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Abstract

Optical manipulation of micro- and nano- scale particles using evanescent fields

has been of high importance not only in terms of fundamental optical physics,

but also in terms of a variety of optical trapping applications involving the sort-

ing and trafficking of such particles. We present a study of the manipulation

of micro-particles and the formation of optically bound structures of particles

in evanescent wave traps. Two trapping geometries are considered: the first is

a surface trap where the evanescent field above a glass prism is formed by the

interference of a number of laser beams incident on the prism-water interface;

the second uses the evanescent field surrounding a bi-conical tapered optical

fibre that has been stretched to produce a waist of sub-micron diameter.

In the surface trap using the Kretschmann geometry we have observed the

formation of optically bound one- and two-dimensional structures of particles.

The binding spring constant and measured by tracking particle motion and

the extent of the particles Brownian fluctuations. Additionally, we have mea-

sured the inter-particle separations in the one-dimensional chain structures

and characterised the geometry of the two-dimensional arrays.

In the tapered optical fibre trap we demonstrated both particle transport

for long distances along the fibre, and the formation of stable arrays of particles.

Firstly, we present experimental results on the fabrication of tapered optical

fibres using the ’heat-and-pull‘ technique, and evanescent wave optical bind-

ing of micro-particles to the taper. We have calculated the distribution of the

evanescent field surrounding a tapered fibre for a number of modes as the fibre

diameter approaches the cut-off. We show that an appropriate combination of

modes can give additional control over the spatial distribution of evanescent
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field maxima around the fibre, and hence the locations of the optical trapping

(binding) sites, and suggest applications for controlled micro-particle traffick-

ing and delivery. The formation of stable optically bound chain structures has

been observed, and the propulsion velocities of single particles pushed along

the fibre been measured by a particle tracking method. Next, we show how the

plasmon resonance of metallic nano-particles can be exploited to enhance the

optical trapping force, and suggest how a two-colour or bi-chromatic nano-fibre

trap for plasmonic particles may be implemented.

In both experiments we implement video microscopy to track the particle

locations and make quantitative measures of the particle dynamics. The ex-

perimental studies of particle structures are complemented by light scattering

calculations based on Mie theory to infer how the geometries of the observed

particle structures are controlled by the underlying incident and scattered op-

tical fields.
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Chapter 1

Introduction

1.1 Motivation

This thesis investigates phenomena occurring when a number of colloidal parti-

cles are confined in an evanescent wave trap, resulting in light-induced coupling

between the trapped particles (optical binding) and the formation of optically

bound structures. These light-mediated interactions are of high importance

not only in terms of fundamental optical physics, but also in terms of a variety

of optical trapping applications involving the sorting and trafficking of micro-

particles. The confinement of multiple particles in the same trap intending to

create micro-structures can be achieved by using either:

• single or multiple strongly focused laser beams (optical tweezers) where

the interactions between particles are an undesirable effect [1, 2]; or

• intense laser fields (which need not to be strongly focused) where the

interactions between the particles may result in periodic patterns [3, 4].

1
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The aim of this thesis is to provide a better understanding of the physics

involved in evanescent wave optical binding through the experimental analysis

of systems where the interactions between the trapped particles are of higher

significance compared to the optical forces created by the incident trapping

fields. We believe that the work of this thesis can potentially lead to new

applications such as sorting and trafficking of dielectric and metallic micro-

and nano-particles.

1.2 History of Optical Trapping and Binding

In 1986, Arthur Ashkin demonstrated the first ‘optical tweezers’ where a single

laser beam can be used to trap colloidal particles at the beam waist. The

tightly focused laser beam creates a force which depends on the refractive

index mismatch between the particle and the surrounding medium, and due to

this force dielectric particles are held stably at the beam waist, or can be moved

around in three dimensions [1]. Later on, Burns and co-workers were able to

use intense multiple beams to create an interference pattern at their crossing

point on a surface, and trap multiple colloidal particles, forming arrays [4, 5].

These arrays were formed due to the multiple scattering of the laser light and

this phenomenon was given the name of ‘optical binding’.

The idea of driving micro-particles using evanescent waves was first pro-

posed by Kawata and Sugiura in 1992 [6]. In 2005, Garcés-Chávez et al., using

two counter propagating beams demonstrated that the net radiation pressure

can be cancelled and micro-particles with diameters smaller than the fringe

spacing were trapped in the maxima of the interference pattern [7]. Optical

manipulation of colloidal particles experiments using evanescent waves will be

described in Chapter 3.

In 2004, the use of tapered optical fibres or nano-fibres was suggested for

trapping and manipulating cold atoms by using the strong evanescent field that

surrounds the surface of the tapered region. This was successfully demon-

strated by Sagué et al. in 2007 [8]. In addition Brambilla et al. presented
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results showing manipulation of micro-spheres around tapered fibres [9]. Nano-

fibres are produced by pulling an optical fibre while it is heated and can have

submicron diameters [10]. When light is guided through these sub-micron opti-

cal fibres a strong evanescent field surrounds the surface of the tapered region.

This will be discussed in more detail in Chapter 4.

1.2.1 Optical Tweezers

Optical tweezers were demonstrated in 1986 [1] and since then they are con-

sidered as a useful tool for manipulating micro-particles and sub-micron struc-

tures. This single-beam gradient force radiation-pressure particle trap uses a

high numerical aperture microscope objective lens which focuses a laser beam

leading to the creation of a trapping force which is of the order of pico-newtons.

When the diameter of the particle is larger than the wavelength of the light in

use, optical tweezers can be explained using the following figures:

F
1

Gaussian Beam Pro!le

Figure 1.1: Dielectric par-
ticle trapped in the x-y direc-
tion by the light of a single-
beam gradient force trap.

F
2

F
3

Laser 

Beam

Figure 1.2: Dielectric par-
ticle axially trapped by the
light of a single-beam gradient
force trap.

Light rays passing through the dielectric particle get refracted resulting to

a change in their direction. Since light has momentum, this change in direction

indicates a change in momentum. By Newtons third law there is an equal and

opposite momentum change on the particle. Since more intense rays cause

larger momentum change towards the centre for a Gaussian TEM00 beam the

net gradient force returns the particle to the centre of the beam (see Fig. 1.1).
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If the beam is aligned to pass through the centre of the particle, refraction

occurs symmetrically. The gradient force is in the axial direction and this

cancellation causes the particle to be trapped in the axial direction of the trap

(Fig. 1.2). This gradient force is given by:

Fgradient =
npPQg

c
, (1.1)

where P is the power of light in use, np is the refractive index of the particle,

c is the speed of light and Qg is the fraction of optical momentum transferred

to the particle [11].

Additionally, there exist a force generated by reflection or scattering from

the interface of the particle. This is due to the small refractive index mismatch

between the particle and the suspension fluid resulting to Fresnel reflections

and corresponding recoil forces. Energy is lost from the incident beam upon

reflection and then re-radiated. Therefore the momentum transfer on the par-

ticle (along the beam propagation and opposite to the direction of the emitted

photon) is equal to the momentum lost from the incident beam. The force

acting on the particle is in the direction of the incident light since there is no

preferred direction for photon emission [12]. This force is called the scattering

force and it is expressed as:

Fscat = np
σ⟨S⟩
c

(1.2)

where σ is the particle’s cross section and ⟨S⟩ is the time averaged Poynting

vector.

Provided that the beam is focused strongly (high NA lens) the gradient

force is greater than the forces generated by reflection or scattering from the

interface of the particle. Both gradient and scattering forces scale linearly

with laser intensity therefore increasing the intensity is not sufficient to form

a trap. The intensity gradient has to be maximised for the gradient force to

exceed the scattering force. This is achieved by focusing the laser beam using
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a high numerical aperture microscope objective lens. From this description

it is evident that the reflection and refraction of light, or, more precisely, the

scattering of light results in a force that is of significant magnitude for micron-

sized particles.

In most of the optical tweezing configurations, optical binding is an un-

wanted side effect which increases with the number of the trapped particles

(especially for large particle sizes and high refractive indices).

1.2.2 Optical Binding

When laser light shines on a group of particles, it is apparent that these par-

ticles are not only influenced by the incident light but also by the scattered

light from nearby particles. This induces forces between the particles, which

causes them to self-organise in ordered states.

1.2.2.1 Lateral Optical Binding

Optical binding was first reported by Burns et al. in 1989 where a number of

particles were optically trapped at a surface perpendicular to the direction of

propagation of the trapping laser field (Figure 1.3) [4, 5]. This configuration

consisted of up to five laser beams creating an interference field illuminating

dilute suspensions of polystyrene spheres in water. The dielectric spheres were

confined in the maxima of the interference pattern and were pushed against

the top surface of the sample cell due to radiation pressure. This configuration

produced optically bound crystals with lattice properties determined by the

optical lattice. They also illuminated the centre of the colloidal sample by a

single Gaussian beam with diameter 15 - 20 times greater than the diameter

of an individual sphere. This lead to an ‘unexpected’ observation that spheres

were attracted to the crystal centre from the beam periphery creating a close-

packed crystal. The conclusion drawn from this was that the colloidal spheres

were not only affected by the incident field but also by the scattered light from

nearby particles.
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Figure 1.3: Experimental setup of lateral optical binding experi-
ment. From Burns et al., 1990 [5].

The mechanism they used to model the confinement of dielectric matter in

standing waves derives from fundamental ideas of electromagnetism (Lorentz

force). The simplest application of these ideas is the system of two oscillators

that are allowed to interact even though the particles used in experiments were

too large to be described as induced dipoles. The two oscillators are separated

by a distance R and the interaction energy W (when the polarisation of the

incident light is perpendicular to the direction connecting the two oscillators)

is of the form:

W = −1

2
α2k2

cos(kR)

R
|E|2 (1.3)

where α is the polarisability of the oscillator, k is wavenumber in the surround-

ing medium and E is the amplitude of the applied electric field [5].

In 2005 Ng et al. theoretically studied this trapping configuration and used

Mie scattering theory to model the multiple light scattering. Their analysis

predicted geometric configurations with stable or quasi-stable particles posi-

tions. A theoretical model for a three dimensional expansion of this transverse

trapping geometry was also described by the same group [13].

1.2.2.2 Longitudinal Optical Binding

The first evidence of longitudinal optical binding was presented by Tatarkova

et al. in 2002 [14]. By using two weakly focused counter-propagating Gaussian
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beams they were able to trap silica micro-spheres with diameters 2.3 µm and

3 µm along the direction of propagation of the incident field. The two beams

were aligned so that the radiation pressure from each one was cancelled by

the other. The particles were confined in equilibrium positions with spacings

several times the particle diameters. These spacings become smaller as more

spheres were added to the bound structure since the particles have to fill the

harmonic potential created by the two counter-propagating beams (Figure 1.4).

Figure 1.4: Longitudinal optical binding by two counter-
propagating beams. Experimental data for the arrays of (a) two,
(b) three, and (c) seven spheres (each 3 µm in size). The diagrams
on the right elucidate how the particles fill up the approximately
harmonic potential well created by the two counter-propagating
beams. From Tatarkova et al., 2002 [14].

Independently, Singer et al. studied this phenomenon in 2003 using the

same experimental configuration. They assumed a simple model treating the

polystyrene spheres used in their experiment as point scatterers even though

the range of diameters they considered was in the Mie scattering regime (0.5λ <

D < 2λ). This predicted that the bead spacings depend only on the particle

diameter and not on the optical power of the incident fields or refractive index

[15]. That was in agreement with their experimental data and the sphere

separations reported by Tatarkova et al. [14].

A different approach to model longitudinal optical binding was later pro-

posed by McGloin et al. in 2004 and Metzger et al. in 2006 [16, 17]. Based

on paraxial optics they considered small dielectric spheres as micro-lenses with

focal length f = α/[2(np−nm)] in the small angle approximation and by omit-
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ting high-order aberrations, where α is the radius of the sphere and np and nm

are the refractive indices of the sphere and the submersion medium [18]. The

incident light on a sphere is focused at a distance equal to f from the sphere

leading to the creation of a trap for a nearby particle which in turn creates a

similar trap for the next one.

In 2008, Gordon et al. used a generalized multipole technique (GMT) to

model the light scattering from polystyrene micro-spheres [19]. The scattered

field outside the spheres was calculated by using a series of Hankel function

spherical vector waves and a series of Bessel function vectorial waves for the

inside of the spheres. The magnetic field was then derived from the electric

field using Maxwell’s equations. The forces acting on the micro-spheres could

be then calculated using Maxwell’s stress tensor (MST) [20]. This approach

explains the self-organisation of particles and is more general for calculating the

optical forces on dielectric spheres and can be applied for all sphere diameters

as well as for higher refractive index contrast between the particle and the

immersion medium. While MST is convenient, it is a complicated technique

and time consuming in a computational point of view.

1.2.2.3 Surface (Evanescent Field) Optical Binding

Even though all previous work mentioned used free space beams, an alter-

native geometry is to use evanescent optical fields1 to optically manipulate

particles near a surface. The configuration used to generate evanescent fields

is called the ‘Kretschmann geometry’ and is illustrated in Figure 1.5. The

use the Kretschmann geometry allowed the development of various methods

of evanescent wave trapping.

Driving of micro-particles across a surface using evanescent waves was first

demonstrated by Kawata and Sugiura in 1992 [6]. Micro-particles near the

surface of a high refractive index prism were driven along the surface by the

radiation pressure of an evanescent wave created by a single infra-red laser

beam. In this case the evanescent wave is converted to a travelling wave in the

1Evanescent optical fields will be discussed in more detail in Section 2.3.4
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Figure 1.5: Kretschmann configuration. The beam is incident on
the glass-water interface at the critical angle forming an evanescent
wave which penetrates the glass substrate. Particles placed on the
substrate interact with the evanescent field.

particle and a fraction of the momentum component parallel to the surface is

transferred to it. In 2005, Garcés-Chávez et al. extended this setup to use two

counter-propagating beams at an incident angle for Total Internal Reflection

(TIR), causing the radiation pressure acting on the particles to be balanced

in both directions [7]. The 5 µm spheres (five times greater than the optical

wavelength) were localised in a lateral manner, confined to linear potential

wells defined by the light interference fridges.

Mellor et al. in 2006, observed the formation of 2D arrays (Figure 1.6) as

more particles were added to the overlap region of two wider laser beams which

contradicted the results presented by Garcés-Chávez et al.[21, 22]. Further

investigation showed that particles with sizes equal or larger than 700 nm

align themselves along the fringes but for smaller particle sizes (500 nm and

less) the arrays evolve to a chessboard pattern.

The conclusion drawn from these experiments was that optical binding i.e.

multiple scattering effects dominate over optical trapping and the geometry of

the arrays formed depends on both particle size and light polarisation. This

was theoretically verified by Taylor et al. by using a Generalized Lorentz-Mie

Theory (GLMT) [23]. They calculated the force as a function of the particle

size parameter ka, where k is the wavenumber (k = 2π
λ/nwater

) and a the particle
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Figure 1.6: Array of 460 nm diameter spheres with s-polarised
light. A centred rectangular unit cell is shown, with lattice param-
eters α and β perpendicular and parallel to the fringes respectively.
From Mellor et al., 2006 [22].

radius, for s- and p-polarised light states (Figure 1.7). The sign of the force

denotes whether the particle is attracted to a bright or a dark fringe.

Figure 1.7: Force acting on a single particle placed halfway be-
tween a bright and dark fringe, as a function of size parameter ka.
A positive force indicates that the particle is attracted to the bright
fridge. Two lines are shown for different polarization states. From
Taylor et al., 2008 [23].

