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ABSTRACT 

The design of a delivery system that specifically delivers anticancer drug to the 

tumour site avoiding normal tissues damage has always been a challenge. In this 

thesis we describe the engineering and biological performance of novel temperature-

sensitive liposomes (TSL) that have both a substantial in vivo stability and an 

efficient content-release by mild hyperthermia (HT).  

First, we explain the development of novel lipid-peptide hybrids (Lp-Peptide) by 

anchoring leucine zipper temperature-sensitive peptide within the liposomal lipid 

bilayer. The dissociation of the self-assembled coiled-coil structure of the peptide by 

mild Hyperthermia (HT) is considered to be responsible for triggering drug release. 

We characterized this system by studying its physicochemical properties and the 

interaction of the peptide with the lipid bilayer. Then we examined its potential to 

retain and trigger the release of the anticancer drug, doxorubicin, in vitro at 

physiological temperatures and after exposure to mild HT. The hybrid system was 

further evaluated at the cellular level by studying its biocompatibility, cellular uptake 

and cytotoxic activity. In addition, the blood kinetics, tumour and other tissues 

accumulation were explored when we studied the system in vivo. Our data suggested 

that Lp-Peptide hybrids can increase both immediate and long-term drug 

accumulation in the tumour. Therefore, we studied their therapeutic activity 

comparing two different heating protocols to mimic intravascular and interstitial drug 

release. 

The last chapter of this thesis explored the opportunities of increasing the 

therapeutic specificity of TSL by designing anti-MUC-1 targeted vesicles based on 

the traditional TSL (TTSL) to trigger drug release after specific uptake into cancer 

cells. We showed that TTSL liposomes maintain their physicochemical and thermal 

properties after conjugation to anti-MUC-1 antibody. Moreover, the system was 

further evaluated by studying the in vitro cellular binding, uptake and therapeutic 

efficacy. Taking this system a step further, its biodistribution and therapeutic 

potential were also examined. Different protocols were applied to explore the effect 

of HT on the accumulation of targeted TTSL into the tumour and their therapeutic 

efficacy. 

In summary, this thesis explains the design, engineering and biological 

performance of novel temperature-responsive vesicles. Our studies demonstrate the 

critical factors to consider in the design of clinically relevant TSL and the importance 

of matching the heating protocol to their physicochemical and pharmacokinetic 

parameters to maximise therapeutic benefits.  
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One of the important limitations to the treatment of solid tumours is the inability 

to achieve effective local drug concentration while avoiding healthy tissue damage, 

which restricts the dose that can be given systemically. Doxorubicin (DOX) is an 

effective chemotherapy, however its therapeutic efficiency is limited by delayed 

cardiotoxicity associated with cumulative damage to myocardial muscle at doses 

more than 500 mg/m
2
 (Rahman et al. 1982). The low molecular weight of DOX and 

other chemotherapeutic drugs results in suboptimal pharmacokinetics characterized 

by rapid drug clearance (CL) (DOX CL ~45 L/h) and large distribution volumes 

(VD) (DOX VD ~254 L) (Barenholz 2012). Moreover, physiological barriers at the 

tumour site including high interstitial pressure (Jain 1987a) and heterogeneous 

perfusion (Jain 1987b) limit the transport of the free drug to the tumour, resulting in 

suboptimal therapeutic levels (Jain et al. 2010; Lammers 2012). 

In an attempt to reduce the drug associated toxicity and improve the 

biodistribution of chemotherapeutic agents to the tumour site, encapsulation inside 

site-specific nanoscale delivery systems has been thoroughly investigated (Peer et al. 

2007; Davis et al. 2008). This could lead to a balance between the degree of systemic 

toxicity and therapeutic efficacy. The key mechanism behind the selective 

accumulation of nanocarriers into the tumour rather than other healthy organs is the 

hyperpermeability of the tumour vasculature particularly in implanted animal tumour 

models (Dvorak et al. 1988). This phenomenon is known as enhanced permeability 

and retention effect (EPR) (Matsumura et al. 1986; Maeda 2001) and depends on 

anatomical difference between healthy tissues and tumour blood vessels. Tumour 

vasculature characterised by tortuous malformed structure with high permeability 

that originate during defective tumour angiogenesis. In general, tumour vessels differ 

from normal tissues vasculature by having poorly aligned endothelial cells, wide 

inter-endothelial junctions, abnormal and/or lack of perivascular cells, basement 

membrane and smooth-muscles (Jain 1987a; Iyer et al. 2006). These anatomical 

abnormalities favour the leakage of plasma components including the 

macromolecules into the tumour. The increase in the extravasation together with the 

reduced lymphatic drainage means that retention of the nanocarriers in the tumour is 

prolonged by decreasing their clearance (Maeda 2001; Iyer et al. 2006; Lammers 

2012). Although the above mentioned factors facilitate the extravasation into the 

tumour, the size of nanoparticles, the limited flow of interstitial fluid and the 



3 

 

condensed interstitial matrix might hamper their movement into the extracellular 

matrix especially for big size tumour (Jain 1987a; Chrastina et al. 2011). It follows 

that some areas of the tumour are hyperpermeable whereas other areas have minimal 

or even absent permeability (Yuan et al. 1994a; Gaber et al. 1996; Kong et al. 2001; 

Manzoor et al. 2012; Li et al. 2013a) resulting in heterogeneous extravasation of the 

chemotherapeutic agents. Importantly, the clinical role of EPR effect in the passive 

accumulation of nanoparticles in patients is not yet conclusive (Prabhakar et al. 

2013). In addition, nanoparticles penetration into the tumour is limited by the high 

tumour cell density and high interstitial fluid pressure which limit their distribution 

to the perivascular spaces (Lammers 2012). 

Despite all these theoretical shortcomings associated with tumour extravasation 

and penetration, most of the nano-sized drug delivery systems designed for tumour 

targeting is based on the EPR effect. Among those nanoscale carriers, liposomes 

have the privilege of being the first and the most extensively used drug delivery 

system for cancer therapy (Allen 2013) as will be explained in details in the next 

section.  
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1.1 Development of Liposomes for Cancer Therapy 

Liposomes were first described by Alec Bangham in the mid-1960s as spherical 

phospholipid vesicles consisting of one or more concentric lipid bilayers enclosing 

an aqueous core (Bangham et al. 1964; Bangham et al. 1965). Although liposomes 

form spontaneously by self-assembly of amphiphilic lipids after dispersion in water, 

they can effectively entrap both hydrophilic (X et al. 1998) and hydrophobic 

compounds (Chen et al. 2010; Koudelka et al. 2012) in the aqueous core or in the 

lipid bilayer, respectively. Liposomes are biocompatible, biodegradable, have low 

toxicity profile and can effectively modify the pharmacokinetic profile of their 

loaded drugs (Sawant et al. 2012). Gregory Gregoriadis was the first to propose the 

ability of liposomes to entrap drugs (Gregoriadis 1973; Gregoriadis et al. 1974b), 

since then their use in drug delivery has been extensively explored. However, the use 

of conventional liposomes was limited by their very short half-life due to rapid 

clearance by mononuclear phagocytic system (MPS) cells, mainly in the liver and 

spleen (Gregoriadis et al. 1974a). The lipid composition, liposome size and 

opsonisation by serum proteins were considered the most critical factors in the 

clearance of liposomes (Juliano et al. 1975; Gregoriadis et al. 1980; Moghimi et al. 

1989) . A promising increase in the circulation half-life of liposomes was achieved 

by modification with gangliosides (GM1) and sphingomyelin that act synergistically 

to increase the hydrophilic property of liposomes surface and impart bilayer rigidity, 

respectively (Allen et al. 1987; Allen et al. 1989). A major breakthrough was 

accomplished by surface coating with hydrophilic polymer, in particular 

polyethylene glycol (PEG). PEG imparts steric stabilisation to the liposomes which 

reduces their interaction with serum proteins, therefore, resulting in a substantial 

increase in the circulation time (Allen et al. 1991a; Allen et al. 1991b; 

Papahadjopoulos et al. 1991). Because of the ability of these liposomes to avoid 

uptake by the MPS cells they were termed “stealth” liposomes. The improved in vivo 

performance of stealth liposomes meant an increase in their passive accumulation at 

the tumour site as they leaked through malformed blood vessels while avoiding 

healthy tissues and organs (Gabizon et al. 1994; Gabizon et al. 1997). Peak drug 

tumour concentrations in malignant effusions treated with pegylated liposomal DOX 

3 to 7 days after injection were 4 to 16 times higher than equivalent dose of free 

DOX (Gabizon et al. 1994). 
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Another early challenge in the development of liposomes was to achieve stable 

entrapment of the therapeutic drug concentration inside the liposomes (Senior et al. 

1982; Barenholz 2003). Drug leakage from liposomes was shown to be affected by 

several factors; such as the interaction with serum proteins (Allen et al. 1980), and 

the change in lipid composition (Hossann et al. 2012) as will be discussed in details 

later. The stability of drug loading inside the liposomes can be particularly increased 

by the incorporation of cholesterol (CHOL) into the lipid bilayer and the substitution 

of fluid phase bilayer with a solid phase lipid membrane (Storm et al. 1987). 

Inclusion of cholesterol can make the lipid membrane stronger by increasing the 

mechanical stiffness and decreasing the liposomal water permeability (Evans et al. 

1987; Needham et al. 1988). By micromechanical experiments, Needham et al. has 

shown that inclusion of cholesterol into SOPC, stearoyl-oleoyl phosphatidylcholine, 

liposomes at 1:1 molar ratio increased the elastic modulus of the lipid bilayer 

compared to pure SOPC liposomes (Needham et al. 1990). Therefore the inclusion of 

cholesterol in lipid membrane is expected to increase drug retention and prolong 

blood circulation (Lasic et al. 1995). In addition the higher the elastic modulus is an 

indication of better resistance to opsonisation (Lasic et al. 1995). An example of this 

strategy is Sphingomyelin:cholesterol (1:1) liposome formulation encapsulating 

vincristine (Webb et al. 1995). Intravenous administration of these liposomes 

retained 25% of their encapsulated drug in the blood stream up to 72 h. This 

associated with increased vincristine accumulation to tumours and increased anti-

tumour efficacy. This explained by the slow drug release during circulation which 

represent the basis of vincristine formulation (Webb et al. 1995). 

Another way to control the loading and retention of drugs inside liposomes is by 

choosing a drug with the right physicochemical properties. Comparable to biological 

membranes, liposomal membranes have limited permeability to hydrophilic 

molecules and high permeability to hydrophobic molecules (Gregoriadis 2006). This 

hurdle was overcome by the introduction of remote drug loading mechanism by 

generating a pH gradient across the lipid membrane utilizing either acidic buffers 

(Mayer et al. 1986; Fenske et al. 2006) or a proton donating cleavable salts such as 

ammonium sulphate (Haran et al. 1993; Barenholz 2006; Fritze et al. 2006). Remote 

loading process entails drug loading after liposomal formation and is widely used for 

encapsulation of weakly basic drugs. An excellent example of a drug that can be 
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encapsulated remotely is doxorubicin which can be efficiently encapsulated inside 

the liposomes with exceptional retention properties (X et al. 1998). Thus, so far, 

anthracyclines seem to be the most appropriate chemotherapeutics for liposomal 

delivery as the rate of drug retention and leakage can be regulated (Barenholz 2012). 

This has played a great role in the successful development of the clinically approved 

liposomal drug Doxil
®
 encapsulated using transmembrane ammonium sulphate 

gradient (Barenholz 2006). Remote DOX loading can also be achieved through pH-

gradient approach utilizing internal acidic buffer (e.g. citrate)(Mayer et al. 1986). 

When DOX (pKa 8.6) is incubated at neutral pH with liposomes having interior 

acidic pH, DOX molecules existed in neutral form that readily diffused down their 

concentration gradient into the liposomes aqueous phase. Once inside the liposomes 

DOX molecules subsequently protonate and were retained inside liposomes as the 

lipid membrane is impermeable to charged molecules (Fenske et al. 2006). Using 

internal citrate buffer 300 mM (pH 4), the diffusion process of uncharged DOX will 

continue until all the drug molecules have been encapsulated (Fenske et al. 2006). 

This technique was employed for ThermoDOX, a temperature-sensitive liposome 

formulation, that is currently in clinical trials (Needham et al. 2013).  

Doxorubicin (DOX) exerts its action by acting on the nucleic acids of replicating 

cells though two ways. First, DOX can intercalate between nucleic acid base pairs 

leading to inhibition of DNA and RNA synthesis. The second mechanism is by the 

inhibition of topoisomerase II enzyme that leads to inhibition of super-coiled DNA 

relaxation, thus prevents DNA transcription and replication (Blum et al. 1974; 

Barenholz 2012). DOX is used as a first line treatment for a variety of cancer such as 

leukaemia, lymphoma, breast, uterine, ovarian and lung cancers. However, similar to 

other chemotherapeutics DOX therapeutic potential is limited by collateral damage 

to healthy tissues (Weiss 1992). The most dangerous and dose-limiting DOX-

associated toxicity is a cumulative (dose dependent) cardiotoxicity that leads to 

irreversible congestive heart failure (Rahman et al. 1982). The incident of this 

condition is ~ 2% in patients who have received 450-500 mg/m
2
 cumulative DOX 

dose. Therefore, a 21- day regimen of 400-500 mg/m
2
 or weekly regimen of 700 

mg/m
2
 are not recommended (Waterhouse et al. 2001). 
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Encapsulation of DOX inside Pegylated liposomes has been clinically approved 

for a variety of neoplastic conditions based on its unique safety profile showing 

lower risk of cardiac toxicity compared to conventional doxorubicin at cumulative 

doses of 500 mg/m
2
 and more (Safra et al. 2000; Ewer et al. 2004; Solomon et al. 

2008). 

As a result pegylated liposomal DOX (Doxil
®
) was clinically approved in 1995 as 

the first nano-drug delivery system (Barenholz 2012). To date, several liposomal 

formulations are now commercially available for a number of clinical applications 

and many others have progressed into clinical trials (Allen 2013). The significant 

decrease in cardiac toxicity of DOX after encapsulation into liposomes, did not 

necessarily translate into improved therapeutic efficacy. Although the tumour 

accumulation of liposomal DOX can significantly increase compared to free DOX, 

not all of the drug was bioavailable for tumour cells (Laginha et al. 2005). Laginha et 

al studied the bioavailable DOX levels from Doxil
®
 into 4T1 (mammary carcinoma) 

orthotopically implanted in mice (Laginha et al. 2005) using previously described 

DNAse 1 digestion assay (Kirchmeier et al. 2001). Administration of Doxil
® 

 showed 

higher total tumour DOX accumulation 7 days after injection compared to free DOX 

(87-fold higher), however this was associated with only 49 % bioavailability 

(Laginha et al. 2005). Similar findings have been observed from the long circulating 

half-life of liposomal cisplatin that was coupled with poor response in clinical 

evaluation (Seetharamu et al. 2010). After accumulation inside the tumour tissue, 

drug release from both conventional and stealth liposomes is a slow process that 

depends on passive leakage of the encapsulated drug overtime or the non-specific 

degradation of the liposomal lipid membrane (Gabizon et al. 2006). As a 

consequence, the effective drug concentration to the intracellular targets was 

reduced. In addition, the actual fate of liposomes after extravasation is not clear due 

to the variation in tumour vascular permeability between different types of tumour 

and even within the same tumour which affects the therapeutic outcome (Lammers 

2012). Moreover, prolonged circulation time of stealth liposomes resulted in the 

appearance of new toxicity profiles such as swelling and inflammation of hands and 

feet as a result of the changing biodistribution and pharmacokinetics of the drug 

(Solomon et al. 2008). 
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Those limitations can be overcome by triggering drug release from the liposomes 

to make it bioavailable to the tumour cells (Needham et al. 2000; Koning et al. 

2010). Therefore the ideal liposomal formulation of chemotherapy should retain to 

some extent the drug while circulating in the bloodstream, effectively avoid the MPS 

cells and finally be able to release the drug locally within the tumour tissues or 

vasculature via a release profile similar to the pharmacodynamics of the drug. A 

wide range of research has been conducted over the last two decades to investigate 

the possibilities of triggering drug release from liposomes. Two main types of 

triggers have been examined; external, such as heat, light and ultrasound, and 

internal triggers, those are integrated in the disease site such as pH and enzymes 

(Figure ‎1-1). Examples of liposomes with external and internal triggering mechanism 

include the photosensitive, temperature-sensitive, ultrasound-triggered, enzyme and 

pH triggered liposomes (Ponce et al. 2006b; Kaasgaard et al. 2010; Bibi et al. 2012). 

Although the concept of triggered liposomes seems promising, the practical use of 

these liposomes has been discouraging with only limited products reaching clinical 

trials (Landon et al. 2011; Allen 2013). This thesis will concentrate on triggered drug 

release from thermosensitive liposomes by the application of localized mild 

hyperthermia (HT).  
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Figure ‎1-1: Schematic presentation of the different types of liposome with triggered release 

properties.   
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1.2 Hyperthermia in Cancer Therapy 

HT has been identified for many years as effective treatment modality for cancer 

therapy (Schlemmer et al. 2004). The potential effectiveness in this area has 

increased over the last 30 years with the advances in the development of non-

invasive image guided thermal techniques. The rationale behind the use of HT to 

treat cancer is due to either direct cell death that can be induced by HT or the indirect 

effects obtained when combined with other treatment options. Figure ‎1-2 describes 

the various aspect of the use of HT in cancer.  

 

Figure ‎1-2: The use of HT in cancer therapy. Adapted from (Kong et al. 1999) 

1.2.1 Hyperthermia as a Treatment Modality for Cancer (Ablative Therapy) 

HT has been identified for many years as a selective modality for cancer therapy 

(Bettaieb et al. 2013). Thermal ablation is based on direct heating of the tumour to 

temperatures > 50 ºC for short durations (4-6 min) using radiofrequency, laser or 
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microwave applied by a needle-like applicator (Ahmed et al. 2011). The electrical 

applicator is usually positioned in the centre of the tumour creating a central zone of 

high temperature surrounded by peripheral areas of sub-lethal heating (Goldberg et 

al. 2000b). Ablative therapy is clinically used for treatment of wide range of 

unresectable tumours such as focal liver (Livraghi et al. 2003), renal (Gervais et al. 

2003), breast (Zagar et al. 2010), bone (Thacker et al. 2011), and lung tumours 

(Dupuy et al. 2006). Thermal therapy is mainly important in tumour areas where 

other treatment modalities such as chemotherapy and radiotherapy have limited 

effectiveness. This includes tumours that are hypoxic, acidotic and have limited 

blood supply as the thermosensitivity of tumour cells increases under these 

conditions (Otte 1988).  

The molecular basis behind cellular death induced by ablative therapy is the 

coagulation of cell membrane and cytosolic proteins and impairment of nucleic acid 

function and repair (Goldberg et al. 2000a; Hildebrandt et al. 2002). The result of 

this coagulative necrosis process is the induction of cell death over several days 

(Hildebrandt et al. 2002). Figure ‎1-3 summarises the molecular mechanism behind 

HT induced cellular injury.  

Although great emphasis was given to the use of HT in ablative therapy, 

therapeutic effectiveness of this treatment modality is usually restricted by the failure 

to get complete tumour ablation especially at the tumour periphery and close to blood 

vessels (Ahmed et al. 2012). Clinical studies in patients with hepatocellular 

carcinoma (HCC) indicated that RFA is effective in local tumour control in 80-90% 

of patients having tumour size < 2 cm (Livraghi et al. 2008). However, RFA was less 

satisfactory for treatment of HCC for larger tumour sizes (3.5-5 cm) with 65-75% 

recurrence (Livraghi et al. 2000). Heterogeneous heating results in some cancer cells 

surviving the thermal ablation treatment; therefore combination with other strategies 

that can increase tumour damage is needed (Ahmed et al. 2012). The synergy of the 

combination therapy is based on the understanding of the consequences of the 

biological effects of HT that happens in temperature ranges below those required for 

cellular damage but yet higher than normal temperature (39-42 °C) (Dewhirst et al. 

2005). In other words the sub-lethal temperatures observed at the tumour margins in 

which the centres of those tumours were exposed to ablative thermal treatment. Mild 
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HT, though well tolerated by cells, can cause reversible cellular injury which 

improves cellular responsiveness to other therapies such as radiation and 

chemotherapy (either free or encapsulated inside delivery vehicle) through the 

increase in blood and oxygen perfusion to the heated areas and the prevention of 

DNA damage repair (Dewhirst et al. 2005; Issels et al. 2010). Mild HT can also 

increase the accumulation and extravasation of nanoscale delivery systems through a 

number of cellular and physiological mechanisms such as perforation of tumour 

vasculature and increasing endothelial cells permeability (Ponce et al. 2006a).  

 

Figure ‎1-3: Molecular basis of HT induced dell death. 

 

Another important parameter in the therapeutic outcome of ablative therapy is the 

induction of heat shock proteins (HSPs) production which occurs immediately in the 

peripheral margins of the tumour surrounding the ablative centre (Jaattela 1999). 

HSPs are known to have a protective effect against cellular damage conditions 

(Morimoto 1993; Jaattela 1999). They bind to hydrophobic proteins produced from 

the denaturing effect of HT and prevent their interaction with other functional 

intracellular proteins, consequently reducing the susceptibility of tumour cells to the 

cytotoxic effects of HT (Hildebrandt et al. 2002). It follows that HSPs can be an 
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important target in the design of cancer therapy. Recent studies have shown that 

sensitization of tumour cells to HT can by restored by reducing HSPs level using 

liposomes encapsulating quercetin, a drug that has an anti-HSPs effect (Yang et al. 

2012b). Despite the possible role of HSPs in development of thermo-tolerance, the 

expression of HSPs plays a beneficial role in cancer treatment. An example on that is 

the stimulation of tumour specific immune responses by induction of cytotoxic T-cell 

response against tumour cells (Van Der Zee 2002; Kobayashi 2011).  

To enhance the therapeutic efficiency of thermal therapy, alternative ways of heat 

generation have been developed utilizing nanoparticles with specific electrical, 

optical and thermal properties. These nanoparticles can act as nano-heaters after 

exposure to external energy. An example of such approach is the use of iron oxide 

nanoparticles for the generation of magnetic HT (Hilger et al. 2012) which has been 

clinically tested for glioblastoma multiforme (Maier-Hauff et al. 2007; Maier-Hauff 

et al. 2011) and prostate cancer (Johannsen et al. 2010; Kobayashi et al. 2013). As an 

alternative to iron oxide nanoparticles, other types of nanoparticles haven been used 

including gold nanoparticles (Huang et al. 2007) and nanorods (Tong et al. 2007; 

Huang et al. 2010; Park et al. 2010; Alkilany et al. 2012).  

1.2.2 The Potential of Hyperthermia in Drug Delivery 

For a long time, great emphasis was given to the use of HT for tumour ablation as 

treatment modality for cancer therapy. However, over the last 30 years, the rationale 

of using HT in cancer has been redirected towards lower temperature range (mild 

HT) due to the compelling advantages that can be attained in that region (Dewhirst et 

al. 2005). It has been well demonstrated that tumour vasculature can be critically 

hyperpermeable to nanoparticles including liposomes via enlarged endothelial pores 

through EPR (Dvorak et al. 1988). However, this effect has been found to be variable 

and was dependent on tumour models (Yuan et al. 1994a; Yuan et al. 1994b). 

Besides the well known synergy offered by HT when combined with anticancer 

drugs (Kowal 1979; Issels 1999), mild HT has a significant influence on tumour 

pathophysiological parameters that favour an improved nanoparticles extravasation. 

This increase in permeability is mainly due to structural changes in endothelia cells 

cytoskeleton that increase the pore cutoff size of the tumour. (Kong et al. 2000b; 
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Kong et al. 2001). Mild HT increases local blood flow (2 folds) (Song et al. 1984) 

and decreases tumour interstitial fluid pressure (IFP lowered by 10 folds after 30 min 

heating at 43 °C) (Leunig 1992), therefore, collectively enhances overall tumour 

accumulation. Kong et al showed that the extravasation of liposomes of sizes up to 

400 nm into a human SKOV-3 ovarian carcinoma xenograft can be achieved by HT 

(42 °C) compared to normothermic conditions. However, the extravasation 

magnitudes were less for large nanoparticles. The largest increase in liposomes 

extravasation with HT was observed in 100 nm liposomes. This was 1.6 and 3.5 

times higher than that observed in liposomes sized 200 and 400 nm, respectively 

(Kong et al. 2000b). This indicated the role of HT in increasing the vascular 

permeability of even impermeable tumour models (Kong et al. 2000b). A recent 

study by Li et al. (Li et al. 2013a), using high resolution intravital microscopy and 

the dorsal skin flap window chamber, evaluated the effect of clinically applied HT on 

the extravasation of TSL in living mice comparing different tumour models. In 

agreement with kong et al study, liposomes extravasation observed after 30 min 

heating at 41 °C, while no extravasation occurred without HT. An increase in the 

gaps between endothelial cells of the tumour vasculature to 10 µm and increase in 

liposome penetration depth from permeable vessels was observed after 1 h heating to 

41 ºC. Interestingly this hyperpermeable state of tumour blood vessels was 

maintained for 8 h after HT; however, the penetration depth was tumour model 

dependent (extravasation was increase to at least 27.5 µm for the tumour 

vasculature). No changes were observed in the vasculature of normal tissues with the 

applied thermal dose (Li et al. 2013a).  

Alongside the improved tumour extravasation, mild localized HT can be used to 

boost local drug bioavailability when combined with thermosensitive delivery 

systems (Kong et al. 2000a; Manzoor et al. 2012). This can be accomplished by 

triggering either intravascular release while circulating inside tumour blood vessels 

or interstitial release after tumour extravasation (Koning et al. 2010). The use of HT 

for this purpose is restricted to solid tumours where surgical intervention is not 

applicable and cannot be extended to metastatic tumours (Kong et al. 1999). 

Drug delivery systems for temperature-triggered content release have been studied 

in a number of different types such as polymers, peptides, hydrogels and metallic 
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nanoparticles (Bikram et al. 2008; Abulateefeh et al. 2011; Zhu et al. 2013). 

Whereas most of these systems are under development at their preclinical stages, 

temperature-sensitive liposomes (TSL) are progressed to an advance stage of 

development and an example on that is in phase III clinical trials (ClinicalTrials.gov. 

2012b). Therefore, the focus of this thesis will be predominantly on TSL and their 

use with local hyperthermia for heat-triggered drug release.  
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1.3 Evolution of Temperature-Sensitive Liposomes (TSL) 

1.3.1 Rationale Design of TSL for Triggered Drug Delivery 

Since the concept of TSL was first introduced by Yatvin in late 1970s a lot of 

effort has been made to explore the potential in that area. Indeed, over the past thirty 

years the field of TSL has been widely expanded starting from comprehensive design 

of TSL all the way to testing and understanding the therapeutic aptitude. In this thesis 

TSL are classified into five subgroups based on the chemical components included in 

their design. Figure ‎1-4 illustrates the different types of TSL formulations described 

in the literature. The design of TSL, mechanism of thermal responsiveness, drug 

release kinetics, heating protocols and clinical values of TSL are all discussed.  

 

Figure ‎1-4: Schematic presentation of different types of TSL and different chemical components 

included in their design.  
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1.3.1.1 Prototypical TSL- Exploiting Phase Transition Temperatures of Lipids 

The pioneer TSL described by Yatvin et al. in 1978 was composed of 

DPPC:DSPC lipids mixed at certain molar ratios. This formulation showed increase 

in the release of encapsulated neomycin in vitro after heating to their phase transition 

temperature (Tm) which was associated with inhibition of bacterial growth (Yatvin et 

al. 1978). This formulation represents the prototypical type of TSL in this class 

produced by mixing DPPC lipid which has Tm of 42 °C with DSPC lipid that has 

Tm of 55 °C at 7:3 molar ratios. This ratio allowed a Tm range between 41-43 °C. 

The temperature sensitivity of prototypical TSL is based on the tendency of the lipid 

components to undergo phase transition as a response to heat. When TSL heated 

through their Tm, areas of the phospholipid molecules start to change from the solid 

(ordered) gel phase to the liquid (disordered) crystalline phase creating boundaries 

between the two phases through which the drug permeability is enhanced (Figure 

‎1-5) (Yatvin et al. 1978). In the gel phase, lipid molecules are highly ordered and 

condensed. The hydrocarbon chains are fully extended and the head groups are 

immobile at the interface with water. When the temperature is elevated, the head 

group mobility begins to increase and with further increase in temperature towards 

the Tm of lipids, transition of hydrocarbon chains from gel phase to liquid crystalline 

phase occurs. At Tm the orientation of the C-C single bonds in the hydrophobic 

chains is changed from trans to gauche state (Torchilin 2003). The existence of both 

solid and liquid lipid domains at the Tm leads to the formation of leaky regions at the 

interface between these domains. As a result lipid membrane permeability increases 

at the interfaces, which has been signified previously by dramatic increase in Na
+
 

ions diffusion. Although the ions permeability is highest at the Tm, it reduces as the 

temperature goes beyond due to the reduction in the existence of those boundary 

regions. When the lipid membrane fully melts with further temperature increase, the 

membrane permeability is increased again as the lipid bilayer is predominantly in the 

fluid phase (Papahadjopoulos et al. 1973). Grain boundaries result from defects in 

the crystalline arrangement of lipid molecules in that region. The crystalline structure 

is produced during liposome preparation process that involves cooling down of lipid 

bilayer from its liquid phase into solid phase. When the lipid bilayer is cooled toward 

Tm of the lipids, solidification of the lipid membrane appeared as nucleation of solid 

domain within the melted lipid membrane. These individual solid domains continue 
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to grow by orienting lipid molecules into crystal-lattice- like structures. The growth 

of these domains then stops when they approach each other in the final gel phase 

membrane and this leads to the formation of grain boundaries (Landon et al. 2011).  

 

Figure ‎1-5: Schematic presentation of phase transition behaviour of TSL. 

When the lipid membrane passes through transition temperature (Tm), the bilayer permeability 

increases. Below that temperature, lipid membranes exist in solid phase only and therefore no drug 

release is expected. At the Tm, the existence of both the solid and the liquid phases leads to the 

formation of grain boundary defects in the bilayer through which drug release occurs. Adapted from 

(Landon et al. 2011). 

Similar to Yatvin formulation most of the early examples of prototypical TSL 

were composed mainly of DPPC or DPPG lipids mixed with other types of lipids like 

DSPC and HSPC lipids in order to tune the Tm and the rate of drug release (Yatvin 

et al. 1981; Bassett et al. 1986; Iga et al. 1991; Maruyama et al. 1993; Gaber et al. 

1995) (Figure ‎1-6). The use of lipid mixture can also contribute to improved lipid 

membrane permeability by increasing the defect in lipid packing. Prototypical TSL 

were further developed by inclusion of cholesterol to optimize their serum stability. 

However, this can also have a negative effect on the rate and extent of drug release in 

response to temperature which can be linked to the increase and broadening of Tm 

after inclusion of cholesterol (Gaber et al. 1995). The blood circulation time of 

prototypical TSL was also increased by adopting the same approaches used with 

other stealth liposomes. The inclusion of GM1 or DSPE-PEG2000 lipids into TSL led 

to reduced interaction with MPS cells and enhance their blood profile which 

reflected in better control over tumour growth rate (Maruyama et al. 1993; Unezaki 

et al. 1994). Recently Li et al. showed that incorporating 5 mol% of PEG is the 

optimal concentration to provide a balance between the stability of TSL at 37 °C 
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without jeopardizing the temperature sensitivity at mild HT (Li et al. 2010). In 

addition to the typical benefits provided by DSPE-PEG2000 as mentioned above, the 

inclusion of this micelle lipid adds to the thermal sensitivity of prototypical TSL. 

DSPE-PEG2000 inclusion at 4-5 mol% drives the switch from mushroom or brush 

configuration. The heterogeneous structure of DSPE-PEG2000 causes destabilization 

of lipid membrane around Tm and increases contents release without significantly 

affecting the Tm (Li et al. 2010). An interesting example of that is 

DPPC:HSPC:CHOL:DSPE-PEG2000 TSL that contains 3.2 mol% of DSPE-PEG2000 

lipids. The addition of DSPE-PEG2000 revealed the thermal sensitivity of the 

lipsomes even with the presence of cholesterol as observed from differential 

scanning calorimetry (DSC) thermograms. This formulation released 60% of DOX in 

vitro in 50% plasma (Gaber et al. 1995). Alternatively, Lindner et al. showed that the 

inclusion of DPPGOG lipid (Figure ‎1-6) into DPPC:DSPC liposomes can prolong 

their circulation time in vivo together with significant enhancement in their content 

release upon heating (Lindner et al. 2004; Hossann et al. 2007). In addition, Dicheva 

et al. Described, recently, that targeting TSL to the tumour tissue can be improved by 

the preparation of a cationic TSL (CTSL) by including 10 mol% of DPTAP cationic 

lipid (Figure ‎1-6) into DPPC:DSPC:DSPE-PEG2000 liposomes. The outcome of that 

was a slightly positive zeta potential compared to the slightly negative charge of 

most of other TSL and consequently, better targeting ability to endothelial and 

tumour cells with contents release upon temperature triggering. (Dicheva et al. 

2012).  

For a long time, prototypical TSL have been mistaken for having slow and 

incomplete release profiles under mild HT. Likewise, the relatively high Tm of this 

class of TSL (42-45ºC) suggested that high thermal dose is required to achieve 

effective drug release (1 h heating at temperature > 42 ºC) (Ta et al. 2013). However, 

most of the release profile data were generated in a buffer and this does not reflect 

the real biological conditions (Unezaki et al. 1994; Gaber et al. 1995; Hosokawa et 

al. 2003). It is also important to note the difference in the mode of release of DOX 

compared to other fluorescent dyes such carboxyfluorescein (CF) due to the variation 

in the encapsulation mechanism adapted. Higher percentage of release usually 

reported for DOX compared to CF under the same conditions is due to the collapse 

of the pH gradient mechanism used for DOX loading as a result of the increase in 
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proton diffusion across the lipid membrane at Tm. Approximately 95% DOX release 

was reported from DPPC:DSPC:DSPE-PEG2000 90:10:5 liposomes after 1 min of 

heating at 42 ºC compared to < 50% of CF under similar conditions  (Li et al. 2010; 

Li et al. 2013b).  

 

Figure ‎1-6: Chemical structures of the lipids used in the design of prototypical TSL. 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)

1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DPPG)

1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] 

(ammonium salt) (DSPE-PEG2000)

Cholesterol

Ganglioside GM1 

1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP Chloride salt) 

1.2-dipaimitoyl-sn-glycero-3-phosphoglyceroglycerol (DPPGOG) 
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Interestingly, the presence of serum protein can have a favourable effect on 

temperature sensitivity of this type of TSL and results in an increase in the rate of 

drug release by gaining access into the grain boundary of lipid membrane at Tm 

(Gaber et al. 1995; Kong et al. 1999; Hosokawa et al. 2003; Hossann et al. 2007; 

Hossann et al. 2010; Hossann et al. 2012). Moreover, the presence of cholesterol in 

the serum can also contribute to better permeability. The ability of cholesterol to 

exchange between vesicles leads to disturbance in the lipid packing and causes an 

improved permeability (Hossann et al. 2012). The effect of serum on release profile 

can vary with the origin of the serum used, its concentration and the duration of 

exposure. This can explain the discrepancy in the release data reported from 

prototypical TSL (Gaber et al. 1995; de Smet et al. 2010). The effect of serum 

component on the thermal sensitivity of prototypical TSL, can justify the increase in 

therapeutic activity observed in a number of preclinical studies over wide range of 

tumour models using mild heating conditions (42 °C) (Kong et al. 1999). This was 

also confirmed recently in real time imaging study by Li et al. that showed efficient 

intravascular DOX release after heating at 42 ºC followed by rapid uptake of DOX 

by endothelial cells and tumour cells. This resulted in high and homogeneous DOX 

penetration into tumour cells and improves tumour growth control (Li et al. 2013b).  
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1.3.1.2 Lysolipids-Containing Temperature-Sensitive Liposomes (LTSL) 

The concept of lysolipid-containing thermosensitive liposomes was first described 

by Anyarambhatla and Needham in 1999 (Anyarambhatla et al. 1999) and led to a 

new concept in the field of drug delivery by triggering drug release in the blood 

vessels or what is called intravascular drug release (Landon et al. 2011; Manzoor et 

al. 2012; Needham et al. 2012; Needham et al. 2013). They first proposed that the 

incorporation of ~ 10 mol% of MPPC lysolipids into DPPC:DSPE-PEG (90:4) 

lipsomes lowers the Tm of DPPC:DSPE-PEG liposomes from 41.9 ºC to 41 ºC and 

leads to rapid drug release in a concentration dependent manner (Anyarambhatla et 

al. 1999). Compared to the more traditional thermal sensitive liposomes by Yatvin et 

al (Yatvin et al. 1978) described earlier, lowering the Tm to 41 ºC is a critical 

parameter for temperature triggered drug release. For clinical applications, mild HT 

< 43 ºC is recommended because higher temperature can result in haemorrhages 

(Thrall et al. 1992) and can also cause necrotic damage to the neighbouring healthy 

tissues (Ben-Yosef et al. 1992; Landon et al. 2011).  

The design of LTSL requires the presence of three essential components; a solid-

phase liposome with grain boundary deformation (DPPC lipids), that acts as a host 

lipid and forms the bilayer of the liposome, in addition to mono alkyl lysolipids and 

pegylated lipids at several mol% that act as permeabilising ingredients and steric 

stabilising components (Needham et al. 2013). The combination of these lipid 

components allows drug release in only few seconds when heated to their phase 

transition temperature (Mills et al. 2005). MSPC lysolipid was then used instead of 

MPPC to increase the liposome stability during processing and drug retention 

capability. The longer acyl chain (C18) of MSPC lysolipid increased the Tm to 41.3 

°C and reserved the ultrafast release property (Mills et al. 2005).  

In order to understand the release mechanism of LTSL liposomes, Mills and 

Needham studied the permeability of the liposome membrane using a dithionite 

(S2O4
_2) permeability assay (McIntyre et al. 1991). The membrane permeability was 

studied by preparing NBD (1%) labelled DPPC:DSPE-PEG2000 (4 %) liposomes with 

and without MSPC (10%). The addition of dithionite at 30 °C quenched the signal of 

NBD lipids in the outer membrane only due to the impermeability of the lipid 

membranes to dithionite ions. Repeating the experiment at the Tm, quenched the 
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absorbance of the NBD lipids at the inner membrane since the lipid membranes 

become permeable to dithionite ions. This decrease in absorbance is faster for 

DPPC:DSPE-PEG (4%) liposomes having 10 % MSPC and dramatically increased at 

42 °C demonstrating the role of lysolipid (MSPC) in increasing the permeability of 

LTSL liposomes at Tm (Mills et al. 2005). The permeability coefficient of the 

liposomes membranes with and without MSPC lysolipid was also measured using 

the following formula; C(t) = C0 (exp (-m2 t), where m2 is the permeability rate 

constant, C(t) is the concentration of un-reacted NBD molecules at time t, and Co is 

the concentration of un-reacted NBD molecules on the inner monolayer at zero time 

point. The permeability coefficient of DPPC:DSPE-PEG (4%) having 10% MSPC 

was measured to be 1.09 x 10
-8

 cm/s, ten folds higher than liposomes without MSPC 

(1.9x10
-9

 cm/s). A similar ten folds increase in DOX permeability coefficient at 42 

°C was evidence by adding MSPC (10%) compared to liposomes without MSPC 

measured at 3.3 x 10
-9

 cm/s and 3.4 x 10
-10

 cm/s, respectively (Mills et al. 2005). 

Mills and Needham compared the permeabilities of the liposomes to dithionite ion 

(radius 3 A°) and DOX (radius 500 A°) with and without lysolipid at the Tm. For 

pure DPPC membranes dithionite permeability was six times higher compared to 

DOX indicating easier permeability to smaller ions. Liposomes having 10% MSPC 

showed three times higher permeability for dithionite ions compared to DOX which 

was believed to be through a water-filled pore rather than the hydrocarbon chain 

(Mills et al. 2005). Thus, the ultrafast release of LTSL contents appears to be due to 

the enhancement of the grain boundary and nonporous caused by the inclusion of 

lysolipid component (Figure 1-7) though which both ions and small molecular 

weight drugs can permeate (Mills et al. 2005). The size of these nanopores appears to 

be ~ 10 nm as estimated from dextran permeation measurements (Needham et al. 

2013). Lysolipids have a relatively large head group compared to their single acyl 

chain, this gives them a positive intrinsic curvature and a tendency for micelles 

formation in aqueous solution above their CMC (~0.4 µM) (Needham et al. 2013). 

Upon approaching the phase transition, the increase in lateral lipids movements 

encourages lysolipids accumulation at the melted grain boundaries and the formation 

of stabilised defects (nanopores) in the lipid membrane. Similar to what was 

observed before with prototypical TSL, the presence of DSPE-PEG2000 can add to the 

thermosensitivity of the system but through a different mechanism.  
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Figure ‎1-7: Schematic presentation for drug leakage and nanopores formation in LTSL. 

