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ABSTRACT

Due to the ever increasing prices of conventional fossil
fuels, as well as climate change and sustainability issues,
several liquids and gases have been proposed as alternative
fuels for internal combustion engines. Hydrogen has been
investigated by several researchers as a promising alternative
gaseous fuel. In general gaseous fuels are injected either in the
intake port of an internal combustion engine or directly into
the cylinder. Direct injection of hydrogen offers higher
volumetric efficiency and eliminates abnormal combustion
phenomena like pre-ignition and backfire. However, due to
hydrogen’s low density, direct injection requires high injection
pressures to achieve suitable mass flow rates for fast in-
cylinder fuel delivery and mixing. Such pressures typically
lead to chocked conditions at the nozzle exit, followed by a
turbulent under-expanded jet. Therefore, fundamental
understanding of the expansion process and turbulent mixing
just after the nozzle exit is necessary in order to design an
efficient hydrogen injection system and injection strategies for
optimised combustion. In the current study large-eddy
simulations were performed to study the effect of different
nozzle pressure ratios, namely 10, 30 and 70, on the near-
nozzle shock structure and turbulent mixing of under-
expanded hydrogen jets. The computational tool was validated
against an experimental test case available in the literature. It
was found that the simulation methodology captured the near-
nozzle shock structure, Mach disk, reflected shocks and
turbulent shear layers in good agreement with the experiments.
The height and width of the Mach disk and the position of the
mixing shear layer were greatly affected by the injection
pressure. It was also found that for hydrogen the near-nozzle
shock structure and Mach disk need considerably more time to
reach an almost steady-state condition in comparison to the
time claimed for heavier gases in the literature. It was also
seen that during the transient period the dimensions of the
Mach disk temporarily reached higher values than the final
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steady ones. It was also found that not all of the hydrogen jet
passed through the Mach disk; hydrogen-air mixing started
immediately after the nozzle exit at the boundaries of the jet
but the main mixing process started after the Mach disk.

NOMENCLATURE

[-] Face area vector

[-] Empirical constant of the Mach disk height equation
K] Specific heat

Nozzle exit diameter

Diffusion coefficient

Inviscid terms in Navier-Stokes equations
Viscous terms in Navier-Stokes equations
Body force

Identity matrix

Fluid pressure

Stagnation pressure

Nozzle exit pressure

Ambient pressure

Heat flux vector

Gas constant

Specific Entropy

Strain tensor

Transpose sign

Temperature

Stagnation temperature

Viscous stress tensor

Integral time scale

Velocity magnitude

Velocity vector

Grid velocity vector

Computational cell volume

Conserved quantities in Navier-Stokes equations
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Reflected shock angle
Ratio of specific heats
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m] Length scale (LES grid filter)
m] Tip penetration ratio

kgm®]  Density

m’s™] Dynamic viscosity

m’s™] Turbulent viscosity

Turbulent Schmidt number
Gradient operator
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INTRODUCTION applications. Experimental studies have been conducted by
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be D=7.942x10" m?/s. The nominal integral time scale of an













Figure 9 Variation of Density (p) along the nozzle centreline
axis at t=161¢,

CONCLUSIONS

The current study focused on LES of under-expanded
hydrogen jets under different values of NPR, namely 10, 30,
and 70, for injection duration of 100us. The computational
framework was validated against an experimental test case
available in the literature. The near nozzle shock structure and
mixing characteristics of hydrogen jets were then investigated.
The Mach disk height and width, as well as the angle of the
reflected shock at the triple point and the length of the
subsonic core after the Mach disk were studied quantitatively.
The main conclusions can be summarized as follows:

The height and width of the Mach disk were very
sensitive to NPR. A higher degree of sensitivity to NPR
was noticed for the width of the disk than for the height.
The height of the Mach disk was ~2.06D, ~3.62D and
~5.49D for NPR equal to 10, 30 and 70, respectively. The
width of the Mach disk for NPR=10 and 30 was ~0.89D
and ~1.97D, respectively.




e By increasing the NPR from 10 to 70, the angle of the
reflected shock at the triple point remained constant at
about 28°.

e By increasing the NPR from 10 to 30, the length of the
subsonic core just after the Mach disk increased from ~4
mm to ~5.8 mm, i.e. by ~45%. At NPR=70 the subsonic
core did not turn sonic and continued decaying in a
subsonic manner after the Mach disk.

e Applying higher NPR did not necessarily increase the
penetration of the jet. Therefore, there should be an
optimum NPR that can provide the desirable penetration
under a certain design brief; a value of 100 may be the
optimum NPR for the conditions of the present study.
However, further work is required for a solid conclusion.

e Studying the transient jets with different values of NPR
revealed that at the beginning of injection a subsonic jet
formed at the nozzle exit. Then the flow accelerated
inside the nozzle and at the nozzle exit it reached Ma=1.
When the Mach disk started forming, the location of
Ma=1 moved upstream of the nozzle exit and at semi-
steady conditions the Mach number at the nozzle exit for
all values of NPR was ~1.1.

e At the semi-steady condition it was observed that the
maximum Mach number inside the nozzle was ~1.3. This
occurred at ~0.2D upstream of the nozzle exit. After this
point Ma decreased to ~0.8 at ~0.15D upstream of the
nozzle exit and again increased to ~1.1 at the nozzle exit.

e The jet’s development from subsonic condition to under-
expanded steady condition did not produce noticeable
entropy change inside the nozzle since the procedure
occurred gradually. However, the formation of the Mach
disk, even from its early stages, produced a large increase
in entropy in the vicinity of the shock since the
thermodynamic conditions changed suddenly at the Mach
disk location.

e [t was noticed that not all the hydrogen passed through the
Mach disk and that part of the jet bypassed the disk. For
NPR=10, hydrogen/air mixing started at the boundaries of
the slip region before the Mach disk. This was due to high
levels of turbulence at the nozzle exit. A wider grid
refinement area was required to study this specific mixing
region for NPR values of 30 and 70.

e For all values of NPR the main hydrogen/air mixing was
observed to start after the Mach disk location and
particularly closer to the jet boundary where intense
turbulence was noticed to play a dominant role in the
mixing process.
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