. 

The post-deactivation change in performance score and the number of IF in 

the different electrode-pairs were used in group and individual analyses. 

8.2.3.1 Post-deactivation change in performance scores 

To establish the scoring system of post-deactivation change in CI 

performance, the change in performance for the 25 participants who received 

a research program (in Chapter 7) was analysed. 

Based on results of those 25 CI participants following the deactivation of 

indiscriminable electrodes and according to the protocol described in Section 

(7.3.2) for analysis of individual results, it was found that participants could 

be categorised into one of the following: 

Reported improvement and (a) showed significant improvement in all 

measures of speech perception or (b) showed significant improvement in two 

speech perception measures or (c) showed significant improvement in one 

speech perception measure or (d) did not show significant improvement in 

any measure of speech perception. 

Reported that they did not like the research program’s sound quality and (a) 

did not show significant difference in any measure of speech perception or 

(b) showed significant decrement in at least one measure of speech 

perception or (c) showed significant decrement in two measures of speech 

perception or (d) showed significant decrement in all measures of speech 

perception. 

A positive point was given for each of the following: (a) reporting 

improvement, (b) significant improvement in BKB in quiet, (c) significant 

improvement in BKB in quiet and noise (>10%) and (d) significant 

improvement in CRM (decreased) threshold (<4dBA). And a negative point 

was given for each of the following: (a) reporting dislike or decreased 

performance, (b) significant decrement in BKB in quiet, (c) significant 
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decrement in BKB in noise and (d) significant decrement in CRM (increased) 

threshold. This would give rise to a “performance score” ranging from -4 up 

to +4. 

8.2.3.2 IF score 

The number of IF for each tested electrode-pair was obtained according to 

the following criteria: 

An IF which was correctly ranked with at least two other test frequencies, 

and did not show reversal (PTIF ≤ 20%) with any IF, was considered 

discriminable (DIF) and was given a positive point.  

An IF that showed reversal with at least two IFs and was not correctly ranked 

with any other IF (PTIF ≥ 80%) was considered a reversal and was given a 

negative point. In line with Nelson et al. (1995) who reported that they found 

pitch-reversals and because all participants had and demonstrated a clear 

understanding of pitch, it was decided to assign a negative point to reversals. 

The points are added, giving a score “number of IF” ranging between -3 and 

+3 IF for each electrode-pair. 

 

For analysis purposes the median number of IFs in electrode-pairs B was 

subtracted from the median number of IFs in electrode-pair(s) A to obtain the 

difference between both electrode-pairs for each participant (A - B). The 

median was used in case more than one electrode-pair was tested in any 

electrode-pair. 
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8.2.3.3 Analyses of group results: relationship between post-

deactivation change in performance and difference between electrode-

pairs A and B 

Both the post-deactivation change in performance score and the difference 

between electrode-pairs A and B (A – B) are categorical ordinal data, so 

Goodman-Kruskal Gamma was used (Agresti & Finlay, 1997).  

8.2.3.4 Analyses of individual results 

Individual results were further analysed for: 

Participants who showed post-deactivation decline (performance score < 0). 

IF in electrode-pairs A, B and (A – B) were reported for each participant. 

Participants who showed significant post-deactivation benefit in at least one 

speech perception measure and reported improvement (performance score > 

1). IF in electrode-pairs A, B and (A – B) was reported for each participant. 

Participants who showed discrepancy between ED and IF indications and 

received a program based on PTIF results in electrode-pair B. IF for each 

indiscriminable electrode-pair was reported, and comparisons between 

speech reception measures with the research programs based on PTED and 

PTIF were evaluated for significance (see criteria of significant change 

described in Section 7.3.2). 

8.2.4 Results 

8.2.3.1 Group results 

The Goodman-Kruskal Gamma revealed a significant moderate correlation 

between the post-deactivation change in performance and the number of IF 

in (A - B) (γ = 0.59, N = 18, p < .05). Thus, the H1 was accepted and a 

significant moderate positive correlation was found between the post-

deactivation change in performance and the difference between the number 
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of IF in regions of discriminable electrode-pairs and the number of IF in 

regions of indiscriminable electrode-pairs. 

Based on change in performance scores three subgroups were identified: (1) 

participants showing significant benefit (performance score ≥ 2), (2) 

participants showing limited benefit (performance score = 1) and (3) 

participants showing decline (performance score < 0). See Figure (8.3) for IF 

results for electrode-pairs A, B and (A – B) for the different subgroups. 

 

Figure 8.3 IF results for electrode-pairs A (very dark grey boxes), B (light grey boxes) and (A – B) (grey 

boxes) in number of IF for the three sub-groups. The boxes represent the range between the 25
th

 and 

75
th

 percentiles and the lines in the boxes represent the median and whiskers show the 10
th

 and 90
th
 

percentiles. 
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8.2.3.2 Individual results 

8.2.3.2.1 Participants who showed post-deactivation decline 

Participants who had a change in performance score < 0 were cases of (a) 

ossification (participants 9 and 16 due to otosclerosis) and (participant 13 

due to meningitis) (b) placement issues (participant 6). Post-deactivation 

change in performance and detailed IF results are shown in Table (8.2). 

 

Table 8.2 Performance scores and detailed IF results in number of IF of electrode-pairs A, B and A – B 

for all participants who have shown decline after deactivation of indiscriminable electrodes. The 

median IF score is shown in addition to IF scores for all failed electrode-pairs for participants (6, 9 and 

16). 

Participant 
Performance 

score 
IF in A IF in B IF in (A – B) 

6 -1 1 1 (1 and 1) 0 

9 -2 3 0 3 

13 -2 2 2 0 

16 -2 3 2 (1 and 3) 1 

 

8.2.3.2.2 Participants who showed significant post-deactivation benefit 

Participants were considered to show post-deactivation significant benefit if 

they both reported benefit and showed significant improvement in at least 

one speech perception measure; they all had a change in performance score 

≥ 2. Performance scores and IF results are shown in Table (8.3).  
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Table 8.3 Performance scores and IF results in number of IF of electrode-pairs A, B and A – B for all 

participants who have shown significant benefit after deactivation of indiscriminable electrodes 

Participant 
Performance 

score 
IF in A IF in B IF in (A – B) 

1 2 3 1.5 (0 and 3) 1.5 

2 2 3 1 2 

4 2 3 1 2 

5 2 1 -1 2 

7 2 3 0 3 

10 2 3 1.5 1.5 

11 3 2 1 1 

12 2 2 1.5 .5 

14 2 2 0 2 

15 3 2 -1 3 

17 2 2 1 1 

18 2 2 0 2 

 

8.2.3.2.3 Participants who showed discrepancy between PTED and PTIF 

indications and received a program based on PTIF in electrode-pair B 

Three participants (1, 16 and 18) were provided with a program based on 

PTIF results in electrode-pair(s) B. They received the extra program because 

discrepancy was found between PTED and PTIF indications for problematic 

regions; i.e., the electrode-pair failed PTED but it had a number of IF = IF in 
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a passing electrode-pair (electrode-pair A). Table (8.4) shows the 

indiscriminable electrode pairs as identified by PTED, the number of IF for 

each pair and speech perception results with a program based on PTED and 

a program based on PTIF. 

 

Table 8.4 Summary of results for participants who showed discrepancy between PTED and PTIF 

indications and received a program based on PTIF in electrode-pair(s) B. PTED’s indiscriminable 

electrode-pairs, IF results in number of IF for each indiscriminable electrode-pair and for electrode-pair 

A (discriminable electrode-pair), the deactivated electrodes in the program based on PTIF and speech 

perception results with the use of the programs based on PTED and PTIF. Significant improvement 

indicated by *. CRM SRT is reported in dBA and percent correct scores are reported for BKB. 

Subject 

Electrode 

pairs 

failing 

(PTED) 

IF in 

corresponding 

electrode pair 

IF in A 

Deactivated 

electrodes 

based on 

PTIF 

Speech 

perception 

with PTED 

program 

Speech 

perception 

with PTIF 

program 

1 

5 and 6 3 IF 

3 IF 10 

BKB in 

quiet and 

noise 

ceiling 

CRM 11.56 

BKB in 

quiet and 

noise 

ceiling 

CRM 7.5* 

10 and 11 0 IF 

16 

4 and 5 3 IF 

3 IF 9 
BKB in 

quiet 34 

BKB in 

quiet 55* 
9 and 10 1 IF 

18 

2 and 3 0 IF 

2 IF 3 

BKB in 

quiet 86 

BKB in 

noise 66 

BKB in 

quiet 91 

BKB in 

noise 80* 

3 and 4 0 IF  

4 and 5 2 IF 

8 and 9 2 IF 

11 and 12 2 IF 
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8.2.5 Summary of experiment I 

There was a significant association between the change in performance after 

deactivating indiscriminable electrodes and the difference between IF in 

regions of discriminable electrodes versus those of indiscriminable 

electrodes (IF in A – B). The individuals who showed significant improvement 

had a median IF in (A – B) of 2, while those showing limited benefit or 

declined benefit had a median IF in (A – B) of 0. Three participants received 

research programs based on PTIF; they performed significantly better with 

that program than they did with the best PTED program. Participant 9 did not 

follow the same pattern and experiment II may help explain why. 

8.2.6 Discussion of experiment I 

8.2.6.1 Group results 

In line with previous studies, intermediate pitches were elicited by the 

stimulation of electrode-pairs which varied across the participants and across 

the different electrode pairs (McDermott and McKay, 1994; Donaldson et al., 

2005; Kwon and van den Honert, 2006 and Nobbe et al., 2007). As 

hypothesised there was a statistically significant relationship between post-

deactivation change in CI performance and the difference between the 

number of IF in regions of discriminable versus indiscriminable electrode-

pairs regions. Subjects showing benefit following deactivation of 

indiscriminable electrodes had a larger number of IF in areas of discriminable 

electrode-pairs in comparison to areas of indiscriminable electrode-pairs. 

When the CI recipient cannot make use of spectral information delivered to a 

certain region in the cochlea, that is consistent with the presence of “holes in 

hearing” (Shannon et al., 2001) or dead regions. Dead regions are “regions 

in the cochlea with no (or very few) functioning inner hair cells and/or 

neurons are called dead region” (Moore, 2004). For participants showing 

benefit, PTED’s indiscriminable electrodes may have identified dead regions 

and the information delivered to those areas when those electrodes were 
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active may have been lost or at least not fully utilised by the CI recipient. 

Hence, deactivating those indiscriminable electrodes allowed redirection of 

an otherwise lost information, which is line with findings of Faulkner (2006) 

and Smith and Faulkner (2006). While those showing decline did not show 

signs of dead regions, so deactivating electrodes in regions of good spectral 

selectivity for those participants may have decreased the CI signal’s spectral 

resolution and negatively affected their performance. This is in concordance 

with studies indicating reduced performance with decreased spectral 

resolution (e.g. Shannon et al., 2001; Henry et al., 2000 and McKay and 

Henshall, 2002). There was a lack of difference between the participant’s 

ability to utilise pitch in areas of discriminable versus indiscriminable 

electrode-pairs for cases suffering from cochlear pathological changes 

secondary to their cause of deafness, including meningitis and otosclerosis 

(participants 13 and 16) or electrode placement problems (participant 6). 

This provides further support to findings in Chapter 7 where PTED’s 

indiscriminable electrodes most likely have identified underlying dead regions 

but not when the spread of current may have been compromised, e.g., due 

to ossification ( Rotteveel et al., 2010).    

8.2.6.2 Individual results 

For those showing post-deactivation significant benefit, there was a 

difference between the participant’s ability to utilise pitch information 

delivered to regions identified as indiscriminable and those identified as 

discriminable by the PTED. Individual results were consistent with group 

results and in line with previous findings as well of studies investigating dead 

regions (e.g., Shannon et al., 2001). This was not the case for those who 

weren’t showing benefit, with the exception of participant (9) who showed the 

pattern demonstrated by those who were showing benefit; this may warrant 

further investigation. Besides, a closer inspection of individual IF results 

showed that participants (1, 16 and 18) had electrode-pairs that were 

deemed indiscriminable by the PTED but had an IF equal to electrode-pairs 
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deemed discriminable. Reactivating those electrodes produced significant 

benefit in comparison to when they were deactivated. It must be noted that 

this meant additional benefit for participants (1 and 18). The finding again is 

consistent with enhanced spectral resolution when electrodes that stimulated 

non-dead regions were reactivated and only electrodes normally stimulating 

dead regions were deactivated (e.g. Shannon et al., 2001; Henry et al., 2000 

and McKay and Henshall, 2002). Participants (1 and 18) have previously 

shown significant benefit in at least one speech perception measure 

following the deactivation of all indiscriminable electrodes based on PTED. 

This meant that gain in performance due to the deactivation of 

indiscriminable electrodes according to PTED (including those with IF = IF in 

A and those with IF < IF in A) outweighed the possible decline due to the 

deactivation of electrodes in regions with good spectral selectivity (IF = IF in 

A). In other words, stopping stimulation delivered to dead regions for those 

two participants produced benefit that outweighed the spectral loss due to 

stopping stimulation to regions that were not dead regions. Based on studies 

associating improved performance with better spectral resolution (Shannon 

et al., 2001; Henry et al., 2000 and McKay and Henshall, 2002), it might be 

assumed that deactivation of electrodes otherwise stimulated dead regions 

enhanced spectral representation of the signal. 

 

For participant 16 there was not any added gain; the benefit shown in speech 

perception did not exceed his performance with the original clinical program, 

but in his case it again highlighted that PTED did not identify regions with 

poor spectral selectivity in cases of cochlear pathology (fibrosis, calcification 

or ossification). Results of those participants (1, 16 and 18) most likely 

indicated that testing for IF has identified dead regions (Shannon et al., 

2001) with possibly greater specificity than the PTED. Participant (9)’s IF 

pattern highlighted the need to investigate the effect of deactivating the 

indiscriminable electrodes. 
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8.3 Comparison between discriminable and indiscriminable 

electrode-pair regions before and after deactivation (A, B and 

C) 

8.3.1 Introduction: aim and hypothesis 

This study not only evaluated the CI recipients’ ability to utilise pitch 

information in regions of discriminable and indiscriminable electrodes, it also 

evaluated their ability to utilise pitch information in regions of indiscriminable 

electrodes before and after deactivation of indiscriminable electrodes. The 

same task and scoring system of IF and post-deactivation change in 

performance described in experiment I (Section 8.2) was used. The first 

objective of this study was to compare the CI recipients’ ability to utilise pitch 

information in regions of indiscriminable electrode-pairs before and after 

deactivation. The second objective was to evaluate if the change in 

performance following the deactivation of indiscriminable electrodes (level of 

benefit/change ranging from showing decline in more than one measure to 

gaining significant benefit in more than one measure) was associated with 

the difference between their ability to rank pitch in regions of indiscriminable 

electrode-pairs before and after deactivation. The third objective was to 

evaluate whether post-deactivation pitch ranking of intermediate frequencies 

(IF) can potentially be used to improve CI programming especially in cases 

of discrepancy between indications of the PTED and the IF testing. It was 

hypothesised that participants showing benefit following the deactivation of 

indiscriminable electrodes would be better able to rank intermediate 

frequencies in regions of indiscriminable electrodes following deactivation as 

compared to when these electrodes were active because indiscriminable 

electrodes uncovered dead regions. While participants showing no or little 

benefit will be able to rank intermediate frequencies equally well in regions of 

indiscriminable electrodes before and after deactivation because 

indiscriminable electrodes did not uncover dead regions. Redirecting 

information around dead regions would improve performance. 
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Main research hypothesis:  

H1: There will be a significant correlation between change in performance 

following the deactivation of indiscriminable electrodes and the difference in 

number of IF in regions of indiscriminable electrodes before deactivation as 

compared to post-deactivation. 

It was hypothesised that different participants would demonstrate different 

patterns in terms of their pitch ranking abilities in regions of indiscriminable 

electrode-pairs before and after deactivation. See Figure 8.4 for a diagram 

demonstrating the hypothesised difference between participants showing 

benefit following deactivation of indiscriminable electrodes and participants 

showing little or no post deactivation benefit. 

 

 

Figure 8.4 Example demonstrating the hypothesis. The difference in number of discriminable IF for 

electrode-pairs (A and C) for participants showing post deactivation benefit versus those showing no 

post deactivation benefit; the centre-frequencies of the electrode pair are shown in black and the three 

IF in blue. Discriminable IFs are shown with blue lines and indiscriminable IFs are shown with red 

lines. Electrode 3 is the deactivated electrode when testing electrode-pair C in these examples. 
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8.3.2 Methods 

8.3.2.1 Participants 

In order to test for post-deactivation IF in the indiscriminable electrode-pair 

region, the deactivated electrode cannot be located at either the apical or 

basal end of the array. Hence the same recruitment criteria used in 

experiment I (described in Section 8.1.2.1) was used with the addition of 

having deactivated indiscriminable electrodes that weren’t at either ends of 

the electrode array. 13 participants from experiment I who fit these criteria 

and agreed to continue testing were recruited for experiment II.  See Table 

(8.5) for participants’ detailed demographics. 

 

Table 8.5 Participants’ demographics for experiment II 

Participant Aetiology 

 

 

Progressive 

Age in 

years 

Age at 

implant 

in years 

Duration 

of  

Deafness 

in years 

Implant 

experience in 

months 

 

Type of implant 

 1  Unknown Yes 75 70 1 57 
MED-EL™  Pulsar ci 100 

standard 

2  Unknown Yes 67 66 ? 12 Nucleus® CI 512 

5  Measles, age 
5.5 years 

Yes 62 57 6 62 Nucleus® CI 24R(CS) 
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Table 8.5 (continued) Participants’ demographics 

7 Measles, age 5 
years 

Yes 66 59 25 89 MED-EL™ Combi 40+ 

 

9 Otosclerosis Yes 67 58 2 106 AB HiRes 90K? 

10 Unknown Yes 69 63 12 38 Nucleus®
 
Freedom (CA) 

11  
Endolymphatic 

Hydrops 
Yes 42 39 1 34 Nucleus®

 
Freedom (CA) 

12  
Genetic started 
at age 40 years 

Yes 59 60 7 72 Nucleus® CI 24R(CS) 

13  Meningitis No 47 44 3/12 27 Nucleus® 22 

14 Unknown Yes 52 47 ? 57 AB HiRes 90K 

15 
Genetic started 
at age 20 years 

Yes 77 73 7 48 AB HiRes 90K 

16 
Typhoid and 
Otosclerosis 

Yes 72 61 40+ 132 MED-EL™ Combi 40+ 

 

17 

Post general 
anesthesia in 

3
rd
 decade 

 

Yes 63 61 12 18 MED-EL™ Sonata 

 

8.3.2.2 Test battery 

The same test battery used in experiment I was used. 

8.3.2.3 Procedure 

Data used and collected in experiment I for the participants of experiments II 

was used, which included change in performance scores and IF of 

discriminable and indiscriminable electrode-pair regions (electrode-pairs A 

and B). Additionally, PTIF was applied to test the region of indiscriminable 

electrode-pairs following deactivation, which was called electrode-pair(s) C 

(see Figure (8.5) for diagram demonstrating electrode-pairs B and C). IF 

testing for electrode-pair(s) C was applied with research programs based on 

PTED (in Chapter 7) and PTIF (in experiment I). Testing for PTIF took place 
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in a 2×2.5 m double-walled sound booth with the use of adjustments to the 

speech processor’s programming described in Section (8.2.2.3). 

 

Figure 8.5 Example demonstrating the test-frequencies for an indiscriminable electrode-pair in 

electrode-pair B and for the corresponding electrode pair in electrode-pair C. The electrode pair is 

electrodes 2 and 3 in electrode-pair B with electrode 3 active and the electrode pair in electrode-pair C 

with electrode 3 deactivated (shown in red), the centre-frequencies of the electrode pair are shown in 

black and the three intermediate frequencies in blue.  

8.3.2.3.1 Research program based on PTIF results in electrode-pair C 

One participant (12) who had IF = 0 in electrode-pair type C for one post-

deactivation electrode-pair (electrodes 6 and 8), but not the other three 

electrode-pairs tested for electrode-pair type C, was provided with an 

additional research program. In line with Nelson et al.’s (1995) 

recommendation regarding regions of poor electrode-pitch-ranking, the extra 

research program increased the spatial separation in that region (electrodes 

6 and 8); an additional electrode (6) was deactivated. The participant was 

tested for IF (electrode-pair type C between electrodes 5 and 8) and speech 

perception (BKB in quiet which was lower than 50 and CRM) after a one 

month trial period. 
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8.3.3 Analyses 

Scores for post-deactivation change in CI performance (described in 8.2.3.1) 

and IF scores (described in 8.2.3.2) for each electrode-pair tested for PTIF in 

electrode-pairs B and C were obtained. Statistical analysis was conducted to 

assess whether there is a significant relationship between post-deactivation 

change in performance and the difference between number of IF in 

electrode-pairs B and C. 

The post-deactivation change in performance score and the number of IF in 

the different electrode-pairs were used in group and individual analyses. For 

analysis purposes the median number of IF in electrode-pair(s) B was 

subtracted from the median number of IF in electrode-pair(s) C to obtain the 

difference between both types of electrode-pairs for each participant (C - B). 

