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Abstract 
 

Nck and WASP/N-WASP play essential roles in the signalling networks that control 

Arp2/3 dependent actin polymerisation in a variety of contexts. These include functions 

downstream of the PDGF, Met and T cell receptors, in endocytosis and in the formation 

of invadopodia and podosomes. Vaccinia virus exploits a similar signalling network to 

enhance its cell-to-cell spread. During viral egress newly assembled virus particles 

fuse with the plasma membrane and activate Src and Abl family kinases. This leads to 

phosphorylation of a vaccinia protein, A36, and recruitment of a complex of Nck, Grb2, 

WIP and N-WASP, which activates the Arp2/3 complex to induce the polymerisation of 

actin tails. The aim of this thesis was to elucidate the exact role of WIP in Nck and N-

WASP signalling and furthermore, to understand the connectivity and interplay 

between the proteins in this important and conserved signalling network. 

  

I found that WIP, or the related protein WIRE, is essential for the induction of actin tails 

during vaccinia virus infection. I determined that interactions of WIP with the second 

SH3 domain of Nck and the WH1 domain of N-WASP are crucial for Arp2/3 dependent 

actin polymerisation. Moreover, in the presence of WIP, the interaction of Nck and N-

WASP is dispensable for the actin-based motility of vaccinia virus. Furthermore, in the 

absence of Grb2, the second SH3 domain of Nck is critical for actin tails formation. My 

data demonstrates that WIP forms an essential link between Nck and N-WASP that is 

required to promote Arp2/3 dependent actin polymerisation.  
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Chapter 1. Introduction 

1.1 The importance of actin polymerisation 

Actin is one of the most abundant proteins in eukaryotic cells and is highly 

conserved throughout evolution (Erickson, 2007; Firat-Karalar and Welch, 2011). A 

key characteristic of actin is its ability to polymerise into filaments (Dominguez and 

Holmes, 2011). This is a dynamic process that occurs in all eukaryotic cells and it is 

crucial for a wide range of functions that are fundamental to the functioning of the 

cell and thus the whole organism. For example, actin polymerisation is involved in 

synapse formation in the brain; in the immune system and in many stages of 

development (Hotulainen and Hoogenraad, 2010; Reicher and Barda-Saad, 2010; 

Suzuki et al., 2012). At a subcellular level, the polymerisation of actin at the plasma 

membrane drives cell migration, while it also plays a major role in endocytosis and 

membrane trafficking (Ridley, 2011; Anitei and Hoflack, 2012). Furthermore, many 

cellular organelles are transported in a myosin-dependent manner along actin 

filaments, and the formation of a contractile ring of actin filaments is required for 

cytokinesis (Hammer and Sellers, 2012; Pollard and Cooper, 2009). The wide 

variety of cellular roles that involve actin polymerisation means that tight spatial and 

temporal control of this process is required. Moreover, deregulation of actin 

polymerisation results in pathogenesis in many forms, notably in aberrant cell 

migration and invasion in driving tumour cell metastasis (Nurnberg et al., 2011). A 

combination of in vitro biochemical studies, cellular studies as well as findings in 

model organisms have led to a good understanding of the principles underlying 

actin polymerisation, as well as many of the key molecules involved. However, 

much still remains to be understood and it is only by elucidating the detailed 

molecular basis of the various signalling networks that control actin polymerisation, 

as well as the interplay between these networks that a complete understanding of 

actin polymerisation can be achieved. 
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1.2 Actin Cytoskeleton 

1.2.1 Actin 

Actin is a 42kDa protein that has 6 isoforms in mammals – 3 α-isoforms, 1 β-actin 

isoform and 2 γ-isoforms (Perrin and Ervasti, 2010). Expression of each α-isoform 

is restricted to skeletal, cardiac or smooth muscle, while one of the γ-isoforms is 

also specific to smooth muscle. The other γ-isoform and β-actin are ubiquitously 

expressed. The sequences of these six different isoforms are very similar, with 

none of them having less then 93% identity to each other. In addition, the majority 

of the differences lie in the N-termini of the proteins. Studies using knockout mice 

have revealed that the different actin isoforms have both distinct and overlapping 

functions (Tondeleir et al., 2009). Knockout of β-actin is embryonically lethal, while 

loss of the cardiac isoform of α-actin results either in embryonic lethality or perinatal 

death (Kumar et al., 1997; Shawlot et al., 1998). Loss of the other isoforms results 

in viable animals that exhibit muscle weakness, reduced stature, deafness or heart 

defects depending on the specific actin isoform (Perrin and Ervasti, 2010). 

 

1.2.2 The organisation of the actin cytoskeleton 

Actin filaments are comprised of two chains of actin monomers that wrap around 

each other to form a helix (figure 1.1 A) (Hanson and Lowy, 1964). These filaments 

can be organised in a variety of different ways to form the many actin-based 

structures in the cell. These structures include lamellipodia, lamella, ruffles, 

phagocytic and endocytic cups, podosomes and invadopodia, filopodia and 

microvilli as well as stress fibres (Chhabra and Higgs, 2007; Pellegrin and Mellor, 

2007). Lammellipodia are thin sheet like protrusions that are found at the leading 

edge of migrating cells (Abercrombie et al., 1970a; Svitkina and Borisy, 1999). 

They are comprised of a dense meshwork of crosslinked actin filaments and are 

believed to provide the force that drives motile cells forward (Small et al., 2002). 

The lamella is similar but begins directly behind the lammellipodium and extends 

back into the cell body. It is also sheet-like but is thicker and less dynamic than the 

lammelipodium (Chhabra and Higgs, 2007). Ruffles are reminiscent of 

lammellipodia, but do not adhere to the substrate. There are at least two distinct 
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populations of ruffles, peripheral and dorsal (Abercrombie et al., 1970b). Peripheral 

ruffles assemble at the leading edge and move backwards, while dorsal ruffles form 

as circular structures on the dorsal surface of the cell. Dorsal ruffles are associated 

with receptor internalisation and possibly macropinocytosis, while peripheral ruffles 

are only involved in cell migration (Abella et al., 2010a). In phagocytosis, actin 

polymerisation generates the force required for the cell membrane to envelope 

extracellular particles and internalise them (Jaumouille and Grinstein, 2011). In 

addition, during endocytosis, actin polymerisation is required to shape and pinch off 

vesicles from the plasma membrane (Mooren et al., 2012). Podosomes and 

invadopodia are specialised adhesive structures that are important for cell 

migration and invasion (Garcia et al., 2012). Podosomes appear as F-actin rich 

puncta and seem to function to degrade the extra-cellular matrix to allow cells to 

migrate through tissues (Cornfine et al., 2011). Invadopodia are similar to 

podosomes, but are distinct, degradative structures that are only found in cancer 

cells (Garcia et al., 2012; Oser et al., 2011). Filopodia are thin protrusive spikes 

that contain parallel bundles of actin filaments (Faix and Rottner, 2006). They 

generally protrude from the lammellipodium and function as directional sensors 

during migration (Arjonen et al., 2011; Zheng et al., 1996). Filopodia can also form 

within the lamellipodium, but they are then referred to as microspikes (Chhabra and 

Higgs, 2007). Stress fibres are bundles of actin filaments that interact with myosin 

filaments to form contractile arrays (Pellegrin and Mellor, 2007). They are involved 

in contracting the rear of the cell and promoting detachment from the substrate 

during migration (Hotulainen and Lappalainen, 2006). 
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Figure 1.1. The actin filament 

(A) The helical structure of an actin filament derived from cryo-electron 
microscopy. (Taken from Dominguez and Holmes, Actin Structure and 
Function,  Annual review of biophysics, 40, 169-86, (2011). Reproduced with 
permission of Annual Reviews) (B) Electron micrograph of a negatively stained 
actin filament decorated with the actin binding domain of myosin. Based on this 
labelling, the terms barbed and pointed end arose. Undecorated filament is 
newly polymerised actin, highlighting that barbed end growth is more rapid than 
pointed end growth. Reprinted from Cell, Volume 112, Issue 4, Pollard and 
Borisy, Cellular Motility Driven by Assembly and Disassembly of Actin 
Filaments, 453-465, Copyright (2003), with permission from Elsevier. 

1.2.3 Actin Polymerisation in vitro 

In vitro, above the critical concentration, actin monomers (G-actin) can 

spontaneously self-assemble or polymerise into polarised filaments with a barbed 

and a pointed end. These names derive from the appearance of actin filaments 

decorated with the HMM (heavy meromyosin) fragment of myosin in electron 

micrographs (Figure 1.1 B) (Huxley, 1963; Woodrum et al., 1975). Different assays 

are available to measure the rate of actin polymerisation in vitro, including 

fluorescence microsopy and ultracentifugation assays (Amann and Pollard, 2001; 

A B
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Breitsprecher et al., 2009; Cooper and Pollard, 1982; Fujiwara et al., 2007). 

However, one of the most sensitive and commonly used techniques is the pyrene-

actin assembly assay. In this assay, the polycyclic aromatic hydrocarbon, pyrene is 

conjugated to actin monomers and the fluorescence is measured over time. The 

fluorescence intensity pyrene-actin increases 10-20 fold when it is incorporated into 

filaments (Cooper et al., 1983). This assay has been used to establish the 

characteristics of actin polymerisation. The rate-limiting step in this process is the 

establishment of nuclei (nucleation phase), which consist of three actin monomers 

and act as a stable “seed” from which the rest of the filament can rapidly 

polymerise (Nishida and Sakai, 1983). Biochemical analysis of the properties of 

crosslinked actin trimers revealed that they are more effective at nucleating actin 

polymerisation than either dimers or higher-order oligomers (Gilbert and Frieden, 

1983). After nucleation, a period of rapid actin polymerisation occurs, which is 

referred to as the elongation phase. During this phase, actin monomers can be 

added to either end of the growing filament, although there is a strong bias for 

addition of monomers to the barbed ends (or plus ends) of filaments (Figure 1.1 B) 

(Woodrum et al., 1975). The rate of filament growth is dependent on the 

concentration of free actin monomers in solution (Pollard, 1983). Eventually, as 

filaments grow, the concentration of G-actin monomers decreases, and a steady-

state is reached where there is no net change in the filament length. The 

concentration of free actin monomers at this steady-state is known as the critical 

concentration (Cc) (Figure 1.2 A). At concentrations greater than the Cc, a solution 

of G-actin will polymerise while at concentrations below this value, G-actin cannot 

polymerise and F-actin will depolymerise. The Cc at the barbed end is about seven 

times lower than at the pointed end of the filament, thus actin monomers are added 

more rapidly to the barbed end of the filament (Pollard and Borisy, 2003; Wegner 

and Isenberg, 1983).  

 

Structurally, the actin polypeptide chain can be divided into two domains referred to 

as the inner and outer domains with respect to their position in actin filaments. 

These domains can each be further sub-divided in two (Figure 1.2 B) (Kabsch et al., 

1990). A hinge region links the two major domains but otherwise few contacts are 

made between them. This results in the formation of two clefts. The upper cleft is 

the site of nucleotide and magnesium binding, while the lower cleft is site of 
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interaction with the majority of known actin binding proteins including profilin and 

the WH2 domain of N-WASP (Chereau et al., 2005; Lee et al., 2007; Mouilleron et 

al., 2008; Schutt et al., 1993). Actin monomers are bound to ATP or ADP as well as 

to the divalent cation magnesium. The ability of F-actin to hydrolyse ATP is much 

greater than that of G-actin, and incorporation of G-actin into filaments results in 

the rapid hydrolysis of ATP to ADP-Pi, followed by the slow release of Pi (half-lives 

of 2s and 350s respectively) (Figure 1.2 C) (Blanchoin and Pollard, 2002; Carlier 

and Pantaloni, 1986). The hydrolysis of ATP in actin filaments is irreversible 

(Carlier et al., 1988). This leads to a long-lived “cap” of ADP-Pi intermediates at the 

barbed end of newly assembled filaments. The properties of ATP-actin and ADP-

Pi-actin are similar, however, upon release of the phosphate from the monomer, a 

conformational change occurs that results in more flexible filaments and facilitates 

the dissociation of ADP-actin from the filament (Janmey et al., 1990; Orlova and 

Egelman, 1992). The dissociation of ADP-actin from the barbed end of filaments is 

much more rapid than that of ATP-actin, however, both species dissociate slowly 

from the pointed ends of filaments (Figure 1.2 D) (Pollard, 1986). This leads to the 

net incorporation of ATP-bound actin monomers at the barbed ends of filaments. 

These then undergo ATP-hydolysis and the resulting ADP-actin dissociates from 

the pointed end of the filament (Fujiwara et al., 2002; Wegner, 1976). This process 

is referred to as actin filament treadmilling. ATP-hydrolysis drives this treadmilling 

process, but is not required for nor directly coupled to the polymerisation of actin 

monomers (De La Cruz et al., 2000; Pardee and Spudich, 1982; Pollard and 

Weeds, 1984). Instead, hydrolysis can be thought of as an internal timer that 

denotes the age of the actin filament and results in the activation of processes that 

lead to actin disassembly in cells. 
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Figure 1.2. Structure and polymerisation of actin 

(A) The concentration of free G-actin (the critical concentration Cc) is crucial for 
controlling the growth of actin filament. Below the Cc, actin will not polymerise. 
(B) Crystal structure of G-actin bound to ATP. The numbers indicate the 
subdomains of the monomer. The lower cleft, where profilin and WH2 domain 
containing proteins interact with the monomer is indicated. (This research was 
originally published in The Journal of Biological Chemistry. Graceffa and 
Dominguez. Crystal Structure of monomeric actin in the ATP state: Structural 
basis of nucleiotide dependent actin dynamics. JBC. 2003; 278:172-80. © the 
American Society for Biochemistry and Molecular Biology.)(C) Schematic of the 
treadmilling and ATP hydrolysis cycle that occurs during actin polymerisation 
(adapted from (Pantaloni et al., 2001)) (D) Cartoon of an actin filament. The 
rates of association and dissociation of ATP and ADP actin monomers from 
each end of the filament are shown. Reprinted from Cell, Volume 112, Issue 4, 
Pollard and Borisy, Cellular Motility Driven by Assembly and Disassembly of 
Actin Filaments, 453-465, Copyright (2003), with permission from Elsevier. 
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1.2.4 Actin Polymerisation in vivo 

Actin filament treadmilling has also been shown to occur in vivo (Symons and 

Mitchison, 1991; Wang, 1985; Watanabe and Mitchison, 2002). Electron 

microscopy experiments demonstrated that the barbed ends of actin filaments are 

oriented toward the plasma membrane in the lamellipodia of migrating cells as well 

in the stationary coelomocytes of sea urchins (Edds, 1993; Small et al., 1978). 

Photobleaching (FRAP) of actin filaments in the lamellipodia of fibroma cells 

revealed that new actin monomers were incorporated near the edge of the cell and 

that the bleached region exhibited retrograde flow towards the cell body (Wang, 

1985). Further studies in fibroblasts provided additional evidence for the 

incorporation of actin monomers at the leading edge of the cell (Symons and 

Mitchison, 1991). Photoactivation of actin filaments demonstrated that they remain 

fixed with respect to the substrate in migrating fish keratocytes, regardless of the 

rate of cell migration (Theriot and Mitchison, 1991). The same study also showed 

that the actin in the bleached region moves towards the cell body. This data 

supported a treadmilling model of actin polymerisation, however, it was unclear if 

actin filaments initiated at the plasma membrane extend through the length of the 

lamellipodia and if actin monomers treadmill through this entire length. 

 

Fluorescence speckle microscopy has given further insight into this issue 

(Waterman-Storer et al., 1998). In this technique, a very low level of labelled 

protein (relative to the endogenous pool) is introduced into cells. The random 

incorporation of this label into cellular structures allows for low background in 

fluorescent imaging. Using this approach, actin was shown to move rearward in 

both the lamellipodia and lamella of cells (Waterman-Storer et al., 1998). In 

addition, single molecule studies using this technique demonstrated that actin 

treadmilling occurs in filaments and that the majority of new filaments are initiated 

in the region immediately adjacent to the plasma membrane (Watanabe and 

Mitchison, 2002). However, the same study also demonstrated that a basal level of 

actin polymerisation occurs throughout the lamellipodium (Watanabe and Mitchison, 

2002). More recent studies using advanced microscopy techniques including FRAP 

(fluorescence recovery after photobleaching), photoactivation and FLIP 

(fluorescence loss in photobleaching), further demonstrated that actin is primarily 
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incorporated into filaments at the leading edge of cells and that treadmilling occurs 

(Lai et al., 2008; Millius et al., 2012).  

 

1.3 Factors Regulating Actin Polymerisation 

Despite evidence demonstrating that actin treadmilling occurs in cells, the slow rate 

of actin treadmilling observed in vitro could not explain the rapid actin 

rearrangements that occur in cells or the observed rates of cell migration (Pollard 

and Borisy, 2003). For example, the rate of treadmilling in vitro has been measured 

at about 0.008 µm/minute compared with around 0.80 µm/minute in cells (Bonder 

et al., 1983; Wang, 1985). This discrepancy indicates that other regulatory proteins 

must facilitate cellular actin polymerisation. The minimum requirements for actin-

based motility have been demonstrated by in vitro reconstitution of the motility of 

the bacterium Listeria monocytogenes (Cameron et al., 1999; Loisel et al., 1999; 

Welch et al., 1997b; Welch et al., 1998). The key proteins that are required to 

promote actin-based motility in this case are: an actin nucleator, a nucleation-

promoting factor, profilin, capping protein and ADF/cofilin (Loisel et al., 1999). 

These will be discussed in more detail in the following sections. 

1.3.1 Actin Nucleators 

In vitro, actin polymerisation occurs rapidly only after the establishment of nuclei 

comprising of trimers of actin monomers (Gilbert and Frieden, 1983). The formation 

of the trimer is very inefficient, thus factors have evolved to overcome this 

kinetically unfavourable step. These are known as actin nucleators. The major 

classes of actin nucleators are: the Arp2/3 complex, the formins and the WH2 

domain-containing nucleators (Campellone and Welch, 2010). The Arp2/3 complex 

was the first actin nucleator discovered, and as it is the most relevant to this thesis, 

will be discussed in detail in chapter 1.4.  

1.3.1.1 The Formins 

The formins are a family of proteins that have both actin nucleation and elongation 

activity (Paul and Pollard, 2008). Formins induce unbranched actin filaments and 

the defining feature of these proteins is the presence of conserved formin 
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homology domains (FH1 and FH2) (Li and Higgs, 2003; Pruyne et al., 2002; 

Romero et al., 2004). The FH2 domain is sufficient to induce the polymerisation of 

purified actin, however the mechanism of actin nucleation and elongation in vivo 

has not been fully elucidated (Figure 1.3 A) (Sagot et al., 2002). FH2 domains 

appear to bind to the barbed ends of filaments and compete with other barbed end 

capping proteins, thereby preventing them from inhibiting elongation of the filament 

(Pruyne et al., 2002). At the same time, the FH2 domains facilitate the addition of 

actin monomers to the filament. Crystal structures of FH2 domains indicate that 

they are homodimers that exist as a ring that can bind two actin monomers 

simultaneously and mimic the short-pitch actin dimers that exist in filaments 

(Otomo et al., 2005). The FH2-ring binds to the barbed end of filaments in either a 

closed or an open conformation (Otomo et al., 2005). In the closed conformation, 

the FH2 dimer caps the end of the filament, while in the open conformation; actin 

monomers can be added to the filament although the mechanism of this is unclear. 

Meanwhile, the FH1 domain, which is adjacent to the FH2 domain, binds to profilin 

(Paul and Pollard, 2008). Thus the FH1 domain supplies the monomers directly to 

the FH2 domain for incorporation into the filament, resulting in more rapid 

elongation (Figure 1.3 B) (Courtemanche and Pollard, 2012).  

 

The formins are divided into several classes based on the sequences of the FH2 

domain. These are the DRFs (Diaphanous related formins), which include mDia1-3, 

the FRLs (formin related in leukocytes) and DAAM (dishevelled-associated 

activator of morphogenesis) proteins, the FMN (formin) and FHOD (FH1 and FH2 

domain containing) proteins as well as Delphilin, INF1 and INF2 (inverted formins) 

(Campellone and Welch, 2010). Outside of the conserved FH1 and FH2 domains, 

the formins are large proteins containing a variety of different domains. This 

diversity allows formins to interact with a wide range of binding partners that 

regulate their functions in many cellular processes, including cell division, migration, 

morphogenesis and adhesion (Chesarone et al., 2010). Finally, in addition to their 

role as actin nucleators, some of the formins, including mDia1 and 2) have also 

been shown to directly regulate the function of microtubules (Bartolini and 

Gundersen, 2010). 
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1.3.1.2 WH2-containing nucleators 

The WH2 domain containing nucleators comprise the Spire and Leiomoden 

families of proteins, as well as Cordon-Bleu (COBL) (Figure 1.3 C) (Ahuja et al., 

2007; Conley et al., 2001; Quinlan et al., 2005). These actin nucleators have been 

identified in the last seven years and are less well characterised than the formins or 

the Arp2/3 complex.  

 

Spire was first identified as an essential factor in the development of drosophila 

oocytes and embryos (Quinlan et al., 2005). Spire contains four tandem WH2 

(WASP Homology 2) domains that bind actin and are required for its actin 

nucleating activity in vitro (Quinlan et al., 2005). Structural studies demonstrated 

that Spire creates an actin nucleus by tethering three monomers together in either 

a side-to-side conformation or a straight longitudinal arrangement (Ducka et al., 

2010). These structures are thought to represent different steps of the normal actin 

filament nucleation process. The nucleating ability of Spire is thought to be a result 

of its ability to form an actin nucleus that resembles one strand of the long pitch 

actin helix in a filament. In addition, Spire can cap the pointed ends of actin 

filaments and inhibit disassembly (Quinlan et al., 2005). Spire interacts with 

Cappuccino (a drosophila formin) and this interaction promotes actin nucleation by 

spire, while inhibiting the ability of Cappuccino to nucleate actin polymerisation 

(Quinlan et al., 2007). This finding hints at the complex layers of regulation that 

influence actin polymerisation in vivo. Spire has also recently been shown to play 

roles in neuronal morphogenesis and heart development in drosophila (Gates et al., 

2011; Xu et al., 2012a). Furthermore, Spire-type actin nucleators have also been 

found to play a critical role in the asymmetric division of oocytes in mice (Pfender et 

al., 2011).  

 

The Leiomoden family of nucleators are related to tropomodulin and are specifically 

expressed in muscle cells (Conley et al., 2001). The members of the leiomoden 

family have an actin-binding domain in the flexible N-terminus, a central leucine 

rich repeat (LRR) region and a C-terminal WH2 domain. As these three domains 

can all interact with actin monomers, they are thought to function in the assembly of 
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an actin trimer that nucleates actin polymerisation, which then proceeds from the 

barbed end (Chereau et al., 2008). 

 

Cordon-bleu or COBL is a vertebrate specific actin nucleator that is highly 

expressed in the brain (Ahuja et al., 2007). COBL contains three WH2 domains that 

function together to nucleate actin polymerisation by binding actin monomers in a 

trimeric arrangement that allows for elongation from the barbed end of the filament 

(Ahuja et al., 2007; Husson et al., 2011; Qualmann and Kessels, 2009). The actin 

nucleation ability of low concentrations of COBL is as high as that of the Arp2/3 

complex, although at high concentrations COBL sequesters actin monomers and 

inhbits actin polymerisation. Physiologically, COBL has been shown to play a role 

in regulating the morphology of neuronal cells as overexpression of COBL results 

in an increased number of dendrites as well as increasing axonal branching (Ahuja 

et al., 2007; Schwintzer et al., 2011). 

 

Recently, JMY has also been shown to have actin nucleating ability (Zuchero et al., 

2009). JMY nucleates actin using a combination of three tandem WH2 domains as 

well as a linker region, in a manner reminiscent to spire (Firat-Karalar et al., 2011). 

Interestingly, JMY is also a nucleating promoting factor that can increase the 

activity of the Arp2/3 complex (Zuchero et al., 2009). 

 

APC (adenomatous polyposis coli), an established regulator of microtubule 

dynamics, has also been shown to contain actin-nucleating activity (Munemitsu et 

al., 1994). This requires the basic C-terminal region of the protein, which interacts 

directly with G-actin, despite lacking any similarity to WH2 domains (Okada et al., 

2010). APC has also been shown to synergise with the formin, mDia1 to promote 

actin polymerisation (Breitsprecher et al., 2012).  
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Figure 1.3. Nucleation of actin by formins 

(A) Structure of the dimeric FH2 domain from S.cerevisiae Bni1. (B) An FH2 
dimer binds to the barbed end of an actin filament, as the FH1 domains recruit 
profilin-actin. The profilin-actin is added to the barbed end, either before or after 
the FH2 domain steps towards the barbed end. The second FH2 then repeats 
this process. In the closed conformation, the formin prevents actin filament 
capping by other factors. (C) Schematic of actin nucleation by the WH2 domain 
containing nucleators Spire, Cordon-Bleu and Leiomoden. Spire has been 
found to cooperate with formins in actin polymerisation. Reprinted by 
permission from Macmillan Publishers Ltd:  Nature Reviews Molecular Cell 
Biology Campellone and Welch, A nucleator arms race: cellular control of actin 
assembly, copyright (2010) 
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1.3.2 Profilin 

The profilins are a family of small proteins (~16kDa) that are conserved in 

eukaryotes and form a 1:1 complex with monomeric G-actin (Carlsson et al., 1976). 

This complex inhibits spontaneous actin polymerisation in vitro (Carlsson et al., 

1977). The profilin family consists of four isoforms, of which only profilin I is 

ubiquitously expressed (Obermann et al., 2005; Witke, 2004). The importance of 

profilin I is demonstrated by the fact that homozygous knockout mice die at the 

embryonic two cell stage due to cytokinesis failure (Witke et al., 2001). A major 

function of profilin is to facilitate the nucleotide exchange of actin monomers 

(Figure 1.4) (Blanchoin and Pollard, 1998; Lu and Pollard, 2001; Porta and 

Borgstahl, 2012). This occurs because profilin both decreases the affinity of actin 

for ADP and transiently stabilises actin in an open conformation that permits the 

exchange of nucleotides with the surrounding environment (Selden et al., 1999l; 

Porta and Borgstahl, 2012). In addition, profilin prevents ADP-actin binding to either 

the barbed or the pointed ends of filaments, thus sequestering ADP-actin. The 

combined action of profilin leads to the accumulation of a large pool of ATP-actin 

monomers that are ready to be incorporated into actin filaments. Furthermore, 

profilin-bound ATP-actin complexes can only be added to the barbed ends of 

filaments (Pollard and Cooper, 1984; Tilney et al., 1983). In this way, profilin directs 

the addition of actin monomers in a manner that is consistent with the observed 

treadmilling of actin filaments in cells (Lai et al., 2008; Waterman-Storer et al., 

1998).  

 

1.3.3 ADF/Cofilin 

The ADF/cofilin family of proteins is conserved from yeast to humans and in 

vertebrates consists of three members – ADF (actin depolymerising factor), cofilin 

1(non-muscle) and cofilin 2 (muscle-specific) (Bernstein and Bamburg, 2010). 

ADF/cofilin can interact with both filamentous (F-) actin and monomeric G-actin 

(Blanchoin and Pollard, 1998). The primary function of ADF/cofilin is to promote the 

disassembly of actin filaments both by filament severing and by increasing the 

dissociation of actin monomers from the pointed ends of filaments (Figure 1.4) 

(Andrianantoandro and Pollard, 2006; Carlier et al., 1997). ADF/cofilin preferentially 
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interacts with ADP-bound F-actin and upon binding causes a localised twist in the 

structure of the filament at the site of interaction, which weakens the longitudinal 

contacts between the monomers and promotes severing (Galkin et al., 2011; 

McGough et al., 1997; Okreglak and Drubin, 2007). The hydrolysis of ATP and 

slow released of inorganic phosphate (Pi) from actin filaments can be thought of as 

a molecular clock denoting the age of the filament, thus ADF/cofilin binds 

preferentially to older filaments. Furthermore, although it binds ADP-Pi filaments 

with a lower affinity, ADF/cofilin also promotes the release of Pi from these 

filaments resulting in increased filament aging and the accumulation of ADP-bound 

actin molecules that are able to disassemble from the filament (Blanchoin and 

Pollard, 1999). In this way ADF/cofilin promotes actin polymerisation both by 

increasing the number of uncapped barbed ends that are available for elongation 

and also the concentration of free actin monomers in the cell. Interestingly, at high 

concentrations ADF/cofilin has also been shown to have some actin nucleating 

capacity, which may also contribute to its ability to promote actin polymerisation 

(Andrianantoandro and Pollard, 2006). Filament severing occurs at the boundaries 

between regions of the filament that have bound ADF/cofilin and those that are 

undecorated, thus ADF/cofilin also regulates the length of the filament to be 

severed (Suarez et al., 2011). 

 

In addition to its activity in filament severing, ADF/cofilin also binds to G-actin. 

Preferential binding of ADP-G-actin is observed and this interaction prevents the 

free exchange of ADP for ATP (Blanchoin and Pollard, 1998; Kardos et al., 2009). 

Profilin has been shown to synergise with ADF/cofilin in vivo to increase actin 

dynamics (Didry et al., 1998). In yeast, another protein, Srv/CAP, links the activities 

of profilin and cofilin (Balcer et al., 2003). Srv/CAP promotes the dissociation of 

actin monomers from cofilin, while concurrently promoting their association with 

profilin, thus facilitating the exchange of ADP for ATP (Balcer et al., 2003). The 

presence of a conserved Srv2/CAP protein in humans suggests that this may be a 

common mechanism of action (Moriyama and Yahara, 2002). The activity of 

ADF/cofilin is necessary to promote actin polymerisation during many cellular 

processes including endocytosis and cell migration (Okreglak and Drubin, 2007; 

Pollard and Borisy, 2003). ADF/cofilin is localised throughout the lamellipodia of 

migrating cells, where it exhibits dynamics consistent with a role in promoting actin 
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filament disassembly (Lai et al., 2008). Overexpression of ADF/cofilin also 

increases the rate of motility of dictyostelium (Aizawa et al., 1996). In addition, 

ADF/cofilin is important for the actin-based motility of Listeria and Rickettsia (Loisel 

et al., 1999; Serio et al., 2010). 

 

1.3.4 Capping Protein 

Capping proteins (CP) are another family of proteins that promote actin 

polymerisation. They are conserved in eukaryotes and exist as functional α/β 

heterodimers (Cooper and Sept, 2008). The α-subunits range in size from 32-

36kDa, while the β-subunits are slightly smaller at 28-32kDa. CP binds to the 

barbed ends of actin filaments and prevents both the addition and loss of actin 

monomers (Isenberg et al., 1980; Wear et al., 2003). Capping of actin filaments 

controls the rate of filament elongation as well as limiting the length of the actin 

filaments (Figure 1.4). This is beneficial in situations such as cell migration, where 

actin filaments are required to generate force (Pollard and Borisy, 2003). Short 

filaments are stiffer than long filaments and therefore push the membrane forward 

more efficiently (Mogilner and Oster, 1996). 

 

Capping of the barbed ends of filaments results in depolymerisation of those 

filaments from their pointed end (Pantaloni et al., 2000). This results in more free 

ADP-actin monomers, which can be converted to ATP-actin by profilin, and are 

then available for incorporation into new filaments (section 1.3.3). As the rate of 

polymerisation is proportional to the concentration of ATP-actin monomers, this 

leads to an increase in the rate of polymerisation of uncapped filaments. Carlier 

and Pantaloni coined the phrase “ the funnelled treadmilling model” to describe this 

mechanism, by which capping protein regulates the delivery of actin monomers to 

uncapped filaments so that rapid elongation can occur, for example, at the leading 

edge (Carlier and Pantaloni, 1997; Pantaloni et al., 2001). A more recent study has 

challenged this model and instead proposes that capping protein cooperates with 

the Arp2/3 complex to increase the nucleation of actin filaments (Akin and Mullins, 

2008). 
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The localisation of capping protein is limited to the leading edge of migrating cells 

(Lai et al., 2008; Mejillano et al., 2004). This is consistent with its role in promoting 

actin polymerisation by interaction with the barbed ends of filaments. In further 

support of this role, the level of expression of capping protein in dictyostelium 

controls the rate of motility (Hug et al., 1995). The actin-based motility of Listeria 

and Shigella requires capping protein and the rate of this motility increases with 

increasing concentrations of capping protein (Loisel et al., 1999). At extremely high 

levels of capping protein, no motility is observed, probably because all of the 

barbed ends are capped and actin filament disassembly is favoured. 

 
Figure 1.4. The regulation of actin polymerisation in vivo 

Schematic depicting a proposed model for the regulation of actin polymerisation 
and actin filament treadmilling at the plasma membrane of a cell. The roles of 
profilin, ADF-cofilin and capping protein are indicated. Reprinted from Cell, 
Volume 112, Issue 4, Pollard and Borisy, Cellular Motility Driven by Assembly 
and Disassembly of Actin Filaments, 453-465, Copyright (2003), with 
permission from Elsevier. 
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1.4 The Arp2/3 Complex 

1.4.1 Structure and branching ability of the Arp2/3 complex 

The Arp2/3 complex was the first actin nucleator identified and is the best studied 

of these factors (Goley and Welch, 2006; Machesky et al., 1994). This large 

(220kDa), seven subunit complex was initially purified from Acanthamoeba extracts 

using a profilin affinity column (Machesky et al., 1994). The Arp2/3 complex has 

subsequently been identified in other organisms including yeast, xenopus and 

humans (Ma et al., 1998; Welch et al., 1997a; Winter et al., 1997). Arp2 (actin 

related protein 2) and Arp3 have 47% and 40% identity to actin respectively and 

are members of protein families that are highly conserved in eukaryotes (Kelleher 

et al., 1995). The other five members of the complex are designated ARPC1, 

ARPC2, ARPC3, ARPC4 and ARPC5 (Pollard, 2007). The similarities of Arp2 and 

Arp3 to actin led to the hypothesis that together these proteins mimic the formation 

of an actin dimer. This overcomes the kinetic barrier that prevents the spontaneous 

polymerisation of actin and provides a template from which a new filament can 

elongate (Goley and Welch, 2006; Higgs and Pollard, 1999; Machesky et al., 1994). 

Subsequent studies confirmed the in vitro nucleation ability of the Arp2/3 complex 

and also revealed that it is involved in the formation of arrays of branched actin 

filaments (Bailly et al., 1999; Blanchoin et al., 2000; Mullins et al., 1998; Pollard and 

Borisy, 2003; Svitkina and Borisy, 1999).  

 

The Arp2/3 complex is unique in its ability to induce the formation of branched actin 

filaments. Both TIRF fluorescence and electron microscopy has been used to 

visualise branched, Arp2/3 dependent actin polymerisation in vitro (Amann and 

Pollard, 2001; Mullins et al., 1998). Furthermore, ultrastructural studies of 

lamellipodia using electron microscopy revealed dense arrays of branched 

filaments, in which the Arp2/3 complex could be visualised at branch points 

(Svitkina and Borisy, 1999; Svitkina et al., 1997). A subsequent study 

demonstrated that the branching activity of the Arp2/3 complex is required to 

provide the protrusive force required in the lamellipodia of migrating cells (Bailly et 

al., 2001). In addition, depletion of the Arp2/3 complex in fibroblasts revealed that it 

is essential for the establishment of lammellipodia (Wu et al., 2012). While these 



Chapter 1 Introduction 

 33 

studies highlight the physiological importance of branched actin filaments, the 

mechanism of branching remains elusive. In recent years, 3D reconstruction after 

electron tomography has given fresh insight the branched arrays of actin filaments. 

An initial study controversially suggested that branches were not present in the 

lammellipodia of cells (Urban et al., 2010). However, further analysis by the same 

group confirmed that branched filaments are present, albeit at lower frequency than 

previously described (Vinzenz et al., 2012). 

 

Two models of Arp2/3 complex dependent actin nucleation have been proposed. 

These are the barbed-end branching model and the dendritic model of actin 

nucleation (Mullins et al., 1998; Pantaloni et al., 2000). The barbed end branching 

model suggested that the activated Arp2/3 complex interacts with the barbed ends 

of filaments, thereby incorporating into the mother filament and causing the 

elongation of two filaments from this point. This theory was based on biochemical 

observations showing the activity of the Arp2/3 complex depends on the number of 

filaments rather than on their length and that the capping of barbed ends inhibits 

branching (Pantaloni et al., 2000). In contrast, the dendritic model of nucleation 

suggested that the interaction of the Arp2/3 complex with the sides of pre-existing 

actin filaments and nucleated a side-branch (Mullins et al., 1998; Mullins et al., 

1997). Support for this model came from TIRF microscopy studies of Arp2/3 

dependent filament nucleation in vitro, which demonstrated that new branches 

were initiated from the sides of actin filaments (Amann and Pollard, 2001; 

Blanchoin et al., 2000). In addition, structural studies also support the dendritic 

model of nucleation and thus it is favoured over the former model (Boczkowska et 

al., 2008; Rouiller et al., 2008).  

 

The first crystal structure of the Arp2/3 complex revealed that Arp2 and Arp3 lie 

head-to-tail with each other but are too far apart to serve as the nucleus for 

polymerisation of a new actin filament (Figure 1.5 A) (Robinson et al., 2001). This 

structure is proposed to represent the inactive form of the Arp2/3 complex and 

provided an explanation for the low nucleation activity of the purified complex in 

vitro (Mullins et al., 1998; Welch et al., 1998). This model suggests that other 

cellular signals result in a conformational change that brings the Arp2 and Arp3 

subunits into proximity, thus allowing them to nucleate an actin filament (Figure 1.5 
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A). While a crystal structure of the active Arp2/3 complex has not yet been obtained, 

electron microscopy (EM) studies have given insight into the function of the 

complex (Rouiller et al., 2008; Xu et al., 2012b). Fitting of the crystal structure of 

the inactive Arp2/3 complex into EM reconstructions of an actin filament branch 

revealed density mismatches that are consistent with the complex undergoing a 

conformational change upon activation (Figure 1.5 B) (Rouiller et al., 2008). In this 

study, Arp2 and Arp3 are clearly shown to act as the first two subunits at the 

pointed end of the daughter filament, thus promoting barbed-end elongation. 

Molecular dynamics simulations of the activation of the Arp2/3 complex also 

support this theory (Dalhaimer and Pollard, 2010). 
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Figure 1.5. The Arp2/3 Complex 

(A) Ribbon diagram of the crystal structure of the inactive Arp2/3 complex. The 
proposed conformational change and the projected active structure are also 
shown. The names of all the subunits are indicated. (B) Representation of the 
best fit of the crystal structure of the Arp2/3 complex at the branch junction of 
an actin filament. Actin subunits are depicted in white or gray. D1 and D2 
indicates the first two subunits of the daughter filament. D1 and D2 are the first 
two subunits in the daughter filament. The Arp2/3 complex is labelled and 
shown in colour. The three views are related by 90° clockwise rotations. 
©Rouiller et al., 2008. Originally published in Journal of cell biology. 180:887-
95. 
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1.4.2 Activation of the Arp2/3 complex 

Purified Arp2/3 complex exhibits a low level of intrinsic actin nucleating activity 

(Mullins et al., 1998; Welch et al., 1998). Furthermore, Arp2 and Arp3 are 

positioned too far apart in the crystal structure of the complex to fulfil their proposed 

role as a pseudo-actin dimer and promote filament nucleation (Robinson et al., 

2001). Thus, it was suggested that other cellular signals are required to induce a 

conformational change in the Arp2/3 complex and stimulate its nucleation activity.  

1.4.3 Activation by Nucleation-Promoting Factors (NPFs) 

The first evidence for a protein that could activate the Arp2/3 complex came from 

studies of the actin-based motility of Listeria. The bacterial protein ActA was found 

to activate the actin nucleating ability of the Arp2/3 complex in vitro and to promote 

motility of the bacteria (Welch et al., 1997b; Welch et al., 1998). The discovery of 

this bacterial activator of the Arp2/3 complex was strong evidence that other 

cellular proteins might exist that perform analagous functions in, for example, the 

lamellipodia of migrating cells. Many proteins that perform this function have now 

been identified. These are known as nucleation-promoting factors or NPFs (Figure 

1.6 A) (Campellone and Welch, 2010; Le Clainche and Carlier, 2008; Veltman and 

Insall, 2010). Proteins of this type are divided into two classes. The class I NPFs 

are the largest group and comprise a number of proteins, all of which contain a 

WCA domain that harbours their Arp2/3 complex activation ability (Derivery and 

Gautreau, 2010). Cortactin and its related protein, HS1 (haematopoetic-specific 

protein 1) are members of the class II family of NPFs (Campellone and Welch, 

2010).  

 

The Class I NPFs are further divided into five groups: N-WASP/WASP (Neural-

/Wiskott Aldrich Syndrome Protein), WAVE/SCAR (WASP-family verprolin 

homology protein/ suppressor of cAMP receptor), WASH (WASP and SCAR 

homologue), WHAMM (WASP homologue associated with actin, membranes and 

microtubules) and JMY (Junction-mediating regulatory protein) (Bear et al., 1998; 

Campellone et al., 2008b; Derry et al., 1994; Linardopoulou et al., 2007; Miki et al., 

1996; Zuchero et al., 2009). All these proteins contain a C-terminal WCA domain 

consisting of one or more WH2 domains (also known as verprolin (V) domains), a 
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connector (C) region and an acidic (A) region (Figure 1.6 A). Together these form a 

conserved domain that activates the actin nucleating ability of the Arp2/3 complex 

(Higgs et al., 1999; Machesky and Insall, 1998; Rohatgi et al., 1999; Winter et al., 

1999). The WH2 domain binds to actin monomers and is not actually required for 

the interaction of the WCA with the Arp2/3 complex (Gaucher et al., 2012; 

Machesky and Insall, 1998; Miki and Takenawa, 1998). Instead, the WH2 domain 

is proposed to deliver actin monomers to the Arp2/3 complex to enhance the 

initiation of the new branch (Chereau et al., 2005; Pollard, 2007). The CA region 

interacts directly with multiple subunits of the Arp2/3 complex. Electron microscopy 

indicated that the WCA binds to the Arp2/3 complex in a cleft that exists between 

Arp2 and Arp3 (Rodal et al., 2005). Chemical crosslinking studies revealed that 

contacts are formed between the WCA of NPFs and Arp2, Arp3, ARPC1, ARPC4 

and ARPC5 (Weaver et al., 2002; Zalevsky et al., 2001a; Zalevsky et al., 2001b). 

Further studies using NMR confirmed that the C-termini of both the A and C 

regions are likely to interact with ARPC3 (Kreishman-Deitrick et al., 2005). In 

addition, the C region also interacts ARPC1 (Kelly et al., 2006). Differences in 

activity between NPFs may be partially explained by their ability to contact different 

subunits of the Arp2/3 complex. For example, the WCA of N-WASP contacts more 

subunits than the WCA of SCAR and also has 70-fold higher activity towards the 

Arp2/3 complex than SCAR (Zalevsky et al., 2001b). This is consistent with the 

hypothesis that the interaction of the WCA domain with the ARP2/3 complex results 

in a conformational change that leads to its activation (Goley et al., 2004; 

Kreishman-Deitrick et al., 2005; Machesky and Insall, 1998; Marchand et al., 2001; 

Panchal et al., 2003; Xu et al., 2012b). As N-WASP is the most relevant NPF to this 

thesis, it will be discussed in more detail in section 1.5. 

 

The class II NPFs, cortactin and HS1 are much less potent activators of the Arp2/3 

complex (Campellone and Welch, 2010). These proteins have acidic regions at 

their N-termini (NTA domain) that interact with and activate the Arp2/3 complex 

(Weaver et al., 2001). Unlike the class I NPFs; they harbour repetitive sequences 

that bind F-actin (Uruno et al., 2003; Weed et al., 2000). Cortactin co-operates with 

N-WASP to increase Arp2/3 mediated actin nucleation as well as stabilising actin 

filament branches by inhibiting the dissociation of the Arp2/3 complex (Weaver et 

al., 2001). Cortactin is an important regulator of many cellular processes including 
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invadopodia formation, endocytosis and in cell migration (Cao et al., 2003; 

Kirkbride et al., 2011). HS1, which is haematopoietic specific, is closely related to 

cortactin and thus can activate the Arp2/3 complex and interact with F-actin (Uruno 

et al., 2003). It has recently been found to be important for neutrophil chemotaxis 

(Cavnar et al., 2012). 

 

In recent years, a further level of Arp2/3 complex regulation has emerged. Dimers 

of WCA domains were found to have an increased ability to activate the Arp2/3 

complex, when compared with monomeric WCA domains (Higgs and Pollard, 2000; 

Padrick et al., 2008). These dimers bound to two sites in the Arp2/3 complex 

(Padrick et al., 2011). It appears that one WCA interacts with the canonical WCA 

binding site, while the other interacts with the cortactin-binding site in the Arp2/3 

complex (Padrick et al., 2008). The identification of a second WCA binding site 

resolves some of the conflicting data that arose from the aforementioned cross-

linking studies (Weaver et al., 2002; Zalevsky et al., 2001a; Zalevsky et al., 2001b). 

Experiments exploiting the ability of an agent that transfers biotin labels to subunits 

within 17Å were used to show that Arp2 and ARPC1 are likely to comprise one 

binding site, while Arp3 and ARPC3 bind to another WCA (Padrick et al., 2011). 

The high affinity WCA canonical binding site comprises Arp3 and ArpC3 (Xu et al., 

2012b). Maximal activation of the Arp2/3 complex appears to require the delivery of 

actin monomers to the Arp2/3 complex by both WCA domains, although the 

delivery of actin to the Arp3 subunit is more critical for actin polymerisation (Padrick 

et al., 2011). A recent study has determined the ratio of N-WASP to the Arp2/3 

complex in actin comets that were induced by antibody-mediated clustering of Nck 

SH3 domains at the plasma membrane (Ditlev et al., 2012). Twice as much N-

WASP as Arp2/3 complex was observed, indicating that two WCA domains could 

indeed interact with each Arp2/3 complex. 
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Figure 1.6. Activation of N-WASP 

(A) Schematic representation of the class I and class II nucleation promoting 
factors (NPFs). WH1 (WASP Homology 1), B (Basic domain), GBD (GTPase 
Binding domain), PRD (Proline Rich Domain), W (WH2/WASP Homology 2 
Domain), C (Connector), A (Acidic), SHD (Scar Homology Domain), WAHD1 
(WASH Homology Domain 1), TBR (Tubulin Binding Region), WMD (WHAMM-
membrane interaction-domain), CC (Coiled Coil Domain), L (Linker), R 
(Repeat), SH3 (Src Homology 3 domain). (B) Schematic representation of the 
activation of N-WASP by molecules such as PIP2, Cdc42, SH2 and SH3 
domain containing proteins. Binding of these molecules relieves the 
autoinhibitory intramolecular interaction in N-WASP. 
 
 

1.4.4 Other regulators of the Arp2/3 complex 

In addition to NPFs, ATP also regulates the activity of the Arp2/3 complex. FRET 

(Forster Resonance Energy Transfer) experiments demonstrated that the 

conformation of the Arp2/3 complex changes upon nucleotide binding (Goley et al., 

2004). Moreover, in the absence of hydrolysable ATP, actin nucleation does not 

occur (Dayel et al., 2001). While both Arp2 and Arp3 bind ATP, the interaction of 

Arp2 and ATP is dependent on the presence of a WCA domain (Le Clainche et al., 
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2001). Furthermore, hydrolysis of ATP by Arp2, but not by Arp3, is required for 

actin polymerisation (Le Clainche et al., 2001). Thus, WCA domains and ATP 

appear to cooperate in regulating the activity of the complex. The Arp2/3 complex 

also has higher affinity for WCA domains in the presence of saturating 

concentrations of ATP (Dayel et al., 2001). This data suggests that hydrolysis of 

ATP could regulate the dissociation of the Arp2/3 complex from its upstream 

regulators.  

 

The presence of actin filaments also increases the rate of nucleation of WCA 

activated Arp2/3 complex, although the final number of filaments generated is not 

altered (Higgs et al., 1999). The affinity of the WCA of WASP for the Arp2/3 

complex was found to be higher in the presence of preformed actin filaments 

(Marchand et al., 2001). Thus it is likely that the interaction of the Arp2/3 complex 

with the sides of actin filaments results in a conformational change that stabilises 

NPF binding. Data from electron microscopy studies detailing the conformation of 

the Arp2/3 complex at the mother filament reinforces this model. All seven subunits 

of the Arp2/3 complex were found to contact the mother filament, although ArpC2 

and ArpC4 comprise the main interacting surface (Rouiller et al., 2008; Xu et al., 

2012b). 

 

Phosphorylation of the Arp2/3 complex at a number of positions has also been 

shown to play a role in regulating its activity. The phosphorylation of threonine 21 of 

ARPC1 by p21 activated kinase (PAK) regulates the association of this subunit with 

the Arp2/3 complex (Vadlamudi et al., 2004). Moreover, expression of a non-

phosphorylatable mutant of ArpC1 results in a decrease in cell migration. Arp2 is 

also phosphorylated on threonine (T237 and T238) and tyrosine (Y202) residues 

(LeClaire et al., 2008). This study showed that phosphorylation of the Arp2/3 

complex is required for its actin nucleating activity in vitro. Loss of phosphorylation 

does not actually affect the interaction of the complex with the WCA domains of N-

WASP or SCAR, but does inhibit WCA mediated activation of the Arp2/3 complex 

(Narayanan et al., 2011). Molecular dynamics simulations revealed that 

phosphorylation of Arp2 leads to conformational changes in the Arp2/3 complex 

that would facilitate activation by WCA domains (Narayanan et al., 2011). 

Phosphorylation of the Arp2/3 complex is also necessary to facilitate the interaction 
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of the complex with the pointed end of actin filaments (LeClaire et al., 2008). 

Consistent with a role in regulating its actin nucleating activity, phosphorylation of 

the Arp2/3 complex was shown to be essential for lamellipodia formation in 

Drosophila S2 cells (LeClaire et al., 2008).  

 

In recent years, Coronin 1B has emerged as multifunctional regulator of the Arp2/3 

complex. Coronin is the first and as yet only protein identified as an inhibitor of the 

Arp2/3 complex in vitro (Humphries et al., 2002). The roles of coronin are complex, 

on one hand it protects newly formed ATP-actin filaments from cofilin mediated 

severing, but it can also synergise with cofilin to promote the disassembly of older 

actin filaments (Chan et al., 2011). Coronin also promotes the dissociation of the 

Arp2/3 complex from actin filaments (Cai et al., 2008). The ability of coronin to 

inhibit actin nucleation by the Arp2/3 complex and to promote the breakdown of 

older actin filament networks is likely important to allow the recycling of both actin 

and the Arp2/3 complex within the cell. This would then facilitate the polymerisation 

of new actin filaments at sites where they are required, for example, at the leading 

edge of migrating cells (Chan et al., 2011). Overall, the regulation of the Arp2/3 

complex by a combination of different factors is consistent with its important role in 

many crucial cellular processes, which require very fine spatial and temporal 

regulation of its function. 