Enhancement of evanescent fields can be achieved by exploiting the motion

of free electrons in metals. By making use of the surface plasmon polaritons

(SPP) Garcés-Chávez et al., in 2006, were able to observe the formation of

hexagonal close-packed crystals at the centre of the excitation region. Linear

chains were also observed when minimizing thermal effects (through the use of

thin chambers of 10 µm) for powers three times less than those for a standard

evanescent field with the same beam parameters [24].

Evanescent field effects can be observed in other optical structures e.g.
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in standard optical fibres even though they are not normally significant. In

cases where the size of the structure is comparable to the optical wavelength

such as an optical ‘nanofibre’ then the evanescent waves generated play a

dominant role and an enhanced optical interaction with nearby structures can

be observed [25]. The energy inside the core of a nano-fibre can be significantly

less than the energy guided outside the core if the diameter is small compared

to the wavelength of light transmitted through it [26, 27]. The manipulation

of matter with the aid of tapered fibres has been analysed and experimentally

demonstrated by various groups [28, 8, 9]. Experimental work and results

using the evanescent field near a tapered fibre for particle manipulation will

be presented in Chapter 7.

1.3 Thesis outline

The aim of this thesis is to provide a scientific insight into the physical phe-

nomena occurring during evanescent field optical binding. Such phenomena

cannot be simply understood by applying the concepts used to study isolated

trapped particles. The common theme of this thesis is the interactions be-

tween multiple trapped particles in evanescent waves and their behaviour in

configurations where the optical trapping and binding forces are balanced.

Chapter 2, describes the Mie scattering theory and the light scattering

calculations based on this theory to infer how the geometries of the observed

particle structures are controlled by the underlying incident and scattered op-

tical fields. Simulations to support our experimental work will be presented

here.

Chapter 3, provides a detailed description of the experimental set-up and

any calculations made prior the experiments. These experiments made use

of the evanescent field of two or more counter-propagating beams (λ = 1064

nm) at a water-prism interface leading to bound states of micro-particles of

different sizes. In order to facilitate these experiments a non-expensive video

microscopy method was developed and used in the presentation of this work.
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This development allowed the reconstruction of particle trajectories and study

individual particle’s dynamics.

In turn, Chapter 4, discusses the results obtained from the experimental

work done on optical trapping and binding. Namely one- and two-dimensional

bound arrays have been observed. The most significant novel content here is

the observation of optical binding of carbon nano tubes (CNT) bundles. This is

the first time that optical binding of non-spherical particles has been observed

experimentally. Additionally, the characterisation of the two-dimensional bound

structures is presented using methods such as Voronoi diagrams and bond ori-

entational parameters. Finally, we present results that confirm the theoretical

work done by Grzegorczyk et al. in 2006 on the modification of the background

interference pattern by the scattered fields of the bound particles [29].

Chapter 5 presents numerical calculations of the field distribution around

a tapered optical fibre. The optical trapping and scattering forces originating

from the evanescent field in the tapered region are also calculated using a

simple dipole model. These calculations provide an insight to the behaviour

of micro- and nano- particles around a nano-fibre. Additionally, plasmonic

optical forces on metallic (silver and gold) nano-particles are calculated and

we show how the plasmon resonance of metallic nano-particles can be exploited

to enhance the optical trapping force. A two-colour or bi-chromatic nano-fibre

trap for plasmonic particles is modelled and a description of its implementation

is provided. Moreover we suggest a novel method of sorting metallic nano-

particles by using their plasmonic properties.

Chapter 6, considers a trapping geometry which uses the evanescent field

surrounding a bi-conical tapered optical fibre that has been stretched to pro-

duce a waist of sub-micron diameter. The design and fabrication of the tapered

fibres using a custom made pulling rig are described in this chapter. As in the

experiments of the previous chapter we make use of video microscopy to anal-

yse the experimental data.

Chapter 7 presents and discusses the results obtained from these experi-
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ments. The motion of micro-particles in the vicinity of a the tapered region

of an optical fibre is studied for the cases of the quasi-linear and circular po-

larised HE11 mode. For the second case the helical trajectory of micro-particles

along and around the tapered fibre has been experimentally observed which is

a novel result. This demonstrates the conversion of spin angular momentum to

orbital angular momentum previously studied in high numerical aperture sys-

tems. Moreover the formation of one-dimensional bound structures has been

observed for the case where the radiation pressure is balanced when coupling

light from both ends of the taper.

Finally, Chapter 8 summarises the conclusions drawn from the results pre-

sented in the previous chapters and suggests topics that still need further

investigation.



Chapter 2

Generalised Lorentz-Mie Theory

(GLMT)

2.1 Introduction

This chapter introduces theoretical methods which give insight into the for-

mation of optically bound structures1. The solution to the scattering problem

of a sphere illuminated by a coherent laser field can be found in several texts

[30, 31]. In this chapter we present computer simulations, using Mie scatter-

ing calculations, to represent the internal and external fields of a scatterer for

different beam profiles (Section 2.3). The force on a scatterer has been also

calculated for different beam configurations (Section 2.4).

The Generalised Lorentz-Mie Theory (GLMT) involves the scattering of

electromagnetic waves by a single homogeneous sphere. It finds applications

to the scattering processes of planetary atmospheres which contain particles

of various sizes but it is also a useful tool for analysing optical manipulation

1Such optically bound structures in surface (evanescent) traps are presented experimen-
tally in Chapter 4

14
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processes. It can be applied to particles whose size is larger or smaller than the

incident wavelength, ranging from the ray optics limit down to the Rayleigh

limit, although it is mainly used for particles sizes which are comparable to

the light wavelength (Mie Regime) where the limiting approximations of light

rays or dipolar particles are not applicable.

The theory is named after Gustav Mie who was the first to develop it in the

early 1900s [32]. A significant contribution to the scattering problem was also

made by Debye by introducing the Debye potential used to solve Maxwell’s

equations [33]. A more general treatment of the subject was presented by

Stratton [34]. By following his work van de Hulst simplified the presentation

of the theory and in addition he derived the extinction parameter and the

phase function [31]. Born and Wolf gave a more coherent approach by using

the Debye potential to derive the electric and magnetic fields [35] and in turn

Kerker presented a brief analysis of the theory by utilising their approach [36].

2.2 Scattering Theory

In this section we will follow van de Hulst formalism [31] to solve the scattering

problem of a homogeneous sphere illuminated by an electromagnetic wave. The

treatment of Maxwell’s equations with the appropriate boundary conditions is

required to obtain a full solution to this problem.

We will start with Maxwell’s equations which are used to derive the vec-

tor wave equations for an electromagnetic field. The solutions to the vector

wave equation (scalar potentials) are then found in spherical coordinates in

terms of spherical Bessel functions and Legendre polynomials. The scattering

coefficients for the internal and scattered fields are then determined for the

appropriate boundary conditions. Finally, the scalar potentials can be used to

obtain the fields inside and outside the sphere.
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2.2.1 Maxwell’s Equations

The four Maxwell equations are:

∇× H̄ =
1

c

∂D̄

∂t
+

4πĪ

c
(2.1)

∇× Ē = −1

c

∂B̄

∂t
(2.2)

∇ · D̄ = 4πρ (2.3)

∇ · B̄ = 0 (2.4)

where H̄ is the magnetic field strength, D̄ the electric displacement given by

D̄ = ϵĒ, Ī the current density given by Ī = σĒ, Ē the electric field strength,

ϵ the dielectric constant, σ the conductivity, ρ the charge density and B̄ the

magnetic induction given by B̄ = µH̄.2

By taking the divergence of both sides of Eq. 2.1 and since ∇ ·∇× H̄ = 0,

we have:

4π ∇ · Ī + ∂

∂t
∇ · D̄ = 0 (2.5)

and by combining Eq. (2.3),

∇ · Ī + ∂ρ

∂t
= 0 (2.6)

This is the equation of continuity of the electromagnetic field.

2.2.2 Solution of the Electromagnetic Equation

We first consider a plane electromagnetic wave with angular frequency ω so

we can express H̄ and Ē as follows:

H̄ → H̄eiωt (2.7a)

Ē → Ēeiωt (2.7b)

2Magnetic permeability µ is made to be equal to 1 for the purposes of the calculations
shown in this section.
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This allows us to assume the simpler forms:

∇× H̄ = ikm2Ē (2.8a)

∇× Ē = −ikH̄, (2.8b)

where k = ω/c is the wavenumber and m is the complex refractive index of

the medium at the frequency ω and the permeability µ ≈ 1 for air.

By taking the curl of Equations 2.8a and 2.8b and using the identity ∇×∇×

Ā = ∇(∇ · Ā)−∇2Ā we obtain:

∇2H̄ = −k2m2∇ · H̄ (2.9a)

∇2Ē = −k2m2∇ · Ē (2.9b)

The above equations indicate that the components of the magnetic induction

H̄ and electric vector Ē, in a homogeneous medium, must satisfy the scalar

wave equation:

∇2ψ + k2m2ψ = 0 (2.10)

with the simplest solution being a plane wave.

The scalar wave equation Eq. 2.10 can be separated in spherical coordinates

(ρ, θ, ϕ) and can have solutions of the type:

Φ(ϕ) = aℓ cos ℓϕ+ bℓ sin ℓϕ (2.11a)

Θ(θ) = P n
ℓ (cos θ) (2.11b)

R(ρ) =

√
π

2ρ
Zℓ+1/2(ρ) (2.11c)

where aℓ and bℓ are arbitrary constants, ρ = mkr, P n
ℓ (cos θ) the associated

Legendre polynomials (spherical harmonics of the first kind) and Zℓ+1/2(ρ)

general cylindrical functions of order ℓ+ 1
2
.
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The wave function at all points at the surface of a sphere is then given by:

ψ(r, θ, ϕ) = (aℓ cos ℓϕ+ bℓ sin ℓϕ)P
n
ℓ (cos θ)

√
π

2ρ
Zℓ+1/2(ρ) (2.12)

The cylindrical functions that appear in Eq. 2.11c can be expressed as the

combination of Bessel and Neumann functions, Jℓ+1/2(ρ) and Nℓ+1/2(ρ) re-

spectively. Even though Bessel functions are regular on the ρ-plane including

the origin, Neumann functions become infinite at the origin. Therefore we will

be using only Bessel functions to represent the waves incident and inside the

sphere.

If ψ is a solution of the scalar wave function then the vector wave function

must be satisfied by:

M̄ψ = ∇× (r̄ψ)

=
1

r sin θ

∂(rψ)

∂ϕ
− 1

r

∂(rψ)

∂θ

(2.13a)

mkN̄ψ = ∇× (M̄ψ)

=

[
∂2(rψ)

∂r2
+m2k2rψ

]
+

1

r

∂2(rψ)

∂r∂θ

+
1

r sin θ

∂2(rψ)

∂r∂ϕ

(2.13b)

If u and v are two orthogonal solutions to the scalar wave equation then the

electric and magnetic vectors Ē and H̄ can be expressed as:

Ē = M̄v + iN̄u (2.14a)

H̄ = m(−M̄u + iN̄v) (2.14b)

which satisfy Equations 2.8a and 2.8b. By combining Equations 2.13 and 2.14
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we can write Ē and H̄ as:

Ē =
i

mk

[
∂2(ru)

∂r2
+m2k2ru

]
r̂

+

[
1

r sin θ

∂(ru)

∂ϕ
+

i

mkr

∂2(ru)

∂r∂θ

]
θ̂

+

[
−1

r

∂(ru)

∂θ
+

i

mkr sin θ

∂2(ru)

∂r∂ϕ

]
ϕ̂

(2.15)

H̄ =
i

k

[
∂2(rv)

∂r2
+m2k2rv

]
r̂

+

[
− m

r sin θ

∂(rv)

∂ϕ
+

i

kr

∂2(rv)

∂r∂θ

]
θ̂

+

[
−m
r

∂(rv)

∂θ
+

i

kr sin θ

∂2(rv)

∂r∂ϕ

]
ϕ̂

(2.16)

2.2.3 Scattering Problem Solution

We then consider the simple case where the refractive index of the surrounding

medium is mmed = 1 (vacuum) and the sphere has an arbitrary index of refrac-

tion m. The sphere is illuminated by a plane wave which is linearly polarised

and propagates along the positive z-axis. The amplitude of the incident wave

is normalised to unity and therefore the electric and magnetic field vectors are:

Ē = āxe
−i(kz−ωt) (2.17a)

H̄ = āye
−i(kz−ωt) (2.17b)

where ax and ay are unit vectors along the x- and y- axis respectively.

One can transform from rectangular coordinates to spherical polar coordinates

r, θ and ϕ as Figure 2.1 indicates and thus the electric and magnetic fields
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become:

Er = e−i(kr cos θ−ωt) sin θ cosϕ (2.18a)

Eθ = e−i(kr cos θ−ωt) cos θ cosϕ (2.18b)

Eϕ = e−i(kr cos θ−ωt) sinϕ (2.18c)

Hr = e−i(kr cos θ−ωt) sin θ sinϕ (2.18d)

Hθ = e−i(kr cos θ−ωt) cos θ sinϕ (2.18e)

Hϕ = e−i(kr cos θ−ωt) cosϕ (2.18f)

The non time-dependant part of the first term of the above equations can be

rewritten in terms of the Legendre polynomials:

e−ikr cos θ =
∞∑
ℓ=0

(−i)ℓ(2ℓ+ 1)jℓ(kr)Pℓ(cos θ) (2.19)

where jℓ is the spherical Bessel function.

We also have the identities:

e−ikr cos θ sin θ =
1

ikr

∂

∂θ
(e−ikr cos θ), (2.20)

∂

∂θ
Pℓ(cos θ) = −P 1

ℓ (cos θ), P 1
0 (cos θ) = 0 (2.21)

Equation 2.21 relates the Legendre polynomial Pℓ to the associated Legendre

polynomial P 1
ℓ . Using the above identities with Equation 2.19, we have:

e−ikr cos θ sin θ =
∞∑
ℓ=1

(−i)ℓ(2ℓ+ 1)jℓ(kr)P
1
ℓ (cos θ) (2.22)
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Figure 2.1: Transformation of Cartesian system to spherical co-
ordinates. S̄ is the Poynting vector, and ā is an arbitrary unit
vector.

The scalar potential u and v can be determined by only one of the components

of Equations 2.15 and 2.16:

Er = e−i(kr cos θ) sin θ cosϕ

=
∞∑
ℓ=1

(−i)ℓ(2ℓ+ 1)jℓ(kr)P
1
ℓ (cos θ) cosϕ

=
i

mk

[
∂2(ru)

∂r2
+m2k2ru

] (2.23)

A trial solution for Equation 2.23 for mmed = 1 is:

u =
∞∑
ℓ=1

aℓjℓ(kr)P
1
ℓ (cos θ) cosϕ (2.24)

with aℓ = (−i)ℓ 2ℓ+1
ℓ(ℓ+1)

.