The median was used in case more than one electrode-pair was tested in 

any electrode-pair. 

8.3.3.1 Analyses of group results: relationship between post-

deactivation change in performance and difference between electrode-

pairs B and C 

Both the post-deactivation change in performance score and the difference 

between electrode-pairs C and B (C – B) are categorical ordinal data, so 

Goodman-Kruskal Gamma was used (Agresti & Finlay, 1997).  

8.2.3.2 Analyses of individual results 

Individual results were further analysed for: 

Participants who showed post-deactivation decline (performance score < 0). 

IF in electrode-pairs B, C and (C – B) were reported for each participant. 

Participants who showed significant post-deactivation benefit in at least one 

speech perception measure and reported improvement (performance score > 

1). IF in electrode-pairs B, C and (C – B) were reported for each participant. 
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Participants who showed discrepancy between PTED and PTIF indications 

and received a program based on PTIF in electrode-pair B (provided in 

experiment I). IF in electrode-pairs B, C and (C – B) were reported for each 

participant if applicable. 

Participants who showed discrepancy between PTED and PTIF indications 

and received a program based on PTIF in electrode-pair C. 

8.3.4 Results 

8.3.4.1 Group results: relationship between post-deactivation change in 

performance and difference between electrode-pairs B and C 

The Goodman-Kruskal Gamma revealed a significant strong association 

between the post-deactivation change in performance and the number of IF 

in (C - B) (γ = 0.95, N = 13, p < .001). Thus the H1 was accepted and a 

significant strong positive correlation was found between the post-

deactivation change in performance and the difference between the number 

of IF in regions of indiscriminable electrode-pairs before and after 

deactivation. 

 

Based on change in performance scores, two subgroups were identified: (1) 

participants showing significant benefit (performance score ≥ 2) and (2) 

participants showing decline (performance score < 0). See Figure (8.6) for IF 

results for electrode-pairs B, C and (C – B) for the different subgroups. 
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Figure 8.6 IF results for electrode-pairs B (very dark grey boxes), C (light grey boxes) and (C – B) 

(grey boxes) in number of IF for the three sub-groups. The boxes represent the range between the 25
th
 

and 75
th
 percentiles and the lines in the boxes represent the median and whiskers show the 10

th
 and 

90
th

 percentiles. 

8.2.3.2 Individual results 

8.2.3.2.1 Participants who showed post-deactivation decline 

As previously reported, some participants who had a change in performance 

score < 0 were cases of ossification due to Otosclerosis (participants 9 and 

16) or secondary to meningitis (participant 13). Only these participants had 

indiscriminable electrodes in the middle of the array allowing testing for IF in 

electrode-pair C. Since participant (16) received an additional research 

program based on PTIF in experiment I, results reported here are with the 

PTED research program only. Change in performance and IF results are 

shown in Table (8.6). 
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Table 8.6 Performance scores and detailed IF results in number of IF of electrode-pairs A, B, C and (C 

– B) for participants who have shown decline after deactivation of indiscriminable electrodes. The 

median IF score is shown in addition to IF scores for all failed electrode-pairs for participant (16). The 

median number of IF is reported, in cases where electrode-pairs in one electrode-pair were not 

homogenous in term of the number of IF all IF values are reported within brackets. 

Participant 
Performance 

score 
IF in A IF in B IF in C IF in (C – B) 

9 -2 3 0 -2 -2 

13 -2 2 2 2 0 

16 -2 3 2 (1 and 3) 3 (3 and 3) 1 (2 and 0) 

8.3.3.2.2 Participants who showed significant post-deactivation benefit 

Participants were considered to show post-deactivation significant benefit if 

they all had a change in performance score ≥ 2. Performance scores and IF 

results are shown in Table (8.7).  
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Table 8.7 Performance scores and IF results in number of IF of electrode-pairs A, B, C and (C – B) for 

all participants who have shown significant benefit after deactivation of indiscriminable electrodes. The 

median number of IF is reported, in cases where electrode-pairs in one electrode-pair were not 

homogenous in term of the number of IF all IF values are reported within brackets. 

Participant 
Performance 

score 
IF in A IF in B IF in C IF in (C – B) 

1 2 3 1.5 (0 and 3) 3 (3 and 3) 2.25 (1.5 and 3) 

2 2 3 1 2 1 

5 2 1 -1 2 4 

7 2 3 0 2 2 

10 2 3 1.5 3 1.5 

11 3 2 1 2 1 

12 2 2 1.5 2 (2,2,3 and 0) .5 

14 2 2 0 2 2 

15 3 2 -1 2 3 

17 2 2 1 3 2 

 

8.3.3.2.4 Participants who showed discrepancy between PTED and PTIF 

indications and received a program based on PTIF in electrode-pair B 

The speech perception and IF (in electrode-pair B and C) results for the 

three participants (1, 16 and 18) who received research programs based on 

PTIF in experiment I are shown in Table (8.8).  
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Table 8.8 Results of Participants who showed discrepancy between PTED and PTIF indications and 

received a program based on PTIF in electrode-pair B. IF results for participants (1, 16 and 18) who 

received a program in experiment 1 based on IF in electrode-pair B, IF results in number of IF for each 

indiscriminable electrode-pair (electrode-pair B) involving a deactivated electrode and for electrode-

pair C (corresponding region for each electrode-pair B), and speech perception results with the use of 

the programs based on PTED and PTIF. Ceiling scores were not reported and significant improvement 

is indicated by *. CRM SRT is reported in dBA and percent correct scores are reported for BKB. 

Subject 

PTED program  PTIF program 

IF in 

B 
IF in C 

IF in    

(C – B) 

Speech 

testing 

 
IF in B IF in C 

IF in    

(C – B) 

Speech 

testing 

1 

3 3 0 
CRM 

11.6dBA 
 0 2 2 

CRM 

7.5*dBA 
0 2 2 

16 

3 3 0 
BKB in 

quiet 34 
 1 3 2 

BKB in 

quiet 

55*dBA 1 3 2 

18 

0   2 2 

BKB in 

quiet 86 

BKB in 

noise 66 

 

0   2 2 

BKB in 

quiet 91 

BKB in 

noise 80* 

2  2 0 

2  2 0 

2 2 0  

 

8.3.3.2.4 Participants who showed a peculiar pattern in performance 

and received an extra program based on results of IF in electrode-pair 

C 

As mentioned in Section (8.3.2.3) only participant (12) showed a peculiar 

pattern in performance after deactivating the indiscriminable electrodes 

provided in the study described in Chapter 7. She showed significant 

improvement with CRM and reported improvement in understanding men’s 
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voices but not as much with women’s voices. IF results showed a somewhat 

corresponding pattern, a greater number of IF in electrode-pair C at the lower 

frequency range (240 Hz- 1520 Hz) but 0 IF in electrode-pair C at the higher 

frequency range (3249 Hz- 4288 Hz). She subsequently received an extra 

program based on results of IF in C but did not show improvement in speech 

perception measures. See Table (8.9) for results. 

Table 8.9 Deactivated electrodes and IF results of the corresponding electrode-pair C for participant 

(12) (corresponding region for each deactivated electrodes) in number of IF with the programs based 

on PTED and PTIF (based on electrode-pair C). 

Program based on PTED  Program based on PTIF 

Deactivated 

electrodes 

IF in corresponding 

electrode-pair C 
 

Deactivated 

electrodes 

IF in corresponding 

electrode-pair C 

7 0  6 and 7 0 

14 2  14 2 

16 and 17 3  16 and 17 3 

19 2  19 2 

8.3.4 Summary of experiment II 

There was a significant and strong correlation between the change in 

performance after deactivating indiscriminable electrodes and the difference 

between IF in regions of indiscriminable electrodes before and after 

deactivation (IF in C – B). The individuals who showed significant 

improvement had a median IF in (C – B) of 2 while those showing decline 

benefit had a median IF in (C – B) of 0. IF in electrode-pair C (-2) for 

participant 9 may explain the decline in performance despite displaying the 

pattern observed in participants showing improvement (IF in A > IF in B). IF 

in electrode-pair C for participants who have received a program based on IF 

in electrode-pair B were also consistent with the observed improvement. 



264 

 

8.3.5 Discussion of experiment II 

8.3.5.1 Group results 

As hypothesised there was a statistically significant positive relationship 

between post-deactivation change in CI performance and the difference 

between the number of IF in regions of indiscriminable electrode-pairs 

regions before and after deactivation. The participants who showed 

significant benefit following deactivation of indiscriminable electrodes (in the 

study described in Chapter 7) had a larger number of IF in areas of 

indiscriminable electrode-pairs post-deactivation in comparison to IF in 

regions of indiscriminable electrode-pairs when they were active. These 

findings were consistent with improved spectral representation following the 

deactivation of indiscriminable electrodes (Shannon et al., 2001; Henry et al., 

2000 and McKay and Henshall, 2002). This pattern also supported Nelson’s 

(1995) proposal to increase spatial separation in areas of spectral resolution 

in order to enhance performance. This is also in line with studies that 

improved performance by deactivating problematic electrode/ sites (Zwolan 

et al., 1997 and Zhou and Pfingst, 2012). While participants showing decline 

did not have a larger number of IF in areas of indiscriminable electrode-pairs 

post-deactivation in comparison to IF in the pre-deactivation regions of 

indiscriminable electrode-pairs, consistent with decreased spectral resolution 

(e.g. Shannon et al., 2001). This again provides further support to the 

presence of underlying dead regions “holes in hearing” that were detected by 

PTED’s indiscriminable electrodes in participants showing benefit. And 

redirecting information around those regions by deactivating those electrodes 

provided the observed benefit. An explanation which is in line with findings 

by Faulkner (2006) and Smith and Faulkner (2006) where they reported that 

redirecting information around a simulated spectral hole improved speech 

perception in comparison to dropping that information.  
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8.3.5.2 Individual results 

Participants’ showing post-deactivation significant benefit, were better able to 

utilise pitch information delivered to regions of indiscriminable electrodes 

post-deactivation, in comparison to pre-deactivation (as proposed by Nelson 

et al., 1995). Participants who received programs based on PTIF in 

experiment I and received benefit showed the same pattern. Examining IF in 

electrode-pair C helped shed light on why participant (9) demonstrated the IF 

(in A and B) pattern of participants showing post-deactivation improvement 

but suffered from a decline in post-deactivation performance. The 

participant’s IF testing in electrode-pair C showed that he suffered from 

reversals after deactivating the indiscriminable electrode, so his ability to 

utilise pitch information did not improve, which is probably why he did not like 

the sound quality. Reversals could be due to several reasons, including 

cross-turn stimulation, or calcification negatively affecting the spread of 

current (Rotteveel et al., 2010). However, since the participant did not show 

reversals in electrode-pair B and considering that the deactivated electrode 

is in a more basal position, cross-turn stimulation is an unlikely reason. A 

more likely reason would be a combination of an underlying dead region and 

calcification affecting the spread of current, which became worse with 

increased spatial separation between the active electrodes (post-deactivation 

of the electrode). In such cases of calcification deactivating electrodes in 

most likely dead regions may not be ideal; filter frequency-range 

manipulation to limit the information delivered to that region might provide a 

solution. Another solution could be the use of a more focussed stimulation 

such as partial-tripolar (Bierer et al., 2005; Bonham et al., 2005; Litvak et al., 

2007; Zhu et al., 2012) (described in Section 1.2.5) in combination with filter-

frequency-range adjustment to minimise the negative effect of abnormal 

spread of current. Participant (12) IF results in electrode-pair C for the 

different regions of deactivated electrodes reflected to an extent post-

deactivation change in performance. She showed limited ability to utilise 

pitch information in the region of the deactivated indiscriminable-electrode at 

high frequencies as opposed to better pitch perception in the region of the 
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deactivated indiscriminable-electrode at lows frequencies. These IF results 

corresponded with the participant’s report of better perception of men’s 

voices but not that of women, which is in concordance with men’s voices 

having lower fundamental frequencies (e.g. Saxman and Burk, 1967). 

Increasing spatial separation between active electrodes in the high frequency 

range did not improve her speech perception nor did it increase the number 

of IF in that region. Again, performance reflected the pattern observed in IF 

testing. This lack of improvement may reflect poor neuronal survival (dead 

regions as shown by Shannon et al., 2001) in that frequency range or 

placement issues (e.g. relative distance from spiral ganglion as proposed by 

Wilson and Dorman, 2008) so no matter how much spatial separation there 

is between active electrodes it did not enhance her ability to rank pitch in that 

range. The deactivation of indiscriminable electrodes in that region for such a 

case may not be the best option, limiting information presented to that region 

by manipulating the filter-frequency-range and/or by using focussed 

stimulation might be better options and may be explored in future research. 

8.4 Discussion for experiments I and II 

In line with previous findings, the stimulation of electrode-pairs produced 

intermediate pitches and the number of discriminable IF varied both within 

and between subjects (McDermott and McKay, 1994; Donaldson et al., 2005; 

Kwon and van den Honert, 2006 and Nobbe et al., 2007). The studies 

reported in this chapter showed that the number of IF in the different regions 

and electrode-pairs (A, B and C) can reflect the change in performance 

observed, following the deactivation of indiscriminable electrodes as 

identified via PTED. These results may shed some light on results of the 

study described in Chapter 7. Deactivation of indiscriminable electrodes as 

identified by PTED provided benefit when those electrodes uncovered 

underlying dead regions (Shannon et al., 2001). Redirecting information 

around those regions gave rise to improvement, which is in concurrence with 

findings of simulation studies (Faulkner, 2006 and Smith and Faulkner, 
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2006). PTIF also sheds some light on the lack of post-deactivation 

improvement in performance in some participants (cases of Otosclerosis or 

meningitis). PTIF also identified some indiscriminable electrodes that did not 

stimulate dead regions either due to placement issues or in the absence of 

pathological changes (e.g. fibrosis or calcification) or placement problems. 

Deactivating electrodes for those participants did not improve their ability to 

utilise pitch information in regions of deactivated electrodes, and deactivation 

may have caused decreased spectral resolution (Henry et al., 2000 and 

McKay and Henshall, 2002). PTIF may potentially be used to further guide 

programming of CI to improve performance or identify dead regions, and 

results from these two studies provide some validation to the PTIF test. 

Further research in this area could be fruitful.  

These results further support the presence of different types of 

indiscriminable electrodes (1) those stimulating dead regions, (2) those 

stimulating regions with functioning spiral ganglion cells (non-dead regions) 

due to cochlear pathological changes such as fibrosis, calcification or 

ossification, (3) those stimulating regions with functioning spiral ganglion 

cells (non-dead regions) due to surgical placement issues and (4) those 

stimulating regions with functioning spiral ganglion cells (non-dead regions) 

in the absence of cochlear pathological changes such as fibrosis, 

calcification or ossification. In contrast to the latter three types (2, 3 and 4) 

the deactivation of the first type provides improvement in speech perception.  

8.5 Conclusion  

This Chapter provided an explanation of change in CI performance following 

the deactivation of CI electrodes, including the patterns observed in Chapter 

7. Participants showing benefit post deactivation (of indiscriminable 

electrodes) had a larger number of discriminable IF in regions of 

discriminable electrodes, compared to regions of indiscriminable electrodes; 

however, those showing limited benefit or decline post deactivation did not. 

Furthermore, those showing post deactivation benefit had a larger number of 
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DIF in regions of indiscriminable electrodes post deactivation of 

indiscriminable electrodes, compared to those regions when those 

electrodes were active, but those showing limited benefit or decline post 

deactivation did not. It also demonstrated the potential of using the PTED 

and PTIF tests as possibly clinically applicable tools to help guide optimise 

programming, with the additional potential for PTIF to be used to identify 

dead regions and possibly predict the effect of deactivating electrodes; 

however, further research is required. This chapter also highlighted the need 

to explore other options besides deactivating electrodes deemed 

indiscriminable or have possible underlying dead regions.  

8.6 Summary 

 PTIF demonstrated that electrodes identified as indiscriminable via the 

PTED have most likely uncovered underlying dead regions and the 

benefit observed reflects the redirection of information that would have 

otherwise been lost. 

 In cases where cochlear pathological changes are suspected the PTIF 

may provide a test for underlying dead regions. 

 PTIF can potentially be used as a clinical tool to guide programming of 

CI. 
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Chapter 9 

Electrode differentiation with bilateral cochlear 

implants 

Abstract 

This study examined the efficacy of two different CI research programs 

based on matching pitch and loudness across the two CI devices for six 

bilaterally-implanted adults. One research program was based on direct-

stimulation (DS) matching with the use of two clinical programming 

interfaces, and the other research program based on pure-tone (PT) auditory 

matching. Evaluation measures included spatial release from masking (SRM) 

with the use of BKB sentences in speech-spectrum shaped noise, with 

speech presented from the front (at 0°azimuth) and noise presented to the 

right (at +90°) or to the left (at -90°), a localisation test (for 30° and 15° of 

separation) and, finally, an across-ears pitch comparison test . Statistically 

significant improvements were found in localisation at 30° of separation with 

the research program based on DS only (t = -3.03*, df = 5, p < 0.05) and in 

localisation at 15° of separation with the use of DS and PT respectively (t = -

2.62*, df = 5, p < 0.05 and t = -6.95**, df = 5, p < 0.005). Statistically 

significant improvements were also observed for the ‘BKB in noise’ with the 

use of the best research program, compared to the best clinical BKB score 

with speech-spectrum shaped noise presented on the right and on the left, 

respectively (t = -3.179*, df = 4, p < 0.05 and t = -3.22*, df = 4, p < 0.05) after 

the exclusion of the participant with unilateral, severe cochlear ossification in 

the weaker side. Although three out of six participants showed statistically 

significant improvements in ‘BKB in noise’ with speech presented from the 

front (at 0°azimuth), no overall statistically significant improvement was 

observed as a group. A ‘pitch comparison test’ was applied across-ears (to 

evaluate how well matched the two bilateral implants are in terms of 
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frequency) and revealed statistically significant improvement with the use of 

DS (t = -5.22**, df = 5, p < 0.005). 

9.1 Introduction  

Bilateral implantation has been considered one of the advances that 

produced significant improvement in performance with CI (Wilson and 

Dorman, 2008). Having both ears implanted ensures that the better ear will 

be implanted and provides the hearing impaired with a “back-up” device if 

one should fail (e.g. Verschuur et al., 2005).  It is essential in cases of 

meningitis urgently to provide bilateral implants due to the speed at which 

ossification can occur, leading to a poorer hearing and speech perception 

outcome following implantation. In addition to allowing listeners to detect and 

locate potential sources of danger (e.g. traffic) bilateral implantation has the 

potential to improve localisation performance the perception of speech in 

noise, leading to improved communication abilities. Many researchers have 

demonstrated improvements in localisation with bilateral, compared to 

unilateral, implantation (Schleich et al., 2004; Seeber et al., 2004 ; Laszig et 

al., 2004; Verschuur et al., 2005; Tyler et al., 2007; Neuman et al., 2007; 

Mosnier et al., 2009; Kerger and Seeber, 2012) and also improved speech 

perception in noise, especially when speech and noise are spatially 

separated (Laszig et al., 2004; Schleich et al.,2004; Eapen et al., 2009; 

Litovsky et al., 2006 and Ricketts et al., 2006). However, some studies that 

evaluated bilateral CI benefit in speech perception in quiet and in noise when 

both speech and noise were presented only from in front of the listener (at 

0°azimuth) report conflicting results. Some found a bilateral advantage for 

speech perception in quiet (e.g. Mosnier et al., 2009; Tyler et al., 2007; 

Eapen et al., 2009; Dunn et al., 2010 and Litovsky et al., 2006), whilst others 

did not (Ramsden et al., 2005 and Laszig et al., 2004). For speech in noise 

at 0° azimuth, some report an improvement (Schleich et al.,2004; Ramsden 

et al., 2005; Eapen et al., 2009 and Wackym et al., 2007)  but others do not 

(Laszig et al.,2004; Litovsky et al., 2006). One potential reason for this 
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discrepancy could be that the observed benefits stem predominantly from the 

head-shadow effect, which cannot be utilised when signal and noise are both 

presented from the front. Different degrees of performance might arise as a 

result of the variable amount of bilateral summation between subjects, 

possible due to the degree of mismatch in frequencies between ears. 

Supporting evidence for the mismatch effect was shown in a simulation study 

(Siciliano et al., 2010), in which six-channel noise vocoders were used with 

normally-hearing adults, three out of six channels were binaurally 

mismatched with an upward frequency shift in one ear only. These authors 

demonstrated that participants did not show any speech perception benefit 

from the three mismatched channels when performance was compared to a 

condition which used three binaurally matched channels only. They also 

found that program frequency mismatch between ears could not be 

accommodated for by training. In line with these findings, Zhou and Pfingst 

(2012) found that dichotic programs employing the best stimulation sites 

(electrodes) only, as identified by the modulation detection threshold, 

provided better speech perception than programs employing the same 

electrodes but with frequency redistribution permitted. In dichotic programs, 

the program in each device contained ‘spectral holes’ that were 

complemented by the corresponding contralateral site, thus avoiding pitch-

mismatches between ears. However, localisation performance was not 

evaluated with any of their programs. Considering that Dunn et al. (2004) 

found that splitting frequencies between ears significantly reduced 

localisation, localisation could have been affected in the dichotic programs.   