1.5 WASP and N-WASP 

N-WASP is one of the most well characterised NPFs. It is conserved in eukaryotes 

and is expressed in most cell types (Miki et al., 1996; Snapper et al., 2001). This is 

in contrast to the closely related protein WASP, which was identified first, but is 

restricted to haematopoietic cell types (Derry et al., 1994; Symons et al., 1996). 

Loss of WASP results in the impairment of phagocytosis, the functioning of T 

lymphocytes, chemotaxis and cell migration, which leads to immune defects that 

manifest as Wiskott Aldrich Syndrome (WAS) in humans (Bouma et al., 2009; 

Jones et al., 2002; Snapper et al., 1998; Zhang et al., 1999). In contrast, the loss of 

N-WASP causes abnormalities in both the brain and the heart, resulting in 

embryonic lethality in mice by E12 (Snapper et al., 2001). N-WASP plays important 

roles in a multitude of cellular processes including phagocytosis, endocytosis, the 
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formation of membrane ruffles and filopodia, in podosomes and invadopodia as 

well as the stabilisation of epithelial cell junctions and in pathogen induced actin 

polymerisation (Dart et al., 2012; Kovacs et al., 2011; Legg et al., 2007; Miki et al., 

1998; Nusblat et al., 2011; Park and Cox, 2009; Qualmann and Kessels, 2002; 

Snapper et al., 2001; Yamaguchi et al., 2005).  

1.5.1 N-WASP Structure and Autoinhibition 

As WASP and N-WASP have similar mechanisms of regulation, I will largely focus 

on N-WASP as it is the most relevant to this thesis. N-WASP contains a number of 

conserved domains (Figure 1.6 A). It consists of an N-terminal WH1 (WASP 

homology 1) domain followed by the basic region (B), the GTPase-binding domain 

(GBD) that is also referred to as the CRIB (Cdc42 and Rac interactive binding) 

domain, a proline rich domain (PRD) and the C-terminal WCA domain, which 

activates the Arp2/3 complex. The major binding partners of the WH1 domain are 

the verprolins (WIP, WIRE and CR16 – see section 1.7). The WH1 domain has a 

similar structural fold to the EVH1 domain that is found in Ena/Vasp proteins 

(Fedorov et al., 1999; Prehoda et al., 1999; Volkman et al., 2002). However, the 

WH1 domain binds preferentially to sequences that are distinct from the canonical 

FPPPP motif that is favoured by EVH1 domains (Peterson et al., 2007; Volkman et 

al., 2002; Zettl and Way, 2002). A combination of biochemistry and NMR was used 

to determine the molecular basis of the interaction of WIP with N-WASP (Peterson 

et al., 2007; Volkman et al., 2002; Zettl and Way, 2002). The minimal WIP peptide 

required for interaction with N-WASP is longer than those required for binding to 

other EVH1 domains (Peterson et al., 2007). A 34 amino acid long region from WIP 

wraps more than half way around the WH1 domain of N-WASP, making extensive 

contacts with the surface of this domain (Peterson et al., 2007; Volkman et al., 

2002). Three major regions are involved in the binding of the WH1 domain to the 

WASP Binding Domain (WBD) of WIP. Two conserved phenylalanines at positions 

454 and 456 in WIP are both necessary and sufficient for binding to the WH1 

domain (Zettl and Way, 2002). These interact with a hydrophobic surface of the 

WH1 domain that contains valine 42 and alanine 119 (Peterson et al., 2007). The 

second region involves an LPPP motif in WIP, which adopts a type II polyproline 

helical conformation and surrounds tryptophan 54 of N-WASP (Volkman et al., 
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2002). Mutation of tryptophan 54 to alanine is sufficient to abrogate the interaction 

between the WH1 domain and WIP (Moreau et al., 2000; Zettl and Way, 2002). 

Finally, glutamate 90 of N-WASP forms a salt bridge with lysine 478 of WIP 

(Peterson et al., 2007). Neither the second nor the third region alone can mediate 

the interaction of the WH1 domain and WIP, although together they are sufficient 

for binding (Peterson et al., 2007). The importance of each of these regions for 

maintaining the interaction of N-WASP and WIP in vivo was assessed using 

vaccinia virus actin tail formation as a read out. Expression of the WBD of WIP 

inhibits vaccinia virus from inducing actin tails by preventing N-WASP recruitment 

(Moreau et al., 2000). Mutating the conserved phenylalanines of the first region, or 

proline 465 in the second region results in a dramatic decrease in the ability of the 

WBD to block actin tail formation, indicating that these regions are required for the 

interaction with the WH1 domain of N-WASP (Peterson et al., 2007; Zettl and Way, 

2002). In contrast, mutating lysine 477 of the WBD results in only a 50% increase 

in actin tail formation, suggesting that this residue is not essential for WIP binding 

to N-WASP (Peterson et al., 2007). Interestingly, a large number of the causative 

mutations of Wiskott Aldrich Syndrome (WAS) map to the WH1 domain (Jin et al., 

2004; Volkman et al., 2002). Introduction of mutations found in WASP, which are 

known to cause Wiskott Aldrich Syndrome, into N-WASP (C35W, R76C and 

E123K) disrupts the interaction with WIP and results in the loss of WH1 domain 

recruitment to vaccinia virus (Moreau et al., 2000). Taken together, this data 

highlights the critical importance of the interaction between WIP and N-WASP in 

regulating N-WASP function.  

 

Contacts between the GBD and the WCA domain result in autoinhibition of 

WASP/N-WASP (Figure 1.6 B). These interactions mask the WCA and prevent it 

from interacting with the Arp2/3 complex (Kim et al., 2000; Miki et al., 1998; 

Prehoda et al., 2000; Rohatgi et al., 2000). The basic region adjacent to the GBD is 

also involved in maintaining the autoinhibited state of WASP/N-WASP (Prehoda et 

al., 2000; Rohatgi et al., 2000). Multiple signals contribute to the activation of N-

WASP by relieving its autoinhibition (Figure 1.6 B). The Rho GTPase Cdc42 and 

phosphatidylinositol (4,5)-bisphosphate (PIP2) were two of the first characterised 

activators of WASP/N-WASP. Active (GTP bound) Cdc42 binds to the GBD of N-

WASP, while the basic domain interacts with PIP2 (Miki et al., 1998; 
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Papayannopoulos et al., 2005; Rohatgi et al., 2000; Rohatgi et al., 1999). An NMR 

structure of the GBD of WASP revealed that the GDB is intrinsically unstructured 

but upon binding to the WCA, it assumes a more ordered conformation, which is 

distinct from its structure when bound to Cdc42 (Kim et al., 2000). Furthermore the 

GBD cannot bind to both Cdc42 and the WCA simultaneously (Kim et al., 2000; 

Miki et al., 1998). This suggests that Cdc42 activates N-WASP by competing with 

the WCA for binding to the GBD. When Cdc42 is bound to the GBD, the WCA 

domain is free to interact with and activate the Arp2/3 complex. An alternative 

mechanism has been proposed in which the autoinhibited N-WASP molecule is 

already bound to the Arp2/3 complex (Prehoda et al., 2000). No definitive evidence 

has discriminated between these two models, however, the final output is similar in 

both, as exogenous signals must relieve the autoinhibition of N-WASP before it can 

activate the Arp2/3 complex.  

 

The basic domain of N-WASP contributes to the stability of the autoinhibited 

conformation by interacting with the A region of the WCA (Prehoda et al., 2000; 

Rohatgi et al., 2000). Consistent with this PIP2 synergizes with Cdc42 to potently 

activate N-WASP (Rohatgi et al., 2000). Furthermore, a peptide comprising the 

GBD and the basic region is required to maximally inhibit the WCA, while the GBD 

alone is not sufficient (Prehoda et al., 2000). The proline rich region that links the 

GBD to the WCA is also the site of interaction of myriad SH3 domain containing 

adaptors. These include Nck, Grb2, the F-BAR proteins Toca-1 and FBP-17, Abi1, 

Syndapin, SNX9 and Abp1 (Carlier et al., 2000; Ho et al., 2004; Innocenti et al., 

2005; Kessels and Qualmann, 2004; Pinyol et al., 2007; Rohatgi et al., 2001; Shin 

et al., 2007; Takano et al., 2008). Thus, although the proline rich region does not 

directly participate in the intramolecular interaction between the WCA and the GBD, 

binding of the aforementioned proteins can destabilise these autoinhibitory contacts 

and release the WCA (Rohatgi et al., 2001; Tomasevic et al., 2007). Nck and PIP2 

synergise to activate N-WASP in a Cdc42 independent manner, while Grb2 

functions with Cdc42 to enhance activation (Carlier et al., 2000; Rohatgi et al., 

2001). Thus multiple signalling inputs can act cooperatively to stimulate N-WASP-

Arp2/3 dependent actin polymerisation. 
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The importance of the interaction of N-WASP and WIP was further highlighted 

when it was found that WIP inhibits the ability of N-WASP to activate the Arp2/3 

complex (Ho et al., 2004; Martinez-Quiles et al., 2001). In vitro actin polymerisation 

assays demonstrated that the activation of N-WASP by Cdc42 is inhibited by WIP 

in a dose dependent manner (Martinez-Quiles et al., 2001). Activation of the Arp2/3 

complex by the VCA domain of N-WASP is not affected by the presence of WIP, 

indicating that the interaction of WIP with N-WASP is specifically required to 

mediate the inhibitory effect of WIP (Martinez-Quiles et al., 2001). The mechanism 

of this inhibition is not well understood. A number of molecules have been 

demonstrated to relieve the inhibition of N-WASP by WIP. PIP2 is sufficient to allow 

activation of N-WASP by Cdc42, even in the presence of very high concentrations 

of WIP (Martinez-Quiles et al., 2001). Furthermore, Toca-1 (transducer of Cdc42 

activity) was found to relieve the inhibitory effects of WIP and promote activation of 

N-WASP by Cdc42 (Ho et al., 2004). This study also demonstrated that Toca-1 

could synergise with PIP2 in activating N-WASP. Toca-1 binds to N-WASP via its 

SH3 domain, as well as to Cdc42, resulting in the formation of a tripartite complex 

that relieves the autoinhibition of N-WASP, thereby allowing it to activate the Arp2/3 

complex (Bu et al., 2010; Ho et al., 2004). Toca-1 and a related protein FBP-17 can 

also promote the activation of the N-WASP/WIP complex in the presence of 

liposomes (Takano et al., 2008). This activation is independent of the presence of 

Cdc42 or PIP2, but does depend on the curvature of the liposomal membrane with 

larger diameter vesicles resulting in increased activation of N-WASP (Takano et al., 

2008). Furthermore binding of both Toca-1/FBP-17 and N-WASP to the membrane 

was also required for maximal activation (Takano et al., 2008). WIP was also 

shown to interact with both the membrane and with the SH3 domain of Toca-

1/FBP-17 (Takano et al., 2008). This may contribute to the activation of the N-

WASP-WIP complex perhaps by facilitating a conformational change that promotes 

N-WASP activation at the plasma membrane.  

 

Phosphorylation of WASP and N-WASP has emerged as another important 

mechanism involved in regulating the function of these proteins. Activation of both 

the B-cell receptor (BCR) and the T-cell receptor (TCR) results in phosphorylation 

of WASP on tyrosine 291 by Btk or Fyn (Baba et al., 1999; Badour et al., 2004). 

Similarly, the Src family kinase, Hck phosphorylates WASP at the same site, 
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thereby enhancing its ability to induce the formation of filopodia (Cory et al., 2002). 

Tyrosine 291 lies within the GBD of WASP and phosphorylation of this residue was 

found to decrease the affinity of the GDB for the WCA domain of WASP (Torres 

and Rosen, 2003). This study also demonstrated that phosphorylation of WASP 

occurred only after prior binding of Cdc42 to WASP. Thus it is thought that after the 

release of autoinhibition of WASP by active Cdc42, phosphorylation of Y291 by Src 

family kinases results in prolonged activation of WASP (Torres and Rosen, 2003). 

Furthermore, after phosphorylation, the SH2 domain of Src family kinases can bind 

to the phosphorylated tyrosine and further activate WASP (Torres and Rosen, 

2003). This lead to the proposal that phosphorylation acts a form of “molecular 

memory”, as only a subset of WASP molecules, which have previously been 

phosphorylated, can respond to the SH2 binding signal. A subsequent study 

showed that N-WASP activity is controlled by a similar mechanism involving the 

phosphorylation of the equivalent tyrosine 256 (Torres and Rosen, 2006). 

Phosphorylation of N-WASP is important for neurite outgrowth in PC12 cells 

(Suetsugu et al., 2002). Expression of an N-WASP mutant that cannot be 

phosphorylated resulted in the inhibition of neurite outgrowth, as did treatment with 

inhibitors of Src family kinases (Suetsugu et al., 2002). Thus WASP family proteins 

are regulated by the integration of multiple signals leading to the tight spatial and 

temporal control of their activation. Different regulatory mechanisms predominate in 

different contexts, for example the phosphorylation of WASP/N-WASP is more 

important downstream of the TCR or for neurite extension, while activation by 

Cdc42 is key for the induction of N-WASP dependent filopodia in Cos7 cells 

(Badour et al., 2004; Miki et al., 1998; Suetsugu et al., 2002). 

 

In addition to supplying actin monomers for incorporation into the growing actin 

filament, the WH2 domains of N-WASP have also been shown to mediate the 

attachment of the actin filament network to membranes (Co et al., 2007). 

Furthermore, the interaction of N-WASP with the actin filament network promotes 

the clustering of the protein on moving lipid vesicles (Co et al., 2007; Delatour et al., 

2008). Abrogation of the ability of the WH2 domains to interact with the barbed 

ends of the actin filaments results in a more rapid rate of exchange of N-WASP at 

vaccinia virus particles undergoing actin-based motility (Weisswange et al., 2009). 

This destabilisation of N-WASP leads to shorter actin tails that move more rapidly. 
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In addition, podosome formation in Src transformed cells was disrupted when N-

WASP could not interact with actin via its WH2 domains (Co et al., 2007). This 

suggests that the downstream actin filament network regulates N-WASP in a 

positive feedback loop that both stabilises and increases the local density of N-

WASP. Furthermore, N-WASP competes with capping protein to bind the barbed 

ends of actin filaments, thus promoting filament elongation. 

1.5.2 Oligomerization  

In recent years, the oligomerization of N-WASP has been identified as an important 

mechanism for controlling its function (Padrick et al., 2008; Padrick and Rosen, 

2010). This stems from the observation that dimerization of N-WASP WCA 

domains increases their ability to activate the Arp2/3 complex (Higgs and Pollard, 

2000; Padrick et al., 2008). Furthermore, each Arp2/3 complex is bound and 

activated by two WCA domains (Padrick et al., 2008; Padrick et al., 2011; Ti et al., 

2011). Many N-WASP binding partners contain multiple domains that could 

simultaneously interact with multiple N-WASP molecules, thereby increasing the 

local density of N-WASP and facilitating the interaction of multiple WCA domains 

with the Arp2/3 complex (Padrick et al., 2008; Padrick et al., 2011). These include 

the bacterial protein EspFu and SH3 domain containing proteins such as Nck and 

Grb2 (Campellone et al., 2008a; Carlier et al., 2000; Cheng et al., 2008; Rohatgi et 

al., 2001). Enterohaemorrhagic E. coli (EHEC) is a food-borne pathogen that 

induces the formation of N-WASP dependent actin pedestals upon adhering to the 

surface of cells. EspFu contains a sequence that mimics the structure of the WCA 

domain of N-WASP (Cheng et al., 2008; Sallee et al., 2008). This sequence binds 

to the GDB of N-WASP and displaces the WCA domain, thus activating N-WASP. 

EspFu contains 2-8 repeats of this sequence depending on the strain of the bacteria 

(Campellone et al., 2008a). Actin polymerisation can be induced by artificially 

clustering the EspFu repeats at the plasma membrane and it was found that 

increasing their number correlates with increasing amounts of actin polymerisation 

(Campellone et al., 2008a). This suggests that not only does EspFu activate N-

WASP by relieving its autoinhibition, but that it also clusters multiple N-WASP 

molecules thereby increasing the probability that two WCA domains will be able to 

interact with each Arp2/3 complex (Padrick et al., 2008; Padrick and Rosen, 2010). 
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A similar mechanism can be envisaged for proteins such as Nck that contain three 

SH3 domains (Buday et al., 2002; Li et al., 2012). In fact, dimerization of a Nck 

SH3 domain increased the activation of the Arp2/3 complex by N-WASP above that 

of a the monomeric SH3 domain (Padrick et al., 2008).  

 

The spatial organisation of N-WASP at the plasma membrane is also important for 

regulating its activity. Larger liposomes resulted in increased activation of the 

Arp2/3 complex by N-WASP compared to that observed with smaller liposomes 

(Takano et al., 2008). This makes sense in light of the oligomerisation of the protein 

as not only would the density of N-WASP molecules be important for activation, 

they would also need to be positioned correctly so that two molecules of N-WASP 

could interact with each Arp2/3 complex. In addition, synthetic ActA dimers were 

shown to have increased Arp2/3 activation ability in vitro (Footer et al., 2008). ActA 

is a Listeria protein that mimics the WCA domain of N-WASP to activate the Arp2/3 

complex (Welch et al., 1997b; Welch et al., 1998). Interestingly, although ActA 

does not actually dimerise, the density of molecules expressed on the suface of the 

bacterium is such that their proximity would allow them to function as a dimer and 

therefore maximally activate the Arp2/3 complex (Footer et al., 2008). Furthermore, 

N-WASP proteins exhibit a high local density on rocketing PIP2 vesicles that is 

consistent with them functioning as dimers in order to achieve maximal activation of 

the Arp2/3 complex (Co et al., 2007; Delatour et al., 2008). 

1.6 The Verprolins 

Verprolin was first identified as a regulator of the actin cytoskeleton in yeast 

(Donnelly et al., 1993). It has subsequently been implicated in bipolar bud site 

selection and in the establishment of a polarised actin cytoskeleton in S. cerevisiae 

(Vaduva et al., 1997). Verprolin also interacts with the type I myosin, myo5p, and is 

required for the correct localisation of this protein (Anderson et al., 1998). 

Furthermore, verprolin is essential for endocytosis and cytokinesis (Munn and 

Thanabalu, 2009; Naqvi et al., 2001; Naqvi et al., 1998; Thanabalu and Munn, 

2001). Verprolin is highly proline rich and interacts with both actin and the yeast 

homologue of WASP/N-WASP, Las17p (Naqvi et al., 1998). In mammals, the 

verprolin family of proteins consists of WIP, WIRE and CR16 (Aspenstrom, 2005; 
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Garcia et al., 2012). The mammalian verprolins contain two WH2 actin-binding 

domains, a central proline rich region and a C-terminal WBD (WASP binding 

domain) (Aspenstrom, 2005). Interestingly, WIP rescues the defects in polarity, 

growth and endocytosis that arise in yeast lacking verprolin indicating that the two 

proteins are indeed functional homologues (Vaduva et al., 1999). 

1.6.1 WIP 

WIP was initially identified in a yeast two-hybrid screen for WASP interacting 

partners (Ramesh et al., 1997; Stewart et al., 1999). WIP mRNA is widely 

expressed in human tissues, with especially high levels detected in peripheral 

blood mononuclear cells and in the spleen (Ramesh et al., 1997). Two additional 

isoforms of WIP have been identified. Prpl2 has an additional sequence that arises 

from a rare alternative splicing event that results in the insertion of exon 6a into the 

protein (Anton et al., 2007). The function of Prpl2 is unknown. The second isoform 

is termed miniWIP and is a truncation of WIP that lacks the WBD and is expressed 

in peripheral blood cells but not in fibroblasts (Koduru et al., 2007). Its physiological 

role remains to be determined.  

 

WIP is a key regulator of the actin cytoskeleton. Overexpression of WIP results in 

an overall increase in F-actin content as well as the formation of actin-rich 

projections or filopodia in both BJAB cells and fibroblasts (Martinez-Quiles et al., 

2001; Ramesh et al., 1997). The increased amount of F-actin is dependent on the 

N-terminus of WIP, which harbours two actin binding WH2 domains and a profilin 

interaction motif (Ramesh et al., 1997). In addition, WIP interacts with F-actin and 

is clearly localised to actin stress fibres in fibroblasts (Martinez-Quiles et al., 2001; 

Vetterkind et al., 2002). Overexpression of WIP in fibroblasts results in an 

elongation of cells as well as decreased adhesion and spreading (Lanzardo et al., 

2007). Conversely, loss of WIP lead to increased adhesion, as well as a faster rate 

of migration than observed for control cells in scratch assays (Lanzardo et al., 

2007).  

 

WIP can also interact with the type II NPF cortactin and increase its ability to 

activate the Arp2/3 complex (Kinley et al., 2003). Consistent with this, co-
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expression of WIP and cortactin results in increased membrane protrusion (Kinley 

et al., 2003). Loss of WIP also induces a mislocalisation of cortactin in dendritic 

cells resulting in the loss of cell polarity and aberrant membrane protrusion and 

ruffling (Chou et al., 2006). In addition, WIP has also been shown to increase the 

formation of dorsal ruffles in response to PDGF stimulation (Anton et al., 2003). 

This is dependent on the interaction of WIP with both actin and Abp1 (actin binding 

protein 1), but not with cortactin (Anton et al., 2003; Cortesio et al., 2010). WIP also 

interacts with the SH2-SH3 adaptor, Nck (Anton et al., 1998). Nck and WIP function 

together in invadopodia formation (Yamaguchi et al., 2005). Vaccinia virus also 

recruits Nck and WIP during actin tail formation and this will be discussed in more 

depth in section 1.8 (Frischknecht et al., 1999b; Moreau et al., 2000; Zettl and Way, 

2002). 

 

The C-terminal region of WIP interacts with the WH1 domain of both WASP and N-

WASP (Section 1.5.1) (Martinez-Quiles et al., 2001; Ramesh et al., 1997). The 

interaction of WIP and WASP is crucial for maintaining expression levels of WASP 

in haematopoietic cells, as WIP protects WASP from proteosomal degradation (de 

la Fuente et al., 2007). Accordingly, in lymphocytes more than 95% of WIP and 

WASP exist in a complex (Sasahara et al., 2002). WIP also protects WASP from 

calpain-mediated degradation in vitro, although this is physiologically relevant only 

in activated lymphocytes (de la Fuente et al., 2007). Recently, a study has shown 

that in β1- integrin -/- cells, N-WASP expression is decreased and that this 

reduction can be rescued by the overexpression of WIP (King et al., 2011). In 

addition, this study showed that treatment of β1-integrin +/+ cells with RNAi against 

WIP resulted in decreased expression of N-WASP. However, the interaction of N-

WASP with WIP does not seem to be critical for maintaining its level of expression, 

as WIP-/- fibroblasts still had normal levels of N-WASP (de la Fuente et al., 2007). 

Loss of WASP expression results in Wiskott Aldrich syndrome (WAS), and the 

majority of mutations causing this disease are found in the WH1 domain of WASP 

(Jin et al., 2004; Thrasher and Burns, 2010; Volkman et al., 2002). Interestingly, a 

recent study revealed that a mutation in WIP, which prevents its expression, also 

results in a similar condition (Lanzi et al., 2012). Moreover, WIP null mice have a 

progressive immunological disorder that is very similar to WAS (Curcio et al., 2007).  
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WIP has recently been found to be a negative regulator of neuronal maturation 

(Franco et al., 2012). WIP-/- mice were found to have brain hypertrophy, 

specifically an increase in the volume of the forebrain, as a result of increased 

neurite branching. Hippocampal neurons derived from these mice displayed 

accelerated development, which is dependent on N-WASP. This prompted the 

authors to propose that loss of WIP leads to inappropriate “hyper activation” of N-

WASP, resulting in increased actin polymerisation and concomitant neuritogenesis 

(Franco et al., 2012). In Drosophila, WIP has been shown to interact with Blown 

Fuse (Jin et al., 2011). Interestingly, this protein competes with WIP for binding to 

WASP. In the absence of Blown Fuse, the rates of exchange of both WIP and 

WASP are decreased, as is the percentage recovery of the proteins. This leads to 

decreased actin polymerisation and impaired myoblast fusion. This finding raises 

the interesting possibility of a similar mechanism of regulation of N-WASP in 

vertebrates mediated by a homologue of Blown Fuse, although as yet no such 

protein has been identified (Jin et al., 2011).  

1.6.1.1 WIP and the immune system 

Consistent with its role as a chaperone of WASP, WIP has myriad roles in the 

immune system (Noy et al., 2012). T lymphocytes derived from WIP-/- mice are 

defective in their response to T cell receptor (TCR) ligation (Anton et al., 2002). 

After activation of the receptor, these cells are unable secrete IL-2, induce actin 

polymerisation or proliferate. The ability of the WIP-WASP complex to induce actin 

polymerisation and mediate IL-2 production are believed to be distinct as loss of 

the VCA domain of WASP affects the ability of the complex to increase F-actin 

content, but not to stimulate IL-2 production (Silvin et al., 2001). WIP was found to 

participate in IL-2 secretion via multiple WASP dependent pathways. WIP 

cooperates with Vav, a guanine nucleotide exchange factor, to induce NF-AT/AP1-

mediated gene transcription via a mechanism that requires the interaction of WIP 

and WASP (Savoy et al., 2000). Another pathway involves the formation of a 

complex of WIP, WASP and the Src family kinase, Fyn (Sato et al., 2011). 

Inhibition of the formation of this complex resulted in decreased NF-AT activation 

and the loss of IL-2 production and suggesting that together WIP, WASP and Fyn 

are important for mediating TCR signalling. WIP also interacts with CrkL, an SH2-
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SH3 adaptor and is important for recruiting WASP to the immune synapse after 

TCR activation (Sasahara et al., 2002). After ligation of the TCR, ZAP70 is 

recruited and phosphorylated providing a platform for the recruitment of CrkL via its 

SH2 domain. The SH3 domain of CrkL then recruits the WIP-WASP complex. 

Abrogation of this recruitment leads to a defects in both actin polymerisation and 

IL-2 production. WIP is also phosphorylated by PKCθ after TCR ligation (Sasahara 

et al., 2002). This was initially believed to result in the disruption of the WIP-WASP 

complex, however, further studies demonstrated that this was not the case (Dong 

et al., 2007; Koduru et al., 2007). Thus, the role of WIP phosphorylation 

downstream of the TCR remains unclear. 

 

WIP-/- mice display distinct phenotypes that are not observed in WASP -/- mice, 

indicating that WIP has functions outside of its role in protecting WASP from 

degradation (Curcio et al., 2007). The failure of lymphocytes to proliferate in 

response to TCR activation is observed in cells lacking WIP, but not WASP (Le 

Bras et al., 2009). Furthermore, the chemotactic response of T-cell is decreased by 

50% in cells lacking WIP (Gallego et al., 2006). Interestingly, while loss of both WIP 

and WASP results in an even more severe defect in chemotaxis, the loss of WASP 

alone does not show this phenotype. In addition, the loss of WIP severely impairs 

the formation of the immune synapse, however, WASP deficient cells form these 

structures normally and induce actin polymerisation (Gallego et al., 2006). Taken 

together, these observations suggest that WIP has functions that are independent 

of its interaction with WASP.  

 

WIP also appears to regulate B-lymphocyte development in a WASP independent 

manner (Becker-Herman et al., 2011; Noy et al., 2012). WIP-/- mice have fewer B-

cells, although those that are present exhibit an increased response to B cell 

receptor (BCR) activation by non-specific stimuli, such as LPS (Anton et al., 2002; 

Curcio et al., 2007). The actin cytoskeleton is also disrupted in WIP-/- B cells 

suggesting that the control of actin polymerisation by WIP is involved in negative 

regulation of the BCR (Anton et al., 2002). WIP also regulates the abundance of 

natural killer (NK) cells, which are involved in the destruction of virally infected or 

cancer cells. Loss of WIP in patients with a severe immunodeficiency resembling 

WAS, results in an increased number of NK cells, although the function of these 
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cells is drastically impaired (Lanzi et al., 2012). Furthermore, overexpression of 

WIP leads to an increase in NK cell dependent cytotoxicity (Krzewski et al., 2008). 

WIP forms a complex with WASP and myosin IIa in NK cells that is recruited to 

sites of cell-cell contacts and induces actin polymerisation (Krzewski et al., 2006). 

Thus, as in T and B-lymphocytes, the defects observed in WIP-/- NK cells are likely 

the result of impaired actin polymerisation. 

1.6.1.2  The role of WIP in podosomes and invadopodia 

Podosomes are specialised adhesive structures that are important for cell migration 

(Garcia et al., 2012). These structures appear to have the capacity to degrade the 

extra-cellular matrix and thus allow cells to overcome physical barriers that block 

their path and migrate through tissues (Cornfine et al., 2011). Podosomes are 

found in many migratory cell types including phagocytes, dendritic cells and 

macrophages, which are involved in immune surveillance (Murphy and Courtneidge, 

2011; Noy et al., 2012). They consist of an F-actin rich core, surrounded by 

proteins involved in adhesion, enzymes that degrade the extracellular matrix (ECM) 

and proteins involved in remodelling the cell membrane (Garcia et al., 2012). 

WASP and the Arp2/3 complex control actin polymerisation at podosomes, and in 

recent years WIP has also emerged as a major regulator of the organisation and 

function of podosomes (Banon-Rodriguez et al., 2011; Chou et al., 2006; Tsuboi, 

2006). In the absence of WIP, dendritic cells cannot induce the formation of 

podosomes (Chou et al., 2006). Furthermore, WIP is required for the secretion of 

matrix metalloproteinases (MMPs) from dendritic cells. MMPs are the key proteins 

involved in the degradation of the matrix by podosomes (Banon-Rodriguez et al., 

2011). The interaction of WIP with cortactin is also important for podosome function 

(Banon-Rodriguez et al., 2011; Chou et al., 2006). While podosomes are induced in 

the absence of this interaction, there is a dramatic reduction in their ability to 

degrade the ECM (Banon-Rodriguez et al., 2011). The podosomes also appear 

smaller and have decreased F-actin content consistent with the observation that 

cortactin is relocalised to the plasma membrane in the absence of WIP, leading to 

increased membrane ruffling and protrusion (Banon-Rodriguez et al., 2011; Chou 

et al., 2006). Loss of WIP also impairs the formation of a polarised and defined 

leading edge (Chou et al., 2006). Podosomes are usually short-lived structures  
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with a half-life of 30s -5 minutes. In the absence of WIP, podosomes are not 

formed, instead large stable focal adhesion like structures, with a half-life of 30-60 

minutes, are observed (Chou et al., 2006). Disrupting the interaction of WASP and 

WIP decreases the efficiency of podosome formation; moreover, WASP-/- cells 

lack the ability to form podosomes (Jones et al., 2002; Olivier et al., 2006; Tsuboi, 

2006). Therefore, many of the defects in podosome formation observed upon the 

loss of WIP could be explained by the role of WIP in preventing WASP degradation 

(de la Fuente et al., 2007). However, clear evidence has demonstrated that this is 

not the only role of WIP in podosome formation. Expression of WASP in WIP-/- 

dendritic cells that had been treated with proteosome and calpain inhibitors was not 

sufficient to rescue podosome formation (Chou et al., 2006). Instead it was found 

that WIP is required for the correct localisation WASP to sites of actin 

polymerisation. WIP has also been shown to have a role in the formation of 

invadopodia (Yamaguchi et al., 2005). Invadopodia are also actin rich structures 

that degrade the extracellular matix (Murphy and Courtneidge, 2011). They are 

related to podosomes but occur only in cancer cells, where they are thought to play 

an important role in tumour cell metastasis (Garcia et al., 2012). Disruption of the 

interaction between WIP and N-WASP by expression of the WBD of WIP resulted 

in a marked decrease in invadopodia formation (Yamaguchi et al., 2005). 

Abrogation of the interaction between WIP and cortactin did not interfere with the 

formation of invadopodia, indicating that while similar, podosomes and invadopodia 

are differently regulated (Banon-Rodriguez et al., 2011; Yamaguchi et al., 2005). 

Consistent with a role in invadopodia formation, further evidence has arisen in 

recent years that points to a role for WIP in invasive and metastatic cancers. Gene 

expression microarray analysis has revealed a correlation between low expression 

of WIP and improved prognosis for a variety of cancers (Staub et al., 2009). 

Furthermore, increased WIP expression has also been associated with epithelial-

mesenchymal transition (EMT) (Gu et al., 2007). 

1.6.2 WIRE 

WIRE (WIP related protein), also known as WICH (WIP and CR16 homologous) 

was identified as a homologue of WIP in two independent studies (Aspenstrom, 

2002; Kato et al., 2002). WIRE has about 40% sequence identity to WIP and is 
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very proline rich (Aspenstrom, 2002). It is expressed widely, with particularly high 

protein expression observed in the brain, colon, lung and stomach (Kato et al., 

2002). WIRE binds to both actin monomers and filaments and stabilises these 

filaments by decreasing the rate of actin depolymerisation (Kato et al., 2002). 

Another study demonstrated that WIRE crosslinks actin filaments in vitro (Kato and 

Takenawa, 2005). Consistent with this, the same study showed that 

overexpression of WIRE in fibroblasts induces the formation of thick actin filament 

bundles. WIRE has also been implicated both in actin rearrangements downstream 

of the PDGF receptor as well as in endocytosis of the receptor itself (Aspenstrom, 

2002, 2004). In porcine aortic endothelial (PAE) cells overexpressing the PDGFβ 

receptor, ectopic WIRE resulted in depolymerisation of actin stress fibres, while at 

the same time inducing small actin puncta and membrane ruffles (Aspenstrom, 

2002).  

 

Like WIP, WIRE interacts with both WASP and N-WASP, although there is 

evidence that it may preferentially bind to N-WASP (Aspenstrom, 2002, 2004; Kato 

et al., 2002). WIRE and N-WASP have been shown to function together in a 

number of situations. Endocytosis of the PDGF receptor by WIRE is dependent on 

its interaction with N-WASP (Aspenstrom, 2004). In addition, co-expression of 

WIRE and N-WASP cells results in the formation of actin microspikes/filopodia, 

although neither protein alone is sufficient to produce this phenotype unless the 

cells have been stimulated with EGF or PDGF-BB (Aspenstrom, 2002; Kato et al., 

2002). Interestingly, the ability of WIRE to induce filopodia was subsequently found 

to be independent of a direct interaction with N-WASP, although an intact WIRE 

WH2 domain was required (Aspenstrom, 2004). This seemingly contradictory data 

can be explained by the interaction of WIRE and IRSp53 (Misra et al., 2010). 

IRSp53 binds to active GTP-bound Cdc42 and contains an IMD/BAR (IRSp53 and 

Missing in Metastasis homology domain/ Bin–amphipysin–Rvs167) domain, which 

is involved in linking the actin cytoskeleton to membranes (Scita et al., 2008). In the 

absence of N-WASP, co-expression of WIRE and IRSp53 results in the induction of 

Cdc42-dependent filopodia (Misra et al., 2010). This process requires both the SH3 

domain of IRSp53 and the actin binding WH2 domain of WIRE. Furthermore, 

IRSp53 also interacts with N-WASP and together these proteins induce filopodia 

formation (Lim et al., 2008). Thus it is plausible that IRSp53 mediates the 
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cooperative increase in filopodia induction observed upon co-expression of WIRE 

and N-WASP. Alternatively as WIP has also been shown to induce filopodia in 

concert with N-WASP; co-expression of WIRE and N-WASP may result in the up 

regulation of two distinct pathways that lead to filopodia formation (Martinez-Quiles 

et al., 2001; Vetterkind et al., 2002).  

 

Interestingly, WIP does not synergise with IRSp53 to induce filopodia, thus 

demonstrating that WIP and WIRE can perform distinct cellular functions (Misra et 

al., 2010). Another example of a pathway that specifically requires the presence of 

WIRE, but not WIP, is found at adherens junctions (Kovacs et al., 2011). In this 

case, WIRE cooperates with N-WASP to maintain the actin structures of the zonula 

adherens. Paradoxically, the ability of N-WASP to activate the Arp2/3 complex is 

not required in this case, indicating that N-WASP is not involved in the nucleation of 

these filaments. Instead, N-WASP and WIRE participate in a non-canonical post-

nucleation pathway that stabilises newly formed actin filaments and promotes their 

incorporation into apical actin rings (Kovacs et al., 2011).  

 

Other WIRE binding partners include profilin and Nck (Aspenstrom, 2002). Profilin 

immunoprecipitates with an N-terminal fragment of WIRE, but not with the full-

length protein. This suggests that another level of regulation exists in which the N-

terminal segment of WIRE is masked, preventing it from interacting with profilin. 

However a physiological function for this interaction has not been elucidated. Co-

expression of Nck and WIRE results in the formation of large, arrow shaped focal 

adhesions (Aspenstrom, 2002). Based on this data, Nck was proposed to recruit 

WIRE to focal adhesions, however, further studies are required to verify that this is 

the case. 

1.6.3 CR16 

CR16 (corticosteroids and regional expression 16) was initially identified in a rat 

hippocampal cDNA library and its mRNA expression is regulated by glutocorticoid 

receptor (Masters et al., 1996; Nichols et al., 1990). CR16 mRNA has been 

detected in the brain, lung, testes and heart but is not observed in the spleen, liver 

or kidney (Masters et al., 1996). Similarly, the CR16 protein is highly expressed in 
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brain, while lower expression is detectable in the heart, lung and testes (Ho et al., 

2001; Suetsugu et al., 2007).  CR16 interacts with the WH1 domain of N-WASP via 

its C-terminal region. Interestingly, the presence of CR16 in in vitro actin 

polymerisation assays did not inhibit the ability of N-WASP to activate the Arp2/3 

complex, indicating that CR16 and WIP may fulfil different functions in this pathway 

(Ho et al., 2004; Ho et al., 2001). In addition to the interaction with N-WASP, CR16 

contains WH2 domains and can also bind both G and F-actin. Furthemore, CR16 

interacts with multiple SH3 domain containing proteins including Src, Abl and PLCγ 

(Ho et al., 2001; Weiler et al., 1996). CR16 can also be phosphorylated in vitro by 

MAP kinase although the biological relevance of this interaction has not yet been 

established (Weiler et al., 1996). CR16 can partially compensate for the loss of 

verprolin in yeast (Meng et al., 2007). Expression of CR16 rescues the defects in 

growth and endocytosis that result from the loss of verprolin, however the 

polarisation of actin patches is not restored (Meng et al., 2007). This study also 

demonstrated that the actin binding WH2 domains of CR16 are not required for the 

functioning of the protein, as it was found that N-terminal proline motifs that are 

specific to CR16 can compensate for the loss of actin binding. The mechanism of 

this redundancy is unclear, although it may involve Myo3p, which interacts with this 

proline rich region of CR16 (Meng et al., 2007). Despite, the high levels of CR16 

present in neuronal tissues, no gross brain abnormalities are observed in CR16 

knockout mice (Suetsugu et al., 2007). As WIP and WIRE are also expressed in 

the brain, they may be able to compensate for the loss of CR16. In contrast, the 

loss of CR16 in mice results in male specific sterility due to defects in 

spermatogenesis. CR16 and N-WASP were found in complex in testes and lower 

levels of N-WASP were observed in the absence of CR16 indicating that these 

proteins function together in spermatogenesis (Suetsugu et al., 2007). Consistent 

with this, a recent study demonstrated that lower levels of CR16 and N-WASP are 

expressed in the testes of men with idiopathic azoospermia (Xiang et al., 2011).  

1.7 Receptor signalling to the actin cytoskeleton 

In order to function, a cell must process the external signals it receives and mount 

the appropriate response. This is achieved via signalling cascades that involve 

transmembrane receptor proteins and adaptor proteins that connect the external 
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environment to numerous signalling pathways including the N-WASP and Arp2/3 

complex dependent actin polymerisation machinery. One class of transmembrane 

receptors implicated in the regulation of actin polymerisation is the receptor 

tyrosine kinases (RTKs). These include the epidermal growth factor receptor 

(EGFR), the platelet derived growth factor receptor (PDGFR), the T cell receptors 

(TCR), and the Met receptor (Abella et al., 2010b; Anton et al., 2003; Dustin and 

Depoil, 2011; Kempiak et al., 2003). Pathogens including EPEC and vaccinia virus 

also encode proteins that mimic receptor tyrosine kinases in order to induce actin 

polymerisation in host cells (Frischknecht et al., 1999b; Hayward et al., 2006; 

Kenny et al., 1997). In general, RTKs consist of an extracellular ligand binding 

domain, a single transmembrane domain and a cytoplasmic tail that frequently 

harbours the protein tyrosine kinase activity as well as other C-terminal and 

juxtamembrane regulatory regions (Hubbard and Miller, 2007; Lemmon and 

Schlessinger, 2010). Upon activation by ligand binding, receptor dimerization or 

oligomerization occurs and results in a conformational change that activates the 

kinase activity of the cytoplasmic domain of the receptor. This results in the 

phosphorylation of multiple sites in the cytoplasmic region of the dimer/oligomer 

and the RTKs can now function as a recruitment and activation platforms for other 

cellular proteins (Lemmon and Schlessinger, 2010). One important class of 

proteins that link cell surface receptors to the cytoskeleton are the SH2-SH3 

adaptor proteins, for example Nck and Grb2 (Buday et al., 2002; Mayer, 2001; 

Pawson, 2007; Reebye et al., 2012).  

1.7.1 SH2 domains 

SH2 (Src homology 2) domains are small, independently folding, modular domains 

that bind directly to phosphotyrosine motifs (Waksman et al., 1992). SH2 domains 

were first identified in the p130Gag-Fps oncoprotein in Fujinama sarcoma virus and 

are highly conserved among cytoplasmic protein tyrosine kinases (Mayer et al., 

1988a; Sadowski et al., 1986). They are found in a diverse set of proteins including 

adaptors suck as Nck, Grb2 and Crk, the p85 subunit of PI3Kinase, the tyrosine 

phosphatase SHP-2 and Vav, a small GTPase guanine nucleotide exchange factor 

(GEF) (Buday et al., 2002; Matozaki et al., 2009; Mayer et al., 1988b; Pawson, 

2004, 2007; Tybulewicz et al., 2003). A key feature of the structure of SH2 domains 
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is an invariant arginine in the binding pocket that accommodates the 

phosphorylated tyrosine (Waksman et al., 1992). Furthermore, SH2 domains have 

a second more variable binding region that interacts with residues adjacent to the 

phosphorylated tyrosine and confers the different binding specificities that are 

observed for the various SH2 domains (Eck et al., 1993; Waksman et al., 1993). 

Altering a single residue in this region is sufficient to change the selectivity of the 

SH2 domain and modify its cellular function (Marengere et al., 1994). The residues 

immediately C-terminal to the phosphorylated tyrosine are critical for determining 

the SH2 domain specificity (Songyang et al., 1993). For example, the SH2 domain 

of Nck has a strong preference for interacting with the sequence YDxV, whereas 

Grb2 can bind to a wider variety of motifs containing the sequence YxNx (Frese et 

al., 2006; Kessels et al., 2002; Songyang et al., 1993; Songyang et al., 1994).  

1.7.2 SH3 domains 

In contrast to SH2 domains, SH3 domains are part of a superfamily of proline 

recognition domains (PRD), which includes WW, EVH1, GYF, profilin, Cap-gly and 

UEV domains (Kay, 2012; Li, 2005). These are the most abundant protein 

interaction domains in metazoans (Castagnoli et al., 2004). SH3 domains are 

approximately 60 residues in length and like SH2 domains; they interact with 

sequences containing a core motif flanked by residues that confer specificity 

(Saksela and Permi, 2012). The canonical SH3 ligand is a short proline rich peptide 

that contains the sequence PxxP and adopts a left-handed polyproline type II helix 

(Ren et al., 1993; Sparks et al., 1996; Yu et al., 1994). The structure of the SH3 

domain is a β-barrel that contains five anti-parallel β-strands (Musacchio et al., 

1992). The binding surface of the domain consists of three main features, two 

hydrophobic grooves that are lined with aromatic residues, which accommodate the 

xP peptides of the canonical motif and a specificity pocket that is formed by 

residues from the RT and nSrc loops (Feng et al., 1994; Lim et al., 1994; 

Musacchio et al., 1992; Noble et al., 1993; Yu et al., 1994). As the hydrophobic 

grooves lack defined features that would allow recognition of subtle differences 

between different PxxP motifs, the specificity pocket is crucial for determining the 

range of binding partners of an SH3 domain. Consistent with this, the substitution 

of a single residue within this specificity pocket is sufficient to alter the binding 
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preferences of an SH3 domain (Weng et al., 1995). Negative regulation of 

interactions between SH3 domains and their binding partners can be controlled by 

phosphorylation of conserved tyrosines within the binding pocket (Tatarova et al., 

2012).  

 

Many SH3 domains bind either type I or type II proline motifs (Tong et al., 2002; 

Zarrinpar et al., 2003). Class I motifs are characterised by the sequence 

R/KxxPxxP, while class II ligands are typified by PxxPxR sequences 

(Alexandropoulos et al., 1995; Feng et al., 1994). Both classes have similar binding 

affinities for SH3 domains that lie in the range of 1-200µM (Mayer, 2001). As PxxP 

motifs can bind the SH3 domain in two opposite orientations, an important function 

of the R/K residues in these motifs are to position the proline rich ligand correctly 

with respect to the binding groove in the SH3 domain (Feng et al., 1994; Lim et al., 

1994). Interestingly the SH3 domains of Fyn and Fyb, were shown to interact with 

SKAP55 via an RKxxYxxY motif suggesting that prolines are not absolutely 

required for SH3 domain interactions (Kang et al., 2000). This was further 

reinforced by the discovery of other atypical SH3 ligands including SH2 domains, 

LIM domains and PX domains (Hiroaki et al., 2001; Latour et al., 2003; Vaynberg et 

al., 2005). Another example of this is the interaction of the GADS SH3 domain with 

SLP-76 via an RxxK motif (Liu et al., 2003). Interestingly, the SH3 domain of 

Pex13p was shown to bind both canonical and non-canonical ligands via distinct 

surfaces (Barnett et al., 2000; Douangamath et al., 2002). Futhermore, IRTKS 

(insulin receptor tyrosine kinase substrate) has recently been shown to bind to 

tandem PxxP motifs in EspFu, suggesting that the complexity of SH3 interacting 

partners may be even greater that previously imagined (Aitio et al., 2010). 

 

1.7.3 Nck 

The Nck family of adaptors has two members, Nck1 and Nck2, which have 68% 

amino acid identity (Braverman and Quilliam, 1999; Buday et al., 2002; Chen et al., 

1998). They are both widely expressed and at least partially functionally redundant. 

Nck adaptors consist of three SH3 domains followed by a C-terminal SH2 domain. 

Knockout of either Nck1 or Nck2 alone yields healthy, fertile mice that have no 
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gross abnormalities, while the double knockout is embryonically lethal by E12.5 

(Bladt et al., 2003). Fibroblasts derived from Nck1/2 null mice have defects in 

cytoskeletal organisation and cell migration. Furthermore, loss of Dock (the 

Drosophila Nck homologue), results in defects in axonal guidance and targeting in 

photoreceptor cells (Garrity et al., 1996). The ability of Nck to interact with both 

phosphotyrosine motifs in RTKs like the PDGFR, the TCR and the Met receptor, 

and the proline rich regions domains in N-WASP and WIP make it a crucial link in 

regulating cytoskeletal remodelling in response to extracellular signals (Abella et al., 

2010b; Anton et al., 1998; Lettau et al., 2009; Rohatgi et al., 2001; Ruusala et al., 

2008). Furthermore, Nck can interact with phophotyrosine motifs on other non-

receptor proteins that are involved in cytoskeletal organisation including cortactin, 

Tks5 and SLP76 (Oser et al., 2010; Pauker et al., 2011; Stylli et al., 2009). Nck 

activates N-WASP by interacting with its proline rich region and relieving its 

autoinhibition in a synergistic manner with PIP2 (Rohatgi et al., 2001; Tomasevic et 

al., 2007). Moreover, clustering of the three SH3 domains of Nck at the plasma 

membrane is sufficient to induce localised actin polymerisation in an N-WASP 

dependent manner (Rivera et al., 2004; Rivera et al., 2009). In addition, recruitment 

of Nck by multiple phosphorylated tyrosines on the nephrin receptor is essential for 

actin polymerisation in a mechanism that requires the second and third SH3 

domains of Nck (Blasutig et al., 2008). PAK (p21 activated kinase) activation at the 

plasma membrane occurs in response to Nck recruitment (Lu et al., 1997). Nck and 

PAK participate in processes as diverse as the regulation of focal adhesion 

assembly and synaptic transmission (Stoletov et al., 2001; Thevenot et al., 2011). 

Downstream of the TCR, Nck co-operates with ADAP to stabilise the interaction of 

SLP76 and WASP during TCR activation (Pauker et al., 2011). Furthermore, Nck 

functions with WIP and N-WASP to promote the actin-based motility of PIP2 rich 

vesicles as well that of pathogens such as vaccinia virus (Benesch et al., 2002; 

Frischknecht et al., 1999b; Moreau et al., 2000; Weisswange et al., 2009). In 

addition, Nck regulates the formation of invadopodia via interactions with cortactin 

and Tks5 as well as with WIP and N-WASP, which are also essential for this 

process (Oser et al., 2010; Stylli et al., 2009; Yamaguchi et al., 2005). Thus, Nck 

functions as a crucial linker between a multitude of plasma membrane receptors 

and the actin cytoskeleton in a vast range of physiological processes.  
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1.8 Comparison of pathogens that hijack the cellular actin 
polymerisation machinery 

A wide variety of bacterial and viral pathogens exploit Arp2/3 complex dependent 

actin polymerisation to enhance their pathogenesis. Listeria monocytogenes, 

Shigella flexneri, Burkholderia pseudomallei and Mycobacterium marinum all 

induce actin polymerisation in order to propel the bacteria through the cytoplasm of 

the cell (Bernardini et al., 1989; Kespichayawattana et al., 2000; Knutton et al., 

1989; Mounier et al., 1990; Stamm et al., 2005; Tilney and Portnoy, 1989). In 

contrast, EPEC and EHEC adhere to the surface of cells and induce the formation 

of actin rich pedestals beneath the bacteria (Campellone et al., 2008a; da Silva et 

al., 1989; Lommel et al., 2004; Phillips et al., 2004; Wong et al., 2012). This 

structure is referred to as an attaching and effacing (A/E) lesion and is important to 

promote efficient colonization by the bacteria (Wong et al., 2011). Furthermore, 

after replication within host cells, vaccinia and other vertebrate poxviruses fuse with 

the plasma membrane and induce the formation of actin tails that enhance their 

cell-to-cell spread (section 1.8.1) (Cudmore et al., 1995; Dodding and Way, 2009; 

Rietdorf et al., 2001).  