Similarly v is derived from Equation 2.16 and we obtain the scalar potentials

for the incident field:

uinc = eiωt
∞∑
ℓ=1

(−i)ℓ 2ℓ+ 1

ℓ(ℓ+ 1)
jℓ(kr)P

1
ℓ (cos θ) cosϕ (2.25a)

vinc = eiωt
∞∑
ℓ=1

(−i)ℓ 2ℓ+ 1

ℓ(ℓ+ 1)
jℓ(kr)P

1
ℓ (cos θ) sinϕ (2.25b)
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The form for the inside and scattered waves have to be similar to the incident

wave but with coefficients which satisfy the boundary conditions. As men-

tioned before we only use Bessel functions for the internal wave since Neumann

functions have singularities at the origin. We obtain the following expression

for the scalar potential of the internal field of a sphere with refractive index

m:

uint = eiωt
∞∑
ℓ=1

mcℓ(−i)ℓ
2ℓ+ 1

ℓ(ℓ+ 1)
jℓ(mkr)P

1
ℓ (cos θ) cosϕ (2.26a)

vint = eiωt
∞∑
ℓ=1

mdℓ(−i)ℓ
2ℓ+ 1

ℓ(ℓ+ 1)
jℓ(mkr)P

1
ℓ (cos θ) sinϕ (2.26b)

Finally, the scattered field solution must vanish at infinity. For this reason we

use the second kind Hankel functions because of their asymptotic behaviour

to represent the fields expressed by the sphere:

uscat = eiωt
∞∑
ℓ=1

−aℓ(−i)ℓ
2ℓ+ 1

ℓ(ℓ+ 1)
h
(2)
ℓ (kr)P 1

ℓ (cos θ) cosϕ (2.27a)

vscat = eiωt
∞∑
ℓ=1

−bℓ(−i)ℓ
2ℓ+ 1

ℓ(ℓ+ 1)
h
(2)
ℓ (kr)P 1

ℓ (cos θ) sinϕ (2.27b)

where h
(2)
ℓ is the spherical Hankel function derived from the second kind Hankel

functions which are the linear combination of Bessel and Neumann functions:

H
(2)
ℓ+1/2(ρ) = Jℓ+1/2(ρ)− iNℓ+1/2(ρ) (2.28)

For the purpose of determining the coefficients aℓ, bℓ, cℓ, dℓ we introduce the

Riccati-Bessel functions which are the spherical Bessel functions multiplied by

a factor z:

ψℓ(z) = zjℓ(z) =

√
πz

2
Jℓ+1/2(z) = Sℓ(z) (2.29a)

χℓ(z) = −znℓ(z) = −
√
πz

2
Nℓ+1/2(z) = Cℓ(z) (2.29b)

ζℓ(z) = −zh(2)ℓ (z) = −
√
πz

2
H

(2)
ℓ+1/2(z) = Sℓ(z) + iCℓ(z) (2.29c)
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The tangential components of Ē and H̄ must be continuous at the surface,

r = α, with α being the radius of the sphere.

uinc + uscat = muint (2.30a)

∂

∂r
[r(uinc + uscat)] =

1

m

∂

∂r
(ruint) (2.30b)

vinc + vscat = vint (2.30c)

∂

∂r
[r(vinc + vscat)] =

∂

∂r
(rvint) (2.30d)

We set the following parameters:

x = kα =
2πα

λ
, y = mkα

Hence the boundary conditions can be written as:

ψℓ(x)− aℓζℓ(x) = mcℓψℓ(y) (2.31a)

ψ′
ℓ(x)− aℓζ

′
ℓ(x) = mcℓψ

′
ℓ(y) (2.31b)

ψℓ(x)− bℓζℓ(x) = mdℓψℓ(y) (2.31c)

ψ′ℓ(x)− bℓζ
′
ℓ(x) = mdℓψ

′
ℓ(y) (2.31d)

Combining the above equations we obtain the expressions for the coefficients:

aℓ =
ψ′
ℓ(y)ψℓ(x)−mψℓ(y)ψ

′
ℓ(x)

ψ′
ℓ(y)ζℓ(x)−mψℓ(y)ζ ′ℓ(x)

(2.32)

bℓ =
mψ′

ℓ(y)ψℓ(x)− ψℓ(y)ψ
′
ℓ(x)

mψ′
ℓ(y)ζℓ(x)− ψℓ(y)ζ ′ℓ(x)

(2.33)

cℓ =
m [ψ′

ℓ(x)ζℓ(x)− ψℓ(x)ζ
′
ℓ(x)]

ψ′
ℓ(y)ζℓ(x)−mψℓ(y)ζ ′ℓ(x)

(2.34)

dℓ =
m [ψ′

ℓ(x)ζℓ(x)− ψℓ(x)ζ
′
ℓ(x)]

mψ′
ℓ(y)ζℓ(x)− ψℓ(y)ζ ′ℓ(x)

(2.35)

This completes the solution of the scattering problem of a homogeneous sphere

with radius α and refractive index m. The fields inside and outside the sphere

are expressed in known functions.
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2.3 Single Particle Scattering Simulations

In this section we present computational calculations for GLMT based on the

expressions derived in the previous chapter. The results include illustrations of

the fields inside and outside dielectric spheres for different beam configurations

and profiles. We will discuss the generation of the beam shape coefficients in

Section 2.3.3. The illustrations shown in this section are for the case of a

1 µm diameter sphere with refractive index nsph = 1.45 immersed in water

nwater = 1.33.3

In order to illustrate the fields involved in the scattering problem, we used

the scalar potentials given in Equations 2.25, 2.26 and 2.27 for the incident,

internal and scattered fields respectively.

These expressions were calculated for a number of terms nterms which depends

on particle size as suggested by W. J. Wiscombe [39].

ℓterms =


kx+ 4(kx)1/3 + 1, 0.02 ≤ kx ≤ 8

kx+ 4.05(kx)1/3 + 2, 8 < kx < 4200

kx+ 4(kx)1/3 + 2, 4200 ≤ kx ≤ 20000

(2.36)

where k is the wave vector and x is the distance over which the fields are

calculated. Spherical Bessel functions of order ℓ > ℓterms are almost equal to

zero for r ≤ α, where α is the radius of the sphere. Therefore they do not

have a significant effect on the fields on the surface of the sphere. Also the

scattering coefficients (Equations 2.32, 2.33, 2.34, 2.35) become negligible for

r > α for ℓ > ℓterms.

The corresponding electric fields could then be determined by using Equa-

tion 2.14a. Finally the intensity of the electric fields was found by I = Ē · Ē∗

and plotted for the xy, xz and yz planes.

3The parameters used for these simulations i.e. laser wavelength and the refractive indices
for the sphere and immersion medium [37, 38] are chosen to match the ones used during
experiments as presented in Chapter 4.
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2.3.1 Plane Wave

First, we start with the simplest configuration which is the one where the

incident field is a unit amplitude plane wave. The sphere is immersed in

water, nwater = 1.33, and is located at the origin x = 0, y = 0 and z = 0. It

is illuminated by a plane wave propagating in the z-direction and polarised in

the x-direction with wavelength λ=1064 nm. The results of the calculations

using these parameters are presented in Figure 2.2.

Figure 2.2: 1 µm diameter sphere with nsph = 1.45 immersed in
water, nwater = 1.33 and illuminated by a plane wave, λ=1064 nm,
propagating in the z-direction and polarised in the x-direction. Top
left: incident plane wave, top right: field inside the sphere, bottom
left: scattered field from the surface of the sphere, bottom right:
all fields combined.

An intensity maximum in the forward scattering direction can be observed

and clearly shown in Figure 2.3. Similar to the intensity maximum of the

focused beam used in optical tweezers, this intensity ‘hot spot’ may be expected

to act as an optical trap for a nearby particle, resulting in an optically mediated

attractive force between the two particles.

We have checked if the position of the intensity maximum coincides with the
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Figure 2.3: Intensity maximum in the forward scatter direction
for the case of 1 µ m sphere and incident wavelength λ = 1064 nm.

focal length predicted by McGloin’s et al. in 2004 and Metzger’s et al. [16, 17]

approach as mentioned in Section 1.2.2.2. Using the expression for the focal

length of a ball lens,

f =
α

2∆n
(2.37)

and inserting the parameters used for the simulations we obtain f = 2.0 µm.

This does not agree with the simulation value as Figure 2.4 shows. The in-

tensity maximum as obtained from the above plot is located at 0.6 µm from

the centre of the sphere. This is due to the fact that treating the sphere as a

ball lens, using ray optics, is not an accurate approach when the sphere size

becomes really small. This is also in contrast with experimental results that

will be presented in Chapter 4.
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Intensity Pro!le in the z−direction

Figure 2.4: Intensity profile in the z-direction. The dashed lines
represent the edges of the sphere. Small backscattering leading to
the modulation of intensity for negative z is observed, but strong
forward scattering, so it may be expected that another nearby par-
ticle will be attracted to the intensity maximum in the forward-
scattered direction.

2.3.2 Counter Propagating Plane Waves

2.3.2.1 Parallel Polarisations

Next we calculate the internal and external fields for two counter propagating

plane waves being incident on the sphere and are presented in Figure 2.5. The

plane waves propagate in the ±z-directions and are polarised in the x-direction.

When the wave propagating along the +z direction, it scatters through the

angles θ and ϕ. Therefore the wave travelling in the opposite direction has to

scatter through π − θ and −ϕ. In this case we observe the formation of two

intensity hot spots in both z-directions.

In counter-propagating beams of parallel linear polarisations, an interfer-

ence pattern is formed which is additionally modified by the forward scatter

from the particle in the direction of propagation of the two beams as shown in

Figure 2.6. In this case we can understand optical binding and the observed

1D chain formation parallel to the direction of propagation (see also later ex-

periments in Chapter 4) as the forward scatter in each direction from each

particle attracts and binds adjacent particles into the chain.
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Figure 2.5: 1 µm diameter sphere with nsph = 1.45 immersed in
water, nwater = 1.33 and illuminated by two counter propagating
plane waves, λ = 1064 nm, with parallel polarisations.
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Figure 2.6: Counter-propagating plane waves polarised in the x-
direction and propagating in the ±z-directions, showing the mod-
ulation of the linear fringe patter due to forward scattering in the
±z-directions.
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2.3.2.2 Perpendicular Polarisations

The Mie theory calculations were also made for the configuration where the

two beams are cross-polarised as shown in Figure 2.7. In this case there is no

interference pattern formed. Hence the intensity maxima in both directions

are not enhanced as in the previous case. The attractive force between nearby

particles is expected to be weaker using this configuration although we may

still expect optical binding to occur.

Figure 2.7: 1 µm diameter sphere with nsph = 1.45 immersed in
water, nwater = 1.33 and illuminated by two counter propagating
plane waves, λ = 1064 nm, with orthogonal polarisations in the x-
and y- directions.

2.3.3 Gaussian Beam Profile

In order to match the conditions used in experiments, we needed to shape the

beam to a Gaussian profile in the simulations. This can be done be making

use of the orthogonality relations successively for the Legendre Polynomial and



CHAPTER 2. GENERALISED LORENTZ-MIE THEORY (GLMT) 30

Bessel function terms [40, 41] :

∫ π

0

Pm
n (cos θ)Pm

ℓ (cos θ) sin θdθ =
2

2n+ 1

(n+m)!

(n−m)!
δnl (2.38a)∫ ∞

0

ψ1
n(kr)ψ

m
1 (kr)d(kr) =

π

2(2n+ 1)
δnm (2.38b)

The amplitudes gn are determined at the lowest order L− of approximation

which holds for small values of 1/kw and for small displacements of the scat-

tering sphere from the beam axis [42]:

gℓ =
2ℓ+ 1

πℓ(ℓ+ 1)

1

(−1)ℓiℓ

∫ π

0

∫ ∞

0

ikr sin2 θ f exp(−ikr cos θ)

ψ1
ℓ (kr)P

1
ℓ (cos θ)dθd(kr)

(2.39)

For a Gaussian beam polarised in the x-direction and propagating in the z-

direction, f is defined as:

f = e−ikz e−(x/w)2 (2.40)

where w is the beam parameter at the waist. We finally multiply Equations

2.25, 2.26 and 2.27 with the amplitudes gℓ which are shown in Figure 2.8.
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Figure 2.8: The amplitudes of the real and imaginary parts of gℓ,
of the terms in the expansion for the scalar potential in the Mie
scattering calculations for P = 1 W and beam width w = 50 µm.

The results obtained are shown in Figure 2.9. It can be clearly seen that the

results are similar to the ones obtained for a plane wave of uniform intensity
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as in Figure 2.2. We can safely assume that calculations made for plane waves

are a good approximation to Gaussian beams.

Figure 2.9: 1 µm diameter sphere with nsph = 1.45 immersed in
water, nwater = 1.33 and illuminated by a Gaussian beam, propa-
gating in the z-direction and polarised in the x-direction.

2.3.4 Evanescent Waves

Total internal reflection (TIR) occurs when a light beam is incident on the

interface of an optically less-dense medium at an angle greater than the critical

angle. The critical angle can be derived from Snell’s law when the angle of

refraction is set to be equal to 90◦as shown in the following equation:

n1 sin θi = n2 sin θr, (2.41)

where n1 and n2 are the refractive indices of the two media and θi and θr are

the angles of incidence and refraction respectively. Therefore the critical angle

for n1 > n2 is given by:

θcrit = arcsin
n2

n1

, (2.42)
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Figure 2.10: Refraction of a plane wave at a dielectric interface:
(a)wave is incident at an angle smaller than θcrit. and is refracted
(b) wave is incident at an angle greater than θcrit. and an evanescent
field is formed in the upper medium.

Even though there is no propagating light beam through the optically less-

dense medium, there exists an electric field which penetrates a short distance

from the surface and only transmits power parallel to the interface. It decays

exponentially away from the interface and for that reason is called evanescent

wave. The amplitude of this field is given by:

Ezt = E0 exp[−kt(
sin2 θi

(n2/n1)2
− 1)1/2z], (2.43)

where kt is the wave number of the travelling wave in the transmitted medium.

The penetration depth of the field is of the order of the optical wavelength and

can be expressed as:

Λ =
λ0

2πn2[
sin2 θi

(n2/n1)2
− 1]1/2

(2.44)

The wavefronts are plane, and provided that we are near critical angle in-

cidence the variation in intensity across the particle is small, so the above

free-space calculation is a reasonable model to gain insight into the scatter-

ing process that leads to optical binding. A full description would require a

self-consistent model accounting for not only multiple scattering between two

(or more) spheres, that is, the field incident on each sphere includes the field

scattered by all other spheres, but also the field reflected from the adjacent

planar surface.
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2.4 Force on a Scatterer

In this section we will discuss the forces on a spherical particle that arise from

their interaction with electromagnetic waves upon scattering. We will consider

uniform plane waves that are being scattered by spherical particles whose

size varies. This provides an insight to experiments that will be presented in

Chapter 4.

The force on a scatterer due to scattering is given by [43]:

F = 2Neσ (2.45)

where N is the number of photons per unit volume in the incident beam,

e the energy per photon and σ the effective scatterer area. If the scatterer

is illuminated by coherent counter propagating beams then the force on it

becomes:

F = 2NeA sin 2kb (2.46)

where A is the effective area, k the wavenumber and b the distance from the

centre of the scatterer to an intensity maximum. With these expressions in

mind we have calculated the forces for different configurations.