Below phase transition (37 ºC) drug leakage from DPPC:MSPC:DSPE-PEG2000 (LTSL) bilayer can 

occur through grain boundary in the bilayer due to the presence of lysolipids. Ultrafast drug release at 

phase transition region through MSPC nanopores that stabilised by DSPE-PEG2000. Adapted from 

(Needham et al. 2013). 

Despite having two hydrocarbon chains, DSPE-PEG2000 still has affinity for 

micelles formation in aqueous solution. The shape factor of DSPE-PEG2000 is close to 

lysolipids as it has much larger head groups in relation to the tail groups because of 

the PEG2000 polymer. Therefore, in principle, the presence of DSPE-PEG2000 lipids 

can help to some extent in the formation and / or stabilisation of the nanopore 

structure by bringing a second property, a repulsive forces inside the nanopores 

(Needham et al. 2013). Different concentrations of lysolipids and DSPE-PEG2000 

lipids were matched against the release profiles of DOX and CF. Despite being not 

optimum regarding DSPE-PEG2000 coverage (The boundary concentration of DSPE-

PEG2000 between mushroom and brush conformation is 5 mol%), the formulation that 

progressed into preclinical and clinical studies consisted of DPPC:MSPC:DSPE-

PEG2000 (86.5:9.7:3.8) mol/mol where more than 80% release of encapsulated DOX 

was achieved after 20 s in mild HT (Landon et al. 2011). Mill and Needham 

demonstrated that the mechanism by which drug release at Tm is through lysolipids 

stabilized nanopores rather than enhancement of drug solubility in the lipid 

membrane (Mills et al. 2005). Employing mass spectrometry and dialysis 

experiments, they also confirmed that the lysolipid was sufficiently retained in the 

lipid membrane above Tm after extensive dilution. These studies were ran as control 

and were performed in buffer to demonstrate the effect of micromolar solubility on 

the desorption of lysolipids from liposomal membrane. Therefore, these experiments 
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were performed in the absence of serum proteins and lipids that could act as a sink 

for lysolipids and, by design, did not simulate the actual physiological conditions 

(Mills et al. 2005). However, in the presence of biological media (serum protein, 

whole blood) lysolipids could be extracted from liposome membrane to these 

components. Banno et al. showed the dissociation of almost 70% of lysolipids from 

LTSL liposomes within 1 h after in vivo administration and postulated that this might 

be through exchange with plasma proteins or cellular membranes (Banno et al. 

2010). Banno and Wood et al showed that the blood circulation half life of DOX 

retention in LTSL liposomes is ~ 1 h, indicating DOX leakage from LTSL liposomes 

at 37 °C after in vivo administration (Banno et al. 2010; Wood et al. 2012). 

However, LTSL limited stability is unlikely due to the loss of the lysolipid because 

of the reduced permeability of liposomes without lysolipid compared to LTSL 

liposomes. Needham speculated that DOX loss from LTSL is more likely due to the 

H
+
 ions transport resulted in DOX cation deprotonation and increased its solubility 

followed by leakage though even solid phase membrane (Needham et al. 2013).  

The inclusion of DSPE-PEG lipids in LTSL liposomes was expected to stabilise 

the lipid bilayer from interaction with serum protein, despite that, incubation of 

LTSL liposomes in serum at 37 ºC resulted in ~20-30% leakage of DOX content in 

30 min, compared to other TSL formulations (de Smet et al. 2010; Hossann et al. 

2012) having higher serum stability. In addition Chiu et al. observed 50% loss of 

encapsulated DOX within 1 h after in vivo administration (Chiu 2005), however in 

this system DOX encapsulation was performed with transition metal, manganese. On 

the contrary, Anyarambhatla et al. showed that LTSL formulation had good retention 

to encapsulated CF (in FBS and 50% bovine serum), and DOX (in plasma) at 37 °C 

(Anyarambhatla et al. 1999), which leaves serum and blood DOX leakage data 

unexplained. In addition, the loss of the lysolipid from LTSL formulation can have a 

negative effect on the thermal-sensitivity of the formulation. A time dependent 

decrease in the percentage of DOX release was observed from LTSL liposomes 

recovered after in vivo administration which is consistent with the increase in the 

percentage of lysolipid loss overtime (Banno et al. 2010). DOX leakage from LTSL 

might be related to the adsorption of serum proteins that could destabilize the lipid 

bilayer. Although previous data and models of protein adsorption through PEG 

mushroom coverage (Needham et al. 1998), suggested that only monomer 
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surfactants can penetrate the PEG stabilizing layer. Without enough studies of serum 

adsorption or association with LTSL, the exact mechanism of serum induced DOX 

leakage from LTSL cannot be completely resolved. However, this issue become 

apparent and explained in details by Needham (Needham et al. 2013). As a 

consequence of the relative instability of LTSL towards drug retention upon dilution 

with biological media, correct timing of LTSL administration with HT represents the 

most critical parameter for the success of this formulation as will be explained in 

details in section 1.3.2.  

In preclinical studies this formulation showed much effective (20-30 min) local 

targeted triggered release of DOX compared to free DOX and other TSL and non 

temperature-sensitive liposomes.  

LTSL formulation showed the highest preclinical tumour growth retardation in 

multiple tumour models (colon HCT116, squamous cell FaDu, prostate PC-3, 

ovarian SKOV-3 and mammary 4T07). Compared to traditional TSL and NTSL 

(Yarmolenko et al. 2010). In FaDu tumour model LTSL treatment in combination 

with HT (1 h at 42 ºC immediately after injection) showed complete tumour 

regression up to 60 days compared to only some tumour growth control (31-35 days) 

from TTSL and Doxil-like NTSL combined with 1 h HT at 42 °C (Kong et al. 

2000a). Similar results were observed from another study showing 11/11 tumour 

growth regression 60 days after treatment (Needham et al. 2000). The increase in 

therapeutic efficacy was consistent with the amount of DOX tumour accumulation. 

Quantification of DOX concentration in the tumour showed that LTSL+ HT resulted 

in the highest tumour drug level (25.6 ng/mg), 30 fold increase compared to free 

DOX and 3-5 times higher than other liposomal treatment at the same temperature. 

In addition the bioavailability of DOX was also improved; LTSL was also the only 

formulation that showed significant DNA-bound fraction of DOX (quantified by 

sliver nitrate extraction). Almost half of the DOX delivered to the tumour was 

bioavailable to tumour cells just 1 h after HT (Kong et al. 2000a). In contrast, DOX 

bioavailable fraction from free DOX, TTSL and NTSL was not detectable. These 

findings indicated that the increased drug release rate of LTSL is crucial to increase 

DOX bioavailability, whereas the relatively slow leakage from other liposomal 

formulations was responsible for their reduce bioavailability (Kong et al. 2000a). 
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Though DOX quantification data were restricted to only 1 h after injection and 

longer time points, where increased liposomes extravasation might be anticipated, 

were not studied. The conclusion from these studies was that both drug release rate 

and the amount delivered to the tumour were crucial to achieve therapeutic efficacy. 

LTSL offers a novel concept for the delivery of anticancer drugs by promoting 

ultrafast drug release inside the tumour blood vessels resulted in LTSL liposomes 

having both anti-vascular anti-neoplastic effects (Kong et al. 2000a; Needham et al. 

2000). To allow for intravascular drug release, the loaded drug release needs to be 

faster than the transient time of the liposomes in the vasculature of the heated 

tumour. This is estimated to be around 50 s for a two-cm tumour (Chen et al. 2008). 

The new paradigm of drug release offered by LTSL overcomes the problems of 

heterogonous vascularity and limited penetration as it does not depend on liposomal 

extravasation (Landon et al. 2011). Indeed, recent preclinical study by Manzoor et al. 

confirmed that in vivo LTSL injection into preheated tumour not only resulted in 

DOX release in the blood stream but associated with deeper tumour penetration as 

observed using intravital fluorescence imaging of DOX delivery into FaDu tumour 

model (Manzoor et al. 2012). Intravascular release of DOX from LTSL significantly 

increased free drug penetration distance into the interstitial space and the time to 

which tumour cells exposed to maximum drug concentration compared to free DOX 

and Doxil-like NTSL (Manzoor et al. 2012). LTSL injection into warm tumour 

delivered 3.5 times higher DOX level than free drug up to 78 µm from both sides 

from blood vessels (double the penetration distance of Doxil 
®
). 

LTSL formulation developed by Needham is currently commercially available as 

ThermoDox® (Celsion) and is currently in clinical trials (Celsion.com 2013c). Phase 

I trial was initiated in canine tumours to determine the maximum tolerated dose 

(MTD) and pharmacokinetics (PK) parameters (Hauck et al. 2006). LTSL MTD was 

0.93 mg/kg slightly less than that reported for free drug and Doxil
®

. PK parameters 

of LTSL were closer to free DOX compared to Doxil
®
. Some variable drug delivery 

was observed in this study due to variability in tumour heating, especially for bigger 

sized tumours, and the possibility of increase in core body temperature. Despite that 

overall DOX tumour level for LTSL was 10 times higher that free DOX that resulted 

in improved therapeutic outcome. Tumour response observed was encouraging for 

further evaluation in human (Hauck et al. 2006).  
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Examples include the combination therapy with radiofrequency ablation (RFA) in 

patients with hepatocellular carcinoma (HCC) (phase III) (ClinicalTrials.gov. 2012b) 

and metastatic colorectal cancer (mCRC) (ClinicalTrials.gov. 2013b). ThermoDox® 

is also being tested in combination with mild HT for chest wall recurrence of breast 

cancer (RCW) following mastectomy (phase I/II) (ClinicalTrials.gov. 2013a) and 

palliation of prostate cancer metastases to bone with magnetic resonance (MR) 

Guided High Intensity Focused Ultrasound (HIFU) (ClinicalTrials.gov. 2012a). 

Inspired by LTSL formulation, other TSLs that share similar concept have been 

recently described in the literature. The HaT formulation, developed by Tagami, is 

one example. This formulation is based on DPPC lipids with Brij 78 surfactant 

(Figure ‎1-8) at 96:4 molar ratios. This formulation shares the same concept with 

LTSL but in much simplified way. Brij surfactant, compromised of a single acyl 

chain attached to a PEG moiety, has the properties of both lysolipid and DSPE-PEG, 

therefore, it can have both the stabilisation and pore-formation properties of LTSL. 

(Tagami et al. 2011b). HaT formulation promoted drug release in a time scale similar 

to LTSL and had very similar drug retention properties at 37 ºC (~20% release in 30 

min) in vitro which was consistent with blood profile data (only 40% remained in the 

blood in 1 h). Preclinical studies with this formulation showed slightly higher DOX 

level in EMT-6 heated tumour at 43 ºC compared to LTSL. Single treatment with 

HaT formulation at 3mg/kg DOX concentration into tumour-bearing mice in 

combination with HT resulted in enhanced tumour growth retardation compared to 

LTSL (Tagami et al. 2011a). HaT-II is an optimised formulation that was obtained 

by using Cu
+2 

gradient instead of pH gradient for DOX loading. Slight improvement 

in the pharmacokinetics parameter (2.5 folds reduction in blood clearance compared 

to HaT and LTSL) and tumour accumulation ( 2 fold relative to LTSL and 1.4 fold vs 

HaT) were observed from HaT-II compared to HaT and LTSL that resulted in a 

better therapeutic efficacy (Tagami et al. 2012). Liposomes composed of 

HePC:DPPC:DSPC:DPPGOG designed by Lindner et al. are another example of this 

class of TSL. HePC is structurally similar to MPPC lysolipids but is chemically and 

metabolically more stable and can act as an anti-cancer drug (Figure ‎1-8). DPPGOG 

lipid was used to replace DSPE-PEG2000 as it was shown previously by the same 

group to prolong the circulation time of liposomes and enhance temperature 

sensitivity (Lindner et al. 2008). This formulation acts in a very similar way to 
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lysolipid-containing formulation resulting in 90 % CF release at 42 °C after 5 min 

incubation. 

 

Figure ‎1-8: Chemical structures of the lipids used for the design of lysolipids-containing TSL. 

  

Hexadecyl phosphocholine (HePC) 

Polyoxyethylene stearyl ether (Brij78)

1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (MSPC)

1-palmitoyl-2-hdroxy-sn-glycero-3-phosphocholine  (MPPC)
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1.3.1.3 TSL Modified with Synthetic Temperature-Responsive Polymers. 

Another strategy for designing temperature-responsive liposomal systems is to 

attach thermosensitive amphiphilic molecules (particularly temperature-responsive 

polymers) to the liposomal membrane. These polymers have temperature-disruptive 

effect on the lipid membrane because they change in conformation in response to 

changes in environmental temperatures. Therefore, temperature-sensitive polymers 

can either give a thermoresponsive property to non temperature-sensitive lipsomes or 

improve thermal responsiveness of thermosensitive lipsomes. At the molecular level, 

thermosensitive polymer chains undergo a coil to globule transition as the 

temperature passes through their low critical solution temperature (LCST) (Figure 

‎1-9). Below LCST the polymer is hydrated and sterically stabilises the liposomes 

surface. As the temperature increases (T > LCST), condensation of the polymer 

results in exposing the liposome surface which leads to destabilisation and content 

release (Kono 2001). Because the polymers change from hydrophilic to hydrophobic 

with temperature, stabilisation and destabilisation of polymer-modified TSL can be 

controlled by temperature, thereby controlling drug release and interaction with cells 

and serum proteins (Kono 2001). Table ‎1-1 summarises the different examples of 

polymer-modified TSL described in the literature. The liposomal formulation, the 

types of thermosensitive polymers used and their LCST are explained. For chemical 

structures of temperature-sensitive polymers used, please refer to Figure ‎1-10.  

 

Figure ‎1-9: Mechanism of drug release from polymer modified TSL. 

Below LCST polymer chains are hydrated which give a stabilising effect to the liposomes. When the 

ambient temperature exceeds LCST, the polymer becomes dehydrated and changes into globule 

status. This destabilises the lipid membrane and releases liposomal content.   
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Table ‎1-1: Examples of polymer modified temperature-sensitive liposomes  

Liposomal 

Composition 

Temperature sensitive polymer LCST Dye / 

Drug 

Experimental design References 

EPC & DPPC p-(NIPAM-ODA) 27 °C CF 

Calcein 

In vitro release study (Kono et al. 
1994) 

DOPE p-(NIPAM-ODA) 32 °C Calcein In vitro release study (Hayashi et 

al. 1996) 

EPC, DMPC:DPPC 

DPPC & DSPC 

p-(NIPAM-AA-ODA) 30-43 °C Calcein In vitro release study (Kim et al. 

1997) 

DLPC 

DPPC 

DSPC 

p-(NIPAM-ODA) 32 °C Calcein In vitro release study (Hayashi et 

al. 1998) 

EPC & EPC:DOPE p-(NIPAM-NDDAM) 28 °C Calcein In vitro release study (Kono et al. 

1999a) 

EPC 
p-(APr-NIPAM)-2C12 

40 °C MTX In vitro release study and 
cellular cytotoxicity 

(Kono et al. 
1999b) 

DOPE p-(APr-NIPAM)-2C12 

p-(APr-NIPAM-NDDAM) 

33-34 °C Calcein In vitro release study (Kono et al. 

1999c) 

DOPE:EPC 
p-(NIPAM-NDDAM-AAM)  
p-(NIPAM-AAM) 

39-46 °C 
Calcein In vitro release study 

(Increasing LCST) 

(Hayashi et 
al. 1999) 

DOPE p-(APr-NIPAM)-2C12 

PEG550-2C12 

38 °C 
Calcein In vitro release study and 

serum stability 

(Effect of PEG) 

(Kono et al. 

2002) 

EPC p-(APr-NIPAM)-2C12 

p-(DMAM-NIPAM)-2C12 

p-(NIPAMAM-NIPAM)-2C12 

40 °C 
Calcein In vitro release study  

(Effect of ∆H) 

(Yoshino et 

al. 2004) 

DOPE:EPC p-(EOEOVE-ODVE) 
36 °C 

Calcein In vitro release study (Kono et al. 

2005) 

DPPC:HSPC:CHOL:

DSPE-PEG-2000 

p(NIPAM-AAM) 
40& 47 

°C DOX In vitro release and 

stability study 

(Han et al. 

2006a) 

DPPC:HSPC:CHOL:

DSPE-PEG2000 

p(NIPAM-AAM) 
40 °C 

DOX In vitro and in vivo study (Han et al. 

2006b) 

DPPC:CHOL & 
DOPE-EPC 

p(HPMA mono/dilactate)-
CHOL 

42 °C 
Calcein In vitro release study  (Paasonen et 

al. 2007b) 

DPPC:HSPC:CHOL:

DSPE-PEG2000 

p(NIPAM-AA)-DMP 
42 °C at 

pH 6.5 DOX In vitro pH and 

temperature sensitivity 

(Ta et al. 

2010) 

EPC:CHOL-DSPE-
PEG2000 

EPC:CHOL-DSPE-

PEG2000-Gd 

p(EOEOVE-ODVE) 
40 °C 

DOX In vitro and in vivo study (Kono et al. 
2010) 

(Kono et al. 

2011) 

EPC:DSPE-PEG5000-

Fe 3O4 

p(EOEOVE-ODVE) 
40 °C 

Pyrene Magnetic imaging and 
heat triggered release 

(Katagiri et 
al. 2011) 

Studies highlighted in blue represents polymer-modified liposomes progressed to preclinical investigation.  
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Figure ‎1-10: Chemical structures of temperature-sensitive polymers used for the design of TSL. 

Chemical groups represented in red colour stand for the hydrophobic anchor groups used to fix the 

polymers into the lipid bilayer.  

p(NIPAM-ODA) p(NIPAM-AA-ODA)
p(NIPAM-NDDAM)

p(APr-NIPAM-NDDAM)

p-(APr-NIPAM)-2C12

p(NIPAM-NDDAM-AAM)

p(NIPAM-AAM)

p(EOEOVE-ODVE)

p(HPMA mono/dilactate)–CHOL

p-(NIPAMAM-NIPAM)-2C12

p-(DMAM-NIPAM)-2C12

p(NIPAM-AA)-DMP
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Most of the early examples of polymer-modified TSL were designed with N-

isopropylacrylamide (p-NIPAM) since it is the most extensively studied 

thermosensitive polymer. It has LCST around 32 °C, however, its LCST can be 

adjusted by co-polymerization with other monomers with different hydrophilic or 

hydrophobic properties (Shibayama et al. 1996). LCST decreases by co-

polymerization with hydrophobic monomers such as ODA and NDDAM (Kono et al. 

1994; Kono et al. 1999a), and it can be increased by co-polymerization with 

hydrophilic polymers for example AA or AAM (Kim et al. 1997; Han et al. 2006a).  

Polymer-modified TSL was first proposed by Kono et al. where they attached P-

(NIPAM-ODA) polymer into the lipid bilayer through the hydrophobic group of 

ODA. The long alkyl chain of ODA serves as an anchor to fix the hydrated part of 

the polymer into the liposome surface (Kono et al. 1994). In this early study, Kono 

and co-workers studied the effect of surface modification of both non temperature-

sensitive liposomes (EPC) and thermosensitive liposomes (DPPC) with p-(NIPAM-

ODA) and found an increased release of encapsulated fluorescent dye at temperature 

greater than LCST of polymer (~70 % Calcein release from DPPC liposomes and 

~45 % CF release from EPC liposomes at 41 °C) with minimum release below LCST 

(< 10 % at 20 °C). The higher release observed from polymer-modified DPPC 

liposomes compared to EPC indicated synergistic effect between the 

thermosensitivity of the DPPC liposomes and membrane destabilisation induced by 

the polymer. 

The hydrophobic anchors used for polymer fixation can be either randomly 

distributed along the polymer backbone or attached at the end of the polymer. Kono 

et al. has studied the effect of the anchor position on content release properties of 

calcein-loaded DOPE liposomes. Dramatic release over narrow temperature range 

was seen from DOPE liposomes modified with polymer having the terminal anchor 

(p-(APr-NIPAM)-C12) (70-90% release over temperature range from 41-42 °C) 

compared to those modified with the middle anchor p-(APr-NIPAM-NDDAM) (only 

60% release at 45 °C) (Kono et al. 1999c). Polymers attached to one end can change 

easily from a hydrophilic to a hydrophobic status compared to polymers fixed 

through multiple points because of the higher conformational freedom of the former 

(Kono et al. 1999c; Kono 2001). Stronger attachment of the polymer-anchor chain to 
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liposomes in the gel phase was observed compared to liposomes with fluid nature 

(Kono et al. 1994). The interaction between the polymer and the lipid bilayer is not 

dependent on the Tm of the liposomal system, but rather takes place above LCST 

(Kono et al. 1994). This phenomenon was explored systematically by Kono et al. 

and Kim et al. by studying the effect of pNIPAM-AA-ODA and pNIPAM-ODA 

polymers on the release of fluorescent dye from fluid and gel-phase liposomes. The 

release from liposomes having fluid nature is covered by the LCST of the polymer 

itself. In contrast, liposomes in the gel phase showed maximum release at the Tm of 

the liposomes. In both cases the maximum release achieved from polymer-modified 

liposomes was higher compared to plain liposomes (Kono et al. 1994; Kim et al. 

1997).  

The interaction of the polymer with the lipid bilayer can be improved by changing 

the lipid composition of liposomes, especially for those with fluid phase as no 

significant content release was observed from them. Inclusion of DOPE in EPC 

liposomes-surface coated with p(NIPAM-NDDAM) increased the fraction of content 

release above LCST. Almost 20 % increase in calcein release was measured from 

DOPE:EPC liposomes 64:36 mol/mol compared to pure EPC liposomes. This is 

probably because of H-bond formation between DOPE lipids and the polymer and 

the affinity of DOPE lipid to exist as a non bilayer structure (Kono et al. 1999a).  

Early example of polymer-modified TSL were designed with polymers having 

LCST below body temperature, therefore, they were not clinically suitable. New 

copolymers of NIPAM were then designed to have LCST around physiological 

temperature. Hayashi et al. showed that LCST of NIPAM can be adjusted around 

body temperature by free radical copolymerization with AAM monomers. Increase in 

NIPAM LCST was obtained by increasing the percentage of AAM monomers in a 

concentration dependent manner (Hayashi et al. 1999). Therefore, the release of 

encapsulated calcein can be adjusted at the desired temperature by controlling LCST 

of the polymer Similar findings were observed by Han et al. using DOX-loaded 

DPPC:HSPC:CHOL:DSPE-PEG2000 modified with p(NIPAM-AAM) (Han et al. 

2006a).  

The effect of comonomers type on content release was also investigated by 

studying three copolymers of NIPAM having the same LCST (40 ºC) but with 
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different transition‎ endotherms‎ (∆H);‎ p-(APr-NIPAM)-2C12, p-(DMAM-NIPAM)-

2C12 and p-(NIPAMAM-NIPAM)-2C12. To test if the structural difference between 

the polymers affects their interaction with lipid membrane and the percentage of 

content release, all three polymers were fixed to EPC liposomes by two dodecyl 

anchors at the termini of the polymer. Although all three polymers tested have the 

same LCST (40 °C), when interacted with EPC lipid membrane different percentages 

of calcein was released. Although, LCST of these three polymers measured by cloud 

point and DSC were almost similar, the enthalpy of their transition (∆H) was 

different since it correlates with the destruction of water around the hydrophobic 

groups. The percentage release of entrapped calcein from polymer-modified EPC 

liposomes increases‎with‎increasing‎the‎∆H of the polymers in the following order p-

(APr-NIPAM)-2C12 < p-(DMAM-NIPAM)-2C12 < and p-(NIPAMAM-NIPAM)-

2C12.‎ The‎ high‎ ∆H‎ of‎ p-(NIPAMAM-NIPAM)-2C12 indicates that this polymer 

forms the most hydrophobic domains above LCST and therefore resulted in the 

highest membrane disruptive effect. Although these liposomes showed rapid drug 

release at 42 ºC, this was associated with poor content retention capacity (~40% 

released in 15 min) at 37 ºC (Yoshino et al. 2004). 

Modification of liposomes with thermosensitive polymers also has the advantages 

of increasing the circulation time of lipsomes and minimising the uptake by MPS 

cells in a similar way to surface modification of liposomes with PEG polymer (Han 

et al. 2006b). Han et al. has studied the interaction of DPPC:HSPC:CHOL liposomes 

modified with p(NIPAM-AAM), having LCST of 40 °C, with serum protein, by 

quantifying the amount of adsorbed protein over time at 37 °C to 48h. Below LCST, 

the polymer exists in the hydrated state which reduces the amount of adsorbed 

protein compared to plain liposomes. In the same study protein adsorption was 

significantly reduced by introducing DSPE-PEG2000 lipid into p(NIPAM-AAM) 

modified liposomes (Han et al. 2006b).  

Along with other types of TSL the inclusion of pegylated lipid into polymer-

modified liposomes increases the serum stability at temperatures below LCST and 

enhances the thermal sensitivity at higher temperatures (Kono et al. 2002; Han et al. 

2006a; Han et al. 2006b). Kono et al. and Han et al. have shown that both PEG550-

2C12 and DSPE-PEG2000 improve serum stability at body temperature and 
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dramatically increase the percentage of drug release over narrow temperature range 

(Kono et al. 2002; Han et al. 2006a; Han et al. 2006b). Recently Kono et al. reported 

the optimization of EPC:CHOL liposomes surface coated with p(EOEOVE-ODVE) 

polymer for in vivo administration by adding 4 mol% of DSPE-PEG2000 into the 

formulation. These liposomes showed less than 10% DOX leakage at 37 °C 

compared to more than 20% from non-pegylated liposomes.  

The same concept applies to cellular uptake of polymer-modified liposomes. The 

uptake of this type of TSL is largely temperature dependent. This effect have been 

studied by Kono et al. looking at the interaction of MTX-loaded EPC lipsomes 

modified with p-(APr-NIPAM)-2C12 and EPC:CHOL:DSPE-PEG2000 liposomes 

modified with p(EOEOVE-ODVE) thermosensitive polymer with CV1 and HeLa 

cells, respectively. Polymer coated liposomes did not affect cells viability at 37 °C (~ 

80 % cell viability), however, cytotoxic activity dramatically enhanced with 

temperature increase (almost similar to the effect of free drug) (Kono et al. 2010). 

HeLa cells treated with polymer-coated liposomes showed limited drug uptake, 

however, substantial increase intracellular drug concentration with nuclear 

localization was observed at 5 minutes heating at 45 °C (Kono et al. 2010). 

An important drawback to the early work of NIPAM-based polymers was the 

large polydispersity index and the difficulty to control the molecular weight of the 

polymer. Overcoming those limitations in recent designs meant a sharp response to 

temperature over a narrow temperature range (Kono et al. 2005). Examples of those 

polymers include the p(NIPAM-AA) prepared by RAFT chemistry (Ta et al. 2010) 

and the poly(N-vinylethers) synthesized by living cationic polymerization (Kono et 

al. 2005). Liposomes modified with p(NIPAM-AA)-DMP showed interesting 

temperature and pH sensitivity due to the presence of ionisable carboxyl group that 

lowers the LCST at acidic conditions (e.g. tumour microenvironment) and enhances 

drug release (Ta et al. 2010). 

As an alternative to pNIPAM based polymers, poly(N-vinylethers) has been used 

recently for the design of TSL. Poly (N-vinylethers) act in the same way as pNIPAM 

and their LCST can be controlled by copolymerization with hydrophobic monomers 

that serve as anchor moiety to attach the polymer to the lipid membrane. Recently, 

Kono et al. showed that incorporation of p(EOEOVE-ODVE) polymer has LCST of 
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40 ºC into EPC:CHOL:DSPE-PEG2000 liposomes leads to less than 10% of DOX 

leakage at 37 °C and more than 90% of DOX release after 1 min incubation at 45 °C. 

The interaction of partially dehydrated polymer chains with PEG groups at the 

surface of liposomes minimized their interaction with lipid membrane at 

temperatures below LCST (40 °C). As LCST was exceeded, fully dehydrated 

polymer can result in PEG chains dehydration by H-bond formation. This increases 

their interaction with lipid membrane causing liposomes destabilisation and drug 

release (Kono et al. 2010). The enhanced stability at body temperature and ultrafast 

response to hyperthermic conditions suggested the suitability of this formulation for 

in vivo applications (Kono et al. 2010).  

Despite the interesting results of polymer modified liposomes described in vitro, 

only few preclinical studies were reported to evaluate their in vivo therapeutic 

activity. Han et al. studied tumour growth retardation effect of DOX-loaded 

DPPC:HSPC:CHOL:DSPE-PEG2000 liposomes modified with p(NIPAM-AAM) 

polymer after injection into B16F10 tumour-bearing mice at 6 mg/kg DOX in 

combination with 10 min local HT at 42 °C. Similarly, Kono et al. evaluated tumour 

growth retardation effect EPC:CHOL:DSPE-PEG2000 liposomes modified with 

p(EOEOVE-ODVE) after injection into C26 tumour-bearing mice. Therapeutic 

activity was studied with and without exposure to 10 min local HT at 45 °C 6-12 h 

after injection (Kono et al. 2010). The results of these studies showed promising 

tumour growth retardation when used in combination with local HT, which agrees 

with previous in vitro data. Multifunctional liposomes based on this formulation have 

been prepared recently either by surface modification of with Gd chelates (Kono et 

al. 2011) or by incorporation iron oxide nanoparticles into the lipid membrane to 

provide the capability of monitoring liposomes by MR imaging besides temperature 

trigger release properties (Katagiri et al. 2011). 

The Design of polymer-modified TSL offers more flexibility compared to other 

types of TSL. This helps to overcome some of the limitations of prototypical TSL 

such as the types of the lipids available, the size of the drug to be released and the 

temperature range required for content release (Hayashi et al. 1998; Kono 2001; 

Kono et al. 2002; Kono et al. 2005). Nevertheless, more work is warranted before 

this type of TSL can have clinical application. The development of temperature-
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sensitive polymers that respond under narrow temperature range is necessary to 

maintain stability under physiological condition and ensure effective drug release 

under mild HT. Further in vivo studies are required to compare the pharmacokinetic 

parameters and therapeutic efficacy to other types of TSL.   
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1.3.1.4 TSL Decorated with Metallic Nanoparticles (TSL-Nanoparticle 

Hybrids) 

While the liposomes and nanoparticles are separately clinically approved, the field 

of liposome-nanoparticles hybrids is still relatively new and represents a promising 

approach for designing multifunctional delivery systems (Preiss et al. 2011). 

Liposome nanoparticles hybrids formulation involves either encapsulation of 

nanoparticles inside the aqueous core of liposomes, embedment in the lipid bilayer, 

or surface adsorption onto the liposome surface and complex formation (Figure ‎1-11) 

(Al-Jamal et al. 2011; Preiss et al. 2011). Therefore these hybrid systems combine 

the inherent properties of both liposomes and nanoparticles and present innovative 

multifunctional platform for therapeutic and imaging applications. In addition, the 

incorporation of metallic nanoparticles can be used as a heating source when exposed 

to external stimuli such as alternating electromagnetic field (MF) or lights. (Volodkin 

et al. 2009; Wang et al. 2011c; Yoshida et al. 2012). Nanoparticles enhanced HT by 

means of radiofrequency (RF) or photothermal heating have been used to heat local 

malignant tissues (to temperatures between 40-45 °C or to thermo-ablative therapy 

(> 50 °C) to induce cellular necrosis and apoptosis by denaturing of intracellular 

proteins (Hildebrandt et al. 2002; Terentyuk et al. 2009; Hilger et al. 2012). 

Furthermore nanoparticles induced HT proved to have synergistic effect when used 

in combination with chemotherapy (Pradhan et al. 2010; Yoshida et al. 2012) and 

radiotherapy (Johannsen et al. 2010). HT induced with metallic nanoparticles can 

address some of the problems encountered with conventional HT techniques such as 

the difficulty to apply heating to deep or not readily accessible tumours (Preiss et al. 

2011).  

When used in conjunction with liposomes, nanoparticles-induced HT can provide 

a tool for triggered local drug release and theranostic applications. An example is the 

folate-targeted magnetic liposomes developed by Pardhan et al. that co-encapsulate 

iron oxide nanoparticles and DOX. These targeted magnetic liposomes depicted a 

significant increase cellular uptake equivalent to free DOX and synergistic 

cytotoxicity after triggered release with magnetic HT. Besides, the biological 

targeting against folate receptor, this system can be magnetically guided towards the 

target of choice (Pradhan et al. 2010).  
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1.3.1.4.1 Formulation of TSL-Nanoparticle Hybrids (TSL-NHs) 

The design of TSL-NHs can be divided into three main strategies; encapsulation 

into the aqueous core of the liposome, lipid membrane embedding and surface 

adsorption/complexation (Figure ‎1-11).  

 

Figure ‎1-11: Different strategies used for the design of TSL-NHs. 

Three main strategies have been reported for the preparation of TSL having metallic nanoparticles, 

namely; encapsulation, lipid bilayer embedment or surface adsorption/complexation. 

Encapsulation of preformed metallic nanoparticles into the core of the liposomes 

is the simplest and can be prepared by thin film hydration (Pradhan et al. 2010), 

reverse phase evaporation (Viroonchatapan et al. 1997; Zhu et al. 2009) or 

interdigitated phase transition (Wu 2008). The critical parameters in designing this 

type of TSL-NHs are the colloidal stability of the nanoparticles solution and the 

diameter of the nanoparticles which must be smaller than the diameter of aqueous 

core of liposome. The concentration of nanoparticles also restricts the available 

volume for co-encapsulation of other water-soluble molecules (Preiss et al. 2011). 

The incorporation of metallic nanoparticles into the lipid membrane is influenced by 

the differential osmotic pressure across the lipid membrane and the repulsive and 

attractive forces between the lipid membrane and the nanoparticles (Preiss et al. 

2011). It also requires the nanoparticles to be hydrophobic with a size that is 

comparable or smaller than the lipid membrane (5 nm) (Al-Jamal et al. 2008). For 
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larger nanoparticles, lipid molecules can distort to accommodate for the hydrophobic 

nanoparticles with sizes larger than acyl chain length. This is in agreement with the 

accommodation of large transmembrane proteins within the cell membrane (Bothun 

2008). Nanoparticles adsorption or complexation forms when hydrophilic 

nanoparticles are coupled to the surface of liposomes by attractive forces or 

electrostatic interaction. This type of TSL-NHs is relatively easier to prepare by 

mixing metallic nanoparticles with pre-formed lipsomes. Nanoparticles incorporated 

into the lipid membrane or adsorbed onto liposomes surface have the advantage of 

providing direct local heating of the bilayer when exposed to external stimuli (Chen 

et al. 2010; Paasonen et al. 2010; Katagiri et al. 2011; An et al. 2013). 

1.3.1.4.2 Applications of TSL-NHs 

The applications of TSL-NHs are determined by the type of nanoparticles, 

liposomal formulation and the interaction between the nanoparticles and the lipid 

membrane. In general TSL-NHs have the advantage of shielding the nanoparticles 

which reduces their interaction with external molecules and increases their 

biocompatibility (Preiss et al. 2011). TSL-NHs increase nanoparticles cellular uptake 

which is important for imaging and hyperthermia applications (Chithrani et al. 2010). 

Besides being a carrier for nanoparticles, TSL-NHs with thermosensitive properties 

can overcome the limitations of conventional liposomes by offering site specific drug 

release utilizing nanoparticles heating to control the onset and duration of drug 

release (Pradhan et al. 2010; Tai et al. 2010).  

The imaging and the thermal characteristics of gold nanoparticles are related to 

their enhanced surface Plasmon resonance property. The latter allows absorbed light 

at certain wavelengths to cause oscillation of surface electrons and subsequently, 

local heat generation. Heat generation can be controlled by the intensity of laser 

light, duration of exposure and the concentration of gold nanoparticles (Alkilany et 

al. 2012). Photothermal energy can then transfer into the lipid membrane leading to 

phase transition of the bilayer from gel phase to liquid crystalline phase causing 

triggered drug release (An et al. 2013). Similarly, the magnetic characteristics of iron 

oxide nanoparticles (magnetite or maghemite) can be used for both imaging and 

magnetic heating. Iron oxide nanoparticles are approved as a contrast agent for MRI. 

Moreover, magnetic drug targeting by static magnetic field application and magnetic 
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heat generation by exposure to alternated magnetic field are now possible. It follows 

that magnetic hyperthermia is considered as a physiologically accepted non-invasive 

heating method having good tissue penetration capability (Pankhurst 2003; Laurent 

et al. 2008). For the reasons listed above, interest in design TSL-NHs has increased. 

Recent examples of this type of TSL decorated with gold, silver and iron oxide 

nanoparticles are listed in Table ‎1-2, Table ‎1-3 and Table ‎1-4, respectively.  

Table ‎1-2: TSL-NHs decorated with gold NPs 

Liposomal 

Formulation 

NPs Type / size Coating Position Dye / 

Drug 

Function References 

DPPC Spherical NPs (3 - 4 

nm) 

Stearyl amine Lipid 

membrane 

- Concnetration 

dependent increase 

in memebrane 

fluidity 

(Park et al. 

2006) 

DPPC:DSPC Spherical NPs  

(2.5 nm) 

 

Spherical NPs  

(2.8 nm) 

 

DPPE-nanogold  

(1.4 nm) 

C6-SH 

 

 

MSA 

 

 

DPPE 

Lipid 

membrane 

 

Core 

 

 

Surface 

adsobed 

Calcein UV light triggered 

release (250 nm) 

(Paasonen et 

al. 2007a) 

DPPC Nanoshell (33 nm) SH-PEG-lipid 
linker. 

Core / 
lipid 

membrane 
/ surface 

adsorbed 

CF NIR triggered 
release (820 nm) 

(Wu 2008) 

DPPC:DPTAP:

CHOL 

Spherical NPs (20 nm) N.R Complex CF NIR triggered 

relase (830 nm) 

(Volodkin et 

al. 2009) 

DSPC:DPPC Spherical NPs (2.5 

nm) 

 

Spherical NPs (4 nm) 

C6-SH 

 

 

MSA 

Lipid 

membrane 

 

Core 

Calcein UV triggered 

release (365 nm) 

(Paasonen et 

al. 2010) 

DPPC:CHOL:

DSPE-PEG2000 

DPPE-Nanogold (1.4 

nm) 

DPPE surface 

adsorbed 

- Cellular uptake 

enhancer 

(Chithrani et 

al. 2010) 

EPC:CHOL Spherical NPs (5 nm) di-2 ethylhexyl 

sulfosuccinate 

Lipid 

membrane 

berberine UV light triggered 

drug release (250 

nm) 

(An et al. 

2010b) 

EPC:CHOL Spherical NPs (5 nm) Sodium dioctyl 
sulfosuccinate 

Lipid 
membrane 

berberine UV light triggered 
drug release (250 

nm) 

(An et al. 
2013) 
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Table ‎1-3: TSL-NHs decorated with silver NPs 

Liposomal 

Formulation 

Nanorticle Type / 

size 

Coating Position  Dye / 

Drug 

Function References 

DPPC Spherical NPs 

(4 nm) 

Stearylamine Lipid membrane - Increase lipid 

membrane fluidity 

(Park et al. 

2005) 

DPPC Spherical NPs 
(5.7 nm) 

decanethiol Lipid membrane - Reduce Tm and 
increase lipid 

membrane fluidity 

(Bothun 2008) 

Table ‎1-4: TSL-NHs decorated with iron oxide NPs 

Liposomal 

Formulation 

Nanorticle Type / size Coating Position Dye / 

Drug 

Function References 

DPPC Fe3O4 NPs (5-10 nm) Dextran Core 5-FU MF-induced 
drug release 

(Viroonchata
pan et al. 

1997) 

DPPC:CHOL γ-Fe2O3 NPs (10 nm) Glutamic 
acid 

Core MTX Magnetic 
trageting 

(Zhu et al. 
2009) 

DPPC:CHOL γ-Fe2O3 NPs 

(45- 60 nm) 

Dextran Core CF MF-induced 

release 

(Tai et al. 

2009) 

DPPC γ-Fe2O3 NPs (5 nm) Oleic 
acid 

Lipid 
membrane 

CF MF-induced 
release 

(Chen et al. 
2010) 

DPPC:CHOL:DSPE-

PEG(2000)DSPE-
PEG(2000)-Folate 

Fe3O4 NPs (10 nm) SH Core Calcein 

/ DOX 

MF-induced 

release by HT 

(Pradhan et 

al. 2010) 

DPPC:CHOL Fe3O4 NPs (12.5 nm) N.R Core - Lipid bilayer 

temperature 

measurment 
with 

anisotropy 

(Bothun et 

al. 2011) 

DPPC:CHOL Mn0.5Zn0.5Fe2O4 NPs 
(20-30 nm) 

N.R Core As2O3 MF-induced 
drug release by 

HT 

(Wang et al. 
2011a; Wang 

et al. 2011b) 

EPC:DSPE-

PEG5000-
p(EOEOVE-ODVE) 

Fe3O4 NPs (12  nm) Oleic 

acid 

Lipid 

memebrane 

pyranine 

dye 

MF-induced 

release by HT 

(Katagiri et 

al. 2011) 

DPPC:DSPC / 

DPPC:DSPC:DSPE-
PEG 2000:Rhod-PE/ 

γ-Fe2O3 NPs (7 nm) Citrate 

ligands 

Core - Imaging / 

Targeting and 
HT 

(Bealle et al. 