 

Listeria monocytogenes encodes a direct activator of the Arp2/3 complex, known 

as ActA (Loisel et al., 1999; Welch et al., 1997b; Welch et al., 1998). In vitro assays 

in which beads were coated with purified ActA demonstrated that it is sufficient to 

reconstitute actin-based motility in cytoplasmic extracts (Cameron et al., 1999). 

Subsequently, ActA was found to contain regions of homology to WASP family 

proteins, that mimic the WCA domain and bind directly the Arp2/3 complex to 

stimulate its actin nucleation activity (Boujemaa-Paterski et al., 2001; Skoble et al., 

2000; Zalevsky et al., 2001a). Interestingly, like the WCA domain of WASP/N-

WASP, phosphorylation of ActA positively regulates actin tail formation by 

increasing its affinity for the Arp2/3 complex (Chong et al., 2009). VASP, capping 

protein and ADF/cofilin have also been shown to play important roles in Listeria 

actin tail formation (Li et al., 2008; Loisel et al., 1999; Skoble et al., 2001).  

 

In contrast to Listeria, Shigella encodes, IcsA, a protein that activates N-WASP. 

Consistent with this, Shigella does not induce actin tail formation in the absence of 
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N-WASP (Suzuki et al., 2002). IcsA contains glycine-rich repeats that interact with 

both the GBD and WH1 domains of N-WASP in order to promotes its activation 

(Egile et al., 1999; Goldberg and Theriot, 1995; Lommel et al., 2001; Moreau et al., 

2000; Suzuki et al., 1998; Suzuki et al., 2000; Suzuki et al., 2002). IcsA is both 

necessary and sufficient for Shigella actin-based motility (Goldberg and Theriot, 

1995; Loisel et al., 1999). Cdc42 is not required for actin based motility of the 

bacteria, although it is important for the entry of Shigella into cells (Moreau et al., 

2000; Shibata et al., 2002). In addition, both WIP and Nck are recruited to Shigella, 

however dominant negative constructs of these proteins did not affect the formation 

of actin tails (Moreau et al., 2000). Transient recruitment of Toca-1 is also required 

for the initiation of actin polymerisation by Shigella (Leung et al., 2008). This 

recruitment is dependent on type III secreted effector proteins but not IcsA. 

Furthermore, Toca-1 was shown to be necessary to relieve the auto-inhibitory 

conformation of N-WASP, presumably to facilitate the interaction of IcsA with the 

GBD (Leung et al., 2008).  

 

Actin pedestal formation by EPEC and EHEC has evolved to mimic receptor 

tyrosine kinase signalling (Hayward et al., 2006). Both types of bacteria secrete 

effector proteins into the cell that are required for actin pedestal formation (Kenny 

et al., 1997). One such protein, which is essential for actin polymerisation is Tir 

(translocated intimin receptor), a transmembrane protein that has a hairpin 

topology with both the N and C-terminal regions exposed to the cytosol (DeVinney 

et al., 1999; Hartland et al., 1999). The extracellular portion of Tir interacts with 

intimin, a protein located in the outer membrane of the bacteria (Kenny et al., 1997; 

Rosenshine et al., 1996). The induction of pedestals by EPEC and EHEC then 

proceeds by different mechanisms, although in both cases N-WASP and the Arp2/3 

complex are required (Kalman et al., 1999; Lommel et al., 2004; Lommel et al., 

2001). In EPEC, Tir is tyrosine phosphorylated by Src and Abl family kinases 

resulting in the recruitment of Nck by tyrosine 474 (Gruenheid et al., 2001; Kenny, 

1999; Phillips et al., 2004; Swimm et al., 2004). Nck is crucial for robust actin 

pedestal formation and is required for the recruitment of N-WASP and the Arp2/3 

complex to sites of pedestal formation (Gruenheid et al., 2001). In the absence of 

Nck, EPEC can still induce actin polymerisation, albeit with fourfold lower efficiency 

(Campellone et al., 2004). N-WASP and the Arp2/3 complex are recruited to 
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pedestals in the absence of Nck, and phosphorylation of another tyrosine in Tir 

(454) is also involved in this secondary pathway of pedestal formation (Campellone 

and Leong, 2005). The importance of phosphorylated tyrosine 454 suggests that 

another SH2 adaptor is involved in this mechanism of actin polymerisation; 

however, the identity of this protein remains unknown (Campellone and Leong, 

2005). 

 

In contrast to EPEC, EHEC requires a second bacterial protein, EspFu (E. coli-

secreted protein F-like protein encoded on prophage U), to induce actin 

polymerisation (Campellone et al., 2004). EspFu interacts with both Tir and N-

WASP and activates N-WASP by competing with the WCA domain for GBD binding 

(Campellone et al., 2008a; Campellone et al., 2004; Cheng et al., 2008; Sallee et 

al., 2008). IRSp53 and the related protein, IRTKS, mediate recruitment of EspFu to 

bacteria by interacting both with tyrosine 458 of Tir and with the proline rich region 

of EspFu (Vingadassalom et al., 2009; Weiss et al., 2009). Tyrosine 458 of EHEC 

Tir is part of an NPY motif, which is also conserved in EPEC Tir (NPY 454). 

Interestingly in Nck deficient cells, expression of EspFu rescues the ability of EPEC 

to induce actin pedestal formation to near wild type levels suggesting that the 

origins of this actin polymerisation pathway are common to both EPEC and EHEC 

(Brady et al., 2007; Campellone et al., 2004). Although Y454 can be 

phosphorylated in EPEC infected cells, substitution of this tyrosine for 

phenylalanine results in a minor, although significant, defect in actin pedestal 

formation in both EHEC and EPEC. This indicates that tyrosine phosphorylation is 

not essential for EspFu recruitment to Tir (Brady et al., 2007). Surprisingly, recent 

data has demonstrated that while N-WASP is required for translocation of Tir and 

EspFu into cells, it is not essential for actin pedestal formation (Vingadassalom et 

al., 2010). Clustering of the C-terminal repeats of EspFu in N-WASP-/- cells was 

sufficient to induce actin polymerisation. Despite this, loss of N-WASP does lead to 

a decrease in the efficiency of pedestal formation, and the Arp2/3 complex is still 

essential for the formation of pedestals. This data raises the interesting possibility 

that another unknown factor plays a major role in stimulating Arp2/3 dependent 

actin polymerisation during EHEC infection (Vingadassalom et al., 2010). EPEC 

and EHEC both recruit WIP to sites of actin pedestal formation (Lommel et al., 

2004). Recruitment of WIP involves both Tir and another bacterial protein, EspH, 
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(Wong et al., 2012). It seems that WIP then interacts with N-WASP and mediates 

actin polymerisation independently of Nck. Consistent with this mechanism, 

expression of the WBD of WIP, which disrupts the interaction of WIP and N-WASP 

eliminates EspH dependent actin polymerisation (Wong et al., 2012). 

1.8.1 Vaccinia Virus 

Vaccinia virus is a member of the orthopox genus of poxviridae (Roberts and Smith, 

2008). It is large, brick shaped, enveloped virus with dimensions of approximately 

250nm by 200nm (Goebel et al., 1990). It is a double-stranded DNA virus that 

replicates entirely in the cytoplasm of host cells. The virus enters the cell primarily 

by macropinocytosis, a specialised form of endocytosis that results in the 

engulfment of large amounts of fluid (Mercer and Helenius, 2008; Schmidt et al., 

2011). In addition, virus particles can also enter the cell by direct fusion with the 

plasma membrane (Armstrong et al., 1973; Carter et al., 2005). After entry, the viral 

core is transported to the perinuclear region of the cell in a microtubule dependent 

manner where it establishes a compartment known as the virus factory where 

replication occurs (Carter et al., 2003; Domi and Beaud, 2000; Tolonen et al., 2001). 

A subset of newly replicated virus particles, knowns as IMVs (intracellular mature 

virus), leave the virus factory and become wrapped in a double membrane derived 

from the endosomal network or the trans-golgi, resulting in the formation of 

intracellular enveloped virus (IEV) particles (Dodding et al., 2009; Hiller and Weber, 

1985; Roberts and Smith, 2008; Schmelz et al., 1994; Tooze et al., 1993). IEVs are 

transported on microtubules in a kinesin-1 dependent manner to the cell periphery 

where the outer membrane of the virus fuses with the plasma membrane, resulting 

in the liberation of an enveloped virus particle that remains attached to the cell 

surface (Arakawa et al., 2007a; Arakawa et al., 2007b; Dodding et al., 2011; 

Hollinshead et al., 2001; Morgan et al., 2010; Rietdorf et al., 2001). The 

extracellular form of the virus particle is referred to as a CEV (cell-associated 

enveloped virus). CEVs then signal back into the cell to induce the formation of an 

actin tail that propels the virus particle away from the plasma membrane towards 

neighbouring cells to enhance the spread of infection. The importance of actin tails 

in cell-to-cell spread of the virus is demonstrated by the small plaque phenotype of 

mutant viruses that cannot induce actin tails (Blasco and Moss, 1992; Herrera et al., 
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1998; Mathew et al., 1998; Rodger and Smith, 2002; Rottger et al., 1999). 

Interestingly, vaccinia virus also uses actin tails to infect distantly located cells in 

order to substantially increase the rate of infection (Doceul et al., 2012; Doceul et 

al., 2010). Doceul and colleagues found that if a virus particle contacted an already 

infected cell, it would induce an actin tail, and “surf” across the plasma membrane 

until it came into contact with another uninfected cell. The virus particle can then 

infect this cell and establish a virus factory. 
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Figure 1.7. The life cycle of vaccinia virus 

Schematic representation of the life cycle of vaccinia virus. Virus particles bind 
to and enter the cell by macropinocytosis or direct membrane fusion. The core 
of the virus is transported on microtubules to the perinuclear region where the 
virus factory is established. Within the virus factory, the viral core is uncoated 
and transcription of viral DNA and replication of virus particles occur. This 
results in the formation of IMVs, a subset of which are transported to the Golgi 
where they become wrapped in a double membrane to form IEVs. These are 
transported on microtubules in a kinesin-1 dependent manner to the cell 
periphery where they fuse with the plasma membrane and reside on the cell 
surface in the form of CEVs. These particles signal back inside the cell to 
induce the formation of actin tails, which generate the force to propel them into 
neighbouring cells. IMV (intracellular mature virus), IEV (intracellular enveloped 
virus), CEV (Cell-associated enveloped virus). (Roberts and Smith, Vaccinia virus 
morphogenesis and dissemination, Trends in Microbiology, (2008) 16(10): 472-9. 
Reproduced with permission of ELSEVIER LTD. in the format reuse in a 
thesis/dissertation via Copyright Clearance Center. 
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1.8.2 Actin tail formation 

After fusion with the plasma membrane, vaccinia virus particles (CEVs) induce an 

outside-in signalling cascade that locally stimulates actin polymerisation. The viral 

protein A36 is critical for the induction of actin tails (Frischknecht et al., 1999b; 

Rottger et al., 1999). It is a 45kDa, type 1b transmembrane protein that is 

specifically localised to IEVs (van Eijl et al., 2000). A36 becomes incorporated into 

the plasma membrane upon fusion of IEVs and remains localised underneath the 

CEV (van Eijl et al., 2000). CEVs induce the activation of Src and Abl family 

kinases via an unknown mechanism that is dependent on the SCR repeats of the 

vaccinia protein B5 (Newsome et al., 2004; Newsome et al., 2006). Recently, CK2 

(Casein Kinase 2), a serine/threonine kinase has also been implicated in the 

recruitment of activated Src to vaccinia virus particles (Alvarez and Agaisse, 2012). 

Activated Src then phosphorylates A36 on two tyrosines in its cytoplasmic domain 

(Frischknecht et al., 1999a; Frischknecht et al., 1999b; Scaplehorn et al., 2002). In 

this way, vaccinia virus mimics receptor tyrosine kinase signalling (Munter et al., 

2006; Reeves et al., 2005). Phosphorylation of A36 on Y112 results in the 

recruitment of a complex of Nck, WIP and N-WASP that function together to 

activate the Arp2/3 complex and induce actin polymerisation (Frischknecht et al., 

1999b; Moreau et al., 2000). Nck and N-WASP are essential for actin tail formation 

(Snapper et al., 2001; Weisswange et al., 2009). In contrast, it still remains to be 

established if WIP is essential. Furthermore, Nck is thought to be the major factor 

that activates N-WASP at virus particles. Although Cdc42 is localised to virus 

particle inducing actin tails, it is not thought to play a role in their formation, as 

expression of dominant negative Cdc42, or treatment of cells with toxin B, did not 

affect the ability of vaccinia virus to induce actin tails (Moreau et al., 2000). 

Expression of the WBD of WIP in vaccinia infected HeLa cells results in the loss of 

recruitment of N-WASP and a decrease in the efficiency of actin tail formation 

(Moreau et al., 2000; Zettl and Way, 2002). Consistent with this, the WH1 domain 

of N-WASP is also important for its recruitment. This suggests that the localisation 

of N-WASP to virus particles may depend on the presence of WIP. However, in the 

absence of N-WASP, only Nck localises to vaccinia virus, suggesting that WIP and 

N-WASP may be recruited as a complex (Weisswange et al., 2009). Thus, the 
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precise mechanism of recruitment of WIP and N-WASP still remains to be fully 

clarified.  

 

Phosphorylation of tyrosine 132 of A36 results in the recruitment of Grb2, which 

functions as a secondary adaptor in actin tail formation (Scaplehorn et al., 2002). 

Recruitment of Grb2 also depends on an interaction with the proline rich region of 

N-WASP (Scaplehorn et al., 2002; Weisswange et al., 2009). Grb2 is not essential 

for inducing actin tail formation, however its presence enhances the efficiency of 

this process and leads to an increase in the number of actin tails induced 

(Scaplehorn et al., 2002). Recent work has demonstrated that the dynamics of the 

vaccinia actin-signalling network are very rapid (Weisswange et al., 2009). FRAP 

experiments revealed that Nck and WIP have similar rates of exchange of ~800ms, 

while Grb2 is much more dynamic with a rate of exchange of ~140ms. Surprisingly, 

N-WASP exchanges more 3.5 times more slowly, despite its role as the most 

downstream component of the complex. It was found that N-WASP is stabilised by 

interactions with both Grb2 and actin filaments and furthermore that the rate of N-

WASP exchange was the primary determinant of the rate of actin based motility of 

vaccinia virus particles (Weisswange et al., 2009). Loss of Grb2 recruitment also 

resulted in the more rapid exchange of both Nck and WIP (Weisswange et al., 

2009). Thus Grb2 stabilises the actin-signalling network at virus particles. Grb2 can 

also activate N-WASP, although it is not clear whether this is important in vaccinia 

induced actin tail formation (Carlier et al., 2000; Tomasevic et al., 2007).  

1.9 The Aim of this thesis 

Studies examining how the actin cytoskeleton is exploited by viral and bacterial 

pathogens have been an invaluable tool in understanding cellular mechanisms 

regulating actin polymerisation. The aim of my thesis was to use vaccinia virus to 

further understand how a phosphotyrosine based signalling network functions to 

activate Arp2/3 dependent actin polymerisation. In particular, my aim was to 

elucidate the exact role of WIP in Nck and N-WASP signalling and furthermore, to 

understand the connectivity and interplay between the proteins in this important 

and conserved signalling network.  
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Figure 1.8. Vaccinia Virus Actin Signalling Network 

Schematic representation of A36 and the cellular proteins required for actin 
based motility of vaccinia virus. Activation of Src and Abl family kinases results 
in phosphorylation of A36 on two tyrosines 112 and 132. This results in the 
recruitment of a complex of Nck, Grb2, WIP, and N-WASP, which function 
together to stimulate the Arp2/3 complex and induce actin tail formation. Nck 
and N-WASP are essential for actin polymerisation while Grb2 functions as a 
secondary adaptor to enhance actin tail formation. SH (Src Homology), WBD 
(WASP Binding Domain), V (verprolin/WH2), C (connector), A (acidic). Arrows 
indicate potential interactions. 
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Chapter 2. Materials & Methods 

2.1 General Buffers and culture media 

Most generic buffers and media were provided by the in-house service at CRUK. 

The recipes for the relevant reagents are listed below. All other buffers will be 

described in the relevant section. 

2.1.1 General Buffers 

Phosphate Buffered Saline A (PBSA) 

8g        Sodium chloride, NaCl 

0.25g   Potassium chloride, KCl 

1.43g   Sodium phosphate dibasic, Na2HPO4  

0.25g   Potassium phosphate monobasic, KH2PO4, pH 7.2 

2.1.2 Cell Culture Media 

Trypsin Solution : 0.25% in Tris Saline  

Tris Saline (TS) 

8g  NaCl 

2ml      19% (w/v) KCl solution 

0.1g     Na2H2PO4 

1g        D-Glucose 

3g        Trizma Base 

1.5ml   1% (w/v) Phenol red solution 

0.06g  Penicillin 

0.1g    Streptomycin 

 

Versene Solution 

8g NaCl 

0.2g KCl 

1.15g Na2HPO4 

0.2g KH2PO4 , pH 7.2 

0.2g Ethyldiaminotetraacetic acid disodium (EDTA) salt 



Chapter 2 Materials and Methods 

 

 72 

1.5ml 1% (w/v) Phenol red solution 

2.1.3 Bacteriological Media 

Luria-Bertani (LB) Medium 

10g     Bacto-tryptone 

5g       Bacto-yeast extract 

10g     NaCl 

 

LB Agar 

15g of Bacto-agar was dissolved in 1 litre of LB medium. 

 

2.2 Cell Culture 

2.2.1 Culturing and Freezing Stocks 

All cell lines used in this thesis, as well as details of their corresponding media, are 

listed in Table 2.1. 

 

Cell were cultured in media containing FCS and antibiotics (complete media) at 

37°C and 5% CO2. Generally cells were grown to approximately 70% confluency in 

10cm dishes and passaged every 2-3 days. To passage cells, the media was 

aspirated, the plate was washed once with PBS (HeLa, 293T, N-WASP-/- MEFs) or 

Versene (Nck-/- MEFs, WIP-/- MEFs) and then 2ml of 0.05% trypsin was added to 

the dish. After ~5 minutes at 37°C, cells were resuspended in complete media and 

added to a new dish in the required confluency. All cell lines except WIP-/- and WIP 

wild type MEFs were cultured in 10% FCS. The WIP cell lines were cultured in 15% 

serum. 

 

To generate frozen stocks, cells from a 70% confluent 10cm dish, were trypsinised 

as described above, resuspended in complete media and then centrifuged at 100g 

for 5 minutes. Cell pellets were resuspended in FCS supplemented with 10% 

DMSO, transferred to cryovials and placed in the -80°C. After 1-2 weeks, cells were 

transferred to liquid nitrogen for long-term storage. Frozen cells were recovered by 

thawing an aliquot in a 37°C water bath and then transferring to a 10cm dish 
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containing complete media. Once the cells had attached to the dish, the media was 

changed to remove the DMSO. 

 

Table 2.1. Cell lines and media 

Cell Line Species Medium Serum Antibiotics Source 

HeLa Human MEM 10% FCS3 Pen/Strep4 EMBL, 

Heidelberg 

293FT Human DMEM1 10% FCS3 Pen/Strep4 Invitrogen 

BSC-1 Monkey DMEM2 10% FCS3 Pen/Strep4 ATCC 

N-WASP-/- Mouse DMEM1 10% FCS3 Pen/Strep4 S.Snapper 

19-IRES 

Nck 1/2-/- 

Mouse DMEM1 10% FCS3 Pen/Strep4 T. Pawson 

WIP WT Mouse DMEM1 15% FCS3 Pen/Strep4 N. Ramesh 

WIP-/- KO7 Mouse DMEM1 15% FCS3 Pen/Strep4 N. Ramesh 

 

Notes 
1Dulbecco’s modified eagle medium 4500mg/dm3 glucose from Invitrogen (Cat..) 
2Dulbecco’s modified eagle medium 1000mg/dm3 glucose from Invitrogen (Cat..) 
3Foetal Calf Serum from PAA Laboratories (A15-041) 
4100units/ml penicillin G sodium, 100µg/ml streptomycin sulphate, from 100x stock, 

Invitrogen (15140-122).
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2.3 Transfection 

Different transfection reagents were used depending on the assay and the cell type. 

2.3.1 Calcium Phosphate 

The ProFection mammalian transfection system from Promega was used for 

calcium phosphate transfection of 293FT during lentiviral production using the pL/L 

system. Media was changed on the cells to be transfected 4 hours before addition 

of the complexes. To transfect a 6cm dish, 20µg of DNA and 37µl of 2M CaCl2 

were diluted to a final volume of 300µl in dH20, while 300µl of 2X HBS was added 

to another tube. After 20 minutes, the DNA mixture was added drop-wise to the 

HBS with gentle vortexing. 30 minutes later, after mixing by pipetting, the 

complexes were added to the cells and the plate was gently swirled to ensure an 

even distribution. 

2.3.2 Effectene 

Effectene (Qiagen) was used for the transfection of infected cells with pE/L vectors 

during vaccinia virus infection. In general, cells were transfected 5 hours post 

infection and fixed 4-5 hours later. Cells were usually plated at 1x105 cells the day 

prior to the transfection. For a 3cm dish, 400ng of DNA was diluted in 100µl of EC 

Buffer, 3.2µl of enhancer was added and the mixture was vortexed before 

incubation at room temperature for 5 minutes. 5µl of effectene was added to the 

mixture, which was then vortexed for 10 seconds and incubated at room 

temperature for 10 minutes before mixing by pipetting. The mixture was added 

directly to the cells. Due to the short period before fixation, it was not necessary to 

change the media. 

2.3.3 Lipofectamine 2000 

This method of transfection was used to transfect 293FT cells during the production 

of lentivirus using the pLVX system. For a 10cm dish, 20µg of DNA was diluted in 

0.5ml of Opti-MEM (Invitrogen) while 60µl of lipofectamine 2000 was diluted in 

0.5ml of Opti-MEM in a separate tube. After 5 minutes, the lipofectamine 2000 was 

added to the DNA mixture and this was then incubated at room temperature for 30 
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minutes. The mixture was then added directly to the cells, which had been seeded 

the previous day in complete media. 

2.3.4 Hiperfect 

Hiperfect was used for transfection of cells with siRNA. The standard fast-forward 

protocol was used as follows. For a 3cm dish: 2µl of a 20µM stock of siRNA was 

diluted in 100µl of complete media, prior to the addition of 12µl of Hiperfect. The 

mixture was vortexed and incubated for 5 minutes at room temperature. During this 

time, the relevant cell line was trypsinised and plated at a density of 7x104 cells in a 

final volume of 2ml of complete media. The transfection mixture was then added 

directly to the cells. Cells were incubated for 24-72 hours before transferring to 

coverslips/Matek dishes for immunofluorescence or live cell imaging or being 

processed for Western Blot analysis. 

2.3.4.1 WIRE RNAi 

Two independent siRNA oligos targeting mouse WIRE were purchased from 

Dharmacon (siGENOME siRNA - Mouse 1110014J05RIK D-041519-01/02). The 

AllStars negative control siRNA from Qiagen was used to control for non-specific 

effects and toxicity of the siRNA.. WIP-/- cells were treated with RNAi for 48hrs, 

before infection with vaccinia virus for 9-10 hours. For rescue experiments, human 

GFP-WIP (or WIP mutant) was transfected into infected cells 5 hours post infection, 

using effectene as described above. The human WIP construct was not targeted by 

the mouse siRNA. 

2.4 Vaccinia Virus 

The wild type strain of vaccinia virus used in this thesis was Western Reserve (WR). 

Any other viruses used are listed below. 

Table 2.2. Viruses used in this thesis 

Vaccinia virus strain Generated by Reference/Figure 

WR/RFP-A3L S. Schleich Figure 3.7 

A36R-Y132F N. Scaplehorn Figure 3.8 

A36R-Y132F/RFP-A3L I. Weisswange Figure 3.10 
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2.4.1 Virus Stock Preparation 

Cells were infected using post-nuclear stocks (PNS) of vaccinia virus. Stocks were 

prepared by infecting 5-10x15cm dishes of 80% confluent HeLa cells with the 

required virus. Cells were infected in complete media at an MOI of 0.05. Infection 

was allowed to proceed for 2-3 days until virtually all cells were infected. The level 

of infection was assessed using a standard wide field tissue culture microscope 

equipped with at 10X PH-1 objective. To collect the virus, the medium was 

aspirated and all dishes were scraped and combined into 10-20ml of PBSA. This 

was centrifuged at 1700rpm for 5 minutes at 4°C. The PBSA was removed and the 

pellet was resuspended in 250µl of ice-cold viral lysis buffer per 10cm dish. This 

suspension was then frozen at -20°C, usually overnight. Once thawed, the cell 

membranes and nuclei were sheared by 8-10 times through a needle. The 

suspension was then centrifuged at 13000 rpm for 5 minutes at 4°C and the 

supernatant was collected. This supernatant was divided into 100µl aliquots and 

stored at -80°C. 

 

Viral Lysis Buffer 

10mM Tris.HCl, pH9.0 

10mM KCL 

3mM Magnesium acetate 

2.4.2 Infection 

To infect cells, a 100µl aliquot of the PNS preparation was thawed at 37°C and 

then sonicated for 20 seconds. This vial was then kept at -20°C as a working stock 

for a number of weeks-months, with little effect on the infection efficiency. The 

stock was sonicated before each infection was carried out. In order to maintain 

consistency between experiments, the titre of each virus was calculated using a 

plaque assay (Chapter 2.4.3). This method allows calculation of the plaque forming 

units of virus/ml, from which the multiplicity of infection (MOI) can be determined. 

Generally an MOI of 2-3 was used to infect cells for immunofluorescence or live-

cell imaging. 
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Cells were plated at a density of 1x105 in a 3cm dish, the day prior to infection, 

which resulted in about 60% confluency. To infect the cells, the media was 

aspirated and the cells were washed once with serum free media. Serum free 

media containing the appropriate amount of virus was then added to the cells for 1 

hour, after which the media was replaced with complete media. WIP-/- or WIP WT 

cells were usually infected for 9-10 hours before fixation or live imaging, while Nck-

/- and N-WASP-/- cells were infected for 15-16 hours due to the delay in the virus 

life cycle that was observed in these cell lines. For these cell lines, the cells were 

usually plated at a density of 1x105 cells per 3cm dish in the morning, and the 

infection was carried out in the evening to proceed overnight. 

2.4.3 Plaque Assay 

Plaque assays were used to measure the titre of a viral stock in order to determine 

the plaque forming units (PFU) so that the correct amount of virus could be used to 

infect cells. BSC-1 cells were grown to a confluent monolayer in 3cm format and 

then infected with vaccinia virus using the standard protocol described above 

(Section 2.4.2). To ensure the formation of single plaques, a 1:10 dilution series 

was prepared and 6 different dilutions of virus were used to infect cells. One hour 

after infection, an overlay consisting of sterile 0.9% low melting-temperature 

agarose in MEM with 2% FCS and Pen/strep was added to the cells. This overlay 

limits the dissemination of the virus to direct cell-cell spread. The cells were 

maintained in a 37°C incubator for 72 hours before fixation with 3% PFA. 

 

To determine the titre of the virus, the agarose overlay was removed and the cell 

monolayer was washed once with PBSA and then stained in 0.1% crystal violet in 

20% ethanol for 30 minutes. The cells were then washed extensively with distilled 

water and the number of plaques was counted.  

2.5 Stable Cell lines 

Two different lentiviral systems were used to generate the stable cell lines used in 

this thesis. 
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2.5.1 pL/L 3.7 Vector 

The Nck-/- cell lines expressing various constructs of GFP-Nck were generated 

using this method. 

 

293FT cells were plated in 6cm dishes at a density of 2x106 cells. Calcium 

phosphate was used to transfect each dish with 5µg of the pL/L construct of 

interest as well as 5µg of each of the lentiviral packaging vectors RRE, RER and 

VSVG. The following morning the media was changed to fresh warm complete 

media supplemented with 10mM Sodium Butyrate to induce viral transcription. After 

8-10 hours this media was replaced with 3ml of complete media. The following day, 

this media was taken up in a syringe and passed through a 0.45µm filter to remove 

any particles of 293FT cells, and then added to the cells to be infected. These cells 

were plated at ~50% confluency in a 3cm dish on the day prior to infection (for most 

cell lines this is 5x104 cells in a 3cm dish) The virus containing media was left on 

the cells for two days, after which fresh media was added and the cells were 

amplified as required. Infection efficiency was assessed by checking for 

fluorescence using a Zeiss Axioplan Upright equipped with a 25x lens, before cells 

stably expressing the protein of interest were prepared for FACS sorting. 

 

2.5.1.1 Fluorescence activated cell sorting (FACS) 

Fluorescence activated cell sorting (FACS) was used to obtain a population of cells 

that all expressed the GFP positive construct of interest. This was carried out by 

the FACS Facility at CRUK. The cells to be sorted were trypsinised and harvested 

by centrifugation at 100g for 5 minutes. The cell pellet was resuspended in PBSA 

supplemented with 1% FCS and then filtered through a cell strainer to ensure a 

single cell suspension. For each cell line a negative control was prepared in the 

same way to set up the FACS machine, this consisted of the same cells, which had 

not been infected with lentivirus and were thus not expressing a fluorescent protein. 

For each cell line, a 15cm dish was sorted (around 2x107 cells) and the collected 

GFP positive cells were subsequently grown up and stocks were frozen for storage 

in liquid nitrogen. Cell lines created using this method are listed in Table 2.3. 
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Table 2.3. Stable cell lines generated with pL/L system 

Cell Line Protein Introduced Species of Introduced Protein 

Nck-/- GFP-Nck1-Δ1 Human 

Nck-/- GFP-Nck1-Δ2 Human 

Nck-/- GFP-Nck1- Δ3 Human 

Nck-/- GFP-Nck1-ΔSH2 Human 

Nck-/- GFP-Nck1-Δ1+2 Human 

Nck-/- GFP-Nck1-Δ1+3 Human 

Nck-/- GFP-Nck1-Δ2+3 Human 

Nck-/- GFP-Nck1-Δ1+2+3 Human 

 

2.5.2 pLVX-puromycin system 

During my time in the Way lab, a new system of creating stable cell lines using 

lentivirus was adopted. This uses the pLVX vector from Clontech, which contains a 

puromycin resistance cassette, which allows for rapid selection of stably 

transfected cells by treating with puromycin, thereby removing the need for FACS 

sorting. To generate stable cell lines using this method, 293FT cells were seeded in 

a 10cm dish at a density of 4x106 (70-80% confluent). The following evening, the 

cells were co-transfected with 10µg of the construct of interest in the pLVX vector, 

7µg of the pPAX and 3µg of the pMDG2.3 packaging vectors using lipofectamine 

2000. The next morning, the media was replaced with 7mls of complete media. 

Lentivirus can be harvested twice from these cells over the following two days. To 

harvest the virus, the media was taken up in a syringe and passed through a 

0.45µm Millex HV filter (Millipore#SLHV033RB). The media was replaced on the 

293FT the process was repeated the following day. The virus from either day can 

be used to infect the cells of interest, or combined. The cells to be infected were 

plated at 50% confluency in a 3cm dish and 2ml of the lentivirus containing media 

was used to infect them. The rest of the lentivirus was stored at 4°C for a few days 

or at -20°C or -80°C for the long term. The cells were incubated with the virus 

containing media for 2 days before selection with puromycin. 
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To select for cells that stably express the protein of interest, the appropriate 

amount of puromycin was determined by performing a kill curve in which the cell 

line to be infected with lentivirus was treated with various amounts of puromycin. 

For N-WASP-/- cells, 1µg/ml puromycin was found to be sufficient to kill all cells 

after 3-4 days of treatment. After treatment of the infected cells with puromycin for 

3 days, the cells were checked for fluorescence and then grown up to establish 

stocks of the cell lines for future use. The cell lines generated by this method are 

listed in Table 2.4  

 

Table 2.4. Cell lines generated by puromycin selection 

Cell Line Protein Introduced Species of Introduced Protein 

N-WASP-/- GFP N-WASP Rat 

N-WASP-/- GFP N-WASPΔNck Rat 

 

2.6 Molecular Biology 

2.6.1 General buffers and solutions 

5X TBE 

54g Tris Base 

27.5g Boric acid 

20ml of 0.5M EDTA 

make up to a final volume of 1L with distilled water 

 

5X DNA Loading Buffer 

0.25% (w/v) Bromophenol Blue 

15% (v/v) Glycerol 

These were diluted in 5X TBE. 

2.6.2 Expression Vectors 

Three different vectors were used to express proteins. The pE/L vector, which is a 

synthetic early/late vaccinia virus promoter was used for protein expression in 

mammalian cells during vaccinia virus infection (Chakrabarti et al., 1997). For 

creating stable cell lines the modified pL/L3.7 or pLVX vector was used. Finally, the 
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pMW172 vector, which contains a leaky T7 promoter, was used for bacterial 

expression of protein (Way et al., 1990). These vectors contained either a GFP or 

His tag at the N-terminus of the protein of interest. The constructs used in this 

thesis are listed in table 2.5 below: 

 

Table 2.5. Expression vectors 

Vector Figure Created by 

pE/L GFP stop 3.5 Rietdorf et al., 2001 

pE/L GFP WIP 3.5 M. Zettl 

pE/L GFP WIRE 3.5 M. Zettl 

pE/L GFP WIP P253A P256A 4.2 S. Donnelly 

pE/L GFP WIP P332A P335A 4.2 S. Donnelly 

pE/L GFP WIPΔNck 

(P253A P256A+ P332A P335A) 

4.2 S. Donnelly 

pE/L GFP WIP FFAA 4.7 M. Zettl 

pE/L GFP WIPΔNck +FFAA 4.11 S. Donnelly 

pE/L N-WASP 5.2 Frischknecht et al., 1999b 

pE/L GFP N-WASP P276A P279A 5.2 S. Donnelly 

pE/L GFP N-WASP P297A P300A 5.2 S. Donnelly 

pE/L GFP N-WASPΔNck 

(P276A P279A +P297A P300A) 

5.2 S. Donnelly 

pE/L GFP Nck1 6.2 Frischknecht et al., 1999b 

pE/L GFP Nck1ΔSH3-1 6.2 N. Scaplehorn 

pE/L GFP Nck1ΔSH3-2 6.2 N. Scaplehorn 

pE/L GFP Nck1ΔSH3-3 6.2 N. Scaplehorn 

pE/L GFP Nck1ΔSH2 6.2 N. Scaplehorn 

pE/L GFP Nck1ΔSH3-1+2 6.2 S. Donnelly 

pE/L GFP Nck1ΔSH3-1+3 6.2 S. Donnelly 

pE/L GFP Nck1ΔSH3-2+3 6.2 S. Donnelly 

pE/L GFP Nck1ΔSH3-1+2+3 6.2 S. Donnelly 

pMW His Nck 1  N. Scaplehorn 

pL/L3.7 GFP Nck1ΔSH3-1 6.2 S. Donnelly 

pL/L3.7 GFP Nck1ΔSH3-2 6.2 S. Donnelly 
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pL/L3.7 GFP Nck1ΔSH3-3 6.2 S. Donnelly 

pL/L3.7 GFP Nck1ΔSH2 6.2 S. Donnelly 

pL/L3.7 GFP Nck1ΔSH3-1+2 6.2 S. Donnelly 

pL/L3.7 GFP Nck1ΔSH3-1+3 6.2 S. Donnelly 

pL/L3.7 GFP Nck1ΔSH3-2+3 6.2 S. Donnelly 

pL/L3.7 GFP Nck1ΔSH3-1+2+3 6.2 S. Donnelly 

pLVX-puro GFP N-WASP 5.3 S. Donnelly 

pLVX-puro GFP N-WASPΔNck 5.3 S. Donnelly 

pE/L GFP Grb2 3.11 N. Scaplehorn 

 

2.6.3 Site Directed Mutagenesis 

Site directed mutagenesis was used to introduce specific point mutations into a 

construct of interest. Primer pairs were designed to cover the sequence of interest 

and to contain the point mutation. The mutation was always in the centre of the 

primer, with at least 10 base pairs on either side. Longer primers were ordered if 

more than one point mutation was being introduced. Primers were designed 

according to Stratagene guidelines. 

PCR reactions were carried out using Phusion High-Fidelity DNA Polymerase 

(NEB) and the following reaction was prepared: 

50-100ng of dsDNA template 

10µl of 5X reaction buffer 

125ng of forward oligonucleotide primer 

125ng of reverse oligonucleotide primer 

1µl of 25mM dNTP mix (6.25 mM of each dNTP) 

1µl (2 units) of Phusion Polymerase 

made up to a final volume of 50µl with dH20 
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PCR reactions were carried out on an Applied Biosystems GeneAmp PCR machine 

using the following cycling conditions: 

 

1. 98°C 30 seconds 

 

2. 98°C 10 seconds 

55°C 30 seconds 

68°C 30 seconds/kb of plasmid length 

 

3. 68°C 10 minutes 

 

Section 2 was repeated 16-20 times depending on the type of mutation (more 

cycles for more mutations). 

 

After the PCR reaction, 1µl of Dpn1 restriction enzyme was added to the reaction 

and this was incubated at 37°C. Dpn1 specifically digests methylated DNA, thus 

only the template DNA will be digested by this enzyme. DNA was precipitated by 

the addition of Sodium acetate at a final concentration of 0.3M and 2.5 volumes of 

100% ethanol at -20°C for at least 1 hour. The mixture was centrifuged for 20 

minutes at 13,000rpm at 4°C, the pellet was washed with 70% ethanol and 

centrifuged again for 10 minutes. After drying, the DNA was resuspended in 10µl of 

dH20 and transformed into competent E. coli. The primers used for site directed 

mutagenesis in this thesis are listed in table 2.6 

Table 2.6. Primers used for Site Directed Mutagenesis 

Construct Primer sequence 

pE/L GFP WIP 

P253A P256A 

CGGCCTCCCCTGGCGCCTACCGCCAGCAGGGCCTTG 

pE/L GFP WIP 

P332A P335A 

CAATGACGAAACCGCAAGACTCGCACAGCGGAATCTG 

pE/L GFP N-WASP 

P276A P279A 

GCAAGCACCACCAGCTCCTCCAGCCTCAAGAGGAGGAC 

pE/L GFP N-WASP 

P297A P300A 

CAGCTCAGGCCCTGCTCCCCCTGCTGCCCGTGGAAGGG 
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Mutated constructs were created from the wild type pE/L construct, verified by 

sequencing, and sub-cloned into other vectors if necessary. Where double mutants 

were constructed, as in the case of pE/L GFP WIPΔNck or pE/L GFP N-

WASPΔNck, the mutations were introduced sequentially. For pE/L GFP WIPΔNck 

+FFAA, the two Nck binding mutations were introduced into pE/L GFP WIP FFAA. 

 

2.6.4 Overlap PCR 

This method was used to generate the double and triple Nck SH3 mutants. 

Constructs containing the single point mutations had previously been generated in 

the lab. Two sets of internal primers were ordered in order to create the necessary 

combinations of mutations. To create chimearas combining the mutations of 

interest three PCRs were carried out. The first two PCR reactions amplified the 

segments of the gene containing the point mutations.  These PCR products were 

gel purified and third PCR was carried out using a 1:1 mixture of these products as 

a template. In this PCR the forward and reverse primers containing the N and C-

terminal restriction sites were used and the resulting product was cloned into pE/L. 

For each reaction, 100µl PCR reaction were prepared containing 

100ng of a pre-existing construct, 10pmol of each primer, 1x Taqplus Precision 

DNA polymerase buffer, 5units Taqplus Precision DNA polymerase (Stratagene) 

and 25nmol dNTP mix. 

 

The following cycling conditions were used as standard: 

1. 95°C 5 minutes 

 

2. 95°C 30 seconds 

55°C 30 seconds 

72°C 1 minute/kb of plasmid length 

 

3. 72°C 7 minutes 

Section 2 was repeated 25 times. 

 

The primers used in these PCRs are listed in table 2.7 
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Table 2.7. Primers used to create Nck mutants 

Primer Name Sequence 

Nck 300 For tttcaggggaacgtctctatgacc 

Nck 300 Rev tttggtcatagagacgttcccctg 

Nck 550 For tttcaataacctaaatactgggca 

Nck 550 Rev ttttgcccagtatttaggttattg 

 

2.6.5 Subcloning 

New constructs were generated using either a sequence verified insert, which had 

been sub-cloned before or by cloning a PCR amplified gene from an existing 

vector. The restriction enzymes were purchased all from New England Biolabs 

(Table 2.8). 

 

Insert and vector were digested in a total volume of 40µl containing the two 

enzymes, the correct buffer for the enzymes and 1µg of DNA. The reaction was 

incubated for 1hour at 37ºC. The reaction was loaded on a 1% agarose/TBE gel. 

Bands corresponding to the predicted insert/vector were cut out from the gel, 

purified with the Qiagen QIAquick gel extraction kit and eluted from the column in 

30µl of distilled water. A 10µl ligation reaction was set up containing the digested 

vector DNA (100-500ng), an excess of purified insert DNA, 200units T4 DNA ligase 

and 1x ligase buffer (New England Biolabs). The reaction was incubated for at least 

30min at room temperature (or overnight at 16ºC) before transformation into 30µl of 

chemically competent E.coli (Chapter 2.6.6). Colonies were screened using either 

PCR reactions directly from the colonies (Chapter 2.6.8) or by digestion of 

minipreps (Chapter 2.6.9). 

2.6.6 Plasmid DNA transformation of bacteria 

To transform DNA into bacteria, 10µl of ligation reaction or 50ng of plasmid DNA 

was incubated with 30µl of E. coli on ice for 10 minutes. The bacteria were 

subjected to a 45 second heat shock at 42°C and then replaced on ice for 1 minute. 

100µl of antibiotic free LB was added to the transformation mixture and this was 
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incubated at 37°C for 20 minutes with shaking. The mixture was then spread on 

pre-warmed LB-agar plates containing the required antibiotic (usually 100µg/ml 

ampicillin). 

 

2.6.7 Preparation of chemically competent bacteria 

Chemically competent bacteria (XL-10 or BL-21) were prepared by inoculating 

500ml of LB media with a 2ml culture that had been grown overnight. The culture 

was incubated with shaking at 37ºC until an OD600 of 0.5 was reached, which 

indicates that the bacteria are in an exponential growth phase. The bacteria culture 

was then incubated for 30min on ice, before centrifugation at 2500rpm for 12 

minutes. The pellet was resuspended in 20ml of RF1 buffer, incubated on ice for a 

further 15min and centrifuged at 2500rpm for 9 minutes. The pellet was 

resuspended in 7ml of RF2 buffer and the suspension was stored at -80ºC in 100µl 

aliquots. 

 

RF1 Buffer 

12g Rubidium chloride, RbCl 

9g Manganese chloride, MnCl2 

2.94g Potassium acetate 

150g Glycerol, pH 5.8 

The reagents were dissolved in 900ml of distilled water and the pH was adjusted to 

pH 5.8 with acetic acid, before increasing the volume to 1L. The buffer was filtered 

through a 0.22µm filter and stored at 4°C. 

 

RF2 Buffer 

2.09g MOPS 

1.2g RbCl 

11g Calcium chloride, CaCl2 

150g Glycerol, pH 6.8 

The reagents were dissolved in 900ml of distilled water and sodium hydroxide was 

used to adjust the pH to 6.8, before the volume was adjusted to 1L. The buffer was 

filtered through a 0.22µm filter and stored at 4°C. 
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2.6.8 Colony Screening PCR 

PCR was also used to screen colonies for the correct insert after transformation of 

ligation reactions (Chapter 2.6.5). A 25µl PCR reaction was prepared containing 

10pmol of each primer,1X PCR buffer (Thermo Scientific), 0.25µl dNTP mix and 

1.25units SimpleRed Taq polymerase (Thermo Scientific). The colonies were 

picked with a 10µl tip and transferred to a PCR tube containing 20µl of dH20. The 

tip was then transferred to a 5ml LB/Amp culture for DNA preparation. The reaction 

was performed on an Applied Biosystems GeneAmp PCR machine using standard 

conditions and analysed on a 1% agarose gel. 

The following cycling conditions were used as standard: 

1. 95°C 5 minutes 

 

2. 95°C 30 seconds 

55°C 30 seconds 

72°C 1 minute/kb of plasmid length 

 

3. 72°C 7 minutes 

Section 2 was repeated 25 times. 

2.6.9 Plasmid DNA preparation 

For large-scale plasmid DNA preparation over night cultures were grown from 

single colonies. 5ml or 50ml cultures were used for mini and midi preparations 

respectively. The bacteria cultures were centrifuged at 2500rpm for 20 minutes and 

the pellets were processed as described in the manufacturers instructions for 

Qiagen Plasmid Miniprep and Midiprep Kits. 

2.6.10 DNA Sequencing 

Oligonucleotide primers matching sequences in the regions of the vector flanking 

the insert as well as every 500bp in the insert were used for sequencing. Each 

reaction contained 200ng plasmid DNA, 3.2pmol oligonucleotide primer, 8µl BDT 

reaction mix (Big Dye Terminator Cycle sequencing kit) and 10µl of distilled water. 

The reaction was cleaned up using the Qiagen Dye-Ex 2.0 Spin kit, and vacuum 

dried. The samples were sequenced using an Applied Biosystems DNA sequencer 
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by the Sequencing facility at CRUK. The resulting sequences were analyzed using 

the DNAstar software package. Primers used for sequencing are listed in table 2.9. 

2.7 Biochemistry 

2.7.1 Whole cell lysate 

Mammalian cells were washed once in PBSA before lysing in the appropriate 

amount of final sample buffer (FSB). Cells were scraped in FSB and transferred to 

a microcentifuge tube, before boiling for 5 minutes at 95ºC. 0.5µl of D4527 

deoxyribonuclease I (DNase I) was added to the lysate to digest DNA where 

required. Lysates were stored at -20ºC until required. 

 

2X Final Sample Buffer 

50% Glycerol 

3% SDS 

50mM Tris.HCl pH6.8 

2% β-mercaptoethanol 

Bromophenol Blue 

2.7.2 SDS-PAGE  

Pre-cast NuPAGE 4-12% Bis-Tris 1.0mm gels (Invitrogen) were used in all cases. 

Generally, gels were run using MES running buffer (Invitrogen) at 200V for 40 

minutes. After separation of samples, gels were either subjected to immunoblot 

analysis or stained with Coomassie (0.5% Coomassie Brialliant Blue, 50% 

Methanol, 10% acetic acid) to visualize protein. Gels were then destained for 30 

minutes in high destain (50% methanol, 10% acetic acid) followed by low destain 

(5% methanol, 10% acetic acid) until protein bands were visualized.  

 

20X MES Running Buffer (Invitrogen) 

97.6g MES (1M) 

60.6g Tris Base (1M) 

10.0g SDS (69.3mM) 

3.0g EDTA (20.5mM) 
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2.7.3 Immunoblot analysis 

After separation by SDS-PAGE, proteins were transferred onto nitrocellulose 

membranes using the iBlot and the iBlot gel transfer kit (Invitrogen). Ponceau S 

was used to check for successful transfer and to control for equal sample loading. 

The membrane was blocked for 30 minutes in blocking buffer (5% milk in PBSA, 

0.1% Tween20 (Sigma)) and incubated with primary antibody (in blocking buffer) 

for 1 hour at room temperature or overnight at 4ºC. The membrane was washed 

3x10 minutes in in PBSA+0.1% Tween20 (PBS-T) before incubation with HRP 

conjugated secondary antibody (in blocking buffer) for 30 minutes. The membrane 

was again washed 3x10 minutes in PBS-T before incubation with ECL, according 

to the manufacturers instructions (Amersham Bioscences). The membrane was 

then exposed in Hyperfilm-ECL (Amersham Biosciences) and developed using an 

IGP Compacct automated developer (IPG limited).  

 

Table 2.8. Primary antibodies used for immunoblot analysis 

Antibody Species Dilution Origin 

GFP (3E1) Mouse monoclonal 1:1000 CRUK 

His Mouse monoclonal 1:2000 Sigma 

Nck Rabbit polyclonal 1:1000 Millipore 

WIRE 19-39 4G Rabbit polyclonal 1:500 Way Lab 

Grb2 Rabbit polyclonal 1:2000 BD Biosciences 

N-WASP Rat polyclonal 1:1000 Way Lab 

RFP (mCherry) Rabbit polyclonal 1:1000 Chemicon 

 

2.7.4 Expression and purification of His-Nck for far western analysis 

2.7.4.1 Leaky Protein Expression 

Chemically competent BL21 (DE3) Rosetta E. coli were transformed with the 

pMW172-His-Nck1. A 4ml starter culture (LB-ampicillin) was inoculated using 

bacteria from a single colony. This was grown for at least 3 hours at 37ºC with 

vigorous shaking. This was then used to inoculate a 1 L culture (LB/ampicillin), 

which was grown overnight at 30ºC with shaking. Bacteria were harvested by 
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centrifugation at 3000rpm for 20 minutes at 4ºC. The resultant pellet was snap 

frozen in liquid nitrogen. After thawing at room temperature, the pellet was 

resuspended in 25ml of bacterial lysis buffer (50mM Tris pH 8.0, 150mM NaCl, 

25% sucrose, 1x Complete EDTA-free protease inhibitor (Roche)). This was 

incubated with 2mg of lysozyme for 30 minutes at room temperature. 240 µl of 1 M 

MgCl2, 24µl of 1M MnCl2 and 10µl of 10mg/ml DNase I were added to lysate, 

which was then incubated for another 30 minutes at room temperature. This was 

then centrifuged for 30 minutes at 10,000 rpm at 4ºC and the resultant supernatant 

was retained as the bacterial soluble fraction. This was snap frozen and stored in 

aliquots at -20ºC until needed.  

2.7.4.2 Purification of His-Nck  

25mM Imidazole (pH 8.0) and 10% glycerol were added to the bacterial soluble 

fraction containing His-Nck. The final concentration of NaCl was increased to 

500mM. Ni-NTA resin was washed 3X in wash buffer (500mM NaCl, 10 % Glycerol, 

50 mM Tris pH8.0, 25 mM imidazole pH 8.0, 0.1 % Triton X-100) before adding to 

the bacterial soluble fraction. This was incubated at 4ºC for 1 hour on a rotating 

wheel, before the resin was pelleted by centrifugation at 2000rpm. The resin was 

washed 3X in wash buffer prior to elution of bound His-Nck. His-Nck1 was eluted 

from the resin using 4 washes of 600µl of elution buffer (250mM Imidazole pH8.0, 

50mM Tris HCl pH8.0). The eluted fractions were then passed through a PD-10 

desalting column according to the manufacturers instructions (GE Healthcare). 