 

In Chapter 7, deactivating indiscriminable electrodes based on a pitch 

ranking task (were non-tonotopic) provided benefit for 20 out of 25 

unilaterally implanted recipients. In this chapter a study that evaluates the 

effect of deactivating electrodes which are indiscriminable or non-tonotopic in 

relation to the contralateral ear by providing programs which matches the two 

implants for pitch. 
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9.1.1 Interaural differences 

The ability to exploit information arriving at both ears underlies binaural 

hearing. This entails the perception of interaural differences in time of arrival 

(to each ear) and sound level when entering each ear (e.g. McAlpine, 2005). 

When a sound source lies to the front of a listener (at 0°azimuth), it arrives at 

both ears at the same time and at an equal loudness level. However moving 

the sound even slightly to the left, for example, has two consequences. (1) 

The sound will arrive at the left ear first creating an interaural time difference 

(ITD) between the ears and (2) the sound will enter the left ear at higher 

loudness level than the right ear giving rise to an interaural level difference 

(ILD).  

 

The duplex theory of binaural hearing (Rayleigh, 1907) stipulates that ITD 

cues mainly operate at frequencies lower than about 1500 Hz whilst ILD 

cues operate at higher frequencies, where the wavelength of sound relative 

to the source generates sufficient ‘shadowing’ by the head. This was also 

supported by findings of Stevens and Newman (1936) where the ability to 

localise pure-tones varied according to frequency; localisation of frequencies 

lower than 1000 Hz was based on ITD and localisation of frequencies above 

4000 Hz was based on ILD. 

9.1.2 Spatial release from masking (SRM) 

Spatial release from masking (SRM) refers to improved speech perception in 

noise when the speech and noise are spatially separated (Plomp and 

Mimpen, 1981; Bronkhorst and Plomp, 1992; Nilsson et al., 1994; Koehnke 

and Besing, 1996; Peissig and Kollmeier, 1997; Hawley et al., 1999; Shinn-

Cunningham et al., 2001; Litovsky et al., 2002).  It is usually assessed by 

comparing speech perception in noise (either the speech perception 

threshold in an adaptive test or the percentage correct response in a fixed 

level test) at two different conditions, with both speech and noise presented 

from the front (at 0°azimuth) and with speech presented from the front (at 
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0°azimuth) and noise presented to the right (at +90°) or to the left (at -90°) - 

see Figure (9.1). Speech perception is usually better (lower thresholds or 

higher percentage correct scores) when noise is presented to the side (either 

at +90°or at -90°). This occurs because of two underlying reasons (Durlach, 

1963; Zurek, 1992; Bronkhorst, 2000): (1) one ear is shielded by the head 

when the noise is presented at the contralateral side of the head (head 

shadow), providing an improved SNR at frequencies greater than 500-1000 

Hz and (2) the difference in ITD between the speech and the noise. SRM 

provides a measure of binaural benefit in speech perception that does not 

require the deactivation of either of the two CI devices during testing. 

9.1.3 Aims and hypotheses 

This chapter describes a study aimed at improving frequency matching 

between the two implants in bilaterally-implanted individuals via DS and via 

PT auditory stimulation. The implanted participants were evaluated with the 

use of SRM, BKB in speech-spectrum shaped noise, a “number localisation” 

task and CRM. To evaluate how well matched the two devices were, a test 

applying an across-ears pitch-comparison task with a fixed set of nine 

frequencies was administered with each program. It was hypothesised that 

matching the bilateral CIs for pitch will binaural hearing and consequentially 

will affect speech perception [CRM and BKB in noise when speech is 

presented from the front (at 0°azimuth) and noise is presented from one of 

the front (at 0°azimuth), right (at +90°) or left (at -90°)]. It was also 

hypothesised that it will therefore affect SRM, localisation and performance 

on the across-ears pitch-comparison test. If the degree of pitch matching 

between the two implants (as measured by performance on the across-ears 

pitch comparison test) is correlated to localisation and/or speech perception 

then this could be indicative of better/degree of matching between the two 

implants affecting localisation and use of binaural hearing. 
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Main research hypotheses: 

H1: Matching electrodes’ pitch and frequency tables (see Section 1.3.2) 

between the bilateral CI devices based on pitch perception via direct 

stimulation will affect CI performance. 

H2: Matching electrodes’ pitch and frequency tables (see Section 1.3.2) 

between the bilateral CI devices based on pitch perception via pure-tone 

auditory stimulation will affect CI performance.  

H3: There will be a significant correlation between localisation with the use of 

five speakers at 30° and 15° of separation and performance on the across-

ears pitch-comparison test. 

H4: There will be a significant correlation between speech perception and 

performance on the across-ears pitch-comparison test. 

 

Sub-hypotheses are: 

1- Matching electrodes’ pitch and frequency tables between the bilateral 

CI devices based on pitch perception either via direct stimulation or 

via pure-tone auditory stimulation will affect speech perception [CRM 

and BKB in noise when speech is presented from the front (at 

0°azimuth) and noise is presented from one of the front (at 

0°azimuth), right (at +90°) or left (at -90°)]. 

2- Matching electrodes’ pitch and frequency tables between the bilateral 

CI devices based on pitch perception either via direct stimulation or 

via pure-tone auditory stimulation will affect SRM. 

3- Matching electrodes’ pitch and frequency tables between the bilateral 

CI devices via DS will affect localisation in a number-localisation task 

with the use of five speakers at 30° and 15° of separation. 

4- Matching electrodes’ pitch and frequency tables between the bilateral 

CI devices via PT auditory stimulation will affect localisation in a 

number localisation task with the use of five speakers at 30° and 15° 

of separation. 
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5- Matching electrodes’ pitch and frequency tables between the bilateral 

CI devices via DS will affect performance on the across-ears pitch-

ranking screening test. 

6- Matching electrodes’ pitch and frequency tables between the bilateral 

CI devices via PT auditory stimulation will affect performance on the 

across-ears pitch-ranking screening test. 

7- There will be a significant correlation between performance on the 

across-ears pitch-comparison test and localisation in a number-

localisation task with the use of five speakers at 30° and at 15° of 

separation. 

8- There will be a significant correlation between performance on the 

across-ears pitch-comparison test and speech perception [CRM and 

BKB in noise when speech is presented from the front (at 0°azimuth) 

and noise is presented from one of the front (at 0°azimuth), right (at 

+90°) or left (at -90°)]. 

 

9.2 Methods 

9.2.1 Participants 

Participants were recruited from the Royal National Throat Nose and Ear 

Hospital (RNTNEH) and through the National Cochlear Implant Users 

Association (NCIUA).  

Six adults with bilateral CIs and acquired deafness were recruited. 

The inclusion criteria were: 

1- A minimum of six months bilateral CI experience. 

2- An aural-oral mode of communication. 

3- Have English as a first language. 
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Participants’ demographics: 

(1) Duration of deafness was calculated for each participant from the date of 

diagnosis of a bilateral profound sensorineural hearing loss - it ranged from 3 

months to 20 years. (2) Age at testing ranged from 42 to 70 years, with a 

mean of 60 years (± 12.77). (3) The aetiology of hearing loss was unknown 

in 2 of the 6 participants. (4) Cochlear implant experience was calculated 

from date of switch-on of the present implant; it ranged from 8 to 168 

months, with a mean of 46.83 months (± 51) and a median of 27.5 months. 

(5) The hearing loss was progressive for five of the participants. (6) Among 

the participants were two bilateral Advanced Bionics (AB) CI recipients, one 

bilateral Med-El™ CI recipients and three Cochlear® CI recipients. 

Participant 3 had a prelingual onset of hearing loss. Table (9.1) details 

participants’ demographics.  
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Table 9.1 Participants’ demographics, duration of deafness was calculated from the date of diagnosis of a bilateral profound sensorineural hearing loss to time of 

receiving an implant, age at implant and duration of deafness are in years and implant experience is in months. 

Participant Age 

Aetiology 
 Age at 

implant 

 Duration of 

deafness 

 Implant 

experience 

 
Type of implant 

Right (R) Left (L) 
 

R L 
 

R L 
 

R L 
 

R L 

1 67 
Unknown 

progressive 

Unknown 

progressive 

 

63 63 

 

20 20 

 

39 39 

 
MED-EL™ 

Sonata 

MED-EL™ 

Sonata 

2 69 
Usher’s 

syndrome  

Usher’s 

syndrome  

 

68 66 

 

4 2 

 

8 33 

 Advanced 

Bionics HiRes 

90K 

Advanced Bionics 

HiRes 90K 

3 42 
Progressive 

genetic 

Progressive 

genetic  

 

41 40 

 

15+ 15+ 

 

8 24 

 Advanced 

Bionics HiRes 

90K 

Advanced Bionics 

HiRes 90K 

4 66 Meniers Meniers 

 

63 50 

 

16 3 

 

28 36 

 
Nucleus® CI 

512 
Nucleus® 22 

5 45 Meningitis  Meningitis  

 

42 42 

 

3/12 3/12 

 

27 27 

 
Nucleus® CI 

512 
Nucleus® CI 512 

6 70 
Unknown 

progressive 

Unknown 

progressive 

 

57 59 

 

8 1 

 

168 138 

 
Nucleus® 

CI24M 
Nucleus® CI24M 
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9.2.2 Test battery 

Two speech perception tests were used, the BKB sentence test in noise at a 

10dB SNR or 5 dB SNR if the participant reached ceiling at a 10dB SNR 

(described in Section 5.2.2) and the CRM (described in Section 4.2.2). 

9.2.2.1 SRM 

BKB in speech-spectrum shaped noise was conducted with speech 

presented from the front (at 0°azimuth) and noise presented from the front 

(at 0°azimuth), from the right (at +90°) and from the left (at -90°). Percentage 

correct responses scores were used rather than thresholds because 

sentences are not equally difficult, and because pilot testing revealed that 

test-retest difference in thresholds with the use of BKB in noise was equal to, 

or greater than, the estimated SRM. 

9.2.2.2 Number “digit” Localisation test  

Two number localization tests were administered, with the use of five audio-

visual stands (a speaker and a monitor beneath it) separated by 30° (at 0°, ± 

30°, and ± 60°) and five audio-visual stands separated by 15° (at 0°, ± 15°, 

and ± 30°). In each stand, the monitor displayed a number between 1 and 5, 

and the touch screen monitor which the participant used to respond 

displayed five rectangles, each with a digit from 1 to 5.  The speech stimulus 

“Hello, what’s this?” was presented at 70dBA by a female talker with a 

random, roving level of ±5 dB at 1dB steps from a randomly-selected 

speaker at each of the 30 trials. The task of the participant was to localize 

the source of the stimulus and choose the number displayed on that stand 

with the use of the touch screen in a five alternative-forced choice task. The 

output score was the percentage of correct responses excluding the 

responses of the five training trials administered before testing. See Figure 

(9.1) for schematic representation of the testing setup. 
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Figure 9.1 The location of the active audio-visual stands (speaker and a monitor below it) for the two 

conditions of the Number Localisation test. A) 30° separation between five alternative locations. B) 15° 

separation between five alternative locations. 

9.2.2.3 Bilateral matching 

Reiss et al. (2011) applied a pitch comparison task between electrodes 

across ears to find electrodes that matched in pitch. In each trial they 

presented stimuli from an electrode-pair and the participant had to respond 

by stating if the second presentation “electrode” had a higher (H), a lower (L) 

or a similar (S) pitch. A pitch comparison task similar to that of Reiss et al. 

(2011) was administered between two electrodes across-ears; i.e. an 

electrode from one implant was tested with an electrode (E) from the 

contralateral implant in each trial. According to participants’ remarks in the 

pilot phase, the number of presentations was modified to two presentations 

per electrode in each trial. The number of trials and the classification of each 

electrode-pair were statistically calculated in order to reach a 95% 

significance level. The criteria of choosing the tonotopic electrodes which are 

matched between the two ears and used in the research programs were 

designed by the author for this study.  

 

Randomly-selected electrode-pairs were presented at loudness-balanced 

levels and each trial consisted of two presentations (e.g. E1 -silence - E2 - 

silence- E1- silence - E2) before a response was made. The apical and the 

basal electrodes were each tested against at least three contralateral 
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electrodes, and other electrodes were each tested against at least five 

contralateral electrodes. Each electrode pair was tested for a minimum of 

three trials and if the response was the same for each (either “similar”, 

“higher” or “lower”) then testing was terminated, otherwise the trials 

increased to five. If by five trials responses did not reach significance level, 

then the number of trials was increased to ten and if responses did not reach 

significance (8 out of 10) by this point in at least one classification type then 

the electrode-pairs were classified as having confused pitch (see Table 9.2 

for response patterns required to classify the second electrode’s pitch). 

 

Table 9.2 The classification of responses used in matching between ears with the corresponding p 

values calculated based on the number of test trials per test electrode-pair. 

Classification Number of trials Outcome required P value 

Higher 

3 3 higher 0.037 

5 4 higher 0.04 

10 7 higher 0.016 

Lower 

3 3 lower 0.037 

5 4 lower 0.04 

10 7 lower 0.016 

Similar 

3 3 similar 0.037 

5 4 similar 0.04 

10 7 similar 0.016 

10 5 higher and 5 lower 0.03 

 

Non-apical and non-basal electrodes were tested with up to six contralateral 

electrodes until tonotopicity in relation to the contralateral implant was 

established or negated. Electrodes were classified into tonotopic versus non-

tonotopic based on results. Non-apical and non-basal tonotopic electrodes 

exhibited a pattern with at a turning point from L to H and least 2 L and 2 H in 

a tonotopic order (e.g. L, L, S, H, H or L, L, L, H, H, H). Non-tonotopic 

electrodes showed confused pitch with more than one electrode, or reversed 

tonotopicity, or were judged similar to more than one electrode.  
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Only tonotopic electrodes were included in the matching process. In cases 

where some tonotopic electrodes were not judged as similar to any 

contralateral electrode the best match was determined between the two 

electrodes around the turning point (from L to H). The two electrode-pairs 

representing the two possible matches were presented at loudness-balanced 

levels (test E- silence - E1 -silence - test E - silence - E2) and the participant 

was asked to choose the pair that sounded the closest in pitch. The order of 

presenting E1 and E2 was alternated in a minimum of six trials. The best 

matches were established between equal numbers of electrodes in each 

implant. This matching process was administered via direct stimulation using 

a clinical fitting station and software, and via pure-tone presentations.  

 

For loudness balancing, a two interval alternative-forced-choice task was 

applied, whereby the participant was presented with two pure-tones 

representing the two test electrodes and had to respond as to whether the 

second tone had a higher, quieter or the same loudness level as the first 

tone. A simple up-down staircase adaptive procedure was followed. Step 

size started at 5 dB for PT auditory testing and at 2 clinical units for DS 

testing. The step size was halved after the second reversal, and testing was 

terminated after the participant indicated that the second tone has same 

loudness level as the first tone on three occasions. The average loudness 

level of the three responses judged as having the same loudness was 

considered to be the loudness-balanced level. 

9.2.2.3.1 Bilateral direct-stimulation matching 

In the bilateral direct-stimulation matching, a standard fitting station with two 

programming interfaces (see Appendix A) was used to deliver the stimuli. 

The default settings used in programming the AB and MEDEL CI devices 

were used in the direct stimulation matching process because not all CI 

programming software allows for manipulation of the pulse duration, and 

because participants reported that default setting provided stimuli sufficient 
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for them to make judgments concerning pitch comparisons. However, for 

Cochlear devices during pilot testing, participants (5 and 6) reported that the 

pulse duration had to be increased to 500 ms before the participant was able 

to make pitch comparison judgments. Hence 500 ms pulse duration was 

used with Cochlear participants. For each tested electrode-pair the 

presentation order of test electrodes alternated between trials. 

9.2.2.3.1 Bilateral pure-tone auditory matching 

In the bilateral pure-tone matching, pure tone presentations at the centre 

frequencies (either provided in the frequency table or calculated as the 

geometric mean) of the tested electrodes were used after applying 

adjustments to the speech processor see Section (9.2.3.1).  

To conduct matching between the bilateral CIs without direct stimulation, 

pure tones that corresponded to the centre frequencies of the processing 

filters within a participant’s individual CI program were presented through a 

Creative Labs Sound Blaster X-Fi Surround 5.1 PRO sound card. The 

purpose of this USB-connected sound card was to present high-fidelity 

sounds that bypassed the host computer’s sound card. All filter centre 

frequencies associated with switched-on electrodes were used. The audio 

presentation was controlled through bespoke software that was developed 

by Dr Ray Glover for testing under conditions of ‘bimodal’ stimulation, further 

modifications were incorporated (to allow more manipulation of intensity, 

duration of stimuli, ISI and frequency settings of presentations) to allow 

matching between both CIs in this study. Verification of the accuracy of 

frequency, duration of stimulation and level of presentation was determined 

with an oscilloscope. Pure-tones were presented to participants at a 

comfortable level from a laptop PC via the Sound Blaster X-Fi Surround 5.1 

PRO Sound Card, using high-fidelity headphones (Sennheiser 580). Stimuli 

consisted of 600-ms tones and an inter-stimulus-interval (ISI) of 400 ms. The 

stimuli and ISI settings were reached after pilot testing with three bilaterally-

implanted individuals (with different devices) who reported that these settings 
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provided the minimum durations required for them to make accurate 

judgments about pitch comparison.  

9.2.2.4 The screening across-ears pitch comparison test 

To evaluate how well the ears were matched after the matching process, a 

screening pitch comparison test was administered. This consisted of a fixed 

list of nine frequencies that were chosen based on a musical scale with six-

semitone separation between them (see Table 9.3 for set of frequencies). A 

pitch-comparison task was administered with the presentation of the same 

frequency across-ears at loudness-balanced levels by using the same set up 

employed for PT auditory-stimulation matching (Section 9.2.2.3). Participants 

were presented with the same tone in both ears at loudness-matched levels 

and were required to respond by stating if the second presentation had a 

higher (H), a lower (L) or a similar (S) pitch. The order of frequency 

presentations was randomly selected and each trial consisted of two 

presentations (E1 -silence - E2 - silence- E1- silence - E2) before a response 

was made. The number of trials and scoring used was similar to that used in 

the matching process (described in Section 9.2.2.3).  

 

Table 9.3 The list of frequencies used in the across-ears pitch comparison test and the corresponding 

musical notes based on a scale created using A4 = 440 Hz. 

Note Frequency 

F4 349 Hz 

B4 494 Hz 

F5 698 Hz 

B5 988 Hz 

F6 1397 Hz 

B6 1976 Hz 

F7 2794 Hz 

B7 3951 Hz 

F8 5588 Hz 
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9.2.3 Procedures 

Bilateral matching took place in a 2×2.5 m double-walled sound booth while 

testing for speech perception took place in a 3.7×3.25 m double-walled 

sound booth where the participant was seated 1 m in front of an ear-level 

loud speaker (Plus XS.2, Canton) from which the speech and noise were 

presented. The stimuli were stored (16 bits), using the AB-York Crescent of 

Sound (Kitterick et al., 2011).  

As previously described, for CRM, the participants used a touch screen 

monitor to respond, and the software ran the test presentation and scoring in 

an automated fashion. During BKB testing, the tester recoded the 

participants’ verbal response by selecting the correct key words in each 

sentence presented.  

 

A cross-over study design was used. (See Figure 9.3 for outline of the 

procedure.) In the first session, speech perception was assessed with the 

participant’s clinical program and the participant was provided with the first 

research program, either program A or program B (details provided in 

Section 9.2.4) based on the bilateral-matching task. After one month trial 

use, the participant returned and speech perception was assessed with the 

first research program; the participant was then provided with the second 

research program. The participant returned once more, following one 

month’s trial use, for a final session. Speech perception and localisation 

testing was performed with the original clinical program and the second 

research program. Final programming of the participant's speech processor 

was provided, based on both performance and preference. The participant 

was also asked to provide feedback on each research program after each 

one-month trial; this provided valuable information on sound quality in 

different day-to-day listening situations. All participants were tested for ‘BKB 

in noise’ with the clinical program at the first and third sessions, and once 

with each research program after the one-month trial period. ‘BKB in noise’ 

was conducted with speech presented from the front (at 0°azimuth) and 
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noise presented from the front (at 0°azimuth), to the right (at +90°) or to the 

left (at -90°). CRM SRTs were obtained twice (to obtain an average) in each 

session with the clinical program at all visits, and with each research 

program at the end of the one-month trial period. Both number localisation 

tests (at 30° and 15° separation) were administered with the clinical program 

at all sessions and once with each research program after the one month 

trial period. 

 

Figure 9.2 Outline of the cross-over study design, research program A based on bilateral direct-

stimulation matching and program B based on bilateral pure-tone matching. 

9.2.3.1 Adjusting the speech processor for pure-tone matching 

The program used when running the pure-tone matching was the 

participant’s preferred clinical program. For participants with Cochlear® 

devices, the number of maxima (see Section 1.3.2.3) was adjusted and set 

to the value of 1 to ensure that only one electrode, the test electrode, was 

stimulated. Both the threshold and highest comfort level were increased with 

this maxima setting by 15% in the participant’s testing program. Care was 
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taken that levels did not cause non-auditory stimulation and were 

comfortable before conducting loudness balancing and pitch comparison. 