2012) 

DPPC:HSPC:CHOL:

DSPE–PEG2000 
γ-Fe2O3 NPs (5 nm) phosphate 

salt 

Core - HIFU- MR 

imaging 

(Lorenzato et 

al. 2013) 

Studies Highlighted in blue represent TSL-NHs progressed to preclinical evaluation 
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Passonen et al. has shown that incorporating 2-4 nm gold nanoparticles into 

DPPC:DSPC TSL can trigger calcein release after 5-10 min of continuous exposure 

to UV light at 250 nm. Three different types of TSL-NHs were compared including; 

nanoparticles encapsulation, membrane embedment and surface adsorption. The 

highest content release was observed from membrane embedded Au-C6SH NPs and 

surface adsorbed DPPE-Nanogold
®
 NPs. The reason behind that was the potential of 

direct heat transport from the nanoparticles to the liposomal bilayer compared to 

encapsulated gold nanoparticles (Au-MSA) (Paasonen et al. 2007a). However, the 

penetration depth limitation and the danger of long term exposure to UV light restrict 

their clinical applications (Paasonen et al. 2007a; Paasonen et al. 2010). This 

limitation was overcome by designing TSL-NHs for triggered drug release with near 

infrared (NIR) light. NIR can penetrate up to 10 cm allowing non-invasive heating of 

significant areas of the body (Weissleder 2001). Interesting examples of the above 

are DPPC liposomes decorated with hollow gold nanoshell by different association 

types (Wu 2008) and DPPC:DPTAP:CHOL-gold nanoparticles complexes (Volodkin 

et al. 2009). NIR light absorption by gold nanoparticles can be converted into heat by 

surface resonance resulting in the release of encapsulated CF. Similar to the previous 

example the percentage of content release is highly dependent on the proximity of 

the nanoparticles to the lipid bilayer. These results also strongly suggested that 

mechanism behind trigger release can due to formation of transient pores or could be 

due to the mechanical disruption in the lipid membrane (Wu 2008; Volodkin et al. 

2009).  

Few studies have been reported on the development of TSL-NHs having silver 

nanoparticles. These studies were mainly concerned with investigating the effect 

nanoparticles on TSL membrane fluidity and Tm (Park et al. 2005; Bothun 2008). 

Many examples of TSL decorated with iron oxide NPs have been reported 

recently. Most of these studies concentrated on investigating the release of a model 

dye  (Tai et al. 2009; Pradhan et al. 2010) or drugs (Zhu et al. 2009; Pradhan et al. 

2010; Wang et al. 2011b) from TSL-NHs incorporating maghemite (γ-Fe2O3) or 

magnetite (Fe3O4) nanoparticles in the liposomal core or into their lipid membrane. 

Parameters controlling the release process were compared including, lipid: 

nanoparticles ratios (Chen et al. 2010) and the duration and intensity of MF applied 
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(Chen et al. 2010). Increasing the number of incorporated nanoparticles decreases 

spontaneous content leakage without MF, due to their lipid membrane stabilizing 

effect, and increases drug release by MF application (Chen et al. 2010).  

The earliest example of thermosensitive liposomes decorated with iron oxide 

nanoparticles described by Viroonchatapan et al. encapsulated Fe3O4 NPs (10 nm) 

into the core of DPPC:CHOL liposomes. Successful single and multiple release of 5-

fluorouracil (5-FU) was achieved after heating with 500-kHz electromagnetic field 

(Viroonchatapan et al. 1997). The mechanism of release from iron oxide decorated 

TSL is a combination of enhanced permeability and partial vesicular rupture (Chen et 

al. 2010). Recently Katagiri et al. described a new approach for magnetic controlled 

drug release from polymer modified TSL incorporating hydrophobic iron oxide 

nanoparticles in the lipid membrane. The temperature-sensitive component of this 

system is EOEOVE-ODVE block copolymer anchored into EPC liposomes by 

ODVE moiety. The release of fluorescent dye (pyranine) from this hybrid system 

was dramatically increased by MF irradiation compared to a negligible release under 

static conditions. The mechanism behind drug release is believed to be due to 

changing in the thermosensitive polymer conformation by the heat release from 

excited Fe3O4 nanoparticles rather than the disruption or rupture of the hybrid 

systems (Katagiri et al. 2011). 

The therapeutic effect of iron oxide-TSL at the cellular level in combination with 

magnetic HT revealed a significant enhancement in cytotoxicity and resulted in 

effective inhibition of cell proliferation (Pradhan et al. 2010; Wang et al. 2011b). 

Zhu et al. showed increase accumulation of DPPC:CHOL liposomes encapsulating 

methotrexate (MTX) and γ-Fe2O3 NPs in the skeletal muscular tissue in vivo by 

application of constant magnetic field compared to the absence of the magnetic field. 

This observation suggested the potential of iron oxide TSL for magnetic targeting 

(Zhu et al. 2009). In another in vivo study by Wang et al., significant VX2 tumour 

growth retardation in rabbits was achieved from As2O3-loaded thermosensitive 

magneto-liposomes. The liposomes were administered arterially via a transcatheter in 

combination with magnetic HT (Wang et al. 2011b). 

In addition to triggered drug release, TSL-NHs decorated with iron oxide 

nanoparticles can have a great role in MR imaging. A change in the MR signal of 
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encapsulated iron oxide around the phase transition of liposomes is expected since 

T2 signal of clustered iron oxide nanoparticles is much stronger than dispersed 

nanoparticles. Encapsulation of iron oxide nanoparticles into liposomes decreases the 

longitudinal relaxivity compared to free nanoparticles due to restricted water 

movement across the lipid membrane (Lorenzato et al. 2013). Promising in vivo 

imaging studies of magnetic TSL have been reported by Bealle et al. and Lorenzato 

et al. suggesting their potential in monitoring tumour accumulation after in vivo 

administration (Bealle et al. 2012; Lorenzato et al. 2013). 

The field of TSL decorated with metallic nanoparticles presents a promising area 

for the development of multifunctional delivery systems. Further studies are 

warranted to optimise the choice of TSL formulation, drug leakage at physiological 

temperature and biocompatibility of the TSL-NHs. Co-encapsulation of therapeutic 

drugs and nanoparticles needs more optimization as well. Most of the described 

studies showed the encapsulation of a single component (either a model fluorescent 

dye or a therapeutic molecule) and only few studies examined the co-encapsulation 

possibility (Zhu et al. 2009; Pradhan et al. 2010; Wang et al. 2011b). Further in vivo 

evaluation of the performance of those systems is required to optimize their 

therapeutic potential. In addition to the need for the development of proper clinical 

techniques for application of MF and NIR light and control their penetration depth 

into the tissues. 
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1.3.1.5 Targeted TSL 

In contrast to passive targeting of liposomes which depends on the EPR effect, 

active targeting relies on engineering of the liposome surface with targeting ligands. 

These ligands can be peptides, antibodies or antibody fragments that bind 

specifically to over-expressed receptors at their target site (Allen 2002; Torchilin 

2008). Since pegylated liposomes are rarely taken up by tumour cell in vitro and in 

vivo (Gabizon et al. 2010), active-targeting can improve target cells recognition and 

cellular uptake resulting in an increased therapeutic potential (Park et al. 2001; 

Mamot et al. 2005). Despite the great amount of preclinical work performed in the 

field of active targeted nanomedicines (including liposomes), their use in the clinical 

setting is yet to be proven and only few have progressed into clinical trials. The latter 

were those designed to improve cellular uptake of certain therapeutics that have, 

otherwise, no cellular access capability to intracellular targets. An example on that is 

the cyclodextrin polymeric nanoparticles targeted against transferrin receptor that 

acts by improving siRNA cytoplasmic delivery (Lammers 2012).  

The reason why ligand-targeted nanomedicines have so far failed to show 

persuasive effectiveness even in preclinical studies lies in the number of anatomical 

and physiological barriers that limit accumulation into target sites (Kirpotin et al. 

2006; Lammers 2012). Among the most common barriers in solid tumours are the 

high cellular density and elevated interstitial fluid pressure. In addition, several cell 

layers are present between endothelial cells and tumour cells such as pericytes, 

smooth muscle cells and fibroblasts. As a result of these barriers, the accumulation 

and penetration of actively targeted delivery systems into solid tumours showed no 

great difference compared to passive targeting. However, promising therapeutic 

activity could be achieved when the targets are easier to reach such as tumour blood 

vessels (Pastorino 2003), metastatic tumours (Moase et al. 2001), blood cancers 

(Cheng et al. 2008) and with targeting ligands that have cellular internalisation 

capacity (Sapra et al. 2002).  

In addition, the use of extravasation and penetration enhancers; examples are 

drugs including TNF-α, histamine (Seynhaeve et al. 2007), matrix-degrading 

enzymes (e.g. Hyaluronidase) (Eikenes 2005) or non pharmacological treatment such 

as radiotherapy (Davies et al. 2004) can strongly improve drug delivery from 
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targeted-liposomes. In addition, mild HT may act as a physical alternative to the 

accumulation of targeted liposomes at the tumour site since HT is well-known to 

increase nanoparticles extravasation through several mechanisms such as increasing 

tumour vascular permeability and blood flow. The other critical issue for active-

targeted as well as passive-targeted liposomes is the need for effective content 

release once they accumulated at their target sites (Allen 2013).  

In order to increase the therapeutic potential of liposomal anticancer drugs, 

interest in developing new generation of liposomes that combine the advantages of 

both active-targeting and triggered-release has increased including ligand-targeted 

TSL. Table ‎1-5 summarises the different examples of actively-targeted TSL. 

Targeted TSL can be useful in slowing the transient time in the blood by targeting 

antigens expressed on the tumour vasculature. The cyclic NGR targeted LTSL 

against tumour vascular CD13 antigen is an example (Negussie et al. 2010). In 

addition, targeted TSL can also be directed towards tumour-specific or tumour-

associated antigens. Once bound to the specific antigen on their target tumour cells, 

targeted TSL can then release its contents by the application of HT either at the 

surface of the cells (Sullivan et al. 1986) or inside the tumour cells after conjugation 

to an internalising ligands (Puri et al. 2008; Smith et al. 2011). To further increase 

the potential of targeted TSL for intracellular delivery, multifunctional targeted TSL 

have been developed by co-encapsulation of magnetic nanoparticles and 

doxorubicin. This takes the advantages of both biological targeting and physical 

targeting by the application of external magnetic field. In this case magnetic 

nanoparticles can also be utilized for the generation of local heat by applying an 

alternating magnetic felid allowing triggered drug release and further enhance their 

uptake by the cells (Pradhan et al. 2010). Moreover, Kullberg et al. has recently 

reported that cytoplasmic delivery of anti-HER2 TSL can be further improved by 

attaching them to a pore-forming protein, listeriolysin O (LLO) (Kullberg et al. 

2009; Kullberg et al. 2010).  

Targeted TSL studies showed that the liposomes reserve their temperature 

sensitivity after conjugation to the targeting ligands and this significantly increases 

the specific uptake and internalisation into tumour cells. Furthermore, the 

potentiation of intracellular content release by exposure to external HT significantly 
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improves cytotoxic activity (Pradhan et al. 2010; Smith et al. 2011). Despite the 

promising therapeutic activity observed in vitro, in vivo evaluation of targeted TSL in 

combination with mild HT has yet to be done. The effects of HT on both targeted 

TSL accumulation into the tumour and drug release after intracellular uptake have 

not been previously explored. Further work need to be done to explore this effect in 

more details. 

Table ‎1-5: Different examples of actively targeted TSL 

System  Aim  Design  Outcome  Ref.  

Mab anti-H2K Release drug at high 

concentration  at the cell 
surface  

CF / 3H Uridine release 

rate  

Enhanced release & uptake  (Sullivan et al. 

1985; Sullivan 
et al. 1986) 

Anti HER2 

Affisomes  

Improve targeting 

potential while retaining 
thermo-sensitivity  

Cellular binding and 

internalisation  

Hyperthermia induce 

intracellular release of 
Calcein  

(Puri et al. 

2008)  

Folate-targeted 

Magnetic TSL 

Biological and physical 

drug targeting 

Cellular uptake of DOX 

and viability study 

Synergistically increased 

cytotoxicity 

(Pradhan et al. 

2010) 

Anti HER2 TSL Two-component 
delivery system  

2 sets of TSL 
encapsulated either  

Rhodamine (RED) or 

Calcein (GREEN). 

two-component delivery 
system + HT significantly 

increases specificity to 

HER2 over-expressing 
tumour  

(Kullberg et al. 
2009)  

LLO Anti HER2 

TSL 

Enhance cytoplasmic 

delivery by pore-

forming protein, 
listeriolysin  

Temperature sensitivity,  

Calcein delivery to 

cytoplasim  

LLO TSL greatly increases 

cytoplasmic delivery to 

HER-2–overexpressing 
cells  

(Kullberg et al. 

2010)  

Anti CD-13 

NGR targeted LTSL  

To slow the transit time 

of liposomes in the 
tumour vasculature  

Ab binding/imaging and 

release studies  

Improved affinity for 

CD13+ cancer cells while 
retaining temperature 

sensitivity  

(Negussie et al. 

2010) 

Mab anti-H2K (DPPC) 

Anti HER2 Affisomes (DPPC:Mal-DSPE-PEG2000:DSPE-PEG2000) 

Magnetic TSL (DPPC:CHOL:DSPE-PEG2000:DSPE-PEG2000-Folate) 

Anti-HER2 TSL (DPPC:MPPC: DPPG:DSPE-PEG2000:DSPE-PEG3400) 

LLO Anti HER2 TSL (DPPC:MPPC:DPPG:DSPE-PEG3400-NHS) 

Anti CD-13-NGR targeted LTSL (DPPC:MSPC:DSPE-PEG2000) 
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1.3.2 Critical Parameters Affecting the Choice of Heating Protocol for 

Triggering Drug Release from TSL 

HT can be used to enhance drug delivery from TSL in two possible ways; 

enhancing local drug release and increasing liposomal accumulation into the tumour 

by increasing local blood flow and endothelial cells permeability (Kong et al. 2000b; 

Kong et al. 2001). Based on that, the combination of HT with TSL can be utilized in 

two approaches; either for intravascular or interstitial drug release (Figure ‎1-12). 

 

Figure ‎1-12: HT protocols that can be use to enhance drug delivery from TSL. 

The combination of hyperthermia and liposomes can be utilized to enhance the drug release from TSL 

in two different approaches based on the timing between liposomes administration and heat 

application. In the intravascular release approach, TSL are administered during the heating process, 

resulting in drug release inside blood vessels, when reaching the heated area (Drug release is 

represented by the red gradient seen in the blood vessels). This process is then followed by uptake of 

drug by both tumour and endothelial cells. The increased vascular permeability of the blood vessels in 

response to 1
st
 HT treatment increases the level of liposomes accumulation in the tumour. The 

interstitial release approach takes the advantage of the fact that stealth small size liposomes have the 

ability to extravasate the malformed tumour vasculature compared to normal blood vessels. After 

tumour accumulation a 2nd heating session is applied to trigger drug release interstitially (Drug 

release is represented by the red gradient close to tumour cells). 

For the intravascular release approach, TSL are injected just before or during the 

HT treatment. The formulation needs to have ultra fast drug release to immediately 

release their contents when arriving at the heated tumour vasculature. This approach 

Intravascular Release Interstitial Release 

100 nm

1st HT

(+)

2nd HT

DOX Loaded Liposomes

Empty Liposomes

Solid Tumour

Tumour Cell

Endothelial Cell

Hyperthermia (HT)

PEGylated TSL
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does not rely on the effect of HT to increase the liposomes extravasation (Koning et 

al. 2010).  

As mentioned earlier the ultrafast drug release properties of some TSL (e.g. 

LTSL) offer a new paradigm of liposomal drug release compared to non-

temperature-sensitive liposomes that depend mainly on the EPR effect. Previous 

studies suggested that the ultrafast release property of this formulation allows 

immediate content release when arriving at the heated tumour vasculature (Chen et 

al. 2004; Chen et al. 2008). This type of drug release is called the intravascular 

release approach which is independent of the tendency of lipsomes to accumulate 

passively into the tumour by EPR effect (Kong et al. 2000a). Moreover et al. has 

shown recently that drug release within the vasculature can also increase free drug 

penetration into the interstitial spaces down its concentration gradient by real time 

confocal imaging of doxorubicin using skin-fold window chambers (Manzoor et al. 

2012).  

In addition to the beneficial effect of TSL for intravascular drug release, the 

combination of TSL and HT can also be tailored to achieve interstitial drug release 

after their extravasation into the tumour area. Since HT is well known to have an 

enhancement effect on liposomes extravasation, the application of a primary HT 

prior to TSL injection would be useful to increase tumour vascular permeability. 

Once the liposomes extravasate to the tumour area, further HT can be used to trigger 

interstitial drug release (Koning et al. 2010). Since the drug release from TSL 

liposomes vary according to the formulation from ultra fast release within less than 1 

min to slow release over 1 h, the duration of the 2nd heat can be adjusted accordingly 

(Koning et al. 2010). The choice and the sequence in which HT and TSL can be 

administered is critical to achieve the required therapeutic efficacy as the action of 

TSL depends on the HT protocol selected as well as the activity of the drug itself 

(Ponce et al. 2007). Previously published preclinical studies of TSL in combination 

with mild HT showed a clear enhancement in tumour uptake and tumour growth 

delay. Unfortunately, very few studies justified the choice of the HT protocol 

selected based on the physicochemical properties of the TSL and tumour 

accumulation (Kong et al. 2000a; Ponce et al. 2007; Manzoor et al. 2012). In most of 

these studies HT was applied directly after injection (Chen et al. 2004; Lindner et al. 
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2004; de Smet et al. 2011; Ranjan et al. 2012) or shortly after (1-3 h), while the TSL 

is still circulating in the blood stream (Gaber et al. 1996; Ishida et al. 2000). Only 

few studies were specially designed to trigger content release from TSL after 

accumulation into the tumour (Kono et al. 2010; Katagiri et al. 2011). Furthermore, 

these studies were mainly restricted to one type of TSL, which makes it difficult to 

link the results to the properties of TSL to define the optimum HT timing for each 

formulation. Recent studies have shown that triggering drug release with HIFU can 

improve drug distribution into the tumour and increase long-term tumour 

accumulation from long circulating TSL. This confirms the potential of use HT to 

trigger interstitial drug release. Table ‎1-6 summarises the different HT protocols used 

to trigger drug release from TSL. 

The importance of choosing the right heating protocol is demonstrated clearly in 

the case of LTSL formulation. In preclinical studies, LTSL in combination with mild 

HT demonstrated significant enhancements in the therapeutic effectiveness compared 

to free drug, heating alone and liposomes without HT (Kong et al. 2000a; Needham 

et al. 2000; Ponce et al. 2007). The improvement in therapeutic activity observed is 

mainly due to the ultrafast release property of LTSL (> 80% release in few seconds) 

after exposure to mild HT (Anyarambhatla et al. 1999; Mills et al. 2005). 

Temperature-induced drug release within tumour vasculature increased the exposure 

of tumour endothelial cells to DOX causing destruction of tumour vasculature and 

improve therapeutic efficacy (Chen et al. 2004; Chen et al. 2008). 

Despite that Phase III trial in liver cancer in combination with radiofrequency 

ablation (RFA) failed to show sufficient evidence of clinical effectiveness 

(Celsion.com 2013a). Although the results is still being analysed, preclinical studies 

suggested that the timing between injection and heat application is the most critical 

factor in the success of this type TSL. A critical limiting fact with ThermoDox
®
 is 

the tendency to leak out DOX once injected into the blood circulation even before 

HT application (Hauck et al. 2006). ThermoDox
®
 short blood kinetics of 

encapsulated drug (only 1.3 h) restrict the time frame of the heating protocol (Poon et 

al. 2009; Banno et al. 2010), which then can make its clinical translation prone to 

errors. Although ThermoDox
®
 has longer blood half-life compared to free drug, it is 

still substantially less than that of Doxil
®
. Bearing in mind that the average clinical 
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HT duration is 30-60 minutes, it is clear that the optimum treatment would be 

achieved by starting HT prior to drug administration (Landon et al. 2011). 

Table ‎1-6: HT protocols used for trigger release from TSL 

TSL Drug HT Source and Protocol Experimenal design End Point Ref. 

TTSL DOX Water bath (1 h at 42 ºC) 

1 h after injection  

2nd HT 24 h after injection 

-Tumour uptake 

 

-Drug release 

1 h after HT 

 

(Data not shown) 

(Gaber et al. 
1996) 

LTSL 

TTSL 

NTSL 

DOX Water bath (1 h at 42 ºC)  

immediatly after injection 

-Tumour uptake  

-Growth dealy 

-immdeiately after HT 

-5x tumour volume or 
up to 60 days 

(Kong et al. 

2000a) 

LTSL 

TTSL 

NTSL 

DOX Water bath (1 h at 42 ºC) 

 immediatly after injection 

-Growth delay 5x tumour volume or 

up to 60 days 

(Needham et 

al. 2000) 

PEG-TSL DOX RF (20 min at 42 ºC)  

3 h after injection 

-Tumour uptake 

-Survival 

 -5 min after HT 

 -Up to 90 days 

(Ishida et al. 

2000) 

DPPGOG-CF CF Water bath (1 h at 42 ºC) 
immediatly after injection 

-Tumour uptake up to 6 h after HT (Lindner et 
al. 2004) 

LTSL 

NTSL 

DOX HIFU (15-20 min 42 ºC) 

immediatly or 24 h after 

injection 

-Tumour uptake 

 

-Growth delay 

- immediately after 

HT  

-Time to reach 500 
mm3 

(Dromi et al. 

2007) 

LTSL DOX 

& Mn 

Catheter (30 min at 42 ºC) 

-injection 15 min after HT 

-injection 15 min before 

HT  

-split dose before & during 
HT 

-Tumour uptake 

-Growth delay 

-Survival:  

-30-45 min after 

injection 

-5x tumour volume 

-up to 60 days 

(Ponce et al. 

2007) 

LTSL DOX Water bath (1 h at 42 ºC) 

immediatly after injection 

-Tumour uptake  

-Growth dealy 

-immdeiately after HT 

-5x tumour volume or  
up to 60 days 

(Yarmolenko 

et al. 2010) 

Polymer-modified 

EPC:CHOL:DSPE-

PEG 

DOX RF (10 min at 45 °C) 

6 h & 12 h after injection 

-Growth dealy -up to 8 days 

 

(Kono et al. 

2010) 

Polymer-modified 

EPC:CHOL:DSPE-

PEG-Gd 

DOX RF (10 min at 44 °C)  

8 h after injection 

-Tumour uptake  

-Growth dealy 

-1 h, 3 h & 8 h 

-up to 8 days 

 

(Kono et al. 

2011) 

TTSL DOX 
& Gd 

MR-HIFU (2x 15 min) 

-injection after HT 

initiation (42 ºC) 

- Tumour uptake  

(DOX quantification 

& MR imaging) 

20-30 min after 
injection 

 

(de Smet et 
al. 2011) 

LTSL DOX 
& Gd 

MR-HIFU (4x 10 min at 41 
ºC) 

immediatly after injection  

- Tumour uptake  

(MR maging) 

-immdeiately after HT 

 

(Negussie et 
al. 2011) 
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HaT  

LTSL 

DOX Water bath (1 h at 43 ºC)  

10 min before injection 

- Tumour uptake 

-Growth delay 

-immediatly after 

injection 

- up to 21 days 

(Tagami et 

al. 2011a) 

HaT DOX 

& Gd 

Water bath (1 h at 43 ºC)  

10 min before injection 

- Tumour uptake 

(DOX quantification 
& MR imaging) 

-immediatly after 

injection 

 

(Tagami et 

al. 2011c) 

HaT-II 

LTSL 

DOX-

Cu+2  

Water bath (1 h at 43 ºC)  

10 min before injection 

- Tumour uptake 

-Growth delay 

-immediatly after 

injection 

-up to 21 dyas 

(Tagami et 

al. 2012) 

LTSL DOX Heating coil 

(30 min at  ~41ºC) 

HT plus injection 

- Tumour uptake 

 

CLSM imaging every 

5 s for 20 min 

(Manzoor et 

al. 2012) 

LTSL DOX MR-HIFU (3x 10 min at 

40-41 ºC) within 1 h of 

LTSL infusion 

-Tumour uptake  

(DOX 

quantification) 

4 h after injection 

 

(Ranjan et 

al. 2012) 

TTSL DOX 
& Gd 

MR-HIFU (2x 15 min) 

immediatly after injection 

-Tumour uptake -1.5 & 48 h after 
injection 

(de Smet et 
al. 2013) 

Optimized PEG-

TSL-Rho-PE 

- Heating coil 

(0.5-1 h at 41 ºC) 

20 min after injection 

-Tumour uptake 

-Blood vessles 

permeability 

-CLSM up to 2h 

-4 h, 8 h & 24 h post 

HT 

(Li et al. 

2013a) 

Optimized PEG-

TSL-Rho-PE 

DOX Heating coil 

(1 h at 42 ºC) 

20 min after injection 

-Tumour uptake 

-Growth delay & 

survival 

-CLSM up to 80 min 

after injection 

-up tp 26 days 

(Li et al. 

2013b) 

HaT: DPPC:Brij 78                                                                          LTSL (DPPC:DSPC:DSPE-PEG2000 ) 

NTSL (HSPC:CHOL:DPPE-PEG2000)                                            Optimized-PEG-TSL (DPPC:DSPC:DSPE-PEG2000) 

PEG-TSL (DPPC:DSPC:CHOL:DSPE-PEG)                                TTSL (DPPC:HSPC:CHOL:DPPE-PEG2000) 

Polymer-modified EPC:CHOL:DSPE-PEG (EPC:CHOL:copoly(EOEOVE-block-ODVE):DSPE-PEG2000) 

Polymer-modified EPC:CHOL:DSPE-PEG-Gd (EPC:CHOL:copoly(EOEOVE-block-ODVE):DSPE-PEG5000-G3-DL-DOTA-

Gd) 

Studies highlighted in blue represent HT protocols designed for interstitial drug release or studies that quantify prolonged drug 

accumulation. 

The importance of this parameter on the therapeutic efficacy of LTSL formulation 

has been revealed before in preclinical studies by Ponce et al., when, they studied the 

effect of timing between HT and injection on the tumour distribution and therapeutic 

activity of LTSL encapsulating Mn
+2

. For this type of TSL, higher and faster DOX 

accumulation into the tumour occurs when injected during HT compared to injection 

before that since this sequence takes the advantage of having the maximum 

intravascular LTSL concentrations. Thus preheating the tumour before LTSL 

injection is essential to get the maximum therapeutic activity from this formulation to 

get rapid drug release in the tumour vasculature. Despite the whole tumour is heated, 

LTSL release most of the drug at the periphery of the tumour before reaching the 
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tumour centre causes peripheral drug accumulation. In contrast LTSL injection 

before HT allows liposomes to perfuse into the tumour interstitium before drug 

release and therefore central distribution is achieved. Phase I clinical study data of 

ThermoDox
®
 showed that the maximum plasma level of drug is at the end of 30 min 

infusion, suggesting that this is the optimum time for RFA application (Poon et al. 

2009). Yet, in clinical trial, RFA, started at least 15 min after the initiation of 

infusion and completed no longer than 3 h (ClinicalTrials.gov. 2012b). This 

modification in the timing of ThermoDox
®

 administration and HT treatment between 

pre-clinical and clinical studies, together with the short blood circulation may explain 

in part the unsuccessful clinical outcome. Recently, Celsion announced meta- 

analysis of the data extracted from the Phase III heat study showed that ThermoDox
®
 

noticeably improves progression free survival and overall survival in patient received 

RFA for at least 45 min. This applied to patients having small-sized HCC lesions (3-

5 cm and 5-7 cm). This analysis suggests that the duration of heat from the RFA 

procedure is a key parameter to get a successful clinical outcome when combined 

with TSL (Celsion.com 2013b). 

Taking all the above into consideration, it is evident that systematic preclinical 

studies are required to get insight into the choice of the correct HT protocol that best 

matches the physicochemical properties, drug release rate, pharmacokinetic 

parameters and tumour accumulation.   



56 

 

1.3.3 Image-Guided Drug Delivery of TSL (Paramagnetic TSL) 

An important issue to consider in the design of triggered local delivery systems is 

to guarantee the release process at the correct timing, location and therapeutic dose 

needed. Ensuring this level of control requires monitoring of both the liposomal 

tumour accumulation and the drug release process. Progressive development in the 

field of molecular imaging and nanotechnology inspired the development of delivery 

systems that combine imaging and therapeutic moieties (theranostics). Several 

studies have shown combined delivery of DOX and contrast agent from TSL. In 

these cases, MR imaging was used to monitor drug release from TSL and to track the 

liposomal tissue distribution providing non invasive and dynamic monitoring of drug 

release under hyperthermia condition. No nanoparticles where included for this 

purpose in comparison with TSL with metallic nanoparticles (Figure ‎1-13A).  

It is important to note here that what is monitored by these techniques is the effect 

of contrast agent on the surrounding water protons rather than the actual drug release 

process. However, because both the drug and the contrast agent are available in the 

compartment and have similar release and distribution profile, then this can be used 

as an indirect way to estimate the drug release profile (May et al. 2013). 

Encapsulation of low molecular weight MR contrast agents into the aqueous 

compartment of the liposome affects the T1 relaxation time of accompanied intra-

liposomal water protons. Water exchange between inside and outside of the 

liposomal compartments is limited by its exchange rate across the lipid bilayer. 

Therefore, the interaction of MR contrast agent with the bulk water protons is 

restricted when encapsulated inside liposomes as compared to free contrast agent and 

this can be used as an indirect measure of the water membrane permeability (Bacic et 

al. 1988). The release of MR contrast agent from TSL at the Tm of liposomes is 

associated with dramatic increase in this interaction which consequently decreases T1 

relaxation time of bulk water protons. This property has been exploited for MR 

image-guided drug delivery (Viglianti et al. 2006). The increase in MR signal after 

release of encapsulated MR contrast agent and drug from liposomes provides 

information about special and temporal drug release. This concept of MR-based drug 

quantification is referred to‎ as‎ “dose-painting‎ or‎ “chemodosimetry”‎ described‎ by‎
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Viglianti and Ponce et al. using TSL encapsulating Mn
+2

 and DOX (Viglianti et al. 

2006; Ponce et al. 2007).  

 

Figure ‎1-13: Paramegentic TSL for image guided drug delivery. 

Schematic illustration of different types of paramagnetic TSL used for image guided drug delivery in 

conjugation with mild HT. A) TSL encapsulating MR contrast agent. B) Multifunctional polymer-

modified TSL surface modified with MR contrast agent. 

The release of contrast agent from TSL has been used to image drug release in 

vivo. Good correlation was reported between MR imaging and thermal ablation 

(Frich et al. 2004), drug delivery (Viglianti et al. 2004; de Smet et al. 2010; de Smet 

et al. 2011) and therapeutic efficacy (Ponce et al. 2007; Tagami et al. 2011c).  



58 

 

The estimated DOX tissue concentration determined from the shortening in T1 

relaxation time demonstrated a linear relationship with actual DOX concentration 

quantified by HPLC and histological fluorescence analysis. Imaging drug release 

from liposomes is an important tool to control drug delivery. By using this 

technology, release from DOX/Mn
+2

-LTSL liposomes administered during HT was 

detected immediately upon entry into the heated tumour from peripheral circulation. 

This observation indicated that the release profile from LTSL liposomes is much 

dependent on the tumour vascularisation pattern as well as on tumour temperature at 

the time of injection (Ponce et al. 2007). Similar findings have been reported by de 

Smet et al. where MR images revealed a variation in drug distribution in the tumour 

that was related to the variation in the vascularisation, permeability and the presence 

of necrotic core (de Smet et al. 2011). The results of those studies demonstrated the 

suitability of the concept of using real time imaging of drug distribution to optimise 

the choice of HT protocol. 

Although Mn
+2 

has been used to image drug delivery from TSL (Viglianti et al. 

2004; Ponce et al. 2007),
 
its toxicity can limit its clinical applications (Silva et al. 

2004). Gadolinium based contrast agents are better alternatives because of their 

safety profile that makes them more acceptable for clinical applications. Therefore, 

much of the recent work of image guided TSL involved the use of Gd(HPDO3A), 

ProHance
®
, a clinically approved MR contrast agent co-encapsulated into TSL with 

DOX (de Smet et al. 2010; de Smet et al. 2011; Negussie et al. 2011). It might be 

worthwhile to point out that encapsulation of Gd(HPDO3A) inside liposomes did not 

interfere with DOX loading and formation of DOX crystals inside liposomes (de 

Smet et al. 2010).  

Paramagnetic TSL, described above, involved the encapsulation of MR contrast 

agent in the lumen of the liposome. An alternative way to formulate paramagnetic 

TSL includes the attachment of an MR contrast agent to the liposomal surface. An 

example of this type has been reported by Kono et al. (Kono et al. 2011) (Figure 

‎1-13 B). This type of polymer-modified TSL has Gd-chelate-dendron attached to 

their surface which can be used to probe liposome accumulation into the tumour but 

cannot monitor drug release as the MR contrast agent is not encapsulated inside the 
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liposome (Kono et al. 2011). In this case T1 shortening of surface attached metal ions 

was equivalent to the free metal ions (Viglianti et al. 2004). 

Table ‎1-7 summarises the recent studies using MR-guided drug delivery from TSL. 

Different experimental details encountered by these studies are explained including, 

liposomal formulation, injected dose, contrast agent, heating protocol, HT duration, 

and animal model. 

Besides being useful for imaging, paramagnetic TSL proved to be a good tool for 

MR-thermometry (Lindner et al. 2005). In addition to providing guidance during 

treatment planning and following drug release from paramagnetic TSL, it can also 

provide accurate temperature feedback from heated tissue in real time. MR guided 

temperature mapping can be used to control the power of heat input using either MR-

HIFU system or an ultrasound transducer to maintain the target temperature at the 

heated tissue (de Smet et al. 2011; Negussie et al. 2011; Staruch et al. 2011).  

MR image-guided drug delivery may also help to individualise treatment regimen 

as it is widely used for tumour diagnosis for being non-invasive and safe for repeated 

applications (Tagami et al. 2011c) as will be explained in the next section. 

An alternative to magnetic and paramagnetic imaging described earlier, 

fluorescence-based in vivo imaging in the NIR region is also proved to be of great 

benefit for image-guided drug delivery. Besides being non-invasive, NIR imaging 

has the advantage of high signal to noise ratio and deep tissue penetration because of 

the limited photon absorption at the NIR region. For this purpose, the TSL system 

(DPPC:HSPC:CHOL 100:50:30 mol/mol), surface coated with either DSPE-PEG2000 

or DSPE-Dextran, and encapsulating indocyanine green (ICG), NIR fluorophores, 

has been developed for theranostic applications. ICG-TSL was shown to provide 

reliable biodistribution profile and tumour accumulation of liposomes in vivo. ICG 

signal in the tumour can be detected up to 72 h after injection but fades rapidly after 

release from liposomes because of its short circulation half-life. This allows its use as 

an indicator of triggered release from TSL (Turner et al. 2012).   
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Table ‎1-7: MR-guided drug delivery from TSL 

Liposomal Formulation 

(mol/mol) 
Dox Dose 

MR Contrast 

Agent 

Animal / 

Model 
HT Source and Protocol References 

MR-guided tsl co-encapsulate contrast agent inside the liposomal compartment 

 

LTSL 10 mg / kg Mn+2 Rat / 

Fibrosarcoma  

Catheter  

 (60 min at 44 °C started 

before injection) 

(Viglianti et 

al. 2004) 

LTSL 5mg / kg Mn+2 Rat / 

Fibrosarcomas 

Catheter  

 (60 miunutes at 42 ºC 

before and / or with HT 

injection)  

(Ponce et al. 

2007) 

LTSL 

TTSL 

NTSL 

N/A 
Gd(HPDO3

A) 
In vitro - 

(de Smet et 
al. 2010) 

HaT 5mg / kg Gd-DTPA Mice / EMT-6 

Water bath  

(60 at 43 °C  min started 

before injection) 

(Tagami et 

al. 2011c) 

LTSL 5mg / kg 
Gd(HPDO3

A) 
Rabbit / VX2 

MR-HIFU  

 (4 × 10 min at  

 41.5 °C) 

(Negussie et 

al. 2011) 

TTSL 5 mg /kg 
Gd(HPDO3

A) 

Rat / 9L 

gliosarcoma 

MR-HIFU 

(2 × 15 min at  

41.5 °C after injection) 

(de Smet et 

al. 2011) 

TTSL 5mg / kg  
Gd(HPDO3

A) 

Rat / 

Rhabdomyosarc
oma 

MR-HIFU 

(2 × 15 min at 41 ºC strated 
immediatly after injection) 

(de Smet et 

al. 2013) 

MR-guided tsl surface modified with MR contrast agent  

 

 

 

EYPC:CHOL:p(EOEOVE

-ODVE):PEG-PE:G3-DL-
DOTA-Gd  (42:42:4:2:5-

10) 

6mg/kg 
G3-DL-DOTA-
Gd 

Mice/ colon 
carcinoma 26 

Radio Frequency / (10 min 

HT at 44 °C 8 h after 

injection) 

(Kono et al. 
2011) 

TTSL: DPPC:HSPC:CHOL:DPPE-PEG2000  (50:25:15:3) 

LTSL: DPPC:MSPC:DSPE-PEG2000  (90:10:4) 

HaT: DPPC:Brij78  (96:4) 

NTSL: HSPC:CHOL:DPPE-PEG2000 (75:50:3) 
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1.4 Development of Heating Modalities for Temperature Triggered Drug 

Delivery 

Although the theory of triggered drug delivery by HT has been described since the 

late 1970, several chemical and technical obstacles had to be overcome before this 

technology could be tamed for clinical application. The most important challenge 

was to achieve controlled non-invasive focal heating of the tumour site (Grull et al. 

2012). Moreover, monitoring of the tumour temperature restricts the clinical 

translation of TSL (Grull et al. 2012).  

The majority of heating techniques available are limited by several factors 

including, the invasiveness of the techniques, the poor control of the temperature, the 

inability to adapt to the change in tumour size and perfusion and the restrictions 

imposed by the location of the tumour. Several techniques have been applied for heat 

triggered release from TSL, including, regional superficial heating employing heated 

water baths (Gaber et al. 1996; Kong et al. 2000a; Needham et al. 2000; Needham et 

al. 2001), localized superficial heating with external electromagnetic sources (Hauck 

et al. 2006) and implanted electrodes heated by continue flow of hot water (Viglianti 

et al. 2006; Ponce et al. 2007).  

In clinical trials, two heating techniques have been applied for local tumour 

heating; percutaneous radiofrequency ablation (RFA) used for hepatocellular 

carcinoma (HCC)  and superficial microwave heating for chest wall recurrence of 

breast cancer.(ClinicalTrials.gov. 2013a). In both heating techniques tissue 

temperature was monitored with interstitial probes and, therefore, the control on 

spatial temperature changes was limited, which is reflected on drug release (Van Der 

Zee et al. 2010; Ahmed et al. 2011). To enhance clinical favourability, the 

development of heating and monitoring techniques to achieve non-invasive spatial 

and temporal control of temperature is crucial. One promising techniques is the 

HIFU system guided with MR. Ultrasound has been used clinically to apply HT non-

invasively (40-45 °C) to tumour areas that are difficult to reach by other heating 

methods (Hynynen 2011). MR linking to this procedure include its crucial role to 

provide soft tissue imaging and real-time thermometry, hence, providing precise 3D 

temperature feedback (Salomir et al. 2000; de Senneville et al. 2007). MR can also 

be useful to monitor temperature-triggered drug release from TSL by co-
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encapsulation of a paramagnetic contrast agent inside the lumen of TSL with the 

drug compartment as described earlier (de Smet et al. 2011; Negussie et al. 2011; 

Tagami et al. 2011c). 

MR-HIFU has recently been used for thermoablation applications (Zhou 2011; Li 

et al. 2012) and it also holds a great promise to trigger drug delivery in pre-clinical 

phase as a new paradigm in localized treatment (Grull et al. 2012). Promising 

temperature-triggered drug release from TSL with MR-HIFU has been demonstrated 

in several preclinical studies in normal tissues (Staruch et al. 2011), and in animal 

tumour models (Dromi et al. 2007; de Smet et al. 2011; Ranjan et al. 2012; Staruch 

et al. 2012). HT induced by HIFU triggered drug release from TSL and increased the 

long term liposomal drug uptake into the tumour in the period after HT. As a result, 

MR-HIFU proved to provide homogeneous intra-tumoural drug distribution over 

bigger area and to a larger distance away from blood vessels (de Smet et al. 2013). 

Improved distribution of DOX into the tumour was observed by the combination of 

TSL with MR-HIFU. This enabled DOX delivery to the core and the periphery of the 

tumour as compared to the distribution seen with LTSL or DOX alone which was 

mainly restricted to the periphery of the tumour. This improvement in DOX delivery 

to the tumour did not increase DOX bio-distribution into other organs which was 

very similar to that observed in non treated animals.(Ranjan et al. 2012). Gasselhuber 

et al. has shown recently that by using computer simulation studies, the amount of 

drug delivered to the tumour after heating with HIFU can be predicted and used to 

estimate cell killing induced by both, DOX and hyperthermia. Simulation studies 

agreed with in vivo data that used rabbit animal model for both temperature and drug. 