Protein concentrations were measured by spectrophotometry (absorbance at 

280nm) using a NanoDrop spectrophotometer (Thermo Scientific).  

 

2.7.4.3 Probing peptide arrays 

The WIP and N-WASP peptide arrays were generated by the peptide synthesis 

laboratory at Cancer Research UK. All arrays comprised 15 amino acid long 

peptides that were synthesized and spotted onto a cellulose membrane. Adjacent 

peptides were shifted by 3 amino acids each time. To carry out far western analysis, 

the dried peptide arrays were moistened by washing with 100% ethanol and then 

washed 3 times in PBS-T for 10 minutes each time. The array was then blocked for 
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at least 1 hour in blocking buffer (5% milk in PBS-T), before probing with His-Nck. 

His-Nck was diluted in blocking buffer to a final concentration of 2µg/ml. The 

peptide array was then incubated upside-down on parafilm in a plastic box with 2-

3ml of the diluted purified protein for 1 hour at 4ºC. The array was washed 5X10 

minutes in blocking buffer before being incubated with rabbit anti-His antibody 

(1:5000) for 1 hour at room temperature. After 5X10 minute washes with blocking 

buffer, the membrane was incubated with goat anti-rabbit HRP conjugated 

secondary antibody for 45 minutes. This was followed by 5X10 minute washes in 

PBS-T and one 10-minute wash with PBS-T containing 500mM NaCl, to reduce 

non-specific binding. Peptide arrays were then developed using ECL as described 

in Chapter 2.7.3.  

2.7.5 Immunoprecipitation 

GFP-WIP immunoprecipitations were carried out using mouse monoclonal anti-

GFP antibody 4E12 (Cancer Research UK). For each condition, a 10 cm dish of 

confluent HeLa cells expressing the GFP-tagged protein of interest was lysed in 

1ml of lysis buffer (20mM Tris pH 7.5, 150 mM NaCl, 10 % Glycerol, 1mM EDTA, 

1.5 mM MgCl2, 1% NP-40, 1x protease inhibitors), centrifuged for 10 minutes at 

13,000 rpm, and then incubated with 30µl of prewashed Protein-G resin (Pierce) for 

1 hour at 4ºC on a rotating wheel. The resin was pelleted at 2000 rpm and the cell 

lysates were transferred to a fresh tube. 100µl of lysate was retained as input. 2µg 

of GFP antibody was added to the lysate, which was subsequently rotated at 4ºC 

overnight. 30µl of prewashed protein G resin was incubated with each sample for 1 

hour at 4ºC with rotation. The resin was pelleted at 2000rpm and washed 3X in 

lysis buffer, before boiling in FSB and analysed by SDS-PAGE and immunoblotting. 

GFP-N-WASP immunoprecipitations were performed using the GFP-Trap 

(Chromotek), according to the manufacturers instructions, except that 10µl of resin 

was used per sample. 

 

2.7.6 Peptide pulldown assays 

Peptides were obtained from the peptide synthesis facility and coupled via an N-

terminal cysteine residue to SulfoLink resin according to the manufacturers 
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instructions (Pierce/Thermo Scientific). Coupled peptides were washed in wash 

buffer (150mM NaCl, 10% Glycerol, 50mM Tris pH 8.0, 0.1% Triton-X 100) before 

incubation for 1 hour at 4ºC with bacterial soluble fraction expressing His-Nck1 

(Chapter 2.4.7.1). The peptide couple resin was pelleted at 1000rpm and washed 3 

times in wash buffer, before boiling in FSB and subjection to SDS-PAGE. Gels 

were coomassie stained to visualise bound protein (Chapter 2.7.2).  

 

2.8 Immunofluorescence  

2.8.1 General buffers and solutions 

1X Cytoskeletal Buffer (CB) 

10mM MES pH 6.1 

150mM NaCl 

5mM EGTA 

5mM MgCl2 

5mM Glucose 

These reagents were dissolved in distilled water. 

 

Immunofluorescence (IF) blocking buffer 

1% BSA 

2% FBS 

These reagents were dissolved in 1X CB. 

 

Mowiol 

Mowiol (2.4g) and Glycerol (6g) were dissolved in 6ml of distilled water. This 

mixture was incubated for 2 hours at room temperature before 12ml of 200mM Tris-

HCl (pH 8.5) was added. The resultant solution was stirred for 10 minutes at 60ºC, 

before being centrifuged at 5000rpm for 5 minutes and stored in 500µl aliquots at -

20ºC.  

 

3% Paraformaldehyde (PFA) 

15g of paraformaldehyde was added to 500ml PBS. The solution was stirred and 

gently heated. 1M NaOH tablets were added until the PFA dissolved. After cooling 
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to room temperature, the pH was adjusted to 7.5 and the solution was passed 

through a 0.45 filter, before being stored at -20ºC. 

2.8.2 Fixation 

Paraformaldehyde (PFA) was used to fix cells for immunofluorescence analysis. 

Cells were washed once in PBSA, then incubated with 3% PFA for 10 minutes, 

before washing 3X in PBS and storing at 4ºC until needed. 

2.8.3 Staining and mounting 

Generally, cells on coverslips were blocked for 20-30 minutes in IF blocking buffer, 

before incubation with the B5 primary antibody for at least 40 minutes to detect 

extracellular virus particles. Coverslips were washed 3X in PBSA and then 

permeabilized for 45 seconds with 0.1% Triton X100 in PBSA. After 

permeabilization, cells were again blocked for 20-30 minutes before incubation with 

another primary antibody or secondary antibody, again in blocking buffer. 

Coverslips were washed 3X in PBSA and then 1X in distilled water before mounting 

on microscopy slides with Molwiol. F-actin was stained with Phalloidin, which was 

diluted, 1:800 in blocking buffer and added at the same time as the secondary 

antibody. If an extracellular virus stain was not required, cells were permeabilised 

directly after fixation and IF was carried out as normal. 

 

 

 

Table 2.9. Primary antibodies used for immunofluorescence 

Antibody Species Fixation Dilution Origin 

B5 Rat monoclonal PFA 1:500 Dr. Gerhardt Hiller 

Nck Rabbit polyclonal PFA 1:200 Millipore 

WIRE (19-39) Rabbit polyclonal PFA 1:200 Way Lab 

N-WASP Rat polyclonal PFA 1:200 Way Lab 

Texas Red 

Phalloidin 

 PFA 1:800 Molecular Probes 
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2.9 Microscopy 

2.9.1 Microscopes 

2.9.1.1 Zeiss Axioplan Upright 

For fixed samples, a Zeiss Axioplan2 equipped with a Photometrics Cool Snap HQ 

cooled CCD camera, external Prior Scientific filter wheels (DAPI; FITC; Texas 

Red;Cy5) and a 63x/ 1.4 Plan Apochromat objective was used. The system was 

purchased from Zeiss and Universal Imaging Corporation Ltd and was controlled 

with MetaMorph 6.3r7 software. Images were later analysed using the MetaMorph 

6.3r7 software and processed with the Adobe software package (Adobe Systems 

Incorporated, San Jose, CA, USA). 

2.9.1.2 Zeiss Inverted 

Live cell imaging was carried out on a Zeiss Axiovert 200 equipped with a 

Photometrics Cool Snap HQ cooled CCD camera, a Photometrics Cascade II 

camera, external Prior Scientific filter wheels (GFP, RFP) and a Plan-Apochromat 

63x/1.4 Oil objective was used. The system was purchased from Zeiss and 

Universal Imaging Corporation Ltd and was controlled by MetaMorph 6.3r7 

software. Movies and Images were analysed using the MetaMorph software and 

processed with the Adobe software package. 

2.9.1.3 Spinning Disk Confocal 

Live imaging and FRAP was carried our ion a Zeiss Axio Observer Microscope 

equipped with a Plan-Achromat 63x/1.40 Ph3 M27 Oil lens (Carl Zeiss, Germany) 

and an Evolve 512 camera (Photometrics, AZ) and a Yokagawa CSUX spinning 

disk. The system was controlled by Slidebook 5.0 (3i intelligent imaging 

innovations, USA). Movies and images were analysed using Slidebook 5.0 or 

MetaMorph software. 

2.9.2 Quantification of actin tail formation 

Cells were fixed 10 hours (WIP-/- cells) or 15 hours (Nck-/-; N-WASP-/- cells) post 

infection (Chapter 2.7.1). Actin tails are induced only by a subset of vaccinia virus 
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particles known as CEVs (Cell-associated enveloped virions). After replication, 

these virions are transported to the cell periphery where they fuse with the plasma 

membrane and remain attached to its extracellular surface. Only cells with 

extracellular virus particles were scored for actin tails. In order to specifically detect 

these extracellular virus particles, the anti-B5 antibody was used. B5 is a viral 

protein that specifically localizes to virus particles in the later stages of the viral life 

cycle. Labeling the cell with the anti-B5 antibody prior to permeabilisation enables 

detection of only CEVs. To visualize actin tails, cells were permeabilised for 1 

minute with 0.1% triton-x in PBS and then stained with fluorescently conjugated 

phalloidin. For the percentage of cells with actin tails, 100 cells on each of three 

independent days were scored for the presence or absence of actin tails. To 

determine the average number of actin tails per cells, the number of actin tails in 30 

randomly selected cells over three independent experiments were quantified. The 

experiments were performed as previously described (Frischknecht et al., 1999b; 

Scaplehorn et al., 2002). Finally, to determine the average length of actin tails, the 

length of 50 actin tails in 5 cells was measured in each of three independent 

experiments. 

2.9.3 Quantification of actin tail speed 

To measure the speed of actin tails in WIP-/- or N-WASP-/- cells, the cells were 

infected with with WR expressing RFP-A3 or A36-Y132F expressing RFP-A3. The 

RFP signal was acquired concurrently with the GFP signal of WIP, N-WASP or the 

mutant protein of interest. As these GFP proteins specifically localize to virus 

particles that can form actin tails, tracking particles that are both GFP and RFP 

results in a measurement of the rate of actin based motility. Movies of 5-10 cells 

were acquired with a rate of 1 frame/second and virus particles were tracked for at 

least 30 seconds using MetaMorph or Slidebook5.0 software, depending on 

whether they were acquired on the Zeiss inverted or Spinning Disc confocal 

(Chapter 2.91.2 and 2.9.1.3). The experiment was repeated 3 times. For actin tails 

in the WT and WIP-/- cells, actin tails were visualized using phase constrast 

microscopy. 
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2.9.4 FRAP 

To analyse the dynamic behaviour of the proteins in the vaccinia signalling network 

FRAP (Fluorescence recovery after photobleaching) was carried out. This 

technique is used to determine the mobility of a protein in a cell. FRAP experiments 

are carried out by bleaching the signal from a fluorescently tagged protein in a 

small region of the cell, in my case the signal localised to the virus particle, and 

monitoring the recovery of this signal over time. A lack of recovery indicates that 

the protein exists in an immobile pool as the photobleached population does not 

dissociate and therefore the remaining fluorescent population cannot replace it. 

The proportion of the protein pool that is not replaced is known as the immobile 

fraction (Figure 2.1). A large immobile fraction indicates that the protein of interest 

is tightly associated with a cellular structure.  The rate constant of recovery (k) can 

also be measured and from this the half-time of fluorescence recovery (t1/2) can be 

calculated. The t1/2 is the time taken for the fluorescent signal to recover to half the 

maximum intensity reached after photobleaching. The t1/2 is used as a read out for 

the mobility of the protein of interest, with a shorter t1/2 indicating that the protein is 

more dynamic. 

 

To carry out FRAP experiments cells were infected with WR/RFP-A3 virus. WIP-/- 

cells, treated with WIRE siRNA, were transfected 5 hours post infection with the 

GFP-tagged protein of interest and FRAP was carried out 4 hours later. For the N-

WASP-/- cells that stably express GFP-N-WASP or GFP-N-WASP∆Nck, FRAP was 

carried out 15 hours post infection. Images were acquired on a spinning disc 

confocal microscope (Section 2.9.1.3), with images acquired every 350ms. The 

exposure time for each channel was 100ms. The GFP signal was bleached using 5 

iterations of the 488 laser at 100% power, which resulted in a post-bleach intensity 

of approximately 30%. The size of the bleached region and the time interval was 

kept consistent for all movies. The fluorescence intensity of bleached particles in 

FRAP movies was measured using the Slidebook software. A threshold was set 

manually for each movie and the intensity of particles was determined in each 

frame. The fluorescence intensity of a background region was also determined. 

This was subtracted from the fluorescence intensity of the GFP signal at the virus 

particle. The data was normalised to the pre-bleach images. Kinetic modelling of 
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the normalised data was carried out using Prism5 and the equation I(t)= (Imax-

Imin)(1-e-kt) + Imin , where I=intensity and t=time (Weisswange et al., 2009). The 

rate constant of recovery (k) and the maximum (%) recovery after photobleaching 

(compared to the pre-bleach image) were calculated from the best-fit curve (Figure 

2.1). The half-time of fluorescence recovery was calculated from the rate constant 

of recovery (T1/2 = ln2/k). In each experiment around 20 virus particles were 

bleached in at least 5 different cells. The experiment was repeated on three 

independent days.  
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Figure 2.1. Schematic of an idealised FRAP curve 

(A) Schematic representation of an idealised FRAP analysis curve. The 
intensity measurements are plotted on the Y-axis, while the time is plotted on 
the X-axis. The intensity values are normalised against those of the pre-bleach 
image, which is set to 100. This graph allows calculation of the maximum 
intensity reached after the recovery reaches a plateau (Imax) and the first 
intensity measurement obtained after the bleach (Imin). Non-linear regression 
curve-fitting was performed using Prism 5.0 and the equation shown in (B). 
From the best-fit curve, values for Imax, Imin and the rate constant of recovery (k) 
can be calculated. The half time of fluorescence recovery (t1/2) can then be 
determined as shown. The t1/2 is the time taken for the fluorescence intensity to 
reach half the maximum fluorescence recovery (I1/2). 
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2.9.5 Statistical analysis of microscopy data 

Data in all graphs are presented as mean and standard error of the mean as 

indicated. Prism 5.0 (GraphPad Software, CA) was used to perform standard 

statistical analysis of measured data sets. When two data sets were compared a 

Student’s t-test was performed. If more than two data sets were compared with 

each other a One Way ANOVA test followed by a Tukey multiple comparison test 

was performed. Statistical analysis of fitted FRAP data was performed using the 

“Do the best fit values of selected parameters differ between data sets” function in 

Prism 5.0. All experiments were repeated 3 times on three independent days, 

unless otherwise stated. A p value of <0.05 is considered statistically significant. * 

indicates p<0.05, ** indicates p<0.01 and *** indicates p<0.001 
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Chapter 3. WIP or WIRE is required for vaccinia 

induced actin polymerisation. 

3.1 Introduction 

Previous work has shown that Nck and N-WASP are essential for vaccinia-induced 

actin tail formation (Frischknecht et al., 1999b; Moreau et al., 2000; Weisswange et 

al., 2009). In contrast, Grb2 is neither essential nor sufficient for actin tail formation, 

but instead acts as a secondary adaptor to increase the efficiency of the process 

(Scaplehorn et al., 2002; Weisswange et al., 2009). Despite the robust localisation 

of WIP to the tips of vaccinia-induced actin tails and evidence that over-expression 

of the WASP binding domain of WIP acts as a dominant negative to inhibit actin tail 

formation (Moreau et al., 2000), the role of WIP in actin tail formation remains 

unclear.  

 

WIP is a member of the verprolin family of proteins that was initially identified as a 

binding partner of WASP/N-WASP (Aspenstrom, 2005; Ramesh et al., 1997). 

These proteins participate in many actin dependent cellular processes, including in 

the induction of filopodia, in pathogen induced actin rearrangements and 

downstream of receptor tyrosine kinases (Anton et al., 2003; Martinez-Quiles et al., 

2001; Moreau et al., 2000; Wong et al., 2012). The role of N-WASP in Arp2/3 

complex-dependent actin polymerisation is clear, however the importance of WIP in 

modulating the activity of N-WASP in cells is not well understood (Campellone and 

Welch, 2010).  

 

I took advantage of WIP-/- cells to determine if WIP plays an essential role in Nck 

and N-WASP signalling networks during vaccinia virus actin-based motility. 

3.2 WIP is essential for actin tail formation 

To gain insight into the role of WIP during the actin-based motility of vaccinia virus, 

I investigated whether actin tail formation is dependent on the expression of WIP. I 

obtained mouse embryonic fibroblasts that lack expression of WIP from Raif Geha 

(Immunology Division, Children’s Hospital, Boston). Infection of these cells with WR 
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(Western Reserve, wild type strain of vaccinia) revealed that at 9 hours post 

infection, Extracellular virus particles or CEVs (Cell-associated enveloped virus 

particles) were present on the plasma membrane. These were detected using an 

antibody against the vaccinia B5 protein (Figure 3.1A). B5 only localised to the IEV 

(intracellular enveloped virus) and CEV forms of the virus in the later stages of its 

life cycle. Staining with this antibody prior to cellular permeabilisation specifically 

reveals the plasma membrane associated CEVs. Control cells (WT), which were 

obtained from a wild type littermate, showed similar amounts of CEVs (Figure 3.1 

A). Actin tails are induced by a signalling pathway initiated by CEVs, which results 

in the recruitment of the cellular vaccinia virus actin polymerisation complex, 

comprised of Nck, N-WASP, WIP and Grb2, to the plasma membrane underneath 

the CEV. However the presence of these CEVs does not mean that this complex is 

present or that an actin tail will be formed. Thus I stained cells with Texas Red-

conjugated phalloidin to visualize the actin cytoskeleton and found that actin tails 

were formed in both WT and WIP-/- cells. Quantification of the average number of 

actin tails formed per cell showed that similar numbers of actin tails were induced in 

control and WIP-/- cells (Figure 3.1A, B). However, compared to those in control 

cells, actin tails in WIP-/- cells were significantly shorter (3.24 ± 0.25 and 1.64 ± 

0.23 µm respectively).  

 

I used live cell imaging to determine if the shorter actin tails in WIP-/- cells exhibit 

altered rates of actin-based motility of vaccinia virus. To perform live imaging, I 

infected WT or WIP-/- cells with a recombinant virus, in which the viral core protein 

A3 had been tagged with RFP (WR/RFP-A3). Actin tails were visualised using 

phase contrast microscopy. Cells were imaged at 9 hours post infection and 

images were acquired every second for 3 minutes. In order to avoid the speed of 

actin-based motility being affected by virus particle collisions, the speed of RFP-

virus particles inducing actin tails was tracked for 30 seconds. This analysis 

revealed that loss of WIP expression leads to a slower average speed of actin tail 

movement than is observed in WT cells (0.10 ± 0.01 and 0.14 ± 0.01 µm/s 

respectively) (Figure 3.1 B).  



Chapter 3 Results 

 

 102 

 
Figure 3.1. Loss of WIP impairs actin tail formation 

(A) Immunofluorescence images showing the formation of shorter actin tails by 
WR in WIP-/- compared to WT cells. Extra-cellular virus particles (ex-virus) are 
detected using an antibody against the viral protein B5, prior to 
permeabilisation. Higher magnification panels correspond to the boxes in the 
main panels. Scale bars = 20 and 2 µm. (B) The average number of actin tails 
per cell is similar in both WT and WIP-/- cells infected with WR. Error bars 
represent the standard error of the mean (SEM) from 4 independent 
experiments. Quantification of the rate of actin-based motility reveals that actin 
tails move more slowly in WIP-/- cells. Error bars are the SEM from 3 
experiments in which 50 actin tails in 5 cells were tracked. Quantification of the 
average length of actin tails shows that actin tails are shorter in WIP-/- 
compared with WT cells. Error bars represent SEM from 3 independent 
experiments. ns = not significant, ** = p<0.01. 
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Figure 3.2. Endogenous WIRE is recruited to actin tails 

(A) ClustalW sequence alignment showing sequence homology between 
human WIP and WIRE protein sequences. Red indicates identical residues. 
The WH2 domains (actin binding) are indicated by yellow boxes and the WASP 
binding domain (WBD) is underlined in green. (B) Immunofluorescence images 
of WT and WIP-/- cells in which the recruitment of endogenous WIRE to the tips 
of actin tails is indicated by yellow arrows. Scale bars = 20 and 2µm. 
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Figure 3.3. The WIRE antibody is specific. 

Immunofluorescence images showing that the WIRE antibody specifically co-
localises with GFP WIRE but not GFP WIP expressed in HeLa cells. Scale bar 
= 10µm. 
 

3.2.1 WIRE can functionally replace WIP in actin tail formation 

WIP is a member of the verprolin family of proteins, which in humans comprises 

two other members – WIRE/WICH and CR16. The expression of CR16 is largely 

restricted to the brain, heart, lungs, colon and testes, while WIRE, like WIP, is 

ubiquitously expressed (Aspenstrom, 2002; Ho et al., 2001; Kato et al., 2002; 

Ramesh et al., 1997). WIRE is a proline rich protein that shares ~40% sequence 

identity with WIP (Figure 3.2 A). A region of very high similarity is found in the C-

terminus of the proteins. In both WIP and WIRE, this domain has been shown to 

bind N-WASP and thus is named the WASP binding domain (WBD) (Kato et al., 

2002; Martinez-Quiles et al., 2001). WIP and WIRE both contain several potential 

SH3-domain binding sites and have been shown to bind to Nck (Anton et al., 1998; 

Aspenstrom, 2002). Due to the similarities in domain organisation, I hypothesised 

that WIRE might functionally replace WIP in actin tail formation. 

Immunofluorescence analysis reveals that endogenous WIRE is localised beneath 

actin tail inducing virus particles in WIP-/- cells (Figure 3.2 B). WIRE is also 
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localised to virus particles in WT cells, however the localisation is much more 

robust in the absence of WIP. This suggests that WIRE does not compete 

efficiently with WIP for recruitment to vaccinia virus. Staining cells that were 

expressing GFP-WIP or GFP-WIRE confirmed the specificity of WIRE antibody. 

The WIRE antibody specifically co-localised with the GFP-WIRE but not the GFP-

WIP signal (Figure 3.3). 

 

To determine whether the actin tails seen in WIP-/- cells are dependent on WIRE, iI 

depleted WIRE using two independent siRNA oligonucleotides. 

Immunofluorescence analysis showed that in the absence of both WIP and WIRE, 

vaccinia virus induces significantly fewer actin tails (Figure 3.4 A, C). The efficiency 

of knockdown was assessed by immunoblot analysis of lysates from cells 

transfected with either WIRE siRNA or a control non-targeting siRNA. WIRE 

expression was significantly reduced in siRNA-treated cells after 72 hours (Figure 

3.4 B). I did not observe a decrease in N-WASP expression in these cells in the 

absence of WIP and WIRE (Figure 3.4 B). This suggests that the expression of 

WIP or WIRE is not required to prevent the degradation of N-WASP by calpain and 

the proteosome, as is the case for WASP (de la Fuente et al., 2007). The number 

of cells with actin tails was reduced from 90.75 ± 2.7 % in control cells to 18.76 ± 

9.0% and 20.67 ± 8.2% in cells treated with each of the siRNA oligonucleotides 

targeting WIRE (Figure 3.4 C). In addition the number of actin tails per cell dropped 

from an average of 40.64 ± 2.26 actin tails per cell in the control, to 4.85 ± 1.01 or 

3.49 ± 0.87 tails per cell in the absence of WIRE, with the majority of WIRE 

depleted cells lacking actin tails (Figure 3.4 C). A similar amount of extra-cellular 

virus was observed in control and RNAi treated cells, indicating that the failure to 

induce actin tails is specifically due to changes in the vaccinia actin polymerisation 

complex and not the result of a more general effect on the viral life cycle (Figure 

3.4 B and data not shown).  

 

To ensure that the observed consequences of the siRNA depletion of WIRE are 

specific, I performed a rescue experiment. GFP-tagged human WIP or WIRE were 

transfected into WIP-/- cells that had been treated with WIRE siRNA. As the WIP-/- 

cells are derived from mice, siRNA oligonucleotides were chosen that specifically 

target mouse, but not human, WIRE mRNA. The human WIP construct is also not 
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targeted by the WIRE siRNA. Expression of either GFP-WIP or WIRE, but not GFP 

alone, resulted in the rescue of actin tail formation in these cells (Figure 3.5 A). The 

percentage of cells with actin tails was increased from 14.00 ± 1.50% in cells 

transfected with GFP alone to 88.00 ± 1.52% or 85.00 ± 0.58% in cells transfected 

with GFP-WIP and GFP-WIRE, respectively (Figure 3.5 B). Actin tails in WIRE 

siRNA treated cells transfected with GFP-WIRE measured 1.25 ± 0.03µm in length. 

This is similar to the length of actin tails seen in WIP-/- cells that had been treated 

with the control siRNA and transfected with GFP alone (1.17 ± 0.03µm). This 

indicates that the shorter actin tails seen in WIP-/- cells are dependent on WIRE. 

Expression of GFP-WIP in WIP-/- cells treated with WIRE siRNA resulted in actin 

tails measuring 2.23 ± 0.04µm in length. This is significantly longer than the actin 

tails induced by GFP-WIRE, although not as long as those seen in the WT cells 

(Figure 3.2A). This difference in length may be the result of differences in 

expression levels of WIP in the WT cell line and in those cells rescued with GFP-

WIP or because the GFP tag slightly interferes with the function of the protein. 

Treatment of the cells with siRNA or transfection with DNA may also result in slight 

toxicity that impairs the formation of actin tails. Another possibility arises from the 

observation that WIRE is weakly recruited to virus particles in WT cells. This 

indicates that both WIP and WIRE may act in actin tail formation in this case. The 

presence of a mixture of different complexes comprising WIP: N-WASP and WIRE: 

N-WASP at virus particles could result in differences in actin polymerisation that 

are not observed in WIRE depleted WIP-/- cells rescued with GFP-WIP. To test this 

hypothesis and to determine whether WIRE plays an important role in actin tail 

formation in the presence of WIP, WIRE was depleted in the WT cell line. No 

difference was observed in the percentage of infected cells inducing actin tails or in 

the length of the actin tails in these cells (Figure 3.6 A, B, C). This shows that 

WIRE is only essential for actin tail formation in the absence of WIP and that its 

recruitment to virus particles does not interfere with WIP dependent actin 

polymerisation.  
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Figure 3.4. Depletion of WIRE in WIP-/- cells results in the loss of actin tail 

formation.  

(A) Immunofluorescence images showing that actin tails are not induced in WR 
infected WIP-/- cells treated with two independent oligos targeting WIRE. The 
higher magnification panels correspond to the boxes in the main panels. Scale 
bars = 20 and 2 µm. (B) Immunoblot analysis with the indicated antibodies 
(right) showing the level of WIRE after siRNA treatment with the indicated WIRE 
oligos  (top). Knockdown of WIRE does not affect levels of N-WASP. Grb2 is 
used as a loading control. (C) WR can induce actin tail formation in less than 
less than 20% of WIP-/- cells that have been treated with WIRE siRNA (black 
bars) compared with 90% of control cells (grey bars) (left panel). The WR 
infected WIP-/- cells lacking WIRE that make tails have an average of 3-4 actin 
tails per cell (right panel). Error bars represent the SEM of 3 independent 
experiments.  *** = p<0.001. 

olig
o 1

olig
o 2

co
ntro

l

WIRE

Grb2

N-WASP

A

B

W
R

Oligo 2

actin ex-virus

Oligo 1

actin ex-virus

40

30

20

10

0

50

olig
o 1

olig
o 2

contro
l

Av
er

ag
e 

nu
m

be
r o

f t
ai

ls/
ce

ll ***100

80

60

40

20

0

olig
o 1

olig
o 2

co
ntro

l

%
 c

el
ls

 m
ak

in
g 

ac
tin

 ta
ils

***

C



Chapter 3 Results 

 

 108 

 
Figure 3.5. Expression of GFP-WIP or GFP-WIRE rescues actin tails in WIP-/- 

cells treated with WIRE siRNA. 

(A) Images show GFP-WIRE or GFP-WIP, but not GFP, rescue WR actin tail 
formation in WIP-/- cells, in which endogenous WIRE has been depleted. Scale 
bars = 20 and 2 µm. (B) Graph shows that expression of GFP-WIRE or GFP-
WIP in WIP-/- cells lacking endogenous WIRE rescues actin tail formation to 
similar levels (left panel). Actin tails induced by GFP-WIP are longer than those 
induced by GFP-WIP (right panel). Error bars represent SEM of 3 independent 
experiments. ***=p<0.001 as determined by a one way Anova. 
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Figure 3.6. WIRE is not required for actin tail formation if WIP is present 

(A) Immunofluorescence images show that actin tails are similar in WR infected 
WT cells treated with control or WIRE siRNA. Scale bars = 20 and 2 µm. (B) 
Immunoblot analysis showing that WIRE is depleted in WT cells after 72 hours. 
(C) No difference in the percentage of WR infected WT cells inducing actin tails 
(left panel) or the length of actin tails (right panel) is observed in control (grey 
bars) or WIRE knock down (black bars) conditions. Error bars represent the 
SEM of 3 independent experiments. ns = not significant. 
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3.2.2 WIRE is less stable than WIP 

Despite the similarities between WIP and WIRE, they have different effects on actin 

tails. WIRE dependent actin tails are shorter and move more slowly than actin tails 

in cells expressing WIP (Figure 3.2). To gain further insight into the functioning of 

WIP and WIRE, I decided to investigate the dynamics of these proteins. FRAP 

(Fluorescence recovery after photobleaching) was used for this analysis. This 

technique is used to determine the mobility of a protein in a cell. FRAP experiments 

are carried out by bleaching the signal from a fluorescently tagged protein in a 

small region of the cell and monitoring the recovery of this signal over time. A lack 

of recovery indicates that the protein exists in an immobile pool as the 

photobleached population does not dissociate and therefore the remaining 

fluorescent population cannot replace it. The rate of recovery of the fluorescent 

signal gives a measurement of the dynamic behaviour of the protein of interest. 

This type of analysis has previously been used to show that the components of the 

vaccinia virus actin polymerisation complex are very dynamic and that the speed of 

actin tails is dependent on the rate of exchange of N-WASP at the virus particle 

(Weisswange et al., 2009).  

 

To carry out FRAP experiments WIP-/- cells in which WIRE had been depleted 

were infected with WR/RFP-A3 virus. Cells were transfected with the GFP tagged 

construct of interest five hours post infection and FRAP was carried out four hours 

later. Images were acquired on a spinning disc confocal microscope, with one 

image acquired every ~300ms. The GFP signal was bleached using 5 iterations of 

the 488 laser at 100% power, which resulted in a post-bleach intensity of 

approximately 30% (Chapter 2.9.4). Analysis of the dynamics of GFP-WIP showed 

that the half-time of fluorescence recovery was 0.93 ± 0.06 seconds (Figure 3.7 A). 

The rate of exchange was previously measured in the presence of endogenous 

WIP in HeLa cells and a similar rate of exchange was observed (0.77 ± 0.06) 

(Weisswange et al., 2009). Interestingly, the half-time of recovery of WIRE was 

measured at 0.41 ± 0.03 seconds, indicating that WIRE is less stable in the 

vaccinia virus actin polymerisation complex than WIP (Figure 3.7 A). The 

fluorescence intensity of WIP and WIRE recovered to 94.5 ± 0.7 and 93.7 ± 0.5%, 

respectively. This indicates that neither protein maintains an immobile population at 
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the virus particle. Although this recovery is not quite 100%, it is likely that this is 

due to minor photo-damage over the course of the movie. It was not possible to 

correct for this because it was necessary to acquire a small area to facilitate fast 

imaging and accurate bleaching of virus particles. This means that a reference 

point that could be used to correct for photo-damage was lacking.  

 

The speed of actin-based motility of vaccinia virus being propelled by WIP- or 

WIRE-dependent actin tails was also measured (Figure 3.7 B). Experiments were 

carried out in the same manner as the FRAP experiments. As GFP-WIP and WIRE 

are localised to the tips of actin tails, speeds of actin-based motility were 

determined by tracking only those RFP-tagged virus particles that co-localised with 

a GFP signal. Images were acquired on a spinning disc confocal at rate of one 

image per second and particles were tracked for 30 seconds (Chapter 2.9.3) Actin 

tails in cells expressing GFP-WIP moved at an average speed of 0.15 ± 0.01 µm/s, 

while in cells expressing GFP-WIRE, the actin tails moved slightly faster at 0.16 ± 

0.01 µm/s. These speeds are slightly faster than those measured in the WT and 

WIP-/- cell lines (Figure 3.1). In addition, little difference is observed between the 

GFP-WIP and GFP-WIRE induced actin tails. As with the difference in tail length 

observed in the WT cells when compared to the rescued knockout cells (Section 

3.2.1), the differences in speed may be due differences in the expression levels of 

endogenous protein compared to the GFP-tagged protein, because the presence of 

the GFP-tag interferes with the function of the protein or because of the treatment 

of the cells with transfection reagents. 
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Figure 3.7. WIRE is less stable than WIP 

(A) The graph shows the normalized intensity values for WIP (blue) or WIRE 
(red) over time. Best fit curves are also shown for each protein. Comparison of 
the recovery kinetics of GFP-WIP or WIRE in WR infected WIP-/- cells lacking 
WIRE reveals that WIRE has a more rapid rate of exchange than WIP. n = 43 
from 3 independent experiments. (B) Actin tails in WR infected WIP-/- cells 
treated with WIRE siRNA and expressing GFP-WIP or GFP-WIRE have similar 
speeds. Error bars represent the SEM of three independent experiments. ns = 
not significant. *** = p<0.001  
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3.2.3 Grb2 co-operates with WIP, but not WIRE to enhance actin tail 

formation 

Grb2 enhances actin tail formation by stabilising the rate of exchange of Nck, WIP 

and N-WASP in the vaccinia virus actin polymerisation complex (Weisswange et al., 

2009). To gain further insight into the function of WIP, we investigated the 

formation of actin tails in WIP-/- cells using a virus that cannot recruit Grb2 (A36-

Y132F). This virus contains a point mutation, which replaces tyrosine 132 of A36 

with a phenylalanine, rendering it deficient in phosphorylation by Src and Abl family 

kinases during infection (Newsome et al., 2004; Newsome et al., 2006; Scaplehorn 

et al., 2002). Infection of WT cells with the A36-Y132F virus resulted in the 

formation shorter and slower moving actin tails than those formed in WR infections 

(Figure 3.8 A, B and Figure 3.2 B). However, in WIP-/- cells A36-Y132F induced 

actin tails were a similar length and moved at a similar speed to the WR induced 

actin tails (Figure 3.8 A, B and Figure 3.2 B). Thus, loss of Grb2 recruitment 

impacts on WIP dependent but not WIRE dependent actin tails. (Figure 3.8 A, B). 

 

As expected, siRNA of WIRE in these cells resulted in much less actin tail 

formation during A36-Y132F infection (Figure 3.9 A, B). The percentage of cells 

with actin tails is 7.00 ± 0.58 in WIRE siRNA treated cells, which is fewer than 

those seen in WIRE knockdown cells in WR infection (18.76 ± 9.0% and 20.67 ± 

8.2%) (Figure 3.4 C). This agrees with previous data showing that fewer actin tails 

are induced during A36-Y132F infection (Scaplehorn et al., 2002). This more 

dramatic phenotype reinforces the evidence that Grb2 acts to stabilise the vaccinia 

virus actin polymerisation complex. 

 

Actin tail formation was rescued by ectopic expression of either GFP-WIP or WIRE. 

In this case, the actin tails induced by GFP-WIP expression measured 1.29 ± 

0.15µm, which is similar to the length of the actin tails seen in either WIP-/- cells 

treated with control siRNA (1.18 ± 0.14µm), or knockdown cells rescued with GFP-

WIRE (1.38 ± 0.19 µm) (Figure 3.9 A, B). FRAP analysis of GFP-WIP and WIRE in 

WIP-/- cells treated with WIRE siRNA, revealed that in the absence of Grb2 

recruitment to virus particles, WIP is more dynamic, with a half-time of recovery of 

0.56 ± 0.04 seconds. In contrast, the rate of exchange of WIRE is similar, although 
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slightly slower, to the value measured during WR infection with a half-time of 0.55 ± 

0.04 (Figure 3.7 A, 3.10 A). The maximum fluorescence recovery of WIP was 96.69 

± 0.6%, which is similar to that measured in WR infected cells (Figure 3.7 A). 

However, GFP-WIRE was found to recover less than in WR infected cells, with the 

maximum fluorescence recovery in A36-Y132F infected cells measuring 88.95 ± 

0.5% compared to 93.71 ± 0.5% during WR infection. One reason for this may be 

increased photo-damage in this sample. However, previous data has shown that 

WIP does not recover in the absence of active actin polymerisation (Weisswange et 

al., 2009). Due to the similarities between WIP and WIRE it is likely that the 

recovery of WIRE would also be affected by differences in actin polymerisation. 

Thus this defect in WIRE recovery, in the absence of Grb2 recruitment, may 

indicate that there is less active actin polymerisation occurring at virus particles.  

 

The speed of both WIP and WIRE dependent actin tails was also similar having 

average velocities of 0.19 ± 0.01µm/s and 0.18 ± 0.04µm/s, respectively (Figure 

3.10B). An increased speed of actin tails during A36-Y132F infection has 

previously been observed (Weisswange et al., 2009). My data shows that the 

increase in actin-based motility in the absence of Grb2 recruitment is greater in 

WIP dependent actin tails (1.3 fold) than in actin tails induced by WIRE (1.1 fold) 

(compare Figure 3.7 B and 3.10B).  Once again, the loss of Grb2 recruitment 

affects the WIP dependent actin tails more than the WIRE dependent actin tails. 

This results in the WIP and WIRE dependent actin tails exhibiting similar 

characteristics in the absence of Grb2. Taken together, my data suggests that Grb2 

co-operates with WIP but not WIRE to induce actin tail formation. 
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Figure 3.8. Lack of Grb2 recruitment results in shorter actin tails in WT but not 

WIP-/- cells 

(A) Immunofluorescence images showing the formation of actin tails in both 
WIP-/- and WT cells infected with the A36-Y132F virus, which cannot recruit 
Grb2. Higher magnification panels correspond to the boxes in the main panels. 
Scale bars = 20 and 2 µm. (B) In WT and WIP-/- cells infected with the A36-
Y132F virus, actin tails are the same length (left panel). In the absence of Grb2 
recruitment, virus particles in both WT and WIP-/- cells exhibit similar rates of 
actin-based motility (right panel). Error bars represent the SEM from 3 
independent experiments in which 50 actin tails from 5 cells were tracked. ns = 
not significant 
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Figure 3.9. In the absence of Grb2 recruitment, actin tails are similar lengths in 

cell expressing either GFP-WIP or GFP-WIRE  

(A) Images show that GFP-WIRE or GFP-WIP, but not GFP, can rescue actin 
tail formation in WIP-/- cells lacking WIRE during infection with the A36-Y132F 
virus. The higher magnification panels correspond to the boxes in the main 
panels. Scale bars = 20 and 2 µm. (B) Graph shows that expression of GFP-
WIRE or GFP-WIP in WIP-/- cells lacking endogenous WIRE rescues actin tail 
formation to similar levels (left panel). In the absence of Grb2 recruitment, actin 
tails induced by GFP-WIP are the same length as those induced by GFP-WIRE 
in WIRE depleted (black bars) or as control siRNA treated (grey bars) WIP-/- 
cells expressing GFP (right panel). Error bars represent SEM of 3 independent 
experiments. *** = p<0.001; ns=not significant. 
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Figure 3.10. WIP and WIRE have similar dynamics in the absence of Grb2 

recruitment 

(A) The graph shows the normalized intensity values for WIP (blue) or WIRE 
(red) over time. Best fit curves are also shown for each protein. Comparison of 
the recovery kinetics of GFP-WIP or WIRE in A36-Y132F infected WIP-/- cells 
lacking WIRE, reveals that WIP and WIRE have similar rates of exchange. n = 
41 (WIP) and 48 (WIRE) from 3 independent experiments. (B) Actin tails in WR 
infected WIP-/- cells treated with WIRE siRNA and expressing GFP-WIP or 
GFP-WIRE have similar speeds. Error bars represent the SEM of three 
independent experiments. ns = not significant.  
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3.3 Localisation of Nck, N-WASP and Grb2 to virus particles in 
the absence of WIP 

Previous studies in N-WASP-/- cells have indicated that Nck is localised to virus 

particles in the absence of the other members of the actin polymerisation complex 

(Weisswange et al., 2009). However, the localisation of WIP and Grb2 was shown 

to depend on the presence of N-WASP (Weisswange et al., 2009). In addition, N-

WASP constructs lacking the WIP interacting WH1 domain, were not localised to 

actin tails in HeLa cells (Moreau et al., 2000). This data suggests that WIP and N-

WASP are recruited to virus particles as a complex. To further investigate this 

hypothesis and determine if the recruitment of the other members of the vaccinia 

actin polymerisation complex is dependent on WIP, I examined the localisation of 

Nck, N-WASP and Grb2 in both WT and WIP-/- cells.  

 

As expected, during WR infection of WT cells, endogenous Nck and N-WASP were 

robustly recruited to actin tails (Figure 3.11 A, B). The localisation of endogenous 

Grb2 could not be verified, as an antibody that worked well for immunofluorescence 

was not available. However GFP-Grb2 was recruited to actin tails (Figure 3.11 C). 

Nck and N-WASP were also recruited to actin tails in WT cells during infection with 

A36-Y132F virus, while Grb2 was not (Figure 3.12 A, B, C). As expected, no 

difference in the localisation of Nck, N-WASP or Grb2 was observed in either viral 

background when WIRE was depleted in these cells (Figures 3.11, 3.12 A, B, C).  
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Figure 3.11. Localisation of Nck, N-WASP and Grb2 to actin tails in WT cells 

Immunofluorescence images reveal that endogenous Nck (A), endogenous N-
WASP (B) and GFP-Grb2 (C) are localised to actin tails in WT cells infected 
with WR. Treatment of WT cells with WIRE siRNA does not affect the 
localisation of Nck, N-WASP or GFP-Grb2 (A, B, C lower panels). Scale bar = 2 
µm.  
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Figure 3.12. Localisation of Nck and N-WASP to WT cells in the absence of Grb2 

Immunofluorescence images reveal that endogenous Nck (A), endogenous N-
WASP (B) but not GFP-Grb2 (C) are localised to actin tails in WT cells infected 
with the A36-Y132F virus. Treatment of WT cells with WIRE siRNA does not 
affect the localisation of Nck, N-WASP or GFP-Grb2 (A, B, C lower panels). 
Scale bar = 2 µm.  
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Nck, N-WASP and GFP-Grb2 were robustly localised to the tips of actin tails in 

WIP-/- cells treated with control siRNA, further demonstrating that WIRE 

functionally replaces WIP in actin tail formation (Figure 3.13 A, B, C). As expected, 

actin tails were not observed in WIP-/- cells treated with WIRE siRNA. Virus 

particles were stained with DAPI and the localisation of Nck and N-WASP was 

examined. DAPI was used as a marker for virus particles to minimize the chances 

of cross-reactivity, particularly between the B5 and N-WASP antibodies, as both 

were raised in rat. As expected from the experiments in N-WASP-/- cells, Nck was 

recruited to virus particles in cells lacking expression of both WIP and WIRE 

(Figure 3.13 A). This data confirms that Nck is recruited to virus particles 

independently of both WIP and N-WASP.  

 

N-WASP was not recruited to virus particles in the absence of WIP and WIRE 

(Figure 3.13 B). Occasionally, N-WASP was observed localised to a few virus 

particles (~5% of virus particles compared with 30% in control cells, data not 

shown). This recruitment was very weak compared to that seen in the control and 

is probably due to incomplete depletion of WIRE in the WIP-/- cells. Alternatively, 

the interaction of Nck with N-WASP could mediate this recruitment. However, it is 

clear that the major pathway of N-WASP recruitment is dependent on WIP. This 

suggests that WIP and N-WASP are recruited to virus particles as a complex. In 

addition, GFP-Grb2 was not localised to virus particles in WIP-/- cells treated with 

WIRE siRNA (Figure 3.13 C). This is consistent with data showing that recruitment 

of Grb2 is dependent on an interaction with the proline rich region of N-WASP 

(Scaplehorn et al., 2002). In the absence of Grb2 recruitment, robust localisation of 

Nck was still observed at virus particles (Figure 3.13 A). As expected, neither N-

WASP nor Grb2 were recruited to virus particles during A36-Y132F infection 

(Figure 3.13 B, C).  
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Figure 3.13. Nck but not N-WASP or Grb2 is localised to virus particles in the 

absence of WIP and WIRE 

Immunofluorescence images reveal that endogenous Nck (A), endogenous N-
WASP (B) and GFP-Grb2 (C) are localised to actin tails in WR infected WIP-/- 
cells. Treatment of WIP-/- cells with WIRE siRNA does not affect the localisation 
of Nck, but N-WASP and GFP-Grb2 are no longer observed at virus particles 
which are stained with DAPI or the B5 antibody (A, B, C lower panels). Scale 
bar = 2 µm.  
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Figure 3.14. Nck is localised to virus particles in the absence of Grb2, WIP and 

WIRE 

Immunofluorescence images reveal that endogenous Nck (A), endogenous N-
WASP (B) but not GFP-Grb2 (C) are localised to actin tails in A36-Y132F 
infected WIP-/- cells. Treatment of WIP-/- cells with WIRE siRNA does not affect 
the localisation of Nck, but N-WASP and GFP-Grb2 are no longer observed at 
virus particles which are stained with DAPI or the B5 antibody (A, B, C lower 
panels). Scale bar = 2 µm.  
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3.4 Summary 

The role of WIP in vaccinia virus actin tail formation has previously been unclear. I 

have now demonstrated that WIP is essential for actin tail formation, although the 

related protein WIRE can compensate for the loss of WIP in actin tail formation. I 

have also shown that neither WIP nor WIRE is required to maintain a stable pool of 

N-WASP expression in cells. In addition, the rate of exchange of WIP in the 

absence of endogenous protein was found to agree with values previously 

measured in HeLa cells (Weisswange et al., 2009). I found that WIRE is less 

efficient than WIP in inducing actin polymerisation, most likely as a result of its 

faster rate of exchange in the vaccinia actin polymerisation complex. WIP induced 

actin tails are sensitive to the loss of Grb2 recruitment during A36-Y132F infection, 

however WIRE dependent tails are unaffected. This suggests that Grb2 acts to 

stabilise WIP, but not WIRE, possibly via a direct interaction with WIP. I have also 

shown that the localisation of Nck to virus particles is not dependent on WIP or 

WIRE. However, in the absence of WIP and WIRE, neither N-WASP nor Grb2 are 

efficiently recruited to virus particles. This is consistent with WIP and N-WASP 

being recruited as a complex. 

  

In the next chapter, I will further investigate the role of WIP by determining the 

function of its interactions with other members of the vaccinia virus actin 

polymerisation complex. 
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Chapter 4. WIP links Nck and N-WASP during 

vaccinia induced actin tail formation 

4.1 Introduction 

In the previous chapter, I showed that in the absence of WIRE, WIP is essential for 

actin tail formation. However, exactly how WIP promotes actin tail formation 

remains elusive. WIP interacts with Nck and N-WASP, both of which play essential 

roles in the formation of actin tails. Therefore, I hypothesised that understanding 

the functions of these interactions would give insights into role of WIP in actin 

polymerisation. WIP is thought to link Nck and N-WASP in reorganisation of the 

actin cytoskeleton during rocketing of PIP2 induced vesicles and in the formation of 

invadopodia and vaccinia actin tails (Benesch et al., 2002; Moreau et al., 2000; 

Yamaguchi et al., 2005). However these studies were carried out using dominant 

negative mutants in cells expressing endogenous WIP. Another study showed that 

in dendritic cells lacking expression of WIP, WASP was not properly localised to 

podosomes (Chou et al., 2006). In this chapter, I will take advantage of the WIP-/- 

cells to dissect the interactions of WIP with both Nck and N-WASP in detail. 

4.2 Characterisation of the interaction between WIP and Nck 

In order to assess the function of the Nck-WIP interaction in actin tail formation, I 

set out to define the Nck binding site in WIP. The interaction of Nck and WIP is 

dependent on the SH3 domains of Nck (Anton et al., 1998). SH3 domains are 

known to interact with short, linear proline rich motifs, which contain a core PxxP 

motif (where x is any residue) (Ren et al., 1993; Yu et al., 1994). Residues flanking 

this minimal binding site confer specificity to these interactions (Weng et al., 1995). 

WIP is very proline-rich (~30%) and contains multiple potential SH3 domain 

interacting motifs (Ramesh et al., 1997). To identify potential Nck binding sites in 

WIP, I performed far-western analysis of a peptide array covering the entire 

sequence of WIP (Figure 4.1 A, B). The short linear binding motifs favoured by SH3 

domains makes them particularly suitable for this type of analysis (Volkmer, 2009).   
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Figure 4.1. Schematic representation of the Far Western Approach used to map 

the Nck binding site in WIP 

(A) Overlapping peptides corresponding to the complete amino acid sequence 
of WIP were synthesised on a cellulose membrane. Each peptide was 15 
residues in length and adjacent peptides were shifted by 3 amino acids. (B) The 
peptide array was probed with His-Nck1 and potential interactions were 
detected by immunoblot using an anti-His antibody (pink) followed by a 
secondary antibody conjugated to HRP (purple). 
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Full-length, His-tagged Nck1 was expressed in BL21 DE3 (Rosetta) E.coli and 

affinity purified using a nickel resin (Chapter 2.7.4) (Figure 4.2 A). A peptide array 

containing 15-mer peptides shifted by 3 amino acids each time was incubated with 

2µg/ml of His-Nck for 1 hour at 4°C and then subjected to immunoblot analysis 

using an anti-His antibody. Two strong interaction spots were identified (Figure 4.2 

B). These potential binding sites both contained the canonical SH3 domain 

interaction motif – PxxP. More specifically, both peptides contain a PxxPxRxL motif. 