2.4.1 Force on a Dielectric Sphere

First, we examine the case of a dielectric sphere that is being illuminated by a

single plane wave. We make use of the transverse components of the scattered

wave as in Equation 2.15. We can rewrite these components as:

Eθ =
1

ikr
e−i(kz−ωt) cosϕS2(θ) (2.47a)

Eϕ = − 1

ikr
e−i(kz−ωt) sinϕS1(θ) (2.47b)
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with S1 and S2:

S1 =
∞∑
ℓ=1

2ℓ+ 1

ℓ(ℓ+ 1)
[aℓπℓ + bℓτℓ] (2.48a)

S2 =
∞∑
ℓ=1

2ℓ+ 1

ℓ(ℓ+ 1)
[aℓτℓ + bℓπℓ] (2.48b)

aℓ and bℓ are the scattering coefficients given by Equations 2.32 and 2.33. The

functions πℓ and τℓ can be expressed as:

πℓ =
l + 1

1− cos2 θ
(Pℓ cos θ − Pℓ+1) (2.49a)

τℓ = ℓ(ℓ+ 1)Pℓ − πℓ cosθ (2.49b)

The total scattering cross section is then:

σs =
π

k2

∫ 1

−1

(|S1|2 + |S2|2)d(cos θ) (2.50)

The extinction cross-section σe is the sum of the absorbing and scattering cross-

sections σa and σs. For the case of a non-absorbing scatterer the cross-section

for the radiation pressure is [31]:

σp = [1− ⟨cos θ⟩]σs (2.51)

The force on a dielectric sphere due to a single beam as its radius increases is

shown in Figure 2.11 for a beam power of 0.5 W. This force is in the direction

of propagation of beam and increases with the size parameter ka.
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Figure 2.11: Force on a dielectric sphere illuminated by a single
plane wave (λ = 1064 nm) and beam power of 0.5 W. The force is
in the direction of propagation of the beam.

2.4.2 Force on a Dielectric Sphere in Counter Propa-

gating Beams

Next, we consider the case where a dielectric particle is in a counter propagat-

ing beam configuration, propagating in the positive and negative z-directions.

We can replace Equations 2.48a and 2.48a with:

T1 =
∞∑
ℓ=1

2ℓ+ 1

ℓ(ℓ+ 1)
[aℓmℓπℓ + bℓpℓτℓ] (2.52a)

T2 =
∞∑
ℓ=1

2ℓ+ 1

ℓ(ℓ+ 1)
[aℓmℓτℓ + bℓpℓπℓ] (2.52b)

The factors mℓ and pℓ that have been introduced here is to account for the

phase factors e−iβ and eiβ with β = kb relative to the origin. Namely:

mℓ = e−iβ + (−1)l+1eiβ (2.53a)

pℓ = e−iβ + (−1)ℓeiβ (2.53b)



CHAPTER 2. GENERALISED LORENTZ-MIE THEORY (GLMT) 36

The momentum transfer effective cross-section is then:

σ̃p =
−2π

k2

∫ 1

−1

cos θ(|T1|2 + |T2|2)d(cos θ) (2.54)

The force acting on a dielectric sphere in such configuration as function of the

parameter kα is shown in Figure 2.12. For this calculation the sphere is centred

on a fringe maximum. When the force is positive the sphere is attracted to a

bright fringe (e.g kα = 2.5). In turn a negative force indicates an attraction

to a dark fringe (e.g kα = 3.6). For some size parameters the force acting on

the sphere is zero (e.g kα = 2.9).
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Figure 2.12: Force on a dielectric sphere in counter-propagating
plane waves (λ = 1064 nm). The sphere is located on a fringe
maximum. A positive force indicates that the sphere is attracted
to a bright fringe and a negative force to a dark fringe.

2.5 Outlook

In this chapter the Generalized Lorentz-Mie Theory of light scattering by a

homogeneous sphere has been presented. The theory starts with Maxwell’s

equations which were used to derive the vector wave equations for an elec-

tromagnetic field. The solutions to the vector wave equation are two scalar

potentials that satisfy the scalar wave equation. In turn, the solutions to the
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scalar wave equation have been expressed in spherical coordinates in terms

of spherical Bessel functions and Legendre polynomials. The determination

of the coefficients of the internal and scattered fields were determined for the

appropriate boundary conditions.

Using the scalar potentials we have simulated the fields inside and outside

a homogeneous sphere for different configurations and beam shapes. The in-

tensity along the propagation axis for all cases considered is shown in Figure

2.13. The interference fringes of the counter propagating beams are modulated

by the light scattered by the particle, and so at a first level of approximation

it may be expected that these spheres form optically bound structures where

the particles are trapped at the maxima and separated by distances equal to

the fringe spacing.
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Figure 2.13: Summary of the intensity profile in the z-direction
for all cases examined. The calculations are for an 1µm sphere and
incident wavelength (λ = 1064 nm).

Along with the field simulations, we have presented calculations of the force

acting on the scattering sphere. These calculations were based on GLMT and

provide a better understanding on how the system works. The experiments

that will be presented in the next chapters use evanescent fields which can be

accurately approximated by the plane wave simulations.

While the above discussion gives a qualitative understanding of the optical

binding process several other factors must be accounted for a full description
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of the experimental geometry used, including the amplitude variation across

the particle of the incident evanescent field, multiple scattering between the

particle and the prism (Chapter 4) or tapered fibre surface (Chapter 7), and

multiple scattering between the particles in the optically bound structure.



Chapter 3

Evanescent Field Surface Trap:

Method

3.1 Introduction

This chapter describes in detail the experimental set-up used to produce the

experimental results presented in the following chapter. The experiment con-

sists of the ‘Kretschmann configuration’ (Figure 1.5) where a prism is used to

totally reflect an incoming beam. The evanescent waves generated penetrate a

short distance in the medium on top of the prism and confine particles whose

size is comparable to the incident wavelength.

In addition, the particle tracking method used for the purposes of these ex-

periments is described. Video microscopy can be utilised to record the Brown-

ian motion of trapped particles using a high resolution CMOS camera [44, 45].

Subsequently, particle tracking software [46] is used to follow the trajectory of

the bound particles.
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3.2 Experimental Set-up

The experiment is conducted in two parts. The first part consisted of optical

binding in counter-propagating evanescent fields formed by total internal re-

flection at the surface of a Dove prism. The experiment is then extended to

use two orthogonal pairs of counter-propagating beams by replacing the Dove

prism with an approximately hemispherical lens of the same material. The

following sections describe both geometries in detail. An illustration of the

general experimental set-up is shown in Figure 3.1.

Figure 3.1: 3D Illustration of the experimental set-up for optical
manipulation of micro-particles using evanescent waves.

3.2.1 One-dimensional Surface Trap

The evanescent wave surface trapping experiment is realised in a custom-

made upright microscope built in a 30 mm cage system. The cage system

allowed quick and high precision alignment. A high power white LED array

(MWWHL3 by Thorlabs Inc. NJ) acts as an illumination source with the

aid of two aspheric lenses as a condenser system (ACL1815-A by Thorlabs

Inc. NJ). The illumination light is guided to the upright direction by using a

cube-mounted protected silver turning mirror. A custom made stage is used

to incorporate a (N-BK7) Dove prism (PS991 by Thorlabs Inc. NJ) which it
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is secured by two small clamping arms. A solution (volume 15 µL) contain-

ing silica micro particles suspended in deionised water is placed on the upper

surface of the glass prism and sealed beneath a microscope cover slip. The

solution also includes 10% by volume Triton-X-100 (non-ionic surfactant) to

prevent particles sticking on the prism surface. The sealing of the sample is

achieved with 9 mm diameter double-sided adhesive spacers (Secure-SealTM)

which create a 0.12 mm deep well. The sample is then sealed with a microscope

cover slip.

An Nd:YVO4 laser system (5-1064-DPSS-2.0-LN by Altechna Co., λ =

1064 nm) with maximum output power of 2 W is used as the laser source. The

laser beam is first expanded into a collimated beam with diameter 8 mm by

a telescope arrangement. This is done so a tighter focus (and thus stronger

confinement of the particles) is achieved at the surface of the prism. The beam

is then focused onto the prism-water interface at an angle slightly greater than

the critical angle (Figure 3.2) for total internal reflection. The refractive index

of N-BK7 glass is nN−BK7 = 1.52 [47] and therefore the critical angle for the

N-BK7 - water interface is calculated to be θcrit = 61.3◦ using Snell’s Law

(Eqn. 2.41).

CMOS

Nd:YVO
4

White LED

Microscope

Objective

λ/2 Plate63º

λ/4 Plate

Beam Expander

Dove Prism

Micro-particles

50 mm

150 mm150 m
m

200 mm

Figure 3.2: Schematic of the experimental set-up used for optical
binding experiment.
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Figure 3.3: Elevation angle determination for the 1D binding
set-up. Ray-tracing and Snell’s Law were used to calculate the
elevation angle for the incident beam in order to achieve slightly
above critical angle incidence. The elevation angle from horizontal
is θe = 17◦.

The elevation angle θe of the input beam was calculated by starting from

the prism-water interface. Since the required angle at that interface must be

just above the critical angle, θcrit, it was chosen to be θ1 = 63◦. The angle

from the normal on the front face of the Dove prism was calculated to be 18◦.

By using Snell’s Law again for the air-prism interface, the resulting angle θ2

is 28◦. The angle between the upper surface of the Dove prism and faces is

45◦. The elevation angle from the horizontal was therefore calculated to be

θe = 17◦ (see Figure 3.3).

A half-wave plate is used to control the polarisation of the incident beam,

either s-polarized (perpendicular to interface) or p-polarized (parallel to inter-

face). A 150 mm focal length lens is placed before the microscope to focus the

beam on the centre of the top surface of the prism. The lens is inclined so the

incoming beam is normal to it to avoid introducing excessive aberrations. The

beam is then re-collimated and retro-reflected to create a standing wave and

balance the radiation pressure on the micro-particles in the evanescent field.

A quarter-wave plate is used to control the polarisation of the retro-reflected

beam to be either parallel or perpendicular to the incident beam. The micro-

scope objective is positioned above the crossing point of the two beams on a
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z-axis translation mount (SM1Z by Thorlabs Inc. NJ). Lower power micro-

scope objectives (x10 and x40) are used during the alignment of the two beams

as they allow a wider field of view. During experiments the sample is imaged

using a x100, NA 1.25 oil immersion microscope objective lens (Leica Achro

100/1.25 OIL).

Images and video were recorded with a high resolution (1280×1024 pixels;

3.6 µm pixel size ) CMOS camera (DCC1645C by Thorlabs Inc. NJ). The high

power LED array allows the capture of high frame rate video as the exposure

time of the CMOS camera drops as the frame rate increases. An IR filter

is also used when viewing of the particles is desirable in order to block the

scattered laser light from the particles and the surface of the prism, to get a

clear image of the particles.

In order to obtain the dimensions of the beam size and therefore the overlap

region, light scattered by high concentration of micro particles was imaged onto

the CMOS camera (Figure 3.4).

10 μm

Figure 3.4: Scattered evanescent waves by a group of micro-
particles at prism - water interface.

The beam profile was calculated by fitting Gaussians and averaging the

widths for a number of frames as recorded using a x4 microscope objective.

This is done since the evanescent waves can be only imaged from the forward-

scattered light from the sample. The spot size on the prism surface was ap-

proximately (45.8 ± 0.4) µm along the x-axis and (41.6 ± 0.7) µm along the

y-axis (Figure 3.5). These values compare well to the width of a Gaussian
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beam at the focal point as obtained by Gaussian beam analysis, w = 45 µm.

x

(a)

y

(b)

Figure 3.5: Beam profile of the weakly focused beam at the prim-
water interface (red curve represents the Gaussian fit on actual
data): (a) along x-axis with width ≃ 23 µm; (b) along y-axis with
width ≃ 21 µm.

Gaussian beam analysis was used to ensure that the beam incident on the

surface can be well approximated by a plane wave. The analysis includes the

Gaussian beam passing through the focusing lens (f = 150 mm) and then

being incident at the Dove prism top surface. The distance d along the z-axis

between the two extremes of the beam at the focal point was calculated to

be 155 µm which is much smaller than the Rayleigh range zR = πw2
0/λ for

λ = 1.064 µm and a calculated w0 = 45 µm (Figure 3.6).
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Figure 3.6: Gaussian beam analysis for the Dove prism. The
beam is being focused on the upper surface of the prism. The
distance between the beam extremes at the focal point is found to
be d = 155 µm and the Rayleigh range zR = 9.7 mm.

3.2.2 Two-dimensional Surface Trap

The optical binding experiment was extended to two dimensions using two

orthogonal pairs of counter-propagating beams. The Dove prism is replaced

by a plano-convex lens, (LA1951 by Thorlabs Inc. NJ, d = 25.4 mm and

R = 13.1 mm). A perfect half-ball lens would be preferred for symmetry but

due to the limited sizes (maximum diameter available 10 mm) and their high

pricing one was not used. The mounting stage was also replaced by a new

custom made stage, designed to incorporate the lens and allow two orthogonal

pairs of counter-propagating beams to be incident on the curved surface. The

laser beam is split to two beams by a 50:50 beam splitter. The second beam is

then guided through a configuration similar to that described in the previous

chapter (Figure 3.7). The half-wave plates control the polarisations of the two

pairs and can be either parallel or orthogonal to each other. The short focal

length lenses that are used to focus the four beams at the surface of the lens

and are tilted so that the beam passes through them perpendicularly to reduce

aberrations (i.e. the beam propagates nearly along the radius of the sphere
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from which the lens is cut).
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Figure 3.7: Experimental set-up used for the optical binding ex-
periment extended in two-dimensions.

Calculations similar to the previous section were made to find the elevation

angle. Since the substrate used is not a perfect hemisphere the incident beam

is not along the radius. Figure 3.8 shows the deviation angle θd on the incident

beam from the radius of the sphere from which the aspheric lens is taken. The

deviation angle (θd = 2◦) is small compared to the elevation angle (θasph. = 27◦)

thus the aberrations that are introduced do not significantly affect the quality

of the focused beam. (i.e. the beam propagates nearly along the radius of the

sphere from which the lens is cut).

Gaussian beam analysis was again used to confirm that the incident beam

can be approximated by a plane wave. This time the analysis was made for

the curved surface of the N-BK7 lens. The distance d along the z-axis between

the two extremes of the beam at the focal point and the Rayleigh length are

smaller than calculated in the previous section since the curved surface of the

lens introduces further focusing of the beam. (Figure 3.9).
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Figure 3.8: Elevation angle determination for the 2D binding set-
up. Ray-tracing and Snell’s Law were used to calculate the elevation
angle for the incident beam in order to achieve slightly above critical
angle incidence. The elevation angle from the horizontal is θasp. =
27◦. Since the lens used is not hemispherical the deviation of the
incident beam from the radius of the sphere from which the lens is
taken is calculated θd = 2◦.
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Figure 3.9: Gaussian beam analysis for a hemispherical lens. The
beam is being focused on the upper surface of the lens. The distance
along the z-axis between the beam extremes at the focal point is
found to be d = 54 µm and the Rayleigh range zR = 1.3 mm.
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3.3 Particle Tracking

We use video microscopy to observe the dynamics of the optically bound par-

ticles. Particle tracking software (Particle Tracking Code for Matlab by Blair

and Dufresne, Georgetown University, Physics Department [48]) is used to fol-

low the trajectory of particles in the optically bound states for a number of

frames depending on the video length and for a frame rate up to 300 fps.

The video is first split into individual frame images. Before tracking occurs

the colours of each image are adjusted, if needed, so the particles are bright

compared to the background. Each image is then spatially filtered by a spatial

bandpass filter which smooths the image and subtracts the background. There

are two parameters used for this filter: the length scale of noise and the size

of the particles both in pixels. The filter first creates a smoothed image by

convolving with a Gaussian.The second creates another smoothed image by

convolving the original with a step function this time. Finally the second

image is subtracted from the first and a sharpened image is produced.

The particles are then identified in each frame by locating the local maxima

in the image. The brightness threshold can be predetermined and pixels with

values above the threshold are identified. Another parameter for this step is

again the size of the particles. If multiple peaks are found within the diameter

of the particle then code selects the brightest one. The centroid of these

selected pixels is then calculated within a particle radius and the location of

the sphere centre is estimated within sub-pixel accuracy (Figure 3.10).