Adaptive Dynamic Range Optimization (ADRO) was deactivated. 

9.2.4 Research programs 

Research programming options were as follows: 

Program (A) Based on direct-stimulation matching, non-tonotopic electrodes 

were deactivated and only the matched electrodes were active. The same 

frequency table (see Section 1.3.3) was used in both CIs to ensure that each 

electrode in the matched electrode-pair was allocated the same frequency 

range and centre frequency. No changes were applied to the rate of 

stimulation, processing strategy or T levels (see Section 1.3.3). However, 

because the matching process used loudness-balanced levels, the M/C 

levels (see Section 1.3.3) were balanced across ears. Both devices were 

activated to make sure they were at a comfortable level of loudness and did 

not result in any discomfort or non-auditory stimulation. 

 

Program (B) Based on pure-tone matching, non-tonotopic electrodes were 

deactivated and only the matched electrodes were active. The same 

frequency table (see Section 1.3.2) was used in both CIs to ensure that each 

electrode in the matched electrode-pair was allocated the same frequency 

range and centre frequency. No changes were applied to the rate of 

stimulation, processing strategy or T levels (see Section 1.3). However 

because the matching process used loudness balanced levels in the direct-

stimulation matching process, the M/C levels (see Section 1.3) were 

balanced across ears for the pure-tone matched programs as well. Both 

devices were activated to make sure they were at a comfortable level of 

loudness and did not cause any discomfort or non-auditory stimulation.  
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9.3 Analyses 

As described above, each participant was tested with the clinical program 

both at the beginning and end of the study, and once with each research 

program following a one-month trial. Group analysis compared the best 

speech perception results acquired for each participant with the clinical 

program, with the speech perception results acquired with the better of the 

two research programs. Group analysis was also performed to compare the 

best BKB score in noise for each condition [noise presented from the front (at 

0°azimuth), right (at +90°) and left (at -90°)] with the best research program 

for each participant, with the best BKB score in noise for each condition with 

the clinical program. The best CRM SRT average with the clinical program 

and the CRM SRT average with each research program were assessed in 

the analyses. The best localisation score with the clinical program in each 

condition (at 30° and  15° separation) was compared with the best research 

program (at 30° and  15° separation) and with each research program (at 30° 

and  15° separation). 

 

SRM was calculated by subtracting the BKB score in noise when both 

speech and noise were presented from the front, from the BKB score in 

noise when the noise was presented from one or other of the sides. SRM 

was calculated for each research program and with the use of the best 

clinical BKB scores (acquired in one session). 

 

The responses of the across-ears pitch-comparison test were categorised 

into ‘same’ or ‘different’ for each test frequency. The percentage of 

frequencies judged as the same was calculated for each program for all 

frequencies, and separately for frequencies below 1500 Hz and frequencies 

above 1500 Hz.  
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Similar to the study described in Chapter 7, participants were also asked to 

provide subjective feedback and report the sound quality, in addition to the 

localisation task performed with each program. For purposes of analysis, the 

same criteria for improvement described in Section (7.3.2.1) were used. 

Statistical analysis was conducted to assess the existence of: 

1)  a significant change in ‘BKB in noise’ in any condition [noise 

presented from the front (at 0°azimuth), right (at +90°) and left (at -

90°)] with the best research program.  

2) a significant change in ‘CRM’ with the best research program.  

3) Whether there is significant change in SRM with the best research 

program.  

4) a significant change in the across-ears pitch comparison test with 

either research programs (based on DS matching and PT auditory 

matching).   

5) a significant relationship between the across-ears pitch comparison 

AEPC test results and localization (at 30° and 15° separation). 

6)   a significant relationship between AEPC test results and ‘BKB in 

noise’ at any condition [noise presented from the front (at 0°azimuth), 

right (at +90°) and left (at -90°)]. 

7)  a significant difference between research programs A and B. 

9.3.1 Analyses of group results 

Similar to Chapters 4-7, for statistical purposes BKB scores were 

transformed to arcsine distribution (Studebaker, 1985), in order to include 

scores that reached either the test floor or the ceiling. Since it has been 

observed with cochlear pathology such as ossification affected participants’ 

performance on ED tasks (see Chapter 7), it was decided to conduct speech 

perception analyses both including and excluding participant (5), who had a 

history of meningitis and severe ossification in the left ear. 

The Shapiro Wilk’s test was applied on all variables. Statistical tests were 

determined accordingly.  
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The t-test with was applied to compare performance between the clinical 

program and each research program for all localization tests and the across-

ears pitch comparison test results, and between the clinical program and the 

research program with the best results, ‘BKB in noise’ scores (for all 

conditions), ‘SRM’ and ‘CRM’. Bonferroni corrections were applied. 

 

In order to evaluate whether the difference between BKB in noise when 

noise was presented on either side (± 90° left or right) is significantly better 

than BKB in noise when both speech and noise were presented from the 

front (as expected with binaural hearing), a paired t-test was applied to the 

date for noise at each side and with each program. 

 

According to the outcome of the Shapiro Wilk’s test, either Pearson’s 

correlation coefficient or Spearman’s rho were applied to establish the 

relationship between the ‘AEPC’ results and ‘BKB in noise’ at any condition 

[noise presented from the front (at 0°azimuth), right (at +90°) and left (at -

90°)] and between AEPC results and localisation (at 30° and  15° 

separation). This was applied with the percentage of frequencies judged as 

the same for all frequencies and for frequencies below 1500 Hz and 

frequencies above 1500 Hz, with all three programs (clinical and the two 

research programs). Group results from all programs were pooled for 

correlation analyses. 

9.3.2 Analyses of individual results 

Each participant’s data were further analysed, and comparisons were made 

between the clinical program and each research program for all tested 

variables, to investigate any underlying patterns. In order to evaluate 

participants’ subjective report, CRM and BKB (at each condition) the same 

criteria and minimum significant difference used and described in Sections 

(9.3.2.1, 9.3.2.2 and 9.3.2.3), respectively, were applied in reporting the data. 
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In the absence of data relating to the minimum significant difference on the 

localisation tasks and AEPC test, all changes in performance were reported. 

The percentage of frequencies judged as similar was calculated for the full 

range of frequencies range, and separately for frequencies above, and 

frequencies below, 1500 Hz.   

9.4 Results 

9.4.1 Group results 

Group results (BKB scores in noise at all conditions, localisation and CRM) 

are provided in Table (9.4). For group AEPC results, see Table (9.5). 

t-test and Bonferroni corrections were applied to group data to compare the 

speech perception scores (BKB scores in noise at all conditions and CRM) 

for the best research program with those for the best clinical program/ 

Comparisons were made for data from all participants, and with the exclusion 

of participant (5) (see Table 9.6 for results). With the exclusion of participant 

(5 who has unilateral severe calcification of the cochlea) there was a 

significant difference between the best ‘BKB in noise’ with the clinical 

program and the ‘BKB in noise’ with the best research program when noise 

was presented on either side but not when it was presented from the front. 

Hence, the first sub-hypothesis was accepted and H1 was accepted when 

‘BKB in noise’ testing was done with noise presented on either side but not 

when noise was presented from the front. ‘BKB in noise’ was significantly 

better with the best research program compared to the best ‘BKB in noise’ 

with the clinical program when noise was presented on either side. However 

no significant difference was found in CRM or SRM between the best 

research program and the best (CRM and SRM) clinical results. This might 

be due to the limited number of participants or because of ‘BKB in noise’ 

scores reaching ceiling with noise presented from the front, thus masking 

any difference between ‘BKB in noise’ scores with noise presented from the 

front and ‘BKB in noise’ scores with noise presented from either side. 
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Table 9.4 Group results of all speech perception (BKB in noise with noise presented at 0°, +90° and -

90° and CRM SRT in dBA) and localisation tests (at 30° and 15° separation) with each program. 

Percentage correct words are reported in BKB results and percentage correct responses are reported 

in localisation results. 

Group Program Mean Standard deviation N 

BKB N (0°) Clinical  67 16.6 6 

BKB N (0°) A 65.19 9.49 6 

BKB N (0°) B 75.75 18.61 6 

BKB N (+90°) Clinical  72.3 19.04 6 

BKB N (+90°) A 71.08 15.92 6 

BKB N (+90°) B 77.45 22.27 6 

BKB N (-90°) Clinical  73.99 13.87 6 

BKB N (-90°) A 75.07 12.26 6 

BKB N (-90°) B 82.78 10.88 6 

Localisation (30°) Clinical  55.14 21.41 6 

Localisation (30°) A 74.24 16.21 6 

Localisation (30°) B 59.42 22.06 6 

Localisation (15°) Clinical  47.94 23 6 

Localisation (15°) A 55.92 20.73 6 

Localisation (15°) B 64.13 26.31 6 

CRM Clinical  2.84 3.96 6 

CRM A 2.19 1.9 6 

CRM B 4 2.39 6 
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Table 9.5 Group results of all AEPC results (for all frequencies, for frequencies < 1500 Hz and for 

frequencies > 1500 Hz) with each program. Percentage of test frequency pairs judged as the same is 

reported for AEPC. 

Group Program Mean Standard deviation N 

AEPC all frequencies Clinical  31 20.73 6 

AEPC all frequencies A 81.5 20.84 6 

AEPC all frequencies B 61.33 21.4 6 

AEPC 

frequencies < 1500 Hz 
Clinical  20 12.65 6 

AEPC 

frequencies < 1500 Hz 
A 80 21.91 6 

AEPC 

frequencies < 1500 Hz 
B 66.67 30.11 6 

AEPC 

frequencies > 1500 Hz 
Clinical  41.67 46.55 6 

AEPC 

frequencies > 1500 Hz 
A 79.17 18.82 6 

AEPC 

frequencies > 1500 Hz 
BKB N (-90°) 

B 
55.83 29.23 6 
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Table 9.6 The difference in speech perception between the best clinical scores and scores with the 

best research program with the application of a t-test. The t value, degree of freedom (df) and p value 

are reported, significance is reported at a two-tail p < 0.05 level. Speech perception measures include 

BKB in noise (with noise presented from the front at 0° azimuth, to the right at +90° and to the left -

90°), CRM and SRM and asterisk indicates significance even after Bonferroni correction. 

Variable compared 
Including 

participant 5 
t Df P value 

BKB N (0°) Yes -1.89 5 0.11 

BKB N (0°) No -2.5 4 0.07 

BKB N (+90°) Yes -2.40 5 0.06 

BKB N (+90°) No -3.18* 4 < 0.05 

BKB N (-90°) Yes -2.54 5 0.05 

BKB N (-90°) No -3.22* 4 < 0.05 

CRM Yes 0.42 5 0.69 

CRM No 0.53 4 0.62 

SRM Yes -1.5 11 0.16 

SRM No -1.5 9 0.16 

 

t-test and Bonferroni corrections were also applied to group results to 

compare AEPC and localisation results (at 30° and 15° separation) with each 

research program, with the AEPC results and the best localisation scores (at 

30° and 15° separation) with the clinical program, respectively (see Table 9.7 

for results). There was a significant difference between localisation scores at 

both 30° and 15° separation with research program A and the best clinical 

localisation scores at both 30° and 15° separation. Hence H4 was accepted, 

localisation was significantly better with research program A compared to the 

clinical program at both 30° and 15° separation. There was a significant 

difference between localisation scores with research program B and the best 

clinical localisation scores at 15° separation but not at 30° separation. Hence 

H5 was accepted at 15° separation but not at 30° separation, localisation was 

significantly better with research program B compared to the clinical program 

at 15° separation only. There was a significant difference between AEPC 
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results with research program A and the clinical AEPC results for all 

frequencies and for frequencies below 1500Hz. Hence H6 was accepted for 

AEPC result for all frequencies and for frequencies below 1500 Hz but not for 

frequencies above 1500 Hz, AEPC results with research program A were 

significantly better than the clinical AEPC results for all frequencies and for 

frequencies below 1500 Hz as well. There was a significant difference 

between AEPC results with research program B and the clinical AEPC 

results for frequencies below 1500 Hz only. Hence H7 was accepted for 

frequencies below 1500 Hz but not for all frequencies nor for frequencies 

above 1500 Hz, AEPC results with research program B were significantly 

better than the clinical AEPC results for frequencies below 1500 Hz only. 
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Table 9.7 The difference between the best clinical scores and scores with each research program on 

localisation tasks (at 30° and  15° separation)  and AEPC (at all frequencies, for frequencies < 1500 Hz 

and for frequencies > 1500 Hz) with the application of a t-test. The t value, degree of freedom (df) and 

p value are reported, significance is reported at a two-tail p < 0.05 level and asterisk indicates 

significance even after Bonferroni correction.  

Variable compared 
Research 

program 
t df P value 

Localisation 

30° separation 
A 

-3.03* 5 0.03 

Localisation 

30° separation 
B 

-2 5 0.1 

Localisation 

15° separation 
A 

-2.62* 5 < 0.05 

Localisation 

15° separation 
B 

-6.95** 5 < 0.005 

AEPC all frequencies A 
-5.22** 5 < 0.005 

AEPC all frequencies B 
-4.11 5 0.05 

AEPC 

frequencies < 1500 Hz 
A 

-6.72** 5 < 0.005 

AEPC 

frequencies < 1500 Hz 
B 

-4.72** 5 < 0.01 

AEPC 

frequencies >1500 Hz 
A 

-1.96 5 0.11 

AEPC 

frequencies >1500 Hz 
B 

-1.18 5 0.29 

 

In the absence of a significant difference in SRM between the clinical 

program and the best research program, comparison was made between 

‘BKB in noise’ when noise was presented from either side (± 90° left and 

right) with ‘BKB in noise’ when noise was presented from the front . A paired 

t-test (with Bonferroni correction) while including and excluding participant (5) 

was used in the analyses (see Table 9.8 for results with all programs). With 

the exclusion of participant (5 with severe unilateral cochlear ossification) 

there was a significant difference between ‘BKB in noise’ when noise was 
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presented from front and ‘BKB in noise’ when noise was presented from 

either side (± 90° left and right) with research program A. This was also true 

with the inclusion of participant (5) with noise presented from the left. Results 

with the clinical program were slightly inconsistent; there was a significant 

difference between ‘BKB in noise’ when noise was presented from the right 

only compared with ‘BKB in noise’ when noise was presented from the front 

with the exclusion of participant (5). There was also a significant difference 

between ‘BKB in noise’ when noise was presented from the left only 

compared with ‘BKB in noise’ when noise was presented from the front with 

the inclusion of participant (5). Among all three programs spatial separation 

between speech and noise consistently (for the same participants) improved 

speech perception with research program A only. 
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Table 9.8 The difference between the BKB in noise scores when noise was presented at 0° and BKB in 

noise scores when noise was presented at either side ±90° with the use of the different programs with 

the inclusion of and exclusion of participant (5). The best clinical scores and scores with each research 

program were used with the application of a t-test. The t value, degree of freedom (df) and p value are 

reported, significance is reported at a two-tail p < 0.05 level and asterisk indicates significance even 

after Bonferroni correction.  

Variables compared 
Including 

participant 5 
Program t df P value  

BKB N  

Noise (0°) and (+90°) 
Yes Clinical -2.080 5 .09 

BKB N  

Noise (0°) and (+90°) 
No Clinical -5.14** 4 .007 

BKB N  

Noise (0°) and (+90°) 
Yes A -2.013 5 .10 

BKB N  

Noise (0°) and (+90°) 
No A -2.8* 4 .04 

BKB N  

Noise (0°) and (+90°) 
Yes B -1.251 5 .27 

BKB N  

Noise (0°) and (+90°) 
No B -2.213 4 .09 

BKB N  

Noise (0°) and (-90°) 
Yes Clinical -3.018* 5 .03 

BKB N  

Noise (0°) and (-90°) 
No Clinical -2.341 4 .08 

BKB N  

Noise (0°) and (-90°) 
Yes A -3.138* 5 .03 

BKB N  

Noise (0°) and (-90°) 
No A -2.85* 4 .04 

BKB N  

Noise (0°) and (-90°) 
Yes B -1.535 5 .19 

BKB N  

Noise (0°) and (-90°) 
No B -1.179 4 .30 

 

See Table (9.9) for correlations between AEPC results and localisation (at 

30° and 15° separation), and Table (9.10) for correlations between AEPC 

results and BKB in noise at all conditions (noise presented from the front, left 

and right). Localisation at 30° separation showed significant correlation with 
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AEPC results for all frequencies, for frequencies below 1500 Hz and for 

frequencies above 1500 Hz. H8 was accepted, there was a positive 

relationship between AEPC results (at all frequency ranges) and localisation 

at 30° separation. Localisation at 15° separation showed significant 

correlation with AEPC results for all frequencies and for frequencies below 

1500 Hz but not for frequencies above 1500 Hz. H9 was accepted for AEPC 

results for all frequencies and for frequencies below 1500 Hz only; there was 

a positive relationship between AEPC results (for all frequencies and for 

frequencies below 1500 Hz) and localisation at 15° separation.  

 

Table 9.9 The correlation between the localisation scores at all conditions (at 30° and  15° separation)   

and AEPC results (at all frequencies, for frequencies < 1500 Hz and for frequencies > 1500 Hz). 

Scores for all programs were pooled for analyses. The correlation coefficient, p value and number of 

observations used in analyses (N) are reported, significance is reported at a two-tail p < 0.05 level.  

Variable 

Correlation with the across-ears pitch comparison (AEPC) 

AEPC frequency range Coefficient p value N 

Localisation (30°) All r
 
= 0.64** 0.004 18 

Localisation (30°) < 1500 Hz r
 
= 0.72** 0.001 18 

Localisation (30°) > 1500 Hz r
 
= 0.71** 0.001 18 

Localisation (15°) All r
 
= 0.50* 0.033 18 

Localisation (15°) < 1500 Hz r
 
= 0.60** 0.008 18 

Localisation (15°) > 1500 Hz r
 
= 0.36 0.15 18 
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Table 9.10 The correlation between the BKB in noise scores at all conditions (when noise was 

presented at 0° and when noise was presented at either side ±90°) and AEPC results (at all 

frequencies, for frequencies < 1500 Hz and for frequencies > 1500 Hz). Scores for all programs were 

pooled for analyses. The correlation coefficient, p value and number of observations used in analyses 

(N) are reported, significance is reported at a two-tail p < 0.05 level.  

Variable 

Correlation with the across-ears pitch comparison (AEPC) 

AEPC frequency range Coefficient p value N 

BKB N (0°) All R
2 
= 0.16 0.52 18 

BKB N (0°) < 1500 Hz R
2 
= 0.33 0.19 18 

BKB N (0°) > 1500 Hz R
2 
= -0.01 0.96 18 

BKB N (+90°) All R
2 
= 0.18 0.48 18 

BKB N (+90°) < 1500 Hz R
2 
= 0.25 0.32 18 

BKB N (+90°) > 1500 Hz R
2 
= 0.16 0.51 18 

BKB N (-90°) All R
2 
= 0.11 0.66 18 

BKB N (-90°) < 1500 Hz R
2 
= 0.19 0.45 18 

BKB N (-90°) > 1500 Hz R
2 
= -0.01 0.97 18 

 

Both research programs results (CRM, SRM, BKB in noise at all conditions, 

localisation (at 30° and 15° separation) and AEPC) were compared, see 

Table (9.11) for results. There was no significant difference between 

research programs A and B except in AEPC and CRM. 
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Table 9.11 The difference between research program A and research program B on the different 

performance measures with the application of a t-test. Measures included BKB in noise scores at all 

conditions (when noise was presented at 0° and when noise was presented at either side ±90°), CRM 

SRTs, localisation tasks (at 30° and  15° separation)  and AEPC (at all frequencies, for frequencies < 

1500 Hz and for frequencies > 1500 Hz). The t value, degree of freedom (df) and p value are reported, 

significance is reported at a two-tail p < 0.05 level and asterisk indicates significance even after 

Bonferroni correction. 

Variable t df P value 

BKB N (0°) 1.91 5 0.11 

BKB N (+90°) 0.9 5 0.41 

BKB N (-90°) 1.16 5 0.3 

Localisation (30°) 
-3.14 5 0.03 

Localisation (15°) 
1.62 5 0.17 

CRM 4.04* 5 0.01 

SRM -1.09 11 0.3 

AEPC all frequencies 
-3.73* 5 0.01 

AEPC 

frequencies < 1500 Hz -1.58 5 0.18 

AEPC 

frequencies > 1500 Hz -2.80 5 0.04 

 

9.4.2 Individual results 

With the exception of except participant (5), all participants took home at 

least one research program. Comparisons between performance with the 

clinical program and performance with each research program for BKB (at all 

conditions), CRM and subjective report are shown in Table (9.12). Positive 

reports included a more natural sound and more balanced hearing, which 

was reported by all participants with at least one research program. Better 
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speech perception in some daily situations was reported by participants (1, 2, 

3 and 6) and better music perception was reported by participants (1 and 6). 