These promising results suggested the potential of using these computational studies 

for quantifying drug release in response to HT (Gasselhuber et al. 2012).  

As a consequence to the emergence of MR system with HIFU in a bed-side 

system (MR-HIFU) a non-invasive option for proper treatment planning and 

monitoring for many patient with advance solid tumours can be offered (Grull et al. 

2012). Individual monitoring of local drug concentration and bio-distribution during 

and after heating procedure can be achieved. Scheme ‎1-1 summarizes the potential of 

MR-HIFU use for heat-triggered drug release from TSL. The advantages offered by 

MR-HIFU- would be useful to decide on: 1) treatment modification to have a 
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uniform drug delivery and 2) select patients that are more likely to benefit from 

triggered liposomal treatment (Viglianti et al. 2004). 

 

Scheme ‎1-1: schematic presentation of drug delivery from TSL using MR-HIFU. 

Triggered drug release from TSL co-encapsulating drug and MR contrast agent by MR-HIFU can play 

a pivotal role in individualised and controlled treatment. MR plays a crucial role in therapy planning, 

temperature control during treatment and imaging of drug delivery. Temperature and drug release 

mapping provide continuous feedback to the HIFU system transducer to adjust the sonication time 

and/or dose until the desired signal is obtained. Adapted from (Tagami et al. 2011c; Grull et al. 2012).  

 

1. MR therapy 
planning 

2. HIFU-mediated 
HT (~ 42 °C) 

3. Injection of TSL  
4. Local triggered- 

drug release 

5.  Image-guidance 
of drug delivery 
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In this thesis we studied the possibilities of designing new types of temperature-

sensitive liposome systems that have effective temperature triggered drug release in 

the region of interest, yet with reasonable in vivo drug retention. In order to achieve 

this goal we studies; 

 Design and characterisation of novel lipid-peptide hybrid vesicles (Lp-

Peptide). 

To test if the incorporation of a temperature-sensitive amphiphilic peptide 

within the liposomal bilayer can trigger drug release by mild HT (42 °C) 

(Figure ‎2-1 A). 

 

Figure ‎2-1:Schematic presentation of main hypothesis studied in this thesis. 

A) The rationale behind the design of Lp-Peptide hybrid system is to achieve triggered drug 

release by HT while maintaining substantial drug retention at body temperature. B) 

Performance of the system was studied in vivo in comparison to other TSL such as LTSL and 

TTSL with the aim to identify the critical parameters that affect the choice of the optimum 

HT protocol. C) The potential of enhancing the therapeutic specificity of TSL by designing 

anti-MUC-1 targeted TTSL was explored in vitro and in vivo.  

 

 



66 

 

 Biological performance of Lp-Peptide hybrids. 

To test if rapid drug release and substantial serum stability of the Lp-Peptide 

hybrids can increase both immediate and long-term drug accumulation in the 

tumour (to mimic intravascular and interstitial drug release) compared to 

other TSL (Figure ‎2-1 B).  

 The engineering of anti-MUC-1 targeted TSL. 

To test if anti-MUC-1 targeted vesicles based on the traditional TSL (TTSL) 

can increase therapeutic specificity of TSL and trigger drug release after 

specific uptake into cancer cells (Figure ‎2-1 C). 

In summary, this thesis aims to maximise the potential of TSL in cancer therapy 

through rationale design and engineering of TSL, understanding the critical 

parameters that affect their clinical translation and exploring new opportunities to 

increase their therapeutic benefits. 
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3.1 Materials 

Leucine zipper peptide was purchased from Peptide Synthetics (Peptide Protein 

Research Ltd, Hampshire, UK). hCTMO1; anti MUC-1 IgG antibody (Ab) (150 

kDa) was a kind gift from UCB (UK). 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 

(DPPC), 1,2- distearoyl l-sn-glycero-3-phosphocholine (DSPC), 1-stearoyl-2-

hydroxy-sn-glycero-3-phosphocholine (MSPC), hydrogenated soy 

phosphatidylcholine (HSPC) , 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[methoxy(polyethylene glycol)-2000 (DSPE-PEG2000) and L-α-phosphatidylcholine 

(EPC) were kind gifts from Lipoid GmbH (Germany). 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (ammonium salt) 

(Mal-DSPE-PEG2000) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) 

were purchased from Avanti Polar Lipids (USA).  

8-Anilino-1-naphthalenesulfonic acid (ANS), Triton-X 100, chloroform, 

methanol, 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES), Tris base, 

hydrogen peroxide solution 30%, doxorubicin hydrochloride (DOX), Cholesterol, 

sepharose CL-4B, carboxyfluorescein (CF), sterile filtered dimethyl sulfoxide 

(DMSO), 2-iminothiolane (Traut's Reagent), albumin from bovine serum (BSA), 

goat serum, 3-(4,5-dimethylthiazol-2-ly)-2,5-diphenyl-tetrazolium bromide (MTT) 

and Streptavidin were obtained from Sigma (UK).  

1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate (DiI) and 1,6-

diphenyl-1,3,5-hexatriene (DPH) are from Invitrogen, UK. Soluene
®
-350 and 

doxorubicin HCL [14-14C] were bought from PerkinElmer (USA). Scintillation 

cocktail high performance scintisafe gel (Fisher). 1,2-dipalmitoyl(d62)-sn-glycero-3-

phosphocholine (Avanti Polar Lipids, Alabaster, AL) was a kind gift from Dr 

Richard Harvey. Ethylenediaminetetraacetate dehydrate (EDTA) was from VWR. 

Cy3-conjugated affiniPure goat anti-human IgG (Jackson ImmunoResearch 

Laboratories). BCA Protein Assay Reagent and paraformaldehyde (PFA) were from 

thermo scientific, UK. The amine coupling kit containing N-hydroxysuccinimide 

(NHS) and N-Ethyl-N’-dimethylaminopropyl carbodiimide (EDC), were from 

BIACORE (Upsala, Sweden). Vectashield mounting medium with DAPI H-1200 is 

from Vector Laboratories.  
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DMEM (Dulbecco's Modified Eagle Medium), MEM (Minimum Essential 

Media), Advanced RPMI 1640 (Roswell Park Memorial Institute) and L-glutamine 

(200mM) were from Gibco Life Technologies (UK). All chemical substances and 

solvents were used without further purification. 

3.2 Cell Lines 

B16F10, a murine melanoma cancer cell line (ATCC, USA), C33a, a human, 

cervix carcinoma cell line (ATCC, USA) and SW480, a human colorectal 

adenocarcinoma cell line (ATCC, USA) were cultured in advanced RPMI-1640 

supplemented with 10% FBS, 1% L-Glutamine and 1% penicillin/streptomycin. 

HUVEC, primary human umbilical vein endothelial cells (C2519A; Lonza, Verviers, 

Belgium) were cultured in EGM-2
 
medium (CC-3162; Lonza). MDA-MB-435, 

human breast cancer cells, transfected to produce MUC-1 antigen were kind gift 

from Dr. John Maher, King’s‎College London (Wilkie et al. 2008). MDA-MB-435 

and MCF-7, human breast cancer cells (ATCC, USA), were grown in DMEM & 

MEM, respectively, supplemented with 10% FBS and 1% penicillin/streptomycin.  

The cells were incubated in a humidified atmosphere at 37 °C in 5% CO2. Cells 

were routinely grown in 75 cm
2
 tissue flask (TPP, Switzerland), splitted twice a week 

using sterile phosphate buffer saline (PBS) pH 7.4 (Gibco) for washing and trypsin-

EDTA (Ca
+2

 and Mg
+2

 free) (Gibco) for trypsinisation after reaching 80% 

confluency.  

3.3 Methods 

3.3.1 Preparation of Liposomes 

Both temperature-sensitive and non temperature-sensitive liposomes studied in 

this thesis were prepared by thin lipid film hydration method followed by extrusion 

(Hossann et al. 2007; Al-Jamal et al. 2009a). Table ‎3-1 shows the liposomal 

formulations studied, their lipid composition and the molar ratios used. Briefly, lipids 

of different types were dissolved in chloroform:methanol mixture (4:1) in a total 

volume of 2 ml in a 25 ml round bottom flask. To engineer Lp-Peptide hybrids, the 

respective amount of peptide dissolved in methanol was added to the lipid mixture 

before the formation of the lipid film. Organic solvents were then evaporated using a 
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rotary evaporator (Buchi, Switzerland) at 40 °C at 120 rotations/min. After 1 h under 

vacuum, lipid films were further dried for 2-3 min under a nitrogen gas stream followed 

by hydration with ammonium sulphate 250 mM (pH 8.5) at 60 °C. Small unilamellar 

liposomes were produced by extrusion though 800 nm and 200 nm polycarbonate 

filters (Whatman, VWR, UK) 5 times each then 10 times through 100 nm extrusion 

filters (Whatman, VWR, UK) using a mini-Extruder (Avanti Polar Lipids, Alabaster, 

AL). For animal experiments liposomes (25 mM) were also extruded for additional 

10 times through 80 nm extrusion membrane (Whatman, VWR, UK).  

Table ‎3-1: Temperature sensitive and non temperature-sensitive liposome systems studied. 

Liposomal formulation Lipid molar 

ratios 

Lipid:Pepitde 

(mol/mol) 

Lipid 

concnetration 

(mM) 

Temperature-sensitive liposomes    

DPPC:DSPC: DSPE-PEG2000 90:10:5   

-Lp  - 5 & 25 

-Lp-Peptide 600:1  600:1 5 

-Lp-Peptide 200:1  200:1 5 & 25 

-Lp-Peptide 100:1  100:1 5 

    

DPPC:DSPC:DSPE-PEG2000:CHOL (Lp-CHOL) 90:10:5:0.5 - 5 

    

DPPC:MSPC:DSPE-PEG2000 (LTSL) 90:10:4 - 5 & 25 

    

DPPC:HSPC:CHOL:DSPE-PEG2000 (TTSL) 54:27:16:3 - 5 & 25 

    

Non temperature-sensitive liposomes    

HSPC:CHOL:DSPE-PEG2000  (NTSL) 56.3:38.2:5.5 - 5 & 25 

    

DOPE:EPC:DSPE-PEG2000 64:36:5  5 

DOPE:EPC:DSPE-PEG2000-Peptide 64:36:5 200:1 5 
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3.3.2 Preparation of CF-Loaded Liposomes 

CF-loaded liposomes were prepared by hydrating the lipid film with 100 mM CF 

solution in HBS (pH 7.4) to a final lipid concentration of 5 mM. CF-loaded 

liposomes were then purified using Sepharose CL-4B column equilibrated with HBS 

(pH 7.4) to remove the non-encapsulated CF before use for release experiments. 

3.3.3 Preparation of DiI-Labelled Liposomes 

To prepare DiI-labelled liposomes for cellular uptake studies, 5 mol% of DiI in 

ethanol (1mg/ml) was added to the lipid mixture and liposomes were prepared by 

thin lipid film hydration method as described earlier. Lipid films were kept protected 

from light and hydration was performed with ammonium sulphate (pH 8.5) to a final 

lipid concentration of 5 mM. DiI-labelled liposomes were purified by passing them 

though Sepharose CL-4B column equilibrated with HBS (pH 7.4) before use.  

3.3.4 Preparation of Targeted TSL Liposomes 

3.3.4.1 Conjugation of Anti-MUC-1 Antibody to Maleimide-DSPE-PEG2000 

(Mal-DSPE-PEG2000) Micelles 

For the preparation of targeted TTSL-Ab liposomes, TTSL liposomes (25 mM) 

composed of DPPC:HSPC:CHOL:DSPE-PEG2000; 54:27:16:3 mol/mol% were first 

prepared as mentioned earlier followed by post-insertion of anti-MUC-1 mal-DSPE-

PEG2000 micelles using the previously described procedure with slight modifications 

(Iden et al. 2001). Anti-MUC-1 antibody was first thiolated as describe in (Figure 

‎6-1 step 1) by mixing with Traut’s‎reagent at Ab:Traut’s‎reagent molar ratio of 1:20 

for 1 h at room temperature with continuous stirring at concentration of 10 mg Ab/ml 

buffer, pH 8.0 (25 mM HEPES, 140 mM NaCl, 3mM EDTA).‎Unreacted‎ Traut’s‎

reagent was removed using Sephadex G50 column equilibrated with deoxygenated 

HBS (pH 7.4). The coupling reaction was run by mixing thiolated Ab with mal-

DSPE-PEG2000 micelles at 1:10 molar ratio in HBS (pH 7.4) overnight at room 

temperature (Figure ‎6-1 step 2). All above reactions were performed at oxygen free 

conditions. At the end of reaction any uncoupled mal-DSPE-PEG2000 groups were 

blocked by mixing with cysteine HCl to a final concentration of 1 mM for 30 min 
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(Loomis et al. 2010). Ab micelles were then concentrated by centrifugation using 

Viva spin 6 columns (Sartorius, fisher) at 9000 rpm for 10-12 min.  

To confirm the conjugation of the anti-MUC-1 antibody to mal-DSPE-PEG2000 

micelles, SDS-PAGE electrophoresis was performed by mixing 10 µl of Ab samples 

after each chemical step with 3 ul of LDS sample buffer (lithium dodecyl sulphate, 

Life Technologies, UK). 10 ul samples were then loaded onto each lane of 4-12% 

Nupage
®
 Novex

®
 Bis-tris polyacrylamide gel (Life Technologies, UK). The gel was 

run for 40 min at 220 V in 20 times diluted Nupage
®
 MOPS running buffer (Life 

Technologies, UK). Staining was performed with Instant Blue stain™ (Expedeon, 

UK) for 15-20 min followed by washing in distilled water (D.W.) for 2 h. The gel 

was then scanned using a Canon LiDE80 scanner (Canon, Uxbridge, UK).  

3.3.4.2 Post Insertion of Maleimide-DSPE-PEG2000 (Mal-DSPE-PEG2000) 

Micelles into TTSL Liposomes 

Mal-DSPE-PEG2000 Ab micelles were then post inserted into preformed TTSL 

liposomes at two different Ab: lipids molar ratios (1:500 and 1:1000) by 1 h 

incubation at 60 °C. TTSL-Ab liposomes were then separated from non-incorporated 

mal-DSPE-PEG2000 Ab micelles by using Sepharose CL-4B column in HBS (pH 

7.4). Post-insertion efficiency was determined by collecting elution fractions (1 ml 

each) and analysed spectrophotometrically for the presence of Ab (BCA protein 

assay, at 562 nm) (Yang et al. 2007) and‎ liposomes‎ (Stewart’s‎ assay,‎ at‎ 485 nm), 

using Cary 50 Bio Spectrophotometer (Agilent Technologies). In order to allow for 

direct comparison, TTSL and TTSL-Ab liposomes were prepared following the same 

steps, except for the post-insertion process where HBS (pH 7.4) was used instead of 

mal-PEG2000 Ab micelles in the case of TTSL liposomes. 

3.3.5 Liposomes Characterization Techniques 

3.3.5.1 Size and Zeta Potential Measurements Using Dynamic Light Scattering 

(DLS) 

Liposome size and surface charge were measured by using Zetasizer Nano ZS 

(Malvern, Instruments, UK). For size measurement samples were diluted with HBS 

(20 mM HEPES, 150 mM NaCl ) pH 7.4 and measured in 1 ml cuvettes. Zeta potential 
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was measured in disposable Zetasizer cuvettes and sample dilution was performed 

with distilled water. Size and zeta potential data were taken in three and five 

measurements, respectively. 

3.3.5.2 Transmission Electron Microscopy (TEM) 

Liposomes of different compositions were visualized with transmission electron 

microscopy with and without incorporation of different peptide concentrations (CM 

120 BioTwin/Philips, USA). Samples were diluted to 2.5 mM lipid concentration 

then a drop from each liposome suspension was placed onto the copper grid and the 

excess suspension was removed with a filter paper. Staining was performed using 

aqueous uranyl acetate solution 1%. Each liposome suspension was imaged at room 

temperature and after 15 min heating at 60 °C. TEM images were performed by Mr 

David McCarthy, UCL School of Pharmacy. 

3.3.5.3 Circular Dichroism Studies (CD) 

CD thermal scan measurements were performed on a Chirascan Spectrometer 

(Applied Photophysics, Leatherhead, UK) supplied with a thermoelectric 

temperature control system. Temperature-dependent conformational changes were 

measured for leucine zipper peptide solutions (20 µM) in Tris amine buffer (5 mM) 

and for Lp-Peptide hybrids (200:1 lipid: peptide molar ratio, total lipid concentration 

4 mM). Measurements were performed in Tris buffer at pH ≈‎ 8.8‎ as‎ this‎ pH‎was‎

close to the pH used for DOX loading experiments. CD spectra of the samples were 

recorded from 260 to 180 nm using 0.5 mm cuvette, at 6 °C before starting the 

thermal scan. The temperature-sensitivity was then tested by increasing the 

temperature from 6 °C to 94 °C at 1 °C/min heating rate and 2 °C/step. At the end of 

the thermal scan the sample was equilibrated at 94 °C and the CD spectrum was 

recorded. Once the thermal scan is completed, the samples were cooled to 6 °C and 

equilibrated for 15 min before recording the CD spectra. Data Analysis was 

performed using Applied Photophysics Chirascan Software and the transition 

temperatures were determined with Global 3 analysis software for dynamic multi-

mode spectroscopy.  

To study the effect of pH on the conformation of the peptide, pH titration 

measurements were performed as described previously (Lan et al. 2010a). Peptide 
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samples were prepared in 5 mM tris‎buffer‎pH‎≈‎8.0‎- 8.5 at 0.17 mg / ml (37.5 µM). 

Acid titration was done by adding few µl of perchloric acid (HClO4) 0.5% – 5% (v/v) 

followed by back titration using NaOH (0.5-1 M). CD spectra of the samples were 

then recorded at each pH value with a Chirascan Spectrometer (Applied 

Photophysics, Leatherhead, UK) over the wavelength range from 260 to 180 nm 

using 0.5 mm cuvate. Data were analysed using Chirascan software after correcting 

the spectra by subtracting the spectrum of peptide-free Tris buffer solution. CD 

analysis was done in collaboration with Dr. Alex Drake, Dr. James Mason and Dr. 

Tam‎Bui‎from‎King’s‎College‎London, UK. 

3.3.5.4 Solid-State NMR Experiments 

For solid-state NMR, samples with the lipid composition DPPC-

d62:DSPC:DSPE-PEG2000 (90:10:5) with or without peptide 200:1 & 100:1 mol/mol 

were prepared. A total of around 4.2 mg lipids per sample was dissolved and mixed 

together with the peptide in chloroform:methanol mixture and dried using a rotary 

evaporator at room temperature. In order to remove all organic solvent, the lipid films 

were exposed to vacuum overnight. The films were then rehydrated with 4 ml of 

ammonium sulphate 250 mM (pH 8.5) at 60 °C. Samples were subjected to five rapid 

freeze–thaw cycles for further sample homogenization, generating multi-lamellar 

vesicles, and then centrifuged at 21,000 g for 30 min at room temperature. The 

pellets, containing lipid vesicles and associated peptides were transferred to Bruker 4 

mm MAS rotors for NMR measurements. Lipid vesicles were also prepared in this 

way in the absence of peptide. 
2
H quadrupole echo experiments (Davis 1983) for 

samples containing DPPC-d62 were performed at 61.46 MHz on a Bruker Avance 

400 NMR spectrometer using a 4 mm MAS probe, a spectral width of 100 KHz and 

with recycle delay, echo delay, acquisition time and 90° pulse lengths of 0.25 s, 100 

μs,‎ 2.6‎ ms‎ and‎ 3‎ μs‎ respectively.‎ The‎ samples‎ were‎ maintained‎ at‎ different‎

temperatures (41˚C, 42˚C, 43˚C, 45˚C & 50˚C). During processing, the first 10 points 

were removed in order to start Fourier-transformation at the beginning of the echo. 

Spectra were zero filled to 1k points and 50 Hz exponential line-broadening was 

applied. Smoothed deuterium order parameter profiles were obtained from 

symmetrised and dePaked 
2
H-NMR powder spectra of DPPC-d62 using published 

procedures (Davis 1983; Sternin et al. 1983; Schafer et al. 1995). Order parameters 
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were averaged along the length of the acyl chain and plotted as a function of 

temperature (Iacobucci et al. 2012). Solid-state NMR studies were performed in 

collaboration‎with‎Dr.‎James‎Mason,‎King’s‎College‎London, UK. 

3.3.5.5 Differential Scanning Calorimetry Measurements (DSC) 

In order to determine the phase transition (Tm) temperatures of the liposomes, 20 

µl samples of liposome suspension (10 mM) were placed in T zero hermetic 

aluminium pans sealed with lids. Samples were then thermally scanned from 30 °C 

to 60 °C at 1 °C/min heating rate using differential scanning calorimetry (Q2000 

differential scanning calorimeter, TA Instruments, USA). 

3.3.5.6 Fluorescence Anisotropy Measurements 

Lp and Lp-Peptides hybrids were prepared then further diluted to 0.025 mM and 

divided into two 4 ml aliquots. DPH solution in tetrahydrofuran (0.8 mM, 2.5 µl) or 

an aqueous ANS solution (10 mM, 4 µl) was mixed with the liposomes at 500:1 

lipid:DPH or 25:1 lipid:ANS. To allow the probes to be incorporated, the samples 

were shaken at room temperature for two hours then left overnight before starting 

measurements. Fluorescence polarization was then measured by LS-50B Fluorimeter 

(PerkinElmer) equipped with automated polarizer and thermostatic cell holder 

connected to a water bath to control the sample temperature. For the DPH 

experiment the anisotropy measurements were carried out at excitation slit 10 nm 

and emission slit of 5 nm and ,excitation and emission wavelengths of 361 nm and 

425 nm respectively. ANS anisotropy was measured at slits of 10 nm and excitation 

and emission wavelengths of 395 nm and 476 nm, respectively. Measurements were 

started at 25 °C and then temperature increased gradually up to 60 °C. Sigmoidal 

curve fitting of the experimental points were performed using Origin software. The 

samples were equilibrated for at least 6 min after each temperature change. 

Fluorescence anisotropy was then measured automatically by the fluorimeter based 

on the following equation (Liaubet et al. 1994): 
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Where r is the fluorescence anisotropy, IvV and IvH are the emission intensity 

excited with vertically polarized light and measured with emission polarizer oriented 

in a parallel or perpendicular direction to the plane of excitation, respectively. G is an 

instrument specific factor calculated to correct the instrument polarization, which is 

equal to IHV/IHH, and obtained by measuring the vertically and horizontally polarized 

emission intensities after excitation with horizontally polarized light (Nagy et al. 

2000). 

3.3.5.7 Surface Plasmon Resonance (Francis et al.) Study of anti-MUC-1 

TTSL-Ab Liposomes 

In order to confirm the anti-MUC-1 antibody binding capacity after conjugation to 

mal-DSPE-PEG2000 and post-insertion into TTSL liposomes, SPR measurements 

were performed using a BIAcore 3000 (BIAcore, Upsala, Sweden) by assessing the 

binding of anti-MUC-1 antibody to MUC-1 epitope. Biot-MUC-1 or Biot-scrambled 

MUC-1 (control channel) was immobilized on the surface of a CM5 sensor chip 

using amine coupling kit. Immobilisation of streptavidin was performed by injecting, 

onto the activated surface by EDC/NHS of a sensor chip CM5, 35 µl of streptavidin 

(100 µg/ml in formate buffer, pH 4.3), which gave a signal of approximately 5000 

RU, followed by 20 µL of ethanolamine hydrochloride, pH 8.5, to saturate the free 

activated sites of the matrix. Biotinylated MUC-1 and scramble MUC-1 (1 µM in 

Hepes buffer) were allowed to interact with streptavidin until a response of 700 RU 

was obtained. 

All the binding experiments were carried out at 25 °C with a constant flow rate of 

20 µl/min. All biosensor assays were performed with Hepes-buffered saline (HBS-N) 

as running buffer (10 mM Hepes, 150 mM sodium chloride, pH 7.4). The different 

compounds were dissolved in the running buffer. Different concentrations of samples 

were injected for 3min., followed by a dissociation phase of 3min. The sensor chip 

surface was regenerated after each experiment by injection of 10 µl of 100 mM HCl. 

The kinetic parameters were calculated using the BIAeval 4.1 software on a personal 

computer. Global analysis was performed using the simple Langmuir binding model 

1.1. The specific binding profiles were obtained after subtracting the response signal 

from the peptide control. The fitting to each model was judged by the reduced chi 



77 

 

square and randomness of residue distribution. This work was done in collaboration 

with Dr. Olivier Chaloin (CNRS, France).  

3.3.6 Remote Loading of Liposomes with DOX 

For DOX loading, the ammonium sulphate gradient method was used (Haran et 

al. 1993). Liposomes were hydrated with ammonium sulphate 250 mM (pH 8.5) at 

60 °C followed by extrusion and then flushed with N2 gas and kept in the fridge for 

annealing overnight. Exchanging the external unencapsulated ammonium sulphate 

was performed by gel filtration through Sepharose CL-4B column (15 cm ×1.5 cm) 

(Sigma, UK) equilibrated with HBS (pH 7.4). Doxorubicin hydrochloride (5 mg/mL) 

was added to the liposome suspensions at 1:20 DOX:Lipids mass ratio in respect to 

the original total lipid concentration. Subsequently, samples were incubated at 37 °C 

(1.5 h) for LTSL or at 39 °C for Lp-Peptide hybrids (2 h) and TTSL (5 h). DOX 

loading into non temperature-sensitive liposomes was performed by incubation at 60 

°C for either 1 h in case of NTSL or 10 min for DOPE:EPC:DSPE-PEG2000 with and 

without peptide. After incubation liposomes were passed again through Sepharose 

CL-4B column to remove any free DOX. Encapsulation efficiency (% EE) was 

calculated by comparing the total fluorescence intensity of DOX post and pre gel 

filtration, diluted to the same final lipid concentration (Mills et al. 2005). 

% EE= I(t) post column / I(t) pre column *100 

Where, I(t) is the total fluorescence intensity of the liposome suspension after 

adding 2 µl Triton X-100 (10% in HBS, pH 7.4). Liposomes used for animal 

experiments were concentrated to their original concentration using Viva spin 20 

centrifuge tubes (Sartorius, Fisher) at 9000 rpm for 20-40 min. Liposomes for in vivo 

biodistribution studies were loaded with radio-labelled 
14

C-DOX. All liposomes used 

for cell culture and in vivo studies were sterile filtered through 0.22µm filter before 

use. 

3.3.7 Release Studies from Liposomes 

CF and DOX release data were measured by taking advantage of the fluorescence 

quenching process. When CF or DOX are encapsulated inside the liposomes, their 

concentrations are very high resulting in self-quenching of their fluorescence signal. 
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When the ambient temperature exceeded the liposome transition temperature, CF and 

DOX were released from the liposomes and their concentrations are diluted resulting 

in increase in fluorescence intensity, which was used to monitor the release process. 

Release experiments were performed over 1 h at different temperatures in HBS or 

50% CD-1 mouse serum (Sera Laboratories International, UK) at 0.8 mM final lipid 

concentration. For liposome stability studies, release in 50% CD-1 mouse serum was 

continued at 37 °C over night. At different time points samples were withdrawn and 

further diluted to 200 µL with HBS (pH 7.4) and measured in a quartz cuvette at 

either 480/595 nm excitation and emission wavelengths (slit 15/20 nm) in case of 

DOX or at 492/516 nm (slit 2.5/5) for CF using PerkinElmer Luminescence 

Fluorimeter (LS50B). The intensity of the fluorescence signals was then normalized 

and the percentage of DOX release was calculated as;  

% release =[I(s) – I(0)]/[I(t) – I(0)], (Tai et al. 2009)  

Where, I(s) is the fluorescence intensity of individual samples at different time 

points, I(0) is the background fluorescence intensity of liposome samples after 

purification and I(t) is the fluorescence intensity of liposomes suspension after the 

addition of 2 µL of 10% Triton X-100 in HBS (pH 7.4). 

3.3.8 Biocompatibility Studies 

3.3.8.1 Lp-Peptide Hybrids Biocompatibility with B16F10 Cells 

To check for the cellular biocompatibility of Lp-Peptide hybrids, their effect on 

cellular viability was tested on B16F10 murine melanoma cancer cells. Cells were 

seeded overnight into 96-well plates (Corning Costar Corporation, USA) at a density 

of 6,000 cells per well. Next day, media was aspirated and cells were treated with 

100 l of Lp or Lp-Peptide hybrids (without DOX) diluted with medium to 0.5, 

0.145 and 0.0145 mM total lipid concentration. Cells were incubated with liposomes 

for either 3 h or 24 h at 37C. At the end of incubation culture media containing the 

liposomes was removed and cell viability was assessed with MTT assay. In brief, 

media were aspirated and replaced with 120 µl of MTT solution (5mg/ml), at 1:5 

dilutions in fresh media and incubated for 1.5-2 h at 37 °C to allow for the formation 

of Formazan crystals. At the end of incubation, culture medium was removed by 

gentle tapping and the Formazan crystals were dissolved by adding 150 l of DMSO 
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solution (Fisher Scientific, UK) using multichannel pipette. Plates were incubated for 

another 15 min at 37 C to remove any air bubbles. The Formazan absorbance (A) 

was measured at 570 nm in Fluostar Omega plate reader (BMGLabtech,UK). The 

results were expressed as the percentage of cell viability (n = 6  S.D) compared to 

control untreated cells using the following formula: 

% cell viability= A treated cells / A control ×100 

Where, A treated cell is the absorbance of treated cells and A control is the 

absorbance of control cells treated with media only.  

3.3.8.2 Lp-Peptide Hybrids Biocompatibility with HUVEC Cells 

In addition to testing the biocompatibility of Lp-Peptide hybrids on B16F10 cells, 

we also checked their effect on primary human umbilical vein endothelial (HUVEC) 

cells. HUVEC cells were plated into 96-well plates (Costar, Corning Life Sciences, 

Amterstam, the Netherlands) at a density of 4×10
4
 cells/well (100 µl medium per 

well). Before plating, the 96-well inserts were treated for 30 min with 50 µl of 1% 

gelatine in MilliQ (Merck, Schiphol-Rijk, The Netherlands) at 37 °C in a humidified 

cell incubator followed by incubation for 30 min with 95 µl of 5 µg/ml fibronectin 

(Roche Diagnostics, the Netherlands) at 37 °C in a humidified cell incubator.  

The experiment was performed the day after plating. Throughout the experiment, 

cells were kept in the humidified cell incubator. EGM-2 medium was replaced by 

EGM-2 medium containing Lp or Lp-Peptide hybrids (0.145 mM) without DOX. 

After 4 h or 24 h, the EGM-2 medium containing liposomes was removed and the 

cells were washed once with fresh EGM-2 medium. HUVEC cells were allowed to 

recover for 24 h and cell viability was assessed by MTT assay (Cell Proliferation Kit 

I, Roche Diagnostics, the Netherlands). Briefly, 10 µl MTT labelling reagent was 

added per well. After 4 h, 100 µl of solubilisation solution was added and the 96-well 

plate incubated overnight in the humidified cell incubator. Absorbance was measured 

at 595 nm and 655 nm in a Model680 microplate reader from Bio-Rad (Veenendaal, 

the Netherlands). Absorbance (595 nm minus 655 nm) was expressed as percentage 

of control treated HUVEC cells (i.e. HEPES buffer only). HUVEC cells treated with 

1% Triton X-100 were used as positive controls. The experiment was performed in 
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triplicates. This experiment was done in collaboration with Dr. Klazina Kooiman 

(Erasmus MC, Netherlands). 

3.3.8.3 ELISA Studies 

To check the biocompatibility of the Lp-Peptide hybrids after in vivo 

administration, B16F10 tumour-bearing C57 mice were injected with either empty 

Lp-Peptide 200:1 or DOX-loaded Lp-Peptide 200:1 followed by local heating of the 

tumour in a water bath at 42 °C for 1 h. To check for the development of immune 

response against Lp-Peptide hybrids, serum was collected 1 week after injection and 

the total antibody level was quantified by ELISA and compared to control (non-

injected mice). High‐binding ELISA plates (Costar, UK) were coated overnight with 

serum samples (100 µl) at a dilution of 1:1000 at 4 °C. After washing with PBS 

containing 0.01% Tween 20, the plates were blocked with 3% BSA in PBS for 2 h. 

Plates were then washed with TBS for 3 times and incubated with HRP-label anti-

mouse IgG at 1:1000 dilution (100 µl) for 1 h at room  temperature. 1‐Step Ultra 

TMB‐ELISA was used as a detection system. Then the reaction was stopped by 

adding sulphuric acid (2 M) and absorbance was measured at 450 nm in Fluostar 

Omega plate reader (BMGLabtech,UK). This experiment was performed in 

collaboration with Dr. Açelya Yilmazer (Nanomedicine Lab, UCL School of 

Pharmacy). 

3.3.9 Cellular Binding and Uptake Studies 

Cells were grown overnight on glass cover slip in 24 tissues culture well plate 

(corning USA) at either 20,000 cells per well (B16F10) or 40,000 cells per well 

(MDA-MB-435, MCF-7 & C33a) to reach confluency. Different incubation 

procedures were applied which are explained below under each section. At the end of 

incubation, cells were washed with PBS and fixed with paraformaldehyde (PFA) 4% 

(Thermoscientific, UK) for 10-15 min at room temperature then mounted using 3 µl 

Vectashiled mounting medium with DAPI H-1200 (Vector Laboratories). Cells were 

then imaged with confocal laser scanning microscopy (CLSM) Zeiss LSM 710 

(Obserkochen, Germany) using EC Plan-Apochromat 40x/1.3 oil lense. DAPI staining 

of nucleus was detected at 405 nm laser excitation source and 410 nm output filter, 

whereas DiI and Cy3 were imaged at 514 nm laser excitation source and 585 nm 
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output filter. DOX fluorescence signal was detected at 488nm laser excitation source 

and 535–674 nm output filters. 

3.3.9.1 Cellular Uptake of Lp-Peptide Hybrids 

The cellular uptake of Lp-peptide hybrids was studied in B16F10 cells and 

compared to liposomes without the peptide. Cells were treated with DiI-labelled Lp 

and Lp-peptide hybrids (without DOX) at 0.145 mM and 0.5 mM total lipid 

concentration for 3 h and 24 h at 37 °C. At the end of incubation cells were washed 

with PBS, fixed, mounted and imaged with CLSM as described above. 

3.3.9.2 Cellular Binding of MUC-1 Ab 

To investigate the expression of MUC-1 antigen MDA-MB-435, MCF-7 and 

C33a cancer cell lines were incubated with anti-MUC-1 antibody (1µg/ml) for 3 h at 

37 °C. At the end the incubation, cells were washed with PBS and fixed with PFA 

4% (Thermoscientific, UK) for 10-15 min at room temperature. Cells then washed 

with PBS and permeabilize with 0.5% Triton X-100 for 10 min and incubated with a 

blocking solution composed of 4% goat serum and 3% BSA in PBS for 30 min. At 

the end of incubation, cells were washed and incubated with anti-human Cy3-

labelled secondary antibody at 1:220 dilution in blocking solution (2 h at room 

temperature protected from light). Cy3-labelled antibody was then removed and cells 

were mounted using 3 µl Vectashiled mounting medium with DAPI H-1200 (Vector 

Laboratories). Anti-MUC-1 antibody binding capability was also checked after each 

step of conjugation to TTSL liposomes and DOX loading by incubation with MDA-

M-435 (MUC-1+ve) at 1 µg/ml for 1 h at 37 °C. Cells were then stained after 

incubation with Cy3-labelled antibody using the same procedure described above 

and imaged with CLSM. 

3.3.9.3 Cellular Uptake of MUC-1 TTSL-Ab 

Cellular uptake studies of DOX-loaded and DiI-labelled TTSL and TTSL-Ab 

liposomes (150‎ μM‎ lipid, 10 μM DOX) were performed independently due to the 

overlap in the fluorescent spectrum of DOX and DiI. First, to study the cellular 

uptake kinetics, DOX-loaded TTSL, TTSL-Ab-I and TTSL-Ab-II uptake by MDA-

MB-435 and C33a was studied after 1 h, 3 h and 24 h incubation at 37 °C. At the end 
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of incubation cells were washed with PBS to remove any unbound liposomes, and 

imaged with CLSM with or without 1 h heating at 42 °C at the end of incubation 

time (Scheme ‎3-1). 

The effect of antibody conjugation on the uptake of the liposomes itself by MDA-

MB-435 cells was also studied after 1 h and 3 h incubation with DiI-labelled 

liposomes at 37 °C. At the end of incubation time, cells were washed with PBS to 

remove unbound DiI-labelled liposomes and visualized with CLSM as described 

above. 

 

Scheme ‎3-1: Schematic presentation of the time frame of cellular uptake studies of DOX-loaded 

TTSL, TTSL-Ab-I and TTSL-Ab-II by MDA-MB-435 and C33a cells.  

 

3.3.10 Cellular Cytotoxicity Studies (MTT Assay 

3.3.10.1 Cytotoxic activity of DOX-Loaded Lp-Peptide Hybrids 

In vitro cytotoxicity of DOX-loaded LTSL, Lp-Peptide 200:1 hybrids and TTSL 

were compared using MTT reduction assay. Briefly, B16F10 and SW480 cells were 

plated into 96 well plates (Coster, USA) at 6,000 and 10,000 cells per well, 

respectively. Cells were incubated overnight at 37 °C before treatment. To assess the 

stability and the thermal sensitivity of Lp-Peptide hybrids compared to LTSL and 

TTSL, liposomes were heated for 1 h at 42 ºC in complete media before incubation 

with the cells and compared to non-heated liposomes. Cells were then treated with 

both heated and non-heated liposomes at 10 µM DOX concentration for 3h at 37 °C 

in CO2 Incubator. At the end of treatment, cells were washed and replaced with 

liposomes-free media and incubated at 37 °C for either 24 h or 48 h. Cell viability 
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was then assessed with MTT assay as explained in section 3.3.8.1 and the results 

were expressed as percentage of untreated control cells.  

3.3.10.2 Cytotoxic activity of MUC-1 TTSL-Ab 

Cytotoxicity of DOX-loaded TTSL and TTSL-Ab was also studied by MTT 

reduction assay; however, different incubation protocol was applied. Briefly, MDA-

MB-435 (MUC-1+ve) and C33a (MUC-1-ve) cells were plated in 96 well plates 

(Coster, USA) at 8,000 and 10,000 cells/well, respectively and incubated at 37 °C 

overnight before treatment. Cells were then treated with free DOX, TTSL, TTSL-

Ab-I and TTSL-Ab-II at 10 µM for 3 h at 37 °C in CO2 incubator. At the end of 3 h 

treatment, cells were washed and replaced with liposomes-free media. At this stage 

plates were either incubated at 37 °C for 48 h or treated for 1 h at 42 °C in CO2 

incubator followed by incubated at 37 °C for 48 h (Scheme ‎3-2), to evaluate the 

effect of triggering the drug release after cellular binding and internalisation. Cell 

viability was then assessed with MTT assay and expressed as % of untreated cells as 

described in section 3.3.8.1.  

 

Scheme ‎3-2: Schematic presentation of the protocols used to assess the cytotoxicity of TTSL-Ab. 

 

3.3.11 Localisation and Cytotoxicity Studies Using Multicellular Spheroids 

(MCS) 

MCF-7 (MUC-1+ve) MCS were used in these experiments instead of MDA-MB-

435 due to the inability of the later to form MCS. MCF-7 spheroids were prepared 
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using a previously published liquid overlay technique (Yuhas et al. 1977). Briefly, 

MCF-7 cells obtained by typsinization of monolayer growth cultures were seeded at 

10,000 cells/well into 96 well plates coated with 100 µl of sterile 1% purified agar 

(Oxoid, UK) in D.W.  

After 4 days culture on agar spheroids with diameters of‎approximately‎500‎μm‎

were selected under an inverted phase-contrast microscope with an ocular graticule. 

MCS were pooled into 15 ml plastic tubes and allowed to sediment for few min. 

After sedimentation, the bulk of the medium was removed, leaving the spheroids in 

the bottom of the tubes. MCS were then mixed with 5 ml medium containing either 

free DOX, TTSL or TTSL-Ab (26 µg Ab/µmol lipid) at 10 µM DOX concentration 

and transferred to 50 mm diameter Petri dishes coated with 10 ml of 1% agar and 

incubated for 24 h at 37 °C. At the end of incubation, MCS were washed 3 times 

with PBS and placed in fresh incubation medium. To evaluate the effect of HT on 

DOX penetration and MCS growth retardation, MCS incubated with TTSL-Ab were 

heated for 15 min at 42 °C in a water bath with continuous shaking and compared to 

untreated MCS (Scheme ‎3-3). 

 

Scheme ‎3-3: Time line frame of the protocol used for testing TTSL and TTSL-Ab on MCF-7 

MCS. 