There are a few parameters here one should consider. The first one is the

maximum distance that a particle can move between subsequent frames and

therefore each particle is considered to be the same. Another one is the number

of frames a particle can ‘disappear’ for and still be tracked and finally the

minimum number of tracks (number of tracks shorter than this are rejected).

A flowchart summarising the tracking process is shown in Figure 3.11.
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Figure 3.10: Particle Tracking: The centre of each particle is
located in each frame.
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Figure 3.11: Flowchart of the particle tracking process.
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The co-ordinates of the centroid of each particle are located in each frame

and the particle trajectory can be therefore reconstructed (Figure 3.12). Even

though this technique can be advantageous for tracking multiple particles, it

is limited by the camera frame rate. Fast cameras can be used to overcome

this limitation but they are very expensive.

Figure 3.12: Particle trajectory reconstructed for 1 µm silica par-
ticles in one-dimensional bound chain. Particles were tracked over
1770 frames at 100 frames per second.

3.4 Outlook

The design and construction of an optical binding experiment of micro-particles

using evanescent waves has been described in this chapter. The set-up con-

structed was designed such that can facilitate a number of laser beam config-

urations. Although the system was suitable for the experiments presented in

this thesis, further work may be required for its optimisation. A Faraday isola-

tor could be used for example to avoid any interference with the retro-reflected

beams especially for the case of the two-dimensional trap configuration.

The set-up can be additionally extended to incorporate an optical tweezers

set-up to provide quantitative measurements of the binding force by tracking

utilizing a scattering detection technique. This technique uses a quadrant



CHAPTER 3. EVANESCENT FIELD SURFACE TRAP: METHOD 51

photo-diode (QPD) to collect the scattered laser light forward-scattered or

backward-scattered) of the surface of a trapped particle directly and provide

particularly higher temporal resolution [49, 50, 51, 52]. A weak optical tweezers

confines a single particle on top of the prism-water interface. The particle feels

the presence of the evanescent field and moves by a measurable distance Lx

from equilibrium. The force acting on the trapped particle can be then derived

from the spring constant of the optical tweezers and compared to the results

obtained in Chapter 2.4.

The apparatus described in this chapter is central to the experiments pre-

sented in the rest of this thesis and to the confirmation of the theoretical results

presented in the previous chapter.



Chapter 4

Evanescent field surface trap:

Results

4.1 Introduction

Following the description of the experimental apparatus used to conduct evanes-

cent wave manipulation of micro-particles, we present the experimental results

obtained. Particle tracking software was used to follow the trajectory of parti-

cles in the optically bound structures, the co-ordinates of the centroid of each

particle are located in each frame and the particle trajectory reconstructed

(Section 3.3). The reconstructed trajectories provide information for the par-

ticles in both one- and two-dimensional bound structures, namely the particle-

to-particle separation, the binding spring constant and the lattice characteris-

tics for the two-dimensional arrays.
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4.2 Optical Binding Beam Configuration

First, we calculate the penetration depth Λ of the evanescent field. The pene-

tration depth needs to be of the order of the particle size placed on the surface

of the substrate so the evanescent field interacts with a significant fraction

of the particle volume. Equation 2.44 gives the distance from the interface

that the electric field falls at 1/e of the amplitude at the interface. For the

laser wavelength used in the experiments (λ = 1.064 µm) and the glass-water

interface, Λ is found to be 0.83 µm for an incidence angle of 63◦.

In the one-dimensional surface trap the fringes formed (Figure 4.1a) by

the two-counter propagating beams with parallel polarisations are spaced by

a distance given by the following equation:

D =
λ/nglass
2 sin(θinc)

(4.1)

For the same parameters, as before, the fringe spacing D is 0.4 µm. The field

scattered by the particles modifies the background interference pattern, which

therefore dictates the optical binding geometry as discussed in Section 2.3.2.

For the case of the two-dimensional trap where two orthogonal pairs of

counter-propagating beams cross at the top surface of the prism an interference

pattern is formed. A representation of this pattern is shown in Figure 4.1b. In

this case all four beams are incident on the interface at the same polar angle

θinc = 63◦. The spacing between bright dots in the x- and y- directions is given

by:

D =
λ/nglass
sin(θinc)

(4.2)

The resulting spacing, D, for this configuration is 0.8 µm and the distance

to nearest neighbours of the square lattice (i.e along the directions +/− 45

degrees in Figure 4.1b) is 0.6 µm.

The scattered light from the particles surface modulates the background

fringe pattern, and thus dictates the lattice geometry of the two-dimensional

structure [21].
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(a) (b)

Figure 4.1: Representation of the interference pattern formed (a)
by two counter-propagating beams. Both beams propagate along
the x-axis and are polarised in the y-direction; (b) by the two or-
thogonal counter-propagating laser beam pairs (λ = 1064 nm). One
pair propagates along the x-axis and the other along y-. Both pairs
are polarised in the z-direction.

4.3 1D Binding

This section discusses the results obtained by the experimental configuration

described in Section 3.2.1. The two counter-propagating beams generate an

evanescent field at the prism-water interface, causing the dielectric particles to

align them selves in well-defined one-dimensional chains (Figure 4.2). Quali-

tatively, this is due to the maximum intensity ‘hot spots’ that are created near

the surface of the spheres as described in Chapter 2. These intensity ‘hot spots’

can be considered to act as an optical trap for a nearby particle, resulting in an

optically mediated attractive force between the two particles. The experiments

were conducted to characterise the optical binding interaction for spheres of

different sizes including measurements of inter-particle separation and opti-

cal binding spring constant. This case has been approached theoretically in

Section 2.3.2.
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Incident beam
Retro-re�ected

 beam

Figure 4.2: One-dimensional chain formation of 1 µm sil-
ica spheres in evanescent wave surface trap where two counter-
propagating beams are used. Both beams here are s-polarised.

4.3.1 Particle Separation

The particle-to-particle separation in a 1D chain is derived by averaging the

separations for a number of frames in a video. The frame images are passed

through the image filters as explained in Section 3.3. The particles are now

brighter compared to the background and the region of the bound chain is

isolated for each frame. A MATLAB code finds the peaks in brightness in the

image by fitting a Gaussian to the bright spots (particles) and marks them

as the centre of the particles. The position of each particle is then plotted

in space. Figure 4.3a shows an example of the particle positions in a single

frame extracted from a video and Figure 4.3b shows the position distribution

of the spheres recorded over 450 frames. The broader position distribution

perpendicular to the chain axis shows that the particles are weakly confined in

this direction (like a weak optical tweezers system) by the transverse intensity

distribution of the binding beams. The distribution of particle fluctuations will

be later quantitatively analysed to obtain the binding spring constant. The

inter-particle separation can be then found by converting the distances between

then particles from pixels to metres. This is done by using the camera’s pixel

size (3.6 µm × 3.6 µm) and the magnification of the objective lens used.
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Figure 4.3: Position of spheres in 1D chain as detected by image
analysis (a) for a single frame; (b) for 450 frames.

Here we present particle separations as a function of laser power for silica

spheres of various diameters (0.8 µm, 1.0 µm and 1.5 µm). The incident and

retro-reflected beams are both s-polarised and therefore interference fringes

are formed. The particle-to-particle separation in the bound structures are

plotted as a function of the incident beam power.

It should be noted that even though the sample density was made the

same for all cases, the number of particles in the bound structures was not

controlled.

4.3.1.1 Parallel Polarisations

The behaviour of the particles in the presence of interference fringes was consid-

ered. Figure 4.4 shows the force (calculated using the same method described

in Section 2.4.2) on a silica sphere immersed in water and positioned between

a bright and dark fringe as function of the parameter kα, where k = 2π/λwater

and α is the particle radius. A single particle is attracted to a bright fringe

when the force has a positive value [53, 43, 23]. Similarly a negative force indi-

cates that the particle is attracted to an intensity minimum in the interference

pattern. For all particle sizes considered here, the particles are attracted to

bright fringes. This calculation is carried out for a single particle in counter-

propagating beams to provide insight into the optical binding phenomenon.

Detailed calculations accounting for multiple scattering between particles [23]
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have demonstrated that the trapping behaviour is affected by the number of

particles in the chain, and a particle that is attracted to dark fringes (‘dark

seeking’) when isolated can become ‘bright seeking’ when in a longer optically

bound chain.

0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2
x 10

−13

kα

F
o
rc
e
 (
N
)

α = 0.4 μm

α = 0.5 μm

α = 0.75 μm

Figure 4.4: Force on silica sphere place between a bright and dark
fringe as a function of kα. Positive force indicates attraction to a
bright fringe. The dotted lines denote the parameter kα for the
particle sizes used in experiments.

Figure 4.5 presents the scattered field for each particle size used in exper-

iments, in counter propagating beams with parallel polarisations. The fields

here were calculated using Mie theory as described in Chapter 2. It can be

seen that the scattered light modulates the background interference fringes and

therefore creating a preferred trapping (binding) location for nearby particles.
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(a) (b)

(c)

Figure 4.5: GLMT Calculation: Intensity measured along the
propagation direction for silica spheres for diameters (a) 0.8 µm,
(b) 1.0 µm and (c) 1.5 µm in counter propagating beams with
parallel polarisations.

0.8 µm SiO2 spheres

Figure 4.6 shows 0.8 µm diameter spheres bound by the evanescent field gen-

erated by the two counter-propagating beams both s-polarised. Following the

procedure described at the beginning of this section, the inter-particle sepa-

ration for different powers was obtained (Figure 4.7). It is apparent that the

power does not alter the separation between particles. This is in agreement

with the work of [15, 54]. For this case all separations were averaged and

the mean inter-particle separation was found to be d
(0.8)
m = (3.06 ± 0.04)µm.

As seen in Figure 4.6, the spheres are not equally spaced. Hence the average

particle-to-particle separation is found to be between seven and eight fringe

spacings, 7D < d
(0.8)
m < 8D. These fringes are not the brightest in the simple

single sphere scattering model used so far, but it may be expected that multi-

ple scattering modifies the intensities further. The potential wells formed 7-8
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2 μm

Figure 4.6: One-dimensional bound chain of 0.8 µm silica spheres.

fringe spacings away from one particle are apparently similar in depth (Figure

4.5a), so there is a low potential barrier between them and particles can ‘hop’

over the barrier from one to the other as a result of their Brownian motion.

While the number of particles in the bound structure increases the opti-

cal binding force increases, as the interaction between the particles becomes

stronger [55, 56, 57]. Therefore the average inter-particle separation decreases.

Here, the number of particles in the chain studied was not high enough (N ∼

7) to further decrease the particle separation.
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Figure 4.7: Inter-particle separation of 0.8 µm silica spheres in
counter-propagating beams with parallel polarisations as a function
of laser power. The averaged separation is d

(0.8)
m = (3.06 ± 0.04)µm.
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1.0 µm SiO2 spheres

Similarly, the same procedure was repeated for 1.0 µm silica spheres optically

bound in a one-dimensional ‘chain-like’ structure (Figure 4.8). The result

here is the same in the sense that the varying laser power does not affect

the particle separation (Figure 4.9). Contrary to the previous case, the parti-

2 μm

Figure 4.8: One-dimensional bound chain of 1.0 µm silica spheres.

cles are almost adjacent to each other. The mean inter-particle separation is

d
(1.0)
m = (1.05 ± 0.01)µm. The forces originating from the interference fringes

compete with the forces arising from the scattered fields from the surface of

the bound spheres. Since a diameter of 1.0 µm is close to the point where the

optical landscape force vanishes (Figure 4.6) a small number of particles in the

chain can overcome the optical landscape influence. The optical binding force

dominates and the particles are attracted to the intensity maximum created

near other particles as discussed in Chapter 2 and shown in Figure 4.5b. Fur-

thermore, the number of spheres in the chain is high (N ∼ 16), leading to an

overall inter-particle separation decrease.
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Figure 4.9: Inter-particle separation of 1.0 µm silica spheres in
counter-propagating beams with parallel polarisations as a function
of laser power. The averaged separation is d

(1.0)
m = (1.05 ± 0.01)µm.

1.5 µm SiO2 spheres

Last is the case of 1.5 µm silica spheres in a bound chain formed in two counter-

propagating beams with parallel polarisations (Figure 4.10). The mean inter-

3 μm

Figure 4.10: One-dimensional bound chain of 1.5 µm silica
spheres.

particle separation was found to be d
(1.5)
m = (1.86 ± 0.02)µm from Figure 4.11.

The optical landscape force for this particle size is close to a maximum and

therefore it is significant to the net force acting on the particles. These particle

separations found, almost coincide with a maximum in intensity (Figure 4.5c).

The particles are attracted to bright fringes, enhancing the scattered field

from nearby particles. The fact that the scattered fields are greater than
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in the case of the 0.8 µm spheres (Figure 4.5) where the forces arising from

the fringes are also significant leads to smaller average particle separations.

We can also observe that for this case the particle separation decreases with

increasing power. As the intensity of the laser beam increases, more particles

were attracted to the chain causing the average inter-particle separation to

decrease as discussed before.
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Figure 4.11: Inter-particle separation of 1.5 µm silica spheres in
counter-propagating beams with parallel polarisations as a function
of laser power. The averaged separation is d

(1.5)
m = (1.86 ± 0.02)µm.

4.3.1.2 Orthogonal Polarisations

Next, we consider the configuration where the two counter-propagating beams

have orthogonal polarisations. Namely, the incident beam is s-polarised and

the retro-reflected is p-polarised. The separations of the bound particles are

derived the same way as in the parallel polarisation configuration. Here the

absence of an optical landscape formed by beam interference means that we

only need to consider the forces that arise from the scattered light from the

surface of the particles. Figure 4.12 shows the inter-particle separation for all

particle sizes used for this part of the experiment.
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Figure 4.12: Inter-particle separation for 0.8 µm, 1.0 µm, 1.5 µm
in counter-propagating beams with orthogonal polarisations. (a)

0.8 µm silica spheres, average separation d
(0.8)
m = (1.72 ± 0.06)µm;

(b) 1.0 µm silica spheres, average separation d
(1.0)
m =

(1.32 ± 0.01)µm; (c) 1.5 µm silica spheres, average separation

d
(1.5)
m = (3.20 ± 0.05)µm.

For the case of the 0.8 µm spheres we observe an increase in particle separa-

tion with increasing power. Due to their thermal energy, the particles were able

to overcome the binding forces leading to different separations. Figure 4.13a

shows an example at low power where the distance of a sphere from its two

adjacent ones (left and right) differs i.e. d2 < d1. This resulted in smaller

average separations. For higher powers the spheres were strongly trapped and

spaced by larger equilibrium separations as shown in Figure 4.13b.

Mie scattering theory predicts an intensity maximum close to the surface

of the sphere as shown in Figure 4.14. Based on these calculations, particles
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Figure 4.13: 0.8 µm bound particle trajectories in a chain struc-
ture (a) at low power (P = 0.213 W) where the distances of a sphere
from its two adjacent ones differ; (b) at higher power (P = 0.954
W) where the spheres are strongly trapped and equally separated.

are expected to physically be in contact with each other as the intensity of

the scattered fields increases with decreasing distance from the sphere surface.

In all cases considered here the particles occupy equilibrium positions further

away from these positions. Since the calculations are made for a single particle,

they do not represent the results obtained here. The multiple scattering of the

particles in the bound structure needs to be accounted. The forces arising

from the interaction of the scattered fields and the incident beams change in

sign with varying particle separation, denoting repulsive (negative sign) and

attractive (positive sign) nature. Therefore, the particles occupy equilibrium

positions in the chain where the net force of the scattered fields is zero [55, 58,

59].
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Figure 4.14: GMLT Calculation: Intensity in the propagation
direction for silica spheres with sizes used in experiment in counter
propagating beams with orthogonal polarisations.