Participant (6) also reported that he was able to identify a bird by listening to 

it, which he hadn’t been able to do since onset of his deafness. Participant 

(5) had conflicting results, reporting better localisation and more balanced 

hearing, but poorer speech perception in her better ear (less ossification on 

right side) when active on its own or using the phone. For localisation and 

AEPC comparison results, see Table (9.13). 

 

Table 9.12 Individual results of subjective reports and changes in speech perception measures with 

each research program as compared to the clinical program. Measures reported include BKB in noise 

with noise presented at 0° azimuth, BKB in noise with noise presented at +90°, BKB in noise with noise 

presented at -90°, CRM SRTs and subjective report regarding the research program. Symbols used 

are: (=) for no significant difference, (+) for significant improvement which is a higher BKB score and a 

lower CRM SRT, followed by change in score if any, (-) for significant decline, followed by change in 

score if any and ceiling indicates BKB scores were at ceiling level for clinical and research programs. 

Participant Program Report 
BKB in noise 

CRM 
N (0°) N (+90°) N (-90°) 

1 A (+) (+) 31 (+) 28 (+) 27 (+) 8 

1 B (+) (+) 37 (+) 28 (+) 25 (+) 5.31 

2 A (=) (=) (+) 13 (=) (=) 

2 B (+) (=) (=) (+) 9 (=) 

3 A (+) (=) (+) 22 (+) 13 (=) 

3 B (=) (=) (=) (=) (=) 

4 A (=) (=) (=) (=) (=) 

4 B (+) (+) 17 (=) (=) (=) 

5 A (+) (-) (=) (=) (=) (=) 

5 B (-) (=) (-) 10 (=) (=) 

6 A (+) (+) 16 (+) 18 (=) (=) 

6 B (+) (+) 16 (=) (=) (=) 
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Table 9.13 Individual results of localisation tasks (at 30° and 15° separation) and AEPC (at all 

frequencies, for frequencies < 1500 Hz and for frequencies > 1500 Hz). Symbols used are: (=) for no 

difference, (+) for improvement followed by change in score if any, (-) for decline followed by change in 

score and ceiling indicates scores were at ceiling level for the clinical and research programs. 

Participant Program 
Localisation AEPC 

30° 15° All frequencies < 1500 Hz > 1500 Hz 

1 A (+) 31.67 (+) 3.33 (+) 67 (+) 60 (+) 75 

1 B (+) 18.33 (+) 16.67 (+) 44 (+) 60 (+) 25 

2 A (+) 6.67 (+) 3.33 (+) 33 (+) 60 (+) 40 

2 B (+) 3.33 (+) 6.67 (+) 22 (+) 60 (=) 0 

3 A (+) 46.82 (+) 6.67 (+) 34 (+) 80 (+) 35 

3 B (+) 13.49 (+) 6.67 (+) 23 (+) 40 (=) 0 

4 A (+) 6.66 (+) 20 (+) 22 (+) 20 (+) 30 

4 B (-) 6.67 (+) 20 (+) 11 (+) 20 (=) 0 

5 A (+) 18.33 (+) 23.33 (+) 67 (+) 60 (+) 55 

5 B (+) 15 (+) 16.67 (+) 22 (+) 20 (=) 0 

6 A 
(+) 10 

Ceiling 
(+) 23.33 (+) 80 (+) 80 (+) 20 

6 B 
(+) 3.33 

Ceiling 
(+) 20 (+) 60 (+) 80 (=) 0 
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9.5 Discussion 

The group data revealed that improvements in BKB in noise did not reach 

significance when both speech and noise were presented from the front (at 

0°azimuth) with any research program. However individual results showed 

significant improvements in BKB in noise when both speech and noise were 

presented from the front (at 0°azimuth) for three participants (1, 4 and 6) with 

at least one research program. Research programs may have particularly 

improved matching between their devices. Two of those participants (1 and 

6) not only improved in the AEPC at frequencies lower than 1500 Hz, but 

also improved in the AEPC at higher frequencies (ranging from 1500 Hz - 

5588 Hz) from a score of 0% with their clinical programs, possibly indicating 

that those two subjects had particularly non-matched clinical programs. 

Participant (4) was the only participant with two different devices, with a 

different frequency table in each of his original clinical programs, but was 

provided with identical frequency tables in both devices in his research 

programs. These results are also consistent with previous studies reporting 

inconsistent improvement in bilateral CIs versus unilateral CI when both 

speech and noise were presented from the front (at 0°azimuth) (Schleich et 

al., 2004; Ramsden et al., 2005; Eapen et al., 2009 and Wackym et al., 2007; 

Laszig et al.,2004; Litovsky et al., 2006) which could be due to various 

degrees of binaural summation. The “binaural summation” effect usually 

occurs in NH due to redundant information from both ears and it causes 

improvement in speech perception in quiet and in noise even when both 

(speech and noise) are presented from the same direction. Binaural 

summation requires the integration of the input from both ears (e.g. Wilson et 

al., 2003). If the signal from both implants is greatly mismatched, this may 

impede binaural summation because of the lack of redundant information 

and the lack of integration between information across ears.  

 

Improvement in BKB scores when both speech and noise were presented 

from the front is usually associated with improved binaural summation (e.g. 
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Wilson et al., 2003). To this end, the improvement in these three participants 

was especially encouraging because it may provide evidence for the 

possibility of improving binaural summation by improving pitch-matching 

across implants. Further support to improved binaural summation, rather 

than simply a general improvement in speech perception, is provided by the 

absence of improved BKB in noise when noise was presented to either side, 

with some programs providing benefit with noise presented to the front 

[participants (4 and 6)]. It should be noted that one of those participants 

underwent pitch matching tests, although he had different devices and 

different strategies. This may indicate that pitch-matching is still beneficial 

even with different CI devices. Significant change which was improvement 

occurred in BKB scores with noise presented from the front for 50% of the 

test population with the use of at least one research program. Group results 

also demonstrated that significant change which was improvement occurred 

in BKB scores with noise presented from either side with the use of at least 

one research program. Group BKB results showed significant improvements 

with the best research program in comparison to the best BKB score with the 

clinical program when noise was presented on either side with the exclusion 

of participant (5). Participant (5) had meningitis and unilateral severe 

ossification in the cochlea. This may also explain the conflicting reports of 

improved balanced hearing and localization, which were verified in her 

localisation results, but negative report of worst speech perception with her 

better ear (alone) after matching it with the weaker ear. The weaker ear had 

a larger number of non-tonotopic electrodes than the stronger ear, possibly 

due to altered current spread or cross-turn stimulation secondary to 

ossification. However, in order to match the frequency table between her 

devices, an equal number of electrodes were deactivated in both devices. In 

addition, in Chapters 7 and 8 it was demonstrated that ED may not always 

indicate problematic electrodes in cases of cochlear ossification. The 

improvement with the research program when noise was presented from 

either side may indicate improved speech perception because of better 

selection of active electrodes, as demonstrated by (Zhou and Pfingst, 2012). 



Page 305 of 393 

 

Another reason could be due to better frequency-matching between ears, 

which might have improved the use of ITD cues, when noise is presented 

from the side speech and noise have different ITDs. Localisation and AEPC 

results may shed some light on the matter; significant improvement was 

found in localisation and AEPC especially at frequencies below 1500 Hz with 

the use of the research programs. Localisation was significantly better with 

the research program (A) based on direct-stimulation than with the clinical 

program, for both 30° and 15° separation. There was also significant 

improvement in localisation at 15°, but not at 30°, separation with research 

program B compared to the clinical program. The significantly better AEPC 

scores (across the frequency range) observed with the use of program A in 

comparison to program B suggest that better frequency-matching provided 

by the research programs is a plausible explanation for the observed 

improvement in localisation skills, hence the significantly better localisation 

results provided by program A as compared to program B. In addition to that, 

when compared to the clinical program, AEPC was significantly better across 

the frequency range with program A and not with program B (after applying 

Bonferroni correction) as was localisation at 30° separation.  So better 

frequency matching and better localisation were accomplished with program 

A compared to program B.  

 

Supporting evidence for better frequency-matching giving rise to better 

localisation is also provided by the correlation results between localisation 

and AEPC results. There was significant strong to very strong positive 

correlation between localisation (at 30° and 15 ° separation) and AEPC 

results across the frequency range and at frequencies below 1500Hz and 

between localisation (at 30° separation) and AEPC results at frequencies 

higher than 1500Hz. These findings highlight that matching the bilateral CIs 

for pitch in the research programs especially based on direct stimulation has 

improved matching between CIs as measured via AEPC especially at 

frequencies below 1500 Hz. This consequentially improved localisation and 

speech perception in noise (especially with noise presented on either side). 
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There was also a significant improvement in AEPC results with both research 

programs compared to the clinical program at frequencies below 1500 Hz, 

but not at the higher frequency range. This may indicate that CI users find 

matching electrodes at higher frequencies more difficult than lower 

frequencies, which corresponds to reports of difficulty in matching pitch 

arising from different sound quality across their ears – the latter is more-often 

reported for high-frequency sounds. In addition to that, this finding has to be 

considered in the light of improved localisation skills with the research 

programs, and the association pattern between localisation (at 30° and 15° 

separation) and the AEPC results. Where association was found between 

localisation (at 30° and 15° separation) and the AEPC at all frequency 

ranges except between localisation (15° separation) and AEPC at higher 

frequencies, these findings may further suggest that improving frequency 

matching at lower frequencies for this population provided the better 

localisation skills.  

 

The detection and utilisation of interaural differences (ILDs and ITDs) 

requires that signals delivered to both ears should have similar frequencies; 

different frequencies would negatively impact ILDs and ITDs (Colburn et al., 

2006; Francart and Wouters, 2007; Nuetzel and Hafter, 1981). Improving 

frequency matching between the ears might therefore lead to improved 

interaural perception, improving localisation and speech perception with 

noise presented to either side. Relatively-high sensitivity for ILDs amongst CI 

recipients’ has been reported (e.g. Lawson et al., 1998 and 2000; van Hoesel 

and Tyler, 2003; van Hoesel, 2004; Laback et al., 2004 and Seeber and 

Fastl, 2007), whilst sensitivity for ITDs is often reported to be highly variable 

(van Hoesel et al., 1993; van Hoesel and Clark, 1997; Lawson et al., 2000; 

van Hoesel and Tayler 2003 and van Hoesel, 2004). Lawson et al., (2000) 

demonstrated that the detection of ITDs and ILDs can be improved with the 

use of three electrode-pairs that were matched across-ears. 
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According to the duplex theory of binaural hearing (Rayleigh, 1907; Stevens 

and Newman, 1936), ITD cues are mainly used for localisation at frequencies 

lower than 1500 Hz while ILD cues are used at higher frequencies. Evidence 

from the current study suggests that better matching of frequencies lower 

than 1500 Hz might provide for the improvement observed in localisation, 

possibly indicating improved detection of ITDs. Nevertheless, despite the 

limited ILD cues available at frequencies lower than 1 kHz (e.g. Shaw, 1974), 

it has to be noted that ILD cues were found to be dominant over ITD cues 

among CI users (e.g. Poon, 2006; Grantham et al., 2008; van Hoesel et al., 

2008 and Seeber and Fastl, 2008). A possible explanation for the observed 

improvement in localisation performance is provided by van Hoesel (2007), 

who proposed that electrode interactions affect sensitivity to ITDs and. 

consistent with this idea, the reduction of unwanted channel-interaction by 

employing electrodes with high differentiation only in the research programs 

may have positively affected ITD sensitivity. 

 

The presence of a significant relationship between the AEPC and localisation 

performance, which was not found between BKB in noise scores and AEPC, 

might arise because the AEPC test (at the nine test frequencies) was not 

sensitive enough to reflect ‘BKB in noise’ demand for frequency matching at 

a higher resolution. It may also indicate that some processes underlying 

binaural hearing for localisation and speech perception might be different. 

This is line with Kerber and Seeber (2012), who reported no correlation 

between localisation and speech perception amongst bilateral CI users. 

However, the significant improvement in speech perception when noise was 

presented from either side, along with the significant improvement for three 

participants when both speech and noise were presented from the front, may 

indicate a positive effect of improved frequency-matching across ears. This 

finding is consistent with simulation studies evaluating the effect of 

frequency-mismatch between ears (Siciliano et al., 2010). 
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There was no statistically-significant difference in SRM between either 

research programs and the clinical program, but this could be due to the 

limited number of participants, or because BKB scores reached ceiling and 

thus masked any SRM effect. However, there was a statistically-significant 

difference between BKB scores when noise was presented on either side in 

comparison to BKB in noise when noise was presented from the front with 

program A when participant (5) was excluded from the analyses. In contrast, 

there was a significant difference between BKB scores when noise was 

presented on the right side only, compared to BKB in noise when noise was 

presented from the front with the use of the clinical program, again with the 

exclusion of participant (5). This may reflect better SRM when using program 

A as compared to the clinical program, and is in concordance with subjective 

reports of a more balanced sound provided by the research program. It 

should be noted, however, that the relatively, small number of participants 

could also be the reason that no significant improvement was found in CRM. 

 

Individual results revealed that all participants with the exclusion of 

participant (5) showed improvement in at least one performance measure 

with the use of the research programs, and none demonstrated a decline in 

performance. Although program A provided significantly better CRM, 

localisation (at 30° separation), and AEPC scores across the frequency 

range, and at frequencies greater than 1500 Hz, the pattern of improvements 

was not identical across participants. Program B provided participant (4) with 

better performance than program A.  Additionally, participant (4) – the only 

participant with a different device in each ear - preferred program B, 

suggesting that auditory pure-tone matching might be more suitable for 

bilaterally-implanted participants with different devices.  

With the exception of participant (5) – who had severe post-meningitic 

ossification in the worst ear – no subject showed a decline in performance on 

any metric with either of the research programs. Matching between devices 

with a significantly weaker ear might be contra-indicated but another 



Page 309 of 393 

 

possibility could be that ossification in this subject has impacted on electrode 

testing, due to abnormal spread of current in the affected ear.  

 

The main findings of this study are in line with simulation studies 

emphasizing the importance of frequency-matching across the ears (Siciliano 

et al., 2010). It may also explain why some studies (e.g. Mosnier et al., 2008) 

found that no pre-implantation factors can predict performance with 

simultaneous bilateral CI. In the absence of direct measures of ITD and ILD 

sensitivity, it is difficult to reach conclusions about the effect of matching 

frequencies on either binaural cue. However, it is most likely that matching 

frequencies across ears has improved use of inter-aural differences. 

Considering the effect that limited temporal fine structures provided by the 

implants on ITD (e.g. van Hoesel and Tyler, 2002) and that ITDs can be 

conveyed by temporal envelopes instead (e.g. Grantham et al., 2008).  If 

improving frequency-matching across ears can within the limitation of sound 

processing improve the detection of ITD, this may have future clinical 

implications. 

 

The lack of any measures of SRM due to ceiling BKB scores with some 

participants (who showed improvement), could not be avoided since the BKB 

scores with the initial SNR levels had to be available for comparison, and 

because extra testing with different SNR levels would have meant having to 

use repeated BKB sentences, potentially compromising results of the study. 

9.6 Conclusion 

Results from this study are encouraging; frequency matching across the two 

devices might be utilised to improve performance with bilateral CI. 

Determining the best method for matching and programming based on the 

matching process requires further investigation. Improvements in localisation 

with all research programs were more evident than were improvements in 
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speech perception, suggesting that some processes underlying binaural 

hearing for localisation and speech perception might be different. 

Additionally, the strong to very strong correlation between localisation results 

(at both 30° and 15°) and the screening AEPC results, which was not 

replicated between BKB scores and AEPC, may indicate that binaural 

speech perception requires frequency matching at a higher resolution than 

that required for localisation. Nonetheless a statistically-significant 

improvement in speech perception was evident in this study with the use of 

the research programs.  

9.7 Summary 

 Frequency-matching between CI devices improved localisation and 

speech perception among bilaterally implanted individuals. 

 Although preliminary results indicated that using direct stimulation in 

matching produced better results except in the case of mismatched 

devices, it is still not clear which is the best method for matching. 

 Deactivation of the non-tonotopic electrodes as identified by the two 

methods described in the study did not produce any decline in 

performance except for participant (5) with program B. A significantly 

worst ear might be a contra-indication for matching between devices. 
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Chapter 10 

Summary and General Discussion 

The thesis aimed to improve fitting of the CI device in order to improve 

performance with CI among both the unilaterally and bilaterally implanted. 

Great variability in the performance level is demonstrated by the CI 

recipients, highlighting the need to find possible underlying causes for poorer 

performance and to address those causes. Pitch perception was used to 

guide re-programming of the CI device. Among the unilateral CI recipients, 

ED was evaluated with the clinically-viable pure-tone pitch ranking task 

(PTED) to uncover problematic indiscriminable electrodes and 

reprogramming of the CI was provided accordingly.  Indiscriminable 

electrodes were deactivated and the effect of the research programs was 

evaluated. Further pitch ranking testing (PTIF) was conducted at different 

regions of good and poor ED before and after the deactivation of electrodes 

with poor ED. Results were correlated with the change in performance 

following the deactivation of electrodes with poor ED. Pitch matching 

between the two CI devices was conducted based on two methods, direct 

stimulation and auditory pure-tone stimulation. Results from each method 

were used to provide the bilaterally implanted with a research program. The 

efficacy of each research program was evaluated with the use of speech 

perception, localisation and the AEPC test. Findings not only provided 

information regarding the effectiveness of the research programs but they 

may also be used to provide information regarding factors affecting 

performance with CI. Imaging of the placement of the CI array in the cochlea 

provided further insight into factors affecting performance. This chapter 

provides a summary of the main findings followed by discussion of the key 

findings and their implications. 
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10.1 Summary of main findings 

10.1.1 Findings reported in Chapter 3 

 PTED and DED results were highly correlated indicating good validity. 

 The PTED procedure had good test-retest reliability. 

 Time and equipment requirements for PTED deemed it clinically 

viable  

10.1.2 Findings reported in Chapter 4 

 CRM SRTs showed good test-retest reliability.  

 CRM SRTs were lower and showed a higher within-subject variability 

for NH compared to CI participants. 

 The minimum significant change (at p< 0.05) for testing an individual 

in two conditions for CRM SRTs, was > 4dB, and > 6 dB for CI and 

NH participants respectively. 

10.1.3 Findings reported in Chapter 5 

 CI performance on speech perception measures was better in quiet 

than in noise. 

 The percentage of discriminable electrodes was strongly correlated 

with speech perception measures (BKB in quiet, BKB in noise and 

CRM) especially in noise. 

 Speech perception with CI required a larger proportion of 

discriminable electrodes at frequencies lower than 2600 Hz than at 

higher frequencies. 

 The percentage of discriminable electrodes especially at frequencies 

below 1000Hz was the main predictor of CI performance as measured 

by BKB in quiet and in noise and CRM.  
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10.1.4 Findings reported in Chapter 6 

 The angular depth of insertion of the electrode array was strongly 

correlated with speech perception measures in quiet and in noise and 

PTED revealed no signs of increased insertion trauma with deeper 

insertion of CI electrode array. 

 There was a statistically significant relationship between the frequency 

shift (difference between the estimated characteristic frequency and 

assigned frequency in the CI program) of the most apical active 

electrode and BKB in noise but not BKB in quiet. 

 The CBCT provided high quality images that allowed judgement 

regarding scalar placement of the individual electrodes of the CI 

electrode array. There was no relationship between scalar placement 

in scala tympani versus scala vestibuli and speech perception and 

PTED identified dead regions at interscalar cross-over points. 

10.1.5 Findings reported in Chapter 7 

 The deactivation of indiscriminable electrodes can improve 

performance with CI especially if the indiscriminable electrodes fell in 

the frequency region below 2600 Hz. However this was not true for CI 

recipients with cochlear pathology (such as fibrosis, ossification and 

calcification) or electrode array placement issues. 

 Some participants reported improvement in sound quality after the 

deactivation of indiscriminable electrodes without evidence of change 

in performance, most of which had ceiling BKB scores in both quiet 

and noise.  

 The positive impact of the deactivation of indiscriminable electrodes 

was not device specific nor was it specific to certain strategies, most 

likely indicating a common underlying cause for those electrodes 

being indiscriminable. 
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10.1.6 Findings reported in Chapter 8 

 Pure-tone intermediate frequency (PTIF) testing revealed that 

participants showing improvement following the deactivation of 

indiscriminable electrodes (in Chapter 7) had reduced ability to rank 

pitch correctly in regions of indiscriminable electrodes as compared to 

regions of discriminable electrodes. This pattern was not replicated in 

participants who did not show improvement following the deactivation 

of indiscriminable electrodes. 

 PTIF of regions of indiscriminable electrodes following deactivation 

revealed that participants showing benefit had improved pitch ranking 

in those regions following deactivation as compared to before 

deactivation. 

 Using PTIF results for re-programming improved performance when 

PTED and PTIF had conflicting results; i.e. an indiscriminable 

electrode-pair had an equal number of intermediate frequencies (IF) to 

the control discriminable electrode-pair. When only indiscriminable 

electrodes with a smaller number of IF were deactivated, performance 

was better than when all indiscriminable electrodes were deactivated 

and better than the clinical pre-deactivation program. 

 PTIF results of regions of indiscriminable electrodes following 

deactivation correlated with post-deactivation change in performance. 