The presence of an arginine downstream of the PxxP motif is a common specificity 

determinant in SH3-proline interactions (Lim et al., 1994). To confirm the interaction 

of these peptides with Nck, I performed pulldowns and found that both peptides 

retained His-Nck1 from bacterial soluble fraction. Substitution of the two key 

prolines in the PxxP motif with alanine prevented this interaction (Figure 4.2 C). To 

verify that these sequences were responsible for the interaction of Nck and WIP in 

the context of full-length proteins in cells, I carried out immunoprecipitation 

experiments. GFP-WIP or GFP-WIP mutants, in which the key prolines were 

substituted with alanine, were immunoprecipitated from HeLa cells. Endogenous 

Nck bound to GFP-WIP and mutation of the prolines in either of the identified 

binding sites weakened this interaction. Mutation of both PxxP motifs (GFP-

WIP∆Nck) was required to abrogate the interaction of Nck and WIP (Figure 4.3 A). 

In the same experiment, Nck also bound to GFP-WIRE, confirming previous reports 

of the interaction between these proteins (Aspenstrom, 2002). In addition, 

endogenous N-WASP co-immunoprecipitated with GFP-WIP, the WIP mutants and 

GFP-WIRE (Figure 4.3). Thus N-WASP binds to WIP independently of the 

interaction of Nck and WIP. Moreover, the presence of N-WASP was not sufficient 

to mediate Nck recruitment to these complexes in the absence of a WIP:Nck 

interaction. 
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Figure 4.2. Nck1 interacts with two peptides in WIP 

(A) Coomassie stained gel showing recombinant His-Nck1 purified from E.coli 
soluble fraction. Supernatant indicates the soluble fraction removed from the 
resin after binding for 1 hour at 4°C. 1-5 indicates the fractions eluted from the 
PD-10 desalting column. (B) Far western analysis of a peptide array covering 
the sequence of human WIP. The black spots indicate the peptides that interact 
with His-Nck1. The sequences of the identified peptides are below the array. 
Prolines in the canonical SH3 binding PxxPxR motif are indicated in red. (C) In 
vitro peptide pull down assay reveals that the peptides identified in the array 
retain His-Nck1 from bacterial soluble fraction. Mutation of the indicated 
prolines (red) to alanine disrupts binding. 
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Figure 4.3. Mutation of both binding sites in WIP is required to abrogate Nck 

binding in cells 

Immunoblot analysis reveals that endogenous N-WASP but not Nck interacts 
with GFP-WIP∆Nck. GFP-WIP, GFP-WIRE or the indicated WIP mutants were 
expressed in HeLa cells and immunoprecipitated using a mouse monoclonal 
GFP antibody.  
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the actin tails induced by wild type WIP (0.98 ± 0.04 and 2.50 ± 0.18µm 

respectively) (Figure 4.4 B).  

 

To gain further insight into the effect of disrupting the Nck-WIP interaction, I used 

FRAP to analyse the exchange rate of GFP-WIPΔNck. Wild type GFP-WIP had a 

similar rate of exchange as I previously measured (0.91 ± 0.07 seconds) (compare 

Figures 3.7 A and Figure 4.5 A). In contrast, GFP-WIPΔNck had a 40% faster 

turnover, with a half-life of recovery of 0.55 ± 0.05 seconds (Figure 4.5 A).  A slight 

difference was observed in the maximum fluorescence recovery for GFP-WIP and 

GFP-WIP∆Nck. As mentioned before (Chapter 3.2.3), decreased recovery of WIP 

has been observed in the absence of active actin polymerisation (Weisswange et 

al., 2009). This offers a possible explanation for the difference in recovery and is 

consistent with the shorter and slower moving actin tails observed for the GFP-

WIP∆Nck mutant.  

 

Furthermore, I quantified the speed of actin-based motility in WIP-/- cells treated 

with WIRE siRNA that were expressing GFP-WIP or GFP-WIP∆Nck. Actin tails in 

cells expressing wild type GFP-WIP had an average speed of 0.18 ± 0.01 µm/s, 

while those induced by GFP-WIPΔNck moved more slowly with an average speed 

of 0.12 ± 0.01µm/s (Figure 4.5 B). This represents a 40% decrease in the rate of 

actin-based motility, which correlates with the increased rate of exchange of WIP. 

 

This data demonstrates that the interaction of WIP with Nck is important for 

stabilising WIP in the vaccinia actin polymerisation complex. The functional 

importance of this stabilisation is clear as fewer actin tails are formed and the rate 

of actin based motility is reduced in the absence of the Nck:WIP interaction. As 

WIP is still localised to the virus in the absence of an interaction with Nck, other 

factors must be involved in its recruitment. As Grb2 increases the efficiency of actin 

tail formation and I have previously shown that Grb2 stabilises WIP in the actin 

polymerisation complex (Chapter 3.2.3), I hypothesised that Grb2 may cooperate 

with Nck to recruit WIP to virus particles. 
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Figure 4.4. The interaction of WIP with Nck is important for actin tail formation 

(A) Immunofluorescence analysis of WR infected WIP-/- cells treated with WIRE 
siRNA, reveals that expression of GFP-WIP∆Nck induces fewer and shorter 
actin tails than GFP-WIP. Scale bars = 20 and 2µm. (B) Graphs show a 
quantification of the percentage of WR infected cells with actin tails (left panel) 
or the average length of actin tails (right panel) in WIP-/- cells treated with 
WIRE siRNA and transfected with the indicated construct. Error bars represent 
the SEM from three independent experiments. ** = p<0.01, *** = p<0.001. 
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Figure 4.5. The increased rate of exchange of WIP∆Nck correlates with a slower 

rate of actin-based motility of vaccinia 

(A) Comparison of the recovery kinetics of GFP-WIP (red) and GFP-WIPΔNck 
(purple) after photobleaching in WIP-/- cells treated with WIRE siRNA and 
infected with WR. The rate of exchange of GFP-WIPΔNck is more rapid than 
GFP-WIP. n=50 (WIP) or 44 (WIPΔNck ) from three independent experiments. 
(B) Quantification of the rate of actin based motility of WR in WIP-/- cells treated 
with WIRE siRNA reveals that actin tails in cells expressing GFP-WIP∆Nck 
have slower average speeds that those in cells expressing wild type GFP-WIP. 
Error bars represent the SEM from three independent experiments in which 50 
virus particles were tracked in 5 cells. ** = p<0.01 
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4.2.2 Grb2 cooperates with Nck to recruit WIP and induce actin tail 

formation 

To test whether Grb2 cooperates with Nck in recruiting WIP, I examined the 

consequences of abrogating the interaction between WIP and Nck in the absence 

of Grb2 recruitment using the A36-Y132F virus. In contrast to WR infection, the 

A36-Y132F virus showed a dramatic decrease in its ability to induce actin tails in 

cells expressing GFP-WIPΔNck (Figure 4.6 A, B). Only 17.00 ± 3.61% of cells 

expressing GFP-WIPΔNck had actin tails compared with 70.00 ± 1.53% of cells 

expressing wild type GFP-WIP (Figure 4.6 A, B). Moreover, in those cells that had 

actin tails, the tails were shorter than those found in control cells (1.39 ± 0.12 and 

0.88 ± 0.02µm, respectively) (Figure 4.6 B). During A36-Y132F infection, the 

average speed of actin-based motility in cells expressing GFP-WIPΔNck was 0.06 

± 0.01 µm/s compared to 0.19 ±0.01 µm/s in control cells expressing GFP-WIP 

(Figure 4.7 A).  

 

The recruitment of GFP-WIPΔNck to virus particles was also substantially reduced 

in the absence of Grb2 recruitment (Figure 4.7 B). The 50% decrease in 

fluorescence intensity compared to wild-type GFP-WIP made FRAP analysis 

impossible, as the signal was too weak to be detected consistently and accurately 

at the rapid imaging speeds required for this technique. To further characterise this 

mutant, the persistence of recruitment of GFP-WIPΔNck to virus particles was 

measured. In this assay, cells expressing either GFP-WIP or GFP-WIPΔNck were 

infected with an A36-Y132F virus tagged with RFP-A3 (RFP-A3/Y132F) and 

imaged for 90 seconds, with one image acquired every second. Virus particles 

were followed over the course of the movie and scored for whether the GFP signal 

was still associated at the indicated time points. The GFP-WIP signal remained 

associated with 69.33 ± 1.33% of virus particles for duration of the movie. In 

contrast, for GFP-WIPΔNck, this was the case for only 12.07 ± 2.66% of the 

analysed particles (Figure 4.7 C). This shows that in the absence of an interaction 

with Nck, the recruitment of WIP to virus particles is very transient. 

 

Taken together, this data suggests that Nck and Grb2 co-operate to recruit WIP to 

virus particles. The recruitment of WIP by Grb2 may be direct or mediated by N-
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WASP. Interestingly, even in the absence of Grb2 recruitment, weak and transient 

association of WIPΔNck with a small number of virus particles is observed. This 

localisation may be due to the presence of residual WIRE in the cells. Alternatively, 

as N-WASP can also interact with Nck, this may be sufficient to mediate the 

recruitment of N-WASP: WIP complexes in a small minority of virus particles. 

 

Figure 4.6. Lack of Grb2 recruitment results in decreased efficiency of actin tail 

formation 

(A) Immunofluorescence analysis shows that significantly fewer actin tails are 
induced by the A36-Y132F virus in WIP-/- cells lacking WIRE but expressing 
GFP-WIP∆Nck. Scale bars = 20 and 2µm. (B) Quantification of the percentage 
of A36-Y132F infected cells with actin tails (left panel) and the average length of 
actin tails (right panel) in WIP-/- cells treated with WIRE siRNA and expressing 
the indicated protein. Error bars represent the SEM from three independent 
experiments. *** = p<0.001, ns=not significant. 
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Figure 4.7. Grb2 cooperates with Nck to recruit WIP to virus particles 

(A) Quantification showing that A36-Y132F virus particles move more slowly in 
WIP-/- cells lacking WIRE but expressing GFP-WIP∆Nck. Error bars represent 
the SEM of three independent experiments in which 50 virus particles were 
tracked in 5 cells. *** = p<0.001 (B) In the absence of Grb2 recruitment, the 
localisation of GFP-WIP∆Nck is weaker that that of GFP-WIP. The intensity of 
the RFP-A3 virus signal was used as a reference to which the GFP signal was 
compared. (C) The association of GFP-WIP∆Nck with virus particles is more 
transient than that of GFP-WIP. Graph shows the percentage of virus particles 
still associated with GFP-WIP or GFP-WIP∆Nck after the indicated time points. 
  

0

0.05

0.10

0.15

0.20

Sp
ee

d 
µm

/s
ec

 W
IP

 ΔNck

***

%
 v

iru
s p

ar
tic

le
s w

ith
G

FP
 si

gn
al

 

Time after initial acquisition (sec)

WIP

!Nck

0

20

40

60

80

100

0 30 60 90

A B

C

G
FP

/R
FP

0

0.5

1.0

1.5

2.0

 W
IP

 ΔNck



Chapter 4 Results 

 

 136 

4.3 Characterisation of the functional importance of the 
interaction of WIP and N-WASP 

Having demonstrated that the interaction of Nck and WIP is important for vaccinia 

driven actin polymerisation, I now focussed on determining the function of the 

interaction of WIP with N-WASP. Previous work in our lab and others has identified 

the region required for the interaction of WIP and N-WASP. A combination of 

biochemical mapping and NMR showed that the C-terminal region of WIP wraps 

around the N-terminal WH1 domain of N-WASP forming extensive contacts during 

binding (Figure 4.8 A) (Peterson et al., 2007; Volkman et al., 2002; Zettl and Way, 

2002). I utilised a construct of WIP in which two key phenylalanines at positions 

454 and 456 are substituted with alanine (WIP-FFAA). These mutations have 

previously been shown to inhibit the binding of a peptide containing residues 451-

456 of WIP to the WH1 domain of N-WASP (Zettl and Way, 2002).  To confirm that 

this mutation disrupts binding between full length WIP and N-WASP, I used a GFP 

antibody to immunoprecipitate GFP-WIP or GFP-WIP-FFAA from HeLa cells. 

Immunoblot analysis showed that while endogenous N-WASP bound to WIP, the 

FFAA mutation abolished this interaction (Figure 4.8 B). In the absence of an 

interaction with N-WASP, WIP could still bind to Nck (Figure 4.8 B).  

 

Next, I examined the consequences of expressing the GFP-WIP-FFAA mutant on 

vaccinia induced actin tail formation. Recruitment of this mutant to virus particles 

during WR infection was considerably weaker than wild type GFP-WIP or GFP-

WIPΔNck (compare figures 4.9 A and 4.4 A). A dramatic drop in the number of 

infected cells with actin tails was also observed, when compared to either wild type 

GFP-WIP or GFP-WIPΔNck (36.67 ± 5.55 % compared with 87.00 ± 0.58 % and 

59.5 ± 3.1%, respectively)  (Figures 4.8 B and 4.4 B). The actin tails induced by 

GFP-WIP-FFAA were significantly shorter than those in cells expressing GFP-WIP 

(0.10 ± 0.03µm and 2.51 ± 0.30µm respectively). FRAP analysis of WR infected 

WIP-/- cells treated with WIRE siRNA, revealed that GFP-WIP-FFAA has a very 

rapid rate of exchange, with a half-life of fluorescence recovery of 0.27 ± 0.02 

seconds (Figure 4.10 A) This represents an almost 70% increase in the rate of 

exchange of this mutant compared to wild type GFP-WIP (0.85 ± 0.06 seconds) 

and is also more rapid than the rate of exchange of GFP-WIPΔNck during WR 
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infection (0.55 ± 0.05) (Figure 4.5 A). As with GFP-WIP∆Nck, GFP-WIP-FFAA was 

observed to have a slightly lower maximum rate of recovery than GFP-WIP. A 

lower amount of active actin polymerisation could also account for this difference, 

as discussed before (Chapter 4.2.2). A decrease in the rate of actin-based motility 

was also observed, with the FFAA induced actin tails having an average speed of 

0.071 ± 0.001µm/s compared with 0.180 ± 0.005µm/s in control actin tails (Figure 

4.10 B). My data shows N-WASP plays a crucial role in stabilising the recruitment 

of WIP at virus particles. This is important for actin tail formation as the increased 

rate of exchange of WIP-FFAA results in fewer actin tails that are very short and 

move very slowly. 
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Figure 4.8. Substitution of phenylalanines 454 and 456 in WIP with alanine 

abrogates binding to N-WASP 

 (A) Cartoon representation of the structure of the WIP: N-WASP interface (WIP 
in blue, N-WASP in green). Phenylalanines 454 and 456 of WIP are highlighted 
in red. Blue arrows indicate the hydrophobic surface of N-WASP, which 
includes valine 42 and alanine 119, that mediates the interaction with 
phenylalanines 454 and 456 of WIP. (B) Immunoblot analysis reveals that 
endogenous N-WASP interacts with GFP-WIP but not with GFP-WIP-FFAA or 
GFP-WIP-FFAA+∆Nck immunoprecipitated from HeLa cells. Endogenous Nck 
interacts with GFP-N-WASP and GFP-N-WASP-FFAA but not GFP-WIP-
FFAA+∆Nck.  
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Figure 4.9. Disrupting the interaction of WIP and N-WASP leads to impaired actin 

tail formation 

 (A) Immunofluorescence analysis of WR infected WIP-/- cells treated with 
WIRE siRNA, reveals that expression of GFP-WIP-FFAA induces fewer and 
shorter actin tails than GFP-WIP. Scale bars = 20 and 2µm. (B) Graphs show a 
quantification of the percentage of WR infected cells with actin tails (left panel) 
or the average length of actin tails (right panel) in WIP-/- cells treated with 
WIRE siRNA and transfected with the indicated construct. Error bars represent 
the SEM from three independent experiments. ** = p<0.01, *** = p<0.001. 
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Figure 4.10. N-WASP stabilises WIP in the vaccinia actin polymerisation complex 

(A) Comparison of the recovery kinetics of GFP-WIP (red) and GFP-WIP-FFAA 
(blue) after photobleaching in WIP-/- cells treated with WIRE siRNA and 
infected with WR. The rate of exchange of GFP-WIP-FFAA is more rapid than 
GFP-WIP. n=36 from three independent experiments. (B) Quantification of the 
rate of actin based motility of WR in WIP-/- cells treated with WIRE siRNA 
reveals that actin tails in cells expressing GFP-WIP-FFAA have slower average 
speeds that those in cells expressing GFP-WIP. Error bars represent the SEM 
from three independent experiments in which 50 virus particles were tracked in 
5 cells. *** = p<0.001. 
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4.3.1 The interaction with Nck is not sufficient to recruit WIP to virus 

particles during infection 

I examined the ability of the WIP-FFAA mutant to rescue actin tail formation in the 

absence of Grb2 recruitment. Immunofluorescence analysis revealed that during 

infection with the A36-Y132F virus, GFP-WIP-FFAA was not recruited to virus 

particles (Figure 4.10 A). Furthermore, actin tails were not induced by A36-Y132F 

in cells expressing GFP-WIP-FFAA (Figure 4.11 A, B). Thus in the absence of 

Grb2 recruitment, Nck is not sufficient to mediate recruitment of WIP to virus 

particles. To determine whether Grb2 is sufficient for the recruitment of WIP to virus 

particles, I constructed a WIP mutant in which both the Nck and N-WASP binding 

sites are mutated (WIPΔNck+FFAA). Immunoprecipitation of GFP-WIPΔNck+FFAA 

from HeLa cells revealed that neither Nck nor N-WASP could interact with this 

mutant (Figure 4.7 B). Immunofluorescence analysis of WR infected cells 

expressing GFP-WIPΔNck+FFAA demonstrated that this mutant was not recruited 

to virus particles and that actin tail formation was not rescued (Figure 4.12 A, B). 
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Figure 4.11. In the absence of Grb2 recruitment, the interaction of WIP and N-

WASP is essential for actin tail formation 

 (A) Immunofluorescence analysis shows that significantly fewer actin tails are 
induced by the A36-Y132F virus in WIP-/- cells lacking WIRE but expressing 
GFP-WIP-FFAA. Scale bars = 20 and 2µm. (B) Quantification of the percentage 
of A36-Y132F infected cells with actin tails in WIP-/- cells treated with WIRE 
siRNA and expressing the indicated protein. Error bars represent the SEM from 
three independent experiments. *** = p<0.001, ns=not significant. 
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Figure 4.12. WIP is not recruited to virus particles in the absence of interactions 

with Nck and N-WASP 

(A) Immunofluorescence analysis shows that significantly fewer actin tails are 
induced by WR in WIP-/- cells lacking WIRE but expressing GFP-WIP-
FFAA+∆Nck. Scale bars = 20 and 2µm. (B) Quantification of the percentage of 
WR infected cells with actin tails in WIP-/- cells treated with WIRE siRNA and 
expressing the indicated protein. Error bars represent the SEM from three 
independent experiments. *** = p<0.001, ns=not significant. 
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4.4 Summary 

In this chapter, I have investigated the importance of the interactions of WIP with 

Nck and N-WASP in vaccinia actin tail formation. I identified two Nck binding sites 

in WIP and demonstrated that both sites are important for the interaction of Nck 

and WIP. I have established that the interaction with Nck plays a vital role in 

stabilising the recruitment of WIP to virus particles and increasing the efficiency of 

actin tail formation. In the absence of Grb2 recruitment, the importance of the 

Nck:WIP interaction is highlighted, as very few actin tails are induced and 

recruitment of WIP is very weak. In addition, I have shown that the interaction of 

WIP and N-WASP is critical for actin tail formation. During WR infection, abrogating 

this interaction has a more severe effect on actin tail formation than disrupting the 

interaction between Nck and WIP. In the absence of Grb2 recruitment, WIP is not 

recruited to virus particles if it is not able to interact with N-WASP. This indicates 

that Nck is not sufficient to recruit WIP to vaccinia. Finally, Grb2 is also not 

sufficient to recruit WIP to vaccinia virus particles. Overall my data shows that two 

of the three interactions between WIP and Nck, N-WASP or Grb2 are required for 

recruitment of WIP to virus particles and the induction of actin polymerisation. My 

data also suggests that in the absence of WIP, Nck cannot recruit and activate N-

WASP to induce actin polymerisation. 
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Chapter 5. The interaction of Nck and N-WASP is 

dispensable for actin tail formation 

5.1 Introduction 

In chapters three and four I demonstrated that, in the absence of WIP/WIRE, Nck is 

not sufficient to recruit and activate N-WASP to induce robust actin tail formation. 

N-WASP exists in an auto-inhibited conformation and interactions with other 

proteins, such as Cdc42, PIP2 and SH3 adaptors, are required to relieve its 

intramolecular interactions and expose the WCA domain, which activates the 

Arp2/3 complex (Kim et al., 2000; Miki et al., 1998; Padrick and Rosen, 2010; 

Rohatgi et al., 1999; Sallee et al., 2008). Interestingly, while WIP has been shown 

to inhibit the activation of N-WASP by Cdc42 in vitro, Nck is a potent activator of N-

WASP (Ho et al., 2004; Martinez-Quiles et al., 2001; Rohatgi et al., 2001; 

Tomasevic et al., 2007). Given this, I was interested to determine if the interaction 

of Nck and N-WASP is as important for promoting actin tail formation as the 

interaction between Nck and WIP (Chapter 4.2.2 and 4.2.3), Therefore, I decided to 

investigate the function of the interaction of Nck and N-WASP in actin tail formation 

by taking advantage of mouse embryo fibroblasts lacking expression of N-WASP 

(N-WASP-/-). Vaccinia virus cannot induce actin tails in these cells, although 

ectopic expression of GFP-N-WASP rescues this defect (Snapper et al., 2001; 

Weisswange et al., 2009). In addition, Nck, but not WIP or Grb2, is recruited to 

virus particles in the absence of N-WASP (Weisswange et al., 2009). 

5.2 Identification of the Nck binding sites in N-WASP 

To study the interaction of Nck and N-WASP, I first decided to identify the Nck 

binding site(s) in N-WASP. As is the case for WIP, the SH3 domains of Nck interact 

with the proline-rich region of N-WASP (Rohatgi et al., 2001). Given the success of 

the Far Western approach in identifying the Nck binding sites in WIP, as well as the 

presence of multiple putative SH3 binding motifs in N-WASP, I decided to use the 

same technique to identify the Nck binding sites in N-WASP (Figure 4.1). I used a 

peptide array that covers the entire sequence of N-WASP and consists of 

overlapping 15-mer peptides, with adjacent peptides shifted by three amino acids. 
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Following the same protocol as for the WIP array (chapter 4.2.1/2.7.4), purified 

recombinant His-tagged Nck (Figure 4.2 A) was incubated with the array and 

regions of binding were detected by immunoblot with an anti-His antibody. As with 

the WIP array, two potential binding sites were identified (Figure 5.1 A). These 

peptides both contained canonical SH3 binding motifs (PxxPxR) (Lim et al., 1994). 

In addition, the sequence of the second peptide corresponds to a Nck-binding site, 

which had previously been identified in N-WASP by probing an array covering the 

proline rich region of N-WASP with the isolated, GST-tagged, third SH3 domain of 

Nck (Weiss et al., 2009).  

 

To confirm the interaction of these peptides with Nck, I performed peptide pulldown 

assays and found that both sequences retain His-Nck from bacterial soluble 

fraction (Figure 5.1 B). Mutating the key proline residues in the PxxPxR motif 

(shown in red in Figure 5.1 A) resulted in a substantial reduction in binding to His-

Nck (Figure 5.1 B). The binding is not completely abolished, which may be due to 

the presence of multiple PxxP motifs in the peptides. To confirm that the interaction 

of Nck and N-WASP in cells depends on the identified sites, I introduced the same 

proline-to-alanine mutations in the PxxPxR motifs into full-length GFP-N-WASP. 

Next, I expressed GFP-N-WASP or the N-WASP mutants in HeLa cells and used 

the GFP-trap to pull down the GFP-tagged proteins. Immunoblot analysis revealed 

that while endogenous Nck interacts with wild type N-WASP, reduced binding of 

Nck to the second N-WASP mutant or the double mutant (N-WASPΔNck) is 

observed (Figure 5.2 A). To demonstrate that disrupting the interaction of Nck and 

N-WASP does not interfere with the binding of WIP to N-WASP, mCherry-WIP was 

co-expressed with the GFP-N-WASP mutants. Immunoblot analysis revealed that 

both N-WASP and the N-WASP mutants immunoprecipitated similar amounts of 

WIP (Figure 5.2 A). Data from the previous chapter suggests that the interaction of 

Nck and WIP is key to actin tail formation, therefore, I hypothesised that the 

residual binding between Nck and N-WASP may be due to the presence of WIP. 

To investigate this, I utilised of the WIP-/- cell line. Immunoblot analysis of 

immunoprecipitated GFP-N-WASP or its Nck binding mutants from WIP-/- cells that 

had been treated with WIRE siRNA revealed that the interaction of Nck with N-

WASPΔNck depended on the presence of WIP or WIRE (Figure 5.2 B). Although 

these experiments indicate that the second mutation is sufficient to impede Nck 
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binding, all further experiments were carried out with the double mutant (N-

WASPΔNck) to ensure that the binding between Nck and N-WASP was disrupted.

 
Figure 5.1. Identification of the Nck binding site in N-WASP 

(A) Far Western analysis of a peptide array covering the whole sequence of rat 
N-WASP. Peptides were 15 amino acids in length and adjacent peptides are 
shifted by 3 residues. The array was probed with purified His-Nck1 and signal 
was detected by an anti-His antibody. Two potential binding sites are observed. 
The sequences of the identified peptides are below the array. The red prolines 
are part of the key PxxPxR motif. The blue lines highlight other PxxP sequeces 
present in the peptides. (B) Coomassie stained gel of an In vitro peptide pull 
down assay shows that N-WASP peptides 1 and 2, identified in the array, retain 
His-Nck1 from bacterial soluble fraction. Substitution of the indicated prolines 
(in red In (A)) to alanine reduces Nck binding. M = mutant 
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Figure 5.2. A single dominant Nck binding site is observed in N-WASP 

(A) Immunoblot analysis of GFP-N-WASP pull downs from HeLa cells 
expressing Cherry-WIP reveals that binding of endogenous Nck, but not 
Cherry-WIP, is decreased for N-WASP mutant 2 and N-WASPΔNck. The GFP-
trap was used to pull down the GFP-tagged proteins and endogenous Nck or 
Cherry-WIP were detected in both the bound fractions and the input cell lysates. 
(B) Immunoblot analysis of GFP-N-WASP pull downs from WIP-/- cells treated 
with WIRE siRNA shows that in the absence of WIP, endogenous Nck does not 
bind to N-WASP mutant 2 or N-WASPΔNck. Endogenous Nck was detected in 
all input cell lysates. 
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5.2.1 Disrupting the interaction of Nck and N-WASP does not inhibit actin 

tail formation 

To examine the functional consequences of disrupting the interaction between Nck 

and N-WASP during vaccinia actin tail formation, I wanted to determine if 

expressing N-WASPΔNck rescued the ability of vaccinia virus to induce actin tails 

in N-WASP-/- cells. In order to investigate this I constructed stable cell lines 

expressing either GFP-tagged N-WASP or N-WASPΔNck (Figure 5.3 A). This was 

necessary as transient transfection of N-WASP-/- cells is very inefficient (data not 

shown). A lentiviral expression system was used to infect N-WASP -/- cells and 

generate cell lines expressing the desired proteins. Lentiviral systems are 

frequently used to make stable cell lines as they can infect a wide range of cell 

types including non-replicating cells. N-WASP or N-WASPΔNck was cloned into 

the pLVX expression vector such that GFP was fused to the N-terminal of the 

protein. This vector carries a puromycin resistance gene so that cells expressing 

the protein of interest can be easily and rapidly selected for by culturing in the 

presence of this drug (Chapter 2.5.2). These constructs were co-transfected into 

HEK293FT cells with the lentiviral packaging vector psPAX2 and the envelope 

vector pMD2.G. These plasmids are designed so that the virus particles produced 

are infectious but are unable to replicate. After two days, the culture medium from 

the 293FT cells was filtered and used to infect N-WASP-/- cells. The virus 

containing media was removed 48 hours later and the cells were subjected to 

puromycin selection. A survival curve had previously been carried out, which 

demonstrated that the presence of 1µg/ml of puromycin in the culture media is 

sufficient to kill all N-WASP-/- cells after 72 hours (data not shown). The lentivirus-

infected cells were treated with the same concentration of puromycin so that any 

cells not expressing the pLVX-puromycin plasmid would die. In this way, I obtained 

a population of cells that all express the GFP-tagged protein of interest. The 

expression of the GFP-protein was then verified by a combination of immunoblot 

and immunofluorescence analysis (Figure 5.3 and 5.4 A). These cells were then 

expanded and a stock was frozen down at low passage number. The cell lines 

generated in this manner are maintained under constant selection pressure by 

supplementing the growth media with 1µg/ml of puromycin. 
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Figure 5.3. Expression of GFP-N-WASP and GFP-N-WASP∆Nck in N-WASP-/- 

cells 

Immunoblot analysis shows that GFP-N-WASPΔNck is expressed at slightly 
higher levels than GFP-N-WASP in N-WASP-/- cells. Neither N-WASP nor GFP 
were detected in N-WASP-/- cells. Grb2 was used as a loading control. 
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5.2.2 Nck stabilises N-WASP in the vaccinia signalling network 

To examine the consequences of mutating the Nck binding site in N-WASP, I 

investigated the ability of GFP-N-WASPΔNck to localise to virus particles and to 

rescue actin tail formation. Immunofluorescence analysis confirmed that GFP-N-

WASP localised to virus particles during WR infection and could rescue actin tail 

formation in N-WASP-/- cells (Figure 5.4 A). Analysis of the N-WASP -/- cells 

expressing GFP-N-WASPΔNck showed that the localisation of N-WASP was not 

affected by the loss of Nck binding and that actin tails were also rescued in this 

case (Figure 5.4 A). Quantification of the percentage of infected cells containing 

even one actin tail revealed that GFP-N-WASPΔNck did not impair actin tail 

formation when compared to wild type N-WASP, with 92.45 ± 1.06% and 94.12 ± 

1.61% of cells having actin tails, respectively (Figure 5.4 B). A more detailed 

analysis of the number of actin tails per cell revealed that cells expressing either 

GFP-N-WASP or GFP-N-WASPΔNck had a similar average number of actin tails 

(75.80 ± 1.86 and 72.67 ± 0.98 tails/cell respectively). While the ability of N-WASP 

to induce actin tails was not affected by the loss of Nck binding, the morphology of 

the actin tails was clearly different as the actin tails induced by GFP-N-WASPΔNck 

were slightly less than half the length of the wild-type actin tails (1.35 ± 0.02 and 

2.38 ± 0.09µm respectively) (Figure 5.4 B). 
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Figure 5.4. Abrogating the interaction of Nck and N-WASP results in shorter actin 

tails 

(A) Immunofluorescence images showing the recruitment of GFP N-WASP and 
N-WASP∆Nck to extracellular virus particles in WR infected cells. Shorter actin 
tails are observed in cells expressing GFP-N-WASPΔNck. Scale bars = 20 and 
2µm. (B) Quantification of the percentage of WR infected cells with actin tails or 
the average number of actin tails per cell reveals that both GFP-N-WASP or 
GFP-N-WASPΔNck rescue actin tail formation to the same extent. 
Measurement of the average length of actin tails shows that actin tails are 
shorter in cells expressing GFP-N-WASPΔNck. Error bars represent the SEM of 
three independent experiments. ** = p<0.01, ns=not significant.  

A N-WASP  ∆Nck

0

20

40

60

80

100

%
 c

el
ls

 w
ith

 a
ct

in
 ta

ils

 ΔNck

ns

N-W
ASP

0

20

40

60

80

av
er

ag
e 

no
. t

ai
ls

/c
el

l

 ΔNck

ns

N-W
ASP

 ΔNck

N-W
ASP

0

1

2

3
**

ta
il 

le
ng

th
 (μ

m
)

B

W
R

actin GFP ex-virus actin GFP ex-virus



Chapter 5. Results 

 

 153 

To further extend the characterisation of the N-WASPΔNck mutant, the stable cell 

lines were infected with WR expressing RFP-A3 (Chapter 3.2). The speed of actin-

based motility of vaccinia virus was quantified by tracking RFP tagged virus 

particles that co-localise with the GFP signal from N-WASP or N-WASPΔNck. I 

found that virus particles in cells expressing N-WASPΔNck had an average rate of 

actin-based motility of 0.11 ± 0.008 µm/s compared with 0.15 ± 0.001µm/s in cells 

expressing wild type N-WASP (Figure 5.5 A). In addition, FRAP analysis revealed a 

small but significant increase in the rate of exchange of N-WASP when it lacks the 

ability to bind Nck (Figure 5.5 B). GFP-N-WASPΔNck has a half-time of recovery of 

2.41 ± 0.13 seconds compared with 2.94 ± 0.17 seconds for wild type GFP-N-

WASP (Figure 5.5 B). This value for the half time of fluorescence recovery of wild 

type N-WASP is similar to previously published values obtained in both HeLa and 

N-WASP-/- cells (Weisswange et al., 2009). Both GFP-N-WASP and GFP-N-

WASPΔNck recovered to ~90%, indicating that an immobile fraction is not 

maintained at virus particles by either protein (Figure 5.5 B). 
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Figure 5.5. Nck stabilises N-WASP at virus particles 

(A) Quantification of the average speed of actin based motility of virus particles 
in N-WASP-/- cells expressing the indicated protein reveals that N-WASPΔNck 
dependent actin tails move more slowly than those in cells expressing GFP-N-
WASP. Error bars represent the SEM of three independent experiments in 
which 50 virus particles were tracked. (B) Comparison of the recovery kinetics 
of GFP-N-WASP and GFP-N-WASPΔNck after photobleaching in N-WASP-/- 
cells infected with WR shows that GFP- N-WASPΔNck is less stable than GFP-
N-WASP. n=45 from three independent experiments. Error bars represent the 
SEM * = p<0.05 
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Taken together this data indicates that the interaction of Nck and N-WASP is not 

essential for the recruitment of N-WASP to vaccinia virus particles and the 

induction of actin tails. However, this interaction is important for the stability of N-

WASP in the vaccinia-signalling network. Together with an increased rate of 

exchange of N-WASP, shorter and slower moving actin tails are observed in N-

WASP-/- cells expressing N-WASP∆Nck. This suggests that the interaction of Nck 

and N-WASP does play a role in promoting actin tail formation, by stabilising N-

WASP. 

 

As actin tails still form in the absence of an interaction of Nck and N-WASP, other 

signals must be present that can activate N-WASP at virus particles. Grb2 has 

been shown to have the ability to activate N-WASP in vitro; as well as stabilising N-

WASP in the vaccinia actin polymerisation complex and promoting actin tail 

formation (Carlier et al., 2000; Weisswange et al., 2009). Therefore, I hypothesised 

that Grb2 is stabilising and activating N-WASP∆Nck during vaccinia virus infection. 

To investigate this, I infected N-WASP-/- cells expressing GFP-N-WASPΔNck with 

the A36-Y132F virus, which does not recruit Grb2 (Scaplehorn et al., 2002). I found 

that GFP-N-WASPΔNck was recruited to virus particles, although the localisation 

was much weaker than wild type N-WASP (Figure 5.6 A). The localisation was also 

weaker than GFP-N-WASPΔNck during WR infection (compare Figures 5.4 A and 

5.6 A). As observed during WR infection, the percentage of cells with A36-Y132F 

virus induced actin tails was similar in cells expressing either GFP-N-WASPΔNck 

or GFP-N-WASP (Figure 5.6 B). The average number of actin tails per cell was 

also the same in both cell lines (Figure 5.6 B). The actin tails observed in A36-

Y132F infected cells are shorter than those in WR infected cells (compare Figure 

5.4 B and 5.6 B). While in cells expressing GFP-N-WASPΔNck, the A36-Y132F 

induced actin tails are even shorter (Figure 5.6 B).  
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Figure 5.6. In the absence of Grb2 recruitment, N-WASP∆Nck induces even 

shorter actin tails 

(A) Immunofluorescence images showing that GFP-N-WASP∆Nck is weakly 
recruited to virus particles in cells infected with the A36-Y132F virus. Very short 
actin tails are observed in N-WASP-/- cells expressing GFP-N-WASPΔNck and 
infected with A36-Y132F. Scale bars = 20 and 2µm. (B) Quantification of the 
percentage of A36-Y132F infected cells with actin tails or the average number 
of actin tails per cell reveals that both GFP-N-WASP or GFP-N-WASPΔNck 
rescue actin tail formation to the same extent. Measurement of the average 
length of actin tails induced by the A36-Y132F virus in N-WASP-/- cells 
expressing GFP-N-WASP or GFP-N-WASPΔNck shows that actin tails are even 
shorter in the absence of an interaction between N-WASP and Nck. Error bars 
represent the SEM of three independent experiments. * = p<0.05, ns=not 
significant. 
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As expected, in A36-Y132F infected cells, the rate of exchange of GFP-N-WASP 

increased 1.3 fold in the absence of Grb2 recruitment (compare Figures 5.7 A and 

5.5 A) (Weisswange et al., 2009). The half-time of recovery of GFP-N-WASPΔNck 

at virus particles, in the absence of Grb2 recruitment, is 2.20 ± 0.12 seconds, which 

is very similar to that of GFP-N-WASP (2.11 ± 0.11) (Figure 5.7 A). In addition, both 

proteins recover to the same extent (Figure 5.7 A). Thus an additive increase in the 

rate of exchange of N-WASP is not observed upon loss of interactions with both 

Nck and Grb2. 

 

Lack of Grb2 recruitment has previously been shown to result in an increase in the 

rate of actin based motility of virus particles (Weisswange et al., 2009). In 

agreement with this, in A36-Y132F infected N-WASP-/- cells expressing GFP-N-

WASP, virus particles had an average speed of 0.16 ± 0.005 µm/s compared with 

0.15 ± 0.001µm/s during WR infection (compare Figure 5.5 B and 5.7 B). In cells 

expressing GFP-N-WASPΔNck, an increase in the speed of actin-based motility to 

0.17 ± 0.002 µm/s was observed during infection with the A36-Y132F virus (Figure 

5.7 B). Thus, in the absence of Grb2 recruitment, both the speed of actin tails and 

the rate of exchange of N-WASP are similar in cells expressing either GFP-N-

WASP or GFP-N-WASPΔNck. This is consistent with previous observations 

showing that the speed of actin-based motility of virus particles is determined by 

the rate of exchange of N-WASP (Weisswange et al., 2009). Furthermore, this data 

suggests that Nck plays a role in stabilising N-WASP in the presence but not the 

absence of Grb2. 
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Figure 5.7. An additive increase in the rate of exchange of N-WASP is not 

observed in the absence of interactions with both Nck and Grb2 

(A) Comparison of the recovery kinetics of GFP-N-WASP and GFP-N-
WASPΔNck after photobleaching in N-WASP-/- cells infected with the A36-
Y132F virus shows that GFP- N-WASPΔNck has a similar rate of exchange as 
GFP-N-WASP. n=40 virus particles from three independent experiments. Error 
bars represent the SEM. (B) Quantification of the average speed of actin based 
motility of virus particles in N-WASP-/- cells expressing the indicated protein 
reveals that N-WASPΔNck dependent actin tails move at a similar speed to 
those induced by the wild type protein. Error bars represent the SEM of three 
independent experiments. ns = not significant. 
  

% Recovery t1/2 (sec)

N-WASP 91.06 ± 0.5 2.11 ± 0.11
 ΔNck 90.04 ± 0.6 2.20 ± 0.12

A B

0

0.18

0.15

0.12

0.03

0.06

0.09

sp
ee

d 
(μ

m
/s

)

ns

 ΔNck

N-W
ASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time(sec)

0

1.1

2.5 7.5 12.55.0 15.0 17.5 20.0 22.510.0



Chapter 5. Results 

 

 159 

5.3 The 2nd SH3 domain of Nck is essential for actin tail 
formation. 

My results indicate that Nck interacts with WIP to recruit the WIP:N-WASP complex 

to virus particles and subsequently interacts with N-WASP (Chapter 4.2). Nck then 

stabilises N-WASP and this promotes actin tail formation (Chapter 5.3). Nck 

contains three SH3 domains and a C-terminal SH2 domain. Recruitment of Nck to 

virus particles is dependent on the interaction of its SH2 domain with 

phosphorylated tyrosine 112 of A36 (Frischknecht et al., 1999b). As mentioned 

previously, Nck is recruited to virus particles in the absence of Grb2, WIP or N-

WASP (Figure 3.13 A) (Weisswange et al., 2009). The SH3 domains then interact 

with WIP and N-WASP. As WIP contains two Nck binding sites, while N-WASP has 

a single dominant binding site, it is possible that each SH3 domain of Nck binds to 

a particular site in WIP or N-WASP (Figure 4.3; 5.2 A, B). Consistent with this, 

previous studies have indicated that each SH3 domain of Nck has preferences for 

different binding partners (Anton et al., 1998; Rivero-Lezcano et al., 1995; Rohatgi 

et al., 2001; Weiss et al., 2009). To determine the binding preferences of each SH3 

domain with regard to WIP and N-WASP, I took advantage of point mutations that 

disrupt the function of the Nck SH3 domains. Substitution of a conserved 

tryptophan for lysine in each of the SH3 domains renders them unable to interact 

with proline rich motifs (Figure 5.8 A) (Blasutig et al., 2008; Ruusala et al., 2008; 

Tanaka et al., 1995; Wunderlich et al., 1999). 

 

To investigate if the SH3 domains of Nck interact preferentially with the binding 

sites identified in WIP or N-WASP, I carried out peptide pulldown assays (Figure 

5.8 B). Wild type His-tagged Nck or Nck∆1, ∆2 or ∆3 was expressed in BL21 

(Rosetta) E.coli. As before, each of the peptides identified in the WIP peptide array 

retained wild type recombinant Nck from bacterial soluble fraction (Figures 4.2 C; 

5.8 B). In contrast neither WIP peptide could interact with Nck∆2. In addition, Nck 

∆1 and ∆3 also showed decreased binding to the 1st but not the 2nd WIP peptide 

(Figure 5.8 B). This analysis confirms and extends previous studies showing that 

WIP interacts preferentially with the 2nd SH3 domain of Nck (Anton et al., 1998; 

Weiss et al., 2009). 
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In agreement with my previous results, both N-WASP peptides also retained wild 

type His-Nck from bacterial soluble fraction (Figure 5.1 B, 5.8 B). Mutation of the 3rd 

SH3 domain of Nck resulted in a dramatic decrease in binding to both N-WASP 

peptides (Figure 5.8 B). In addition, Nck∆1 or Nck ∆2 also showed slightly reduced 

binding to both N-WASP peptides. This data demonstrates that the N-WASP 

peptides primarily interact with the third SH3 domain of Nck. This is consistent with 

data from a number of previous studies (Rohatgi et al., 2001; Weiss et al., 2009).  
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Figure 5.8. The SH3 domains of Nck show distinct preferences in binding WIP 

and N-WASP 

(A) Schematic representation of the Nck mutant contructs. Red indicates the 
domain containing the loss of function mutation. The nomenclature used in this 
thesis is indicated on the right, followed by the point mutation used to disrupt 
the function of the domain. (B) Coomassie stained gels of peptide pull down 
assays using the WIP and N-WASP peptides identified as Nck binding sites in 
the peptide arrays (Figure 4.2 A and 5.3 B). All peptides retained wild type Nck 
from bacterial soluble fraction. The WIP peptides did not interact with Nck∆2, 
while N-WASP did not bind Nck∆3. The input represents 3% of the bacterial 
soluble fraction used in each pulldown. 
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5.3.1 Establishment of cell lines to study the function of Nck in actin tail 

formation 

To study the importance of each Nck SH3 domain in actin tails formation, I took 

advantage of mouse embryonic fibroblasts (MEFs) lacking the expression of both 

isoforms of Nck (Nck-/-) (Bladt et al., 2003) Actin tails are not formed in these cells 

during vaccinia infection, however ectopic expression of GFP-Nck1 rescues this 

defect (Weisswange et al., 2009).  Due to the poor efficiency of transfection 

observed in this cell line, I established cell lines that stably express the different 

Nck mutants (Figure 5.8 A). As with the N-WASP cell lines, a lentiviral system was 

used to generate these cell lines (Chapter 5.3). This differed slightly from the 

previous system in that the pL/ L expression vector was used (Chapter 2.5.1). This 

vector does not contain a puromycin resisistance cassette, thus FACS 

(fluorescence activated cell sorter) was used to obtain populations of cells that all 

express the GFP-tagged protein. Two days after infection of the Nck-/- cells with 

lentivirus, the culture media was changed and cells were checked for GFP 

expression by immunofluorescence microscopy. Cells were FACS sorted on the 

basis of GFP expression to eliminate cells not expressing GFP and to select a 

population of cells expressing similar levels of the GFP-tagged protein (Chapter 

2.5.1.1).  

 

After establishment of these cell lines, total cell lysates were collected and 

subjected to SDS-PAGE and immunoblot analysis to confirm expression of GFP-

Nck or the Nck mutants (Figure 5.9). Nck-/- cell lines were used as a negative 

control. The GFP-tagged proteins were expressed in each cell line and migrated at 

the predicted molecular weight of 75kDa (Figure 5.9). The Nck antibody specifically 

detected a band at the expected size in each of the GFP positive cell lines but not 

in the Nck -/- cell lysates. Grb2 was used as a loading control. Wild type Nck and 

the Nck mutants were all expressed at similar levels (Figure 5.9).  
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Figure 5.9. Expression of GFP-Nck and the GFP-Nck mutants in Nck-/- cells 

Immunoblot analysis shows that the GFP-Nck mutants are expressed at similar 
levels to wild type GFP-Nck. As expected, Nck was not detected in Nck-/- cells. 
Grb2 was used as a loading control.  
 

5.3.2 Functional analysis of the importance of the Nck SH3 domains in actin 

tail formation. 

During WR infection, actin tails were not observed in Nck-/- cells expressing GFP 

alone (Figure 5.11 A, B). In contrast, wild type GFP-Nck was robustly recruited to 

vaccinia virus particles and actin tails were induced in 70.33 ± 3.77 % of infected 

cells (Figure 5.11 A, B). In cells expressing Nck∆SH2, no GFP signal was observed 

at virus particles and actin tail formation was not rescued in this cell line. This 

agrees with previous reports that the SH2 domain of Nck is required for its 

recruitment to virus particles (Frischknecht et al., 1999b) (Figure 5.11 A, B). 

Recruitment of Nck to virus particles was observed for all constructs containing 

mutations in the SH3 domains, however if more than one of the SH3 domains was 

mutated, the localisation of GFP-Nck was weaker than the wild type (Figure 5.11 A). 

This suggests that the interaction of Nck with its downstream binding partners 

stabilises it at the virus. Consistent with this, Nck was found to have a more rapid 

rate of exchange in N-WASP-/- cells in which it is recruited to viruses in the 

absence of WIP, N-WASP and Grb2 (Weisswange et al., 2009). Actin tail formation 

was not rescued equally efficiently by all of the Nck SH3 mutants (figure 5.11 A, B). 

Mutation of any of the SH3 domains resulted in a ~10% decrease in the percentage 

of infected cells inducing actin tails compared to cells expressing wild type Nck. 

However, mutation of any two of the SH3 domains resulted in a significant 
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decrease in the number of actin tails formed. Nck∆1+2 rescued actin tail formation 

in only 13.33 ± 3.84 % of cells, while this was even less, at 7.33 ± 3.38%, for cells 

expressing Nck∆1+3. The most severe effects were observed in cells expressing 

Nck∆2+3 and Nck∆1+2+3, where actin tails were induced in only 3.33 ± 0.33% and 

1.67 ± 0.67% of infected cells, respectively (Figure 5.11B). This suggests that at 

least two functioning Nck SH3 domains are required for WR induced actin tail 

formation. 
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Figure 5.10. Two functioning Nck Sh3 domains are required for actin tail 

formation 

(A) Immunofluorescence analysis shows that GFP-Nck or the Nck mutants are 
recruited to virus particles in WR infected cells. Loss of any two (or all three) 
SH3 domains results in a dramatic decrease in the ability of the virus to induce 
actin tails. Yellow arrows indicate the localisation of the GFP signal to virus 
particles. (B) Quantification of the percentage of WR infected cells with actin 
tails reveals that mutating the 2nd and 3rd SH3 domains, or all three SH3 
domains has the biggest impact on actin tail formation. Error bars represent the 
SEM of three independent experiments. *** = p<0.001. 
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by the observation that fewer than 2% of cells expressing Nck∆1+2, Nck∆1+3, 

Nck∆2+3 or Nck∆1+2+3 could support actin tails formation (Figure 5.11 A, B). This 

data shows that the 2nd SH3 domain of Nck is essential for actin tail formation. 

Taken together with my previous data demonstrating that this SH3 domain interacts 

with WIP, this is further evidence that WIP is essential to link Nck to N-WASP in 

order to promote Arp2/3 dependent actin polymerisation. 
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Figure 5.11. In the absence of Grb2 recruitment, the 2nd SH3 domain of Nck is 

essential for actin tail formation 

(A) Immunofluorescence analysis shows that GFP-Nck or the Nck mutants are 
recruited to virus particles in A36-Y132F infected cells. Actin tails are no longer 
induced in cells expressing Nck∆2. Yellow arrows indicate the localisation of the 
GFP signal to virus particles. (B) Quantification of the percentage of A36-Y132F 
infected cells with actin tails reveals that mutating the 2nd SH3 domain alone, or 
any two SH3 domains inhibits actin tail formation in the absence of Grb2. Error 
bars represent the SEM of three independent experiments. ** = p< 0.01, *** = 
p<0.001. 
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5.4 Summary 

In this chapter, I used a combination of Far Western blotting and 

immunoprecipitation to show that Nck interacts with N-WASP via a single dominant 

binding site. Furthermore, I demonstrated that the interaction of Nck and N-WASP 

is not essential for actin tail formation. However, Nck stabilises N-WASP at virus 

particles and the loss of this interaction results in an increased rate of exchange of 

N-WASP. This correlates with the induction of shorter actin tails and a slower rate 

of actin-based motility of virus particles. In the absence of Grb2 recruitment, GFP-

N-WASPΔNck is weakly localised to virus particles and the resulting actin tails are 

very short. This indicates that Nck and Grb2 cooperate to recruit N-WASP to virus 

particles. However, a synergistic increase in the rate of exchange of N-WASP was 

not observed in the absence of interactions with both Nck and Grb2. In agreement 

with this, during infection with the A36-Y132F virus, the speed of virus particles is 

similar in cells expressing either GFP-N-WASP or GFP-N-WASPΔNck. 

Furthermore, I have demonstrated that the second SH3 domain of Nck interacts 

preferentially with WIP, while the third SH3 domain interacts with N-WASP. 