4.3.2 Spring Constant

After the trajectories of the particles are reconstructed (Figure 4.3b), his-

tograms of the Brownian motion of the particles are then derived in order to

measure the extent of particle fluctuations in the direction of propagation (Fig-

ure 4.15). The change in the extent of the position fluctuations it is apparent

with varying power.
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Figure 4.15: Histograms of bound 1.0 µm particles in one-
dimensional chain with both beams being s-polarised. (a) For low
laser power, P = 0.213 W; (b) for high laser power, P = 0.954 W.

In order to avoid fluctuations in the motion of the particle due to the water

being heated by the laser beam or due to periodic oscillations (Figure 4.16) of

the bound structures [13, 60, 61, 62] we first plot the particle position in the
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beam propagation direction in respect to time. From such plots we can then

select data for which the the bound structures are more ‘stable’.
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Figure 4.16: Oscillating optically bound chain of 1.0 µm for laser
power P = 0.954 W. The oscillation in the direction orthogonal to
propagation (y-) is apparent.

Figure 4.17 shows an example of the selection of such data. Another feature

apparent in this figure is the discrete jumps between equilibrium positions

A, B and C. The distance between these positions coincides with the fringe

spacing, AB = (0.43 ± 0.04)µm and BC = (0.37 ± 0.04)µm indicating that

the chain ‘jumps’ between fringes. This suggests that particles with large

enough thermal energies overcome the binding energies and move to different

equilibrium positions.
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Figure 4.17: Selection of data for which the 1D bound structure
is more stable.

Assuming that the particle experiences a harmonic potential due to the

combination of the incident laser field and the scattered fields from the other
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particles in the chain, we can calculate the spring constant of the particles in

these structures.

1

2
KBT =

1

2
κ⟨x⟩2 (4.3)

The l.h.s of Equation 4.3 represents the mean energy of the oscillations of

the particle in the system where KB is the Boltzmann constant and T the

temperature. The r.h.s is the potential energy stored in a simple harmonic

oscillator at position x and κ is the spring constant.

The spring constant can be obtained by fitting a Gaussian (Figure 4.18) to

the histograms of the Brownian motion of individual particles. The Gaussian

expression fitted to the histograms is of the following form:

f = Ae−
⟨x⟩2

2w2 , (4.4)

where w is the width of the Gaussian fit. By combining Equations 4.3 and 4.4

we can assume that:

κ→ KBT

2w2
(4.5)

Substituting w from the fit into Equation 4.4, the spring constant is obtained.

In this section we present the spring constant of the optically bound ‘chain-

like’ structures in the evanescent field of two counter-propagating beams as a

function of laser power incident on the substrate. The data analysis was made

for two polarisation schemes.
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Figure 4.18: Position fluctuations of in the direction parallel to
the chain about the equilibrium position of a single particle in the
chain when optically bound using a single laser beam. Total num-
ber of counts is N = 407. The solid red line is a Gaussian fit to the
histogram which gives a root-mean-square deviation from equilib-
rium.

4.3.2.1 Parallel Polarisations

The incident and the retro-reflected beams have parallel polarisations. Namely,

both beams are s-polarised. Figure 4.19 shows the spring constant, κ, as a

function of laser power for 0.8 µm, 1.0 µm and 1.5 µm silica particles.

We observe that the overall value of the spring constant increases with

particle size. This is due to the fact that polarisability (and hence the trapping

force) scales approximately with particle volume. It can be also seen that for

all particle sizes the spring constant increases with power. This is expected as

the optical forces restraining the particles in optical bound structures increase

with intensity. Increasing the laser power the potential wells become deeper

and therefore the well curvature is stronger leading to a larger spring constant.

4.3.2.2 Orthogonal Polarisations

Next, we consider the case where the two laser beam pairs have orthogonal

polarisations (s- and p- polarisations). Figure 4.20 shows the spring constant

as a function of laser power for this configuration. The results resemble those

of the previous configuration in such a way that the spring constant grows

with particle size and laser power.
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κ

Figure 4.19: Spring constant vs Laser Power for 0.8 µm, 1.0 µm
and 1.5 µm silica particles in one-dimensional bound chains formed
in parallel polarised laser beams.

κ

Figure 4.20: Spring constant vs Laser Power for 0.8 µm, 1.0 µm
and 1.5 µm silica particles in one-dimensional bound chains formed
in orthogonally polarised laser beams.
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When comparing the values for the spring constant for each power and

particle size we observe that for this configuration the value is lower than in the

parallel polarisations configuration. This is due to the absence of the optical

landscape forces which restrain the silica spheres even further. Figure 4.21

shows the difference between the magnitude of the forces, ∆F = Fpar − Forth,

acting on the particles for the different polarisation configurations as a function

of laser power. These forces were derived from the calculated spring constant

for each laser power setting. It is apparent that ∆F is comparable to the force

arising from the optical landscape (Figure 4.4). The optical landscape force

was found to be 1.45× 10−13N, 0.07× 10−13N and 0.36× 10−13N for 1.5 µm,

1.0 µm and 0.8 µm particle diameters respectively using GLMT.

(a) (b)

(c)

Figure 4.21: Difference between the force magnitudes for the par-
allel and orthogonal polarisation cases as a function of laser power.
(a) 0.8 µm; (b) 1.0 µm; (c) 1.5 µm silica spheres. The red dashed
lines indicate the force arising from the optical landscape as in Fig-
ure 4.4

It can be seen in Figure 4.21c that ∆F values mainly lie below the optical

landscape force line. This was caused due to the fact that for the orthogonally
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polarised beam configuration more particles were present in the chain. This

lead to an increase of the optical binding force [55, 56, 57] and therefore smaller

∆F values for this case.

4.4 2D binding

In Chapter 3 we have described the extension of the binding set-up to two-

dimensions using two orthogonally propagating pairs of counter-propagating

beams. The results obtained using this trapping geometry are presented in this

section. Similarly to the one-dimensional surface trap, we study two different

polarisation configurations. The first is the case where the two pairs are parallel

polarised and for the second are orthogonally polarised. In both cases the

bound spheres form two-dimensional arrays.

4.4.1 Lattice Geometry

Next, we study the lattice geometry of the two-dimensional arrays of 1.0 µm

silica particles formed for the different relative polarisations of the two beam

pairs. For the first case both pairs (incident and retro-reflected beams) have

s-polarisations and for the second case one pair is s-polarised and the other

p-polarised.

There are two kinds of lattices we shall consider here. The lattice constant

is the distance between the unit cells in the lattice. Two-dimensional lattices

are defined by two lattice constants. Figure 4.22 shows the representation of

square and hexagonal lattices. For a square lattice a = c and for a hexagonal

lattice c =
√
3a.
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Figure 4.22: (a) Square lattice representation. The distance be-
tween two subsequent particles in both x- and y- directions is equal.
(b) Hexagonal or equilateral lattice representation. The distance
between two subsequent particles in both y- direction is

√
3 times

greater than that in the x- direction. The black dashed lines here
define the unit cell for this lattice.

We also construct Voronoi diagrams for the lattice geometries observed in

experiments. A Voronoi diagram is used to divide space to different regions.

A Voronoi cell encloses a site and every point in this region is closer to the this

site than to any other. In our case the sites are the bound particle centres as

identified by the particle tracking software. A Voronoi tessellation gives rise

regular square cells for a square lattice and regular hexagons for a hexagonal

lattice [63]. The averaged area of this cell was found for these cases.

Additionally we calculate the bond orientational order parameter for each

case studied here. The bond orientational order parameter quantifies the local

order in the lattice [64]. For a square lattice where each particle has 4 nearest

neighbours the bond orientational order parameter for particle j is:

ψ4 = | 1
zj

zj∑
m=1

exp(4iθjm)| (4.6)

where zj is the co-ordination number (number of nearest neighbours), and θjm

is the angle made by the line from particle j to its m-th neighbour and the x-

axis. Perfect square ordering gives ψ4 = 1. For the case of a hexagonal lattice
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where a particle j has six nearest neighbours, the above equation becomes:

ψ6 = | 1
zj

zj∑
m=1

exp(6iθjm)| (4.7)

and for a perfect hexagonal lattice ψ6 = 1. Similar code as described before

tracks the centre of each particle in each video frame. Next, it identifies the

zj nearest neighbours for each particle, measures angle θ and calculates ψ.

Finally, it averages over the whole area of the bound array and we obtain a

measure of ordering.

4.4.1.1 Square Lattice

A square lattice is observed when the two beam pairs are of the same polari-

sation. Figure 4.23 shows 1 µm silica spheres organised into a a square lattice

(N ≈ 200 particles).

5 μm

Incident Beam A
Retro-re�ected

 Beam A

Retro-re�ected

 Beam B

Incident Beam B

Figure 4.23: Square lattice formed by 1 µm silica spheres at the
crossing point of two orthogonal counter-propagating beam pairs.

Video frames are analysed to retrieve the lattice constant of the structure.

Particle centres contained in a selected region are detected (Figure 4.24a) in

the same manner described in Section 4.3.1. Next, the code calculates the

distances between the particle centres and finally uses them to construct a

histogram as seen in Figure 4.24b. The first peak in this plot denotes the
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lattice constant a which in this case was found to be 1.19 µm. The second

peak in this case is the diagonal of a unit cell and its labelled as γa. For a

square lattice γ =
√
2. From the data analysed γ was found to be 1.44 with

an estimated error due to resolution of ± 0.04 which indicates a square lattice.

Every third peak labelled as 2a is the distance from the closest particle of the

adjacent unit cell.
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Figure 4.24: Square Lattice Characterisation: (a) Particle centre
trace; (b) Particle distance distribution, in square lattice.

Figure 4.25a shows the position of the spheres and the field distribution

(shown in the background) for this case. The symmetry of the arrangement

of the spheres matches that of the initial underlying interference pattern but

they are not all located exactly on top of a bright fringe due to the multiple

scattering, and hence optical binding effects. The background field is modified

by the multiple scattering so the equilibrium separations of the spheres are not

equal to the separation between bright fringes, even though the interference

pattern sets the symmetry of the optically bound structure. This is especially

significant for the 1 µm diameter spheres where the binding forces may be

strong compared to the background landscape forces. Figure 4.25b shows the

same particles considered in Figure 4.25a in the bound structure. Further-

more, we used GLMT to calculate the fields for a single sphere in a four beam

interference pattern (Figure 4.25c). It can be seen that the interference fringes

are modified by the scattered fields.
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(a) (b)

(c)

Figure 4.25: (a) Positions of 1 µm silica spheres and the inter-
ference landscape created by two orthogonal pair of beams with
parallel polarisations at λ = 1064 nm. (b) Image of actual parti-
cles considered in part (a). The background interference pattern is
significantly modified by scattering by the particles (not shown in
part (a) and (b)) which determines their equilibrium positions. (c)
GLMT calculation for a single sphere in a four beam interference
pattern showing evidence of the modification of the interference
pattern.
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The observations are qualitatively supported by the work presented by

Grzegorczyk et al where they computed the scattered field from an arbitrary

number of infinite dielectric cylinders [29]. They treated cylinders rather than

spheres and considered scattering in two dimensions only to reduce the com-

plexity of the multiple scattering problem. They have similarly shown that the

cylinders do not always settle on high intensity regions i.e. the final position

of the particles is not always the one predicted for a single particle. They have

considered the modification of the incident-field pattern by the scattered field

by all particles and their interactions predict the location of the traps. The

calculations were made by extending the Mie scattering theory to cylindrical

particles and by using the Foldy-Lax multiple scattering equations. Figure

4.26 [29] shows the positions of 20 dielectric cylinders and the field distribu-

tion for various cases: (a) an example of initial positions of the cylinders, (b)

the final positions of the cylinders with the incident field shown, (c) same as

(b) but with the total field shown and (d) final positions of the cylinders cor-

responding to different initial positions. In (b) particles occupy separate traps

whereas in (d) particles are located in regions where the total field is such that

the neighbouring traps exert no force on nearby particles. Furthermore, the

background interference pattern controls the symmetry of the bound structure,

even though the particles do not lie on the maxima, and this is also what we

have observed.
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Figure 4.26: Positions of 20 dielectric cylinders and field distri-
butions (shown in the background) for various cases: (a) random
initial position in a three-plane-wave interference pattern (incident
field shown); (b) organized final position due to trapping and bind-
ing forces (incident field shown); (c) same as case (b) but with
the total field shown; (d) organized final position corresponding to
another set of initial positions different from that in case (a). In
all cases, the parameters are λ=546 nm and cylinder radius 0.15λ.
The background patterns show the absolute value of the electric
field (either incident or total field) on a scale from 0 (black) to 3
V/m (white) [29].
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Figure 4.27 shows the Voronoi diagram for this case1. The appearance

of the Voronoi cells provides further qualitative evidence of the influence of

the underlying square lattice interference pattern on the ordering of particles.

The averaged area of these cells was found to be (1.4 ± 0.3)µm2. The area of

the Voronoi cell here is in agreement with the cell area obtained by using the

measured nearest particle separations which is equal to (1.4 ± 0.1)µm2.
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Figure 4.27: Voronoi diagram for the square lattice of 1.0 µm
silica particles.

Finally, we calculated the bond orientational order parameter ψ4, as a

function of time for the square lattice using Equation 4.6. Figure 4.28 shows

ψ4 for two videos captured: first when the laser source was turned off (black

curve) and second with the laser source turned on (red curve). It can be seen

that when laser is off ψ4 varies with time and has values well below 1 since

the particles are free in water causing angle θjm to vary with time. When the

laser source is on, the particles are bound in a square lattice and ψ4 obtains

values close to one (optical binding in this configuration produces a stable,

well-ordered square lattice).

1The edges of the diagram have been removed since an infinite area cell is constructed
due to the absence of nearby particles.
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Figure 4.28: Bond orientational order parameter as a function of
time for a square lattice. The black and red curves are for the case
when the laser source is switched off and on respectively.

4.4.1.2 Hexagonal Lattice

When the two counter-propagating beam pairs are of orthogonal polarisations,

we observe a hexagonal lattice as shown in Figure 4.29. The distances between

3 μm

Incident Beam ARetro-re�ected

 Beam A

Retro-re�ected

 Beam B

Incident Beam B

Figure 4.29: Hexagonal lattice formed by 1 µm silica spheres
at the crossing point of two orthogonal counter-propagating beam
pairs of orthogonal polarisations.

the silica spheres in this cluster are calculated in the same way as before.

Figure 4.30 shows the traced particle centres in a video frame and the plot of

the inter-particle distribution. The second peak in the separation distribution
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plot labelled as γa is the lattice constant c =a
√
3 for a hexagonal lattice. Here

we found a = 1.01 µm and γ = 1.71, indicating a hexagonal lattice.
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Figure 4.30: Hexagonal lattice characterisation: (a) Particle cen-
tre trace; (b) Particle distance distribution, in hex lattice.

Figure 4.31a shows the optical landscape created by the two beam pairs in

the background and the positions of the silica spheres. In this configuration

despite there being some underlying structure from the incident beams, even

with the effects of multiple scattering between the spheres there is no localiza-

tion on a regular square lattice, and the spheres collapse into a close packed

(hexagonal) array due to the optical interactions between the scattered fields.

Figure 4.31b shows the particle set considered in Figure 4.31a.

(a) (b)

Figure 4.31: Particle positions of 1 µm silica particles and optical
landscape created by two cross polarised orthogonal beam pairs.
(b) Image of actual particles considered in part (a).