 

DOX penetration into the MCS was imaged with CLSM (Zeiss LSM 710, 

Oberkochen, Germany) using sterile 35 mm glass-bottom culture dishes (MatTek, 

USA) at 488 nm laser excitation source and 535–674 nm output filter using EC Plan-

Neofluar 10x objective to detect DOX fluorescence signals. Distribution of DOX 
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signal throughout the MCS was studied with Zeiss LSM 710 confocal microscope 

using Z-stack imaging at 58.8 μm penetration depth. Images were then analyzed 

using LSM 710 image software. 

To evaluate the growth retardation effect of anti-MUC-1 TTSL-Ab, MCS were 

transferred into 50 mm Petri dishes coated with 1% agar and incubated with fresh 

medium at 37 °C over 3 weeks with replacement of the media twice a week. MCS 

were then regularly imaged at 10x inverted microscope. MCS volume (v) was then 

calculated by measuring MCS dimensions using Image J software applying the 

following equation: 

  
      

 
  

Where, L and W are the length and width of the MCS respectively. Normalized 

volume ratio was then calculated as v/v°, where v° is the volume of the spheroids on 

the first day of treatment. 

3.3.12 Animals and Tumour Models 

5-6 week-old females C57BL6 mice (15-20 g) were purchased from Harlan (UK 

Limited, U.K). 5-6 week-old female athymic nude mice (20-25 g) were purchased 

from Charles River Laboratories, UK. Mice were housed in groups of 5 with free 

access to water at 19-22 °C, relative humidity of 45-65% and a 12 h light/dark cycle. 

Individually vented cages (IVC; Allentown, USA) were used in case of athymic nude 

mice. Animal procedures were performed in compliance with the UK Home Office 

Code of Practice for the Housing and Care of Animals used in Scientific Procedures. 

Mice were acclimatized to the environment for at least 7 days before performing the 

procedures and tumour implantation. 

Tumour implantation was performed by injection tumour cells into the right lower 

leg using 26G needles. B16F10 melanoma was established by subcutaneous injection 

of 2.5 × 10
5
 B16F10‎melanoma‎cells‎ in‎a‎volume‎of‎20‎μl‎of‎PBS.‎SW480 human 

colon adenocarcinoma tumour model was inoculated by subcutaneous injection of 

5x10
6
 SW480‎ cells‎ in‎ a‎ volume‎ of‎ 100‎ μl‎ of‎ serum‎ free‎ advanced‎ RPMI‎ media 

supplemented with 1% L-glutamine. MUC-1 overexpressing MDA-MB-435 tumour 
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model was established by subcutaneous injection of 1x10
7
 MDA-MB-435 cells in a 

volume‎of‎150‎μl‎of‎DMEM‎media. 

The tumour volume was estimated by measuring three orthogonal diameters (a, b, 

and c) with calipers; the volume was calculated as (a×b×c) × 0.5 mm
3
. The 

experiments were performed when the tumour volume reached 200-400 mm
3
 for 

biodistribution and 100 mm
3
 for therapy. 

3.3.13 Pharmacokinetics and Biodistribution Studies 

To study the pharmacokinetics and biodistribution profile of liposomes, they were 

prepared in 25 mM (total lipid concentration) as describe earlier and loaded with 

radiolabelled 
14

C-DOX (equivalent to 0.2 µCi/dose). Mice (n = 3-4) were 

anesthetized by inhalation of isoflurane and injected via the tail vein with 200 μl of 

the liposomes suspension (equivalent to 2.5 µmol of lipids/200 µl, DOX 5 mg/kg) in 

HBS. 
14

C-DOX levels in blood profile, organs and tumour were then quantified.  

Local hyperthermia was applied by immersing the tumour-bearing leg in a water 

bath stabilized at 43 °C. Animals were anesthetized by inhalation of isoflurane and 

the body temperature of the mice was monitored with a rectal thermocouple. A fan 

and a heating pad were used to maintain the body temperature at 36-37 ˚C. 

Experimental conditions and HT protocols applied for each study are explained in 

details below. 

3.3.13.1 Pharmacokinetics and Biodistribution Studies of 
14

C-DOX Loaded Lp-

Peptide Hybrids 

The blood circulation profile of Lp-Peptide 200:1, LTSL and TTSL were studied 

after in vivo administration into C57BL6 mice. At different time points, mice were 

bled‎ by‎ tail‎ vein‎ puncture‎ and‎ 70‎ μl‎ of‎ blood‎ was‎ collected‎ using‎ a‎ heparinized‎

capillary tube. Blood withdrawn did not exceed 10% of the mouse blood volume per 

day. The mice were killed after 1 h and 24 h by cervical dislocation (Al-Jamal et al. 

2009a). The total radioactivity in the blood was calculated based on the assumption 

that the total blood volume is accounting 7.3% of the total body weight (Buiting et 

al. 1996). Blood profile of Lp-Peptide 200:1 was also studied in comparison to Lp 
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without peptide and Lp-Peptide II 200:1, which has leucine zipper peptide of higher 

transition temperature (VSSLESK)6 using the same procedure described above. 

The amount of 
14

C-DOX accumulated in the tumours and organs in response to 

heat treatment was also quantified by applying local HT immediately after injection 

and maintained for 60 min. At 1 h and 24 h post injection and heat application, the 

mice were killed and organs, including tumours, were excised. The results were 

represented as the percentage of the injected dose (% ID) per gram tissue.  

3.3.13.2 Biodistribution Studies of 
14

C-DOX Loaded TTSL and TTSL-Ab 

The effect of anti-MUC-1 antibody conjugation to TTSL liposomes on their 

pharmacokinetics and biodistribution parameters was also studied after in vivo 

administration into MDA-MB-435 tumour-bearing athymic nude mice. 
14

C-DOX 

level in the blood and accumulation in the organs and tumour from TTSL-Ab (26 µg 

Ab/µmol lipid) was quantified and compared to non-targeted TTSL applying three 

different heating protocols as described in Chapter 6 (Scheme 6-1). HT protocols 

were classified depending on whether or not 60 min local HT was applied and the 

timing of HT application relative to the injection. The purpose of such variation is to 

study the effect of HT on the extravasation of targeted TTSL-Ab into solid tumours. 

In all three heating protocols studied a 2nd HT was applied over 30 min 24 h after 

injection to trigger intracellular drug release. Organs and tumours were collected 1 h 

and 24 h after injection, before and after, the application of 2nd HT. The results were 

represented as the percentage of the injected dose (% ID) per gram tissue.  

3.3.13.3 Radioactivity Measurements in the Blood and Tissues 

The quantification 
14

C-DOX was carried out as previously described (Al-Jamal et 

al. 2009b). Blood and whole organs samples (except liver 100 mg) were transferred 

to 20 mL scintillation vials and solubilised with 1 mL of Soluene-350 tissue 

solubilizer (PerkinElmer, UK), with continuous‎shaking‎overnight‎at‎55˚C.‎Samples‎

were decolourized before adding the scintillation cocktail by adding 0.3 ml of 30% 

H2O2 and 0.3 ml of isopropanol as an antifoaming agent. Samples were shaken at 55 

°C for at least 1-3 h to expel H2O2 before adding the scintillation cocktail. Samples 

were then mixed with 20 ml of‎ Optiphase‎ “Safe”‎ scintillation‎ cocktail‎ (Fisher‎

Scientific, UK) acidified with 0.7% (v/v) glacial acetic acid to eliminate any chemi-
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luminescence, and counted in an LS6500 multipurpose scintillation counter 

(Beckman, USA). 

3.3.14 In Vivo Optical Fluorescence Imaging 

In vivo optical imaging was used to study the accumulation of DOX into tumour-

bearing mice by looking at the optical fluorescence signal in live animals. Mice were 

imaged by IVIS Lumia II imaging system (Caliper Life Sciences Corp., Alameda, 

CA) using the following setting; exposure 10 seconds, binning medium, F stop 2, 

FOV D and height 1.5. Images were taken at 500 nm/DsRed excitation and emission 

filters and corrected by subtraction from background images performed at 430 nm 

excitation wavelength and GFP emission filter. Images analysis was done with 

Living Image software 3.2 (Caliper Life Sciences Corp) and displayed as fluorescent 

efficiency images, where the value of each pixel represents the fractional ratio of 

fluorescent emitted photons per incident excitation photon. Optical imaging was used 

to study the effect of HT protocols on DOX accumulation into SW480 and MDA-

MB-435 tumours as will be explained in the following sections. DOX fluorescent 

intensity at the tumour site was quantified by drawing region of interest (ROI) that 

covers the tumour-bearing leg and values expressed as total efficiency, which is a 

unitless value represents the ratio of emitted light to incident light. 

3.3.14.1 Optical Imaging of DOX Accumulation into SW480 Tumour Using 

Intravascular and Interstitial Release Protocols 

Optical imaging was used to study DOX accumulation into SW480 tumour-

bearing athymic nude mice from LTSL, Lp-Peptide 200:1 hybrids and TTSL 

comparing both intravascular and interstitial release protocols. For intravascular 

release protocol IVIS acquisition was performed 1 h and 24 h after injection, while 

for the interstitial release protocol images were taken 24 h after injection, before and 

after 2nd HT, using the imaging settings described earlier. 

3.3.14.2 Optical Imaging of DOX Accumulation into MDA-MB-435 Tumour by 

MUC-1 TTSL-Ab 

In addition to quantification of 
14

C-DOX accumulation in the tumour, DOX 

retention in the tumour in vivo was studied by optical imaging in live animals. TTSL 
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and TTSL-Ab (26 µg Ab/µmol lipid) injected tumour-bearing athymic nude mice 

were imaged using IVIS Lumia II imaging system. Images were taken at the same 

time points used for biodistribution experiment studying the same HT protocols 

described in Chapter 6 (Scheme 6-1).  

3.3.15 In vivo Tumour Growth Delay and Survival Studies 

Therapeutic activity of TSL studied in this thesis was evaluated by their effect on 

tumour growth retardation after in vivo administration. Tumours were measured with 

calipers as described under tumour establishment. Mice were also examined for any 

change in the body weight or signs of toxicity twice a week. Tumour measurements 

were blinded to the experimental conditions. Therapy experiments were terminated 

when tumours reached 1000 mm
3 

and mice were scarified by cervical dislocation. 

3.3.15.1 In Vivo Tumour Growth Delay and Survival of TSL Comparing 

Intravascular and Interstitial Release Protocols 

The therapeutic activity of Lp-Peptide hybrids was studied after in vivo 

administration into SW480 tumour-bearing athymic nude mice. We studied the 

therapeutic activity of Lp-Peptide hybrids using two HT protocols to mimic 

intravascular and interstitial drug release (in comparison with LTSL and TTSL).  

When the tumour volume reached 100 mm
3
 (day 11 after implantation), mice 

were divided into groups (5-7 mice/group) and treated with single administration of 

LTSL, Lp-Peptide 200:1 hybrids or TTSL (5mg/kg DOX) by intravenous injection 

applying either intravascular or interstitial release protocols described in Chapter 5 

(Scheme 5-1). Control mice in both protocols are mice treated with HT only without 

receiving any injection. 

For the intravascular drug release single, HT was applied directly after TSL 

intravenous injection to trigger drug release from TSL within the heated tumour 

vasculature. Alternatively, for the interstitial release protocol, two HT sessions were 

used. The 1st HT was over 1 h prior to TSL injection to increase the local tumour 

endothelial cells permeability. 24 h after TSL injection a 2nd HT treatment was 

given (over 30 min) to trigger drug release interstitially from TSL accumulated 

within the tumour. 
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3.3.15.2 In Vivo Tumour Growth Delay and Survival of MUC-1 TTSL-Ab 

The therapeutic activity of MUC-1 targeted TTSL-Ab (26 µg Ab/µmol lipid) 

compared to non-targeted TTSL was evaluated after in vivo administration into 

MDA-MB-435 (MUC-1+ve) tumour-bearing athymic nude mice. TTSL and TTSL-

Ab (5mg/kg DOX) were administered by single intravenous injection on day 13 after 

tumour inoculation using HT protocol 3 (Scheme 6-1) with and without application 

of 2nd heating 24 h after injection. Tumour volume and body weight was monitored 

twice a week as described earlier. 

3.3.16 Histopathological Analysis 

To assess for any histological changes as a result of treatment with DOX loaded 

TSL, major organs were collected from treated mice and compared to control mice. 

Mice were sacrificed by cervical dislocation 3-5 weeks after injection with the 

exception of mice treated with TTSL liposomes (interstitial release protocol) who 

had to be euthanized earlier (10 days after injection) because of the severe weight 

loss (15-20% of initial weight). Tissue samples were fixed in neutral buffered 

formalin and processed routinely into paraffin before sectioning and staining with 

Haematoxylin and Eosin (H & E). 

3.3.17 Statistical Analysis 

Statistical analysis of the data was performed using Graph Pad Prism software. 

Two-tailed unpaired student t-test and one-way analysis of variance (ANOVA) 

followed by the Tukey multiple comparison test were used and p values < 0.05 was 

considered significant. 
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This chapter describes the design and characterization of leucine zipper lipid-

peptide hybrid vesicles (Lp-Peptide) engineered by self-assembled anchoring of the 

amphiphilic peptide within the lipid bilayer. These hybrid vesicles aim to combine 

the advantages of traditional temperature-sensitive liposomes with the dissociative, 

unfolding properties of a temperature-sensitive peptide to optimize drug release 

under mild hyperthermia and maintain in vivo drug retention. The secondary 

structure of the peptide and its thermal responsiveness after anchoring onto 

liposomes were studied with CD. In addition, the interaction of the peptide with the 

lipid bilayer was studied with fluorescent anisotropy and solid state NMR studies. A 

model drug molecule, doxorubicin, was successfully encapsulated in the Lp-Peptide 

vesicles at higher than 90% encapsulation efficiency following the remote loading, 

using ammonium gradient methodology. The release of doxorubicin from Lp-Peptide 

hybrids in vitro was studied at physiological temperatures and after exposure to mild 

HT (42 °C).   
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4.1 Introduction 

Poly- and oligopeptides can be readily produced with a defined sequence and 

chain length offering better control of transition temperatures compared to general 

synthetic polymers (Aluri et al. 2009). MacKay and Chilkoti have proposed that 

oligopeptides with repeated short sequences (< 7 amino acids in length) can generate 

a highly ordered biopolymer with complex temperature-responsive properties that 

could provide new tools for engineering hyperthermia mediated drug delivery 

systems (Mackay et al. 2008). From the drug delivery point of view, two important 

properties of temperature-sensitive peptides should be considered; directionality and 

reversibility. Directionality usually refers to the self-association and dissociation 

changes of the peptide in response to heating. Reversibility describes whether or not 

the peptide secondary structure is retained upon cooling (Mackay et al. 2008). 

Elastin-like polypeptides (ELPs) are examples of temperature-responsive peptides 

that have shown promising results in cancer therapy due to their ability to deposit 

and switch conformation in heated tissues and tumours. ELPs have been incorporated 

into self-assembled nanoparticles encapsulating drug or directly conjugated to drug 

molecules (Mackay et al. 2008). Aluri et al. and McFarlane et al. have described 

conformationally ordered peptides that can potentially be used in drug delivery 

systems by trapping therapeutics in assembled particulate drug carriers or in the form 

of switchable hydrogels to control the drug release at elevated temperature (Aluri et 

al. 2009; McFarlane et al. 2009). 

 In the present work we have investigated the engineering of previously 

characterized thermo-responsive liposome systems based on anchoring a 

temperature-sensitive amphiphilic peptide within a temperature-responsive lipid 

bilayer (Lp-Peptide). Our approach aims to combine the traditional temperature-

responsive liposome system technology with the dissociative/unfolding properties of 

a leucine zipper sequence peptide to allow better control, modulation and timing of 

drug release under mild hyperthermia, while improving in vivo drug retention.  

 We have chosen a leucine zipper with the amino acid sequence 

[VSSLESKVSSLESKVSKLESKKSKLESKVSKLESKVSSLESK]-NH2 for its 

interesting ability to dissociate above its melting temperature (~40 °C) into a 

disordered conformation in the temperature range that is clinically attainable 
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(Mackay et al. 2008). The peptide structure contains two or more α-helices self-

assembled by wrapping around each other to form a super-helix coiled-coil form of 

dimers or higher-order aggregates (Petka et al. 1998; Shen et al. 2005; Xu et al. 

2005). Figure ‎4-1 illustrates the peptide structure described above. The molecular 

conformation of leucine-zipper peptides and their self-association states have been 

discussed in several papers and evidence has been produced indicating the formation 

of super-helices based upon dimers, trimers and tetramers. However, the self-

associated states are defined in the crystalline state rather than in solution or bound to 

liposomes (Harbury 1993; Harbury et al. 1994; Zitzewitz et al. 1995). Leucine 

peptides sequences are characterized by heptad repeats (abcdefg) of 7 amino acids. 

At appropriate pH and temperature conditions, the naturally unfolded peptide self-

associates, adopting an α-helix conformation, that, exposes the hydrophobic a and d 

residues on one side of the helix (Petka et al. 1998). Above the melting temperature, 

dissociation of the coiled-coil structure occurs, leaving disordered peptide monomers 

(Thompson et al. 1993). The ability to modulate the peptide transition temperature, 

its conformational changes in response to heat and its potential in the field of drug 

delivery (Xu et al. 2005; Mackay et al. 2008) makes leucine zipper peptides 

attractive components for the design of temperature-responsive delivery vesicles 

(Figure ‎4-1A).  

 

Figure ‎4-1: Schematic presentation of temperature-triggered release from Lp-Peptide hybrids. 

A) Schematic presentation of liposome-peptide (Lp-peptide) hybrids and their response to 

hyperthermia. B) The arrangement of the amino acids is illustrated by the wheel diagram, showing the 

winding‎of‎the‎two‎α-helices around each other and the formation of the hydrophobic interhelical core. 
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Our results in this chapter show that leucine zipper peptides successfully 

incorporate into lipid bilayers during liposome preparation without affecting the 

liposome morphology or size characteristics. In addition, Lp-Peptide hybrids have 

fast release of DOX following localized mild HT application which was comparable 

to LTSL. The leucine zipper peptide appears to be in an unfolded state at the higher 

temperatures required for drug release. Lp-Peptide Hybrids exhibit a promising 

enhancement in serum stability at physiological temperature compared to LTSL 

without compromising the thermo-responsiveness of the system at 42 ºC. The 

engineered Lp-Peptide hybrids incorporating a temperature-sensitive peptide provide 

a new class of clinically-relevant thermosensitive liposomes suitable for in vivo 

applications. 
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4.2 Results 

4.2.1 Preparation and Characterization of Liposomes 

Liposome-Peptide (Lp-Peptide) hybrids were prepared by incorporating the 

peptide into temperature-responsive DPPC:DSPC:DSPE-PEG2000 (90:10:5) 

liposomes. To study the effect of peptide incorporation into liposomes on their in 

vitro properties, different lipid:peptide molar ratios (600:1, 200:1 and 100:1) were 

studied. The lipid composition of the formulation was optimized based on DSC data 

by testing different molar ratios of DPPC:DSPC liposomes (Table ‎4-1). DPPC:DSPC 

90:10 mol/mol was chosen since its Tm is around 42 °C which can be clinically 

attainable.  

Table ‎4-1: Transition temperature (Tm) of different molar ratios of DPPC:DSPC liposomes 

Liposomes composition 

(mol/mol) 

Transition temperature (Tm) 

mean ± STD (n=3) 

DPPC:DSPC 90:10 41.64 ± 0.38 

DPPC:DSPC 80:20 42.99 ± 0.20 

DPPC:DSPC 70:30 43.65 ± 0.28 

DPPC:DSPC 60:40 46.41 ± 0.06 

DPPC:DSPC 50:50 47.83 ± 0.35 

To impart stealth properties to the liposomes and to increase their circulation time 

in the blood stream, 5 mol% of DSPE-PEG2000 lipids were included into 

DPPC:DSPC (90:10) liposomes (Li et al. 2010). A slight increase in Tm (Table ‎4-2) 

was observed after addition of DSPE-PEG2000 lipid which agrees very well with 

previous studies (Gaber et al. 1995). 

Table ‎4-2: Transition temperature (Tm) of DPPC:DSPC (90:10) liposomes with and without the 

inclusion of 5 mol% of DSPE-PEG2000 lipid 

Liposomes composition 

(mol/mol) 

Transition temperature (Tm) 

mean ± STD (n=3) 

DPPC:DSPC 90:10 41.9 ± 0.10 

DPPC:DSPC:DSPE-PEG2000 90:10:5 42.64 ± 0.15 

Also included in the study are two different types of TSL as positive controls; 

LTSL that have shown ultrafast release properties (Needham et al. 2000; Mills et al. 
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2005) and TTSL that have intermediate drug release rate (Gaber et al. 1996). As a 

negative control, non temperature-sensitive liposomes (NTSL) based on the 

formulation of clinically approved liposomal doxorubicin (Doxil
®
) were also 

included in our experiments. 

Table ‎4-3 shows that Lp and Lp-Peptide hybrids had a hydrodynamic diameter of 

around 100 nm with low polydispersity index (PDI ≤‎0.1)‎and‎are‎slightly‎negatively‎

charged. The incorporation of the peptide, at all ratios, did not affect the size or 

surface properties of the liposomes (Figure ‎4-2 A & B).  

 

Figure ‎4-2: Hydrodynamic diameter and zeta potential of the DPPC:DSPC:DSPE-PEG2000 

liposomes (A) before and (B) after incorporation of peptide. 
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Table ‎4-3: Physicochemical characterization data; hydrodynamic diameter, polydispersity Index (PDI)., zeta-potential, and phase transition temperature (Tm) of 

Lp, Lp-Peptide, Lp-CHOL, LTSL, TTSL and NTSL. 

      DOX loaded liposomes  

Liposomes 

composition (mol/mol) 

Peptide 

mol% 

Lipid:Peptide 

(mol/mol) 

Size (nm) PDI Zeta Potential 

(mV) 

Size (nm) PDI Tm (°C) 

DPPC:DSPC: DSPE-PEG2000 (90:10:5) 

Lp 0.0% - 123 ± 11.0 0.10± 0.050 -12.0 ± 3.00 118 ± 0.80 0.06 ± 0.020 42.6 

Lp-Peptide 600:1 0.0017% 600:1 128 ± 0.40 0.07 ± 0.003 -8.00 ± 0.82 128 ± 1.14 0.08 ± 0.016 42.6 

Lp-Peptide 200:1 0.5% 200:1 114 ± 1.70 0.06 ± 0.020 -9.89 ± 1.32 128 ± 2.30 0.09 ± 0.015 42.9 

Lp-Peptide 100:1 1.0% 100:1 128 ± 1.62 0.05 ± 0.003 -9.10 ± 0.45 127 ± 0.68 0.01 ± 0.015 42.6 

         

DPPC:DSPC:DSPE-PEG2000:CHOL (90:10:5:0.5) (Lp-CHOL) 

 - - 126.0 ± 18.0 0.09 ± 0.055 -13.3 ± 0.51 123 ± 0.10 0.07 ± 0.009 42.8 

         

DPPC:MSPC:DSPE-PEG2000 (90:10:4) (LTSL) 

 - - 97.00 ± 5.01 0.07 ± 0.03 -9.69 ±0.11 99 ± 1.53 0.06 ± 0.010 41.4 

         

DPPC:HSPC:CHOL:DSPE-PEG2000 (54:27:16:3) (TTSL) 

 - - 105.2 ± 3.61 0.05± 0.02 -8.40 ± 1.10 101 ± 1.03 0.05 ± 0.02 44.2 

         

HSPC:CHOL:DSPE-PEG2000 (56.3:38.2:5.5) (NTSL) 

 - - 105.0 ± 1.53 0.05 ± 0.01 -7.97 ± 0.77 107 ± 2.89 0.07 ± 0.01 - 

Data expressed as mean ± STD (n=3) 
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The morphology of the Lp-Peptide hybrids was examined by transmission 

electron microscopy (TEM) (Figure ‎4-3, top panel). TEM images showed well-

dispersed, round shaped vesicles that correlated with dynamic light scattering (DLS) 

measurements. In addition, TEM images showed that the morphology of the 

liposomes did not change after 15 min incubation at 60 °C (Figure ‎4-3, bottom panel) 

confirming that the vesicular structure of the Lp-Peptide hybrids was maintained at 

high temperature.  

 

Figure ‎4-3: Structural elucidation of Lp-Peptide hybrids. 

Transmission electron microscopy images at room temperature (top) and after 15 min incubation at 

60°C (bottom) of DPPC:DSPC:DSPE-PEG2000 (90:10:5) liposomes (A & E) and Lp-Peptide hybrids at 

600:1 (B & F); 200:1 (C & G); and 100:1 (D & H) lipid: peptide molar ratios. 

4.2.2 Circular Dichroism Studies 

To assess the conformation of the peptide and whether anchoring into the 

liposome bilayer affected response to temperature, far-UV Circular Dichroism (CD) 

analysis was applied for both free peptide and Lp-Peptide hybrids at 200:1 molar 

ratio. Both unbound peptide (Figure ‎4-4 A) and peptide anchored in liposomes 

(Figure ‎4-4 B) adopted a predominantly α-helix conformation at 6 °C with well-

defined characteristic negative bands at 208 nm and 222 nm and a positive band at 

192 nm (arrows). To characterize the temperature-switchable unfolding process of 

the peptide, CD changes were assessed with thermal scans from 6 °C to 94 °C (1 

°C/min heating rate). For both the unbound peptide and the Lp-Peptide hybrids, the 
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positive band at 192 nm and the negative bands at 208 and 222 nm collapsed together 

with the appearance of the typical disordered conformation CD spectrum (negative 

band at 200 nm). 

 

Figure ‎4-4: Temperature-dependent conformational changes and revesribility of Lp-Peptide 

hybrids.  

Far UV CD spectra of: A) free Leucine zipper peptide, and B) Lp-Peptide hybrids (200:1 lipid: 

peptide). The peptide adopts an α-helix conformation at low temperature and becomes increasingly 

disordered as the temperature is raised, both in solution and in liposomes. The same colour scheme 

was used for both graphs. Peptide melting temperatures of: C) free leucine zipper peptide, and D) Lp-

Peptide hybrids (200:1). The mean residue ellipticity (degree cm
2 

dmol
-1

) at the wavelength values 

characteristic to α helix peptide (222 nm, 208 nm and 192 nm) were plotted as a function of 

temperature and the transition temperature of the peptide was determined with the Applied 

Photophysics Global 3 analysis software for dynamic multi-mode spectroscopy. Far-UV CD spectra 

were also recorded after 15 min equilibration at different specified temperatures for the 

reversibility of peptide at the end of thermal scan of: E) unbound leucine zipper peptide, and F) 

Lp-Peptide hybrids (200:1). 
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The CD spectroscopy confirmed a change from an α-helix content at room 

temperature to a more disordered state at higher temperatures (Figure ‎4-4). The 

peptide conformation melting temperature (Tm) was determined from the global 

analysis software associated with the Chirascan spectrometer.Tm of 46.3 ± 2.3 °C 

was found for the unbound peptide and Tm of 40.95 ± 0.1 °C for Lp-Peptide (Figure 

‎4-4 C & D). Reversibility of the peptide conformation was assessed by measuring 

CD spectra at 6 °C, after cooling (Figure ‎4-4 E & F). No change in the far-UV CD 

spectra of the unbound peptide was obtained on rapid cooling of the sample. No 

recovery of the α-helical structure was observed. Even after four hours incubation at 

4 °C, a []M(222 nm) ~ –7000 deg cm
2
 dmol

-1 
was observed with no further changes 

over one week (data not shown). Clearly, the α-helix conformation of the leucine 

zipper peptide is not reversible and is stabilised by self-association. In contrast, CD 

spectra of the Lp-Peptide hybrids indicated that the α-helix unfolding is reversible 

giving []M(222 nm) ~ –10000 deg cm
2
 dmol

-1
 at 6 °C after rapid cooling to 6 °C. 

Taken together, the CD results confirmed that the leucine zipper peptide was 

anchored in the vesicle bilayer with an α-helical self-association status that is 

temperature reversible. 

In addition to studying the temperature sensitivity of the peptide, the pH 

sensitivity was also investigated by titration with perchloric acid starting from a pH 

≈9‎ to‎ a pH of 2 at 25 °C. The reversibility of the pH effect was also monitored 

through backward titration by small additions of NaOH starting from a pH 2 up to a 

pH‎ ≈9. At basic pH, the peptide showed a predominant helical structure, 

characterized by two negative bands at 208 nm and 222 nm and a positive band 192 

nm. In the perchloric acid titration experiment, a gradual reduction in the α-helix 

content was observed as the pH decreases down to a pH 6. No further changes were 

observed at lower pH values (Figure ‎4-5 A & C). When NaOH was used for the 

backward pH titration experiment, opposite behaviour was observed. The mean 

residue ellipticity at 222 nm decreased gradually with increasing the pH, indicating 

an increase in the helical content of the peptide (Figure ‎4-5 B & D). 
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Figure ‎4-5: pH-sensitivity of leucine zipper peptide.  

pH-dependent conformational changes of leucine zipper peptide obtained by titration with A) 

perchloric acid, B) NaOH at 25 °C. Leucine zipper peptide shows conformational change from α-helix 

to unfolded state as the pH decreases. C & D) Corresponding mean residue ellipticity (deg cm
2
 dmol

-

1) at 220 nm versus pH obtained from the titration with perchloric acid and NaOH, respectively.  

 

4.2.3 Differential Scanning Calorimetry Measurements 

To investigate the effect of peptide anchoring on the phase transition of the lipid 

bilayer, DSC was used. Table ‎4-3 and Figure ‎4-6 show the DSC thermograms of the 

different liposomal systems studied, indicating that the incorporation of different 

molar ratios of peptide in the lipid bilayer did not substantially affect the phase 

transition temperature of the liposome (42.5 °C) (Figure ‎4-6 A). In order to 

compare the effect of peptide incorporation into the bilayer with that of cholesterol, 

we investigated vesicles containing cholesterol (CHOL) at a molar ratio of 200:1. 

Cholesterol is commonly used to modulate the release rate from liposomes and 

increase their in vitro and in vivo stability by protecting against serum destabilization 

effects (Kirby et al. 1980; Gaber et al. 1995). Incorporating small amounts of CHOL 
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in the lipid bilayer (200:1 lipid:CHOL molar ratio, equivalent to 0.5 mol%) did not 

affect the phase transition of the liposomes which was similar to unmodified 

liposomes and Lp-Peptide hybrids (Figure ‎4-6 A). 

 

Figure ‎4-6: Determination of Tm of liposomes using diffencial scanning calorimetry. 

DSC thermograms of A) unmodified DPPC:DSPC:DSPE-PEG2000 liposomes, Lp-Peptide hybrids, Lp-

CHOL and B) LTSL, TTSL and NTSL. DSC thermograms were recorded at 1 °C/min from 25 °C to 

60 °C. 
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As expected, the DSC thermogram of LTSL showed a lower transition 

temperature of about 41.4 °C due to the incorporation of MSPC lysolipid in the 

bilayer that led to slightly less ordered packing of phospholipid molecules in the gel 

phase (Needham et al. 2000). Higher transition temperature was detected for TTSL 

liposomes (44.2 °C), while it was impossible to detect the transition peak for NTSL 

due to their high cholesterol content (Figure ‎4-6 B)(Gaber et al. 1995; de Smet et al. 

2010).  

4.2.4 Fluorescence Anisotropy Measurements  

In order to obtain a better understanding of the interactions between the lipid 

bilayer and the anchoring peptide molecules, fluorescence anisotropy measurements 

were performed. Two different types of membrane bound probes were used: DPH 

which reflects perturbations in the hydrophobic region of the membrane and ANS 

which resides at the head group region and can better reflect changes in the bilayer 

fluidity at the lipid-water interfaces (Sospedra et al. 1999). The temperature-

dependent anisotropy curves of both DPH and ANS (Figure ‎4-7) show that both 

liposomes and Lp-Peptide hybrid vesicles exhibited a gradual decrease in anisotropy 

values with increasing temperature. Around 42 °C this reduction was dramatic, since 

this was close to the phase transition temperature of the DPPC:DSPC:DSPEPEG2000 

(9:1:0.5) liposomes (42.5 °C) (Kono et al. 2005).  

On the other hand, when the bilayer fluidity was monitored with DPH 

spectroscopy (Figure ‎4-7 A), Lp-Peptide hybrids showed higher anisotropic values 

below Tm, which was not observed with unmodified liposomes and liposomes 

containing CHOL (Figure ‎4-7 C). This indicated that, in the gel phase, DPH probe 

mobility was constrained by anchoring the peptide in the lipid bilayer. When the 

ANS probe was studied (Figure ‎4-7), the opposite trend was observed. Lp-Peptide 

hybrid vesicles showed a concentration-dependent reduction in the ANS anisotropy 

values, indicating an increase in the ANS probe mobility in the presence of peptide at 

the bilayer interface. In contrast, Lp-CHOL system showed higher anisotropic values 

below Tm compared with Lp and Lp-Peptide hybrids (Figure ‎4-7 D) indicating a 

bilayer rigidifying effect below the phase transition temperature.  
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Figure ‎4-7: The effect of peptide anchoring on liposome fluidity and lipid packing.  

The fluorescence anisotropy of: A & C) DPH; and B & D) ANS incorporated into 

DPPC:DSPC:SDPE-PEG2000 (90:10:5) with and without peptide was measured as a function of 

temperature.
 
A & B showed the effect of increasing the peptide molar ratio. C & D compared the 

effect of peptide incorporation at 200:1 molar ratio to equivalent ratio of CHOL. E) The two possible 

orientations of the self-associated leucine zipper peptides in the liposome bilayer. 

Overall, the fluorescence anisotropy studies showed that Lp-Peptide vesicles had 

a reduction in bilayer fluidity at the inner-core below Tm (as observed with DPH 

anisotropy) while increasing the bilayer fluidity at the interface both below and 

above Tm (ANS anisotropy results). This was thought to indicate that the peptide 

interacts with both regions of the liposomal membrane rather than attaining only a 

superficial conformation (Figure ‎4-7 E). 

DPH ANS

20 25 30 35 40 45 50 55 60 65

0.10

0.15

0.20

0.25

0.30
 Lp 

 Lp-Peptide 600:1

 Lp-Peptide 200:1

 Lp-Peptide 100:1

A
n

is
o

tr
o

p
y

Temperature (°C)

20 25 30 35 40 45 50 55 60 65

0.10

0.15

0.20

0.25

0.30

0.35
 Lp 

 Lp : Peptide 600:1

 Lp : Peptide 200:1

 Lp : Peptide 100:1

A
n

is
o

tr
o

p
y

Temperature (°C)

BA

E

20 25 30 35 40 45 50 55 60 65

0.10

0.15

0.20

0.25

0.30

0.35

A
n

is
o

tr
o

p
y

Temperature (°C)

20 25 30 35 40 45 50 55 60 65

0.10

0.15

0.20

0.25

0.30  Lp 

 Lp-Peptide 200:1

 Lp-CHOL  200:1

A
n

is
o

tr
o

p
y

Temperature (°C)

DC



106 

 

4.2.5 Solid-State NMR Experiments 

The interaction of the peptide with the liposomal membrane was also studied by 

solid-state NMR studies using DPPC-d62 as the deuterated reporter lipid (Figure 

‎4-8). Quadrupole echo spectra obtained for liposomes above the main phase 

transition revealed that the presence of peptide at 0.5 mol% and, more notably, at 1 

mol% increased the DPPC-d62 acyl chain order parameters. The peptide was 

consequently responsible for a concentration dependent ordering effect on DPPC 

lipids in the Lp-Peptide hybrid system. 

 

Figure ‎4-8: Solid state NMR studies of the interaction of leucine zipper peptide with liposomes. 
Solid-state NMR of chain deuterated lipids revealed the concentration dependent effect of leucine 

zipper temperature-sensitive peptides on the average order parameters of the DPPC lipid acyl chains 

as a function of temperature. Average order parameters (SCD) are shown for the deuterated acyl 

chains in membranes comprising DPPC-d62:DSPC:DSPE-PEG2000 in the absence or presence of 0.5 

mol% or 1 mol% peptide. In the presence of peptide, increasingly ordered membranes are observed 

over the temperature range tested. The samples were maintained at pH 8.5. 
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4.2.6 Release Experiments 

In order to study the drug retention properties (stability) of Lp-Peptide hybrid 

vesicles at body temperature and their triggered-release properties by HT, CF and 

DOX were encapsulated inside Lp and Lp-Peptide hybrids and their leakage/release 

profiles were studied over time. Leucine zipper peptide showed to be folded at high 

pH values (~8-9.5) compared to acidic pH, therefore, DOX encapsulation was 

performed using the ammonium sulphate gradient method (pH 8.5) (X et al. 1998; 

Gregoriadis 2006; Tian et al. 2011) instead of pH gradient using citrate (pH 4) 

(Fenske et al. 2006). Our results show that the incorporation of the peptide did not 

interfere with DOX loading and the encapsulation efficiencies. Furthermore, the size 

and polydispersity did not change after DOX encapsulation (Table ‎4-3 & Table ‎4-4).  

4.2.6.1 Incorporation into DOPE:EPC:DSPE-PEG2000 Liposomes 

First, to prove our hypothesis that the incorporation of temperature-sensitive 

leucine zipper peptide can trigger liposomal drug release, we studied its effect on the 

release profile of DOPE:EPC:DSPE-PEG2000 (64:36:5) liposomes since these 

liposomes have no thermosensitive release property (Kono et al. 1999a; Kono 2001). 

DOPE was included because it can form hydrogen bonds through primary amino 

group and phosphate group of the head group (Kono et al. 1999a). Peptide was 

incorporated into DOPE:EPC:DSPE-PEG2000 liposomes at 200:1 molar ratio and the 

release of both CF and DOX was studied at 37 °C and 42 °C. CF and DOX release 

data at 37 °C did not show significant release from DOPE:EPC:DSPE-PEG2000 

liposomes with and without the peptide which indicated their stability at body 

temperature (Figure ‎4-9 A & B). Interestingly, DOPE:EPC:DSPE-PEG2000-Peptide 

200:1 liposomes released approximately 20% of encapsulated CF and DOX 

immediately after incubation at 42 °C (Figure ‎4-9 C & D). This enhancement in drug 

release is thought to be due to the structural changes caused by unfolding of coiled-

coil state of peptide after heating, since liposomes without the peptide did not show 

any release at 42 °C. Despite these interesting findings the triggered property of the 

peptide was not strong enough to cause the release of the entire liposomal content.  
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4.2.6.2 Incorporation into DPPC:DSPC:DSPE-PEG2000 Liposomes 

To improve the thermal sensitivity of the Lp-Peptide hybrid system and achieve 

significant fast drug release suitable for in vivo applications, we investigated the 

incorporation of the peptide into DPPC:DSPC:DSPE-PEG2000 liposomes. By this we 

can combine the advantages of traditional TSL with the dissociation unfolding nature 

of leucine zipper peptide to achieve enhanced drug release by mild HT. 

Table ‎4-4: Physicochemical characterization of DOPE:EPC:DSPE-PEG2000 liposomes with and 

without peptide. 

Liposomes Composition Size (nm) PDI Zeta Potential 

(mV) 

% EE 

CF-Loaded liposomes     

DOPE:EPC:DSPE-PEG2000  121 ± 0.53 0.03 ± 0.04   

DOPE:EPC:DSPE-PEG2000-Peptide 200:1 108 ± 0.03 0.04 ± 0.01   

     

DOX-loaded liposomes     

DOPE:EPC:DSPE-PEG2000 125 ± 0.73 0.07 ± 0.02 - 40.4 ± 0.63  86.4 

DOPE:EPC:DSPE-PEG2000-Peptide 200:1 123 ± 0.43 0.06 ± 0.12 - 6.01 ± 1.62 70.0 

 

Figure ‎4-9: The effect of peptide on the release rate of DOPE:EPC:DSPE-PEG2000.liposomes. 

Leucine zipper peptide was incorporated into DOPE:EPC:DSPE-PEG2000 at 200:1 molar ratio and the 

effect of the peptide incorporation on the release profile was studied by monitoring both, the 

percentage of CF release in HBS (A & C) and the percentage of DOX release over time in 50% serum 

(B & D). Data represented as average ± STD.  
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The stability of the Lp-Peptide hybrid vesicles after peptide anchoring and their 

temperature-response were investigated by studying the release profile of 

encapsulated CF and DOX.  

To study the serum stability of Lp-Peptide hybrids in simulated in vivo conditions, 

DOX leakage was quantified over time at 37 °C in 50% CD-1 mouse serum (Figure 

‎4-10 A & B). During the first hour a significant improvement in drug retention was 

observed (p < 0.05) with only 10% drug leakage observed from liposomes without 

peptide, Lp-Peptide hybrids and TTSL compared to over 60% leakage with LTSL 

and Lp-CHOL (Figure ‎4-10 A & Figure ‎4-11 A). The drug leakage profile of 

DPPC:DSPC:DSPE-PEG2000 liposomes (Lp) was significantly improved (p < 0.05) 

by anchoring of the peptide in a concentration-dependent manner, with almost 50% 

and 60% of the encapsulated DOX retained in Lp-Peptide hybrids at 200:1 and 100:1 

lipid:peptide molar ratios (respectively) over 24 h (Figure ‎4-10 B). Similar stabilising 

effect observed from TTSL liposomes because of their high cholesterol content (16 

mol%). TTSL drug retention at body temperature was comparable to the stabilisation 

effect of peptide incorporated at 200:1 and 100:1 molar ratios.  