Consistent with an important role for WIP in recruiting N-WASP to vaccinia virus 

particles, loss of the 2nd, but not the 3rd SH3 domain of Nck inhibited actin tail 

formation during infection with A36-Y132F virus.  
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Chapter 6. Discussion 

Nck and N-WASP signalling networks play an important role in regulating Arp2/3 

dependent actin polymerisation in a variety of cellular contexts including cell 

migration and endocytosis (Anitei and Hoflack, 2012; Ridley, 2011). Deregulation of 

these networks results in aberrant cytoskeletal rearrangements leading to changes 

in cell adhesion and migration, which contribute to pathological conditions including 

metastatic cancer (Olson and Sahai, 2009). In order to gain a greater 

understanding of the connectivity and hierarchy within these networks, I have 

exploited the robust localisation of a Nck and N-WASP dependent signalling 

network to vaccinia virus. Examination of this network revealed an essential role for 

WIP in vaccinia actin tail formation. Furthermore, WIP was found to play an 

essential role in linking Nck to N-WASP in order to promote Arp2/3 dependent actin 

polymerisation. My findings have important implications for other Nck and N-WASP 

dependent signalling networks.  

 

6.1 WIP or WIRE is essential for actin tail formation 

Both Nck and N-WASP have previously been shown to be required for actin tail 

formation of vaccinia virus (Snapper et al., 2001; Weisswange et al., 2009). 

However, despite the robust localisation of WIP to virus particles undergoing actin-

based motility, it was not clear if WIP plays an accessory or an essential role in this 

process (Moreau et al., 2000; Zettl and Way, 2002). Infection of MEFs lacking WIP 

expression revealed that vaccinia virus could still induce actin tails in the absence 

of WIP (Figure 3.2 A). However, these actin tails were shorter and moved more 

slowly than actin tails formed in wild type MEFs (Figure 3.2 B). This lead to two 

potential hypotheses, either WIP plays a non-essential, secondary role in the Nck 

and N-WASP signalling network or another protein can compensate for the loss of 

WIP. Consistent with the latter idea, recruitment of WIRE, a homologue of WIP 

(Aspenstrom, 2002; Kato et al., 2002), to the virus was strikingly increased in WIP 

deficient cells (Figure 3.3A). Treatment of WIP -/- cells with siRNA against WIRE 

confirmed that the actin tails observed in the absence of WIP were induced by 

WIRE (Figure 3.4 B, C). Furthermore, expression of GFP-tagged WIP or WIRE 
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rescues actin tails in WIP-/- MEFs treated with WIRE siRNA (Figure 3.5 A). In 

addition, the actin tails induced by vaccinia virus are longer in cells expressing 

GFP-WIP than those in cells expressing GFP-WIRE (Figure 3.5 B). Taken together, 

it is clear from my data that either WIP or WIRE is essential for the functioning of 

the signalling network. This agrees with data from a study showing that WIP is 

essential for actin comet formation induced by clustering the SH3 domains of Nck 

at the plasma membrane (Ditlev et al., 2012). However, in this study, WIRE was 

not observed to compensate for the loss of WIP. This is likely the result of 

differences in experimental set up. In their study, the SH3 domains of Nck were 

fused to a transmembrane domain and artificially clustered using an extracellular 

antibody. Thus, Nck is not freely exchanging in the system. Furthermore, in 

contrast to the situation in vaccinia virus, WIP is recruited to these Nck aggregates 

independently of N-WASP (Ditlev et al., 2012; Snapper et al., 2001; Weisswange et 

al., 2009). 

 

WIRE can functionally replace WIP in vaccinia actin tail formation, however WIP is 

likely the predominant molecule. Expression of GFP-WIRE rescues the percentage 

of cells inducing actin tails to a similar extent as expression of GFP-WIP, but the 

WIP dependent actin tails are longer than those induced by GFP-WIRE. Thus, they 

more closely resemble the actin tails formed in the wild type cell line. Moreover, 

knockdown of WIRE in wild type cells that express WIP does not affect actin tail 

formation (Figure 3.6 A, B), which is consistent with the weak recruitment of WIRE 

to extracellular virus particles observed in these cells (Figure 3.3 B). The evidence 

that WIRE can replace WIP in the vaccinia signalling network has implications for 

the study of WIP in other systems. For example, WIP-/- cells were used to 

demonstrate that WIP is not essential for actin tail formation by Mycobaterium 

marinum (Stamm et al., 2005). This may because WIRE can also compensate for 

the loss of WIP in the N-WASP dependent actin-based motility of this pathogen. 

Furthermore, while loss of verprolin, the yeast orthologue of WIP, results in major 

defects in polarity, growth and endocytosis in S. cerevisiae (Naqvi et al., 2001; 

Naqvi et al., 1998; Thanabalu and Munn, 2001), WIP null mice do not exhibit any 

gross abnormalities, and the defects observed are mainly confined to the immune 

system (Anton et al., 2002; Curcio et al., 2007). A similarly mild phenotype has 

been observed for CR16 null mice, where the only documented defect is male 
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specific sterility (Suetsugu et al., 2007). Functional redundancy between WIP, 

WIRE and CR16 would account for the relatively minor defects in mammals.  

 

WIP has previously been shown to inhibit the activity of N-WASP until the correct 

combination of activation signals is received (Ho et al., 2004; Martinez-Quiles et al., 

2001). However in the absence of WIP, vaccinia virus cannot induce actin tails. 

This suggests that WIP fulfils other functions than repressing the activity of N-

WASP. In the absence of WIP and WIRE, N-WASP is not observed at virus 

particles (Figure 3.12 B), suggesting that WIP is required to mediate the 

recruitment of N-WASP. Consistent with this, another study has also shown that 

WIP is important for the localisation of WASP to podosomes (Chou et al., 2006). 

Taken together with previous observations showing that WIP is not localised to 

virus particles in the absence of N-WASP, my data indicates that WIP and N-

WASP are recruited as a complex (Snapper et al., 2001; Weisswange et al., 2009). 

Nck is recruited to virus particles independently of WIP, N-WASP and Grb2 (Figure 

3.12 A) (Weisswange et al., 2009). Thus it is not unreasonable to assume that Nck 

is responsible for the recruitment of a complex consisting of WIP and N-WASP.  

6.1.1 The dynamics of WIP 

I used FRAP to analyse the rate of exchange of WIP in MEFs lacking expression of 

endogenous WIP and WIRE. GFP-WIP was found to have a half-time of 

fluorescence recovery of 0.93 ± 0.06 seconds (Figure 3.7 A). This is similar to the 

half-time of recovery of GFP-WIP in Hela cells expressing endogenous WIP, which 

was previously found to be 0.77 ± 0.06 seconds (Weisswange et al., 2009). As is 

the case for Nck and N-WASP, this demonstrates that the presence of endogenous 

protein does not affect the rate of exchange of the GFP-tagged protein 

(Weisswange et al., 2009). This is also evidence that the rate of exchange of WIP 

is independent of cell type. Furthermore, as observed before, the fluorescence 

intensity of WIP recovered to ~95% indicating that a stable population of WIP is not 

maintained at virus particles. Recovery of fluorescence to almost 100% was also 

observed for Nck, N-WASP and Grb2 (Figure 5.5 A) (Weisswange et al., 2009). A 

number of studies have shown that the signalling networks, which regulate Arp2/3 

dependent actin polymerisation in the lamellipodia of migrating cells are also 
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constantly exchanging (Lai et al., 2008; Millius et al., 2009; Millius et al., 2012; 

Weiner et al., 2007). The perpetual renewal of the signalling networks involved in 

actin polymerisation is probably important to enable the cell to respond rapidly to 

environmental cues. Furthermore, the constant nucleation of actin filaments is likely 

to be important to generate the force required to propel virus particles, or the 

leading edge of the cell, forward (Pollard and Borisy, 2003). Interestingly, the 

dynamic turnover of these cellular networks is dependent on active actin 

polymerisation (Millius et al., 2009; Millius et al., 2012; Weiner et al., 2007). This is 

also true of the vaccinia actin-signalling network, as Cytochalasin D treatment 

decreases the recovery of WIP and N-WASP at virus particles. Thus, a general 

mechanism of regulation of these networks appears to involve the initiation of a 

positive feedback loop in which actin polymerisation stimulates the renewal of the 

signalling networks that promote Arp2/3 complex-dependent actin nucleation. 

 

My FRAP analysis has shown that the rates of exchange of WIP and N-WASP in 

the signalling complex are very different (Figure 3.7A, 5.5A) (Weisswange et al., 

2009). WIP has a half-time of recovery of 0.93 seconds, while N-WASP recovers 

more slowly at 2.9 seconds. If WIP and N-WASP are recruited as a complex, this 

data suggests that they dissociate at different rates. As inhibition of active actin 

polymerisation by Cytochalasin D decreased the recovery of both WIP and N-

WASP to a similar extent, this may indicate that active actin polymerisation 

promotes the dissociation of the WIP/N-WASP complex. It would be interesting to 

examine if this is indeed the case and whether dissociation is required for actin 

polymerisation. FRET experiments could give insight into whether dissociation 

occurs. Moreover, a previous study employed a construct, in which full length WIP 

and N-WASP are fused, to demonstrate that dissociation is not required for IL-2 

production (Dong et al., 2007). Thus, a similar approach could be used to 

determine if the same is true for actin polymerisation. 

6.1.2 Comparison of WIP and WIRE 

The actin tails induced by WIRE are shorter and move more slowly than those 

induced by WIP (Figure 3.1 A, B). This is curious given the similarities between the 

two molecules. Both WIP and WIRE have two actin-binding (WH2) domains, a 
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proline rich region and a WBD (Aspenstrom, 2005; Garcia et al., 2012). Despite this, 

FRAP analysis revealed that WIP and WIRE have different rates of exchange in the 

vaccinia signalling network. WIRE has a rate of exchange that is ~2.3 fold faster 

than WIP. Increased rate of exchange of a protein can reflect the loss interactions 

with other molecules. For, example, in the case of N-WASP, loss of interaction with 

Grb2 or with the actin cytoskeleton resulted in a more rapid exchange 

(Weisswange et al., 2009). Thus, the greater instability of WIRE compared to WIP 

may reflect a reduced capacity to interact with the other components of the network. 

Interestingly, the loss of Grb2 did not affect the actin tails formed in WIP-/- MEFs, 

although the actin tails in the WT cells were shorter and had reduced rates of actin 

based motility (Figure 3.8 A, B). Furthermore, the rate of exchange of WIP 

increased in the absence of Grb2 recruitment, but WIRE was unaffected (Figure 

3.10 A). Thus, it is possible that Grb2 interacts only with WIP but not with WIRE.  

 

At this time, a direct interaction between WIP and Grb2 has not been established, 

although it seems likely as WIP contains numerous PxxP motifs, which could bind 

to the SH3 domains of Grb2. Interestingly, a high stringency examination of WIP 

using Scansite (Obenauer et al., 2003), reveals eight potential Grb2 interaction 

motifs, while a similar scan of WIRE reveals only one potential site. Furthermore, 

the putative site in WIRE is located at the C-terminus of the protein, within the WBD 

making unlikely that WIRE could interact with both N-WASP and Grb2 

simultaneously. This data must be interpreted with caution as these predicted sites 

are based on a consensus motif that may not be complete. Thus, further 

experiments are required to clarify the interaction of Grb2 with WIP or WIRE.  

 

The Nck binding sites identified in WIP both contain the motif PxxPxRxL (Figure 4.1 

B; Chapter 6.2, 6.5.1). This motif is present only once in WIRE (residues 271-282). 

The presence of only a single Nck binding site in WIRE could also contribute to 

increased dynamics of WIRE. A detailed comparison of the interactions of WIP and 

WIRE with Nck, N-WASP and Grb2 is required in order to understand the 

differences in their function in vaccinia actin tail formation. Distinct functions of WIP 

and WIRE have been observed in cells. For example, WIRE but not WIP 

synergizes with IRSp53 to induce the formation of filopodia (Lim et al., 2008; Misra 

et al., 2010). Furthermore, the stabilization of newly formed actin filaments at 



Chapter 6. Discussion 

 

 176 

adherens junctions is specifically dependent on WIRE (Kovacs et al., 2011). Thus 

understanding the differential regulation of WIP and WIRE in vaccinia actin tail 

formation may shed light on diverse cellular processes. 

6.2 The recruitment of WIP to vaccinia virus  

Having established the importance of the role of WIP in actin tail formation, I 

wanted to understand how it functions with Nck and N-WASP to induce actin 

polymerisation. Nck is recruited upstream of WIP, thus I hypothesised that it is 

important for localising WIP to virus particles (Figure 3.12 A) (Weisswange et al., 

2009). While a previous study had demonstrated that the second SH3 domain of 

Nck interacts with a truncation of WIP (residues 321-503), the specific Nck binding 

sites in WIP had not been identified (Anton et al., 1998). WIP is a highly proline rich 

protein, which contains many putative SH3 binding motifs (Figure 3.3 A) (Ramesh 

et al., 1997). Due to this, I decided to take an unbiased approach to identify those 

that were specific for Nck. A previous study had successfully mapped the Nck 

binding site in PAK by performing Far Western analysis of a peptide array (Zhao et 

al., 2000). Thus, I probed a peptide array comprising the entire sequence of WIP 

with purified His-Nck1 and identified two potential binding sites (Figure 4.1 B). The 

second of these sites is contained in the truncation of WIP previously found to 

interact with the second SH3 domain of Nck (Anton et al., 1998). In vitro pulldown 

assays confirmed that these peptides could bind Nck. (Figure 4.1 C). Furthermore, 

while mutation of the key proline residues in each site in full length WIP resulted in 

decreased Nck binding, it was necessary to combine both mutations to abrogate 

the interaction completely (Figure 4.2). Thus both sites can mediate an interaction 

between WIP and Nck. Loss of the interaction between WIP and Nck did not affect 

the ability of WIP to bind to N-WASP. This agrees with previous studies showing 

that the Nck and N-WASP binding sites in WIP do not overlap (Anton et al., 1998; 

Martinez-Quiles et al., 2001). Interestingly, in the absence of an interaction 

between Nck and WIP, the presence of N-WASP is not sufficient to recruit Nck into 

the complex (Figure 4.2). This suggests that a prior interaction between Nck and 

WIP is required before N-WASP can interact with Nck. This is consistent with a 

model in which Nck interacts with WIP to recruit the WIP/N-WASP complex to the 

membrane, where other signals, for example PIP2, cooperate with Nck to relieve 
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the autoinhibitory contacts in N-WASP. Alternatively, the interaction of Nck with 

WIP may induce a conformational change in the WIP/N-WASP complex that is 

required to promote the interaction of Nck and N-WASP (Figure 6.1).  

 

Loss of the interaction between Nck and WIP did not result in loss of recruitment of 

WIP to virus particles, although a 25% decrease in the percentage of cells with 

actin tails was observed (Figure 4.3 A, B). However, the rate of exchange of WIP 

increased in the absence of an interaction with Nck (Figure 4.4 A). This 

demonstrates that WIP is stabilised in the signalling network by its interaction with 

Nck. In the absence of Grb2 recruitment, loss of the interaction between Nck and 

WIP resulted in extremely weak and transient recruitment of WIP to virus particles 

(Figure 4.7 B, C). Furthermore, there was a dramatic decrease in the ability of 

vaccinia virus to induce actin tails (Figure 4.6 A, B). Thus, Nck recruits WIP to virus 

particles, although Grb2 also contributes to its localisation and stabilisation. As 

mentioned above, the interaction of Grb2 and WIP has not been established 

(Chapter 6.1.2), but N-WASP may mediate the recruitment of WIP by Grb2. 

Consistent with this, WIP-FFAA, which cannot interact with N-WASP, is not 

recruited to virus particles during A36-Y132F infection (Figure 4.10 A, B). In 

addition, Grb2 alone is not sufficient for recruitment of WIP, as WIP∆Nck+FFAA is 

not recruited to virus particles even during WR infection (Figure 4.11 A, B). This is 

not unexpected as in the absence of Nck Grb2 is not sufficient to induce actin tail 

formation (Scaplehorn et al., 2002). Taken together, this data demonstrates that 

cooperative interaction of WIP with at least two of Nck, N-WASP and Grb2 is 

required to recruit its recruitment to vaccinia virus. 
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Figure 6.1. WIP promotes the interaction of Nck and N-WASP 

The schematic shows two possible mechanisms by which the interaction of Nck 
and WIP could promote the interaction of Nck with N-WASP. (1) Nck interacts 
with WIP to recruit the WIP/N-WASP complex to vaccinia virus at the plasma 
membrane where other signals cooperate with Nck to relieve the autoinhibition 
of N-WASP. (2) The binding of Nck to WIP induces as conformational change in 
the WIP/N-WASP complex that helps to relieve the autoinhibition of N-WASP, 
thus allowing Nck to bind. 
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6.3 The interaction of WIP and N-WASP 

My data indicates that the recruitment of WIP by Nck is important for the 

localisation of N-WASP to virus particles. To investigate this further, I examined the 

functional consequences of abrogating the direct interaction of WIP and N-WASP. 

Expression of GFP-WIP-FFAA, which does not interact with N-WASP (Figure 4.7 

B) (Peterson et al., 2007; Zettl and Way, 2002), in WIP-/- cells treated with WIRE 

siRNA resulted in a significant inhibition of WR induced actin tails (Figure 4.8 A). 

Less than 40% of infected cells expressing WIP-FFAA could support actin tail 

formation and those actin tails that were induced were much shorter and moved 

extremely slowly in comparison to actin tails in cells expressing wild type WIP or 

WIP∆Nck (Figures 4.8 B, 4.9 B, 4.4 B). Furthermore, the recruitment of WIP-FFAA 

to virus particles was very weak (Figure 4.8 A).  

 

My data suggests that WIP and N-WASP are recruited to virus particles as a 

complex (Figure 3.12 B). However, the localisation of WIP-FFAA to virus particles 

and the induction of weak actin polymerisation suggest that a direct interaction of 

the two proteins is not absolutely required. This seemingly contradictory data can 

be explained by the fact that WIP can still interact with Nck in the absence of an 

interaction with N-WASP (Figure 4.7 B). This interaction is likely to stabilise Nck at 

virus particles sufficiently to facilitate a low level of N-WASP recruitment by Nck. 

The presence of Grb2 will also recruit and stabilise N-WASP and WIP in the 

network. This model is consistent with data showing that the recruitment of WIP-

FFAA is lost during infection with the A36-Y132F virus (Figure 4.10 A, B). 

Comparing the rate of exchange of Nck at virus particles in the absence of 

WIP/WIRE and in cells expressing WIP-FFAA would lend support to this theory.  

 

The rate of exchange of WIP-FFAA is 0.27 ± 0.04 seconds, which is more rapid 

than either wild type WIP (0.85 ± 0.06) or WIP∆Nck (0.55 ± 0.05) (Figures 4.4 A, 

4.9 A). In both cases, the increase in the rate of exchange of WIP correlated with a 

decrease in the actin-based motility of the virus particles (Figures 4.4 B, 4.9 B). 

Computational modelling studies have linked the rate of actin-based motility to the 

rate of actin filament nucleation by the Arp2/3 complex (Dawes et al., 2006). 

Consequently, this data suggests that the stability of WIP in the signalling network 
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may directly influence the rate of nucleation. Interestingly, in contrast to WIP, the 

increased rate of exchange of N-WASP was found to correspond to an increase in 

the rate of actin-based motility of vaccinia virus (Weisswange et al., 2009). This 

suggests a balance between the stabilities of WIP and N-WASP in the network is 

crucial for regulating actin polymerisation. It would be interesting to determine the 

rate of exchange of N-WASP at virus particles in cells expressing WIP-FFAA or 

WIP∆Nck to further investigate this hypothesis. 

 

6.4 The interaction of Nck and N-WASP is not essential for 
actin tail formation 

In the absence of Grb2 recruitment, abrogating the interaction between WIP and N-

WASP results in a complete loss of actin polymerisation (Figure 4.10 A, B). This 

suggests that WIP is required to link N-WASP to Nck in order to promote Arp2/3 

dependent actin polymerisation. However, Nck can also directly interact with and 

potently activate purified N-WASP in vitro, although these studies were done in the 

absence of WIP (Rohatgi et al., 2001; Tomasevic et al., 2007). To determine the 

importance of the interaction between Nck and N-WASP, I set out to identify the 

Nck binding site in N-WASP. Far western analysis of a peptide array comprising 

the sequence of N-WASP revealed two potential Nck binding sites (Figure 5.1 A). 

Each peptide contains a polyproline type II PxxPxR motif, which fits the consensus 

for SH3 domain binding (Li, 2005). In vitro pulldown assays confirmed that both 

peptides interact with recombinant His-Nck (Figure 5.1 B). Mutation of the two key 

proline residues in the PxxPxR motif resulted in a marked decrease in, but not 

complete loss of, Nck binding (Figure 5.1 B). In addition to the PxxPxR motif, the 

first peptide contains two extra PxxP motifs, while one other PxxP motif is present 

in the second peptide (Figure 5.1 A). These may account for the residual 

interaction of the mutant peptides with Nck. Mutation of the key proline residues in 

both potential binding sites reduced the interaction of Nck and N-WASP in HeLa 

cells, however the loss of this interaction did not affect binding of Nck to WIP 

(Figure 5.2 A).  Based on this result, and my data suggesting that the binding of 

WIP and Nck promotes the interaction of Nck and N-WASP (Figure 4.2), I 

hypothesised that the residual Nck binding may be due to the presence of WIP. 
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This was confirmed by the immunoprecipitation experiments in WIP-/- cells treated 

with WIRE siRNA, which demonstrated that Nck could not interact with N-

WASP∆Nck (Figure 5.2 B). This data confirms and extends the analysis of Weiss 

and colleagues, who identified these binding sites by probing a peptide array 

corresponding to the proline rich region of N-WASP with the isolated third SH3 

domain of Nck (Weiss et al., 2009). In this study the binding to the first peptide was 

very weak, furthermore my immunoprecipitation data suggests that the second Nck 

binding site is more important for mediating the interaction with N-WASP. Taken 

together, this suggests that N-WASP contains a single dominant Nck binding site.  

 

Given the ability of Nck to activate N-WASP in vitro, it was surprising that a greater 

effect on actin tail formation was not observed after disrupting the interaction 

between Nck and N-WASP. The percentage of cells inducing actin tails, as well as 

the average number of actin tails per cell was similar in cells expressing either N-

WASP or N-WASP∆Nck (Figure 5.4 A, B). However, the actin tails induced were 

shorter and the rate of actin-based motility was reduced (Figure 5.4 A, B; Figure 

5.5 B). As actin polymerisation still occurs in the absence of an interaction of Nck 

and N-WASP, this strongly suggests that Nck may not the sole activator of N-

WASP in the signalling network. Furthermore, this is additional evidence that the 

major pathway of N-WASP recruitment to virus particles is mediated by WIP, not 

Nck. A small but significant increase in the rate of exchange of N-WASP was 

observed in the absence of an interaction with Nck suggesting that Nck does 

function to stabilise N-WASP in the signalling network (Figure 5.5 A).  

 

As Grb2 also interacts with and activates N-WASP (Carlier et al., 2000), it is 

plausible that this interaction is sufficient to enable N-WASP to stimulate the Arp2/3 

complex. However, surprisingly this was not the case. Infection with the A36-Y132F 

virus revealed that cells expressing N-WASP∆Nck can still support actin tail 

formation as well as those expressing wild-type N-WASP (Figure 5.6 A, B). As 

expected, loss of Grb2 results in a decrease in actin tail length in cells expressing 

wild type N-WASP (Weisswange et al., 2009), while the N-WASP∆Nck actin tails 

were even shorter (Figure 5.6 B). Thus neither Nck nor Grb2 is essential for the 

activation of N-WASP at virus particles. This raises the intriguing possibility that 

other, unknown molecules are involved in actin tail formation. Likely candidates are 
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Cdc42 or phosphatidylinositol (4,5)-bisphosphate (PIP2), both of which are 

established activators of N-WASP (Miki et al., 1998; Papayannopoulos et al., 2005; 

Rohatgi et al., 1999; Rohatgi et al., 2001). Cdc42 has previously been observed at 

virus particles inducing actin tails (Moreau et al., 2000). However, expression of a 

dominant negative mutant of Cdc42 as well as treatment of the cells with Toxin B, 

an inhibitor of Rho GTPases, did not change the percentage of infected cells with 

actin tails (Moreau et al., 2000). Assuming the role of Cdc42 is to cooperate with 

Nck and Grb2 to activate N-WASP, it is not unexpected that a major defect in actin 

tail formation is not be observed upon inhibition of Cdc42. Consequently, a more 

detailed analysis of actin tail formation in the absence of functional Cdc42 or in 

cells expressing an N-WASP mutant that cannot interact with Cdc42 (N-WASP 

H208D) (Miki et al., 1998) may reveal a previously unappreciated role for this 

protein. The role of PIP2 in the actin tail formation has never been investigated, 

however its ability to activate N-WASP, even in the presence of WIP, makes it an 

attractive candidate as a regulator of actin tails (Martinez-Quiles et al., 2001). It 

would be informative to determine if PIP2 is enriched in the plasma membrane 

adjacent to virus particles that are inducing actin tails. Furthermore, analysis of 

actin tail formation in N-WASP-/- cells expressing N-WASP that is defective in PIP2 

binding (Papayannopoulos et al., 2005) would give insight into the importance of 

this interaction. Combining the ∆Nck mutation with mutations that interfere with the 

interaction between N-WASP and Cdc42 or PIP2, or both, during A36-Y132F 

infection would reveal if these are the only activators involved in actin tail formation. 

 

Other potential candidates to cooperate with Nck and Grb2 to activate N-WASP are 

the Src and Abl family tyrosine kinases. These are recruited to extra-cellular virus 

particles and mediate the phosphorylation of A36 of tyrosines 112 and 132, which 

are essential for actin tail formation (Newsome et al., 2004; Newsome et al., 2006). 

These kinases also contain SH3 domains that could interact with N-WASP. 

Interestingly, Arg, an Abl family kinase that localises to vaccinia, can bind to the 

proline rich region of N-WASP and thus promote its activation of the Arp2/3 

complex (Miller et al., 2010; Newsome et al., 2006). Furthermore, Src family 

kinases have been shown to phosphorylate N-WASP, resulting in the stimulation of 

Arp2/3 dependent actin polymerisation (Suetsugu et al., 2002; Torres and Rosen, 

2003, 2006). 
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As expected, in the absence of Grb2 recruitment, the rate of exchange of N-WASP 

at virus particles is more rapid than during WR infection. This is consistent with the 

previously established role of Grb2 in stabilising the vaccinia signalling network 

(Weisswange et al., 2009). N-WASP∆Nck also had a faster rate of exchange in the 

absence of Grb2 recruitment, however, no synergistic increase in the half-life of 

fluorescence recovery due to the loss of Nck binding was observed (Figure 5.7 A). 

Furthermore, virus particles in cells expressing both N-WASP and N-WASP∆Nck 

moved at similar speeds (Figure 5.7 A). This implies that in the absence of Grb2 

recruitment, another molecule can compensate for its loss. This molecule could be 

either Cdc42 or PIP2, however as this factor is only important in the absence of 

Grb2, it seems likely that it would compete directly with Grb2 for binding to N-

WASP. This suggests that another SH3 domain containing molecule is involved, 

which makes the Src and Abl family kinases attractive candidates. One way to test 

this hypothesis would be to identify the Grb2 binding sites in N-WASP. If another 

protein competes with Grb2 to bind and stabilise N-WASP, mutating this site(s) in 

combination with the Nck binding sites should result in an additional phenotype. 

One interesting possibility is that in the absence of Grb2 recruitment, Nck could 

interact with the Grb2 binding sites in N-WASP. In vitro binding and competition 

assays would be required to determine if this is the case. Alternatively, loss of Grb2 

recruitment may simply remove a physical block that prevents the interaction of the 

unknown factor with N-WASP. 

6.5 The second SH3 domain of Nck is essential for actin tail 
formation 

My data suggests that the interaction of Nck with WIP is the most important 

interaction for the recruitment of the WIP/N-WASP complex, while a subsequent 

interaction of Nck with N-WASP plays a secondary role in stabilising and most 

likely activating N-WASP. As Nck contains three SH3 domains, a single Nck 

molecule could interact with WIP and N-WASP simultaneously. To investigate 

whether this is possible I set out to determine if any of the three Nck SH3 domains 

interact specifically with either WIP or N-WASP. In vitro pulldown assays showed 

that the second SH3 domain of Nck interacts specifically with the peptides 

identified in WIP, while the third SH3 domain preferentially interacts with the N-
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WASP peptides (Figure 5.8). Thus a single Nck molecule could interact with both 

WIP and N-WASP. Alternatively, the second SH3 domain of one Nck molecule 

could recruit N-WASP via WIP, while the third SH3 domain of another Nck 

molecule subsequently directly interacts with the same N-WASP (Figure 6.2). 

Support for the latter model comes from a recent study in which a computational 

approach was used to estimate the ratio of Nck, N-WASP and the Arp2/3 complex 

present in comet tails generated by inducing aggregation of membrane bound Nck 

SH3 domains (Ditlev et al., 2012). This approach determined that the ratio of 

Nck:N-WASP:Arp2/3 complex is 4:2:1, which is consistent with the theory that 

optimal activation of the Arp2/3 complex occurs upon binding of two N-WASP 

molecules (Padrick et al., 2008; Padrick et al., 2011). Unfortunately, this study did 

not measure the ratio of WIP present in the complex. Moreover, the contribution of 

Grb2 to the vaccinia signalling network must also be taken into account. Thus, 

without knowing the relative amounts of each of the components, a complete 

picture of the vaccinia signalling network cannot be obtained. Ratio imaging is one 

way to determine the stoichiometry of the signalling network that is recruited to 

virus particles. In this technique, the fluorescence intensity of a GFP-tagged protein 

of interest, for example Nck, is measured and then referenced to the fluorescence 

intensity of an RFP-tagged viral core protein, which should remain constant. In this 

way, the relative amounts of a number of different GFP-tagged proteins in different 

cell lines can be compared.  

 

 
Figure 6.2. Stoichiometry of the Nck, WIP and N-WASP complex 

The schematic shows two possible modes of interaction of Nck with WIP/N-
WASP. (1) A single Nck molecule could interact with WIP and N-WASP 
simultaneously or (2) One molecule of Nck interacts with WIP, while a second 
Nck molecule interacts with N-WASP.  
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Two binding sites were identified for Nck in each of WIP and N-WASP, although 

one of the N-WASP binding sites appears to be more dominant. All four of these 

binding sites could be occupied if twice the amount of Nck is recruited to the virus 

as N-WASP and WIP. In addition, Nck and Grb2 could interact with adjacent 

WIP/N-WASP complexes resulting in crosstalk that would stabilise and organise 

these molecules into an array that results in maximal Arp2/3 complex activation. A 

number of studies have demonstrated the importance of spatial arrangement of 

molecules in Nck/N-WASP signalling networks in regulating actin polymerisation. 

Most recently, manipulating the density of A36 molecule on the virus particle was 

found to perturb the rate of exchange of N-WASP as well as its spatial organisation, 

resulting in longer, faster moving actin tails (Humphries et al., 2012). The density of 

PIP2 molecules on rocketing vesicles and ActA on the surface of Listeria is also 

crucial for optimal actin based motility (Co et al., 2007; Footer et al., 2008). This is 

further incentive to determine the density and relative amounts of each protein in 

the network, as only with this information can the relationship between the spatial 

organisation of the complex and the regulation of actin polymerisation be more fully 

understood. 

 

Examination of the functional importance of each of the SH3 domains of Nck in 

actin tail formation further reinforces the hypothesis that the interaction between 

Nck and WIP is critical for N-WASP recruitment. In the absence of Grb2 

recruitment, the second SH3 domain of Nck, which interacts with WIP, is essential 

for actin tail formation (Figure 5.10 A, B). Furthermore, even during WR infection, 

mutation of any two Nck SH3 domains results in the loss of actin tail formation 

(Figure 5.9 A, B). This is consistent with a model in which the second SH3 domain 

of Nck recruits the WIP/N-WASP complex, but the presence of either the first or 

more likely the third SH3 domain is also required to activate N-WASP. In addition, 

while the third SH3 domain is clearly the most important for interacting with the N-

WASP peptide, mutation of the first SH3 domain also resulted in a slight decrease 

in binding to both peptides, indicating it could also contribute to N-WASP activation 

(Figure 5.8 B). Analysis of the localisation of N-WASP to virus particles in cells 

expressing the Nck SH3 mutants during A36-Y132F infection would give further 

insight into this hypothesis. Mutation of the second SH3 domain would result in the 

loss of N-WASP recruitment, however in the absence of both the first and the third 
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SH3 domains (Nck∆1+3), N-WASP would still be recruited. As actin tails are not 

induced in cells expressing this mutant, this would demonstrate that loss of these 

SH3 domains results in a defect in the activation, rather than recruitment of N-

WASP. 

 

Clustering the SH3 domains of Nck is sufficient to induce N-WASP dependent actin 

polymerisation (Rivera et al., 2004).  In this system, in contrast to my results, all 

three SH3 domains of Nck are necessary for efficient actin polymerization. 

However this study was carried out in cells expressing endogenous wild type Nck, 

and more importantly Nck cannot freely exchange as it is tethered to the plasma 

membrane. Another study demonstrated that either the second or the third SH3 

domain of Nck is sufficient to induce actin polymerisation (Blasutig et al., 2008). 

While my data also demonstrates the second and third SH3 domains have key 

roles in the network, neither of them alone was sufficient to mediate actin 

polymerisation (Figure 5.9 A, B). In this system, as in my study, point mutations 

were used to disrupt the function of the SH3 domains of Nck and as Nck was 

recruited to the nephrin receptor in a phosphotyrosine dependent manner, it was 

able to freely exchange. However, in contrast to a single site in A36, the nephrin 

receptor contains three tyrosines that can recruit Nck (Blasutig et al., 2008). Thus 

the overall density of SH3 domains recruited by each nephrin receptor is likely to 

be higher than is recruited by A36. While the presence of the SH3 domains of Grb2 

compensates somewhat for the loss of Nck SH3 domains, it is clearly not sufficient 

to fully replace it (Figure 5.10 A, B). In support of this hypothesis, Blasutig et al., 

demonstrated that if only one SH3 domain of Nck is functional, a single 

phosphotyrosine is not sufficient to induce actin polymerisation. It would be 

interesting to mutate the residues surrounding tyrosine 132 of A36 such that it can 

recruit Nck and then analyse the cooperativity between the SH3 domains of Nck in 

actin tail formation. Furthermore calculating the number of A36 molecules clustered 

at the virus, as well as what proportion of these are phosphorylated at any given 

time, would also give insight into the cooperativity within the system. 
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6.5.1 The binding specificities of the Nck SH3 domains 

The results of my peptide pulldown assays clearly demonstrate that the SH3 

domains of Nck have distinct binding preferences for the specific peptides identified 

in WIP and N-WASP. This data can be used to gain insight into the specificity 

determinants of the Nck SH3 domains. The second SH3 domain of Nck bound 

specifically to each of the peptides identified in WIP. Both of these peptides 

contained the motif PxxPxRxL (Figure 4.1 B). The second Nck binding peptide 

(NDETPRLPQRNLSLS) contains a sequence that precisely matches the 

consensus PxxPxRxxS, which was previously identified for the second SH3 domain 

(Zhao et al., 2000). This consensus was determined based on a detailed analysis 

of the interaction of Nck with PAK and it was found that negatively charged amino 

acids were poorly tolerated in positions C-terminal to the PxxP motif in PAK, while 

mutation of the serine residue resulted in loss of binding. Interestingly, my results 

show that the second SH3 domain of Nck can interact with a wider range of motifs, 

as the other peptide (SNRPPLPPTPSRALD), contains a negatively charged 

aspartic acid in place of the serine residue. The presence of a leucine residue in 

both peptides suggests that the combination of an arginine and a leucine may be 

more important for determining specificity than the serine residue. Phosphorylation 

of the consensus serine was also proposed to negatively regulate binding to the 

SH3 domain (Zhao et al., 2000). As the other Nck peptide also contains a serine 

residue, albeit at a different position, it is conceivable that phosphorylation could be 

a conserved mechanism for regulating SH3 domain binding. Interestingly, a search 

in the phosphosite database (www.phosphosite.org ) revealed that serine 340 of 

WIP, which is contained in peptide two, has been identified as phosphorylated in a 

number of large scale proteomic investigations, including a study that characterised 

the phosphoproteosome of an acute myeloid leukaemia cell line (Weber et al., 

2012).  

 

In contrast to the WIP peptides, both of the peptides identified in N-WASP contain 

the motif PxxPxRG. As both of these peptides show a strong preference for 

interacting with the third SH3 domain of Nck, this consensus may be useful for 

identifying other proteins that specifically interact with this SH3 domain. Serine 

residues are also present in both these peptides suggesting that, as is the case for 
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the WIP peptides, phosphorylation is a possible mechanism for regulating the 

interactions between N-WASP and Nck (Zhao et al., 2000). 

6.6 A model of the regulation of actin polymerisation by 
vaccinia virus 

Taken together, my data demonstrates that WIP provides a crucial link between 

Nck and N-WASP. The second SH3 domain of Nck interacts with WIP, which 

subsequently recruits N-WASP via its WH1 domain. This facilitates the interaction 

of the first, or more likely the third, Nck SH3 domain with N-WASP, in order to 

promote its activation and stabilisation. This activation occurs in cooperation with 

Grb2 and other as yet unidentified molecules. Grb2 also functions to stabilise the 

recruitment of Nck and WIP to the virus, either directly or via N-WASP  (Figure 6.2).  

 

This is the first study that demonstrates that WIP (or WIRE) is essential for vaccinia 

actin based motility. Comparison of the hierarchy and connectivity within other 

Nck/WIP/N-WASP signalling networks is important to demonstrate that the 

mechanism uncovered in vaccinia actin tail formation is widespread. However, the 

importance of WIP in recruiting N-WASP to podosomes and in EPEC actin 

pedestal formation, as well as evidence that the interaction of WIP and N-WASP is 

required for invadopodia formation suggest that this is indeed the case (Chou et al., 

2006; Wong et al., 2012; Yamaguchi et al., 2005). Furthermore, the majority of the 

causative mutations of Wiskott Aldrich Syndrome occur in the WH1 domain of 

WASP, suggesting that loss of binding of WIP is key to the pathogenesis of this 

condition (Jin et al., 2004; Moreau et al., 2000; Volkman et al., 2002). Thus, by 

exploiting the robust recruitment of this signalling network by vaccinia virus, we 

have been able to gain insights that have important implications for the Nck and N-

WASP signalling networks that are key regulators of Arp2/3 dependent actin 

polymerisation in a variety of cellular contexts.  

 

A number of unanswered questions remain, which are crucial for a complete 

understanding the regulation of Arp2/3 dependent actin polymerisation by Nck, WIP 

and N-WASP signalling networks. While the role of WIP in inhibiting the ability of N-

WASP to stimulate Arp2/3 dependent actin polymerisation is clear (Ho et al., 2004; 
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Martinez-Quiles et al., 2001; Takano et al., 2008), the mechanism by which this 

inhibition occurs remains to be elucidated. Furthermore, the mechanisms employed 

by the activators of N-WASP to overcome this inhibition remain unknown. While 

many studies have examined the ability of Nck, Grb2 and other SH3 domain 

containing proteins to activate N-WASP, few have taken WIP into account. 

Furthermore, the finding that WIRE can functionally compensate for WIP raises 

interesting questions about the similarities and differences between these proteins. 

Importantly, it emphasises the importance of accounting for the contribution of both 

WIP and WIRE in any studies of these proteins. The induction of actin tail formation 

of vaccinia virus remains an important model for studying the regulation of Nck, 

WIP and N-WASP dependent signalling networks. Future studies should 

concentrate on determining the stoichiometry of the components in the network. 

Furthermore, carrying out FRET studies to determine the conformational changes 

in WIP and N-WASP during actin tail formation as well as elucidating the full 

complement of molecules involved in the signalling network will give important 

insights into the regulation of Arp2/3 dependent actin polymerisation. With this data 

in hand, it will be possible to use computational modelling methods to build up a 

complete picture of the spatial and temporal events that occur during vaccinia 

induced actin tail formation.   
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Figure 6.3. A model of the recruitment and activation of N-WASP during vaccinia 

actin tail formation 

This schematic shows a possible mechanism for vaccinia induced actin 
polymerisation. Phosphorylation of A36 on Y112 by Src/Abl family kinases (1) 
recruits Nck (2). The second SH3 domain of Nck interacts with WIP, which 
recruits N-WASP via its WH1 domain (3). This allows the third SH3 domain of 
Nck to bind N-WASP resulting in its activation (4). Subsequently Grb2 and 
other, unknown molecules, interact with N-WASP to stabilise it and enhance its 
activation resulting in robust Arp2/3 dependent actin polymerisation (5). 
 

Src/Abl Family 
Kinases

Pl
as

m
a m

embrane

Vaccinia

A36
P

Y112
Y132

Pl
as

m
a m

embrane

Pl
as

m
a m

embrane

Pl
as

m
a m

embrane

Pl
as

m
a m

embrane

Nck

SH3-1 SH3-2 SH3-3 SH2

Src/Abl Family 
Kinases

Vaccinia

A36
P

Y112
Y132

Grb2
P

SH3 SH3SH2

N-WASP

WIP

Arp2/3
Complex

WH1

WBD

VVCA

Nck

SH3-1 SH3-2 SH3-3 SH2

Src/Abl Family 
Kinases

Vaccinia

A36
P

Y112
Y132

PIP2
Cdc42

Src Kinases

N-WASP

WIP

Arp2/3
Complex

WH1

WBD

VVCA

Nck

SH3-1 SH3-2 SH3-3 SH2

Src/Abl Family 
Kinases

Vaccinia

A36
P

Y112
Y132

activation

N-WASP

WIP

WH1

WBD

VVCA

Nck

SH3-1 SH3-2 SH3-3 SH2

Src/Abl Family 
Kinases

Vaccinia

A36
P

Y112
Y132

recruitment

1 2

3 4

5

???



Reference List 

 

 191 

Reference List 

Abella, J.V., Parachoniak, C.A., Sangwan, V., and Park, M. (2010a). Dorsal ruffle 
microdomains potentiate Met receptor tyrosine kinase signaling and down-regulation. 
The Journal of biological chemistry 285, 24956-24967. 

Abella, J.V., Vaillancourt, R., Frigault, M.M., Ponzo, M.G., Zuo, D., Sangwan, V., 
Larose, L., and Park, M. (2010b). The Gab1 scaffold regulates RTK-dependent dorsal 
ruffle formation through the adaptor Nck. Journal of cell science 123, 1306-1319. 

Abercrombie, M., Heaysman, J.E., and Pegrum, S.M. (1970a). The locomotion of 
fibroblasts in culture. I. Movements of the leading edge. Experimental cell research 59, 
393-398. 

Abercrombie, M., Heaysman, J.E., and Pegrum, S.M. (1970b). The locomotion of 
fibroblasts in culture. II. "RRuffling". Experimental cell research 60, 437-444. 

Ahuja, R., Pinyol, R., Reichenbach, N., Custer, L., Klingensmith, J., Kessels, M.M., and 
Qualmann, B. (2007). Cordon-bleu is an actin nucleation factor and controls neuronal 
morphology. Cell 131, 337-350. 

Aitio, O., Hellman, M., Kazlauskas, A., Vingadassalom, D.F., Leong, J.M., Saksela, K., 
and Permi, P. (2010). Recognition of tandem PxxP motifs as a unique Src homology 3-
binding mode triggers pathogen-driven actin assembly. Proceedings of the National 
Academy of Sciences of the United States of America 107, 21743-21748. 

Aizawa, H., Sutoh, K., and Yahara, I. (1996). Overexpression of cofilin stimulates 
bundling of actin filaments, membrane ruffling, and cell movement in Dictyostelium. 
The Journal of cell biology 132, 335-344. 

Akin, O., and Mullins, R.D. (2008). Capping protein increases the rate of actin-based 
motility by promoting filament nucleation by the Arp2/3 complex. Cell 133, 841-851. 

Alexandropoulos, K., Cheng, G., and Baltimore, D. (1995). Proline-rich sequences that 
bind to Src homology 3 domains with individual specificities. Proceedings of the 
National Academy of Sciences of the United States of America 92, 3110-3114. 

Alvarez, D.E., and Agaisse, H. (2012). Casein kinase 2 regulates vaccinia virus actin 
tail formation. Virology 423, 143-151. 

Amann, K.J., and Pollard, T.D. (2001). Direct real-time observation of actin filament 
branching mediated by Arp2/3 complex using total internal reflection fluorescence 
microscopy. Proceedings of the National Academy of Sciences of the United States of 
America 98, 15009-15013. 

Anderson, B.L., Boldogh, I., Evangelista, M., Boone, C., Greene, L.A., and Pon, L.A. 
(1998). The Src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds to 
verprolin and is required for targeting to sites of actin polarization. The Journal of cell 
biology 141, 1357-1370. 

Andrianantoandro, E., and Pollard, T.D. (2006). Mechanism of actin filament turnover 
by severing and nucleation at different concentrations of ADF/cofilin. Molecular cell 24, 
13-23. 

Anitei, M., and Hoflack, B. (2012). Bridging membrane and cytoskeleton dynamics in 
the secretory and endocytic pathways. Nature cell biology 14, 11-19. 



Reference List 

 

 192 

Anton, I.M., de la Fuente, M.A., Sims, T.N., Freeman, S., Ramesh, N., Hartwig, J.H., 
Dustin, M.L., and Geha, R.S. (2002). WIP deficiency reveals a differential role for WIP 
and the actin cytoskeleton in T and B cell activation. Immunity 16, 193-204. 

Anton, I.M., Jones, G.E., Wandosell, F., Geha, R., and Ramesh, N. (2007). WASP-
interacting protein (WIP): working in polymerisation and much more. Trends in cell 
biology 17, 555-562. 

Anton, I.M., Lu, W., Mayer, B.J., Ramesh, N., and Geha, R.S. (1998). The Wiskott-
Aldrich syndrome protein-interacting protein (WIP) binds to the adaptor protein Nck. 
The Journal of biological chemistry 273, 20992-20995. 

Anton, I.M., Saville, S.P., Byrne, M.J., Curcio, C., Ramesh, N., Hartwig, J.H., and Geha, 
R.S. (2003). WIP participates in actin reorganization and ruffle formation induced by 
PDGF. Journal of cell science 116, 2443-2451. 

Arakawa, Y., Cordeiro, J.V., Schleich, S., Newsome, T.P., and Way, M. (2007a). The 
release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical 
actin. Cell host & microbe 1, 227-240. 

Arakawa, Y., Cordeiro, J.V., and Way, M. (2007b). F11L-mediated inhibition of RhoA-
mDia signaling stimulates microtubule dynamics during vaccinia virus infection. Cell 
host & microbe 1, 213-226. 

Arjonen, A., Kaukonen, R., and Ivaska, J. (2011). Filopodia and adhesion in cancer cell 
motility. Cell adhesion & migration 5, 421-430. 

Armstrong, J.A., Metz, D.H., and Young, M.R. (1973). The mode of entry of vaccinia 
virus into L cells. The Journal of general virology 21, 533-537. 

Aspenstrom, P. (2002). The WASP-binding protein WIRE has a role in the regulation of 
the actin filament system downstream of the platelet-derived growth factor receptor. 
Experimental cell research 279, 21-33. 

Aspenstrom, P. (2004). The mammalian verprolin homologue WIRE participates in 
receptor-mediated endocytosis and regulation of the actin filament system by distinct 
mechanisms. Experimental cell research 298, 485-498. 

Aspenstrom, P. (2005). The verprolin family of proteins: regulators of cell 
morphogenesis and endocytosis. FEBS letters 579, 5253-5259. 

Baba, Y., Nonoyama, S., Matsushita, M., Yamadori, T., Hashimoto, S., Imai, K., Arai, 
S., Kunikata, T., Kurimoto, M., Kurosaki, T., et al. (1999). Involvement of wiskott-aldrich 
syndrome protein in B-cell cytoplasmic tyrosine kinase pathway. Blood 93, 2003-2012. 

Badour, K., Zhang, J., Shi, F., Leng, Y., Collins, M., and Siminovitch, K.A. (2004). Fyn 
and PTP-PEST-mediated regulation of Wiskott-Aldrich syndrome protein (WASp) 
tyrosine phosphorylation is required for coupling T cell antigen receptor engagement to 
WASp effector function and T cell activation. The Journal of experimental medicine 199, 
99-112. 

Bailly, M., Ichetovkin, I., Grant, W., Zebda, N., Machesky, L.M., Segall, J.E., and 
Condeelis, J. (2001). The F-actin side binding activity of the Arp2/3 complex is 
essential for actin nucleation and lamellipod extension. Current biology : CB 11, 620-
625. 

Bailly, M., Macaluso, F., Cammer, M., Chan, A., Segall, J.E., and Condeelis, J.S. 
(1999). Relationship between Arp2/3 complex and the barbed ends of actin filaments at 
the leading edge of carcinoma cells after epidermal growth factor stimulation. The 
Journal of cell biology 145, 331-345. 



Reference List 

 

 193 

Balcer, H.I., Goodman, A.L., Rodal, A.A., Smith, E., Kugler, J., Heuser, J.E., and 
Goode, B.L. (2003). Coordinated regulation of actin filament turnover by a high-
molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Current biology : CB 13, 
2159-2169. 

Banon-Rodriguez, I., Monypenny, J., Ragazzini, C., Franco, A., Calle, Y., Jones, G.E., 
and Anton, I.M. (2011). The cortactin-binding domain of WIP is essential for podosome 
formation and extracellular matrix degradation by murine dendritic cells. European 
journal of cell biology 90, 213-223. 

Barnett, P., Bottger, G., Klein, A.T., Tabak, H.F., and Distel, B. (2000). The 
peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction. The 
EMBO journal 19, 6382-6391. 

Bartolini, F., and Gundersen, G.G. (2010). Formins and microtubules. Biochimica et 
biophysica acta 1803, 164-173. 

Bear, J.E., Rawls, J.F., and Saxe, C.L., 3rd (1998). SCAR, a WASP-related protein, 
isolated as a suppressor of receptor defects in late Dictyostelium development. The 
Journal of cell biology 142, 1325-1335. 

Becker-Herman, S., Meyer-Bahlburg, A., Schwartz, M.A., Jackson, S.W., Hudkins, K.L., 
Liu, C., Sather, B.D., Khim, S., Liggitt, D., Song, W., et al. (2011). WASp-deficient B 
cells play a critical, cell-intrinsic role in triggering autoimmunity. The Journal of 
experimental medicine 208, 2033-2042. 