Figure 4.32 shows the Voronoi diagram for this case. The cells here are
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hexagons which reflects the fact that the bound lattice is hexagonal and have

the same area as the lattice unit cell. The averaged area of the hexagonal

Voronoi cells was found to be (1.1 ± 0.2)µm2. The area of the lattice unit cell

obtained by using the measured nearest particle separation is (1.0 ± 0.1)µm2

and agrees with the Voronoi cell area with the calculated errors.
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Figure 4.32: Voronoi diagram for the hexagonal lattice of 1.0 µm
silica particles.

Finally, the bond orientational parameter ψ6 is plotted as a function of

time (Figure 4.33) for the case when the laser source is turned on (P = 0.954

W) and off. We observe that when the laser is on, ψ6 is close to 1 for the

whole video length. This shows once again that the bound array is regular

hexagonal. When the laser source is switched off ψ6 is varying and is of lower

values.
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Figure 4.33: Bond orientational order parameter as a function of
time for a hexagonal lattice. The black and red curves are for the
cases when the laser source is switched off and on respectively.

4.4.2 Spring Constant

The spring constant of two-dimensional hexagonal arrays was derived in the

same manner as in the one-dimensional optical binding experiment for silica

particles with diameters 0.8 µm (Figure 4.34) and 1.0 µm. The spring constant

was calculated for hexagonal arrays only since the 0.8 µm silica spheres did

not form a square lattice for the parallel polarisations configuration. As the

particle size becomes smaller the particles are influenced by less trapping sites

thus a different bound geometry is observed. Furthermore, due to their large

number, multiple particles are often closed packed over a single high intensity

region. These statements once again agree with the observations made by

Grzegorczyk et al, 2006.

Figure 4.35 shows the spring constant, κ as a function of the laser power

after the 50:50 beam splitter i.e. the single beam power (Figure 3.7). The

overall spring constant for each particle size is larger than that of the one-

dimensional case. This is to be expected since the binding force increase with

the number of bound particles and similarly the spring constant. In a two-

dimensional array there is an order of magnitude more particles than in the

one-dimensional case.
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Figure 4.34: Hexagonal lattice formed by 0.8 µm silica spheres
at the crossing point of two orthogonal counter-propagating beam
pairs of orthogonal polarisations.
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Figure 4.35: Spring constant vs Laser Power for 0.8 µm and
1.0 µm silica particles in a hexagonal two-dimensional array.
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Finally, we compare the spring constant values obtained for square and

hexagonal lattice formations of 1.0 µm silica particles at a laser power of 0.49

W. For the square lattice case the spring constant was found to be κ
(1.0)
sq =

(3.9±0.7)×10−5 N/m and for the hexagonal case κ
(1.0)
hex = (2.3±0.5)×10−5 N/m.

We observe that the confinement of the particles is stronger in the presence

of interference fringes. This is in agreement with the results obtained for the

one-dimensional cases.

4.5 Optical Binding of Carbon Nano-tubes (CNT)

In addition to the silica sphere experiments, we have successfully observed

the one-dimensional optical binding of graphenated carbon nano-tube (CNT)

bundles in the evanescent fields of two counter-propagating beams (Figure

4.36). It is to our knowledge that this is the first observation of optical binding

of carbon nano-tubes or, indeed, any particle with a shape other than a sphere.

The carbon nano-tube bundles had lengths of 1 - 2 microns and diame-

ters of few nano-meters and were provided by the Department of Engineering,

Cambridge University. The CNT bundles were immersed in water and ultra-

sonicated before conducting the experiment. This was done to remove residual

catalyst particles and big bundles. Using CNT bundles lead to complications

as it was difficult to monitor them by the microscope objective due to their

small diameter. For the same reason only a small number of these bundles

would sink to the top surface of the prism and interact with the evanescent

field. These complications may be overcome by using other types of elongated

structures such as dielectric nano-wires which are more manageable.

The cylindrical particles would align along the propagation axis and not

parallel to the interference fringes formed by the two counter-propagating

beams. Theoretical models considering the Mie scattering and optical forces

between finite cylindrical objects have been developed by various groups [65,

66, 67, 29]. Existing theoretical work does not describe the experimental ob-

servations described in this section. Even a simple theory for the orientation
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of the cylinders under optical binding is lacking. Grzegorczyk etal. considered

binding of cylinders only so that a 2D model could be implemented (i.e. it

does not model the actual scenario of the experiment). Also, Andrews etal.

presented calculations for a configuration where the CNTs are taken to be

parallel to each other which was not observed in our experiments.

Videos of chain like CNT bound structures were recorded. The tracking of

the nano-tubes was achieved by the use of another tracking software this time

(Tracker by Douglas Brown, Cabrillo College) [68], since the code used for the

spherical particles cannot handle cylindrical objects. The software creates a

template image of a feature of interest and then searches each frame of the

video for the best possible sub-pixel match of that template. The matching

is done by comparing the template and the match pixels for RGB differences.

Figure 4.37 shows the position of three different nano-tube bundles along the

propagation axis in respect to time.

Histograms of the position fluctuations along the propagation axis were

plotted in the same way as described before. Figure 4.38 shows an example of

such a histogram. The spring constant was calculated for a laser power of P

= 0.954 W to be κCNT = (1.0 ± 0.1)× 10−6 N/m. The experiment was also

carried out to study the orientation of the CNTs while rotating the polarisation

of the incident and retro-reflected beams (both beams still having the same

polarisation direction). No change in orientation was observed for different

polarisations. We found that once the one-dimensional chain was formed, it

persisted for all incident polarisations.

This system is still under investigation and a full explanation will require

a full multiple scattering model for a number of finite cylindrical particles

as a function of length, aspect ratio and orientation. An interesting future

experiment might be to investigate the orientation of cylinders in this sort of

optical binding experiment as a function of their length (as has been done for

nano-wires in optical tweezers [69]).
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Figure 4.36: Optical Binding of Carbon Nano-tubes using evanes-
cent waves. (a) CNTs in an optically bound chain; (b) Laser
switched off and CNTs move freely in water; (c) Laser switched
on and CNTs align themselves in one-dimensional chain again.
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Figure 4.37: Carbon Nano-tubes trace with video microscopy.
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Figure 4.38: Carbon Nano-tubes position fluctuations histogram
in one-dimensional bound structure for laser power, P = 0.954W
and number of counts, N = 51.
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4.6 Outlook

We have presented the results obtained on the evanescent field surface trap for

two trapping configurations. The first configuration consisted of two-counter

propagating beams lead to the formation of one-dimensional bound structures

of spherical particles in the evanescent fields generated. The inter-particle

separations in the chain like formations were experimentally measured for two

polarisation configurations. The spring constant was also derived from the

Brownian motion of the bound particles. The spring constant increases with

laser intensity. The bound structures are more stable since the particles are

held in deeper potential wells.

Similar results were obtained for the second trapping configuration, where

two orthogonal pairs of counter-propagating beams were used to create two-

dimensional bound arrays. Again, two different polarisation schemes were

considered. The arrays were characterised and the spring constant was cal-

culated in the same way as for the one-dimensional binding. We have found

that for two orthogonal beam pairs with parallel polarisations the particles are

bound in square-lattice bound structures. Alternatively when the beam pairs

are cross-polarised the particles are trapped in a hexagonal-lattice geometry.

The observations lead to the conclusion that the underlying interference pat-

tern dictates the bound array geometry but not the exact trapping locations

as the scattered fields modify the background field. In the case of absence of

interference the particles arrange themselves in close packed arrays due to the

optical binding force.

Finally, we have demonstrated the optical binding of carbon nano-tube

bundles in the evanescent field of two counter-propagating fields. We observed

that the orientation of the cylinder axis does not change with polarisation but

further investigation is needed to deduct conclusions. Mono-dispersed car-

bon nano-tubes and the development of a tracking software that can detect

the Brownian motion of cylindrical particles are needed to complete this study.

The existing theoretical models treating infinite cylindrical objects having their
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long axis parallel to each other cannot interpret the observations shown in this

chapter since the scattered field at the edges of each particle has to be cal-

culated. Even though a theoretical model is lacking, the alignment of carbon

nano tubes as presented in this section could lead to new and interesting ap-

plications in nanotechnology.

The results presented in this chapter suggest that the optical binding force

is the dominant force in this phenomenon. Deviations from theory, indicate

that optical binding phenomena are highly sensitive to the experiment param-

eters (which cannot be measured precisely or omitted from the theory calcu-

lations). Additionally, the effects of hydrodynamic coupling and electrostatic

interactions between the spheres and the substrate need to be considered for

a more comprehensive understanding.



Chapter 5

Fields and Forces Around a

Nano-Fibre

5.1 Introduction

A different approach for generating evanescent optical fields is considered in

this chapter. An optical wave-guide with dimensions comparable to that of

the guided light can be used to trap micro-particles. Examples of such sub-

wavelength wave-guides are integrated and slot wave-guides [70, 71], optical

wires [72] and optical fibres that are tapered to a diameter of 1 µm or less [27].

In this chapter we consider the use of the latter for optical manipulation. In

these tapered fibres a large fraction of the power is carried in the evanescent

field that penetrates a significant distance into the medium surrounding the

fibre [26]. Such tapered optical fibres have been used to demonstrate evanes-

cent wave trapping [8] and probing [73] of laser-cooled atoms. They have also

been utilised for sensing [74] and in non-linear optics applications [75]. The

trapping and guiding of microscopic particles using such configuration, rele-

90
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vant to this thesis, has been also presented [9, 76, 77]. Recently the propulsion

of biological samples, namely bacteria, was demonstrated [78].

In this chapter numerical calculations of the field distribution around a

tapered optical fibre are presented. Furthermore, the optical trapping and

scattering forces originating from the evanescent field in the tapered region are

calculated using a simple dipole model. These calculations provide an insight

to the behaviour of micro- and nano- particles around a nano-fibre. Addi-

tionally, plasmonic optical forces on metallic (silver and gold) nano-particles

are calculated in this chapter. We show how the plasmon resonance of metal-

lic nano-particles can be exploited to enhance the optical trapping force, and

suggest how a two-colour or bi-chromatic nano-fibre trap [79] for plasmonic

particles may be implemented for controlling the particle trajectory along the

fibre.

5.2 Evanescent Field Distribution Around the

Tapered Region of a Nano-Fibre

A single-mode optical fibre consists of the buffer coating, the cladding and the

core glass. Typically the buffer coating has diameters of about 250 µm, the

cladding 125 µm, and the core 6 µm. There is a small refractive index mismatch

between the cladding and the core (nclad < ncore, |ncore − nclad|/ncore << 1).

This ensures that light propagates along the core due total internal reflection

(Figure 5.1). Snell’s Law determines the angle at the core - cladding interface

for a given incident angle at the air-core interface:

θinc ≤ arcsin
√
n2
core − n2

clad (5.1)

where
√
n2
core − n2

clad is defined as the fibre numerical aperture.
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Figure 5.1: (a) Optical fibre cross-section; (b) Propagation of
light ray in an optical fibre.

The electric field distribution around the tapered region of a nano-fibre

can be calculated by using the exact solution of Maxwell’s equations in a

cylindrically symmetric geometry [80, 81, 82]. The boundary conditions require

the transverse and longitudinal components of the electric and magnetic fields

inside and outside the fibre core to be equal to each other at r = ρ, with ρ

being the fibre core radius. Here we consider the case where n1 is the refractive

index of the fibre and n2 the refractive index of the surrounding medium. In a

standard optical fibre n1 and n2 are represented by ncore and nclad respectively.

The Maxwell’s equations in cylindrical coordinates are given by:

∇× H̄ = ε(r)
∂Ē

∂t
, (5.2)

∇× Ē = −µ0
∂H̄

∂t
, (5.3)

∇ · (ε(r)Ē) = 0, (5.4)

∇ · H̄ = 0, (5.5)

where ε = n2ε0 is the permittivity of the material and ε0 is the permittivity

of vacuum. µ0 is the permeability of vacuum and is equal to 1 assuming that

the material is non-magnetic. Equation 5.4 also assumes that there no charges

i.e. in a dielectric. In the case where charges are present the right hand side

of this equation is equal to the enclosed charge density. Combining Equations
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5.2 - 5.5 we obtain the wave equation of the fields:

∇2Ē − µ0ε(r)
∂2Ē

∂t2
= −∇(

Ē

ε(r)
· ∇ε(r)) (5.6)

We write the solutions to Equation 5.6 for the z-component as follows:

Ez(r̄, t) = Ez(r, ϕ)e
i(ωt−βz), (5.7)

where β is the axial propagation constant of the field, i.e. the component of

the wavevector, k, parallel to the fibre axis. Note that due to the symmetry

of the problem ∂ε(r)/∂z vanishes and therefore we can express the radial

and transverse components of the field Er and Eϕ in terms of Ez. The wave

equation in cylindrical coordinates can be now obtained:

[
∂2rr +

1

r
∂r +

1

r2
∂2ϕ + (k2 − β2)

]
Ez(r, ϕ) = 0, (5.8)

where k2 = µ0εω
2. Equation 5.8 has solutions of the following form:

Ez(r, ϕ) = R(r)ei(±ℓ)ϕ (5.9)

where ℓ = 0, 1, 2, .... An equation for the radial variation of the electric field

can be obtained:

[
∂2rr +

1

r
+ (k2 − β2 − ℓ2

r2
)

]
R(r) = 0. (5.10)

The general solutions of this equation are Bessel functions of order ℓ:

k2 − β2


> 0 R(r) = c1Jℓ(hr) + c2Yℓ(hr),

< 0 R(r) = c3Iℓ(qr) + c4Kℓ(qr),

(5.11)

where Jl(x) is the Bessel function of the first kind, Yl(x) the Bessel function of

the second kind, Il(x) the modified Bessel function of the first kind and Kl(x)

the modified Bessel function of the second kind. The transverse components
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of the mode wavevector h and q for the fields inside and outside the fibre

respectively satisfy the following equations:

h = (n2
1k

2
0 − β2)1/2, (5.12)

q = (β2 − n2
2k

2
0)

1/2, (5.13)

with k0 = 2π/λ0 is the vacuum wavevector. The transverse component q

outside the fibre is imaginary, implying a rapidly decaying evanescent field.

The fields must be finite as r approaches zero and must vanish as r obtains large

values. Therefore we can set c2 = c3 = 0 as Yℓ diverges for small arguments

and Iℓ diverges as r → ∞. Ez can be then expressed as:

Ez(r, ϕ, z, t) = AJℓ(hr)e
i(ωt±ℓϕ−βz) (5.14)

for r < ρ. Similarly, Hz is given by:

Hz(r, ϕ, z, t) = BJℓ(hr)e
i(ωt±ℓϕ−βz) (5.15)

For r > ρ:

Ez(r, ϕ, z, t) = CKℓ(qr)e
i(ωt±ℓϕ−βz) (5.16)

Hz(r, ϕ, z, t) = DKℓ(qr)e
i(ωt±ℓϕ−βz) (5.17)

The following operator in cylindrical coordinates can be used along with Equa-

tions 5.2 and 5.3 to deduce expressions for the rest of the components of Ē

and H̄.