10.1.7 Findings reported in Chapter 9 

 Matching the two devices for pitch and loudness in bilaterally 

implanted individuals had a statistically significant positive impact on 

localisation (at 30° and at 15° of separation) and speech perception 

with noise presented at either side (± 90°). Only three out of six 

participants showed improvement in speech perception with both 

speech and noise presented at the front (at 0°). 
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 The AEPC test revealed that devices were significantly better 

matched across the frequency range especially at frequencies below 

1500 Hz.  

 Localisation at 30° and at 15° of separation was statistically 

significantly associated with AEPC results. However, no significant 

association was found between AEPC and BKB in noise. 

10.2 Summary of new findings 

 The newly described PTED test is a valid, reliable and clinically viable 

test. 

 The minimum significant change for testing an individual in two 

conditions for CRM SRTs, was > 4dBA, and > 6 dBA for CI and NH 

participants respectively. 

 The percentage of discriminable electrodes especially at frequencies 

below 1000Hz was the main predictor of CI performance as measured 

by BKB in quiet and in noise and CRM. The presence of radiologically 

confirmed pathology was also a predictor of CI performance. 

 There was a positive significant relationship between the frequency 

shift of the most apical active electrode and scores for BKB in noise 

but not BKB in quiet. 

 The CBCT provided high quality images that allowed judgement 

regarding scalar placement of the individual electrodes of the CI 

electrode array in the majority of instances. Scalar placement in scala 

tympani versus scala vestibuli did not affect speech perception or ED.  

 PTED identified regions at interscalar cross-over points. 

 The deactivation of indiscriminable electrodes identified by PTED 

improved performance (speech perception and/or sound quality) for CI 

recipients excluding those with cochlear pathology (such as fibrosis, 

ossification and calcification) or electrode array placement issues. 

This was not specific to a certain manufacturer or processing strategy. 
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 The apical indiscriminable electrodes were more detrimental to 

speech perception than basal electrodes. 

 PTIF testing revealed that participants showing post deactivation (of 

indiscriminable electrodes) improvement had less discriminable 

intermediate frequencies (DIF) in regions of indiscriminable electrodes 

as compared to regions of discriminable electrodes. This pattern was 

not replicated in participants who did not show post deactivation 

improvement. 

 PTIF revealed that participants showing benefit had a larger number 

of DIF regions of indiscriminable electrodes following deactivation as 

compared to before deactivation. 

 PTIF results can guide CI re-programming which improved 

performance when PTED and PTIF had conflicting results. 

 PTIF results of regions of indiscriminable electrodes following 

deactivation correlated with post-deactivation change in performance. 

 Based on results from the CBCT, PTED and PTIF, indiscriminable 

electrodes can be categorised to 1) indiscriminable electrodes 

stimulating dead regions, 2) indiscriminable electrodes at interscalar 

crossover points and 3) indiscriminable electrodes stimulating non-

dead regions either due to cochlear pathology altering the current 

spread, obvious placement issues or sub-optimally functioning 

electrodes. 

 Matching the two devices for pitch and loudness in bilateral CI 

recipients, had a statistically significant positive impact on localisation 

(at 30° and at 15° of separation) and speech perception with noise 

presented at either side (± 90°). Three out of six participants showed 

significant improvement in speech perception with both speech and 

noise presented at the front (at 0°). 

 The AEPC test revealed that devices were significantly better 

matched across the frequency range especially at frequencies below 

1500 Hz.  
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 Localisation at 30° and at 15° of separation was statistically 

significantly associated with AEPC results. However, no significant 

association was found between AEPC and BKB in noise. 

10.3 General discussion 

10.3.1 Identification of problematic electrodes or dead regions 

The PTED was found to be a valid test for measuring ED when compared to 

the direct stimulation ED test (DED) with strong correlation between the 

results of the two methods (PTED and DED). It also showed high reliability 

and the potential to be used as a clinical tool due to the ease of testing and 

the short time required to conduct the test. Further validation for the PTED 

was sought in the experiments presented in Chapter 5, where a strong 

association was found between the number of discriminable electrodes as 

identified by PTED and the different speech perception measures (BKB in 

quiet and in speech-shaped noise and CRM). This finding concurred with 

studies that reported better speech perception as the number of perceptually 

distinct channels increased (Collins, et al., 1997; Henry et al., 2000; Nelson, 

et al., 1995; Friesen et al., 2001). This relationship was stronger with speech 

perception measures in noise (rather than quiet), which may have reflected 

the increased demand for a higher spectral resolution in order to understand 

speech in noise because of the need to pick out the signal from the noise 

(e.g. Qin and Oxenham, 2003 and Fu and Nogaki, 2005).   

 

Stronger associations were found between speech perception and the 

percentage of discriminable electrodes in the lower frequency range (≤ 2600 

Hz) than was observed when correlating higher frequency ED. This pattern 

of results was in-keeping with previous studies with CI recipients where a 

higher spectral resolution or a larger proportion of channels was necessary in 

the lower frequency range for maximal speech perception (Skinner, Holden 

and Holden 1995; Henry et al., 2000; Fourakis et al., 2004 and Fourakis et 
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al., 2007). This strong association between the percentage of discriminable 

electrodes at low frequencies and speech perception proved to be the main 

significant predictor of various speech perception measures. This provided 

further support for the potential future use of PTED as a test for identifying 

problematic electrodes and/or dead regions.  

 

In Chapter 6 the PTED was used to identify the inter-scalar cross-over 

points, when the electrode array crossed over from scala tympani to scala 

vestibuli causing mechanical damage and loss of spiral ganglion (Finley and 

Skinner, 2008). The deactivation of problematic electrodes identified with the 

PTED led to different levels of improvement for the participants, and the 

extent of improvement was found to be associated with the frequency region 

in which the electrodes were deactivated. There was a greater impact on 

performance when a larger proportion of deactivated electrodes were in the 

frequency range < 2600 Hz. This provided further support for the importance 

of exploring electrode differentiation in this frequency region and it was 

consistent with findings of studies highlighting the importance of that 

frequency region for speech perception (e.g. Miller and Nicely, 1955; 

Shannon et al., 2001; Skinner et al., 1995; Henry et al., 2000; Fourakis et al., 

2004 and Foukaris et al., 2007).  

 

The pure-tone “intermediate frequencies” (PTIF) pitch ranking test for 

specific regions was an adaptation of the PTED procedure intended to 

explore the pitch perception between physical electrode contacts. The PTIF 

test was conducted between electrodes that were discriminable as well as 

those that were not. The participants who showed significant improvement in 

at least one speech perception test when electrodes were deactivated were 

not able to utilise pitch information in regions of the deactivated 

indiscriminable electrodes but were able to utilise pitch information in regions 

of discriminable electrodes. Results potentially indicated that PTED identified 

underlying dead regions (Moore, 2004 and Shannon et al., 2001) in those 
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participants that showed benefit following the deactivation of indiscriminable 

electrodes. This was not true with those who reported better sound quality 

but without significant benefit in speech perception, they were equally able to 

utilise pitch information in regions of discriminable and indiscriminable 

electrodes (equal number of correctly ranked IF). Indicating the possibility 

that PTED may have identified problematic electrodes rather than underlying 

dead regions in those participants. For the participants that showed a decline 

in performance following the deactivation of indiscriminable electrodes, no 

difference was found between their pitch ranking ability in regions of 

discriminable versus indiscriminable electrodes. The deactivation of 

electrodes stimulating a region with good pitch perception, caused a decline 

in performance which is consistent with the idea that de-activating those 

electrodes led to decreased spectral resolution (e.g. Shannon et al., 2001; 

Henry et al., 2000 and McKay and Henshall, 2002). The only exception was 

participant 9 (in Chapter 8) who was able to utilise pitch information in 

regions of discriminable electrodes but not in regions of indiscriminable 

electrodes and reported that he did not like the sound quality following the 

deactivation of indiscriminable electrodes. However PTIF for participant 9 

demonstrated perceived pitch reversals following the deactivation of 

indiscriminable electrodes, hence giving rise to a distorted spectral 

representation which may have been the cause of perceived loss in sound 

quality and deterioration in performance. Participant 9 had cochlear 

ossification which may have altered the current pathways and increased the 

overall spread of current (Rotteveel et al., 2010), increasing spatial 

separation between electrodes in that region did not help. PTIF results of 

participant showing improvement in Chapter 7, showed that deactivating 

indiscriminable electrodes has increased spatial separation in regions of poor 

differentiation. Increasing spatial separation between electrodes in those 

regions improved their ability to utilise pitch information, which is in line with 

previous recommendations of Nelson et al., (1995) and studies (Zwolan et 

al., 2007 and Zhou and Pfingst, 2012). Those participants had a larger 

number of correctly ranked IF in the regions of indiscriminable electrodes 
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following their deactivation as compared to before deactivation. Combining 

these results with the reduced number of correctly ranked IF in regions of 

indiscriminable electrodes is in concordance with studies that indicated that 

redirecting the information around dead regions (with reduced number of 

DIF) would improve performance (Faulkner, 2006 and Smith and Faulkner, 

2006).  

 

PTIF was useful as a tool for identifying electrodes that would potentially lead 

to improvements in performance once deactivated potentially because it 

aided in the identification of dead regions.  It was useful for explaining 

different patterns and changes in performance following the deactivation of 

indiscriminable electrodes. In addition to that programs based on PTIF’s 

identification of dead regions (with reduced ability to utilise pitch information 

and a smaller number of correctly ranked IF) when different from PTED’s 

nomination of problematic electrodes provided further improvement over 

programs based on PTED.  

 

The combined results of the studies described in Chapters 3, 5, 6, 7 and 8 

provide evidence that the PTED’s identification of discriminable versus 

indiscriminable electrodes provided a picture of the spectral resolution 

provided by the CI device. There was evidence that CI provided spectral 

resolution of the signal that varied across CI recipients partly because of 

underlying dead regions. In some cases PTED’s identified indiscriminable 

electrodes that did not uncover dead regions but could be related to the 

electrodes’ function however PTIF testing differentiated between electrodes 

with versus those without underlying dead regions. PTIF may have a higher 

specificity than PTED for the identification of dead regions, however PTIF 

requires more testing time if it were to be applied with all electrode-pairs 

unless only suspected regions are targeted for testing. 
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10.3.2 Types of indiscriminable electrodes 

Based on results from chapter 6, 7 and 8, it was found that indiscriminable 

electrodes fell under one of the following categories: 

1. Indiscriminable electrodes that stimulated a neuronal dead region with 

few or no functioning spiral ganglion cells. 

2. Indiscriminable electrodes around interscalar cross over points which 

might be associated with insertion trauma causing mechanical damage. 

3. Indiscriminable electrodes secondary to underlying cochlear pathology 

(fibrosis, ossification and calcification) that may affect the spread of 

current in the cochlea. 

4. Indiscriminable electrodes due to surgical placement issues. 

5. Indiscriminable electrodes that do not stimulate a dead region without 

the presence of obvious cochlear pathological changes that affect the 

spread of electrical current stimulation or obvious placement issues. 

 

The deactivation of electrodes that fell under the first category provided CI 

recipients with the greatest benefit. Some of the participants showing benefit 

following the deactivation of indiscriminable electrodes, had some 

indiscriminable electrodes falling under the second category. However due to 

the more restricted recruitment criteria (must be musically trained and/or 

have a clear concept of pitch) for the PTIF study, those electrode sites were 

not evaluated for IFs. The deactivation of indiscriminable electrodes falling 

under the third and fourth category did not provide any benefit. Probably 

since they do not stimulate a dead region and the participants are able to use 

spectral information delivered to those regions, thus deactivating them can 

reduce spectral resolution. Electrodes falling under the third category could 

be indiscriminable due to the cochlear pathology changing characteristics of 

the tissue surrounding the electrodes. These changes affect the electrical 

characteristic of that tissue thus affecting the neural excitation patterns 

(broader spread of excitation). This in turn may affect the results of ED (i.e. 

the electrode fails without an underlying dead region) and the altered spread 
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of current (of neighbouring electrodes) may produce the negative impact of 

deactivating electrodes at those sites. Deactivating electrodes falling under 

the fifth category does not provide benefit in speech perception but might 

improve subjective sound quality. Possible explanations could include that 

these electrodes have increased electrode-neuron distance or are 

performing sub-optimally but still provide useful information because the 

regions they stimulate are not dead regions.   

 

The deactivation of indiscriminable electrodes stimulating dead regions (with 

no or few functioning spiral ganglion cells) provided the greatest 

improvement. The most likely explanation is that information delivered to 

those regions is lost and redirecting that information to other electrodes 

stimulating more viable region improves the delivered signal. The larger the 

dead region the greater the benefit, which is line with findings in Chapter 7 

where participants who had adjacent electrodes (both failed) deactivated. 

Additionally stimulating electrodes in those regions requires that the level of 

stimulation be increased so neighbouring more viable regions can be 

stimulated, however this might cause distortion due to the unwanted 

electrode interaction and overlap of the stimulated neural population by 

different electrodes representing different frequency ranges.  

10.3.3 Implications regarding performance with unilateral CI 

Performance measures such as CRM have highlighted the discrepancy 

between speech perception among the NH and CI recipients in Chapter 4, 

where the average SRT among NH was -22.91 dBA and was 4.44 dB among 

CI recipients. In Chapter 5 the majority (19/20 = 95%) of the CI population 

tested had a CRM SRT at a positive SNR (the level of the speech was higher 

than the noise). The negative SNR was associated with the introduction of a 

loudness cue (Brungart, 2001b) which was not an issue with CI recipient 

because CRM SRT most likely fell at a positive SNR, making CRM a 

potential testing tool for speech perception with CI. 
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As described in Section (1.3) and appendix 1, programming the CI speech 

processor determines which electrodes are active and which frequency table 

will be used. The frequency table determines the frequency range stimulated 

by CI and assigns the electrodes to specific frequency ranges. Stimulation 

levels, rate of stimulation and other settings optimisation have been explored 

(e.g. Vandali et al., 2000, Dawson et al., 1997; Skinner et al., 1995 and 

Skinner et al., 1999). However, only a few studies have been conducted to 

investigate programming options following the identification of indiscriminable 

electrodes or cochlear dead regions in unilaterally and bilaterally implanted 

adults (Zwolan et al., 2007 and Zhou and Pfingst, 2012).  

 

In Chapter 7, a study where indiscriminable electrodes (all types of 

indiscriminable electrodes in Section 10.3.2) were deactivated was 

described. 16 out of the 25 participants showed significant improvement in at 

least one speech perception measure and reported better sound quality 

following the deactivation of indiscriminable electrodes (type 1 and possibly 

type 2 in Section 10.3.2). An additional four participants reported better 

sound quality without any significant change in the speech perception 

scores. One possible reason for the fact that some people reported 

improvements that were not reflected in the speech perception testing scores 

could have been due to the materials not being sufficiently sensitive to detect 

changes in performance. It could have also been due to the fact that for three 

of the four participants the larger proportion of the deactivated electrodes fell 

in the high frequency range (>2600Hz), which has been demonstrated to be 

less critical for speech perception. Another explanation could be that those 

deactivated indiscriminable electrodes type 5 (in Section 10.3.2), where 

stimulated regions were not dead regions but rather stimulated by either sub-

optimally functioning electrodes or electrodes with increased electrode-

neuron distance. Participant with indiscriminable electrodes (types 3 and 4 in 

Section 10.3.2) did not show benefit or showed decline following the 

deactivation of the indiscriminable electrodes. 
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In Chapter 8, an additional research program was provided for three of the 

participants recruited for the PTED study described in Chapter 7.  This 

program was based on the PTIF results because there was a discrepancy 

between the PTED and the PTIF results with respect to the regions indicated 

as having poor pitch differentiation for those participants. For the PTIF based 

program, only indiscriminable electrodes in regions with a smaller number of 

correctly ranked intermediate frequencies, as compared to the control 

discriminable electrode-pair, (indiscriminable electrode type 1 in Section 

10.3.2) were deactivated. The three participants showed significant 

improvement in speech perception even as compared to their performance 

with the research programs based on PTED. They all showed significant 

improvements in speech perception with the research program based on 

PTED compared to the clinical program, this suggested that the PTIF 

procedure was a useful enhancement of the PTED to refine the selection of 

electrodes to deactivate (indiscriminable electrode type 1 in Section 10.3.2).  

 

The two procedures together highlighted the different types of indiscriminable 

electrodes and provided sufficient information to be able to identify regions 

for de-activation that would lead to improvements in speech perception.  It is 

most likely that these were dead regions and were not providing useful 

discriminable information or were causing distortion (indiscriminable 

electrode type 1 in Section 10.3.2). When these electrodes are deactivated, 

the speech information gets re-distributed to other regions with good 

discrimination, the benefit obtained was consistent with the findings relating 

to Shannon et al.’s (2001) work on the “holes in hearing” (dead regions) and 

the simulation studies of Faulkner (2006) and Faulkner and Smith (2006).  

Holes in hearing were found to negatively affect speech perception (Shannon 

et al., 2001), later Faulkner (2006) and Faulkner and Smith (2006) proposed 

that re-distributing speech information around (dead regions) is the optimal 

approach for preserving speech information. By deactivating indiscriminable 

electrodes that stimulate dead regions (type 1 in Section 10.3.2), information 

–otherwise lost- is being redirected around the dead region as recommended 
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by Faulkner (2006) and Faulkner and Smith (2006). For electrodes that were 

indiscriminable but were not stimulating dead regions (types 3 and 5 in 

Section 10.3.2) it was proposed that deactivation may not be the best 

programming solution, however full exploration of alternative approaches has 

not been conducted.  

 

Since the three CI manufacturers allocate the majority of the electrodes to 

the lower frequency region with the higher contribution to intelligibility 

(indicate in Chapter 5) even after redistribution of the frequency filters 

following the deactivation of indiscriminable electrodes, the redistribution of 

frequency filters was left on default (in Chapters 7, 8 and 9). When exploring 

other programming options for electrodes type (3, 4 and 5 in Section 10.3.2), 

the importance of the low frequency region has to be taken in consideration.  

 

The angular depth of insertion was found to be positively associated with 

better speech perception (BKB in speech-shaped noise and in quiet) in 

Chapter 6. This concurred with previous studies recommending deeper 

insertion of the CI electrode array (Blamey et al., 1992, Fu and Shannon, 

1999a; Skinner et al., 2002; Hochmair et al., 2003; Baskent and Shannon, 

2003 and 2005; Yukawa et al., 2004 and Lazard et al., 2012). Deeper 

insertion may lead to better alignment between the electrical stimulation and 

the characteristic frequency of the stimulated auditory fibre which could 

potentially lead to better speech perception (Fu and Shannon, 1999a and 

Rosen et al., 1999). The frequency shift (difference between the 

characteristic frequency and the centre frequency allocated) of the apical 

electrode was statistically associated with BKB in noise but not with BKB in 

quiet. This finding was in line with findings by Whitford et al. (1993) who 

provided programs to eliminate the frequency shift and found an effect on 

speech perception in noise only. Combined results of the correlation results 

of the depth of insertion and that of the frequency shift with speech 

perception, indicated that the decreased frequency shift with deeper insertion 
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of the electrode array is at least partly the reason for better speech 

perception with deeper insertion. It must be noted that some research groups 

have reported partial adaptation to severe frequency shifts (e.g. Fu and 

Shannon, 1999b; McKay and Henshall, 2002 and Sagi et al., 2009). Another 

explanation can be offered by examining the results of the two participants 

with the lowest speech perception scores (in Chapter 6) who did not have the 

largest frequency shift coupled with the results from Chapter 5. ED in 

Chapter 5 was found to be a significant predictor of all speech perception 

measures. Deep insertions of the CI electrode array are not only associated 

with smaller frequency shifts, but also suggest that stimulation will be spread 

across a wider neural population covering different spectral regions including 

the apical region where spiral ganglion cells are more likely to be preserved 

(Blamey et al., 1992). Unlike Gani et al. (2007) and Finley and Skinner 

(2008) who reported a negative impact of increased depth of insertion on 

speech perception, deeper insertions were not associated with decreased 

electrode differentiation of the apical electrodes in the study reported in 

Chapter 6. These results along with findings from Chapter 5 (ED a predictor 

of speech perception) may indicate that the advantage provided by deeper 

insertion might also be due in part to the stimulation of a wider spectral range 

down to lower frequencies at the apical part of the cochlea (Hochmair et al., 

2003). In addition to that deeper insertions increase the possibility of 

stimulating regions with good neuronal survival which consequentially 

improves chances for having regions with good electrode differentiation 

which was a significant predictor of speech perception in Chapter 5. It must 

be emphasised that the positive effect of deeper insertion on speech 

perception reported was in the absence of increased pitch confusion at the 

apical electrodes providing evidence for deeper insertion being achieved 

without causing insertion trauma. Finley and Skinner (2008) also suggested 

that the negative impact of deeper insertion was possibly associated with 

over-insertion of shorter electrode arrays leaving the basal turn void of 

electrodes. 
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Another factor to be considered with respect to depth of insertion of the CI 

electrode array is the range of stimulated characteristic frequencies covered 

by the CI electrodes. The most commonly used human frequency position 

map is Greenwood’s frequency position function (Greenwood, 1990). It uses 

an equation to estimate the characteristic frequencies along the organ of 

Corti (OC) based on percentage length. However there are a few issues 

when using Greenwood’s function with CIs, first the path of insertion of the CI 

array (e.g. in ST versus SV or presence of kinks) can affect position of the 

electrode and the characteristic frequencies stimulated by that electrode, 

which may render using length of the electrode array inaccurate (Yukawa et 

al., 2004). A second issue is the CI design and nature of the CI stimulation, 

Greenwood’s function relies on the use of the length of OC, however CIs 

stimulate spiral ganglion cells since the spiral ganglion is shorter than OC, 

the estimated characteristic frequencies especially of the more apical 

electrodes will be different. An alternative frequency-position map of the 

spiral ganglion was proposed by Sridhar et al. (2006) and Stakhovskaya et 

al. (2007) which was used in Chapter 6. In this chapter, the angular depth of 

insertion was used to estimate the characteristic frequency rather than the 

length of the inserted array to avoid the effect of path of insertion influences. 