Benesch, S., Lommel, S., Steffen, A., Stradal, T.E., Scaplehorn, N., Way, M., Wehland, 
J., and Rottner, K. (2002). Phosphatidylinositol 4,5-biphosphate (PIP2)-induced vesicle 
movement depends on N-WASP and involves Nck, WIP, and Grb2. The Journal of 
biological chemistry 277, 37771-37776. 

Bernardini, M.L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M., and Sansonetti, P.J. 
(1989). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial 
intra- and intercellular spread through interaction with F-actin. Proceedings of the 
National Academy of Sciences of the United States of America 86, 3867-3871. 

Bernstein, B.W., and Bamburg, J.R. (2010). ADF/cofilin: a functional node in cell 
biology. Trends in cell biology 20, 187-195. 

Bladt, F., Aippersbach, E., Gelkop, S., Strasser, G.A., Nash, P., Tafuri, A., Gertler, F.B., 
and Pawson, T. (2003). The murine Nck SH2/SH3 adaptors are important for the 
development of mesoderm-derived embryonic structures and for regulating the cellular 
actin network. Molecular and cellular biology 23, 4586-4597. 

Blanchoin, L., Amann, K.J., Higgs, H.N., Marchand, J.B., Kaiser, D.A., and Pollard, T.D. 
(2000). Direct observation of dendritic actin filament networks nucleated by Arp2/3 
complex and WASP/Scar proteins. Nature 404, 1007-1011. 

Blanchoin, L., and Pollard, T.D. (1998). Interaction of actin monomers with 
Acanthamoeba actophorin (ADF/cofilin) and profilin. The Journal of biological chemistry 
273, 25106-25111. 

Blanchoin, L., and Pollard, T.D. (1999). Mechanism of interaction of Acanthamoeba 
actophorin (ADF/Cofilin) with actin filaments. The Journal of biological chemistry 274, 
15538-15546. 

Blanchoin, L., and Pollard, T.D. (2002). Hydrolysis of ATP by polymerized actin 
depends on the bound divalent cation but not profilin. Biochemistry 41, 597-602. 



Reference List 

 

 194 

Blasco, R., and Moss, B. (1992). Role of cell-associated enveloped vaccinia virus in 
cell-to-cell spread. Journal of virology 66, 4170-4179. 

Blasutig, I.M., New, L.A., Thanabalasuriar, A., Dayarathna, T.K., Goudreault, M., 
Quaggin, S.E., Li, S.S., Gruenheid, S., Jones, N., and Pawson, T. (2008). 
Phosphorylated YDXV motifs and Nck SH2/SH3 adaptors act cooperatively to induce 
actin reorganization. Molecular and cellular biology 28, 2035-2046. 

Boczkowska, M., Rebowski, G., Petoukhov, M.V., Hayes, D.B., Svergun, D.I., and 
Dominguez, R. (2008). X-ray scattering study of activated Arp2/3 complex with bound 
actin-WCA. Structure 16, 695-704. 

Bonder, E.M., Fishkind, D.J., and Mooseker, M.S. (1983). Direct measurement of 
critical concentrations and assembly rate constants at the two ends of an actin filament. 
Cell 34, 491-501. 

Boujemaa-Paterski, R., Gouin, E., Hansen, G., Samarin, S., Le Clainche, C., Didry, D., 
Dehoux, P., Cossart, P., Kocks, C., Carlier, M.F., et al. (2001). Listeria protein ActA 
mimics WASp family proteins: it activates filament barbed end branching by Arp2/3 
complex. Biochemistry 40, 11390-11404. 

Bouma, G., Burns, S.O., and Thrasher, A.J. (2009). Wiskott-Aldrich Syndrome: 
Immunodeficiency resulting from defective cell migration and impaired 
immunostimulatory activation. Immunobiology 214, 778-790. 

Brady, M.J., Campellone, K.G., Ghildiyal, M., and Leong, J.M. (2007). 
Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a 
common Nck-independent actin assembly pathway. Cellular microbiology 9, 2242-2253. 

Braverman, L.E., and Quilliam, L.A. (1999). Identification of Grb4/Nckbeta, a src 
homology 2 and 3 domain-containing adapter protein having similar binding and 
biological properties to Nck. The Journal of biological chemistry 274, 5542-5549. 

Breitsprecher, D., Jaiswal, R., Bombardier, J.P., Gould, C.J., Gelles, J., and Goode, 
B.L. (2012). Rocket launcher mechanism of collaborative actin assembly defined by 
single-molecule imaging. Science 336, 1164-1168. 

Breitsprecher, D., Kiesewetter, A.K., Linkner, J., and Faix, J. (2009). Analysis of actin 
assembly by in vitro TIRF microscopy. Methods Mol Biol 571, 401-415. 

Bu, W., Lim, K.B., Yu, Y.H., Chou, A.M., Sudhaharan, T., and Ahmed, S. (2010). 
Cdc42 interaction with N-WASP and Toca-1 regulates membrane tubulation, vesicle 
formation and vesicle motility: implications for endocytosis. PloS one 5, e12153. 

Buday, L., Wunderlich, L., and Tamas, P. (2002). The Nck family of adapter proteins: 
regulators of actin cytoskeleton. Cellular signalling 14, 723-731. 

Cai, L., Makhov, A.M., Schafer, D.A., and Bear, J.E. (2008). Coronin 1B antagonizes 
cortactin and remodels Arp2/3-containing actin branches in lamellipodia. Cell 134, 828-
842. 

Cameron, L.A., Footer, M.J., van Oudenaarden, A., and Theriot, J.A. (1999). Motility of 
ActA protein-coated microspheres driven by actin polymerization. Proceedings of the 
National Academy of Sciences of the United States of America 96, 4908-4913. 

Campellone, K.G., Cheng, H.C., Robbins, D., Siripala, A.D., McGhie, E.J., Hayward, 
R.D., Welch, M.D., Rosen, M.K., Koronakis, V., and Leong, J.M. (2008a). Repetitive N-
WASP-binding elements of the enterohemorrhagic Escherichia coli effector EspF(U) 
synergistically activate actin assembly. PLoS pathogens 4, e1000191. 



Reference List 

 

 195 

Campellone, K.G., and Leong, J.M. (2005). Nck-independent actin assembly is 
mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir. 
Molecular microbiology 56, 416-432. 

Campellone, K.G., Robbins, D., and Leong, J.M. (2004). EspFU is a translocated 
EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent 
actin assembly. Developmental cell 7, 217-228. 

Campellone, K.G., Webb, N.J., Znameroski, E.A., and Welch, M.D. (2008b). WHAMM 
is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi 
transport. Cell 134, 148-161. 

Campellone, K.G., and Welch, M.D. (2010). A nucleator arms race: cellular control of 
actin assembly. Nature reviews Molecular cell biology 11, 237-251. 

Cao, H., Orth, J.D., Chen, J., Weller, S.G., Heuser, J.E., and McNiven, M.A. (2003). 
Cortactin is a component of clathrin-coated pits and participates in receptor-mediated 
endocytosis. Molecular and cellular biology 23, 2162-2170. 

Carlier, M.F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.X., Hong, Y., Chua, 
N.H., and Pantaloni, D. (1997). Actin depolymerizing factor (ADF/cofilin) enhances the 
rate of filament turnover: implication in actin-based motility. The Journal of cell biology 
136, 1307-1322. 

Carlier, M.F., Nioche, P., Broutin-L'Hermite, I., Boujemaa, R., Le Clainche, C., Egile, C., 
Garbay, C., Ducruix, A., Sansonetti, P., and Pantaloni, D. (2000). GRB2 links signaling 
to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein 
(N-WASp) with actin-related protein (ARP2/3) complex. The Journal of biological 
chemistry 275, 21946-21952. 

Carlier, M.F., and Pantaloni, D. (1986). Direct evidence for ADP-Pi-F-actin as the major 
intermediate in ATP-actin polymerization. Rate of dissociation of Pi from actin filaments. 
Biochemistry 25, 7789-7792. 

Carlier, M.F., and Pantaloni, D. (1997). Control of actin dynamics in cell motility. 
Journal of molecular biology 269, 459-467. 

Carlier, M.F., Pantaloni, D., Evans, J.A., Lambooy, P.K., Korn, E.D., and Webb, M.R. 
(1988). The hydrolysis of ATP that accompanies actin polymerization is essentially 
irreversible. FEBS letters 235, 211-214. 

Carlsson, L., Nystrom, L.E., Lindberg, U., Kannan, K.K., Cid-Dresdner, H., and Lovgren, 
S. (1976). Crystallization of a non-muscle actin. Journal of molecular biology 105, 353-
366. 

Carlsson, L., Nystrom, L.E., Sundkvist, I., Markey, F., and Lindberg, U. (1977). Actin 
polymerizability is influenced by profilin, a low molecular weight protein in non-muscle 
cells. Journal of molecular biology 115, 465-483. 

Carter, G.C., Law, M., Hollinshead, M., and Smith, G.L. (2005). Entry of the vaccinia 
virus intracellular mature virion and its interactions with glycosaminoglycans. The 
Journal of general virology 86, 1279-1290. 

Carter, G.C., Rodger, G., Murphy, B.J., Law, M., Krauss, O., Hollinshead, M., and 
Smith, G.L. (2003). Vaccinia virus cores are transported on microtubules. The Journal 
of general virology 84, 2443-2458. 

Castagnoli, L., Costantini, A., Dall'Armi, C., Gonfloni, S., Montecchi-Palazzi, L., Panni, 
S., Paoluzi, S., Santonico, E., and Cesareni, G. (2004). Selectivity and promiscuity in 



Reference List 

 

 196 

the interaction network mediated by protein recognition modules. FEBS letters 567, 74-
79. 

Cavnar, P.J., Mogen, K., Berthier, E., Beebe, D.J., and Huttenlocher, A. (2012). The 
Actin Regulatory Protein HS1 Interacts with Arp2/3 and Mediates Efficient Neutrophil 
Chemotaxis. The Journal of biological chemistry 287, 25466-25477. 

Chakrabarti, S., Sisler, J.R., and Moss, B. (1997). Compact, synthetic, vaccinia virus 
early/late promoter for protein expression. BioTechniques 23, 1094-1097. 

Chan, K.T., Creed, S.J., and Bear, J.E. (2011). Unraveling the enigma: progress 
towards understanding the coronin family of actin regulators. Trends in cell biology 21, 
481-488. 

Chen, M., She, H., Davis, E.M., Spicer, C.M., Kim, L., Ren, R., Le Beau, M.M., and Li, 
W. (1998). Identification of Nck family genes, chromosomal localization, expression, 
and signaling specificity. The Journal of biological chemistry 273, 25171-25178. 

Cheng, H.C., Skehan, B.M., Campellone, K.G., Leong, J.M., and Rosen, M.K. (2008). 
Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector 
EspF(U). Nature 454, 1009-1013. 

Chereau, D., Boczkowska, M., Skwarek-Maruszewska, A., Fujiwara, I., Hayes, D.B., 
Rebowski, G., Lappalainen, P., Pollard, T.D., and Dominguez, R. (2008). Leiomodin is 
an actin filament nucleator in muscle cells. Science 320, 239-243. 

Chereau, D., Kerff, F., Graceffa, P., Grabarek, Z., Langsetmo, K., and Dominguez, R. 
(2005). Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology 
domain 2 and the implications for filament assembly. Proceedings of the National 
Academy of Sciences of the United States of America 102, 16644-16649. 

Chesarone, M.A., DuPage, A.G., and Goode, B.L. (2010). Unleashing formins to 
remodel the actin and microtubule cytoskeletons. Nature reviews Molecular cell biology 
11, 62-74. 

Chhabra, E.S., and Higgs, H.N. (2007). The many faces of actin: matching assembly 
factors with cellular structures. Nature cell biology 9, 1110-1121. 

Chong, R., Swiss, R., Briones, G., Stone, K.L., Gulcicek, E.E., and Agaisse, H. (2009). 
Regulatory mimicry in Listeria monocytogenes actin-based motility. Cell host & microbe 
6, 268-278. 

Chou, H.C., Anton, I.M., Holt, M.R., Curcio, C., Lanzardo, S., Worth, A., Burns, S., 
Thrasher, A.J., Jones, G.E., and Calle, Y. (2006). WIP regulates the stability and 
localization of WASP to podosomes in migrating dendritic cells. Current biology : CB 16, 
2337-2344. 

Co, C., Wong, D.T., Gierke, S., Chang, V., and Taunton, J. (2007). Mechanism of actin 
network attachment to moving membranes: barbed end capture by N-WASP WH2 
domains. Cell 128, 901-913. 

Conley, C.A., Fritz-Six, K.L., Almenar-Queralt, A., and Fowler, V.M. (2001). 
Leiomodins: larger members of the tropomodulin (Tmod) gene family. Genomics 73, 
127-139. 

Cooper, J.A., and Pollard, T.D. (1982). Methods to measure actin polymerization. 
Methods in enzymology 85 Pt B, 182-210. 

Cooper, J.A., and Sept, D. (2008). New insights into mechanism and regulation of actin 
capping protein. International review of cell and molecular biology 267, 183-206. 



Reference List 

 

 197 

Cooper, J.A., Walker, S.B., and Pollard, T.D. (1983). Pyrene actin: documentation of 
the validity of a sensitive assay for actin polymerization. Journal of muscle research 
and cell motility 4, 253-262. 

Cornfine, S., Himmel, M., Kopp, P., El Azzouzi, K., Wiesner, C., Kruger, M., Rudel, T., 
and Linder, S. (2011). The kinesin KIF9 and reggie/flotillin proteins regulate matrix 
degradation by macrophage podosomes. Molecular biology of the cell 22, 202-215. 

Cortesio, C.L., Perrin, B.J., Bennin, D.A., and Huttenlocher, A. (2010). Actin-binding 
protein-1 interacts with WASp-interacting protein to regulate growth factor-induced 
dorsal ruffle formation. Molecular biology of the cell 21, 186-197. 

Cory, G.O., Garg, R., Cramer, R., and Ridley, A.J. (2002). Phosphorylation of tyrosine 
291 enhances the ability of WASp to stimulate actin polymerization and filopodium 
formation. Wiskott-Aldrich Syndrome protein. The Journal of biological chemistry 277, 
45115-45121. 

Courtemanche, N., and Pollard, T.D. (2012). Determinants of Formin Homology 1 
(FH1) domain function in actin filament elongation by formins. The Journal of biological 
chemistry 287, 7812-7820. 

Cudmore, S., Cossart, P., Griffiths, G., and Way, M. (1995). Actin-based motility of 
vaccinia virus. Nature 378, 636-638. 

Curcio, C., Pannellini, T., Lanzardo, S., Forni, G., Musiani, P., and Anton, I.M. (2007). 
WIP null mice display a progressive immunological disorder that resembles Wiskott-
Aldrich syndrome. The Journal of pathology 211, 67-75. 

da Silva, M.L., Mortara, R.A., Barros, H.C., de Souza, W., and Trabulsi, L.R. (1989). 
Aggregation of membrane-associated actin filaments following localized adherence of 
enteropathogenic Escherichia coli to HeLa cells. Journal of cell science 93 ( Pt 3), 439-
446. 

Dalhaimer, P., and Pollard, T.D. (2010). Molecular dynamics simulations of Arp2/3 
complex activation. Biophysical journal 99, 2568-2576. 

Dart, A.E., Donnelly, S.K., Holden, D.W., Way, M., and Caron, E. (2012). Nck and 
Cdc42 co-operate to recruit N-WASP to promote FcgammaR-mediated phagocytosis. 
Journal of cell science 125, 2825-2830. 

Dawes, A.T., Bard Ermentrout, G., Cytrynbaum, E.N., and Edelstein-Keshet, L. (2006). 
Actin filament branching and protrusion velocity in a simple 1D model of a motile cell. 
Journal of theoretical biology 242, 265-279. 

Dayel, M.J., Holleran, E.A., and Mullins, R.D. (2001). Arp2/3 complex requires 
hydrolyzable ATP for nucleation of new actin filaments. Proceedings of the National 
Academy of Sciences of the United States of America 98, 14871-14876. 

De La Cruz, E.M., Mandinova, A., Steinmetz, M.O., Stoffler, D., Aebi, U., and Pollard, 
T.D. (2000). Polymerization and structure of nucleotide-free actin filaments. Journal of 
molecular biology 295, 517-526. 

de la Fuente, M.A., Sasahara, Y., Calamito, M., Anton, I.M., Elkhal, A., Gallego, M.D., 
Suresh, K., Siminovitch, K., Ochs, H.D., Anderson, K.C., et al. (2007). WIP is a 
chaperone for Wiskott-Aldrich syndrome protein (WASP). Proceedings of the National 
Academy of Sciences of the United States of America 104, 926-931. 

Delatour, V., Helfer, E., Didry, D., Le, K.H., Gaucher, J.F., Carlier, M.F., and Romet-
Lemonne, G. (2008). Arp2/3 controls the motile behavior of N-WASP-functionalized 



Reference List 

 

 198 

GUVs and modulates N-WASP surface distribution by mediating transient links with 
actin filaments. Biophysical journal 94, 4890-4905. 

Derivery, E., and Gautreau, A. (2010). Generation of branched actin networks: 
assembly and regulation of the N-WASP and WAVE molecular machines. BioEssays : 
news and reviews in molecular, cellular and developmental biology 32, 119-131. 

Derry, J.M., Ochs, H.D., and Francke, U. (1994). Isolation of a novel gene mutated in 
Wiskott-Aldrich syndrome. Cell 78, 635-644. 

DeVinney, R., Stein, M., Reinscheid, D., Abe, A., Ruschkowski, S., and Finlay, B.B. 
(1999). Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is 
translocated to the host cell membrane but is not tyrosine phosphorylated. Infection 
and immunity 67, 2389-2398. 

Didry, D., Carlier, M.F., and Pantaloni, D. (1998). Synergy between actin 
depolymerizing factor/cofilin and profilin in increasing actin filament turnover. The 
Journal of biological chemistry 273, 25602-25611. 

Ditlev, J.A., Michalski, P.J., Huber, G., Rivera, G.M., Mohler, W.A., Loew, L.M., and 
Mayer, B.J. (2012). Stoichiometry of Nck-dependent actin polymerization in living cells. 
The Journal of cell biology 197, 643-658. 

Doceul, V., Hollinshead, M., Breiman, A., Laval, K., and Smith, G.L. (2012). Protein B5 
is required on extracellular enveloped vaccinia virus for repulsion of superinfecting 
virions. The Journal of general virology 93, 1876-1886. 

Doceul, V., Hollinshead, M., van der Linden, L., and Smith, G.L. (2010). Repulsion of 
superinfecting virions: a mechanism for rapid virus spread. Science 327, 873-876. 

Dodding, M.P., Mitter, R., Humphries, A.C., and Way, M. (2011). A kinesin-1 binding 
motif in vaccinia virus that is widespread throughout the human genome. The EMBO 
journal 30, 4523-4538. 

Dodding, M.P., Newsome, T.P., Collinson, L.M., Edwards, C., and Way, M. (2009). An 
E2-F12 complex is required for intracellular enveloped virus morphogenesis during 
vaccinia infection. Cellular microbiology 11, 808-824. 

Dodding, M.P., and Way, M. (2009). Nck- and N-WASP-dependent actin-based motility 
is conserved in divergent vertebrate poxviruses. Cell host & microbe 6, 536-550. 

Domi, A., and Beaud, G. (2000). The punctate sites of accumulation of vaccinia virus 
early proteins are precursors of sites of viral DNA synthesis. The Journal of general 
virology 81, 1231-1235. 

Dominguez, R., and Holmes, K.C. (2011). Actin structure and function. Annual review 
of biophysics 40, 169-186. 

Dong, X., Patino-Lopez, G., Candotti, F., and Shaw, S. (2007). Structure-function 
analysis of the WIP role in T cell receptor-stimulated NFAT activation: evidence that 
WIP-WASP dissociation is not required and that the WIP NH2 terminus is inhibitory. 
The Journal of biological chemistry 282, 30303-30310. 

Donnelly, S.F., Pocklington, M.J., Pallotta, D., and Orr, E. (1993). A proline-rich protein, 
verprolin, involved in cytoskeletal organization and cellular growth in the yeast 
Saccharomyces cerevisiae. Molecular microbiology 10, 585-596. 

Douangamath, A., Filipp, F.V., Klein, A.T., Barnett, P., Zou, P., Voorn-Brouwer, T., 
Vega, M.C., Mayans, O.M., Sattler, M., Distel, B., et al. (2002). Topography for 



Reference List 

 

 199 

independent binding of alpha-helical and PPII-helical ligands to a peroxisomal SH3 
domain. Molecular cell 10, 1007-1017. 

Ducka, A.M., Joel, P., Popowicz, G.M., Trybus, K.M., Schleicher, M., Noegel, A.A., 
Huber, R., Holak, T.A., and Sitar, T. (2010). Structures of actin-bound Wiskott-Aldrich 
syndrome protein homology 2 (WH2) domains of Spire and the implication for filament 
nucleation. Proceedings of the National Academy of Sciences of the United States of 
America 107, 11757-11762. 

Dustin, M.L., and Depoil, D. (2011). New insights into the T cell synapse from single 
molecule techniques. Nature reviews Immunology 11, 672-684. 

Eck, M.J., Shoelson, S.E., and Harrison, S.C. (1993). Recognition of a high-affinity 
phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362, 87-91. 

Edds, K.T. (1993). Effects of cytochalasin and colcemid on cortical flow in 
coelomocytes. Cell motility and the cytoskeleton 26, 262-273. 

Egile, C., Loisel, T.P., Laurent, V., Li, R., Pantaloni, D., Sansonetti, P.J., and Carlier, 
M.F. (1999). Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA 
protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. 
The Journal of cell biology 146, 1319-1332. 

Erickson, H.P. (2007). Evolution of the cytoskeleton. BioEssays : news and reviews in 
molecular, cellular and developmental biology 29, 668-677. 

Faix, J., and Rottner, K. (2006). The making of filopodia. Current opinion in cell biology 
18, 18-25. 

Fedorov, A.A., Fedorov, E., Gertler, F., and Almo, S.C. (1999). Structure of EVH1, a 
novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural 
function. Nature structural biology 6, 661-665. 

Feng, S., Chen, J.K., Yu, H., Simon, J.A., and Schreiber, S.L. (1994). Two binding 
orientations for peptides to the Src SH3 domain: development of a general model for 
SH3-ligand interactions. Science 266, 1241-1247. 

Firat-Karalar, E.N., Hsiue, P.P., and Welch, M.D. (2011). The actin nucleation factor 
JMY is a negative regulator of neuritogenesis. Molecular biology of the cell 22, 4563-
4574. 

Firat-Karalar, E.N., and Welch, M.D. (2011). New mechanisms and functions of actin 
nucleation. Current opinion in cell biology 23, 4-13. 

Footer, M.J., Lyo, J.K., and Theriot, J.A. (2008). Close packing of Listeria 
monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without 
dimerization. The Journal of biological chemistry 283, 23852-23862. 

Franco, A., Knafo, S., Banon-Rodriguez, I., Merino-Serrais, P., Fernaud-Espinosa, I., 
Nieto, M., Garrido, J.J., Esteban, J.A., Wandosell, F., and Anton, I.M. (2012). WIP is a 
negative regulator of neuronal maturation and synaptic activity. Cereb Cortex 22, 1191-
1202. 

Frese, S., Schubert, W.D., Findeis, A.C., Marquardt, T., Roske, Y.S., Stradal, T.E., and 
Heinz, D.W. (2006). The phosphotyrosine peptide binding specificity of Nck1 and Nck2 
Src homology 2 domains. The Journal of biological chemistry 281, 18236-18245. 

Frischknecht, F., Cudmore, S., Moreau, V., Reckmann, I., Rottger, S., and Way, M. 
(1999a). Tyrosine phosphorylation is required for actin-based motility of vaccinia but 
not Listeria or Shigella. Current biology : CB 9, 89-92. 



Reference List 

 

 200 

Frischknecht, F., Moreau, V., Rottger, S., Gonfloni, S., Reckmann, I., Superti-Furga, G., 
and Way, M. (1999b). Actin-based motility of vaccinia virus mimics receptor tyrosine 
kinase signalling. Nature 401, 926-929. 

Fujiwara, I., Takahashi, S., Tadakuma, H., Funatsu, T., and Ishiwata, S. (2002). 
Microscopic analysis of polymerization dynamics with individual actin filaments. Nature 
cell biology 4, 666-673. 

Fujiwara, I., Vavylonis, D., and Pollard, T.D. (2007). Polymerization kinetics of ADP- 
and ADP-Pi-actin determined by fluorescence microscopy. Proceedings of the National 
Academy of Sciences of the United States of America 104, 8827-8832. 

Galkin, V.E., Orlova, A., Kudryashov, D.S., Solodukhin, A., Reisler, E., Schroder, G.F., 
and Egelman, E.H. (2011). Remodeling of actin filaments by ADF/cofilin proteins. 
Proceedings of the National Academy of Sciences of the United States of America 108, 
20568-20572. 

Gallego, M.D., de la Fuente, M.A., Anton, I.M., Snapper, S., Fuhlbrigge, R., and Geha, 
R.S. (2006). WIP and WASP play complementary roles in T cell homing and 
chemotaxis to SDF-1alpha. International immunology 18, 221-232. 

Garcia, E., Jones, G.E., Machesky, L.M., and Anton, I.M. (2012). WIP: WASP-
interacting proteins at invadopodia and podosomes. European journal of cell biology. 

Garrity, P.A., Rao, Y., Salecker, I., McGlade, J., Pawson, T., and Zipursky, S.L. (1996). 
Drosophila photoreceptor axon guidance and targeting requires the dreadlocks 
SH2/SH3 adapter protein. Cell 85, 639-650. 

Gates, M.A., Kannan, R., and Giniger, E. (2011). A genome-wide analysis reveals that 
the Drosophila transcription factor Lola promotes axon growth in part by suppressing 
expression of the actin nucleation factor Spire. Neural development 6, 37. 

Gaucher, J.F., Mauge, C., Didry, D., Guichard, B., Renault, L., and Carlier, M.F. (2012). 
Interactions of isolated C-terminal fragments of Neural Wiskott-Aldrich Syndrome 
Protein (N-WASP) with actin and Arp2/3 complex. The Journal of biological chemistry. 

Gilbert, H.R., and Frieden, C. (1983). Preparation, purification and properties of a 
crosslinked trimer of G-actin. Biochemical and biophysical research communications 
111, 404-408. 

Goebel, S.J., Johnson, G.P., Perkus, M.E., Davis, S.W., Winslow, J.P., and Paoletti, E. 
(1990). The complete DNA sequence of vaccinia virus. Virology 179, 247-266, 517-263. 

Goldberg, M.B., and Theriot, J.A. (1995). Shigella flexneri surface protein IcsA is 
sufficient to direct actin-based motility. Proceedings of the National Academy of 
Sciences of the United States of America 92, 6572-6576. 

Goley, E.D., Rodenbusch, S.E., Martin, A.C., and Welch, M.D. (2004). Critical 
conformational changes in the Arp2/3 complex are induced by nucleotide and 
nucleation promoting factor. Molecular cell 16, 269-279. 

Goley, E.D., and Welch, M.D. (2006). The ARP2/3 complex: an actin nucleator comes 
of age. Nature reviews Molecular cell biology 7, 713-726. 

Gruenheid, S., DeVinney, R., Bladt, F., Goosney, D., Gelkop, S., Gish, G.D., Pawson, 
T., and Finlay, B.B. (2001). Enteropathogenic E. coli Tir binds Nck to initiate actin 
pedestal formation in host cells. Nature cell biology 3, 856-859. 

Gu, X., Zerbini, L.F., Otu, H.H., Bhasin, M., Yang, Q., Joseph, M.G., Grall, F., 
Onatunde, T., Correa, R.G., and Libermann, T.A. (2007). Reduced PDEF expression 



Reference List 

 

 201 

increases invasion and expression of mesenchymal genes in prostate cancer cells. 
Cancer research 67, 4219-4226. 

Hammer, J.A., 3rd, and Sellers, J.R. (2012). Walking to work: roles for class V myosins 
as cargo transporters. Nature reviews Molecular cell biology 13, 13-26. 

Hanson, J., and Lowy, J. (1964). The Structure of Actin Filaments and the Origin of the 
Axial Periodicity in the I-Substance of Vertebrate Striated Muscle. Proc R Soc Lond B 
Biol Sci 160, 449-460. 

Hartland, E.L., Batchelor, M., Delahay, R.M., Hale, C., Matthews, S., Dougan, G., 
Knutton, S., Connerton, I., and Frankel, G. (1999). Binding of intimin from 
enteropathogenic Escherichia coli to Tir and to host cells. Molecular microbiology 32, 
151-158. 

Hayward, R.D., Leong, J.M., Koronakis, V., and Campellone, K.G. (2006). Exploiting 
pathogenic Escherichia coli to model transmembrane receptor signalling. Nature 
reviews Microbiology 4, 358-370. 

Herrera, E., Lorenzo, M.M., Blasco, R., and Isaacs, S.N. (1998). Functional analysis of 
vaccinia virus B5R protein: essential role in virus envelopment is independent of a 
large portion of the extracellular domain. Journal of virology 72, 294-302. 

Higgs, H.N., Blanchoin, L., and Pollard, T.D. (1999). Influence of the C terminus of 
Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin 
polymerization. Biochemistry 38, 15212-15222. 

Higgs, H.N., and Pollard, T.D. (1999). Regulation of actin polymerization by Arp2/3 
complex and WASp/Scar proteins. The Journal of biological chemistry 274, 32531-
32534. 

Higgs, H.N., and Pollard, T.D. (2000). Activation by Cdc42 and PIP(2) of Wiskott-
Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. The 
Journal of cell biology 150, 1311-1320. 

Hiller, G., and Weber, K. (1985). Golgi-derived membranes that contain an acylated 
viral polypeptide are used for vaccinia virus envelopment. Journal of virology 55, 651-
659. 

Hiroaki, H., Ago, T., Ito, T., Sumimoto, H., and Kohda, D. (2001). Solution structure of 
the PX domain, a target of the SH3 domain. Nature structural biology 8, 526-530. 

Ho, H.Y., Rohatgi, R., Lebensohn, A.M., Le, M., Li, J., Gygi, S.P., and Kirschner, M.W. 
(2004). Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-
WIP complex. Cell 118, 203-216. 

Ho, H.Y., Rohatgi, R., Ma, L., and Kirschner, M.W. (2001). CR16 forms a complex with 
N-WASP in brain and is a novel member of a conserved proline-rich actin-binding 
protein family. Proceedings of the National Academy of Sciences of the United States 
of America 98, 11306-11311. 

Hollinshead, M., Rodger, G., Van Eijl, H., Law, M., Hollinshead, R., Vaux, D.J., and 
Smith, G.L. (2001). Vaccinia virus utilizes microtubules for movement to the cell 
surface. The Journal of cell biology 154, 389-402. 

Hotulainen, P., and Hoogenraad, C.C. (2010). Actin in dendritic spines: connecting 
dynamics to function. The Journal of cell biology 189, 619-629. 

Hotulainen, P., and Lappalainen, P. (2006). Stress fibers are generated by two distinct 
actin assembly mechanisms in motile cells. The Journal of cell biology 173, 383-394. 



Reference List 

 

 202 

Hubbard, S.R., and Miller, W.T. (2007). Receptor tyrosine kinases: mechanisms of 
activation and signaling. Current opinion in cell biology 19, 117-123. 

Hug, C., Jay, P.Y., Reddy, I., McNally, J.G., Bridgman, P.C., Elson, E.L., and Cooper, 
J.A. (1995). Capping protein levels influence actin assembly and cell motility in 
dictyostelium. Cell 81, 591-600. 

Humphries, A.C., Dodding, M.P., Barry, D.J., Collinson, L.M., Durkin, C.H., and Way, M. 
(2012). Clathrin potentiates vaccinia-induced actin polymerization to facilitate viral 
spread. Cell host & microbe 12, 346-359. 

Humphries, C.L., Balcer, H.I., D'Agostino, J.L., Winsor, B., Drubin, D.G., Barnes, G., 
Andrews, B.J., and Goode, B.L. (2002). Direct regulation of Arp2/3 complex activity 
and function by the actin binding protein coronin. The Journal of cell biology 159, 993-
1004. 

Husson, C., Renault, L., Didry, D., Pantaloni, D., and Carlier, M.F. (2011). Cordon-Bleu 
uses WH2 domains as multifunctional dynamizers of actin filament assembly. 
Molecular cell 43, 464-477. 

Huxley, H.E. (1963). Electron Microscope Studies on the Structure of Natural and 
Synthetic Protein Filaments from Striated Muscle. Journal of molecular biology 7, 281-
308. 

Innocenti, M., Gerboth, S., Rottner, K., Lai, F.P., Hertzog, M., Stradal, T.E., Frittoli, E., 
Didry, D., Polo, S., Disanza, A., et al. (2005). Abi1 regulates the activity of N-WASP 
and WAVE in distinct actin-based processes. Nature cell biology 7, 969-976. 

Isenberg, G., Aebi, U., and Pollard, T.D. (1980). An actin-binding protein from 
Acanthamoeba regulates actin filament polymerization and interactions. Nature 288, 
455-459. 

Janmey, P.A., Hvidt, S., Oster, G.F., Lamb, J., Stossel, T.P., and Hartwig, J.H. (1990). 
Effect of ATP on actin filament stiffness. Nature 347, 95-99. 

Jaumouille, V., and Grinstein, S. (2011). Receptor mobility, the cytoskeleton, and 
particle binding during phagocytosis. Current opinion in cell biology 23, 22-29. 

Jin, P., Duan, R., Luo, F., Zhang, G., Hong, S.N., and Chen, E.H. (2011). Competition 
between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-
dependent actin polymerization in vivo. Developmental cell 20, 623-638. 

Jin, Y., Mazza, C., Christie, J.R., Giliani, S., Fiorini, M., Mella, P., Gandellini, F., 
Stewart, D.M., Zhu, Q., Nelson, D.L., et al. (2004). Mutations of the Wiskott-Aldrich 
Syndrome Protein (WASP): hotspots, effect on transcription, and translation and 
phenotype/genotype correlation. Blood 104, 4010-4019. 

Jones, G.E., Zicha, D., Dunn, G.A., Blundell, M., and Thrasher, A. (2002). Restoration 
of podosomes and chemotaxis in Wiskott-Aldrich syndrome macrophages following 
induced expression of WASp. The international journal of biochemistry & cell biology 
34, 806-815. 

Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F., and Holmes, K.C. (1990). Atomic 
structure of the actin:DNase I complex. Nature 347, 37-44. 

Kalman, D., Weiner, O.D., Goosney, D.L., Sedat, J.W., Finlay, B.B., Abo, A., and 
Bishop, J.M. (1999). Enteropathogenic E. coli acts through WASP and Arp2/3 complex 
to form actin pedestals. Nature cell biology 1, 389-391. 



Reference List 

 

 203 

Kang, H., Freund, C., Duke-Cohan, J.S., Musacchio, A., Wagner, G., and Rudd, C.E. 
(2000). SH3 domain recognition of a proline-independent tyrosine-based RKxxYxxY 
motif in immune cell adaptor SKAP55. The EMBO journal 19, 2889-2899. 

Kardos, R., Pozsonyi, K., Nevalainen, E., Lappalainen, P., Nyitrai, M., and Hild, G. 
(2009). The effects of ADF/cofilin and profilin on the conformation of the ATP-binding 
cleft of monomeric actin. Biophysical journal 96, 2335-2343. 

Kato, M., Miki, H., Kurita, S., Endo, T., Nakagawa, H., Miyamoto, S., and Takenawa, T. 
(2002). WICH, a novel verprolin homology domain-containing protein that functions 
cooperatively with N-WASP in actin-microspike formation. Biochemical and biophysical 
research communications 291, 41-47. 

Kato, M., and Takenawa, T. (2005). WICH, a member of WASP-interacting protein 
family, cross-links actin filaments. Biochemical and biophysical research 
communications 328, 1058-1066. 

Kay, B.K. (2012). SH3 domains come of age. FEBS letters 586, 2606-2608. 

Kelleher, J.F., Atkinson, S.J., and Pollard, T.D. (1995). Sequences, structural models, 
and cellular localization of the actin-related proteins Arp2 and Arp3 from 
Acanthamoeba. The Journal of cell biology 131, 385-397. 

Kelly, A.E., Kranitz, H., Dotsch, V., and Mullins, R.D. (2006). Actin binding to the 
central domain of WASP/Scar proteins plays a critical role in the activation of the 
Arp2/3 complex. The Journal of biological chemistry 281, 10589-10597. 

Kempiak, S.J., Yip, S.C., Backer, J.M., and Segall, J.E. (2003). Local signaling by the 
EGF receptor. The Journal of cell biology 162, 781-787. 

Kenny, B. (1999). Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia 
coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is 
preceded by additional host modifications. Molecular microbiology 31, 1229-1241. 

Kenny, B., DeVinney, R., Stein, M., Reinscheid, D.J., Frey, E.A., and Finlay, B.B. 
(1997). Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence 
into mammalian cells. Cell 91, 511-520. 

Kespichayawattana, W., Rattanachetkul, S., Wanun, T., Utaisincharoen, P., and 
Sirisinha, S. (2000). Burkholderia pseudomallei induces cell fusion and actin-
associated membrane protrusion: a possible mechanism for cell-to-cell spreading. 
Infection and immunity 68, 5377-5384. 

Kessels, H.W., Ward, A.C., and Schumacher, T.N. (2002). Specificity and affinity motifs 
for Grb2 SH2-ligand interactions. Proceedings of the National Academy of Sciences of 
the United States of America 99, 8524-8529. 

Kessels, M.M., and Qualmann, B. (2004). The syndapin protein family: linking 
membrane trafficking with the cytoskeleton. Journal of cell science 117, 3077-3086. 

Kim, A.S., Kakalis, L.T., Abdul-Manan, N., Liu, G.A., and Rosen, M.K. (2000). 
Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. 
Nature 404, 151-158. 

King, S.J., Worth, D.C., Scales, T.M., Monypenny, J., Jones, G.E., and Parsons, M. 
(2011). beta1 integrins regulate fibroblast chemotaxis through control of N-WASP 
stability. The EMBO journal 30, 1705-1718. 



Reference List 

 

 204 

Kinley, A.W., Weed, S.A., Weaver, A.M., Karginov, A.V., Bissonette, E., Cooper, J.A., 
and Parsons, J.T. (2003). Cortactin interacts with WIP in regulating Arp2/3 activation 
and membrane protrusion. Current biology : CB 13, 384-393. 

Kirkbride, K.C., Sung, B.H., Sinha, S., and Weaver, A.M. (2011). Cortactin: a 
multifunctional regulator of cellular invasiveness. Cell adhesion & migration 5, 187-198. 

Knutton, S., Baldwin, T., Williams, P.H., and McNeish, A.S. (1989). Actin accumulation 
at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for 
enteropathogenic and enterohemorrhagic Escherichia coli. Infection and immunity 57, 
1290-1298. 

Koduru, S., Massaad, M., Wilbur, C., Kumar, L., Geha, R., and Ramesh, N. (2007). A 
novel anti-WIP monoclonal antibody detects an isoform of WIP that lacks the WASP 
binding domain. Biochemical and biophysical research communications 353, 875-881. 

Kovacs, E.M., Verma, S., Ali, R.G., Ratheesh, A., Hamilton, N.A., Akhmanova, A., and 
Yap, A.S. (2011). N-WASP regulates the epithelial junctional actin cytoskeleton 
through a non-canonical post-nucleation pathway. Nature cell biology 13, 934-943. 

Kreishman-Deitrick, M., Goley, E.D., Burdine, L., Denison, C., Egile, C., Li, R., Murali, 
N., Kodadek, T.J., Welch, M.D., and Rosen, M.K. (2005). NMR analyses of the 
activation of the Arp2/3 complex by neuronal Wiskott-Aldrich syndrome protein. 
Biochemistry 44, 15247-15256. 

Krzewski, K., Chen, X., Orange, J.S., and Strominger, J.L. (2006). Formation of a WIP-, 
WASp-, actin-, and myosin IIA-containing multiprotein complex in activated NK cells 
and its alteration by KIR inhibitory signaling. The Journal of cell biology 173, 121-132. 

Krzewski, K., Chen, X., and Strominger, J.L. (2008). WIP is essential for lytic granule 
polarization and NK cell cytotoxicity. Proceedings of the National Academy of Sciences 
of the United States of America 105, 2568-2573. 

Kumar, A., Crawford, K., Close, L., Madison, M., Lorenz, J., Doetschman, T., 
Pawlowski, S., Duffy, J., Neumann, J., Robbins, J., et al. (1997). Rescue of cardiac 
alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proceedings of the 
National Academy of Sciences of the United States of America 94, 4406-4411. 

Lai, F.P., Szczodrak, M., Block, J., Faix, J., Breitsprecher, D., Mannherz, H.G., Stradal, 
T.E., Dunn, G.A., Small, J.V., and Rottner, K. (2008). Arp2/3 complex interactions and 
actin network turnover in lamellipodia. The EMBO journal 27, 982-992. 

Lanzardo, S., Curcio, C., Forni, G., and Anton, I.M. (2007). A role for WASP Interacting 
Protein, WIP, in fibroblast adhesion, spreading and migration. The international journal 
of biochemistry & cell biology 39, 262-274. 

Lanzi, G., Moratto, D., Vairo, D., Masneri, S., Delmonte, O., Paganini, T., Parolini, S., 
Tabellini, G., Mazza, C., Savoldi, G., et al. (2012). A novel primary human 
immunodeficiency due to deficiency in the WASP-interacting protein WIP. The Journal 
of experimental medicine 209, 29-34. 

Latour, S., Roncagalli, R., Chen, R., Bakinowski, M., Shi, X., Schwartzberg, P.L., 
Davidson, D., and Veillette, A. (2003). Binding of SAP SH2 domain to FynT SH3 
domain reveals a novel mechanism of receptor signalling in immune regulation. Nature 
cell biology 5, 149-154. 

Le Bras, S., Massaad, M., Koduru, S., Kumar, L., Oyoshi, M.K., Hartwig, J., and Geha, 
R.S. (2009). WIP is critical for T cell responsiveness to IL-2. Proceedings of the 
National Academy of Sciences of the United States of America 106, 7519-7524. 



Reference List 

 

 205 

Le Clainche, C., and Carlier, M.F. (2008). Regulation of actin assembly associated with 
protrusion and adhesion in cell migration. Physiological reviews 88, 489-513. 

Le Clainche, C., Didry, D., Carlier, M.F., and Pantaloni, D. (2001). Activation of Arp2/3 
complex by Wiskott-Aldrich Syndrome protein is linked to enhanced binding of ATP to 
Arp2. The Journal of biological chemistry 276, 46689-46692. 

LeClaire, L.L., 3rd, Baumgartner, M., Iwasa, J.H., Mullins, R.D., and Barber, D.L. 
(2008). Phosphorylation of the Arp2/3 complex is necessary to nucleate actin filaments. 
The Journal of cell biology 182, 647-654. 

Lee, S.H., Kerff, F., Chereau, D., Ferron, F., Klug, A., and Dominguez, R. (2007). 
Structural basis for the actin-binding function of missing-in-metastasis. Structure 15, 
145-155. 

Legg, J.A., Bompard, G., Dawson, J., Morris, H.L., Andrew, N., Cooper, L., Johnston, 
S.A., Tramountanis, G., and Machesky, L.M. (2007). N-WASP involvement in dorsal 
ruffle formation in mouse embryonic fibroblasts. Molecular biology of the cell 18, 678-
687. 

Lemmon, M.A., and Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. 
Cell 141, 1117-1134. 

Lettau, M., Pieper, J., and Janssen, O. (2009). Nck adapter proteins: functional 
versatility in T cells. Cell communication and signaling : CCS 7, 1. 

Leung, Y., Ally, S., and Goldberg, M.B. (2008). Bacterial actin assembly requires toca-
1 to relieve N-wasp autoinhibition. Cell host & microbe 3, 39-47. 

Li, F., and Higgs, H.N. (2003). The mouse Formin mDia1 is a potent actin nucleation 
factor regulated by autoinhibition. Current biology : CB 13, 1335-1340. 

Li, P., Banjade, S., Cheng, H.C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, 
J.V., King, D.S., Banani, S.F., et al. (2012). Phase transitions in the assembly of 
multivalent signalling proteins. Nature 483, 336-340. 

Li, S.S. (2005). Specificity and versatility of SH3 and other proline-recognition domains: 
structural basis and implications for cellular signal transduction. The Biochemical 
journal 390, 641-653. 

Li, Y., Grenklo, S., Higgins, T., and Karlsson, R. (2008). The profilin:actin complex 
localizes to sites of dynamic actin polymerization at the leading edge of migrating cells 
and pathogen-induced actin tails. European journal of cell biology 87, 893-904. 

Lim, K.B., Bu, W., Goh, W.I., Koh, E., Ong, S.H., Pawson, T., Sudhaharan, T., and 
Ahmed, S. (2008). The Cdc42 effector IRSp53 generates filopodia by coupling 
membrane protrusion with actin dynamics. The Journal of biological chemistry 283, 
20454-20472. 

Lim, W.A., Richards, F.M., and Fox, R.O. (1994). Structural determinants of peptide-
binding orientation and of sequence specificity in SH3 domains. Nature 372, 375-379. 

Linardopoulou, E.V., Parghi, S.S., Friedman, C., Osborn, G.E., Parkhurst, S.M., and 
Trask, B.J. (2007). Human subtelomeric WASH genes encode a new subclass of the 
WASP family. PLoS genetics 3, e237. 

Liu, Q., Berry, D., Nash, P., Pawson, T., McGlade, C.J., and Li, S.S. (2003). Structural 
basis for specific binding of the Gads SH3 domain to an RxxK motif-containing SLP-76 
peptide: a novel mode of peptide recognition. Molecular cell 11, 471-481. 



Reference List 

 

 206 

Loisel, T.P., Boujemaa, R., Pantaloni, D., and Carlier, M.F. (1999). Reconstitution of 
actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613-616. 

Lommel, S., Benesch, S., Rohde, M., Wehland, J., and Rottner, K. (2004). 
Enterohaemorrhagic and enteropathogenic Escherichia coli use different mechanisms 
for actin pedestal formation that converge on N-WASP. Cellular microbiology 6, 243-
254. 

Lommel, S., Benesch, S., Rottner, K., Franz, T., Wehland, J., and Kuhn, R. (2001). 
Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility 
of Shigella flexneri are abolished in N-WASP-defective cells. EMBO reports 2, 850-857. 

Lu, J., and Pollard, T.D. (2001). Profilin binding to poly-L-proline and actin monomers 
along with ability to catalyze actin nucleotide exchange is required for viability of fission 
yeast. Molecular biology of the cell 12, 1161-1175. 

Lu, W., Katz, S., Gupta, R., and Mayer, B.J. (1997). Activation of Pak by membrane 
localization mediated by an SH3 domain from the adaptor protein Nck. Current 
biology : CB 7, 85-94. 

Ma, L., Rohatgi, R., and Kirschner, M.W. (1998). The Arp2/3 complex mediates actin 
polymerization induced by the small GTP-binding protein Cdc42. Proceedings of the 
National Academy of Sciences of the United States of America 95, 15362-15367. 

Machesky, L.M., Atkinson, S.J., Ampe, C., Vandekerckhove, J., and Pollard, T.D. 
(1994). Purification of a cortical complex containing two unconventional actins from 
Acanthamoeba by affinity chromatography on profilin-agarose. The Journal of cell 
biology 127, 107-115. 

Machesky, L.M., and Insall, R.H. (1998). Scar1 and the related Wiskott-Aldrich 
syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. 
Current biology : CB 8, 1347-1356. 

Marchand, J.B., Kaiser, D.A., Pollard, T.D., and Higgs, H.N. (2001). Interaction of 
WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nature cell biology 3, 
76-82. 

Marengere, L.E., Songyang, Z., Gish, G.D., Schaller, M.D., Parsons, J.T., Stern, M.J., 
Cantley, L.C., and Pawson, T. (1994). SH2 domain specificity and activity modified by 
a single residue. Nature 369, 502-505. 

Martinez-Quiles, N., Rohatgi, R., Anton, I.M., Medina, M., Saville, S.P., Miki, H., 
Yamaguchi, H., Takenawa, T., Hartwig, J.H., Geha, R.S., et al. (2001). WIP regulates 
N-WASP-mediated actin polymerization and filopodium formation. Nature cell biology 3, 
484-491. 

Masters, J.N., Cotman, S.L., Osterburg, H.H., Nichols, N.R., and Finch, C.E. (1996). 
Modulation of a novel RNA in brain neurons by glucocorticoid and mineralocorticoid 
receptors. Neuroendocrinology 63, 28-38. 

Mathew, E., Sanderson, C.M., Hollinshead, M., and Smith, G.L. (1998). The 
extracellular domain of vaccinia virus protein B5R affects plaque phenotype, 
extracellular enveloped virus release, and intracellular actin tail formation. Journal of 
virology 72, 2429-2438. 

Matozaki, T., Murata, Y., Saito, Y., Okazawa, H., and Ohnishi, H. (2009). Protein 
tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. 
Cancer science 100, 1786-1793. 



Reference List 

 

 207 

Mayer, B.J. (2001). SH3 domains: complexity in moderation. Journal of cell science 
114, 1253-1263. 

Mayer, B.J., Hamaguchi, M., and Hanafusa, H. (1988a). Characterization of p47gag-
crk, a novel oncogene product with sequence similarity to a putative modulatory 
domain of protein-tyrosine kinases and phospholipase C. Cold Spring Harbor symposia 
on quantitative biology 53 Pt 2, 907-914. 

Mayer, B.J., Hamaguchi, M., and Hanafusa, H. (1988b). A novel viral oncogene with 
structural similarity to phospholipase C. Nature 332, 272-275. 

McGough, A., Pope, B., Chiu, W., and Weeds, A. (1997). Cofilin changes the twist of F-
actin: implications for actin filament dynamics and cellular function. The Journal of cell 
biology 138, 771-781. 

Mejillano, M.R., Kojima, S., Applewhite, D.A., Gertler, F.B., Svitkina, T.M., and Borisy, 
G.G. (2004). Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal 
role of the filament barbed end. Cell 118, 363-373. 

Meng, L., Rajmohan, R., Yu, S., and Thanabalu, T. (2007). Actin binding and proline 
rich motifs of CR16 play redundant role in growth of vrp1Delta cells. Biochemical and 
biophysical research communications 357, 289-294. 

Mercer, J., and Helenius, A. (2008). Vaccinia virus uses macropinocytosis and 
apoptotic mimicry to enter host cells. Science 320, 531-535. 

Miki, H., Miura, K., and Takenawa, T. (1996). N-WASP, a novel actin-depolymerizing 
protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner 
downstream of tyrosine kinases. The EMBO journal 15, 5326-5335. 