To study the effect of peptide anchoring on temperature-responsiveness of the 

vesicles, DOX release was studied at 42 °C in 50% serum (Figure ‎4-10 C). Almost 

100% of DOX was released from LTSL in the first min of incubation. In comparison, 

the drug release from Lp increased overtime between 80% and 100% after 5 and 30 

min, respectively. No significant difference in DOX release was observed between 

Lp and Lp-Peptide hybrids up to 200:1 lipid: peptide ratio. However, at 100:1 ratio 

only 60% of DOX was released from Lp-Peptide hybrids over 1 h. Similar to peptide 

anchoring, the presence of cholesterol did not affect the DOX release at 42 °C 

(Figure ‎4-11 B). While DOX release from TTSL liposomes increased gradually over 

time from 70% in the first 5 min to almost 100% release after 15 min of incubation at 

42 °C (Figure ‎4-10 C), no DOX release was quantified from NTSL liposomes under 

all the conditions tested (Figure ‎4-10 A, B & C).  
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Figure ‎4-10: Serum and temperature-sensitivity of Lp-Peptide hybrids.  

The percentage of DOX release from unmodified liposomes; Lp-Peptide hybrids incorporating 

different molar ratios of peptide were studied in 50% CD-1 mouse serum at A) 37 °C over 1 h; B) 37 

°C over 24 h and C) 42 °C over 1 h. Release profiles were compared to LTSL, TTSL and NTSL (A, B 

& C right graphs) studied under the same conditions. Data are expressed as average ± STD (n=3). 
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Figure ‎4-11: The effect of CHOL on DOX release from DPPC:DSPC:DSPE-PEG2000 liposomes.  

The percentage of DOX release from unmodified liposomes; Lp:Peptide hybrids (200:1) and Lp-

CHOL (200:1) were studied in 50% CD-1 mouse serum at: A) 37 °C and B) 42 °C. 

To evaluate the effect of even higher temperatures, DOX release from plain 

liposomes and Lp-Peptide hybrids was studied by incubation at 45 °C and 50 °C. No 

significant differences in the drug release profile were observed compared to those at 

42 °C (Figure ‎4-12).  

 

Figure ‎4-12: Temperature-sensitivity of Lp-Peptide hybrids at 45 ºC and 50 ºC. 

The percentage of DOX released from unmodified liposomes and Lp-Peptide hybrids in 50% CD-1 

mouse at: A) 45 °C and B) 50 °C. 

DOX release was also studied in HBS both at 37 °C and 42 °C. In contrast to the 

release data in 50% serum, the amount of DOX release at both temperatures was very 

low from all the formulations except LTSL at 42 °C which showed a similar release 

profile to that observed in serum (Figure ‎4-13 A & B), since this formulation has 

10% MSPC lysolipid that stabilise nanopores in the grain boundary region of the 

lipid membrane at the Tm.  
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Figure ‎4-13: Time dependent DOX release studies in HBS. 

The percentage of DOX release from Lp, Lp-Peptide hybrids, LTSL, TTSL & NTSL liposomes was 

quantified after incubation in HBS at A) 37 °C and B) 42 °C. Data represented as average ± STD 

(n=3). 

For comparison, CF release from Lp and Lp-Peptide 200:1 was also studied, both, 

at 37 °C and at 42 °C in serum and HBS as a model of low molecular weight 

compound (Figure ‎4-14). In contrast to DOX release study in HBS, triggered release 

of CF at 42 °C can be achieved even in HBS, which confirms that DOX 

crystallization is the reason behind its very low release in HBS (Figure ‎4-14 C). The 

enhancement effect of serum on content leakage from the liposome was not restricted 

to DOX, the percentage of CF released at both temperatures tested were higher in 

serum compared to HBS, which agrees with previous findings (Hashizaki et al. 2006; 

Hossann et al. 2007; Pradhan et al. 2010).  

The drug release results indicated that bilayer anchoring of peptide up to a 200:1 

lipid: peptide molar ratio did not preclude their responsiveness to temperature. 

Moreover, significant increase of drug retention of the Lp-Peptide vesicles under 

physiological conditions (50% serum and 37 °C) was achieved. These findings 
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highlighted the importance of peptide anchoring in the enhancement of drug 

retention at very low molar ratios and in a different way to that of cholesterol 

mediated bilayer rigidity. Therefore Lp-Peptide hybrid vesicles (200:1 ratio) were 

considered a candidate for further in vivo investigations. 

 

Figure ‎4-14: CF release from DPPC:DSPC:DSPE-PEG2000 liposomes with and without peptide.  

The effect of Leucine zipper peptide incorporation on CF release profile was studied in HBS (A & C) 

and 50% serum (B & D) both at 37 °C and 42 °C. Data are expressed as mean ± STD (n=3). 
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4.3 Discussion 

Interest in engineering peptide-modified delivery systems has increased with 

advances in biotechnology and genetically engineered biomaterials (Kopecek 2003). 

Polypeptides exhibit multiple characteristics that can provide biologically specific 

interactions, environmental responsiveness with opportunities to direct self-assembly 

and control over biodegradation. The majority of peptide-conjugated liposomes have 

been designed in an attempt to enhance therapeutic effectiveness and specificity 

using peptides as surface ligands to specifically target liposomes to tumours (Chang 

et al. 2009). Examples include RGD (Lestini et al. 2002; Negussie et al. 2010) and 

TAT modified liposomes (Torchilin 2002), engineered by covalent linking of the 

peptide to the liposome surface. Another reason for engineering peptide-modified 

liposomes is to induce liposomal content release in response to enzymes (Elegbede et 

al. 2008) or pH changes as a result of the ability of peptides to aggregate and form 

pores in the lipid bilayer (Parente et al. 1990; An et al. 2010a). The design of such 

hybrids involves either covalent linking to the liposome surface, peptide 

encapsulation inside the liposomes, or simple mixing (Parente et al. 1990; Brickner 

et al. 2002). 

In this work, we engineered Lp-Peptide hybrids by anchoring temperature-

sensitive amphiphilic peptides into the lipid bilayer by self-assembly. To our 

knowledge such peptide-modified liposomes have not been described previously. 

The Lp-Peptide hybrids at different peptide ratios maintained almost identical 

characteristics (mean vesicle diameter, surface charge, phase transition temperature 

and morphology). In addition, the anchored temperature-sensitive amphiphilic 

peptides rigidified the lipid bilayers and improved the liposome serum stability. 

More importantly, Lp-Peptide vesicles consisting of up to 200:1 lipid: peptide molar 

ratio exhibited high serum stability without significant changes in the overall vesicle 

temperature-sensitivity at 42 °C. Recently, DOX-loaded liposomes covalently 

modified with the thermosensitive peptide, ELP, have been described and shown to 

have enhanced cellular uptake by tumour cells after heating at the transition 

temperature of the peptide as a result of peptide dehydration at the liposomal surface 

(Na et al. 2012). Despite enhancing cellular uptake with ELP, its temperature 
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sensitivity was not enough to enhance drug release from the liposomes after heating 

at 42 °C as these liposomes were not temperature-responsive (Na et al. 2012). 

Circular Dichroism (CD) has been shown to be capable of monitoring peptide 

secondary structure in a variety of environments, including vesicles (Lan et al. 

2010b). Here, CD revealed that the leucine zipper peptide retained its secondary 

structure and temperature sensitivity after anchoring into liposomes. However, the 

CD spectra of the Lp-Peptide system as a function of temperature showed a less 

cooperative change upon melting compared with unbound peptide, which can be 

explained based on the stabilization effect imparted to the embedded peptide 

molecules by the adjacent lipid molecules. Interestingly, CD spectra after cooling 

indicated rapid and completely reversible conformational changes when anchored 

within the lipid bilayer compared with a slow and incomplete refolding of the 

unbound peptide.  

The effect of pH on the peptide conformation was also studied with CD. Leucine 

zipper peptide showed increasing stability moving from acidic to basic pH. This 

effect is mainly related to the structure of the peptide and can be explained as the 

following (Figure ‎4-15), at basic pH values, only E residues were charged, which 

prevented the formation of electrostatic attraction between e and g residues. 

However, at the same time, no unwanted repulsive forces between c and g residues 

existed that might disturb the stabilization of the peptide by hydrophobic forces. This 

resulted in a stable coiled-coil structure, since hydrophobic forces are the main 

determinant for coiled-coil stability (Xu et al. 2005). Reducing the pH to a neutral 

value was associated with the ionization of both E and K residues. This leads to the 

formation of favourable electrostatic attraction between e & g residues. However, 

this is accompanied by unfavourable repulsive forces between c and g residues. This 

made the coiled-coil structure less stable compared to basic conditions. As the pH 

reduced to acidic, K were the only charged residues, which means that the 

electrostatic forces between e and g were absent. In addition, the unfavourable 

repulsion between c and g residues appeared. Moreover, the presence of charged K 

residues at position a was associated with disruption of hydrophobic forces at the 

helical core. The overall effect is that the coiled-coil structure was largely 

destabilized (Xu et al. 2005). 
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Figure ‎4-15: Schematic presentation of the factors affecting the pH sensitivity of leucine zipper peptide. 
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The incorporation of leucine zipper peptides in liposomes was further studied by 

DSC and fluorescence anisotropy. No significant overall change in Tm was observed 

despite previous studies reporting that peptide incorporation in lipid bilayer can 

result in increased transition temperature (Reig et al. 2005; Zoonens et al. 2008). 

DPH anisotropy data showed that the incorporation of the peptide in the bilayer may 

be associated with a decrease in the fluidity of the hydrophobic core at temperatures 

below the vesicle Tm in agreement with Sospedra et al. (Sospedra et al. 1999). At 

the same time, ANS anisotropy measurements indicated increased membrane fluidity 

in the region of head group moieties (that ANS interacts with) (Engelke et al. 2001) 

when the peptide was incorporated. Therefore, the indications from both anisotropy 

probes suggested that the peptide interacted with both the hydrophobic and 

hydrophilic regions of the lipid membrane. However, determination of the exact 

orientation of the peptide will require further work. Solid-state NMR of chain 

perdeuterated lipids incorporated in the Lp-Peptide hybrid system revealed a dose 

dependent ordering effect of the peptide on the DPPC lipid acyl chains. Overall, our 

results were in agreement with others showing that peptide incorporation can have a 

rigidifying effect on the lipid bilayer without affecting their transition temperature 

(Sospedra et al. 1999). 

It has been demonstrated before that incorporation of peptides within the lipid 

membrane could rigidify the lipid bilayer as has been reported previously by 

fluorescence anisotropy studies of other peptides such as viscotoxin A3 and laminin 

(Sospedra et al. 1999; Coulon et al. 2002; Zoonens et al. 2008) . However, limited 

information exists on the impact of such effects on drug release from the vesicles. 

DOX leakage at 37 °C indicated that the permeability of the liposome bilayer below 

Tm decreased in serum after peptide incorporation in a concentration-dependent 

manner, while at higher temperatures (where an ordering effect of the peptide was 

readily detected), DOX release was substantially reduced when incorporated at 1 

mol%. These data are consistent with a tightening effect in phospholipid packing that 

can improve liposome stability and suggest that an optimal peptide-to-lipid ratio is 

required to ensure liposome stability does not compromise drug release under 

hyperthermic conditions. 
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In order to gain better understanding of the effect of peptide anchoring on lipid 

bilayer fluidity and the release rate of encapsulated drug molecules, bilayer 

incorporation of an equivalent molar ratio of cholesterol was studied. Cholesterol is 

commonly used to modulate the release rate from liposomes and increase their in 

vitro and in vivo stability by protecting against serum destabilization effects (Kirby et 

al. 1980; Gaber et al. 1995). It is well-documented that incorporation of small 

amounts of cholesterol into phosphatidylcholine liposome (less than 20 mol%) 

decreases Tm by approximately 0.24 °C/mole (Taylor et al. 1995). However, no 

change in Tm was detected when we included 0.5 mol% of cholesterol, and, at Lp-

CHOL (200:1), higher DOX leakage was obtained compared with both unmodified 

liposomes and Lp-Peptide under physiological conditions. The inclusion of the 

temperature-sensitive peptide at low molar ratios was sufficient to stabilize the lipid 

bilayer providing a superior stabilizing effect when compared with cholesterol at the 

same molar ratio. The stabilizing effect imparted by the peptide was equivalent to 

that effect observed from TTSL liposomes that contain up to 16 mol% of cholesterol. 

In addition to the substantial stability of Lp-Peptide hybrids, they were also 

characterized by faster drug release with HT compared to slow gradual release from 

TTSL liposomes. 

It was difficult to investigate the difference in the release profile from the 

different liposome types, when the same experiment was conducted in HBS instead 

of 50% serum. The discrepancy of the release observed in serum compared to HBS, 

can be due to several factors. The first thing to take into consideration is the physical 

state of DOX inside the liposome. It is well established that DOX loaded via 

ammonium sulphate gradient has the tendency to interact with sulphate anions 

inducing precipitation/crystallization/gelation of DOX inside the liposomes as a 

fibre-like structure (X et al. 1998; Fritze et al. 2006; Gregoriadis 2006; de Smet et al. 

2010). In addition to the physical state of DOX, the factors that affect drug release at 

Tm are also important. There are several hypotheses which explain the release of 

drug from liposomes at the transition temperature including, a) the appearance of a 

boundary between gel phase and liquid crystalline phase during lateral phase 

separation, b) the change in the lateral compressibility between the neighbouring 

phospholipid molecules by increasing membrane fluidity during transition and c) the 

formation of statistical pores by rotation of phospholipid molecules with 
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isomerisation (Ueno et al. 1991). However, all these are applied only to the 

permeation of ions and small molecular weight compounds and it is difficult to 

explain the release of large compounds based on these hypotheses (Ueno et al. 1991). 

Based on that, it is understandable that crystallization of intra-liposomal DOX 

restricts its release properties. This was also confirmed by observing that CF release 

in HBS was higher compared to DOX, especially at 42 °C.  

Along with the change in the DOX physical state, the high release values 

observed in serum compared to HBS imply that the presence of serum itself has its 

own effect on the drug release, since DOX physical state is similar in the two cases. 

Near Tm discontinuity of the gel phase and liquid crystalline phase appear and such 

phase separation allowed more protein interaction with the membrane and increased 

the leakage process (Hashizaki et al. 2006). The presence of serum can result in the 

loss of phospholipids from the liposomes to serum proteins such as high-density 

lipoproteins leading to release of encapsulated drugs (Kirby et al. 1980). In addition, 

the presence of serum itself can result in slight reduction in the Tm of the liposomes 

and increase the release of the drug (Gaber 1998; Hosokawa et al. 2003).  

The correlation between the peptide temperature sensitivity, the change in its 

conformation in response to heating, and the leakage of drug from the hybrid vesicles 

is rather complex and not yet fully understood. Although clear enhancement in 

content release after peptide incorporation was observed with DOPE:EPC:DSPE-

PEG2000 liposomes, this increase in drug release was not obvious with 

DPPC:DSPC:DSPE-PEG2000 liposomes since these liposomes are thermosensitive in 

nature. In spite of that, the presence of peptide in DPPC:DSPC:DSPE-PEG2000 

vesicles does not interfere with the thermoresponsive properties of the individual 

components. We speculate that the thermal responsiveness of Lp-Peptide hybrid 

vesicles can be further optimized by better understanding and reconfiguring the 

interaction of the peptide within the lipid bilayer.  
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4.4 Conclusion 

In conclusion, the results of this chapter showed for the first time that we 

successfully engineered lipid vesicles modified with temperature-sensitive peptide. 

The newly developed systems retained the temperature sensitivity of both the peptide 

and the liposomes and did not interfere with the liposome formation and the DOX 

loading process. Anchoring coiled-coil temperature-sensitive peptides into 

liposomes, up to a certain concentration (200:1 Lipid:Peptide mol/mol), significantly 

increases their in vitro long term serum stability at physiological temperature (~50% 

of drug retention over 24 h), without affecting their temperature sensitvity. Lp-

Peptide hybrids present a promising new class of TSL, engineered by the anchoring 

of amphiphilic coiled-coil peptides within the lipid bilayer. This opens new 

opportunities for application in different clinical strategies that require the drug to 

circulate in the blood for a long time and passively accumulate in the tumour site by 

EPR effect before triggering drug release under the effect of mild hyperthermia. 
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In the previous chapter we represented the development of new type of TSL, Lp-

Peptide hybrids, which showed promising rapid drug release after exposure to mild 

hyperthermia and good drug retention at physiological temperature. These interesting 

properties suggested that Lp-Peptide hybrids can be a good candidate for clinical and 

biomedical applications in combination with mild HT.  

In this chapter, the biological activity of DOX-loaded Lp-Peptide hybrids was 

further investigated at the cellular level by studying their cellular uptake and 

cytotoxic activity with and without exposure to mild HT. In addition, the in vivo 

performance of the system was explored by studying its blood kinetics, tumour and 

other tissues accumulation. Therapeutic activity of Lp-Peptide hybrids was also 

studied compared to LTSL and TTSL by looking at the tumour growth retardation 

and survival. In addition, DOX retention at the tumour was also studied by in vivo 

life imaging of DOX fluorescent signal. Two different heating protocols were 

applied here to assess intravascular and interstitial drug release, by changing the 

timing between intravenous administration and heat application.  

The studies in this chapter suggest that matching the drug release kinetics of TSL 

with the heating protocol applied is a critical factor in determining the safety and 

therapeutic efficacy. 
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5.1 Introduction 

The previous chapter explained the development of novel lipid-Peptide hybrids 

(Lp-Peptide) that showed promising enhancement in drug release by mild HT 

together with reasonable drug retention at physiological conditions (~50 % of DOX 

retention 24 h in 50% serum). These hybrid vesicles are formulated by anchoring 

temperature-sensitive leucine zipper peptide within the liposomal lipid bilayer. The 

self-assembly of the peptide into super-helix coiled-coil structure at low temperatures 

and its dissociation by mild HT is thought to be responsible for triggering drug 

release. Triggered drug release (80-90 % in 15-30 min) and good serum stability data 

of Lp-Peptide hybrids suggested that the hybrid system can be suitable for both 

intravascular and interstitial triggered drug release in response to mild HT. 

Previously published studies of TSL in combination with mild HT showed a clear 

enhancement in tumour uptake and tumour growth delay. However, only few studies 

correlated the choice of the HT protocol selected with the physicochemical properties 

of the TSL and their tumour accumulation (Kong et al. 2000a; Ponce et al. 2007; 

Manzoor et al. 2012). In most of these studies HT was applied directly after injection 

(Yatvin et al. 1981; Ishida et al. 2000; Kong et al. 2000a; Chen et al. 2004; Lindner 

et al. 2004; de Smet et al. 2011; Ranjan et al. 2012) or shortly after (1-3 h) while the 

TSL were still in circulation (Gaber et al. 1996; Ishida et al. 2000).  

In this chapter, Lp-Peptide hybrids biological activity was investigated by 

studying the biocompatibility of the system, cellular uptake and cytotoxicity after 

DOX-loading. The effect of the peptide incorporation on blood profile, tissues and 

tumour accumulation was also studied. In vivo pharmacokinetics and biodistribution 

data suggested that Lp-Peptide hybrids can increase both immediate and long-term 

drug accumulation in the tumour. Therefore, we studied their therapeutic activity 

comparing two different heating protocols to mimic intravascular and interstitial drug 

release. To release drug inside the tumour vasculature, local HT was applied 

immediately after injection to trigger drug release as liposomes reach the heated 

tumour micro vessels. In addition, we examined the suitability of Lp-Peptide hybrids 

for interstitial trigger release after their tumour extravasation. For this purpose we 

applied a primary HT session to take advantage of HT in enhancing tumour 

vasodilatation as explained in details in chapter 1 (Kong et al. 2000b; Kong et al. 
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2001; Li et al. 2013a). At the end of 1st HT, TSL were administered and followed by 

a second HT treatment 24 h after injection to trigger their content release within the 

tumour. In order to link the efficacy of the HT protocols to the physicochemical 

properties of TSL, two different types of TSL were included for comparison. LTSL 

formulation was included since it has proved to be the most successful TSL 

(currently in phase III clinical trial) (Celsion.com 2013c) against which all newly 

developed TSL formulations must be compared. LTSL liposomes offer a rapid drug 

release profile with short DOX blood circulation times (0.92-1.3h) as shown by 

preclinical and clinical data (Banno et al. 2010; Wood et al. 2012). TTSL liposomes 

characterized by long blood circulation times (Al-Jamal et al. 2012) and intermediate 

drug release capability (60% DOX release in 30 min at 42 °C) (Gaber et al. 1995) 

were also included for comparison. We tested the ability of each system on the 

overall DOX tumour accumulation using live optical imaging and investigated the 

tumour growth rate, survival rate and safety of treatments using SW480, a human 

xenograft model.  
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5.2 Results 

5.2.1 Lp-Peptide Hybrids Biocompatibility Studies 

The biocompatibility of Lp-Peptide hybrids was assessed at the cellular level by 

studying their effect on cellular viability. Biocompatibility studies were performed 

by incubating Lp-Peptide hybrids (without DOX) with B16F10 cells and HUVEC 

cells to check the effect on tumour and endothelial cells, respectively. In addition, the 

possibility of immune response triggering by peptide incorporation into liposomes 

was also tested after in vivo administration.  

5.2.1.1 Biocompatibility with B16F10 and HUVEC Cells 

To test the biocompatibility of Lp-Peptide hybrids with tumour cells, B16F10 cells 

were incubated with Lp and Lp-Peptide hybrids for 3 h and 24 h before assessing the 

effect on cell viability with MTT assay. Figure ‎5-1A & B shows that incubation of 

both Lp and Lp-Peptide hybrids up to 24 h did not significantly affect their viability 

of all the concentrations tested. This indicated that the incorporation of the peptide 

did not compromise biocompatibility of the liposomes.  

In addition, we evaluated their effect on HUVEC cells by incubation at 0.145 mM 

final lipid concentration for 4 h and 24 h. Similar to B16F10 cells, both Lp and Lp-

Peptide hybrids did not show any toxic effect on HUVEC cells after 4 h incubation 

(Figure ‎5-1 C), and moderate reduction in cell viability by 10% was observed after 

24 h incubation. In both cases, no significant differences were seen between 

liposomes with and without peptide which confirmed the biocompatibility of the 

hybrids. 

5.2.1.2 ELISA Studies 

In order to study the impact of systemic injection of Lp-Peptide hybrids on the 

development of immune response against leucine zipper peptide, serum was obtained 

from mice treated with empty Lp-Peptide hybrids 200:1 and Lp-Peptide hybrids 

200:1-DOX 1 week after in vivo administration. ELISA was used to quantify the 

total antibodies level in the serum of treated mice in comparison to control mice.  
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Figure ‎5-1: Biocompatibility studies of Lp-Peptide hybrids with B16F10 and HUVEC cells. 

To assess the biocompatibility of Lp-Peptide 200:1 hybrids, B16F10 cellular monolayer were treated 

with Lp and Lp-Peptide hybrids at different lipid concentrations for A) 3 h and B) 24 h. C) 

Biocompatibility of Lp-Peptide 200:1 hybrids on HUVEC cells were checked at 0.145 mM lipid 

concentration for 4 h and 24 h. At the end of the incubation time, liposomes-containing media were 

removed and cellular viability was assessed with MTT assay. The results are expressed as percentage 

of cell viability compared to the control (untreated cells). Results are represented as average ± STD. 
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Figure ‎5-2: ELISA studies to check for Lp-Peptide hybrids immunogenicity in vivo. 

To study the possibility of development of immune response against Lp-Petide hybrids after systemic 

administration, mice were injected with Lp-Peptide hybrids with or without DOX and total antibodies 

level were quantified in the serum 1 week after injection by ELISA. The absorbance values of each 

group are presented and compared to control. (data represent average ± STD, n=4). 

Figure ‎5-2 shows that there is no significant increase in the total immunoglobulins 

levels after injection with Lp-Peptide hybrids with and without DOX compared to 

control. These findings indicate the lack of immunogenicity of Lp-Peptide hybrids 

under the experimental conditions tested. 

5.2.1.3 Cellular Uptake of Lp-Peptide Hybrids 

DiI-labelled Lp-Peptide hybrids were then studied with confocal microscopy after 

3 h and 24 h incubation with B16F10 cells. Figure ‎5-3, clearly shows that both Lp 

and Lp-Peptide hybrids were taken up by the cells to the same extent. Cellular uptake 

was both concentration and time dependent and the highest uptake was observed 

after 24 h incubation at 0.5 mM lipid concentration. Overall the Lp-Peptide hybrids 

did not show any cytotoxic side-effect on the cells. 
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Figure ‎5-3: Cellular uptake studies of Lp and Lp-Peptide 200:1 into B16F10 cells. 

Confocal microscopy imaging of monolayer of B16F10 cells showed the uptake of DiI-labelled; A) 

Lp and B) Lp-Peptide hybrids 200:1 after 3 h and 24 h incubation at 37ºC. Red signal represents the 

uptake of liposomes (signals from DiI-labelled liposomes). Co-localization with DAPI staining (blue) 

of‎the‎nucleus‎is‎shown‎in‎the‎overlay‎images.‎Scale‎bar‎is‎20‎μm. 

5.2.2 Cytotoxicity of DOX-Loaded TSL 

The next step was to evaluate the cytotoxic activity of DOX-loaded hybrids 

compared to other TSL and their potential for triggered drug release. Cytotoxicity 

was assessed by measuring the cellular viability with MTT assay in B16F10 and 

SW480 cell lines. The choice of these cell lines was based on their sensitivity to 

DOX treatment and their cell division rate in order to have good correlation with the 

in vivo biodistribution and therapeutic data.  

Liposomes were diluted in media to either 1 µM & 10 µM DOX concentrations 

(0.0145 and 0.145 mM lipid), then cells were treated with liposomes for 3 h with and 

without 1 h pre-heating at 42 ºC. Liposomes were then removed and replaced with 

fresh media and incubation was continued for up to 24 h or 48 h before assessment of 

cytotoxicity (MTT assay). Figure ‎5-4 A shows that incubation with TSL at 10 µM 
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DOX concentration without preheating did not significantly affect cell viability of 

both B16F10 cells and SW480, with the exception of LTSL liposomes which 

resulted in significant cytotoxicity even without preheating due to their DOX leakage 

tendency in serum (de Smet et al. 2010). After a prolonged incubation time (48 h), 

reduction in cell viability observed from LTSL and a similar effect was observed 

from other TSL that was thought to be due to intracellular drug release (Figure ‎5-4 

B). Alternatively, incubating the cells with preheated TSL of all types resulted in 

significant enhancement in cellular toxicity (almost identical to the effect observed 

for free DOX), that indicated complete drug release from liposomes (Figure ‎5-4). In 

comparison, no significant cytotoxicity was observed with NTSL, included as a 

negative control, both with and without preheating. The variations in cytotoxicity 

observed in both cell lines studied are due to the difference in the sensitivity among 

cell lines to DOX. 

 

Figure ‎5-4: MTT assay of different types of TSL in comparison to NTSL.  

The cytotoxicity of DOX loaded TSL was studied at 10 uM DOX concentration (0.145 mM lipid) on 

B16F10 and SW480 cells after A) 24 h and B) 48 h incubation. To study the effect of HT on drug 

release and cytotoxicity of TSL, liposomes where heated for 1 h at 42°C prior to cell treatment and 

compared to non-heated liposomes. Cellular monolayers were treated for 3 h then the liposome-

containing media were removed and replaced with fresh media. MTT assay was performed at 24 h and 

48 h after treatment and expressed as percentage of cell viability. Results represented as average ± 

STD of at least 2 independent experiments (6 wells per treated group). * indicates p < 0.05 and ** 

indicates p< 0.01  
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Similar data were observed with B16F10 cells treated at 1 µM DOX concentration, 

however, no clear cytotoxic activity on SW480 cells was observed with both heated 

and non-heated TSL at this concentration (Figure ‎5-5).  

 

Figure ‎5-5: MTT assay of different types of TSL in comparison to NTSL.  

The cytotoxicity of DOX loaded TSL was studied at 1 uM DOX concentration, 0.0145 mM lipid on 

B16F10 and SW480 cells after A) 24 h and B) 48 h incubation. To study the effect of HT on drug 

release and cytotoxicity of TSL, liposomes where heated for 1 h at 42 °C prior to cell treatment and 

compared to non-heated liposomes. Cellular monolayers were treated for 3 h then the liposomes 

containing media were removed and replaced with fresh media. MTT assay was performed at 24 h and 

48 h after treatment and expressed as percentage of cell viability. Results represented as average ± 

STD of at least 2 independent experiments (6 wells per treated group). 

5.2.3 Pharmacokinetics and Biodistribution Studies  

Pharmacokinetics and biodistribution parameters of Lp-Peptide hybrid system 

were then studied after systemic administration. Lp-Peptide hybrids 200:1 were used 

for these studies since at this lipid:peptide molar ratio a balance between serum 

stability and temperature responsiveness was achieved.  
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5.2.3.1 The Effect of Transition Temperature of Peptide on the Blood Profile of 

Lp-Peptide Hybrids. 

To determine if the Lp-Peptide hybrid vesicles behaviour observed in vitro could 

be replicated in vivo, a pharmacokinetic study was carried out by loading the Lp-

Peptide hybrids with 
14

C-DOX and measuring the drug level in the blood over time.  

 

Figure ‎5-6: The Effect of transition temperature of peptide on the blood profile of Lp:Peptide. 

A) Wheel diagram of amino acid arrangement of leucine zipper peptide II (VSSLESK)6. The different 

amino acids compared to the peptide used in the rest of the study are shown in black. B) Blood 

circulation profile of 
14

C-DOX-loaded liposomes in C57BL6 mice after intravenous administration 

without hyperthermia. C) Far-UV CD spectra showing temperature-dependent conformational 

changes of unbound peptide II and D) Lp-Peptide II hybrid vesicles. E) Mean residue ellipticity 

(degree cm
2
 dmol

-1
) changes as a function of temperature and the transition temperature of unbound 

peptide II and F) Lp-Peptide II vesicle hybrids. * indicates p < 0.05. 
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Longer blood circulation of 
14

C-DOX was observed from Lp-Peptide hybrids 

compared to liposomes without peptide. Interestingly, drug retention can be further 

improved by replacing this peptide with another leucine zipper peptide (peptide II) 

with a different amino acid sequence (VSSLESK)6, Figure ‎5-6, resulting in a higher 

overall hydrophobic character and transition temperature (~83 °C). 

5.2.3.2 Blood Profile of Lp-Peptide Hybrids in Comparison to LTSL and 

TTSL 

Blood circulation time of Lp-Peptide hybrids was also compared to LTSL and 

TTSL (Figure ‎5-7). In comparison to LTSL, Lp-Peptide hybrids and TTSL showed 

50% blood retention of DOX 1 h after injection compared to <20% from LTSL. 

Previous published data with LTSL reported 50% of DOX retained in blood 1 h after 

injection (Banno et al. 2010). However DOX loading in that study as well as the 

clinically tested LTSL formulation was performed using pH gradient method (citrate) 

compared to ammonium sulphate gradient method applied in this study.  

 

Figure ‎5-7: Blood profile of 
14

C-Dox loaded LTSL, Lp-Peptide hybrids (200:1) and TTSL.  
14

C-Dox loaded TSL were injected intravenously into B16F10 tumor-bearing C57BL6 mice and the 
14

C DOX blood clearance profile were compared over 24 h (inset: 
14

C-Dox blood level up to 6 h). 
14

C-

labelled Dox was analyzed by liquid scintillation counting (n = 4 ± S.D). * indicates p < 0.05 and ** 

indicates p< 0.01. Data are expressed as average ± SEM (n=3-4). 
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14
C-DOX from Lp-Peptide hybrids decreased over time to around 10% 6 h after 

injection, while TTSL-DOX showed longer blood circulation with more than 20% ID 

and 10% ID of 
14

C-DOX detection in the blood 6 h and 24 h, respectively. 

 Our in vivo results were consistent with the in vitro release data. The rate of 
14

C-

DOX clearance from the blood compartment observed with Lp-peptide 200:1 hybrids 

was much lower compared with LTSL, indicating higher serum stability. Although 

lysolipid desorption was not observed in buffer as reported by Mills et al (Mills et al. 

2005), the loss of lysolipid component of LTSL at 37°C (70% 1 h after in vivo 

administration) in the presence of biological media might be responsible for drug 

leakage at body temperature and leads to short blood circulation (Banno et al. 2010).  

5.2.3.3 Tumour Accumulation 

The effect of localized mild HT on 
14

C-DOX accumulation in the tumour was also 

studied by heating the tumour site at 43 °C in a water bath for 1 h immediately after 

injection. Careful monitoring of mice body temperature was performed throughout 

HT application using a rectal thermocouple. Body temperature was maintained at 

less than 37 °C in all studies and, in particular, during HT (Figure ‎5-8) because the 

mice were maintained under anaesthesia.  

 

Figure ‎5-8: Body and tumour temperatures monitoring during HT application. 

HT experiments were performed by immersing the tumour-bearing leg in water bath (WB) stabilized 

at 43 °C. Body temperature was monitored over time with rectal thermocouple. Tumour temperature 

was also checked with thermocouple, however, these mice were excluded from the analysis due to the 

invasiveness of the technique. 
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External cooling system was also used to regulate body temperature. To make 

sure that we are reaching the right temperature in the tumour, thermocouple was also 

used to record the temperature in the tumour over time. Figure ‎5-8 shows that tumour 

temperature increased rapidly to 41 °C within 1 minute after heating and stabilized at 

42 °C throughout the study. 

DOX accumulation in the tumour was studied by injecting B16F10 melanoma 

tumour-bearing mice intravenously with 
14

C-DOX loaded LTSL, Lp-Peptide hybrids 

(200:1) and TTSL followed by localized HT immediately after injection. 
14

C-DOX 

was quantified in the tumours 1 h and 24 h after injection and HT application. 1 h 

after injection, equivalent amount of DOX accumulated at the tumour site from 

LTSL and Lp-Peptide hybrids, 6.7% of ID and 5.8% of ID, respectively, 2 folds 

higher than TTSL tumour level (2.8% of ID) (Figure ‎5-9). The high DOX level in the 

tumour, immediately after HT, is presumably due to rapid intravascular release of 

DOX upon reaching the heated tumour, which agrees with rapid in vitro release 

profile. These observations agree with previous findings by Kong et al that showed 

3.5 folds increase in total DOX (free and encapsulated) levels in FaDu tumour 1 h 

after treatment with LTSL compared to TTSL and HT at 42 °C (Kong et al. 2000a). 

Interestingly, Lp-peptide hybrids (200:1) and TTSL showed significant (p < 0.05) 

increase in DOX accumulation in the heated tumour compared to LTSL 24 h post-

HT (Figure ‎5-9). Quantification of total 
14

C-DOX (free and encapsulated) 

accumulation levels in the tumour 24h after injection and HT showed almost 13.5% 

of ID and 8.6% from TTSL and Lp-Peptide, respectively. This increase in long term 

tumour DOX accumulation from Lp-Peptide hybrids is because of their long blood 

circulation. In contrast DOX level from LTSL was reduced 24 h after injection and 

HT to 2.6% of ID. This could be an indication that DOX was mainly released in the 

tumour vasculature followed by only a fraction of drug taken up by tumour cells. 

These finding are consistent with previously publish data by Dromi et al. using HIFU 

(Dromi et al. 2007). 
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Figure ‎5-9: Tumour accumulation of 
14

C-Dox after injection of different TSL with HT.  
14

C-Dox accumulation in B16F10 melanoma tumours was quantified 1 h and 24 h post hyperthermia 

treatment (HT for 60 min) and injection of LTSL, Lp-Peptide 200:1 and TTSL. 
14

C-labelled DOX was 

analyzed by liquid scintillation counting (n = 4 ± S.D). * and ** indicates p < 0.05 and P < 0.01, 

respectively, for the Lp-Peptide and TTSL liposomes when compared with the LTSL group. Data are 

expressed as average ± SEM. 

5.2.3.4 Organs Accumulation 

Organs biodistribution of DOX from different types of TSL was also studied. 

Very low level of 
14

C-DOX was detected in the heart and lung 1 h after 

administration in the presence and absence of HT and the level decreased further 

over 24 h. No significant difference in the organs uptake of 
14

C-DOX was detected 1 

h after injection with and without hyperthermia, with exception of higher DOX level 

in the kidney and liver from LTSL which can be due to their drug leakage possibility 

(Figure ‎5-10 A & B). 
14

C-DOX accumulation in the kidney of Lp-Peptide group was 

also high, but less than that quantified from LTSL. However, kidney DOX-level 

from these two groups significantly reduced with HT which can be due to rapid 

clearance of drug after triggered release at the tumour site. DOX accumulation in the 

spleen was significantly high from TTSL at all time points studied which correlates 

with their long blood circulation and intermediate drug release rate. No significant 

difference in DOX level was observed 24 h after injection in the presence or absence 

of HT except in TTSL treated mice which showed higher drug level in the liver and 

kidney in the absence of HT (Figure ‎5-10 C & D). 
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Figure ‎5-10: Organ biodistribution of 14C-DOX loaded LTSL, Lp-Peptide 200:1 and TTSL. 

Accumulation of 
14

C-DOX in the organs with different types of TSL was quantified after intravenous 

injection into B16F10 tumour-bearing C57BL6 mice 1 h post administration A) without and B) with 

HT. Biodistribution in the organs was also quantified 24 h after injection C) & D) in the absence and 

presence of HT, respectively. Data are expressed as average ± SEM. 

5.2.4 Pharmacological Activity of Lp-Peptide Hybrids; Choosing the Right 

Heating Protocol to Maximize Therapeutic Activity 

Biodistribution data into B16F10 tumour-bearing mice showed that Lp-Peptide 

hybrids delivered high level of DOX to the tumour following localized mild HT 

application which was comparable to LTSL. Besides, a further increase (3-fold) in 

tumour accumulation 24 h after heat application suggested the Lp-Peptide hybrids 

can be suitable for both intravascular and interstitial release approaches depending on 

the timing between the liposomes administration and hyperthermia application. To 

explore these possibilities, we studied DOX tumour retention, therapeutic activity 

and safety of Lp-Peptide hybrids applying the intravascular and interstitial release 

protocols presented in Scheme ‎5-1.  

LTSL and TTSL liposomes were also included in these studies for comparison 

and in order to understand the effect of changing the physicochemical properties of 

TSL on the choice of the proper heating protocol. 
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Scheme ‎5-1: Schematic presentation of intravascular and interstitial release protocols. 

The combination of hyperthermia and liposome systems can be utilized to enhance the drug release 

from TSL in two different protocols based on the timing between liposomes administration and heat 

application. A) In the intravascular release protocol, TSL are administered during the heating process, 

resulting in drug release inside blood vessels when reaching the heated area. (drug release is presented 

by red gradient seen in the blood vessels). This process is then followed by drug taken up by both 

tumour and endothelial cells. B) The increased vascular permeability of the blood vessels in response 

to the 1st HT treatment increases the level of liposomes accumulation in the tumour. The interstitial 

release approach takes advantage of the fact that stealth small size liposomes have the ability to 

extravasate the malformed tumour vasculature compared to normal blood vessels. After tumour 

accumulation a 2nd heating is applied to trigger drug release interstitially (drug release is represented 

by the red gradient close to tumour cells).  

5.2.4.1 Optical Imaging of DOX Retention into SW480 Tumour  

In vivo optical imaging was performed to compare the accumulation of DOX into 

SW480 tumour-bearing mice treated with the three types of TSL applying both, 

intravascular and interstitial drug release protocols.  

IVIS imaging of animals treated with the intravascular release protocol showed 

that the highest tumour DOX accumulation was achieved from LTSL and Lp-Peptide 

hybrids due to their fast drug release properties (Figure ‎5-11 A). Quantification of 
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DOX fluorescent signal at the tumour site showed that Lp-Peptide hybrids resulted in 

equivalent DOX accumulation to LTSL, and significantly higher than TTSL 

liposomes (Figure ‎5-11 B). 24 h after injection, reduction in DOX signal at the 

tumour site was observed from all TSL, that indicated a degree of wash-out of DOX 

molecules from the tumour (Dromi et al. 2007).  

In the interstitial drug release protocol, TSL were intravenously injected 

immediately after the 1st HT session to increase liposome accumulation into the 

tumour, but not trigger drug release. Once liposomes accumulated in the tumour, a 

2nd HT was applied (24 h after injection) to induce drug release interstitially. IVIS 

imaging was performed 24 h after injection before and after the 2nd HT.  

Unlike the intravascular drug release LTSL liposomes resulted in significantly 

low DOX accumulation compared to Lp-Peptide hybrids and TTSL (Figure ‎5-12). 

This can be understood based on the differences in blood circulation profile and the 

ability to retain DOX after in vivo administration (Hauck et al. 2006; Banno et al. 

2010; Wood et al. 2012). In addition, the application of 2nd HT did not significantly 

affect the overall DOX accumulation levels.  
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Figure ‎5-11: In vivo optical imaging of DOX fluorescence in athymic mice treated with the 

intravascular release protocol.  