Only the most apical electrode was used to calculate the frequency shift but 

there was still an association between the frequency shift estimated in this 

way and the BKB in noise score.  This might highlight the effect of matching 

the stimulated frequency and the characteristic frequency which necessitates 

the use of an accurate human frequency position map. Since the results of 

the frequency shift reported were based only on the frequency-position map 

of the spiral ganglion, no direct comparison with other frequency-position 

maps was reported. However the frequency shift would have been larger for 

the most apical electrode had the Greenwood map been used as compared 

to the spiral ganglion map. Matching stimulated frequencies to the 

characteristic frequencies estimated by Greenwood’s map would necessitate 

a deeper insertion of the CI electrode array with the increased risk of causing 

trauma (e.g. Gani et al., 2007) in comparison to the spiral ganglion map. 
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Based on the results reported in Chapter 6 to match frequencies (stimulated 

and characteristic), it is not advisable to reach an angular depth of insertion 

(ADI) > 720° even with the use of the MED-EL CIs with the lowest centre 

frequency assigned to the most apical electrode. The participant with an ADI 

= 720° and a MED-EL device had a frequency shift of -90 Hz, so based on 

the spiral ganglion map it would not have been advisable to have a deeper 

insertion unless the filters were allocated to the lower frequencies. While 

based on an OC map (such as Greenwood’s map) the angular depth of 

insertion of 810° would be the maximum recommended ADI (even for 

participants with MED-EL devices) in contrast to 720°. This not only might 

increase risk for trauma without benefit but it also may cause stimulation of a 

cochlear region without spiral ganglion cells. This would necessitate 

increasing the level of stimulation until electric current reaches neighbouring 

regions or causes cross-turn stimulation to reach T and M levels. This might 

cause confusion and have a negative impact on speech perception. 

 

CBCT was shown to be a radiological tool that provided high quality images 

that can be used to evaluate insertion of the CI electrode array with relatively 

low radiation exposure. In contrast to Aschendorff et al. (2007) and Finley 

and Skinner (2008) scalar placement in ST versus SV did not affect speech 

perception. But in the electrode placement study described in Chapter 6 

scalar placement was not associated with electrode differentiation, which 

may point to insertion trauma associated with SV as the underlying cause of 

the reduced speech perception in those studies (Aschendorff et al., 2007 and 

Finley and Skinner, 2008). This explanation is supported by the comparable 

outcomes in speech perception for both cases of intentional surgical insertion 

of the CI array in SV and those of intentional insertion in SV (Berrettini et al., 

2002; Kiefer et al., 2000 and Lin, 2009). However, at points of inter-scalar 

cross-overs, evidence of dead regions most probably secondary to insertion 

trauma was seen with increased pitch confusion of electrodes in those 

regions (electrode pairs failed ED around those regions). The implications of 

the radiological evidence concerning CI performance indicate that deeper 
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insertions of the electrode array in the absence of insertion trauma are 

associated with better performance and that scalar placement in the absence 

of trauma does not affect CI performance. 

10.3.4 Implications regarding performance with bilateral CI 

The frequency mismatch between ears has been found to affect speech 

perception and cannot be overcome through training and only channels that 

were matched provided benefit (Siciliano et al., 2010). A finding which 

concurs with reports that some bilaterally implanted individuals could not 

integrate between the signals of both implants because of the severe pitch 

mismatch and learned to ignore the weaker ear (Ramsden et al., 2005). 

Improving matching between the two cochlear implants was attempted in 

Chapter 9. The AEPC test revealed that improving matching between ears 

for pitch might be possible. AEPC scores (a screening test of how well 

matched the two devices were for a fixed set of frequencies that were 

independent of the devices’ frequency table) significantly improved following 

matching both CIs for pitch with both research programs. There was also 

significant improvement in localisation at both 30° and 15° of separation with 

at least one research program (that matched the CI devices for pitch). 

Further support comes from the correlation results, localisation at both 30° 

and 15° of separation were strongly associated to the AEPC results. This 

provides a greater plausibility to the explanation that pitch matching between 

ears has improved with the use of the research programs, hence giving rise 

to the enhanced localisation exhibited.  

Significant improvement was also found in ‘BKB in noise’ with noise 

presented at either side. Additionally three out of six participants showed 

significant improvement in ‘BKB in noise’ with noise presented from the front. 

This may indicate that matching CIs for pitch has improved binaural 

summation, which occurs due to redundant information provided by both 

ears (e.g. Wilson et al., 2003). The improvement in speech perception after 

matching both devices suggests that mismatched devices may impede 

binaural summation because of the lack of integration between information 
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provided to both ears. A finding which is in line with findings of Siciliano et 

al.’s simulation study (2010) who found that only the channels that were 

matched across ears provided benefit in speech perception. Another 

interesting finding was the significant correlation between localisation (at 

both 15° and 30° separation) and AEPC across the frequency range and at 

frequencies lower than 1500 Hz but not between localisation at 15° 

separation and AEPC at higher frequencies. Additionally after dividing AEPC 

into two frequency ranges, AEPC was significantly better with both research 

programs at frequencies lower than 1500 Hz only. Evidence suggests that 

improvement in localisation was most likely caused by improvement in 

matching between the CI devices at frequencies lower than 1500 Hz which is 

interesting considering that ITD cues are mainly used at that frequency 

range. 

 

According to the duplex theory (Rayleigh, 1907; Stevens and Newman, 

1936), ITD cues are mainly used for localisation at frequencies lower than 

1500 Hz while ILD cues are used at higher frequencies. It has also been 

found that for the detection and utilisation of interaural differences (ILDs and 

ITDs), the signals delivered to both ears must have similar frequencies 

(Colburn et al., 2006; Francart and Wouters, 2007; Nuetzel and Hafter, 

1981). Among CI users, sensitivity to ILDs is relatively high while sensitivity 

to ITDs has been found to be greatly variable (van Hoesel et al., 1993; van 

Hoesel and Clark, 1997; Lawson et al., 2000; van Hoesel and Tayler 2003 

and Van Hoesel, 2004). Findings of improvement in localisation, ‘BKB in 

noise’ and AEPC especially at frequencies lower than 1500H  with the 

research programs are consistent with Lawson et al., (2000) who 

demonstrated that the detection of both ITDs and ILDs improved with the use 

of three electrode-pairs that were matched across-ears. It is possible that 

improvement could be due to better use of ITD cues that can be conveyed by 

temporal envelopes instead of temporal fine structure (e.g. Grantham et al., 

2008). It is also possible that the observed improvement is due to better 

utilisation of ILDs since ILD cues can be dominate ITD cues in CI users (e.g. 
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Poon, 2006; Grantham et al., 2008; van Hoesel et al., 2008 and Seeber and 

Fastl, 2008). 

 

There was no significant correlation between BKB results and the results of 

the screening AEPC test. The AEPC test (at nine test frequencies only) may 

not be sensitive enough to detect the pitch matching at the resolution 

required for speech perception in noise. Another explanation is that some of 

the processes underlying binaural speech perception with CI may be 

different from those underlying binaural localisation. This is consistent with 

studies reporting no correlation between speech perception and localisation 

among the bilaterally implanted (Kerber and Seeber, 2012).  

 

Matching between CIs did not improve performance for the CI recipient with 

unilaterally severe ossification which was the weaker ear. It is not clear 

whether this was due to abnormal current spread affecting the electrode 

matching process because of ossification or due to matching a significantly 

stronger ear with the weaker one and consequently reducing the number of 

active electrodes in the better ear. Further investigation is required. 

 

Matching between ears with the use of direct stimulation was reported to be 

easier and provided significantly better results than auditory-stimulation. This 

was possibly attributed to increased difficulty in matching between tones 

across ears because of the different quality of sound each CI device 

provides. Differences between the two devices in processing, the varying 

degrees of neuronal survival for each ear and the frequency shift (between 

the characteristic frequency and stimulated frequency) difference across ears 

might have caused this difference in sound quality between ears. 

 

Matching bilateral CIs for pitch can provide benefit in localisation and speech 

perception. However it is too early to determine which method of matching 
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(direct stimulation versus pure-tone) is the best method and to what extent 

matching can be accomplished within the boundaries of the current CI 

designs. The effect of matching the level of stimulation and that of matching 

the pitch of stimulation between the two ears on performance and how they 

both may interact is also still not clear.  

10.3.4 CI design implications 

In view of the positive effects of deeper insertion of the CI electrode array in 

the absence of insertion trauma, the evidence provided by the analysis of the 

frequency shift and PTED may shed more light on possible specifications of 

a favourable electrode array design.  

 

The extent of the effects of the frequency shift (between the characteristic 

and stimulated frequencies) for the entire array on speech perception was 

not evaluated and only the effects of the frequency shift at the apical 

electrode was evaluated. However, results reported in Chapter 6 concurred 

with previous results reported by Whitford et al. (1993) who provided 

programs with the intention of eliminating the frequency shift at all active 

electrodes and only speech perception in noise was improved. This was in 

line with the correlation found between the frequency shift of the most apical 

active electrode and BKB in noise but not with BKB in quiet (in Chapter 6) 

and is supported by Fu and Shannon (1999a) who reported a greater effect 

of the frequency shift at the apical electrodes than that at the more basal 

electrodes. 

 

The combined evidence provided throughout Chapters 5-8 does not 

implicate the frequency shift as the main contributor to the variance observed 

in post-implantation performance or as the only reason for the positive 

impact of deeper insertion. Another reason for the positive effect of deep 

insertion of the CI array discussed in Section 10.2.1 is the wider region 

stimulated by the CI from the basal to the apical region, hence increasing the 
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possibility of stimulating different regions by the CI including those with good 

neuronal survival. Since the percentage of discriminable electrodes has been 

found as the main significant predictor of CI performance and in light of the 

fact that indiscriminable electrodes might be associated with dead regions 

increasing the stimulated region along the cochlea might enhance 

performance. 

 

It has been demonstrated that redirecting stimulation around dead regions by 

the deactivation of electrodes produced benefit in speech perception which 

was in line with findings of Faulkner (2006) and Smith and Faulkner (2006). 

However this was the only approach that was explored and other 

programming or design options may lead to even greater improvements in 

performance. Among those possible options that have not been yet explored 

include increasing points or sources of stimulation across the array, thus 

providing more flexibility and control in programming CIs around dead 

regions.  

 

The matching between the two CI devices for pitch might produce 

improvement among the bilaterally implanted but is inherently limited by CI 

design and stimulation restrictions; i.e. physical contacts of the two devices 

might not stimulate similar pitches across ears and cannot be matched. 

Although current steering (see Section 1.4.3.3) might in theory increase 

possible stimulation sites, programming options available do not allow control 

over specific stimulation sites; i.e. matching between virtual channels across 

ears is not possible. 

 

In light of the above, an electrode array that allows atraumatic deeper 

insertion, is long enough to cover a wider range of cochlear regions and has 

a larger number of possible stimulation sites might improve CI performance. 

It is outside the scope of this thesis to discuss CI design issues however it is 

the opinion of the author that a new CI design which allows a new mode of 
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stimulation delivery that is not restricted by physical contacts (electrodes) 

might have an impact on performance with CI in both the unilaterally and 

bilaterally implanted. A new more flexible mode of stimulation may also 

support better processing strategies that better represents the sound. 

10.4 Limitations of the studies described 

One of the limitations of studies involving multiple visits is the time 

commitments that cannot be met by young professionals, hence the age 

range and average age of the CI recipients was somewhat limited and older 

adults dominated the studies’ populations in Chapters 3-9. 

 

Only 13 CI users were recruited for the CRM test-retest study described in 

Chapter 4, however the inclusion criteria and testing restrictions (they had to 

have been using the program used in testing for a minimum of two months) 

increased difficulty for recruiting participants. There were also more females 

than males due to the restrictions described above. The NH group were 

younger than the CI group this was partially because the younger CI 

recipients did not volunteer for testing while the NH were younger in order to 

avoid hearing losses secondary to presbycusis, in addition to that the NH 

were volunteers from the UCL staff and students. 

 

There were no corresponding objective measures because of time 

constraints, especially since non adjacent electrode pairs were tested for ED 

in the procedure followed, in addition to that several performance measures 

were administered with each program. However this is considered in future 

research. Long-term follow up including the effect of adaptation to the new 

programs and program use were not included in the studies but is being 

considered in the future. 
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The focus of the work with bilateral implantees was not specifically to look at 

the measurement of ITD or ILD however the results indicated that measuring 

the effect of matching pitch between ears on ITD and ILD can further 

improve our understanding of the underlying processes involved in 

localisation and speech perception with bilateral CI. Especially since greater 

improvement in AEPC was found at low frequencies (below 1500 Hz) which 

is usually associated with the use of ITD cues rather than ILD cues. Only 6 

participants were recruited for the bilateral testing due to the limited number 

of bilaterally implanted adults available for testing in the UK. The current 

NICE (the National Institute for Health and Clinical Excellence) guidance 

does not recommend bilateral implantation for adults unless they have visual 

impairment or other disabilities so the numbers of potential participants was 

very low and most of them were sequentially implanted so the results may be 

different to what would be expected with simultaneous implantation. 

 

The BKB sentences were used for testing (2 lists in each condition), because 

it was considered to be the most well established test for speech perception 

used within the UK.  This limited testing options; in order to avoid the 

learning effect the same list was never used twice. However since there were 

only ten sets (of two lists each), this could not be avoided and the clinical 

program was retested in the final session with two sentence lists that were 

used in the first session. Additionally the ceiling effect could not be avoided 

when improvement occurred; i.e. in order to allow comparison, the same 

initial SNR was used across all testing sessions even when scores were 

ceiling and additional testing was not possible due to the limited number of 

sentence lists. The CRM test was introduced in an attempt to introduce an 

additional speech perception measure and minimise the effect of a relatively 

small number of BKB lists. But limitations faced in these studies highlighted 

the need for different testing material with varying degrees of difficulty in 

order to detect differences especially with the use of bilateral CI (e.g. 

Wackym et al., 2007). 
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The characteristic frequency was estimated and the frequency shift was 

calculated for the most apical electrode only and not for all electrodes. 

Although the effect of the frequency shift on speech perception was not 

the main objective, it must be noted that the frequency shift for the other 

electrodes is not uniform (non-linear in nature). Other factors that 

would’ve been considered include the interaction between the effect of 

the frequency shift and effect of stimulating the low frequency range 

which is important for speech perception. In Whitford et al.’s study (1993) 

only participants with a certain minimum depth of insertion were recruited 

to reduce the frequency shift without cutting off the low frequencies vital 

for good speech perception.  

10.5 Future research 

10.5.1 The identification of dead regions and the applied 

intervention to improve performance with CI 

Future investigation with the use of PTED and PTIF, in addition to other 

objective measures and radiological evaluation of the CI array placement in 

the cochlea, can help in pinpointing problematic regions or electrodes that 

may affect CI performance. Having corresponding objective measures, such 

as ECAPs and measures of SOE, can help enhance our understanding of 

the underlying processes. It can also allow including populations which are 

more difficult to test, such as young children or individuals who may not be 

able to rank pitch.  

 

Some of the participants that took part in the research of this thesis have 

continued to use at least one of the research programs that they tried in the 

study.  It would be informative to follow up with these participants and 

determine if they liked the programme after a longer period of time.  It would 

be interesting to assess if their improvements continue to grow or whether 

they had stabilised in performance.  
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Deactivation of electrodes stimulating potential “dead regions” produced 

positive results for speech perception. However, other options for 

programming around the indiscriminable electrodes should be explored.  

These may include adjusting the band-pass cut off frequencies of the filters 

to send less information to the dead regions and greater information to 

regions with good discrimination or altering frequency to electrode allocation 

to better match the electrodes with the appropriate characteristic frequency.  

Perhaps with the use of more recent speech processing strategies and more 

focussed stimulation, such as partial tripolar stimulation, the impact of the 

dead regions could be reduced (e.g. Bierer et al., 2005; Bonham et al., 2005; 

Litvak et al., 2007; Zhu et al., 2012). The partial tripolar stimulation can allow 

more control over stimulation when reprogramming around dead regions, 

especially if coupled with manipulation of the frequency filters in order to 

minimise stimulation to dead regions. 

 

The use and development of more sensitive performance measures for 

speech perception, questionnaires for the evaluation of objective reports 

regarding sound quality and music perception may also be warranted. This 

will allow the detection of changes in performance which are not picked up 

by measures of speech perception regularly used. Speech perception 

measures that use speech in speech masking, for instance, can add an extra 

level of difficulty. Long-term evaluations may also provide more insight about 

the success of interventions taken. 

 

Other testing options that could evaluate CI recipients with cochlear 

pathology must be investigated, since ossification and cochlear pathology 

have been observed to affect testing with the PTED for problematic regions. 

Possible options might include the use of the more focussed partial tripolar 

stimulation, for instance; the PTIF has also been shown to be more effective 

than the PTED in identifying dead regions. However, more research is 

required. 
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10.5.2 Improving performance with bilateral CIs 

During testing for the study reported in Chapter 9, an unexpected adaptation 

process that has not been reported in previous studies was observed by the 

author for some of the participants. After which a pilot study was carried out 

with five participants, all of whom exhibited the same adaptation with the use 

of four different stimuli and settings. The adaptation process was not found in 

the NH and seemed to be specific to CI recipients. Further investigation in 

order to understand this adaptation process and its’ impact on balancing 

across the ears and performance will be explored in depth.   

 

The optimum approach to program bilateral CI requires further research into 

the selection of the best electrodes/sites and possibly the best matching 

process between the two CI devices, more participants are to be recruited. 

Investigation can also address the effect of both pitch and loudness cues on 

binaural perception. Greater improvement in AEPC was found at low 

frequencies (below 1500 Hz) in addition to that, correlation between 

localisation and AEPC was found at that region and not the higher 

frequencies. Localisation of frequencies in this region is usually associated 

with the use of ITD cues rather than ILD cues, this warrants further 

investigation. Future research could also investigate psychophysical 

measures that might aid in determining the optimal matching between CIs. 

Comparison can be made between individuals with simultaneous implants 

versus those with sequential CIs. 

  

Different programming options for matching including strategy selection, 

frequency tables used and perhaps even specially designed speech 

processors might improve performance in the bilaterally implanted. 
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10.6 Conclusion 

CI recipients demonstrate varying degrees of post-implantation performance. 

Some exhibit very limited benefit and have little or no open set speech 

perception without the aid of lip reading while others can use the telephone. 

Understanding the underlying factors that might explain this disparity in 

performance can provide guidance when it comes to providing management 

with the intention of improving speech perception.  

 

Problematic electrodes were evaluated as a possible cause of poor speech 

perception.  The PTED procedure was found to be the main significant 

predictor of speech perception indicating that problematic electrodes have a 

detrimental effect on speech perception. PTED was used to identify 

indiscriminable electrodes based on pitch perception.  Research programs 

were created by deactivating indiscriminable electrodes. The deactivation of 

indiscriminable electrodes improved performance for 20 out of 25 CI 

recipients. Further testing with the PTIF procedure revealed that the 

deactivation of indiscriminable electrodes that stimulated underlying “dead 

regions” led to improvements in performance. Additionally PTIF showed that 

deactivating indiscriminable electrodes and increasing spatial separation in 

those regions, improved pitch perception. Programming based on PTIF 

provided additional benefit over the initial PTED programs when there were 

cases of discrepancy between PTED and PTIF. Both PTED and PTIF are 

potentially valuable tools that can help to enhance performance with CI 

within clinical practice. 

 

The CBCT was demonstrated to be a useful imaging tool for evaluating CI 

electrode array placement within the cochlea, providing high resolution 

images with less metallic artefacts and reduced radiation exposure 

compared to MSCT. Such a tool could be valuable for identifying contacts 

that have ruptured the basilar membrane and will most likely lead to dead 
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regions.  It is also useful for looking at insertion depth and the positioning of 

the electrode array.  It will not pick up dead regions that already existed prior 

to implantation but may highlight ones that may have occurred due to 

insertion trauma.  It is most likely that these would occur nearer to the apical 

end which would be the most important region for having an impact on 

speech perception. The evaluation tools (PTED, PTIF and CBCT) can be 

used together to help investigate and provide potential solutions for CI 

recipients with suboptimal performance. They can be used to identify dead 

regions, placement issues or non-functional electrodes. Finding the cause of 

poor performance can guide management and programming of CIs. 