Miki, H., Sasaki, T., Takai, Y., and Takenawa, T. (1998). Induction of filopodium 
formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93-
96. 

Miki, H., and Takenawa, T. (1998). Direct binding of the verprolin-homology domain in 
N-WASP to actin is essential for cytoskeletal reorganization. Biochemical and 
biophysical research communications 243, 73-78. 

Miller, M.M., Lapetina, S., MacGrath, S.M., Sfakianos, M.K., Pollard, T.D., and Koleske, 
A.J. (2010). Regulation of actin polymerization and adhesion-dependent cell edge 
protrusion by the Abl-related gene (Arg) tyrosine kinase and N-WASp. Biochemistry 49, 
2227-2234. 

Millius, A., Dandekar, S.N., Houk, A.R., and Weiner, O.D. (2009). Neutrophils establish 
rapid and robust WAVE complex polarity in an actin-dependent fashion. Current 
biology : CB 19, 253-259. 

Millius, A., Watanabe, N., and Weiner, O.D. (2012). Diffusion, capture and recycling of 
SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging. 
Journal of cell science 125, 1165-1176. 

Misra, A., Rajmohan, R., Lim, R.P., Bhattacharyya, S., and Thanabalu, T. (2010). The 
mammalian verprolin, WIRE induces filopodia independent of N-WASP through 
IRSp53. Experimental cell research 316, 2810-2824. 

Mogilner, A., and Oster, G. (1996). Cell motility driven by actin polymerization. 
Biophysical journal 71, 3030-3045. 

Mooren, O.L., Galletta, B.J., and Cooper, J.A. (2012). Roles for actin assembly in 
endocytosis. Annual review of biochemistry 81, 661-686. 



Reference List 

 

 208 

Moreau, V., Frischknecht, F., Reckmann, I., Vincentelli, R., Rabut, G., Stewart, D., and 
Way, M. (2000). A complex of N-WASP and WIP integrates signalling cascades that 
lead to actin polymerization. Nature cell biology 2, 441-448. 

Morgan, G.W., Hollinshead, M., Ferguson, B.J., Murphy, B.J., Carpentier, D.C., and 
Smith, G.L. (2010). Vaccinia protein F12 has structural similarity to kinesin light chain 
and contains a motor binding motif required for virion export. PLoS pathogens 6, 
e1000785. 

Moriyama, K., and Yahara, I. (2002). Human CAP1 is a key factor in the recycling of 
cofilin and actin for rapid actin turnover. Journal of cell science 115, 1591-1601. 

Mouilleron, S., Guettler, S., Langer, C.A., Treisman, R., and McDonald, N.Q. (2008). 
Molecular basis for G-actin binding to RPEL motifs from the serum response factor 
coactivator MAL. The EMBO journal 27, 3198-3208. 

Mounier, J., Ryter, A., Coquis-Rondon, M., and Sansonetti, P.J. (1990). Intracellular 
and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in 
the enterocytelike cell line Caco-2. Infection and immunity 58, 1048-1058. 

Mullins, R.D., Heuser, J.A., and Pollard, T.D. (1998). The interaction of Arp2/3 complex 
with actin: nucleation, high affinity pointed end capping, and formation of branching 
networks of filaments. Proceedings of the National Academy of Sciences of the United 
States of America 95, 6181-6186. 

Mullins, R.D., Stafford, W.F., and Pollard, T.D. (1997). Structure, subunit topology, and 
actin-binding activity of the Arp2/3 complex from Acanthamoeba. The Journal of cell 
biology 136, 331-343. 

Munemitsu, S., Souza, B., Muller, O., Albert, I., Rubinfeld, B., and Polakis, P. (1994). 
The APC gene product associates with microtubules in vivo and promotes their 
assembly in vitro. Cancer research 54, 3676-3681. 

Munn, A.L., and Thanabalu, T. (2009). Verprolin: a cool set of actin-binding sites and 
some very HOT prolines. IUBMB life 61, 707-712. 

Munter, S., Way, M., and Frischknecht, F. (2006). Signaling during pathogen infection. 
Science's STKE : signal transduction knowledge environment 2006, re5. 

Murphy, D.A., and Courtneidge, S.A. (2011). The 'ins' and 'outs' of podosomes and 
invadopodia: characteristics, formation and function. Nature reviews Molecular cell 
biology 12, 413-426. 

Musacchio, A., Noble, M., Pauptit, R., Wierenga, R., and Saraste, M. (1992). Crystal 
structure of a Src-homology 3 (SH3) domain. Nature 359, 851-855. 

Naqvi, S.N., Feng, Q., Boulton, V.J., Zahn, R., and Munn, A.L. (2001). Vrp1p functions 
in both actomyosin ring-dependent and Hof1p-dependent pathways of cytokinesis. 
Traffic 2, 189-201. 

Naqvi, S.N., Zahn, R., Mitchell, D.A., Stevenson, B.J., and Munn, A.L. (1998). The 
WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is 
essential for endocytosis in yeast. Current biology : CB 8, 959-962. 

Narayanan, A., LeClaire, L.L., 3rd, Barber, D.L., and Jacobson, M.P. (2011). 
Phosphorylation of the Arp2 subunit relieves auto-inhibitory interactions for Arp2/3 
complex activation. PLoS computational biology 7, e1002226. 

Newsome, T.P., Scaplehorn, N., and Way, M. (2004). SRC mediates a switch from 
microtubule- to actin-based motility of vaccinia virus. Science 306, 124-129. 



Reference List 

 

 209 

Newsome, T.P., Weisswange, I., Frischknecht, F., and Way, M. (2006). Abl 
collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. 
Cellular microbiology 8, 233-241. 

Nichols, N.R., Masters, J.N., and Finch, C.E. (1990). Changes in gene expression in 
hippocampus in response to glucocorticoids and stress. Brain research bulletin 24, 
659-662. 

Nishida, E., and Sakai, H. (1983). Kinetic analysis of actin polymerization. Journal of 
biochemistry 93, 1011-1020. 

Noble, M.E., Musacchio, A., Saraste, M., Courtneidge, S.A., and Wierenga, R.K. 
(1993). Crystal structure of the SH3 domain in human Fyn; comparison of the three-
dimensional structures of SH3 domains in tyrosine kinases and spectrin. The EMBO 
journal 12, 2617-2624. 

Noy, E., Fried, S., Matalon, O., and Barda-Saad, M. (2012). WIP Remodeling Actin 
behind the Scenes: How WIP Reshapes Immune and Other Functions. International 
journal of molecular sciences 13, 7629-7647. 

Nurnberg, A., Kitzing, T., and Grosse, R. (2011). Nucleating actin for invasion. Nature 
reviews Cancer 11, 177-187. 

Nusblat, L.M., Dovas, A., and Cox, D. (2011). The non-redundant role of N-WASP in 
podosome-mediated matrix degradation in macrophages. European journal of cell 
biology 90, 205-212. 

Obenauer, J.C., Cantley, L.C., and Yaffe, M.B. (2003). Scansite 2.0: Proteome-wide 
prediction of cell signaling interactions using short sequence motifs. Nucleic acids 
research 31, 3635-3641. 

Obermann, H., Raabe, I., Balvers, M., Brunswig, B., Schulze, W., and Kirchhoff, C. 
(2005). Novel testis-expressed profilin IV associated with acrosome biogenesis and 
spermatid elongation. Molecular human reproduction 11, 53-64. 

Okada, K., Bartolini, F., Deaconescu, A.M., Moseley, J.B., Dogic, Z., Grigorieff, N., 
Gundersen, G.G., and Goode, B.L. (2010). Adenomatous polyposis coli protein 
nucleates actin assembly and synergizes with the formin mDia1. The Journal of cell 
biology 189, 1087-1096. 

Okreglak, V., and Drubin, D.G. (2007). Cofilin recruitment and function during actin-
mediated endocytosis dictated by actin nucleotide state. The Journal of cell biology 178, 
1251-1264. 

Olivier, A., Jeanson-Leh, L., Bouma, G., Compagno, D., Blondeau, J., Seye, K., 
Charrier, S., Burns, S., Thrasher, A.J., Danos, O., et al. (2006). A partial down-
regulation of WASP is sufficient to inhibit podosome formation in dendritic cells. 
Molecular therapy : the journal of the American Society of Gene Therapy 13, 729-737. 

Olson, M.F., and Sahai, E. (2009). The actin cytoskeleton in cancer cell motility. 
Clinical & experimental metastasis 26, 273-287. 

Orlova, A., and Egelman, E.H. (1992). Structural basis for the destabilization of F-actin 
by phosphate release following ATP hydrolysis. Journal of molecular biology 227, 
1043-1053. 

Oser, M., Dovas, A., Cox, D., and Condeelis, J. (2011). Nck1 and Grb2 localization 
patterns can distinguish invadopodia from podosomes. European journal of cell biology 
90, 181-188. 



Reference List 

 

 210 

Oser, M., Mader, C.C., Gil-Henn, H., Magalhaes, M., Bravo-Cordero, J.J., Koleske, A.J., 
and Condeelis, J. (2010). Specific tyrosine phosphorylation sites on cortactin regulate 
Nck1-dependent actin polymerization in invadopodia. Journal of cell science 123, 
3662-3673. 

Otomo, T., Tomchick, D.R., Otomo, C., Panchal, S.C., Machius, M., and Rosen, M.K. 
(2005). Structural basis of actin filament nucleation and processive capping by a formin 
homology 2 domain. Nature 433, 488-494. 

Padrick, S.B., Cheng, H.C., Ismail, A.M., Panchal, S.C., Doolittle, L.K., Kim, S., Skehan, 
B.M., Umetani, J., Brautigam, C.A., Leong, J.M., et al. (2008). Hierarchical regulation of 
WASP/WAVE proteins. Molecular cell 32, 426-438. 

Padrick, S.B., Doolittle, L.K., Brautigam, C.A., King, D.S., and Rosen, M.K. (2011). 
Arp2/3 complex is bound and activated by two WASP proteins. Proceedings of the 
National Academy of Sciences of the United States of America 108, E472-479. 

Padrick, S.B., and Rosen, M.K. (2010). Physical mechanisms of signal integration by 
WASP family proteins. Annual review of biochemistry 79, 707-735. 

Panchal, S.C., Kaiser, D.A., Torres, E., Pollard, T.D., and Rosen, M.K. (2003). A 
conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 
complex. Nature structural biology 10, 591-598. 

Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P., and Carlier, M.F. (2000). The 
Arp2/3 complex branches filament barbed ends: functional antagonism with capping 
proteins. Nature cell biology 2, 385-391. 

Pantaloni, D., Le Clainche, C., and Carlier, M.F. (2001). Mechanism of actin-based 
motility. Science 292, 1502-1506. 

Papayannopoulos, V., Co, C., Prehoda, K.E., Snapper, S., Taunton, J., and Lim, W.A. 
(2005). A polybasic motif allows N-WASP to act as a sensor of PIP(2) density. 
Molecular cell 17, 181-191. 

Pardee, J.D., and Spudich, J.A. (1982). Mechanism of K+-induced actin assembly. The 
Journal of cell biology 93, 648-654. 

Park, H., and Cox, D. (2009). Cdc42 regulates Fc gamma receptor-mediated 
phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome 
protein (WASP) and neural-WASP. Molecular biology of the cell 20, 4500-4508. 

Pauker, M.H., Reicher, B., Fried, S., Perl, O., and Barda-Saad, M. (2011). Functional 
cooperation between the proteins Nck and ADAP is fundamental for actin 
reorganization. Molecular and cellular biology 31, 2653-2666. 

Paul, A.S., and Pollard, T.D. (2008). The role of the FH1 domain and profilin in formin-
mediated actin-filament elongation and nucleation. Current biology : CB 18, 9-19. 

Pawson, T. (2004). Specificity in signal transduction: from phosphotyrosine-SH2 
domain interactions to complex cellular systems. Cell 116, 191-203. 

Pawson, T. (2007). Dynamic control of signaling by modular adaptor proteins. Current 
opinion in cell biology 19, 112-116. 

Pellegrin, S., and Mellor, H. (2007). Actin stress fibres. Journal of cell science 120, 
3491-3499. 

Perrin, B.J., and Ervasti, J.M. (2010). The actin gene family: function follows isoform. 
Cytoskeleton (Hoboken) 67, 630-634. 



Reference List 

 

 211 

Peterson, F.C., Deng, Q., Zettl, M., Prehoda, K.E., Lim, W.A., Way, M., and Volkman, 
B.F. (2007). Multiple WASP-interacting protein recognition motifs are required for a 
functional interaction with N-WASP. The Journal of biological chemistry 282, 8446-
8453. 

Pfender, S., Kuznetsov, V., Pleiser, S., Kerkhoff, E., and Schuh, M. (2011). Spire-type 
actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division. Current 
biology : CB 21, 955-960. 

Phillips, N., Hayward, R.D., and Koronakis, V. (2004). Phosphorylation of the 
enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal 
formation. Nature cell biology 6, 618-625. 

Pinyol, R., Haeckel, A., Ritter, A., Qualmann, B., and Kessels, M.M. (2007). Regulation 
of N-WASP and the Arp2/3 complex by Abp1 controls neuronal morphology. PloS one 
2, e400. 

Pollard, T.D. (1983). Measurement of rate constants for actin filament elongation in 
solution. Analytical biochemistry 134, 406-412. 

Pollard, T.D. (1986). Rate constants for the reactions of ATP- and ADP-actin with the 
ends of actin filaments. The Journal of cell biology 103, 2747-2754. 

Pollard, T.D. (2007). Regulation of actin filament assembly by Arp2/3 complex and 
formins. Annual review of biophysics and biomolecular structure 36, 451-477. 

Pollard, T.D., and Borisy, G.G. (2003). Cellular motility driven by assembly and 
disassembly of actin filaments. Cell 112, 453-465. 

Pollard, T.D., and Cooper, J.A. (1984). Quantitative analysis of the effect of 
Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry 23, 
6631-6641. 

Pollard, T.D., and Cooper, J.A. (2009). Actin, a central player in cell shape and 
movement. Science 326, 1208-1212. 

Pollard, T.D., and Weeds, A.G. (1984). The rate constant for ATP hydrolysis by 
polymerized actin. FEBS letters 170, 94-98. 

Porta, J.C., and Borgstahl, G.E. (2012). Structural basis for profilin-mediated actin 
nucleotide exchange. Journal of molecular biology 418, 103-116. 

Prehoda, K.E., Lee, D.J., and Lim, W.A. (1999). Structure of the enabled/VASP 
homology 1 domain-peptide complex: a key component in the spatial control of actin 
assembly. Cell 97, 471-480. 

Prehoda, K.E., Scott, J.A., Mullins, R.D., and Lim, W.A. (2000). Integration of multiple 
signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290, 
801-806. 

Pruyne, D., Evangelista, M., Yang, C., Bi, E., Zigmond, S., Bretscher, A., and Boone, C. 
(2002). Role of formins in actin assembly: nucleation and barbed-end association. 
Science 297, 612-615. 

Qualmann, B., and Kessels, M.M. (2002). Endocytosis and the cytoskeleton. 
International review of cytology 220, 93-144. 

Qualmann, B., and Kessels, M.M. (2009). New players in actin polymerization--WH2-
domain-containing actin nucleators. Trends in cell biology 19, 276-285. 

Quinlan, M.E., Heuser, J.E., Kerkhoff, E., and Mullins, R.D. (2005). Drosophila Spire is 
an actin nucleation factor. Nature 433, 382-388. 



Reference List 

 

 212 

Quinlan, M.E., Hilgert, S., Bedrossian, A., Mullins, R.D., and Kerkhoff, E. (2007). 
Regulatory interactions between two actin nucleators, Spire and Cappuccino. The 
Journal of cell biology 179, 117-128. 

Ramesh, N., Anton, I.M., Hartwig, J.H., and Geha, R.S. (1997). WIP, a protein 
associated with wiskott-aldrich syndrome protein, induces actin polymerization and 
redistribution in lymphoid cells. Proceedings of the National Academy of Sciences of 
the United States of America 94, 14671-14676. 

Reebye, V., Frilling, A., Hajitou, A., Nicholls, J.P., Habib, N.A., and Mintz, P.J. (2012). 
A perspective on non-catalytic Src homology (SH) adaptor signalling proteins. Cellular 
signalling 24, 388-392. 

Reeves, P.M., Bommarius, B., Lebeis, S., McNulty, S., Christensen, J., Swimm, A., 
Chahroudi, A., Chavan, R., Feinberg, M.B., Veach, D., et al. (2005). Disabling poxvirus 
pathogenesis by inhibition of Abl-family tyrosine kinases. Nature medicine 11, 731-739. 

Reicher, B., and Barda-Saad, M. (2010). Multiple pathways leading from the T-cell 
antigen receptor to the actin cytoskeleton network. FEBS letters 584, 4858-4864. 

Ren, R., Mayer, B.J., Cicchetti, P., and Baltimore, D. (1993). Identification of a ten-
amino acid proline-rich SH3 binding site. Science 259, 1157-1161. 

Ridley, A.J. (2011). Life at the leading edge. Cell 145, 1012-1022. 

Rietdorf, J., Ploubidou, A., Reckmann, I., Holmstrom, A., Frischknecht, F., Zettl, M., 
Zimmermann, T., and Way, M. (2001). Kinesin-dependent movement on microtubules 
precedes actin-based motility of vaccinia virus. Nature cell biology 3, 992-1000. 

Rivera, G.M., Briceno, C.A., Takeshima, F., Snapper, S.B., and Mayer, B.J. (2004). 
Inducible clustering of membrane-targeted SH3 domains of the adaptor protein Nck 
triggers localized actin polymerization. Current biology : CB 14, 11-22. 

Rivera, G.M., Vasilescu, D., Papayannopoulos, V., Lim, W.A., and Mayer, B.J. (2009). 
A reciprocal interdependence between Nck and PI(4,5)P(2) promotes localized N-
WASp-mediated actin polymerization in living cells. Molecular cell 36, 525-535. 

Rivero-Lezcano, O.M., Marcilla, A., Sameshima, J.H., and Robbins, K.C. (1995). 
Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 
3 domains. Molecular and cellular biology 15, 5725-5731. 

Roberts, K.L., and Smith, G.L. (2008). Vaccinia virus morphogenesis and 
dissemination. Trends in microbiology 16, 472-479. 

Robinson, R.C., Turbedsky, K., Kaiser, D.A., Marchand, J.B., Higgs, H.N., Choe, S., 
and Pollard, T.D. (2001). Crystal structure of Arp2/3 complex. Science 294, 1679-1684. 

Rodal, A.A., Sokolova, O., Robins, D.B., Daugherty, K.M., Hippenmeyer, S., Riezman, 
H., Grigorieff, N., and Goode, B.L. (2005). Conformational changes in the Arp2/3 
complex leading to actin nucleation. Nature structural & molecular biology 12, 26-31. 

Rodger, G., and Smith, G.L. (2002). Replacing the SCR domains of vaccinia virus 
protein B5R with EGFP causes a reduction in plaque size and actin tail formation but 
enveloped virions are still transported to the cell surface. The Journal of general 
virology 83, 323-332. 

Rohatgi, R., Ho, H.Y., and Kirschner, M.W. (2000). Mechanism of N-WASP activation 
by CDC42 and phosphatidylinositol 4, 5-bisphosphate. The Journal of cell biology 150, 
1299-1310. 



Reference List 

 

 213 

Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., and Kirschner, 
M.W. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-
dependent signals to actin assembly. Cell 97, 221-231. 

Rohatgi, R., Nollau, P., Ho, H.Y., Kirschner, M.W., and Mayer, B.J. (2001). Nck and 
phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization 
through the N-WASP-Arp2/3 pathway. The Journal of biological chemistry 276, 26448-
26452. 

Romero, S., Le Clainche, C., Didry, D., Egile, C., Pantaloni, D., and Carlier, M.F. 
(2004). Formin is a processive motor that requires profilin to accelerate actin assembly 
and associated ATP hydrolysis. Cell 119, 419-429. 

Rosenshine, I., Ruschkowski, S., Stein, M., Reinscheid, D.J., Mills, S.D., and Finlay, 
B.B. (1996). A pathogenic bacterium triggers epithelial signals to form a functional 
bacterial receptor that mediates actin pseudopod formation. The EMBO journal 15, 
2613-2624. 

Rottger, S., Frischknecht, F., Reckmann, I., Smith, G.L., and Way, M. (1999). 
Interactions between vaccinia virus IEV membrane proteins and their roles in IEV 
assembly and actin tail formation. Journal of virology 73, 2863-2875. 

Rouiller, I., Xu, X.P., Amann, K.J., Egile, C., Nickell, S., Nicastro, D., Li, R., Pollard, 
T.D., Volkmann, N., and Hanein, D. (2008). The structural basis of actin filament 
branching by the Arp2/3 complex. The Journal of cell biology 180, 887-895. 

Ruusala, A., Pawson, T., Heldin, C.H., and Aspenstrom, P. (2008). Nck adapters are 
involved in the formation of dorsal ruffles, cell migration, and Rho signaling 
downstream of the platelet-derived growth factor beta receptor. The Journal of 
biological chemistry 283, 30034-30044. 

Sadowski, I., Stone, J.C., and Pawson, T. (1986). A noncatalytic domain conserved 
among cytoplasmic protein-tyrosine kinases modifies the kinase function and 
transforming activity of Fujinami sarcoma virus P130gag-fps. Molecular and cellular 
biology 6, 4396-4408. 

Sagot, I., Rodal, A.A., Moseley, J., Goode, B.L., and Pellman, D. (2002). An actin 
nucleation mechanism mediated by Bni1 and profilin. Nature cell biology 4, 626-631. 

Saksela, K., and Permi, P. (2012). SH3 domain ligand binding: What's the consensus 
and where's the specificity? FEBS letters 586, 2609-2614. 

Sallee, N.A., Rivera, G.M., Dueber, J.E., Vasilescu, D., Mullins, R.D., Mayer, B.J., and 
Lim, W.A. (2008). The pathogen protein EspF(U) hijacks actin polymerization using 
mimicry and multivalency. Nature 454, 1005-1008. 

Sasahara, Y., Rachid, R., Byrne, M.J., de la Fuente, M.A., Abraham, R.T., Ramesh, N., 
and Geha, R.S. (2002). Mechanism of recruitment of WASP to the immunological 
synapse and of its activation following TCR ligation. Molecular cell 10, 1269-1281. 

Sato, M., Sawahata, R., Takenouchi, T., and Kitani, H. (2011). Identification of Fyn as 
the binding partner for the WASP N-terminal domain in T cells. International 
immunology 23, 493-502. 

Savoy, D.N., Billadeau, D.D., and Leibson, P.J. (2000). Cutting edge: WIP, a binding 
partner for Wiskott-Aldrich syndrome protein, cooperates with Vav in the regulation of T 
cell activation. J Immunol 164, 2866-2870. 



Reference List 

 

 214 

Scaplehorn, N., Holmstrom, A., Moreau, V., Frischknecht, F., Reckmann, I., and Way, 
M. (2002). Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia 
virus. Current biology : CB 12, 740-745. 

Schmelz, M., Sodeik, B., Ericsson, M., Wolffe, E.J., Shida, H., Hiller, G., and Griffiths, 
G. (1994). Assembly of vaccinia virus: the second wrapping cisterna is derived from the 
trans Golgi network. Journal of virology 68, 130-147. 

Schmidt, F.I., Bleck, C.K., Helenius, A., and Mercer, J. (2011). Vaccinia extracellular 
virions enter cells by macropinocytosis and acid-activated membrane rupture. The 
EMBO journal 30, 3647-3661. 

Schutt, C.E., Myslik, J.C., Rozycki, M.D., Goonesekere, N.C., and Lindberg, U. (1993). 
The structure of crystalline profilin-beta-actin. Nature 365, 810-816. 

Schwintzer, L., Koch, N., Ahuja, R., Grimm, J., Kessels, M.M., and Qualmann, B. 
(2011). The functions of the actin nucleator Cobl in cellular morphogenesis critically 
depend on syndapin I. The EMBO journal 30, 3147-3159. 

Scita, G., Confalonieri, S., Lappalainen, P., and Suetsugu, S. (2008). IRSp53: crossing 
the road of membrane and actin dynamics in the formation of membrane protrusions. 
Trends in cell biology 18, 52-60. 

Selden, L.A., Kinosian, H.J., Estes, J.E., and Gershman, L.C. (1999). Impact of profilin 
on actin-bound nucleotide exchange and actin polymerization dynamics. Biochemistry 
38, 2769-2778. 

Serio, A.W., Jeng, R.L., Haglund, C.M., Reed, S.C., and Welch, M.D. (2010). Defining 
a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia. 
Cell host & microbe 7, 388-398. 

Shawlot, W., Deng, J.M., Fohn, L.E., and Behringer, R.R. (1998). Restricted beta-
galactosidase expression of a hygromycin-lacZ gene targeted to the beta-actin locus 
and embryonic lethality of beta-actin mutant mice. Transgenic research 7, 95-103. 

Shibata, T., Takeshima, F., Chen, F., Alt, F.W., and Snapper, S.B. (2002). Cdc42 
facilitates invasion but not the actin-based motility of Shigella. Current biology : CB 12, 
341-345. 

Shin, N., Lee, S., Ahn, N., Kim, S.A., Ahn, S.G., YongPark, Z., and Chang, S. (2007). 
Sorting nexin 9 interacts with dynamin 1 and N-WASP and coordinates synaptic vesicle 
endocytosis. The Journal of biological chemistry 282, 28939-28950. 

Silvin, C., Belisle, B., and Abo, A. (2001). A role for Wiskott-Aldrich syndrome protein in 
T-cell receptor-mediated transcriptional activation independent of actin polymerization. 
The Journal of biological chemistry 276, 21450-21457. 

Skoble, J., Auerbuch, V., Goley, E.D., Welch, M.D., and Portnoy, D.A. (2001). Pivotal 
role of VASP in Arp2/3 complex-mediated actin nucleation, actin branch-formation, and 
Listeria monocytogenes motility. The Journal of cell biology 155, 89-100. 

Skoble, J., Portnoy, D.A., and Welch, M.D. (2000). Three regions within ActA promote 
Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. The 
Journal of cell biology 150, 527-538. 

Small, J.V., Isenberg, G., and Celis, J.E. (1978). Polarity of actin at the leading edge of 
cultured cells. Nature 272, 638-639. 

Small, J.V., Stradal, T., Vignal, E., and Rottner, K. (2002). The lamellipodium: where 
motility begins. Trends in cell biology 12, 112-120. 



Reference List 

 

 215 

Snapper, S.B., Rosen, F.S., Mizoguchi, E., Cohen, P., Khan, W., Liu, C.H., Hagemann, 
T.L., Kwan, S.P., Ferrini, R., Davidson, L., et al. (1998). Wiskott-Aldrich syndrome 
protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9, 
81-91. 

Snapper, S.B., Takeshima, F., Anton, I., Liu, C.H., Thomas, S.M., Nguyen, D., Dudley, 
D., Fraser, H., Purich, D., Lopez-Ilasaca, M., et al. (2001). N-WASP deficiency reveals 
distinct pathways for cell surface projections and microbial actin-based motility. Nature 
cell biology 3, 897-904. 

Songyang, Z., Shoelson, S.E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W.G., King, 
F., Roberts, T., Ratnofsky, S., Lechleider, R.J., et al. (1993). SH2 domains recognize 
specific phosphopeptide sequences. Cell 72, 767-778. 

Songyang, Z., Shoelson, S.E., McGlade, J., Olivier, P., Pawson, T., Bustelo, X.R., 
Barbacid, M., Sabe, H., Hanafusa, H., Yi, T., et al. (1994). Specific motifs recognized 
by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. 
Molecular and cellular biology 14, 2777-2785. 

Sparks, A.B., Rider, J.E., Hoffman, N.G., Fowlkes, D.M., Quillam, L.A., and Kay, B.K. 
(1996). Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, 
Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proceedings of the National Academy 
of Sciences of the United States of America 93, 1540-1544. 

Stamm, L.M., Pak, M.A., Morisaki, J.H., Snapper, S.B., Rottner, K., Lommel, S., and 
Brown, E.J. (2005). Role of the WASP family proteins for Mycobacterium marinum 
actin tail formation. Proceedings of the National Academy of Sciences of the United 
States of America 102, 14837-14842. 

Staub, E., Groene, J., Heinze, M., Mennerich, D., Roepcke, S., Klaman, I., Hinzmann, 
B., Castanos-Velez, E., Pilarsky, C., Mann, B., et al. (2009). An expression module of 
WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor 
types. J Mol Med (Berl) 87, 633-644. 

Stewart, D.M., Tian, L., and Nelson, D.L. (1999). Mutations that cause the Wiskott-
Aldrich syndrome impair the interaction of Wiskott-Aldrich syndrome protein (WASP) 
with WASP interacting protein. J Immunol 162, 5019-5024. 

Stoletov, K.V., Ratcliffe, K.E., Spring, S.C., and Terman, B.I. (2001). NCK and PAK 
participate in the signaling pathway by which vascular endothelial growth factor 
stimulates the assembly of focal adhesions. The Journal of biological chemistry 276, 
22748-22755. 

Stylli, S.S., Stacey, T.T., Verhagen, A.M., Xu, S.S., Pass, I., Courtneidge, S.A., and 
Lock, P. (2009). Nck adaptor proteins link Tks5 to invadopodia actin regulation and 
ECM degradation. Journal of cell science 122, 2727-2740. 

Suarez, C., Roland, J., Boujemaa-Paterski, R., Kang, H., McCullough, B.R., Reymann, 
A.C., Guerin, C., Martiel, J.L., De la Cruz, E.M., and Blanchoin, L. (2011). Cofilin tunes 
the nucleotide state of actin filaments and severs at bare and decorated segment 
boundaries. Current biology : CB 21, 862-868. 

Suetsugu, S., Banzai, Y., Kato, M., Fukami, K., Kataoka, Y., Takai, Y., Yoshida, N., 
and Takenawa, T. (2007). Male-specific sterility caused by the loss of CR16. Genes to 
cells : devoted to molecular & cellular mechanisms 12, 721-733. 

Suetsugu, S., Hattori, M., Miki, H., Tezuka, T., Yamamoto, T., Mikoshiba, K., and 
Takenawa, T. (2002). Sustained activation of N-WASP through phosphorylation is 
essential for neurite extension. Developmental cell 3, 645-658. 



Reference List 

 

 216 

Suzuki, M., Morita, H., and Ueno, N. (2012). Molecular mechanisms of cell shape 
changes that contribute to vertebrate neural tube closure. Development, growth & 
differentiation 54, 266-276. 

Suzuki, T., Miki, H., Takenawa, T., and Sasakawa, C. (1998). Neural Wiskott-Aldrich 
syndrome protein is implicated in the actin-based motility of Shigella flexneri. The 
EMBO journal 17, 2767-2776. 

Suzuki, T., Mimuro, H., Miki, H., Takenawa, T., Sasaki, T., Nakanishi, H., Takai, Y., 
and Sasakawa, C. (2000). Rho family GTPase Cdc42 is essential for the actin-based 
motility of Shigella in mammalian cells. The Journal of experimental medicine 191, 
1905-1920. 

Suzuki, T., Mimuro, H., Suetsugu, S., Miki, H., Takenawa, T., and Sasakawa, C. (2002). 
Neural Wiskott-Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella 
VirG among the WASP family and determines the host cell type allowing actin-based 
spreading. Cellular microbiology 4, 223-233. 

Svitkina, T.M., and Borisy, G.G. (1999). Arp2/3 complex and actin depolymerizing 
factor/cofilin in dendritic organization and treadmilling of actin filament array in 
lamellipodia. The Journal of cell biology 145, 1009-1026. 

Svitkina, T.M., Verkhovsky, A.B., McQuade, K.M., and Borisy, G.G. (1997). Analysis of 
the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body 
translocation. The Journal of cell biology 139, 397-415. 

Swimm, A., Bommarius, B., Li, Y., Cheng, D., Reeves, P., Sherman, M., Veach, D., 
Bornmann, W., and Kalman, D. (2004). Enteropathogenic Escherichia coli use 
redundant tyrosine kinases to form actin pedestals. Molecular biology of the cell 15, 
3520-3529. 

Symons, M., Derry, J.M., Karlak, B., Jiang, S., Lemahieu, V., McCormick, F., Francke, 
U., and Abo, A. (1996). Wiskott-Aldrich syndrome protein, a novel effector for the 
GTPase CDC42Hs, is implicated in actin polymerization. Cell 84, 723-734. 

Symons, M.H., and Mitchison, T.J. (1991). Control of actin polymerization in live and 
permeabilized fibroblasts. The Journal of cell biology 114, 503-513. 

Takano, K., Toyooka, K., and Suetsugu, S. (2008). EFC/F-BAR proteins and the N-
WASP-WIP complex induce membrane curvature-dependent actin polymerization. The 
EMBO journal 27, 2817-2828. 

Tanaka, M., Gupta, R., and Mayer, B.J. (1995). Differential inhibition of signaling 
pathways by dominant-negative SH2/SH3 adapter proteins. Molecular and cellular 
biology 15, 6829-6837. 

Tatarova, Z., Brabek, J., Rosel, D., and Novotny, M. (2012). SH3 domain tyrosine 
phosphorylation--sites, role and evolution. PloS one 7, e36310. 

Thanabalu, T., and Munn, A.L. (2001). Functions of Vrp1p in cytokinesis and actin 
patches are distinct and neither requires a WH2/V domain. The EMBO journal 20, 
6979-6989. 

Theriot, J.A., and Mitchison, T.J. (1991). Actin microfilament dynamics in locomoting 
cells. Nature 352, 126-131. 

Thevenot, E., Moreau, A.W., Rousseau, V., Combeau, G., Domenichini, F., Jacquet, C., 
Goupille, O., Amar, M., Kreis, P., Fossier, P., et al. (2011). p21-Activated kinase 3 
(PAK3) protein regulates synaptic transmission through its interaction with the 
Nck2/Grb4 protein adaptor. The Journal of biological chemistry 286, 40044-40059. 



Reference List 

 

 217 

Thrasher, A.J., and Burns, S.O. (2010). WASP: a key immunological multitasker. 
Nature reviews Immunology 10, 182-192. 

Ti, S.C., Jurgenson, C.T., Nolen, B.J., and Pollard, T.D. (2011). Structural and 
biochemical characterization of two binding sites for nucleation-promoting factor 
WASp-VCA on Arp2/3 complex. Proceedings of the National Academy of Sciences of 
the United States of America 108, E463-471. 

Tilney, L.G., Bonder, E.M., Coluccio, L.M., and Mooseker, M.S. (1983). Actin from 
Thyone sperm assembles on only one end of an actin filament: a behavior regulated by 
profilin. The Journal of cell biology 97, 112-124. 

Tilney, L.G., and Portnoy, D.A. (1989). Actin filaments and the growth, movement, and 
spread of the intracellular bacterial parasite, Listeria monocytogenes. The Journal of 
cell biology 109, 1597-1608. 

Tolonen, N., Doglio, L., Schleich, S., and Krijnse Locker, J. (2001). Vaccinia virus DNA 
replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. 
Molecular biology of the cell 12, 2031-2046. 

Tomasevic, N., Jia, Z., Russell, A., Fujii, T., Hartman, J.J., Clancy, S., Wang, M., 
Beraud, C., Wood, K.W., and Sakowicz, R. (2007). Differential regulation of WASP and 
N-WASP by Cdc42, Rac1, Nck, and PI(4,5)P2. Biochemistry 46, 3494-3502. 

Tondeleir, D., Vandamme, D., Vandekerckhove, J., Ampe, C., and Lambrechts, A. 
(2009). Actin isoform expression patterns during mammalian development and in 
pathology: insights from mouse models. Cell motility and the cytoskeleton 66, 798-815. 

Tong, A.H., Drees, B., Nardelli, G., Bader, G.D., Brannetti, B., Castagnoli, L., 
Evangelista, M., Ferracuti, S., Nelson, B., Paoluzi, S., et al. (2002). A combined 
experimental and computational strategy to define protein interaction networks for 
peptide recognition modules. Science 295, 321-324. 

Tooze, J., Hollinshead, M., Reis, B., Radsak, K., and Kern, H. (1993). Progeny vaccinia 
and human cytomegalovirus particles utilize early endosomal cisternae for their 
envelopes. European journal of cell biology 60, 163-178. 

Torres, E., and Rosen, M.K. (2003). Contingent phosphorylation/dephosphorylation 
provides a mechanism of molecular memory in WASP. Molecular cell 11, 1215-1227. 

Torres, E., and Rosen, M.K. (2006). Protein-tyrosine kinase and GTPase signals 
cooperate to phosphorylate and activate Wiskott-Aldrich syndrome protein 
(WASP)/neuronal WASP. The Journal of biological chemistry 281, 3513-3520. 

Tsuboi, S. (2006). A complex of Wiskott-Aldrich syndrome protein with mammalian 
verprolins plays an important role in monocyte chemotaxis. J Immunol 176, 6576-6585. 

Tybulewicz, V.L., Ardouin, L., Prisco, A., and Reynolds, L.F. (2003). Vav1: a key signal 
transducer downstream of the TCR. Immunological reviews 192, 42-52. 

Urban, E., Jacob, S., Nemethova, M., Resch, G.P., and Small, J.V. (2010). Electron 
tomography reveals unbranched networks of actin filaments in lamellipodia. Nature cell 
biology 12, 429-435. 

Uruno, T., Zhang, P., Liu, J., Hao, J.J., and Zhan, X. (2003). Haematopoietic lineage 
cell-specific protein 1 (HS1) promotes actin-related protein (Arp) 2/3 complex-mediated 
actin polymerization. The Biochemical journal 371, 485-493. 



Reference List 

 

 218 

Vadlamudi, R.K., Li, F., Barnes, C.J., Bagheri-Yarmand, R., and Kumar, R. (2004). 
p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting 
substrate. EMBO reports 5, 154-160. 

Vaduva, G., Martin, N.C., and Hopper, A.K. (1997). Actin-binding verprolin is a polarity 
development protein required for the morphogenesis and function of the yeast actin 
cytoskeleton. The Journal of cell biology 139, 1821-1833. 

Vaduva, G., Martinez-Quiles, N., Anton, I.M., Martin, N.C., Geha, R.S., Hopper, A.K., 
and Ramesh, N. (1999). The human WASP-interacting protein, WIP, activates the cell 
polarity pathway in yeast. The Journal of biological chemistry 274, 17103-17108. 

van Eijl, H., Hollinshead, M., and Smith, G.L. (2000). The vaccinia virus A36R protein is 
a type Ib membrane protein present on intracellular but not extracellular enveloped 
virus particles. Virology 271, 26-36. 

Vaynberg, J., Fukuda, T., Chen, K., Vinogradova, O., Velyvis, A., Tu, Y., Ng, L., Wu, C., 
and Qin, J. (2005). Structure of an ultraweak protein-protein complex and its crucial 
role in regulation of cell morphology and motility. Molecular cell 17, 513-523. 

Veltman, D.M., and Insall, R.H. (2010). WASP family proteins: their evolution and its 
physiological implications. Molecular biology of the cell 21, 2880-2893. 

Vetterkind, S., Miki, H., Takenawa, T., Klawitz, I., Scheidtmann, K.H., and Preuss, U. 
(2002). The rat homologue of Wiskott-Aldrich syndrome protein (WASP)-interacting 
protein (WIP) associates with actin filaments, recruits N-WASP from the nucleus, and 
mediates mobilization of actin from stress fibers in favor of filopodia formation. The 
Journal of biological chemistry 277, 87-95. 

Vingadassalom, D., Campellone, K.G., Brady, M.J., Skehan, B., Battle, S.E., Robbins, 
D., Kapoor, A., Hecht, G., Snapper, S.B., and Leong, J.M. (2010). Enterohemorrhagic 
E. coli requires N-WASP for efficient type III translocation but not for EspFU-mediated 
actin pedestal formation. PLoS pathogens 6, e1001056. 

Vingadassalom, D., Kazlauskas, A., Skehan, B., Cheng, H.C., Magoun, L., Robbins, D., 
Rosen, M.K., Saksela, K., and Leong, J.M. (2009). Insulin receptor tyrosine kinase 
substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during 
pedestal formation. Proceedings of the National Academy of Sciences of the United 
States of America 106, 6754-6759. 

Vinzenz, M., Nemethova, M., Schur, F., Mueller, J., Narita, A., Urban, E., Winkler, C., 
Schmeiser, C., Koestler, S.A., Rottner, K., et al. (2012). Actin branching in the initiation 
and maintenance of lamellipodia. Journal of cell science 125, 2775-2785. 

Volkman, B.F., Prehoda, K.E., Scott, J.A., Peterson, F.C., and Lim, W.A. (2002). 
Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis 
of Wiskott-Aldrich Syndrome. Cell 111, 565-576. 

Volkmer, R. (2009). Synthesis and application of peptide arrays: quo vadis SPOT 
technology. Chembiochem 10, 1431-1442. 

Waksman, G., Kominos, D., Robertson, S.C., Pant, N., Baltimore, D., Birge, R.B., 
Cowburn, D., Hanafusa, H., Mayer, B.J., Overduin, M., et al. (1992). Crystal structure 
of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-
phosphorylated peptides. Nature 358, 646-653. 

Waksman, G., Shoelson, S.E., Pant, N., Cowburn, D., and Kuriyan, J. (1993). Binding 
of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of 
the complexed and peptide-free forms. Cell 72, 779-790. 



Reference List 

 

 219 

Wang, Y.L. (1985). Exchange of actin subunits at the leading edge of living fibroblasts: 
possible role of treadmilling. The Journal of cell biology 101, 597-602. 

Watanabe, N., and Mitchison, T.J. (2002). Single-molecule speckle analysis of actin 
filament turnover in lamellipodia. Science 295, 1083-1086. 

Waterman-Storer, C.M., Desai, A., Bulinski, J.C., and Salmon, E.D. (1998). 
Fluorescent speckle microscopy, a method to visualize the dynamics of protein 
assemblies in living cells. Current biology : CB 8, 1227-1230. 

Way, M., Pope, B., Gooch, J., Hawkins, M., and Weeds, A.G. (1990). Identification of a 
region in segment 1 of gelsolin critical for actin binding. The EMBO journal 9, 4103-
4109. 

Wear, M.A., Yamashita, A., Kim, K., Maeda, Y., and Cooper, J.A. (2003). How capping 
protein binds the barbed end of the actin filament. Current biology : CB 13, 1531-1537. 

Weaver, A.M., Heuser, J.E., Karginov, A.V., Lee, W.L., Parsons, J.T., and Cooper, J.A. 
(2002). Interaction of cortactin and N-WASp with Arp2/3 complex. Current biology : CB 
12, 1270-1278. 

Weaver, A.M., Karginov, A.V., Kinley, A.W., Weed, S.A., Li, Y., Parsons, J.T., and 
Cooper, J.A. (2001). Cortactin promotes and stabilizes Arp2/3-induced actin filament 
network formation. Current biology : CB 11, 370-374. 

Weber, C., Schreiber, T.B., and Daub, H. (2012). Dual phosphoproteomics and 
chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid 
leukemia cells. Journal of proteomics 75, 1343-1356. 

Weed, S.A., Karginov, A.V., Schafer, D.A., Weaver, A.M., Kinley, A.W., Cooper, J.A., 
and Parsons, J.T. (2000). Cortactin localization to sites of actin assembly in 
lamellipodia requires interactions with F-actin and the Arp2/3 complex. The Journal of 
cell biology 151, 29-40. 

Wegner, A. (1976). Head to tail polymerization of actin. Journal of molecular biology 
108, 139-150. 

Wegner, A., and Isenberg, G. (1983). 12-fold difference between the critical monomer 
concentrations of the two ends of actin filaments in physiological salt conditions. 
Proceedings of the National Academy of Sciences of the United States of America 80, 
4922-4925. 

Weiler, M.C., Smith, J.L., and Masters, J.N. (1996). CR16, a novel proline-rich protein 
expressed in rat brain neurons, binds to SH3 domains and is a MAP kinase substrate. 
Journal of molecular neuroscience : MN 7, 203-215. 

Weiner, O.D., Marganski, W.A., Wu, L.F., Altschuler, S.J., and Kirschner, M.W. (2007). 
An actin-based wave generator organizes cell motility. PLoS biology 5, e221. 

Weiss, S.M., Ladwein, M., Schmidt, D., Ehinger, J., Lommel, S., Stading, K., Beutling, 
U., Disanza, A., Frank, R., Jansch, L., et al. (2009). IRSp53 links the 
enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation. Cell 
host & microbe 5, 244-258. 

Weisswange, I., Newsome, T.P., Schleich, S., and Way, M. (2009). The rate of N-
WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. 
Nature 458, 87-91. 

Welch, M.D., DePace, A.H., Verma, S., Iwamatsu, A., and Mitchison, T.J. (1997a). The 
human Arp2/3 complex is composed of evolutionarily conserved subunits and is 



Reference List 

 

 220 

localized to cellular regions of dynamic actin filament assembly. The Journal of cell 
biology 138, 375-384. 

Welch, M.D., Iwamatsu, A., and Mitchison, T.J. (1997b). Actin polymerization is 
induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 
385, 265-269. 

Welch, M.D., Rosenblatt, J., Skoble, J., Portnoy, D.A., and Mitchison, T.J. (1998). 
Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in 
actin filament nucleation. Science 281, 105-108. 

Weng, Z., Rickles, R.J., Feng, S., Richard, S., Shaw, A.S., Schreiber, S.L., and Brugge, 
J.S. (1995). Structure-function analysis of SH3 domains: SH3 binding specificity altered 
by single amino acid substitutions. Molecular and cellular biology 15, 5627-5634. 

Winter, D., Lechler, T., and Li, R. (1999). Activation of the yeast Arp2/3 complex by 
Bee1p, a WASP-family protein. Current biology : CB 9, 501-504. 

Winter, D., Podtelejnikov, A.V., Mann, M., and Li, R. (1997). The complex containing 
actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast 
actin patches. Current biology : CB 7, 519-529. 

Witke, W. (2004). The role of profilin complexes in cell motility and other cellular 
processes. Trends in cell biology 14, 461-469. 

Witke, W., Sutherland, J.D., Sharpe, A., Arai, M., and Kwiatkowski, D.J. (2001). Profilin 
I is essential for cell survival and cell division in early mouse development. 
Proceedings of the National Academy of Sciences of the United States of America 98, 
3832-3836. 

Wong, A.R., Pearson, J.S., Bright, M.D., Munera, D., Robinson, K.S., Lee, S.F., 
Frankel, G., and Hartland, E.L. (2011). Enteropathogenic and enterohaemorrhagic 
Escherichia coli: even more subversive elements. Molecular microbiology 80, 1420-
1438. 

Wong, A.R., Raymond, B., Collins, J.W., Crepin, V.F., and Frankel, G. (2012). The 
enteropathogenic E. coli effector EspH promotes actin pedestal formation and 
elongation via WASP-interacting protein (WIP). Cellular microbiology 14, 1051-1070. 

Woodrum, D.T., Rich, S.A., and Pollard, T.D. (1975). Evidence for biased bidirectional 
polymerization of actin filaments using heavy meromyosin prepared by an improved 
method. The Journal of cell biology 67, 231-237. 

Wu, C., Asokan, S.B., Berginski, M.E., Haynes, E.M., Sharpless, N.E., Griffith, J.D., 
Gomez, S.M., and Bear, J.E. (2012). Arp2/3 is critical for lamellipodia and response to 
extracellular matrix cues but is dispensable for chemotaxis. Cell 148, 973-987. 

Wunderlich, L., Goher, A., Farago, A., Downward, J., and Buday, L. (1999). 
Requirement of multiple SH3 domains of Nck for ligand binding. Cellular signalling 11, 
253-262. 

Xiang, W., Wen, Z., Pang, W., Hu, L., Xiong, C., and Zhang, Y. (2011). CR16 forms a 
complex with N-WASP in human testes. Cell and tissue research 344, 519-526. 

Xu, P., Johnson, T.L., Stoller-Conrad, J.R., and Schulz, R.A. (2012a). Spire, an actin 
nucleation factor, regulates cell division during Drosophila heart development. PloS 
one 7, e30565. 



Reference List 

 

 221 

Xu, X.P., Rouiller, I., Slaughter, B.D., Egile, C., Kim, E., Unruh, J.R., Fan, X., Pollard, 
T.D., Li, R., Hanein, D., et al. (2012b). Three-dimensional reconstructions of Arp2/3 
complex with bound nucleation promoting factors. The EMBO journal 31, 236-247. 

Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., 
Segall, J., Eddy, R., Miki, H., Takenawa, T., et al. (2005). Molecular mechanisms of 
invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. 
The Journal of cell biology 168, 441-452. 

Yu, H., Chen, J.K., Feng, S., Dalgarno, D.C., Brauer, A.W., and Schreiber, S.L. (1994). 
Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933-
945. 

Zalevsky, J., Grigorova, I., and Mullins, R.D. (2001a). Activation of the Arp2/3 complex 
by the Listeria acta protein. Acta binds two actin monomers and three subunits of the 
Arp2/3 complex. The Journal of biological chemistry 276, 3468-3475. 

Zalevsky, J., Lempert, L., Kranitz, H., and Mullins, R.D. (2001b). Different WASP family 
proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities. 
Current biology : CB 11, 1903-1913. 

Zarrinpar, A., Bhattacharyya, R.P., and Lim, W.A. (2003). The structure and function of 
proline recognition domains. Science's STKE : signal transduction knowledge 
environment 2003, RE8. 

Zettl, M., and Way, M. (2002). The WH1 and EVH1 domains of WASP and Ena/VASP 
family members bind distinct sequence motifs. Current biology : CB 12, 1617-1622. 

Zhang, J., Shehabeldin, A., da Cruz, L.A., Butler, J., Somani, A.K., McGavin, M., 
Kozieradzki, I., dos Santos, A.O., Nagy, A., Grinstein, S., et al. (1999). Antigen 
receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-
Aldrich syndrome protein-deficient lymphocytes. The Journal of experimental medicine 
190, 1329-1342. 

Zhao, Z.S., Manser, E., and Lim, L. (2000). Interaction between PAK and nck: a 
template for Nck targets and role of PAK autophosphorylation. Molecular and cellular 
biology 20, 3906-3917. 

Zheng, J.Q., Wan, J.J., and Poo, M.M. (1996). Essential role of filopodia in 
chemotropic turning of nerve growth cone induced by a glutamate gradient. The 
Journal of neuroscience : the official journal of the Society for Neuroscience 16, 1140-
1149. 

Zuchero, J.B., Coutts, A.S., Quinlan, M.E., Thangue, N.B., and Mullins, R.D. (2009). 
p53-cofactor JMY is a multifunctional actin nucleation factor. Nature cell biology 11, 
451-459. 

 

 