LTSL, Lp-Peptide 200:1 and TTSL were injected into SW480 tumour-bearing mice followed by 

immediate HT at 42 ºC to trigger intravascular drug release. Mice were then imaged with IVIS 

Lumina II imaging system 1 h and 24 h after injection and heating. A) Represents the live 

fluorescence imaging of anaesthetised mice. B) DOX fluorescence intensity signals from the tumour 

(region of interest) were quantified and expressed as total efficiency. Results expressed as mean ± 

SEM. 
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Figure ‎5-12: In vivo optical imaging of DOX fluorescence in athymic mice treated with the 

interstitial release protocol.  

SW480 tumour-bearing mice were exposed to 1 h local HT (42 ºC) prior to injection with LTSL, Lp-

Peptide 200:1 and TTSL liposomes. 24 h after injection 2nd session of local HT was applied to trigger 

interstitial drug release after tumour accumulation. Mice were imaged with IVIS Lumina II imaging 

system 24 h after injection before and after 2nd heating. A) Represents the live fluorescence imaging 

of anaesthetised mice. B) DOX fluorescence intensity signals from the tumour (region of interest) 

were quantified and expressed as total efficiency. Results expressed as mean ± SEM. 
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5.2.4.2 Tumour Growth Retardation and Survival Studies (Intravascular 

Versus Interstitial Protocol) 

The therapeutic activity of LTSL, Lp-Peptide hybrids and TTSL was studied by 

looking at the change in tumour volume over time as well as by assessing the 

survival of treated mice compared to the control. Based on the change in tumour 

volume (Figure ‎5-13 A), we observed that all animals treated for intravascular 

release showed significant tumour growth retardation compared to control mice. Lp-

Peptide hybrids and LTSL liposomes had equivalent therapeutic activity and were 

significantly more effective compared to TTSL because of their rapid release 

properties (In agreement with the IVIS tumour accumulation data). No signs of 

toxicity were observed from all treated groups using the intravascular release 

protocol and no significant change in the weight of the mice was observed (Figure 

‎5-13 B). 

When the HT protocol was changed to release DOX interstitially, we observed 

that LTSL did not show any improvement compared to control. This effect is mainly 

because of the poor serum stability for this protocol and short blood circulation that 

limits LTSL tumour accumulation (Hauck et al. 2006). TTSL treatment on the other 

hand showed tumour growth control up to 10 days after treatment because of their 

long blood circulation profile that resulted in the highest total DOX tumour 

accumulation as can be seen from IVIS. However, this was also accompanied with 

significant weight loss that suggested non-specific systemic toxicity. The best tumour 

growth retardation obtained from the interstitial protocol was from Lp-Peptide 

hybrids. Lp-Peptide was significantly more effective than LTSL because of their 

longer blood circulation that resulted in good tumour accumulation (Figure ‎5-12 B). 

In comparison to TTSL, no signs of toxicity or change in body weight were observed 

with LTSL and Lp-Peptide treated mice.  

Similar findings were observed in survival rates that agreed with the tumour 

growth delay and DOX accumulation data (Figure ‎5-13 C). With the case of 

intravascular release, significant increase in life span (P<0.001) was achieved from 

LTSL and Lp-Peptide hybrid treatment (Table ‎5-1). However, with interstitial drug 

release, only Lp-Peptide hybrids treated mice showed increased life span (14.9%) 

compared to other TSL. In this case LTSL treated group survival was not 
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significantly different from the controlled group (treated with HT only). On the other 

hand, TTSL treated mice exhibited 50% reduction in survival compared to the 

control group and significant weight loss (>15% or more drop in body weight), that 

indicated systemic toxicity from TTSL treatment in this protocol. 

 

Figure ‎5-13: In vivo tumour growth delay and survival studies.  

SW480 tumour-bearing mice were treated with LTSL, Lp-Peptide 200:1 and TTSL liposomes 

comparing intravascular and interstitial release protocols. A) Change in tumour volume; B) body 

weight; and C) survival analysis. SW480 (5x10
6
) cells were injected subcutaneously in the right leg. 

Therapy started on day 11 after implantation with average tumour size of 100 mm
3
. Animals were 

injected intravenously with LTSL, Lp-Peptide 200:1 and TTSL at 5mg DOX/kg. Local HT was 

applied by immersing the tumour-bearing leg into 43°C water bath. Control animals are non-injected 

mice treated with HT only. Results expressed as average ± SEM. * indicates p < 0.05 and ** indicates 

p< 0.01. 
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Table ‎5-1: Therapeutic effect of TSL using the intravascular and interstitial release protocols 

Treatment 
Dose  

(mg/kg) 

Mean survival time 

(days) 

Increase in life span 

(%)a 

Significance (p) 

vs control 

Intravascular release protocol (injection with HT)    

Control -  36  0  

 

LTSL  1 × 5  57.5  +59.7  <0.001  

Lp-Peptide 200:1  1 × 5  53.5  +48.6  <0.001  

TTSL  1 × 5  50  +38.9  NSb  

     

Interstitial release protocol (injection post HT + 24 h 2nd HT)  

Control -  43.5  0  

 

LTSL  1 × 5  40  -8.0  NSb  

Lp-Peptide 200:1  1 × 5  50  +14.9  NSb  

TTSL  1 × 5  21  -51.7  <0.001  

a
 % of increase in life span = mean survival time of treated / mean survival of control × 100 -100. 

b
 NS, not significant. 

5.2.4.3 Histopathological Analysis 

Histological examination of tissues was performed 3-5 weeks after treatment. 

Figure ‎5-14 and Figure ‎5-15 showed representative images of mice treated with 

LTSL, Lp-Peptide hybrids and TTSL with both intravascular and interstitial heating 

protocols are expressed in comparison with control mice (treated with HT only). In 

general, histological analysis showed no sign of tissue damage in any of the groups 

tested with the exception of TTSL treated mice using the interstitial release protocol.  

Cardiotoxicity is the most common problem associated with free DOX treatment, 

which is usually represented as vacuolization of cardiac myocytes or some degree of 

extensive loss of myocyte components (Rahman et al. 1982; Rahman et al. 1985). 

However, no histological changes in the heart were observed in any of the treated 

mice in both protocols in comparison with the control. This agrees with previous 

findings for NTSL (Doxil), that improved the safety of DOX after encapsulation in 

liposomes (Ewer et al. 2004). 
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Figure ‎5-14: Histological analysis of tissues following treatment using the avascular release 

protocol.  

Heart, kidney, liver, spleen, lung and skin tissues were stained with H&E staining. Images are shown 

at 10x magnification. 

Nephrotoxicity is the other critical issue associated with free DOX treatment since 

the kidney is involved in the excretion of the drug (Burke et al. 1977; Lahoti et al. 
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2012). No pathological observations were noticed in kidney sections from LTSL, Lp-

Peptide hybrids and TTSL mice treated with intravascular release protocol. 

 

Figure ‎5-15: Histological analysis of tissues following treatment using the interstitial release 

protocol.  

Heart, kidney, liver, spleen, lung and skin tissues were stained with H&E staining. Images are shown 

at 10x magnification. 
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In contrast, there were pathological abnormalities in the kidneys from the TTSL 

group treated with interstitial release protocol. Histological analysis of kidney 

sections from these animals revealed deposition of protein within tubular lumen and 

Bowman’s‎space‎in‎the‎glomeruli. In addition, necrosis of the renal papilla was seen 

in one animal (1/3 TTSL treated mice) (Figure ‎5-16 C), consistent with previous 

reports of DOX toxicity (Wang et al. 2000). Milder pathological changes were 

observed in the kidneys of LTSL and Lp-Peptide treated mice with the interstitial 

release protocol, however these changes were not very severe to cause any clinical or 

biochemical changes. 

Liver and spleen tissues were also examined for any pathological changes because 

of their high tendency to scavenger liposomes (Huang et al. 1992), however, no 

significant changes were observed. 

 

Figure ‎5-16: Histopathological changes in the kidney 10 days after treatment with TTSL 

(interstitial protocol). 

H & E staining of kidney tissues from TTSL treated group represent the major pathological changes 

detected. A) normal Kidney. B) Pathological changes – arrows demonstrate protein in Bowmans 

space, arrow heads show dilated tubules with flattened epithelium. C) Papillary necrosis. 

A B
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No pathological observations were noticed in the lungs of any treated mice 

compared to controls. All animals had abnormal skin structure consistent with the 

nude mouse strains. Although, minimally increased levels of dermal inflammation 

were noticed in some of TTSL treated mice (interstitial release protocol), the 

significance of this finding is unclear based on the small sample size. 
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5.3 Discussion 

In the previous chapter, we explained the development of a new type of TSL, Lp-

Peptide hybrids that showed somewhat promising rapid drug release under mild HT 

and substantial in vitro serum stability (50% drug retention in 24 h at 37°C). These 

interesting properties make this system eligible for in vivo application. In this 

chapter, we demonstrated in details the biocompatibility and cytotoxic activity in 

vitro before Lp-Peptide hybrids were tested for in vivo administration. Moreover, the 

immunogenicity of system was also studied and the results were encouraging to 

move forward with the in vivo evaluation. First blood profile, organs and tumour 

accumulation of the hybrid system were tested and compared to LTSL and TTSL. 

Then, the therapeutic activity of Lp-Peptide hybrids was also examined using two 

HT protocols in order to identify the best HT protocol for the hybrid system to 

maximize therapeutic effects.  

The biocompatibility of liposomes at the therapeutic doses makes them attractive 

vehicles for drug delivery. This is because liposomes are mainly composed from 

natural lipids and well tolerated polymerized lipids (DSPE-PEG) (Drummond et al. 

1999). To make sure the presence of leucine zipper peptide in Lp-Peptide hybrid 

system did not compromise their biocompatibility, we tested their effect on the in 

vitro viability of both cancer cells and endothelial cells using the MTT assay up to 24 

h incubation time. The data did not show any significant cytotoxic effect on both cell 

types tested, which confirmed the biocompatibility of the hybrid system even after 

being effectively taken up by the cells as revealed by cellular uptake studies. In 

addition, ELISA studies confirm lack of antigenicity of the system after systemic 

administration. 

The therapeutic activity of DOX-loaded Lp-Peptide hybrids in comparison to 

LTSL and TTSL was then studied at the cellular level with and without triggering 

drug release with mild HT. All TSL in combination with HT showed significant 

cytotoxic activity equivalent to that of free DOX which indicated complete drug 

release. No significant cytotoxic activity was observed from NTSL because no drug 

release is expected even under mild HT. Cytotoxicity data of TSL without exposure 

to HT were in good agreement with our in vitro release data and previous serum 

stability studies (de Smet et al. 2010). Non-heated Lp-Peptide vesicles, TTSL and 
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NTSL maintained good cellular viability, whereas, significant reduction in cell 

viability was observed from LTSL even without HT as a result of their leaky 

character (Banno et al. 2010).  

In order to examine whether these interesting findings can be replicated in vivo, 

pharmacokinetic studies were performed and the data were consistent with in vitro 

results revealed prolonged blood circulation time of DOX with Lp-Peptide hybrids 

compared to LTSL. This increase in DOX blood level was clearly reflected on the 

amount of DOX ended up in the tumour 24 h after injection. In vivo administration of 

Lp-Peptide hybrids with HT resulted in substantial DOX tumour accumulation 1 h 

after injection which was equivalent to that observed from LTSL. Moreover, tumour 

DOX level significantly increased (3-fold) 24 h after injection of the hybrid system 

compared to LTSL. The increase in long term DOX level is due to the prolong blood 

circulation of Lp-Peptide hybrids leading to continuous extravasation into the tumour 

area even when HT ceased. Therefore, these findings suggest the suitability of the 

hybrid system for intravascular drug release while they are circulating in the blood 

stream because of their fast drug release properties. At the same time, this system 

enhances the long-term tumour drug-levels suggesting that the Lp-Peptide hybrids 

can also be useful if HT is applied after their accumulation in the tumour area to 

release drug interstitially.  

Despite the great progress witnessed in the field of TSL over the last few decades, 

only few studies correlated the type of TSL with the HT protocol applied (Ponce et 

al. 2007) or offered direct comparison between the different types of TSL (Kong et 

al. 2000a; Manzoor et al. 2012). The impact of the sequence between LTSL injection 

and HT treatment on its therapeutic efficacy has been illustrated previously in 

preclinical studies by Ponce et al (Ponce et al. 2007). In a rat fibrosarcoma model 

injection of LTSL into pre-warmed tumour (injection during HT) showed the 

optimum drug delivery as indicated by the amount of DOX delivered to the tumour 

and therapeutic effectiveness (Ponce et al. 2007). Almost doubled drug concentration 

was achieved with this protocol compared to injection before HT and was associated 

with greater antitumor effect as evidenced by longer time of tumour progression (34 

days for LTSL injected during HT compared to 18.5 days for LTSL given before 

HT). 
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In FaDu tumour model Kong et al compared the therapeutic effects of TTSL and 

LTSL to NTSL with HT (1 h at 42 ºC immediately after injection) (Kong et al. 

2000a). DOX-loaded LTSL liposomes demonstrated improved therapeutic efficacy 

compared to TTSL and NTSL liposomes. LTSL-DOX treatment with HT showed 

complete tumour growth regression out to 60 days after treatment compared to only 

30-35 days from TTSL and NTSL. This increase in therapeutic efficacy is attributed 

to the amount of DOX tumour accumulation which was found to be 25 ng DOX/mg 

tissue from LTSL compared to only 7-8 ng DOX/mg tissue from TTSL and NTSL 

(Kong et al. 2000a). In addition to increased total tumour DOX accumulation with 

LTSL, bioavailability of DOX was also improved. LTSL was also the only 

formulation that showed significant DNA-bound fraction of DOX (quantified by 

sliver nitrate extraction). Almost half of the DOX delivered to the tumour was 

bioavailable to tumour cells just 1 h after HT (Kong et al. 2000a).  

In addition to increase drug accumulation and bioavailability into the tumour, 

intravascular drug release can also overcome the problems of heterogonous 

vascularity and limited penetration as it does not depend on liposomal extravasation 

(Landon et al. 2011). This was confirmed recently by Manzoor et al. that showed 

intravascular DOX release from LTSL injection into preheated tumour was 

associated with deeper tumour penetration as observed using intravital fluorescence 

imaging of DOX delivery into FaDu tumour model (Manzoor et al. 2012). 

Intravascular release of DOX from LTSL significantly increased free drug 

penetration distance into the interstitial space and the time to which tumour cells 

exposed to maximum drug concentration compared to free DOX and Doxil-like 

NTSL (Manzoor et al. 2012). LTSL injection into warm tumour delivered 3.5 times 

higher DOX level than free drug up to 78 µm from both sides from blood vessels 

(double the penetration distance of Doxil 
® 

(Manzoor et al. 2012). Similar to Kong et 

al study, the focus of Manzoor et al study was mainly on the early time after 

injection (20 min). 

Little is known about the use of HT in combination with liposomes after their 

accumulation into the tumour (Huang et al. 1994; Ning et al. 1994; Gaber et al. 

1996). Although these studies showed prolonged survival, they were mainly 

performed with NTSL because of their well known passive accumulation in the 



151 

 

tumour by EPR effect even without HT application. The release of DOX from the 

extravasated liposomes (TTSL) was described previously by Gaber et al. by the 

application of HT 24 h after injection. However, the effect of this interstitial drug 

release from TTSL was not linked to therapeutic activity (Gaber et al. 1996). We 

designed our in vivo experiments using an interstitial drug release protocol to 

examine this in more detail and also to correlate it with drug release rate and 

pharmacokinetic parameters of different TSL. 

Ultimately, our goal was to define the parameters that can affect the choice 

between intravascular and interstitial drug release in order to achieve the best 

efficacy of HT-assisted TSL treatment. In vivo therapeutic efficacy studies were 

performed using the SW480 tumour model rather than B16F10 because of the rapid 

growth and aggressive nature of B16F10 tumour model that makes comparison 

between the treatment groups challenging, especially since our experiments were 

designed on single and not multiple injection regimes. Previous reports have shown 

that tumour drug concentration correlated directly to therapeutic efficacy (Huang et 

al. 1994; Kong et al. 2000a; Yarmolenko et al. 2010) and in vivo optical imaging, 

therefore, IVIS imaging studies were performed to correlate tumour DOX 

accumulation with growth retardation and survival studies.  

LTSL treated animals using intravascular release protocol showed pronounced 

tumour growth retardation and prolonged survival compared to the control because 

of their fast drug release that resulted in the highest tumour DOX level immediately 

after HT. On the other hand, LTSL treatment with interstitial release protocol did not 

show any improvement in tumour growth retardation and survival which was 

predicted from its limited tumour DOX accumulation. LTSL released most their 

encapsulated drug in circulation before accumulation in the tumour; therefore the 

fraction of bioavailable drug that reached the tumour was significantly less. The 

decrease in drug retention of LTSL was due to significant loss (~70%) of the 

lysolipid component shortly after contact with biological fluid as previously 

stipulated (Banno et al. 2010). 

In the case of TTSL treatment using the intravascular protocol, tumour growth 

retardation and survival were significantly improved compared to control. However, 

the therapeutic effect was less pronounced compared to LTSL treatment because of 
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their intermediate drug release rate in response to HT. Although TTSL treatment 

with the interstitial release protocol showed the highest DOX accumulation among 

the three types of TSL tested, as expected from their long blood circulation time and 

drug retention, this was also accompanied by severe weight lost and resulted in 50% 

reduced survival. The rapid toxicity profile observed with the TTSL treatment using 

the interstitial protocol suggested toxicities, other than cardiotoxicity, are involved, 

since the cardiotoxicity of DOX is mainly a cumulative effect (Allen et al. 2005). 

This agrees with the findings of Allen et al., where they observed similar toxicity 

profile (gastrointestinal as an example) from mice treated with DOX-loaded 

DPPC/POPC:CHOL:DSPE-PEG (2:1:0.1) liposomes which has intermediate release 

properties (Allen et al. 2005). Histopathological analysis of organs pooled from 

TTSL treated mice with interstitial release protocol showed significant pathological 

changes in the kidneys which were consistent with findings previously reported with 

free drug (Wang et al. 2000). We observed similar toxicity profile with DOX loaded 

TTSL treatment without HT application. Whereas, no toxicity was observed from 

drug-free TTSL liposomes, which indicate that this toxicity was not due to the lipid 

composition. Conversely, TTSL formulation tested using the intravascular protocol 

did not show any toxicity.  

The possible explanation of the above is the intermediate drug retention of TTSL 

and their longer blood circulation time when the interstitial protocol was used. This 

could cause drug leakage at a rate that corresponded to the turn-over properties of the 

tissues showing significant toxicity (Allen et al. 2005). This discrepancy in blood 

profile of TTSL between the two protocols is believed to be due to the release of 

DOX from TTSL at the tumour site when the HT is applied simultaneously after 

injection (de Smet et al. 2011). Although mild HT is expected to affect liposome 

accumulation only in the tumour, the change in blood profile of TSL as a result of 

changing the HT protocol can be reflected in the amount of drug that accumulates in 

the other tissues. Our in vivo organs biodistribution studies revealed a significant 

increase in DOX levels in the liver and kidney from TTSL liposomes when 

administered without HT compared to HT application. The rate of drug release is 

another determinant factor for liposomes toxicity. It has been reported before by 

Mayer et al. and Allen et al. that relatively long circulation time of liposomes with 

intermediate release rate had higher toxicity compared to those with fast and slow 
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release(Mayer et al. 1989; Charrois et al. 2004). Interestingly, this toxicity was 

reduced by conjugation to anti CD-19 antibodies to increase the specificity of 

liposomes (Allen et al. 2005).  

In agreement with our hypothesis, Lp-Peptide hybrids showed good therapeutic 

efficacy in both heating protocols tested compared to LTSL and TTSL. Lp-Peptide 

hybrids treatment with intravascular protocol showed equally effective tumour 

growth retardation and survival to that of LTSL treatment. Lp-Peptide hybrids were 

the only TSL that showed modest therapeutic response using the interstitial release 

protocol. Almost 15% increase in life span was observed from Lp-Peptide hybrids, 

with no signs of toxicity.  

Obviously, higher DOX accumulation was achieved from intravascular release 

compared to interstitial release protocols. This can be understood based on the 

advantageous effect of HT on the tumour accumulation of liposomes as well as the 

triggering of DOX release. Despite the well known effect of HT on increasing 

liposomal extravasation into the same tumour that can last up to 6-8 h after stopping 

HT, this effect decays over time (Kong et al. 2001; Li et al. 2013a). Maximum 

increase in nanoparticles extravasation can be achieved when administered with HT 

due to the contribution from increased in blood flow and triggered local release of 

DOX from TSL (Matteucci et al. 2000; Kong et al. 2001).  

As noted above, the choice of the heating protocol is a critical parameter in 

determining the safety and the therapeutic efficacy of TSL. This also highlights the 

impact of better understanding of the pharmacokinetic parameters on the outcome in 

the clinical setting.  
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5.4 Conclusion 

In vitro and in vivo biocompatibility studies showed that Lp-Peptide hybrids did 

not have any negative effect on cell viability and did not show any signs of 

immunogenicity. In vivo pharmacokinetics and biodistribution studies were in good 

agreement with in vitro release and cytotoxicity data. Lp-Peptide hybrids 

characterized by prolong blood circulation profile resulted in higher tumour drug 

accumulation following hyperthermia in tumour-bearing animals. Therapy data 

demonstrated that the drug release properties of TSL are not the only factors that 

determine their therapeutic activity. The design and the timing of heating and 

injection based on the proper understanding of their physicochemical properties and 

pharmacokinetics parameters also play a pivotal role in the therapeutic effectiveness 

as well as in the toxicity of TSL. In agreement with our hypothesis, Lp-Peptide 

hybrids showed good therapeutic efficacy in both heating protocols tested compared 

to LTSL and TTSL. The clinical benefits of this study lies in the understanding of the 

critical parameters to take in consideration in the design of clinical HT protocol 

based on the type of TSL formulation.  



 

CHAPTER 6 THE ENGINEERING OF ANTI-MUC-1 

TARGETED TSL 
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In this chapter, we explore the opportunities to further enhance the therapeutic 

potential of TSL, by designing MUC-1 targeted TSL (TTSL-Ab). For this purpose 

we focused our interest on traditional TSL (TTSL) because of their long circulation 

kinetics and high tumour accumulation. TTSL-Ab should, ideally, have the potential 

to bind and be internalised into tumour cells with great specificity. Once inside the 

cells, HT can be applied to trigger drug release inside the tumour cells. We 

characterized these liposomes by studying their size, surface properties, serum 

stability and thermal sensitivity before and after conjugation to MUC-1 antibody. 

Receptor mediated cellular uptake and cytotoxic efficacy of MUC-1 TTSL-Ab were 

investigated using 2D and 3D cell culture techniques. Significant enhancement in 

cellular uptake and cytotoxic activity after 1 h heating at 42 ºC was observed from 

TTSL-Ab compared to non-targeted liposomes in MUC-1 over-expressing breast 

cancer cells (MDA-MB-435). In vivo performance of TTSL-Ab was tested 

comparing three different heating protocols. Blood circulation kinetics, 

biodistribution and tumour accumulation were thoroughly studied using 
14

C-DOX 

radiolabelled liposomes and live imaging technology (IVIS). In vivo tumour uptake 

of TTSL-Ab improved compared to TTSL when injected post or with HT. 

Anticancer activity in MDA-MB-435 breast cancer xenografts was also studied 

applying simultaneous heating and injection protocol. In vivo therapeutic 

experiments were designed with and without 2nd heating 24 h after injection to 

trigger liposomal drug release after tumour accumulation. Slight improvement in 

therapeutic activity and survival was observed from TTSL-Ab plus 2nd HT 

compared to TTSL (49% and 45% increase in life span, respectively), which might 

be further optimized by increasing dosing frequency and by changing the timing of 

2nd HT. Ultimately, our results suggested that TTSL-Ab in combination with mild 

HT can reveal new avenues in anticancer therapy. 
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6.1 Introduction 

In order to enhance the therapeutic potential of liposomal anticancer drugs, 

interest in developing new generation of liposomes that aim to combine the 

advantages of both active targeting and triggered release properties has increased. 

Targeted TSL might be useful in slowing the transient time in the blood, by targeting 

antigens expressed on the angiogenic tumour vasculature (Negussie et al. 2010), and 

it can be directed towards tumour-specific or tumour-associated antigens (Puri et al. 

2008; Pradhan et al. 2010). Once bound to the specific antigen on their target tumour 

cells, targeted TSL can then release their contents by the application of HT either at 

the surface of the cells (Sullivan et al. 1986) or inside the tumour cells after 

conjugation to an internalising ligands (Puri et al. 2008; Smith et al. 2011). Several 

examples of targeted TSL have been reported recently and showed promising 

biological activity in vitro. Examples on that are the folate targeted 

DPPC:CHOL:DSPE-PEG2000:DSPE-PEG2000-Folate (80:20:4.5:0.5) liposomes co-

encapsulating iron oxide magnetic nanoparticles and DOX (Pradhan et al. 2010) 

(MagFolDox). Physical targeting and cellular uptake of MagFolDox into folate 

expressing cells using permanent magnetic field increased cellular uptake by 50 folds 

compared to Doxil-like liposomes. Synergistic increase in cytotoxicity (<10% cell 

viability at 30µM DOX) was observed from MagFolDox in combination with 

magnetic HT that was thought to be mediated by intracellular triggered drug release 

(Pradhan et al. 2010). In recent study by Smith et al thermosensitive DPPC:Mal-

DSPE-PEG2000:DSPE-PEG2000 (88:5.5:5.5) liposomes were conjugated with anti-

HER2 affibody (HER2
+
 affisomes) (Smith et al. 2011). Conjugation to anti-HER2 

affibody increased binding specificity by 10 folds to HER2
+
 SK-BR-3, human breast 

adenocarcinoma cells without HT. This also resulted in 2-3 folds increase in cellular 

cytotoxicity from DOX-loaded HER2
+
 affisomes (at 45 °C) compared to non-

targeted liposomes (Smith et al. 2011).  

However, in vivo evaluation of targeted TSL in combination with mild HT and the 

effects of HT on targeted TSL accumulation and drug release at the tumour site have 

not been previously performed.  

In this chapter we attempt to unravel the potential of combining monoclonal 

antibody targeted TSL with local HT in vivo. We designed MUC-1 targeted TSL, by 
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conjugation of clinically tested hCTMO1 mAb directed against MUC-1 antigen to 

the termini of traditional TSL (TTSL).  

MUC-1 (mucin antigen), a transmembrane glycoprotein, is an attractive target for 

cancer immunotherapy. Although, MUC-1 is expressed on the surface of many 

normal epithelial cells, its expression is up-regulated in the majority of epithelial 

cancers. In the tumour MUC-1 loses its apical distribution and it becomes hypo-

glycosylated (Limacher et al. 2007). MUC-1 is over-expressed in 90% of 

adenocarcinomas, including cancers of the ovary, breast, and pancreas (Mukherjee et 

al. 2003). It is involved in the signal transduction pathways that regulate the 

mobility, invasion and metastasis of cancer. These tumour associated changes and 

cellular internalisation properties by receptor recycling (Moase et al. 2001) make it 

an attractive candidate for cancer therapy. 

CTMO1 is a murine monoclonal antibody that recognises MUC-1 epitope and has 

a potential in the therapy of breast and ovarian cancers (Baker et al. 1994). In order 

to decrease the immunogenicity and permit repeated administration, CMTO1 was 

genetically engineered with high level of re-expression by grafting the 

complementarity determining regions (CDR) into human immunoglobulin resulting 

in the formation of recombinant humanized antibody (hCTMO1) with superior 

binding affinity to MUC-1 antigen compared to CMTO1 (Baker et al. 1994; 

Gillespie et al. 2000). Biodistribution and therapeutics potential of hCTMO1 has 

been clinically assessed (Davies et al. 1997; Prinssen et al. 1998). In addition, the 

internalising capability of hCTMO1 antibody offers a great potential to improve local 

drug delivery of anticancer drugs and reduce systemic toxicity through antibody drug 

conjugates. An example of that is the conjugation of hCTMO1 antibody to 

calicheamicin, a highly cytotoxic drug via amide linker and the resulting 

immunoconjugate (called CMB-401) which reserved the properties of both the 

antibody and the drug (Hinman et al. 1993). This conjugate showed very promising 

results in vitro and in vivo against ovarian carcinoma and progressed into clinical 

testing (Gillespie et al. 2000). However, the results of phase II clinical trial did not 

meet the end point criteria. The type of the amide linker used for the design of this 

conjugate and the pre-injection of hCTMO1 may be responsible for the reduction in 

pharmacological activity which warranted more work (Chan et al. 2003). Although 
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the results of this clinical study was disappointing it opens the doors for further 

investigations in order to establish a more effective treatment strategy for cancer. 

TTSL is a long circulating temperature sensitive liposome with an intermediate 

capacity to temperature triggered drug release (Gaber et al. 1996). TTSL exhibit a 

long blood circulation profile and high accumulation at the tumour site that can be 

further substantiated by HT (Gaber et al. 1996; de Smet et al. 2011). Due to these 

attractive properties, we hypothesized that the biological activity of TTSL liposomes 

could be further improved by conjugation of anti-MUC-1 IgG antibody to achieve 

specific interaction with cancer cells and subsequent internalisation. Once inside 

target cancer cells, content release could be triggered by the application of HT.  

To achieve these goals, we studied the biodistribution and tumour accumulation of 

MUC-1 targeted TTSL (TTSL-Ab) in comparison to non targeted TTSL, applying 

different protocols varying the timing between HT and injection to allow HT to 

vasodilate tumour vessels and increase TTSL tumour accumulation. In vivo 

therapeutic experiments were designed, with and without a second heating at 24 h 

after administration, to trigger liposomal drug release after tumour accumulation. 

Moderate improvement in the biological activity and survival was observed from 

TTSL-Ab plus second HT compared to non-targeted TTSL. Our results suggest that 

targeted TTSL in combination with mild HT can offer new opportunities in the 

development of advanced cancer therapeutics. 

.  
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6.2 Results 

6.2.1 Preparation and Characterization MUC-1 TTSL-Ab Liposomes 

Anti-MUC-1 Ab conjugation to TTSL liposomes was performed by the post-

insertion method (Moreira et al. 2002). The conjugation of Ab by post-insertion 

method depends on the translocation of mal-DSPE-PEG2000 Ab micelles into the 

liposomes. By this, the Ab ligand will be exposed at the outer surface of liposomes 

and, thus, maintain its binding capacity (Sofou et al. 2008). Briefly, mal-DSPE-

PEG2000 Ab micelles were prepared by conjugation of thiolated Ab (Ab-SH) with 

mal-DSPE-PEG2000 micelles (Figure ‎6-1).  

 

Figure ‎6-1: Conjugation of anti-MUC-1 Ab to mal-DSPE-PEG2000 micelles. 

Thiolation of anti-MUC-1‎Ab‎by‎mixing‎with‎Traut’s‎reagent‎at‎room‎temperature‎for‎1h,‎followed‎by‎

mixing with mal-DSPE-PEG2000 micelles overnight. Both reactions were preformed under oxygen-free 

environment 

The conjugation process was confirmed by an upper shift in anti-MUC-1 Ab band 

on SDS-PAGE (band 3) indicating an increase in its molecular weight after 

conjugation (Figure ‎6-2 ). 
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Figure ‎6-2: SDS-PAGE electrophoresis of anti-MUC-1 antibody. 

SDS-PAGE gel of anti-MUC-1 Ab before and after conjugation to mal-DSPE-PEG2000 micelles. SDS-

PAGE gel was stained with Instant Blue stain to visualize the Ab. An upper shift in of Ab band in lane 

3 was observed indicated an increase in anti-MUC-1 Ab molecular weight after conjugation. 

In order to determine the best post-insertion temperature, post-insertion was done 

at three different conditions; 60 °C (1 h), 45 °C (1 h) and 39 °C (5 h) (Figure ‎6-3 A). 

The amount of antibody post-inserted into TTSL liposomes was then determined in 

each elution fraction by quantification of both Ab using BCA assay and lipids using 

the Steward assay (Figure ‎6-3 B). The best post-insertion efficiency was obtained 

after 1 h incubation at 60 °C. A clear co-localization of mal-DSPE-PEG2000 Ab 

micelles with the liposome fractions was observed (Figure ‎6-3 B). The amount of Ab 

conjugation obtained was 13 µg Ab/µmole lipid at Ab:lipid 1:1000 molar ratio and 

26.5 µg Ab/µmole lipid at Ab:lipid 1:500 molar ratio. 

1    Ab. 

2    Ab-SH.

3    Ab-SH conjugated to mal-DSPE-PEG2000 micelles.

4    Ab mixed with mal-DSPE-PEG2000 micelles.
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Figure ‎6-3: Quantification of anti-MUC-1 after post insertion into TTSL liposomes. 

A) The effect of post-insertion temperature on the amount of anti-MUC-1 Ab post-inserted into TTSL 

liposomes. The best antibody conjugation was achieved after 1 h‎ incubation‎ at‎ 60‎ ˚C.‎ B)‎ Size‎

exclusion chromatographic fractions of mal-DSPE-PEG2000 Ab micelles after post-insertion into TTSL 

liposomes. Ab and lipids in each fraction were quantified by BCA assay and the Stewart assay, 

respectively.  

SPR was used to check the integrity of the anti-MUC-1 antibody after the 

different conjugation steps to TTSL liposomes. SPR sensorgrams of mal-DSPE-

PEG2000 Ab micelles & TTSL-Ab showed that the antibody reserved its binding 

capability evidenced by the increase in response unit (RU) in a concentration 

dependent manner (Figure ‎6-4). 
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Figure ‎6-4: SPR sensograms of anti-MUC-1 antibody binding to MUC-1 epitope. 

Different concentrations of; A) Anti-MUC-1 antibody, B) Mal-DSPE-PEG2000 Ab micelles and C) 

TTSL-Ab were injected over immobilized MUC-1 epitope. D) Rate constants and dissociation 

constants for the interaction of anti-MUC-1 antibody with immobilized MUC-1 epitope. 

Interestingly, we observed that the equilibrium dissociation constant of Ab after conjugation to 

liposomes was lower than the Ab itself indicating higher binding affinity (Figure ‎6-4 D). 
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No significant change in the size of liposomes was observed after Ab conjugation. 

Both TTSL and TTSL-Ab liposomes were slightly larger than 100 nm in size with 

low PDI. Moreover, DOX was successfully encapsulated (> 90%) without affecting 

the particle size of the liposomes (Figure ‎6-5 B). Interestingly, a decrease in zeta 

potential was observed after Ab conjugation and the reduction was proportional to 

the amount of the Ab conjugated which agrees with other previous studies (Chen 

2011; Yang et al. 2012a).  

 

Figure ‎6-5: Design and characterization of TTSL and TTSL-Ab. 

A) Schematic presentation of non-targeted TTSL and targeted TTSL-Ab. B) Size, PDI and surface 

properties of TTSL before and after post-insertion of MUC-1 antibody at two different ratios. Ci) 

DOX release from TTSL and TTSL-Ab liposomes after incubation at 37 °C. Cii) DOX release after 

heating at 42 °C. DOX release experiments were performed in 50% CD-1 mouse serum to simulate 

physiological conditions. Data represented as mean ± STD (n=3). 
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6.2.2 DOX Release Studies 

Serum stability and thermal responsiveness of TTSL and TTSL-Ab liposomes 

were studied by quantifying the amount of encapsulated DOX release at 37°C and 

42°C, respectively. No significant leakage of DOX from both TTSL and TTSL-Ab 

was observed after incubation for 60 min in 50% serum at 37 °C (Figure ‎6-5 Ci). 

DOX release at 42°C showed rapid release, more than 80% of drug release after 1 

min incubation from TTSL liposomes with and without Ab (Figure ‎6-5 Cii). DOX 

release data showed that TTSL-Ab liposomes maintained their serum stability and 

temperature sensitivity after Ab conjugation. 

6.2.3 Cellular Binding of Anti-MUC-1 Antibody 

We tested the expression of MUC-1 antigen in various human cancer cell lines 

(MDA-MB-435, MCF-7 and C33a) (Figure ‎6-6 A).  

 

Figure ‎6-6: Cellular binding of anti-MUC-1 antibody.  

A) CLSM images of MDA-MB-435, MCF-7 and C33a after 3 h incubation with Anti MUC-1 Ab 

(1ug/ml) at 37 ºC. B) Anti MUC-1 Ab binding to MDA-MB-435 cells at each step of conjugation 

process to TTSL liposomes by 1 h incubation with anti-MUC-1 antibody (1ug/ml) at 37 ºC. After 

incubation with anti-MUC-1 antibody cells were washed and stained with Cy3-labelled secondary 

antibody and imaged with CLSM. Scale bar is 20‎μm. 
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The binding capacity of anti-MUC-1 antibody after each step of conjugation to 

TTSL liposomes was studied by looking at their binding to MDA-MB-435 cells 

using immunostaining with Cy3-labelled secondary antibody and visualization with 

confocal microscopy (Figure ‎6-6 B). Binding data confirmed that the antibody 

maintained its binding efficiency after incorporation into TTSL-Ab liposomes, in 

contrast to complete loss of binding after 1h incubation at 80°C.  

6.2.4 Cellular Uptake of TTSL and TTSL-Ab 

We then examined the cellular uptake of TTSL-Ab liposomes by confocal 

microscopy (Figure ‎6-7).  

 

Figure ‎6-7: Cellular uptake studies of TTSL and TTSL-Ab into MDA-MB-435 cells. 

Confocal microscopy imaging of monolayer of MDA-MB-435 cells (MUC-1+ve) showed the uptake 

of DiI-labelled and DOX encapsulated TTSL and TTSL-Ab (26 µg Ab/µmol lipid) after: Ai) & Aii) 1 

h and Bi) & Bii) 3 h incubation. White channel represents the uptake of DiI-labelled liposomes. Red 

channel represents DOX before and after 1 h heating at 42°C. Co-localization with DAPI stain (blue 

channel) of the nucleus is shown in the overlay images. Top images are fluorescence images from 

excitation of DiI (left) and DOX (centre and right). Bottom images represent the overlay with DAPI 

and bright field images. Scale‎bar‎is‎20‎μm.‎DiI‎was‎imaged at 514 nm laser excitation source and 585 

nm output filter. DOX fluorescence signal was detected at 488 nm laser excitation source and 535–

674 nm output filters. 
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Antibody targeted TTSL were internalised by MUC-1+ve cells with higher levels 

of intracellular accumulation compared to non-targeted TTSL liposomes. Figure ‎6-7 

also depicts that the uptake of both lipids (DiI signal; white) and the encapsulated 

drug (DOX signal, red) were increased by conjugation with anti-MUC-1 antibody 

after 1 h and 3 h incubation. In comparison, only moderate cellular uptake was 

observed from non-targeted TTSL (DiI signal) after 3 h incubation, presumably 

through non-specific endocytosis. No internalisation of non-targeted TTSL was 

observed based on DOX fluorescence, further indicating the poor levels of cellular 

uptake compared to targeted TTSL (amount of DOX internalised close to the 

background level (Figure ‎6-7 Bi middle and right panels). 

The kinetics of cellular uptake were also studied by imaging DOX-loaded TTSL 

and TTSL-Ab (Figure ‎6-8). Rapid binding and internalisation of TTSL-Ab liposomes 

into MDA-Mb-435 cells was observed as early as 1 h after incubation and increased 

over 24 h. Cellular uptake can be further enhanced by increasing the density of anti-

MUC-1 antibody per liposome from 13 μg‎Ab/μmole lipid‎to‎26.5‎μg‎Ab/μmole‎lipid 

in TTSL-Ab-I and TTSL-Ab-II, respectively (Figure ‎6-8). The enhancement in 

cellular uptake was specific to MUC-1+ve cells, since no significant difference was 

observed in internalisation within C33a cells (MUC-1-ve).  

We also investigated the potential of MUC-1 targeted TTSL liposomes for 

triggered DOX delivery by exposing the cells to mild HT (1 h incubation at 42 °C). 

Confocal microscopy did not show a significant difference in the signal intensity and 

location of DOX.  

6.2.5 Cytotoxic Activity of DOX-Loaded TTSL and TTSL-Ab 

To evaluate the cytotoxic activity of targeted TTSL compared to TTSL, cellular 

viability was measured using the MTT assay in both MUC-1+ve and MUC-1-ve cell 

lines with and without exposure to HT. To evaluate temperature sensitivity of 

targeted TTSL, mild HT was applied to trigger release from liposomes after cellular 

uptake. Moderate cytotoxic activity (~90% cell viability) was observed from cells 

treated with TTSL-Ab without exposure to HT. In comparison, intracellularly 

triggered DOX release from targeted TTSL-Ab liposomes in MDA-MB-435 (MUC-

1+ve) cells resulted in a significant (p < 0.01) enhancement in cytotoxicity compared 
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to that without heating (only 60% cell viability) (Figure ‎6-9 A). The observed 

cytotoxic effect was also dependent on the density of anti-MUC-1 antibody 

conjugation to liposomes. This data followed in agreement with the cellular uptake 

findings above and indicated that although some spontaneous release of DOX could 

occur after TTSL-Ab internalisation, the amount of bioavailable drug can be 

significantly enhanced by triggering release with HT. 