 

With the increasing number of children receiving bilateral implants 

nowadays, investigation of methods for the optimisation of the fitting of 

bilaterally implanted individuals has become a necessity. Matching between 

the bilateral CI devices for pitch in six adults, produced improvement in both 

localisation and speech perception, it also highlighted the need for the 

development of specialised protocols specifically for the programming of 

bilateral CIs in order to achieve better binaural benefit.  

 

This thesis has provided evidence to show that the performance of adults 

with CIs should be evaluated and monitored and in cases of sub-optimal 

performance, attempts should be made to re-program the sound processors 

with the intention of improving outcomes. PTED, PTIF and matching bilateral 

implants for pitch perception can be used to improve speech perception with 

CIs. Additionally, this thesis has uncovered for the first time different types of 

indiscriminable/problematic electrodes. The effect of deactivating each type 

is different, with benefit most likely occurring following the deactivation of 

indiscriminable electrodes stimulating neuronal dead regions. In contrast, no 

benefit was observed following the deactivation of indiscriminable electrodes 

that do not stimulate dead regions when active. PTIF can be used to 
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differentiate between indiscriminable electrodes that stimulate dead regions 

and those that do not. 

  

Re-programming the sound processors based on pitch perception can help 

select optimum sites of stimulation (electrodes) and help to match ears when 

there are implants fitted on both sides to achieve better performance with 

CIs. 
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Appendix A 

Procedures involved in the programming of the 

speech processor (a brief programming protocol) 

Programming the speech processor involves carrying out several 

measurements and procedures, all of which have to be conducted in a 

formalized and safe manner with the aim of providing optimum individualised 

fitting. This appendix provides the basic procedures involved in the fitting of 

cochlear implants, some of which have been discussed earlier in section 1.3.  

A.1 The CI fitting station 

The fitting station consists of a computer with the specialised fitting 

(programming) software provided by the manufacturer and at least one 

clinical programming interface (CPI) connected to it, two are required to fit 

the bilaterally implanted. Some CPIs require a power supply. See Figure 

(A.1) for an example of a CI fitting station.  

 

Figure A.1 An Advanced Bionics (AB) CI fitting station, adapted from the AB website 
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A.2 The fitting procedure 

The fitting of the CI speech processor involves four main procedures: 

(a) The connection of the speech processor to the fitting station, (b) 

impedance telemetry, (c) the creation of a CI program and (d) the 

downloading of the program to the speech processor. 

For the basic procedures of fitting and key points/actions involved in each 

procedure see Table (A.1). 

A.2.1 Manufacturer-specific stimulation level settings 

As discussed in section 3.1 there are two stimulation levels that should be 

optimized for each CI recipient. The manufacturer-specific guidelines for 

setting these lower (threshold/ T/ THR) and upper (most comfortable level/ 

M/ C/ MCL) stimulation levels are as follows: 

Advanced Bionics: T levels are either set at the lowest level of electrical 

stimulation that is audible to the CI recipient 50% of the time for each 

electrode or at a default 10% of the measured M levels. M levels are usually 

established at the most comfortable loudness level with the use of speech 

bursts which stimulate three to four electrodes simultaneously. A speech 

burst is white noise filtered through three to four bands that represent 

electrodes grouped for fitting by the fitting software. These speech bursts 

resemble more complex spectral attributes of speech and account for 

summation in real life situations, making them superior to tone bursts that 

stimulate single electrodes. 

Cochlear: T levels are set for each electrode at the lowest level of electrical 

stimulation that is audible to the CI recipient 100% of the time, and C levels 

are usually set at loud but comfortable levels. 

Med-El: THR levels are set for each electrode at either 10% of the measured 

MCL levels or set at the highest level of electrical stimulation that is inaudible 

to the CI recipient. These are measured by establishing threshold levels at a 

50% audible levels, then reducing the levels by one to two steps. MCL levels 

are usually set at loud and comfortable levels. 
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Table A.1 A brief description of the procedures involved in fitting CI speech processors 

Procedure Key points and actions involved 

Connecting the speech processor The speech processor must be first connected to the clinical 

programming interface with a special programming cable. 

Different styles of speech processors require different and 

specific programming cables which are usually provided by the 

CI manufacturers. 

Once the speech processor is connected and identified by the 

fitting software, it is usually associated with a specific CI 

recipient to allow for programming/fitting. 

Impedance telemetry Telemetry provides essential information about the function of 

the CI electrodes. 

Electrodes demonstrating short circuits or open circuits (low or 

high impedances) must be deactivated. 

Telemetry reflects changes in the tissue surrounding those 

electrodes. 

Creating a CI program Selection of a speech processing strategy. 

Determination of the per channel rate of stimulation (per 

second). 

Selection of the frequency table (frequency range and 

frequency to electrode assignment). 

Selection of the active (and deactivated) electrodes 

Selection of the value of n “maxima” in the n of m strategies 

Measurement of the lower and upper stimulation levels. 

Sweeping and balancing between the upper stimulation levels. 

Downloading the program in the 

speech processor 

Programs are tested in live mode (check if the program is 

comfortable with the microphone on) before downloading. 

Selection of the pre-processing algorithms which are available 

for some devices including ADRO. 

Selection of the mixing ratio between the auxiliary input and the 

microphone. 

Selection of volume which controls loudness. 

Selection of sensitivity which controls how sensitive the 

microphone is in picking up sounds. 

Downloading the programs and settings in the speech 

processor, each speech processor has a specific number of 

slots ranging from 2 to 4. 
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Appendix B  

Strategies involving explicit feature extraction 

Table B.1 Strategies involving explicit feature extraction 

Strategy Information extracted Use of extracted information 

F0/F2 F0 (fundamental frequency) F0 information determines the rate of stimulation; for 

voiced sounds at F0 pulses/sec. 

F2 (2
nd

 formant) F2 information determines which electrode among the 22 

to be stimulated and the amplitude of stimulation. 

F0/F1/F2 F0 (fundamental frequency) 

 

F0 information determines the rate of stimulation; for 

voiced sounds at F0 pulses/sec. 

F1 (1
st
 formant) 

 

F1 information determines which electrode among the 

most apical five electrodes (in the 280Hz-1kHz frequency 

range) to be stimulated and the amplitude of stimulation. 

F2 (2
nd

 formant) F2 information determines which electrode among the 

remaining 15 electrodes (representing frequencies higher 

than 1kHz) to be stimulated and the amplitude of 

stimulation. 

MPEAK F0 (fundamental frequency) F0 information determines the rate of stimulation; for 

voiced sounds at F0 pulses/sec. 

F1 (1
st
 formant) 

 

For voiced sounds F1 information determines which 

electrode among the most apical electrodes (in the 

280Hz-1kHz frequency range) to be stimulated and the 

amplitude of stimulation. F1 information is not used with 

unvoiced sounds. 

F2 (2
nd

 formant) 

 

F2 information determines which electrode among the 

remaining more basal electrodes except electrodes 1,4 & 

7 (representing frequencies higher than 1kHz) to be 

stimulated and the amplitude of stimulation. 

Amplitude at (2-2.8 kHz) band. 

Amplitude at (2.8-4kHz) band. 

Amplitude at (4-6 kHz) band. 

For voiced sounds the envelope outputs of the frequency 

bands (2-2.8 kHz & 2.8-4 kHz) are delivered to electrodes 

7 & 4 respectively. For unvoiced sounds the envelope 

output of the frequency band (4-6 kHz) is delivered to 

electrode 1 as well. 

 



Page 346 of 393 

 

Appendix C 

Data used in analyses in Chapter 5 

Table C.1 BKB in quiet (RAU) and data used in analyses for correlations and multiple regression. 
Pathology as defined by the presence of radiologically confirmed pathology was given the value 2, 
aetiology associated with fibrosis, calcification or ossification was given the value 2, DD and DDY for 
duration of deafness categorical data and years respectively, AAI and AAIY for age at implant 
categorical data and in years respectively, percentage of discriminable electrodes (DEL) for the full CI 
array, DELA, DELM and DELB for the percentage of discriminable electrodes at frequencies ≤ 1000 
Hz, 1000 Hz < frequencies ≤ 2600 Hz and at frequencies > 2600 Hz respectively.  

Pathology Aetiology DD AAI DDY AAIY DEL BKBQ DELA DELM DELB 

2.00 2.00 2.00 1.00 40.00 61.00 80.00 49.07 75.00 50.00 75.00 

1.00 1.00 2.00 1.00 12.00 61.00 72.73 77.62 60.00 100.00 75.00 

2.00 2.00 2.00 1.00  49.00 73.08 75.41 85.71 57.14 50.00 

1.00 1.00 2.00 1.00 15.00 40.00 78.95 64.16 83.33 83.33 75.00 

1.00 1.00 2.00 2.00 25.00 78.00 68.75 55.59 60.00 100.00 100.00 

2.00 1.00 2.00 1.00 19.00 57.00 84.62 41.59 100.00 50.00 14.29 

2.00 1.00 1.00 1.00 4.00 44.00 87.50 48.14 50.00 100.00 100.00 

1.00 1.00 1.00 1.00 6.00 47.00 42.22 38.74 42.86 .00 100.00 

1.00 1.00 1.00 2.00 5.00 70.00 78.57 69.12 40.00 66.67 50.00 

1.00 1.00 1.00 1.00 6.00 52.00 75.68 91.58 71.43 71.43 100.00 

1.00 1.00 1.00 2.00 9.00 69.00 88.89 66.12 100.00 100.00 83.33 

1.00 1.00 1.00 2.00 1.00 70.00 82.00 81.08 80.00 100.00 66.67 

1.00 1.00 1.00 1.00 7.00 60.00 88.00 79.91 85.71 66.67 75.00 

1.00 1.00 1.00 1.00 5.00 15.00 55.56 23.49 .00 50.00 57.14 

1.00 1.00 2.00 1.00 33.00 51.00 90.91 90.12 100.00 100.00 100.00 

1.00 1.00 1.00 1.00 7.00 60.00 44.12 48.14 16.67 16.67 75.00 

1.00 1.00  2.00  66.00 62.50 90.12 71.43 80.00 33.33 

2.00 2.00 1.00 1.00 2.00 58.00 93.33 91.58 100.00 100.00 50.00 

1.00 1.00 1.00 2.00 7.00 73.00 73.33 94.68 83.33 100.00 75.00 

1.00 1.00 2.00 1.00 25.00 59.00 82.00 94.68 100.00 100.00 25.00 

1.00 1.00  1.00  47.00 79.41 98.11 50.00 83.33 33.33 

1.00 1.00 1.00 1.00 6.00 57.00 73.08 96.35 28.57 50.00 25.00 

1.00 1.00 2.00 1.00 12.00 63.00 86.67 104.28 85.71 83.33 42.86 

1.00 1.00 1.00 1.00 9.00 20.00 86.67 104.28 100.00 66.67 62.50 

1.00 1.00 1.00 1.00 2.00 48.00 100.00 100.00 80.00 100.00 75.00 

1.00 1.00 2.00 2.00 40.00 72.00 100.00 123.00 100.00 100.00 75.00 

1.00 1.00 1.00 2.00 7.00 71.00 100.00 109.81 100.00 100.00 100.00 

1.00 1.00 1.00 1.00 5.00 57.00 100.00 123.00 100.00 100.00 100.00 

1.00 1.00 1.00 1.00 6.00 57.00 100.00 73.27 100.00 100.00 28.57 

1.00 1.00 1.00 1.00 1.00 2.00 100.00 123.00 100.00 100.00 100.00 

1.00 1.00  1.00  56.00 100.00 123.00 100.00 100.00 100.00 

1.00 1.00 2.00 1.00 53.00 64.00 73.08 104.28 100.00 100.00 100.00 

2.00 1.00 1.00 1.00 3.00 46.00 73.08 71.17 75.00 100.00 100.00 

1.00 1.00 2.00 1.00 15.00 40.00 14.13 52.79 .00 .00 14.29 

1.00 1.00 2.00 1.00 15.00 22.00 40.00 69.12 33.33 28.57 28.57 
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Table C.2 BKB in noise (RAU) and data used in analyses for correlations and multiple regression. 
Pathology as defined by the presence of radiologically confirmed pathology was given the value 2, 
aetiology associated with fibrosis, calcification or ossification was given the value 2, DD and DDY for 
duration of deafness categorical data and years respectively, AAI and AAIY for age at implant 
categorical data and in years respectively, percentage of discriminable electrodes (DEL) for the full CI 
array, DELA, DELM and DELB for the percentage of discriminable electrodes at frequencies ≤ 1000 
Hz, 1000 Hz < frequencies ≤ 2600 Hz and at frequencies > 2600 Hz respectively.  

Pathology Aetiology DD AAI DDY AAIY DEL BKBN DELA DELM DELB 

1.00 1.00 2.00 1.00 12.00 61.00 72.73 50.00 60.00 100.00 75.00 

1.00 1.00 2.00 1.00 15.00 40.00 78.95 30.88 83.33 83.33 75.00 

1.00 1.00 2.00 2.00 25.00 78.00 68.75 13.96 60.00 100.00 100.00 

1.00 1.00 2.00 1.00 15.00 40.00 14.13 29.86 .00 .00 14.29 

1.00 1.00 1.00 1.00 6.00 47.00 42.22 10.00 42.86 .00 50.00 

1.00 1.00 1.00 2.00 5.00 70.00 78.57 72.21 40.00 66.67 100.00 

1.00 1.00 1.00 1.00 6.00 52.00 75.68 32.89 71.43 71.43 83.33 

1.00 1.00 1.00 2.00 9.00 69.00 88.89 54.66 100.00 100.00 66.67 

1.00 1.00 1.00 2.00 1.00 70.00 82.00 78.75 80.00 100.00 75.00 

1.00 1.00 1.00 1.00 7.00 60.00 88.00 49.07 85.71 66.67 57.14 

1.00 1.00 2.00 1.00 33.00 51.00 90.91 72.21 100.00 100.00 75.00 

1.00 1.00  2.00  66.00 62.50 44.41 71.43 80.00 50.00 

2.00 2.00 1.00 1.00 2.00 58.00 93.33 52.79 100.00 100.00 75.00 

1.00 1.00 1.00 2.00 7.00 73.00 73.33 60.31 83.33 100.00 25.00 

1.00 1.00 2.00 1.00 25.00 59.00 82.00 87.36 100.00 100.00 33.33 

1.00 1.00  1.00  47.00 79.41 82.28 50.00 83.33 25.00 

1.00 1.00 1.00 1.00 6.00 57.00 73.08 48.14 28.57 50.00 42.86 

1.00 1.00 2.00 1.00 12.00 63.00 86.67 86.04 85.71 83.33 62.50 

1.00 1.00 1.00 1.00 9.00 20.00 86.67 100.00 100.00 66.67 75.00 

1.00 1.00 1.00 1.00 2.00 48.00 100.00 84.75 80.00 100.00 75.00 

1.00 1.00 2.00 2.00 40.00 72.00 100.00 100.00 100.00 100.00 100.00 

1.00 1.00 1.00 2.00 7.00 71.00 100.00 100.00 100.00 100.00 100.00 

1.00 1.00 1.00 1.00 5.00 57.00 100.00 123.00 100.00 100.00 100.00 

1.00 1.00 2.00 1.00 15.00 22.00 40.00 3.65 33.33 28.57 28.57 

1.00 1.00 1.00 1.00 6.00 57.00 100.00 104.28 100.00 100.00 100.00 

1.00 1.00 1.00 1.00 1.00 2.00 100.00 106.82 100.00 100.00 100.00 

1.00 1.00  1.00  56.00 100.00 109.81 100.00 100.00 100.00 

1.00 1.00 2.00 1.00 53.00 64.00 73.08 86.04 100.00 100.00 100.00 

2.00 2.00 1.00 1.00 3.00 46.00 73.08 87.36 75.00 100.00 100.00 
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Table C.3 CRM SRT in dBA and data used in analyses for correlations and multiple regression. 
Pathology as defined by the presence of radiologically confirmed pathology was given the value 2, 
aetiology associated with fibrosis, calcification or ossification was given the value 2, DD and DDY for 
duration of deafness categorical data and years respectively, AAI and AAIY for age at implant 
categorical data and in years respectively, percentage of discriminable electrodes (DEL) for the full CI 
array, DELA, DELM and DELB for the percentage of discriminable electrodes at frequencies ≤ 1000 
Hz, 1000 Hz < frequencies ≤ 2600 Hz and at frequencies > 2600 Hz respectively.  

Pathology Aetiology DD AAI DDY AAIY DEL CRM DELA DELM DELB 

1.00 1.00 1.00 1.00 6.00 52.00 75.68 5.31 71.43 71.43 83.33 

1.00 1.00 1.00 2.00 9.00 69.00 88.89 8.75 100.00 100.00 66.67 

1.00 1.00 1.00 2.00 1.00 70.00 82.00 20.94 80.00 100.00 75.00 

1.00 1.00 1.00 1.00 7.00 60.00 88.00 6.26 85.71 66.67 57.14 

1.00 1.00 1.00 1.00 5.00 15.00 55.56 23.44 .00 50.00 100.00 

1.00 1.00 2.00 1.00 33.00 51.00 90.91 6.88 100.00 100.00 75.00 

1.00 1.00  2.00  66.00 62.50 10.00 71.43 80.00 50.00 

2.00 2.00 1.00 1.00 2.00 58.00 93.33 6.25 100.00 100.00 75.00 

1.00 1.00  2.00  73.00 73.00 6.15 83.33 100.00 25.00 

1.00 1.00 2.00 1.00 25.00 59.00 82.00 4.38 100.00 100.00 33.33 

1.00 1.00  1.00  47.00 79.41 14.38 50.00 83.33 25.00 

1.00 1.00 1.00 1.00 6.00 57.00 73.08 .15 28.57 50.00 42.86 

1.00 1.00 2.00 1.00 7.00 63.00 86.67 1.88 85.71 83.33 62.50 

1.00 1.00 1.00 1.00 9.00 20.00 86.67 .00 100.00 66.67 75.00 

1.00 1.00 1.00 2.00 7.00 71.00 100.00 4.06 100.00 100.00 100.00 

1.00 1.00 1.00 1.00 5.00 57.00 100.00 -4.60 100.00 100.00 100.00 

1.00 1.00 1.00 1.00 6.00 57.00 100.00 4.00 100.00 100.00 100.00 

1.00 1.00  1.00  56.00 100.00 -4.60 100.00 100.00 100.00 

1.00 1.00 1.00 1.00 7.00 60.00 44.12 29.53 16.67 16.67 33.33 
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Appendix D 

Raw data used in analyses in Chapter 7 and figures 

Table D.1 BKB in quiet (raw scores) with the best research program compared to the best BKB score 

with the clinical program in group I. 

BKB (best clinical) BKB (best research program 

49.00 35.00 

78.00 88.00 

76.00 68.00 

65.00 73.00 

56.00 83.00 

53.00 71.00 

41.00 39.00 

48.00 55.00 

38.00 64.00 

70.00 91.00 

89.00 85.00 

67.00 76.00 

81.00 89.00 

80.00 94.00 

23.00 35.00 

88.00 94.00 

48.00 54.00 

88.00 92.00 

91.00 91.00 

91.00 94.00 

92.00 94.00 

96.00 99.00 

96.00 90.00 

94.00 97.00 

93.00 94.00 
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Table D.2 BKB in quiet (raw scores) with the best research program compared to the best BKB score 

with the clinical program in group II. 

BKB (best clinical) BKB (best research program 

49.00 35.00 

78.00 88.00 

76.00 68.00 

65.00 73.00 

56.00 83.00 

53.00 71.00 

41.00 39.00 

48.00 55.00 

38.00 64.00 

70.00 91.00 

48.00 54.00 

67.00 76.00 

88.00 94.00 

88.00 92.00 

91.00 91.00 

91.00 94.00 

96.00 99.00 

96.00 90.00 

94.00 97.00 

93.00 94.00 
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Table D.3 BKB in noise (raw scores) with the best research program compared to the best BKB score 

with the clinical program in group I. 

BKB (best clinical) BKB (best research program 

14 59 

50 69 

29 41 

31 40 

84 88 

82 78 

0 24 

73 80 

32 32 

55 64 

79 91 

61 82 

73 65 

86 85 

82 78 

48 55 

44 47 

85 94 

94 89 

49 54 
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Table D.4 BKB in noise (raw scores) with the best research program compared to the best BKB score 

with the clinical program in group II. 

BKB (best clinical) BKB (best research program 

14 59 

50 69 

29 41 

31 40 

84 88 

82 78 

0 24 

73 80 

55 64 

61 82 

73 65 

86 85 

82 78 

48 55 

44 47 

85 94 

94 89 
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Figure D.1 Mean BKB Sentence Test in quiet (raw score) for the two sub-groups with the use of the 

clinical program (dark grey bars) and the best research program (light grey bars).The bars show mean 

scores, error bars show ± 2SE. 
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Figure D.2 Mean BKB Sentence Test in noise (raw score) for the two sub-groups with the use of the 

clinical program (dark grey bars) and the best research program (light grey bars).The bars show mean 

scores, error bars show ± 2SE. 
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