 

Figure ‎6-8: Cellular uptake of DOX-loaded TTSL, TTSL-Ab-I & TTSL-Ab-II. 

Cellular uptake of TTSL liposomes with and without conjugation to two different ratios of anti-MUC-

1 antibody was studied with CLSM after 1 h, 3 h & 24 h incubation at: A) 37 °C with MDA-MB-435 

1 h

MDA-MB-435 (MUC-1+ve) C33a (MUC-1-ve)

T
T

S
L

T
T

S
L

-A
b

-I
T

T
S

L
-A

b
-I

I

3 h 24 h 1 h 3 h 24 h

1 h

T
T

S
L

T
T

S
L

-A
b

-I
T

T
S

L
-A

b
-I

I

3 h 24 h 1 h 3 h 24 h

Incubation time at 37  C

Incubation time at 37  C followed by 1 h at 42  C

C33a (MUC-1-ve)MDA-MB-435 (MUC-1+ve)

A

B



169 

 

cells (MUC-1+ve) and C33a (MUC-1-ve) and B) after 1 h additional incubation at 42 °C at the end of 

incubation time at 37 °C.  Scale bar is 20‎μm. 

No cytotoxic activity was observed from non-targeted TTSL with and without 

HT. Also, both targeted and non-targeted TTSL did not have any cytotoxic activity in 

C33a (MUC-1-ve) cells, which further confirmed the selective activity of MUC-1 

targeted TTSL (Figure ‎6-9 B). 

 

Figure ‎6-9: MTT assay of TTSL and TTSL-Ab in: A) MDA-MB-435 and B) C33a cells. 

Cellular monolayers were treated with TTSL and TTSL-Ab at 10uM DOX concentration for 3 h at 37 

°C. After 3 h incubation, the liposomes containing media were removed and replaced with fresh 

media. To test the effect of heat trigger release, cells were incubated at 42 °C (1 h, in CO2 incubator) 

and compared to no heating condition. MTT assay was performed 48 h after treatment and expressed 

as percentage of cell viability. Results represent average ± STD of at least 2 independent experiments 

(6 wells per treated group). * indicates p < 0.05 and ** indicates p< 0.01. 
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6.2.6 Localisation and Cytotoxic Activity of TTSL and TTSL-Ab in 

Multicellular Spheroids (MCS) 

The therapeutic efficacy of targeted TTSL-Ab liposomes will depend not only on 

their cell receptor binding and internalisation, but also on their capability to penetrate 

into the tumour. MCS were used to better mimic the avascular region of tumour 

tissue. MCF-7 (MUC-1+ve) MCS were used in these experiments instead of MDA-

MB-435 due to the inability of the later to form MCS Figure ‎6-10.  

 

Figure ‎6-10: Optical microscopy images of MDA-MB-435 MCS. 

Inverted phase microscope images of MDA-MB-435 MCS; A) before and B) after harvesting showed 

clearly the disintegration of spheroids during harvesting process. 

TTSL-Ab-II liposome showed better cellular uptake and cytotoxicity results 

compared to TTSL-Ab-I, therefore we have chosen this formulation to be tested 

further in MCS and in vivo. MCF-7 (MUC-1+ve) MCS were treated with DOX-

loaded TTSL and TTSL-Ab and compared to free DOX. After 24 h incubation at 37 

°C, liposomes were removed and MCS were washed with PBS while DOX 

localisation was assessed by confocal microscopy (Figure ‎6-11 A). No significant 

enhancement in the fluorescence intensity of DOX was observed from TTSL-Ab 

compared to TTSL as expected which can be due to the restricted penetration of 

liposomes into MCS compared to monolayer. A moderate increase in DOX 

penetration was observed from TTSL-Ab after 15 min heating at 42 °C.  

The cytotoxic activity of targeted TTSL was compared to TTSL by evaluation of 

spheroids growth retardation. Figure ‎6-11 B represents the photographic images of 

MCF-7 MCS and the change in the size over time. Both TTSL and TTSL-Ab 

retarded significantly spheroids growth compared to control (at day 22 p<0.05 and 

p<0.001, respectively). Spheroids growth retardation observed by TTSL-Ab was 

A B
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comparable to free DOX. In both cases normalised spheroids volumes were less than 

double up to 22 days after treatment (Figure ‎6-11 C).  

 

Figure ‎6-11: Evaluation of TTSL and TTSL-Ab liposomes localisation and cytotoxicity on MCS. 

The penetration and cytotoxicity of DOX-loaded TTSL and TTSL-Ab on MCF-7 MCS (MUC-1+ve) 

were evaluated following single 24 h incubation at 37 °C. Spheroids treated with TTSL-Ab were 

further heated for 15 min at 42 °C to demonstrate the effect of HT on DOX penetration and MCF-

MCS proliferation. Untreated MCS with and without HT were used as controls. A) CLSM images of 

MCF-7 spheroids treated with DOX loaded TTSL, TTSL-Ab and TTSL-Ab plus 15 min HT at 42 °C. 

At the end of 24 h incubation MCS were washed with PBS and DOX penetration was imaged at 488 

nm laser excitation source and 535–674 nm output filter, scale bar 100 µm. B) Inverted phase-contrast 

microscope images of MCF-7 spheroids showed clearly smaller size with free DOX and TTSL-Ab + 

HT compared to other‎groups.‎C)‎Mean‎normalized‎spheroids‎volume‎(v/v○‎as‎a‎function‎of‎time‎after‎

treatment showed more significant reduction in spheroids volume treated with TTSL-Ab compared to 

TTSL (P< 0.001 compared to P<0.5, respectively). The MCF growth retardation effect observed from 

TTLS-Ab was statistically equivalent to the effect of free drug.  
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Targeted TTSL-Ab with and without HT showed greater control on MCS growth 

compared to non-targeted TTSL. Although DOX penetration into MCS from TTSL 

and TTSL-Ab was not significantly different, this enhancement in cytotoxicity might 

be explained by the increase in DOX concentration at the periphery, which is the 

proliferating layer of MCS (Figure ‎6-11 C). Although, free DOX showed the highest 

MCS growth retardation, this effect is not representative of in vivo conditions 

because free DOX is eliminates rapidly from the blood and thus minimises its 

interaction with tumour cells. 

6.2.7 Biodistribution and Optical Imaging Studies of TTSL and TTSL-Ab 

Liposomes 

Then we evaluated the behaviour of our targeted TTSL-Ab in vivo. To the best of 

our knowledge, targeted TTSL in vivo combined with mild local HT have not been 

previously reported. Our experiments were designed to evaluate the effect of 

localized HT on the accumulation of TTSL-Ab and if triggering drug release from 

targeted TTSL-Ab after their tumour accumulation can offer better drug 

bioavailability. To answer the first question we designed our biodistribution 

experiments comparing three different heating protocols (Scheme ‎6-1). In each 

protocol two heating sessions were applied. The purpose of the 1st HT was to 

increase drug accumulation by HT mediated tumour vasodilatation (Kong et al. 

2001). The 2nd HT aimed to release drug interstitially following accumulation inside 

the tumour tissue. We classified the protocols we studied based on whether the 1st 

HT session was applied and its timing in relation to the liposome injection. To 

answer the second question, the in vivo therapeutic efficacy of the targeted TTSL-Ab 

was compared to non-targeted TTSL. 

First, we studied the blood circulation profile of TTSL and TTSL-Ab due to the 

importance of prolonged blood circulation on the level of tumour accumulation 

(Gabizon et al. 1994). Figure ‎6-12 showed that both TTSL and TTSL-Ab exhibited 

prolonged DOX circulation half-life, irrespective to the HT protocol applied. This 

indicated that conjugation of anti-MUC-1 Ab on the TTSL surface did not 

compromise their blood circulation time. TTSL-Ab‎had‎26.5‎μg‎Ab/μmole‎lipid that 

is equivalent to 15 Ab molecules per liposome. According to previous studies 
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conjugation of MUC-1 antibody at this density should not interfere with blood 

circulation (Moase et al. 2001). 

 

Scheme ‎6-1: Schematic presentation of the three different heating protocols applied to study the 

biodistribution of TTSL-Ab compared to TTSL liposomes. 

The three heating protocols are classified based on the timing of liposome injection in relation to the 

initial HT. A) Liposomes were injected without application of initial HT, B) local HT was applied at 

the tumour area for 1 h followed by liposome injection; and C) local heating of the tumour was 

performed immediately after injection. Initial HT was applied with the aim to increase tumour 

accumulation of liposomes and/or to initially trigger drug release at the tumour vasculature. A 2nd 

localised heating session of 30 min was applied 24 h after injection to trigger drug release from 

liposomes after accumulation within the tumour for all three protocols. 
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Figure ‎6-12: Blood profile and tumour accumulation of TTSL and TTSL-Ab.  

TTSL and TTSL-Ab were injected intravenously into MDA-MB-435 (MUC-1+ve) tumour-bearing 

mice applying the three heating protocols described in Scheme ‎6-1. Blood profile data (right) and 

tumour accumulation (left) of 14C-DOX; A) injection without initial HT, B) injection post HT 

(tumour was heated for 1 h at 42 °C prior to injection); and C) injection followed by immediate 

heating for 1 h at 42 °C. Data represented as mean ± SEM (n=3-4). * indicates p < 0.05. 

The shortest blood circulation was obtained with heating protocol 3 compared to 

protocols 1 and 2. In protocol 1 and 2 both TTSL and TTSL-Ab DOX blood 

circulation t1/2 were ~4 h compared to only ~1 h observed in heating protocol 3. This 

difference was thought to be due to the possibility of drug release at the tumour site 

when the 1st HT session was applied simultaneously with liposome injection. On the 
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other hand, in the other two protocols the liposome injection was either done in the 

absence of 1st HT (protocol 1) or immediately after (protocol 2). 

To evaluate the effect of active targeting on tumour accumulation, 
14

C-DOX in 

the tumour from mice treated with TTSL-Ab was quantified and compared to TTSL. 

1 h after injection, the highest tumour accumulation was achieved from simultaneous 

injection and heating (protocol 3), which resulted in almost 2-3 fold increase in 
14

C-

DOX compared to the other two protocols (Figure ‎6-12). This advantageous effect of 

HT in enhanced tumour accumulation of liposomes and monoclonal antibodies has 

been well-demonstrated before (Hauck et al. 1997a; Kong et al. 2000b). The 

accumulation 
14

C-DOX from both TTSL and TTSL-Ab increased over time by 2-3 

fold (24 h post injection) with the exception of TTSL liposomes under protocol 3. No 

significant difference in DOX tumour levels were noticed after a (30 min) 2nd HT 24 

h after injection (Figure ‎6-12). 

Comparing the 
14

C-DOX tumour levels from both TTSL and TTSL-Ab, almost 

identical values were obtained without HT (protocol 1) at all time points studied 

Figure ‎6-12 A). Interestingly, TTSL-Ab injected post-HT (protocol 2) resulted in 

higher tumour accumulation compared to TTSL liposomes 1 h after injection 

(p<0.05). Similar increase in 
14

C-DOX within the tumour by TTSL-Ab was also 

observed in the case of injections with HT (protocol 3) (Figure ‎6-12 C). The 

equivalent 
14

C-DOX tumour levels from TTSL and TTSL-Ab 1 h after injection 

(protocol 3) is a result of tumour accumulation of DOX in its free and encapsulated 

form, since both TTSL and TTSL-Ab showed similar thermal responsiveness in 

vitro. This could explain the similar amounts of drug observed in the tumour 

immediately after HT. 

In addition, the effects of antibody conjugation on the tissue biodistribution of 

TTSL and TTSL-Ab along with the effects of the different heating protocols were 

also evaluated (Figure ‎6-13). Due to triggered drug release during protocol 3, higher 

levels of 
14

C-DOX were detected in the tissues as early as 1 h after injection. This 

effect was observed in liver, kidney and heart, we believe due to free drug circulation 

in the blood. Quantification 
14

C-DOX level in different organs at 24 h before and 

after application of the 2nd HT session showed the opposite effect. The accumulation 
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of 
14

C-DOX was generally higher after treatment with protocols 1 and 2 due to their 

longer circulation without release of DOX.  

 

Figure ‎6-13: Biodistribution study of 
14

C-DOX loaded TTSL and TTSL-Ab in the organs.  

Quantification of the accumulation of 
14

C-DOX loaded TTSL and TTSL-Ab-II in the organs 1 h, 24 h 

and 24 h after 30 min 2nd HT using; A) protocol 1, B) protocol 2 and C) protocol 3. 

Tissue distribution of DOX from TTSL and TTSL-Ab was almost identical with 

some increase in the spleen and liver accumulation with TTSL-Ab. This finding 

agreed with previous studies (Pastorino et al. 2006; Fondell et al. 2011) illustrating 

entrapment of the liposomes in the filtering apparatuses of these organs. 

After treatment with TTSL and TTSL-Ab under the three HT protocols described 

earlier, whole-body optical imaging 1 h and 24 h after injection before and after 2nd 

HT was performed utilizing IVIS camera (Figure ‎6-14). In agreement with 
14

C-DOX 

tissue distribution, IVIS imaging showed that protocol 1 and 2 were associated with 

higher whole-body background in DOX signal due to the higher tissues accumulation 

level compared to protocol 3. This was more obvious with TTSL-Ab compared to 

TTSL (Figure ‎6-14 Ai & Bi). Also in agreement with 
14

C-DOX quantification levels 

within the tumour, total DOX fluorescence intensity at the tumour site, showed that 

0

10

20

30

40

Lung Liver Kiney Spleen Heart

%
 I

D
 p

e
r
 g

r
a

m
 t

is
su

e

0

10

20

30

40

Lung Liver Kiney Spleen Heart

%
 I

D
 p

e
r
 g

r
a

m
 t

is
su

e

0

10

20

30

40

Lung Liver Kiney Spleen Heart

%
 I

D
 p

e
r
 g

r
a

m
 t

is
su

e TTSL

TTSL-Ab-II

0

10

20

30

40

Lung Liver Kiney Spleen Heart

%
 I

D
 p

e
r
 g

r
a

m
 t

is
su

e

0

10

20

30

40

Lung Liver Kiney Spleen Heart

%
 I

D
 p

e
r
 g

r
a

m
 t

is
su

e

0

10

20

30

40

Lung Liver Kiney Spleen Heart

%
 I

D
 p

e
r
 g

r
a

m
 t

is
su

e

0

10

20

30

40

Lung Liver Kiney Spleen Heart

%
 I

D
 p

e
r
 g

r
a

m
 t

is
su

e

0

10

20

30

40

Lung Liver Kiney Spleen Heart

%
 I

D
 p

e
r
 g

r
a

m
 t

is
su

e

0

10

20

30

40

Lung Liver Kiney Spleen Heart

%
 I

D
 p

e
r
 g

r
a

m
 t

is
su

e

A

B

C

1 h 24 h 24 h + 30 min HT



177 

 

the TTSL-Ab resulted in significantly higher tumour accumulation using protocols 2 

and 3 only (Figure ‎6-14 Bii & Cii).  

 

Figure ‎6-14: In vivo imaging of athymic nude mice after injection with TTSL and TTSL-Ab.  

Live fluorescence imaging of DOX-loaded TTSL and TTSL-Ab injected mice by application of the 

three heating protocols using the IVIS Lumina II imaging system. (Ai), (Bi) & (Ci) represent the live 

fluorescence imaging. (Aii), (Bii) & (Cii) show DOX fluorescence intensity signal quantification at 

500 nm/DsRed excitation and emission filters from the tumour (ROI). In the first two HT protocols 

the high background signal from DOX accumulation into vital organs limited the signal of DOX in the 

tumour under this imaging scale used.  

6.2.8 Tumour Growth Retardation and Survival Studies 

Our biodistribution and whole body imaging data showed 2-fold increase in 

tumour uptake of MUC-1 TTSL-Ab compared to TTSL. The highest DOX 

accumulation was achieved by application of protocol 3 (injection with HT). 

Therefore, we took this heating protocol forward for evaluation of the therapeutic 

activity of TTSL-Ab. MDA-MB-435 bearing nude mice were treated with both 
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TTSL and TTSL-Ab applying protocol 3, with and without application of 2nd HT 

(24 h post injection). The purpose of the 2nd heating was to examine the potential of 

triggering DOX release from TTSL-Ab after tumour accumulation and perhaps 

tumour cell internalisation. Tumour growth retardation (Figure ‎6-15 A) indicated that 

injection with both TTSL and TTSL-Ab loaded with DOX showed significant 

growth retardation compared to untreated animals. On day 30 and 34, tumour growth 

delay from treatment with TTSL liposome without 2nd HT was not statistically 

significant compared to control mice. However, TTSL +2nd HT, TTSL-Ab and 

TTSL-Ab+2nd HT treatments resulted in significant growth retardation compared to 

the control group. However, no statistical significance was observed between those 

treatment groups. 

 

Figure ‎6-15: In vivo tumour growth delay and survival studies. 

MDA-MB-435 tumour-bearing mice treated with TTSL and TTSL-Ab liposomes applying (protocol 

3) with and without 30 min 2nd HT 24h after injection. A) Normalized tumour volume. One way 

ANOVA followed by Tukey's multiple comparison tests indicated significant tumour growth 

retardation of treated mice compared to control. At day 30, the p values of control vs TTSL + 2nd HT, 

control vs TTSL-Ab – 2nd HT and control vs TTSL-Ab + 2nd HT were <0.05, < 0.01 and < 0.001 

respectively. At day 34 the p values of control vs TTSL + 2nd HT, control vs TTSL-Ab – 2nd HT and 

control vs TTSL-Ab + 2nd HT were <0.05, < 0.05 and < 0.01 respectively.; B) Body weight and C) 

Survival curves following single administration. Therapy started on day 13 after implantation with 

average tumour size of 100 mm
3
. Animals were injected intravenously with TTSL and TTSL-Ab at 

5mg/kg DOX followed by immediate 1 h HT. Control animals were not injected, and treated with a 

single session of HT. Each group (n=5-7, average ± SEM).  
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All treated animals did not show any signs of toxicity, abnormal behaviour and no 

significant fluctuation in their weight until they died (Figure ‎6-15 B). In terms of 

survival, all treatment groups displayed significantly prolonged survival (p<0.001) 

compared to the untreated group (Table ‎6-1). The highest Increase in life span was 

from TTSL-Ab treatment accompanied with 2nd HT compared to the other treatment 

groups (Figure ‎6-15 C), but not statistically significant.  

Table ‎6-1: Survival analysis of MDA-MB-435 tumour-bearing mice treated with DOX-loaded 

TTSL and TTSL-Ab. 

Treatment Dose (mg/kg) 
Mean survival time 

(days) 

Increase in life span 

(%)a 

Significance (p) 

vs control 

Intravascular release protocol (injection with HT) 

Control - 36 0 - 

TTSL -2nd HT 1 × 5 55.0 +45.0 0.0010 

TTSL +2nd HT 1 × 5 55.0 +45.0 0.0010 

TTSL-Ab-II -2nd HT 1 × 5 50 +32.0 0.0027 

TTSL-Ab-II +2nd HT 1 × 5 56.5 +49.0 <0.0001 

a Percentage of increase in life span = mean survival time of treated / mean survival of control × 100 -100. 
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6.3 Discussion 

The effect of chemotherapeutics is usually limited by their widespread toxicity to 

normal tissues and organs. Liposomes can enhance the localization of cytotoxic 

agents in some solid tumours and decrease drug uptake by sensitive organs, (Ewer et 

al. 2004). However, these advantages are usually hampered by difference in the 

permeability of the tumour vasculature that resulted in heterogeneous passive tumour 

targeting process that may vary in the same tumour and between different tumour 

types (Yuan et al. 1994a; Li et al. 2013a). EPR effect could be minimum or even 

absent among other tumour models (Gaber et al. 1996; Kong et al. 2001; Manzoor et 

al. 2012). Moreover, clinical benefits of EPR effect in passive tumour accumulation 

is not yet conclusive (Prabhakar et al. 2013). 

A further optimized liposomal formulation would also have active targeting and 

triggered drug release capabilities (Pradhan et al. 2010). Several targeted liposomes 

have been developed with increased cellular uptake in vitro; however, none of them 

have been successfully translated to the clinic (Lammers 2012). Interest in designing 

specifically targeted liposomes with temperature sensitivity has increased, with some 

previous studies reported promising cell-specific cytotoxic activity after heating in 

vitro (Pradhan et al. 2010; Smith et al. 2011). Whether such concept can be 

replicated in vivo by triggering intracellular drug release after tumour accumulation, 

a question remained unanswered. 

In an attempt to offer an answer, we designed anti-MUC-1 targeted TSL (TTSL-

Ab) which have the potential to internalise specifically into tumour cells and offer 

on-demand drug release in response to HT. TTSL liposomes were chosen 

intentionally for this purpose for their long blood circulation and substantial 

accumulation in the tumour specially when combined with moderate HT (<42 ºC). In 

the previous chapter, we have shown that TTSL administration into B16-F10 

tumour-bearing mice in combination with mild HT could result in up to 13.5 % of ID 

DOX tumour accumulation 24 h after administration and heat application. This 

finding was a result of three factors: a) prolonged blood circulation (t 1/2 ~4 h); b) the 

stability of TTSL (~50% DOX retention after 24 h incubation in serum at 37 °C), and 

c) the enhanced tumour extravasation following HT (~5 folds increase in DOX 

accumulation 24 h after injection and heating). We hypothesized here that the 
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therapeutic activity of TTSL can be further improved by conjugation of anti MUC-1 

antibodies to increase their binding specificity and cellular internalisation, followed 

by content release inside tumour cells triggered by application of mild HT (30 min at 

42 °C).  

Anti-MUC-1 TTSL-Ab were successfully prepared by post-insertion of anti-

MUC-1 mal-DSPE-PEG2000 micelles into preformed TTSL, resulting in antibody 

conjugation to the external termini of the pegylated lipid bilayer and therefore 

reserve the antibody binding capacity (Allen et al. 2002) as confirmed by SPR and 

cellular uptake studies. TTSL-Ab liposomes retained their characteristics, drug-

loading capacity and thermal-responsiveness that agreed with previously described 

targeted TSL (Puri et al. 2008; Negussie et al. 2010).  

Similar to other examples of targeted TSL designed for intracellular drug delivery 

(Puri et al. 2008; Smith et al. 2011), TTSL-Ab showed specific increase in cellular 

uptake and internalisation. Consequently TTSL-Ab liposomes were able to mediate 

significant improvement in cytotoxicity on MDA-MB-435 (MCU-1+ve) cells after 

exposure to HT and this effect was proportional to anti-MUC-1 antibody density. On 

the contrary, we did not observe any significant effect on C33a (MCU-1-ve) cells 

viability, that confirmed the biological specificity of the liposomes. No cytotoxic 

activity was observed from non-targeted TTSL in both MUC-1+ve and MUC-1-ve 

cells, with and without HT application.  

The potential of targeted TTSL-Ab was then evaluated in vivo. First 

pharmacokinetic parameters and organ distribution of TTSL-Ab were studied and 

compared to TTSL by radiolabelling the drug content using 
14

C-DOX. Antibody 

conjugation did not compromise liposome blood circulation half-life. This indicated 

that antibody conjugation to the DSPE-PEG2000 terminus at this density (26.5 Ab 

μg/μmol‎ lipid)‎ did‎ not‎ trigger‎ enhanced‎ recognition‎ by‎ phagocytes‎ which‎ agreed‎

with previous studies (Allen 2002).  

The biodistribution of DOX-loaded TTSL-Ab and TTSL was evaluated in vital 

organs, especially the heart, an important indicator for risk of DOX mediated cardiac 

toxicity (Fulbright et al. 2010). At all time points tested, the accumulation of DOX in 

the heart from both targeted and non-targeted TTSL was low, confirming that both 
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liposome types were able to minimize non-specific cardiac uptake similar to Doxil
® 

(Safra et al. 2000). 
14

C-DOX quantification in spleen and liver showed higher levels 

for TTSL-Ab compared to non-targeted TTSL. Similar findings have been reported 

before (Pastorino et al. 2006; Fondell et al. 2011) and can be due to the recognition 

of the Fc region of mAb by macrophages (Allen 2002; Torchilin 2008). However, the 

prolonged circulation time of TTSL-Ab suggested that this might not be the case. 

Besides studying the organ distribution, we also quantified 14C-DOX 

accumulation in MDA-MB-435 (MUC-1+ve) tumour from both TTSL-Ab and 

TTSL. Previous studies from mAb-targeted liposomes have shown that there was no 

improvement in overall accumulation in solid tumours (Kirpotin et al. 2006). Despite 

significant improvements observed in cellular uptake in vitro by many groups using 

mAb-targeted liposomes, enhancements were not obtained in vivo. Kirpotin et al. 

showed previously similar tumour accumulation of both anti-HER2 targeted and 

non-targeted liposomes. However, the intratumoral microdistribution and cellular 

localisation of targeted and non targeted anti-HER2 liposomes were different due to 

their cellular internalisation capacity (Mamot et al. 2005; Kirpotin et al. 2006).  

The ability of antibody-targeted liposomes to be internalise can result in 

improvements in drug bioavailability, especially for drugs acting against intracellular 

targets (Sapra et al. 2002) even though this is not always associated with 

improvements in the overall accumulation within solid tumours. The reason for that 

is because the accumulation process of both targeted and non-targeted pegylated 

liposomes is dependent on the EPR effect. After escape from the tumour vasculature, 

targeted liposomes face a number of barriers to transport through the tumour 

interstitium before reaching their cellular targets (Lammers 2012). These factors are 

in most cases tumour-type specific. Among these, is the leakiness of the tumour 

vasculature that in turn depends on the density of the pericytes and smooth muscle 

cells that cover the blood microvessels. Other factors include the density of the 

tumour cells and the building of high interstitial fluid pressure. The only cases in 

which mAb-targeted liposomes have shown better tumour accumulation is in very 

rapidly growing tumours in which tumour cells are located immediately adjacent to 

their vasculature (Lammers 2012) and the other case is in non-solid tumours (Fondell 

et al. 2011).  
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Different approaches have been investigated in an attempt to increase the 

penetration of both liposomes and immunoliposomes into solid tumours. One 

approach involved the use of the extracellular matrix (ECM) degrading enzyme 

,Hyaluronidase, prior to liposome administration (Eikenes 2005) or X-ray irradiation 

that also acted against ECM integrity (Davies et al. 2004). Liposomal accumulation 

into OHS, human osteosarcoma tumour increased four times when administered 

intravenously 1 h after hyaluronidase (1500 IU) (Eikenes 2005). This was thought to 

be due to induction of transcapillary pressure gradient as a result of almost 40% 

reduction in IFP (Eikenes 2005). A similar 2 folds increase in liposomal DOX 

accumulation into the same tumour model was observed when combined with 

ionizing radiation 1 day after liposomes administration or in three fractionating doses 

(Davies et al. 2004).  

In addition, HT has also been a well-established method to augment liposomal 

accumulation into solid tumours (Gaber et al. 1996; Kong et al. 1999). Dewhirst and 

colleagues observed significant enhancement in the extravasation of nanoparticles 

including liposomes, monoclonal antibodies and antibody fragments into solid 

tumours by the application of mild HT (Cope et al. 1990; Schuster et al. 1995; Hauck 

et al. 1997b; Kong et al. 2000b). Application of local HT at 42 °C for 4 h increased 

tumour specific Mel-14 monoclonal antibody fragments accumulation into D-54 

MG, human glioma xenografts by 3-4 folds (Cope et al. 1990). In another 

experiment the effect of heating temperature on the tumour uptake of Mel-14 mAb 

was studied and compared to nonspecific mAb (Schuster et al. 1995). After 4 h 

heating at 42 °C and 44 °C maximum tumour accumulation was observed with 

tumour specific antibody compared to control. Measuring tumour mAb 12 h after 

heating showed that at 42 °C specific mAb level was maintained at ~ 6% of ID 

compared to washout of control. This indicated that Mel-14 mAb accumulation is 

mainly due to specific binding rather than vascular occlusion (Schuster et al. 1995).  

This enhancement of nanoparticles accumulation into tumour by HT is due to the 

increase in local blood flow (Karino et al. 1988), 40-60% increase at 41 °C, and 

increase microvascular permeability (Fujiwara et al. 1990; Kong et al. 2000b; Kong 

et al. 2001). Increased microvascular permeability of ferritin particles (Molecular 

weight 450,000 dalton, size 10-11 nm) was observed 1-3 days after HT (Fujiwara et 
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al. 1990). Kong et al studied the effect of HT on pore size of the tumour vasculature 

by quantifying the extravasation of liposomes of different size, 100-400 nm 

compared to albumin (7 nm) into SKOV-3 tumour (Kong et al. 2000b). In the 

absence of HT albumin easily extravasated from the tumour vasculature in addition 

to only small fraction of 100 nm liposomes. HT (1 h at 42 °C) increased the 

extravasation of liposomes of all sizes and the increase was inversely proportional to 

their sizes. On the other hand no significant difference in the extravasation of 

albumin was observed with and without HT. This indicated that HT increase pore 

size of this tumour model from ~100 nm at normothermic conditions to ~400 nm 

(Kong et al. 2000b).  

To find out whether HT will have any effect on the accumulation of targeted 

TTSL-Ab, we quantified 
14

C-DOX accumulation in the tumour by injecting the 

liposomes with and without HT and varying the time between HT and injection. 
14

C-

DOX was quantified 1 h and 24 h after injection. In addition, 
14

C-DOX in the tumour 

was also measured after 30 min of 2nd HT that was applied 24 h after injection with 

the aim to release DOX after tumour accumulation and internalisation. As expected 

our results showed that TTSL and TTSL-Ab accumulated to the same extent when 

injected without applying HT first, similar to what was observed in other studies 

because of their similar penetration into the tumour (Kirpotin et al. 2006). On the 

contrary, significant increase in 
14

C-DOX accumulation from TTSL-Ab was 

achieved when injected after or during HT application that was thought to be due to 

improvement in tumour penetration by local HT. The observed increase in 
14

C-DOX 

from TTSL-Ab can be a result of increased retention of the liposomes within the 

tumour. Active binding and internalisation via the receptors on MDA-MS-435 

tumour cells allowed them to be retained in the tumour for a longer time and 

prevented them to be washed  out back to the circulation (Lammers 2012). 

Application of 30 min mild HT to trigger drug release from accumulated liposomes 

24 h after injection did not significantly change drug levels in the tumour or efficacy. 

Similar findings were observed from in vivo imaging confirmed the above organ 

distribution and tumour accumulation data. Significant increase in DOX tumour 

accumulation was achieved from TTSL-Ab when HT was combined with injection 

(Protocols 2 & 3) compared to TTSL (p < 0.05).  
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Despite the two-fold increase in tumour uptake of TTSL-Ab liposomes compared 

to TTSL, no significant improvement in tumour growth retardation and survival was 

achieved compared to TTSL with and without application of a 2nd HT. Moderate 

improvements in therapeutic efficacy has been observed previously by triggering 

intracellular release after tumour accumulation using pH-sensitive anti-HER2 

targeted liposomes administered in three doses (Bandekar et al. 2012). We may 

therefore, suggested that the therapeutic activity of TTSL-Ab developed here can be 

optimised after repeated administration. 

Targeted temperature sensitive DOX-loaded liposomes (TTSL-Ab) have been 

successfully developed as cancer thermo-chemotheraputices. TTSL-Ab liposomes 

maintain their physicochemical and structural integrity with retention of their thermal 

properties after conjugation to anti-MUC-1 antibodies (IgG). TTSL-Ab in 

combination with mild HT increased tumour DOX level, however this was not 

associated with significant improvement in therpautic efficacy. 
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6.4 Conclusion 

In conclusion, we have shown a potential role of mild HT as an effective modality 

to increase the therapeutic specificity in vitro and augment drug accumulation in the 

tumour from targeted temperature-sensitive liposomes in vivo. These observations 

showed that HT might be used as an alternative physical penetration enhancer to 

other pharmacological methods to improve tumour accumulation of targeted 

liposomes. These results may have implications for other actively targeted drug 

delivery systems, and suggest that such approach can be utilized for efficient 

penetration and internalisation. Despite anti-MUC-1 TTSL liposomes capability to 

accumulate and internalise into MUC-1+ve tumour cells, no significant improvement 

in therapeutic efficacy was observed under the experimental conditions tested.  



 

CHAPTER 7 FINAL REMARKS AND FUTURE 
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The use of HT to trigger local drug release is a promising and a rapidly evolving 

area. Local triggered release from TSL by mild HT has proven to be a precise and 

effective method for cancer treatment in many preclinical studies and as such it holds 

a great potential to be translated into an effective treatment modality for cancer 

therapy in the near future, especially for advanced local tumours that cannot be cured 

by conventional anticancer drugs. The evolution of advanced technology for 

applying and monitoring HT allows remote non-invasive local heating to be 

delivered with a great degree of control. Besides, remarkable advances in the design 

and development of TSL have been accomplished over the last few years and the 

progress is still ongoing. Different types of TSL have been developed, however most 

of the work was directed towards developing TSL with ultrafast release properties 

such as the lysolipids-containing TSL that was designed to release their loaded drug 

within seconds on reaching the heated tumour. A promising example on that is 

ThermoDox
®
, the LTSL formulation that progressed into phase II/III clinical trials. 

However, there are still some limitations recognized with this formulation which 

opens the scope for further improvements. The desorption of temperature-sensitive 

component (lysolipid) from this formulation and its consequences on drug retention 

at body temperature, blood circulation time, systemic toxicity and the fraction of the 

drug to be released, indicates that further work needs to be done to overcome those 

issues. The unsuccessful outcome of phase III clinical trial of ThermoDox
®
 imposes 

a lot of hurdles for the clinical translation of other TSL technologies. The delicate 

design of ThermoDox
®
 put lots of limitations for its application into clinical practice. 

Ideally for TSL to be therapeutically effective, compared to conventional 

chemotherapeutics or non-temperature-sensitive liposomes, they should have a 

reasonable drug retention capability in order to deliver effective therapeutic dose at 

the tumour site and reduce the associate systemic toxicity. In addition, it is critical to 

heat the tumour area to the right temperature and at proper time relative to TSL 

administration.  

The development of new TSL technologies holds a great promise and opens the 

space for further improvements. Polymer-modified TSL can overcome some of the 

limitations involving the design of relatively stable TSL since their temperature 

sensitivity is mainly dependent on the polymer component itself. Nevertheless, more 

work is warranted in that area to develop temperature-sensitive polymers that 
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respond to narrow temperature changes, maintain good stability under physiological 

conditions and ensure effective drug release under mild HT. In addition, TSL 

decorated with metallic nanoparticles have the advantages of providing localized 

non-invasive self-heating to the liposomal bilayer at the nanoscale level after 

exposure to external energy such as MF or NIR light. Further in vivo evaluation of 

the performance of those systems is required to optimize their therapeutic potential. 

This is in addition to the need for the development of proper clinical techniques for 

the application of MF and NIR light and controls their penetration depth into the 

tissues. A final promising, yet challenging, area in the field TSL is the design of 

image-guided drug delivery from TSL by co-entrapment of imaging agents. The live 

information that can be provided from these systems about liposomes accumulation 

into tumour area could help to optimise the timing of HT application to trigger drug 

release and to monitor tumour temperature. However, the complicated design of 

these systems and the heating technologies applied might require further optimisation 

to be clinically applicable. Based on the lessons learned from ThermoDox
®
 clinical 

trial, the translation of the newly developed TSL technologies will depend greatly on 

the development of relatively stable TSL systems that could be adapted into practical 

clinical applications.  

In this thesis we attempted to address the aforementioned limitations by looking at 

different aspects, starting from the rationale in the design of novel TSL formulations 

all the way through understanding the pharmacological critical parameters that affect 

their clinical translation and exploring new opportunities to increase their therapeutic 

benefits. Below are the main outcomes of this thesis: 

Lipid-Peptide hybrid vesicles modified with a temperature-responsive 

peptide can be successfully engineered. 

We have successfully engineered Lp-Peptide hybrid vesicles for triggered drug 

release by mild HT. Lp-Peptide hybrids retained the temperature sensitivity of both 

the peptide and the liposomes and did interfere with neither the liposome formation 

nor the effective DOX loading. Anchoring of the self-associated α-helical, 

temperature-sensitive peptides into lipid bilayers significantly enhanced the hybrid 

vesicle serum stability in vitro and in vivo without affecting their thermoresponsive 

character.  
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Lipid-Peptide hybrids system is a good candidate for intravascular and 

interstitial triggered drug release by mild HT. 

Administration of Lp-Peptide hybrids into tumour-bearing mice followed by 

immediate HT resulted in substantial DOX tumour accumulation within 1 h after 

injection which was comparable to LTSL. The prolonged blood circulation profile of 

Lp-Peptide hybrids resulted in continuous DOX accumulation into the tumour even 

when the heating was stopped. A three-fold increase in DOX level in the tumour, 24 

h after injection and heat application, was achieved from Lp-Peptide hybrids as 

compared to LTSL. These interesting observations suggested that Lp-peptide hybrids 

can be suitable for both intravascular and interstitial drug release depending on the 

timing between the liposomes administration and hyperthermia application. 

The choice of the heating protocol is a critical parameter in determining the 

safety and the therapeutic efficacy of TSL.  

The therapeutic activity of Lp-Peptide hybrids system was studied by comparing 

two different heating protocols to mimic intravascular and interstitial drug release 

relative to other TSL. Therapy data demonstrated that the drug release profile of TSL 

is not the only factor that determines their therapeutic activity. The design and the 

timing of heating and injection based on proper understanding of the TSL 

physicochemical properties and pharmacokinetics parameters played a pivotal role in 

the therapeutic effectiveness as well as in the toxicity of TSL. In agreement with our 

hypothesis, Lp-Peptide hybrids showed better therapeutic efficacy in both heating 

protocols tested compared to LTSL and TTSL. However, the therapeutic activity of 

Lp-Peptide hybrids system was much higher with the intravascular release protocol. 

The reason for this variation is because DOX accumulation into the tumour with the 

intravascular release approach is a combination of the free drug and the long term 

accumulation of liposomal DOX. Despite the well known effect of HT on increasing 

liposomal extravasation into the tumour that can last up to 6-8 h after stopping HT, 

maximum extravasation occurred when the liposomes were injected during HT. This 

emphasizes the potential of simultaneous heating and injection not only to trigger 

intravascular drug release, but also to achieve the maximum liposomal extravasation.  
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TTSL had prolonged drug profile and good drug retention. As a result, the 

maximal DOX accumulation in the tumour was seen during the interstitial release 

phase of the protocol. However, this was associated with unexpected systemic 

toxicity that resulted in 50% reduction in the life span compared to the control. This 

was precipitated by the long circulation time and the intermediate drug release while 

the TTSL was still in the blood stream leading to continuous DOX leakage and, 

hence, the increased exposure time of the healthy tissues to the chemotherapeutic 

agent. Conversely, TTSL formulation treated with the intravascular protocol did not 

show any toxicity. This suggests the importance of local initial triggered drug 

release, even for intermediate release formulation, since this will reduce the overall 

amount of drug circulating in the blood stream. This highlights the impact of better 

understanding of the pharmacokinetic parameters on the outcome in the clinical 

setting.  

The use of HT in combination with targeted TTSL is an effective modality to 

increase the therapeutic specificity and augment drug accumulation in the 

tumour. 

We successfully developed and characterized targeted temperature-sensitive 

doxorubicin loaded liposome (TTSL-Ab) for cancer thermo-chemotherapy. TTSL-

Ab liposome maintained its physicochemical and thermal properties after 

conjugation to anti-MUC-1 Ab. TTSL-Ab increased the binding specificity and 

cellular uptake into MUC-1+ve cells compared to non-targeted TTSL liposome. 

Triggering intracellular DOX release by the application of mild hyperthermia 

significantly enhanced the cytotoxicity of TTSL-Ab compared to non-targeted TTSL.  

The accumulation of targeted TTSL-Ab into MUC-1+ve tumour after in vivo 

administration was greatly enhanced when combined with HT prior to or 

immediately after the injection, compared to non-heated tumours. These observations 

highlighted the potential role of HT as a physical penetration enhancer to improve 

targeted liposomes penetration into solid tumours. HT can be used as a useful 

alternative to other pharmacological methods to improve the efficacy of targeted 

liposomes. Further work is warranted to understand this effect in details including the 

penetration distance of the liposomes and the drug and their distribution in the 

tumour interstitium. Single injection of TTSL-Ab with HT followed by 24 h 2nd 
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heating resulted in moderate improvement in the therapeutic activity and survival 

compared to non-targeted TTSL. We suggested that this therapeutic activity of 

TTSL-Ab might be further optimised by increasing the dosing frequency or by 

modifying the timing of 2nd heating. 
 

The studies presented in this thesis revealed the importance of rational design of 

TSL system and the factors that should be considered in the design of the proper HT 

protocol for their pharmacological evaluation. Therefore, besides the attempts to 

develop TSL with ultrafast release properties, more efforts should be made to get a 

balance between thermosensitivity, stability and safety profiles of TSL. The 

development of such systems would offer greater chance for clinical translation and 

would give much flexibility to adapt to the complications of clinical procedures. 
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