[
∇× Ā

]
r,ϕ,z

= (
1

r
∂ϕAz−∂zAϕ)r̂+(∂zAr−∂rAz)ϕ̂+(∂rAϕ−

1

r
∂ϕAr)ẑ (5.18)



CHAPTER 5. FIELDS AND FORCES AROUND A NANO-FIBRE 95

Er, Eϕ, Hr and Hϕ for r < ρ can be expressed as:

Er(r, ϕ, z, t) = −β
h

[
iAJ ′

ℓ(hr)−
ωµ0(±ℓ)

β
B
Jℓ(hr)

hr

]
ei(ωt±ℓϕ−βz), (5.19)

Eϕ(r, ϕ, z, t) =
β

h

[
(±ℓ)AJℓ(hr)

hr
+
iωµ0

β
BJ ′

ℓ(hr)

]
ei(ωt±ℓϕ−βz), (5.20)

Hr(r, ϕ, z, t) = −β
h

[
iBJ ′

ℓ(hr)−
ωε1(±ℓ)

β
A
Jℓ(hr)

hr

]
ei(ωt±ℓϕ−βz), (5.21)

Hϕ(r, ϕ, z, t) =
β

h

[
(±ℓ)BJℓ(hr)

hr
+
iωε1
β

AJ ′
ℓ(hr)

]
ei(ωt±ℓϕ−βz), (5.22)

where ε1 = n2
1ε0, the dielectric constant inside the fibre. For r > ρ:

Er(r, ϕ, z, t) =
β

q

[
iCK ′

ℓ(qr)−
ωµ0(±ℓ)

β
D
Kℓ(qr)

qr

]
ei(ωt±ℓϕ−βz), (5.23)

Eϕ(r, ϕ, z, t) = −β
q

[
(±ℓ)CKℓ(qr)

qr
+
iωµ0

β
DK ′

ℓ(qr)

]
ei(ωt±ℓϕ−βz), (5.24)

Hr(r, ϕ, z, t) =
β

q

[
iDK ′

ℓ(qr) +
ωε2(±ℓ)

β
C
Kℓ(qr)

qr

]
ei(ωt±ℓϕ−βz), (5.25)

Hϕ(r, ϕ, z, t) = −β
q

[
(±ℓ)DKℓ(qr)

qr
− iωε2

β
CK ′

ℓ(qr)

]
ei(ωt±ℓϕ−βz), (5.26)

where J ′(x) = dJ(x)/dx and K ′(x) = dK(x)/dx are their derivatives and

ε2 = n2
2ε0, the dielectric constant of the surrounding medium. The ±ℓ in the

exponential corresponds to solutions for circular polarisation with the + sign

corresponding to clockwise and the − sign to counter-clockwise rotations of

the transverse component E⊥ around the fibre axis. For linearly polarised

light instead of Equation 5.9 we use Ez(r, ϕ) = R(r) cos(ℓϕ) or Ez(r, ϕ) =

R(r) sin(ℓϕ) depending on the direction of the polarisation. The index ℓ is

also related to the orbital angular momentum of the propagating field since

an individual photon may have an orbital angular momentum with values ℓh̄

[83].

The boundary conditions dictate that the transverse components of the

electric and magnetic fields are continuous across the boundary. These are the

same boundary conditions used in the derivation of the Mie scattering formulae
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shown in Chapter 2.

E
(n1)
ϕ,z (r = ρ) = E

(n2)
ϕ,z (r = ρ) (5.27)

H
(n1)
ϕ,z (r = ρ) = H

(n2)
ϕ,z (r = ρ) (5.28)

Imposing these boundary conditions on Equations 5.14 - 5.26 we obtain the

magnitudes A,B,C, and D:

AJℓ(hρ)− CKℓ(qρ) = 0, (5.29)

A

[
i(±ℓ)

h2ρ
Jℓ(hρ)

]
+B

[
−ωµ0

hβ
J ′
ℓ(hρ)

]
+ C

[
i(±ℓ)

q2ρ
Kℓ(qρ)

]
+D

[
−ωµ0

qβ
K ′

ℓ(qρ)

]
= 0, (5.30)

BJℓ(hρ)−DKℓ(qρ) = 0, (5.31)

A

[
ωε1
hβ

J ′
ℓ(hρ)

]
+B

[
i(±ℓ)

h2ρ
Jℓ(hρ)

]
+ C

[
ωε2
qβ

K ′
ℓ(qρ)

]
+D

[
i(±ℓ)

q2ρ
Kℓ(qρ)

]
= 0. (5.32)

Equations 5.29 - 5.32 are written as a matrix equation with the requirement

that the determinant must vanish:∣∣∣∣∣∣∣∣∣∣∣

Jℓ(hρ) 0 −Kℓ(qρ) 0
i(±ℓ)
h2ρ

Jℓ(hρ) −ωµ0
hβ
J ′
ℓ(hρ)

i(±ℓ)
q2ρ

Kℓ(qρ) −ωµ0
qβ
K ′
ℓ(qρ)

0 Jℓ(hρ) 0 −Kℓ(qρ)

ωε1
hβ
J ′
ℓ(hρ)

i(±ℓ)
h2ρ

Jℓ(hρ)
ωε2
qβ
K ′
ℓ(qρ)

i(±ℓ)
q2ρ

Kℓ(qρ)

∣∣∣∣∣∣∣∣∣∣∣
= 0 (5.33)

Finally, the fibre eigenvalue equation is obtained by evaluating the determinant

of the above matrix:(
J ′
ℓ(hρ)

hρJℓ(hρ)
+

K ′
ℓ(qρ)

qρKℓ(qρ)

)(
n2
1J

′
ℓ

hρJℓ(hρ)
+
n2
2K

′
ℓ(qρ)

qρKℓ(qρ)

)
=

(
lβ

k0

)2
[(

1

hρ

)2

+

(
1

qα

)2
]2

,

(5.34)

The J ′
ℓ(x) and K

′
ℓ(x) terms can be substituted by J ′

ℓ(x) = Jℓ−1(x)− ℓ
x
Jℓ(x)

and K ′
ℓ(x) = −1

2
[Kℓ−1(x) +Kℓ+1(x)] respectively. Equation 5.34 can be then

re-written as:

Jℓ−1(hρ)

hρJℓ(hρ)
=

(
n2
1 + n2

2

2n2
1

)
Kℓ−1(qρ) +Kℓ+1(qρ)

2qρKℓ(qρ)
+

ℓ

(hρ)2
±R, (5.35)
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with

R =

[(
n2
1 − n2

2

2n2
1

)2(
Kℓ−1(qρ) +Kℓ+1(qρ)

2qρKℓ(qρ)

)2

+

(
ℓβ

n1k0

)2(
1

(qρ)2
+

1

(hρ)2

)2
]1/2

(5.36)

The positive and negative solutions in Equation 5.35 come from the fact that

Equation 5.34 is quadratic. This leads to two different sets of modes: the HE

for the negative sign and the EH for the positive. For the HE mode Hz is

greater than Ez and for the EH mode the opposite. These modes are labelled

as HEℓm and EHℓm. Index m is a radial mode index which gives the number of

radial nodes in the field for a fixed ℓ. The values of m that are possible depend

on the radius of the fibre. For the case where ℓ = 0 the modes are labelled as

TE0m and TM0m. These are special cases where these transverse modes have

at least one vanishing component (TE0m has zero longitudinal electric field and

TM0m has zero longitudinal magnetic field) whereas EH and HE modes have

none of their components vanishing.

5.3 Mode Calculations Guided in Tapered Fi-

bres

Here we consider the HE11 fundamental mode with quasi-linear and circular

polarisations, individually, propagating in a tapered fibre. The calculations

that follow are based on the equations derived in Section 5.2. The fundamen-

tal mode was chosen for this calculations since it is the only mode allowed to

propagate in the taper for diameters up to 1.4 µm surrounded by water at

λ = 1064 nm. This is shown in Figure 5.2 which is a plot of the propagation

constant β normalised to k0 as a function of the fibre diameter for the hybrid

modes HE and EH. As it will be discussed in later chapters the tapered fi-

bres achieved experimentally typically have diameters of less than 1.0 µm and

therefore meet the single mode condition. For all the cases considered here the

dispersion of the fused silica glass of the optical fibre was taken into account

using the tabulated Sellmeier coefficients [84].
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Figure 5.2: Normalised propagation constant β/k0 vs Fibre di-
ameter. The dashed red line indicates the 1µm diameter which
corresponds to the diameter achieved experimentally.

5.3.1 Linearly Polarised Light

In this section, we study the case of the quasi-linearly (x-) polarised mode

(electric field in the y- direction not completely negligible) HE11 guided in an

optical fibre with radius ρ = 0.25 µm and surrounded by water. The pene-

tration depth of the evanescent wave generated is Λ = q−1 ≃ 16ρ. Figure 5.3

shows the field distributions for this case. The fibre can support only the

fundamental mode since the cut-off frequency for single mode operation is

Vc = 2.405 which is greater than the normalised size parameter of the taper,

V = kρ
√
n2
1 − n2

2 ≃ 0.831.
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(a) (b)

(c) (d)

Figure 5.3: Directed fields for the quasi-linearly (x-) polarised
fundamental HE11 mode in silica fibre with radius 250 nm, wave-
length λ = 1.064 µm and total mode power P = 3.9 × 10−11 W.
(a) field in the dominant polarisation direction, x; (b) field in the
orthogonal polarisation direction, y; (c) field in the propagation
direction, z; (d) Total field.

It is apparent in Figure 5.4 that a discontinuity of |Ex|2 is observed at the

fibre surface in the x- direction but not in the y-. This is due to the conditions

for continuity of the electric field components perpendicular (ε1E
⊥
1 = ε2E

⊥
2 )

and parallel (E
∥
1 = E

∥
2) to the fibre surface.

Even though the intensities of the transverse component Ey and the lon-

gitudinal component Ez are weaker than the intensity of the major transverse

component Ex they are not insignificant. Since the transverse components of

the electric field have the same phase, the orientation of the total transverse

component E⊥ varies slightly in direction due to the small component of Ey.

However, there is a phase difference of π/2 between the transverse components

and the longitudinal component Ez causing the total electric field Ē to rotate

elliptically in a plane parallel to the propagation axis, z. Furthermore, inside



CHAPTER 5. FIELDS AND FORCES AROUND A NANO-FIBRE 100

the fibre there is a small variation in the transverse component direction due

to the non-zero Ey component hence the designation quasi-linear polarization.

Outside the fibre, Ey is considerable causing E⊥ to vary in space [85].
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Figure 5.4: |Ex|2 in the fundamental mode HE11 with quasi-linear
(x-) polarisation for various fibre radii and λ = 1064 nm. (a) as a
function of x at y = 0. A discontinuity in the field at the boundary
of the fibre is observed for all cases; (b) as a function of y at x = 0.
The penetration depth Λ of the evanescent wave generated increases
as the fibre radius decreases. The parameters for the black curve
are close to those used to conduct experiments.

5.3.2 Circularly Polarised Light

Next, we consider the case of the circularly polarised HE11 mode which is

guided in an optical fibre with the same parameters as in the previous section.

Figure 5.5a shows the field distribution of the intensity of the transverse com-

ponent of the electric field while Figure 5.5b shows the intensity distribution

of the longitudinal component of the electric field. The moduli of longitudi-

nal and transverse components for various fibre radii are shown in Figure 5.7.

Similarly to the quasi linear polarisation case the penetration depth Λ of the

evanescent wave generated increases as the fibre radius decreases.

The total intensity for this case is cylindrically symmetric. |Ex|2 in the

x-direction and |Ey|2 in the y-direction have equal magnitudes and phase dif-

ference of π/2 indicating that inside the fibre the total transverse component

of the electric field is circularly polarised. For the region outside the mag-

nitude of ellipticity is constant, but there is an azimuthal phase gradient as

the intensities of the two transverse components differ from each other with ϕ.

The longitudinal component of the electric field Ez is cylindrically symmetric



CHAPTER 5. FIELDS AND FORCES AROUND A NANO-FIBRE 101

(a) (b)

Figure 5.5: Directed fields magnitudes for the circularly polarised
fundamental HE11 mode in silica nano-fibre with radius 250 nm,
wavelength λ = 1.064 µm. (a) transverse component field; (b)
longitudinal component field.

in the whole cross-section plane. Even though it is smaller than the transverse

components it cannot be neglected [85].

5.4 Optical Forces Around Tapered Optical

Fibres

In this section we consider the forces originating from the evanescent field

of a tapered fibre. These optical forces acting on particles with radius r in

the vicinity of the tapered region can be calculated for the Rayleigh regime

(r << λ) in contrast with Mie regime (r ≈ λ) discussed in Chapter 2. For

this case the particles can be considered as point dipoles in an inhomogeneous

electric field.

When a sphere is in an external electromagnetic field Ē, a dipole moment

is induced [86]:

d̄ = αĒ (5.37)

where α is an effective polarisability that accounts for the effects of dynamic

depolarization and radiative reaction [87] (see Section 5.4.1).

Using Lorentz force law and Maxwell’s equations we get an expression for

the time-averaged force acting on the dipole [88]:

⟨F̄ ⟩ = 1

2
Re

(
i∑
αEi(r1)∇E∗

i (r)|r=r1

)
(5.38)



CHAPTER 5. FIELDS AND FORCES AROUND A NANO-FIBRE 102

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

distance, x / a

|E
x
|2

 +
 |

E
y
|2

 (
a

rb
. 
u

n
it

s
)

 

 

ρ = 200 nm

ρ  = 300 nm

ρ  = 400 nm

ρ  = 500 nm

(a)

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

distance, x / a

|E
z
|2

 (
a

rb
. 
u

n
it

s
)

 

 

ρ  = 200 nm

ρ  = 300 nm

ρ  = 400 nm

ρ  = 500 nm

(b)

Figure 5.6: (a) |Ex|2 + |Ey|2 as a function of x at y = 0; (b) |Ez|2
as a function of x at y = 0. The penetration depth Λ of the evanes-
cent wave generated increases as the fibre radius decreases. The
parameters for the black curve are close to those used to conduct
experiments.

By using the vector identity
∑

iEi∇E∗
i = (Ē · ∇)Ē∗ + Ē × (∇ × Ē∗) and

∇× Ē = iωµ0H̄, Equation 5.38 can be re-written as:

⟨F̄ ⟩ = 1

4
Re(α)∇|Ē|2 + σscat

2c
Re(Ē × H̄∗) +

σscat
2

Re

(
i
ε0
k0

(Ē · ∇)Ē∗
)
, (5.39)

where c is the speed of light in vacuum and σscat is the scattering cross-section.

The first term of the equation is the ‘gradient force’ which is proportional to the

gradient of the irradiance |Ē|2 [12]. The second term is the optical ‘scattering

force’ containing the time-averaged Poynting vector ⟨S̄⟩ = 1
2
Re(Ē × H̄∗).

The third term is a force arising from the gradient of the time-averaged spin

density [89]. In order to obtain a simplified expression for the time-averaged

spin density we apply the vector identity −2iIm{(Ē∗ · ∇)Ē} = ∇× (Ē × Ē∗).

Therefore:

σscat
2

Re

(
i
ε0
k0

(Ē · ∇)Ē∗
)

= σscatc∇×
( ε0
4iω

(Ē × Ē∗)
)

(5.40)

The time-averaged spin density is given by:

⟨L̄S⟩ =
ε0
4iω

(Ē × Ē∗) (5.41)

The curl of the spin density of the field is a force which is zero for a plane
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wave [90] but it may significant when this is not the case such as high numerical

aperture systems [91] or in the presence of strong polarisation gradients which

makes it important to the discussion related to the evanescent fields around a

tapered fibre.

Radiation pressure originates from the momentum transfer to the particle

and it is in the direction of the momentum transfer which is the same as the

direction of the propagating beam. It contains both the scattering and the

spin curl forces. Both these forces contain the scattering cross-section σscatt

which for a small particle can be expressed as:

σscatt =
128r6π5

3λ4

[
(nsph/nmed)

2 − 1

(nsph/nmed)2 + 2

]2
(5.42)

For unidirectional mode propagation in the tapered fibre, the gradient force

traps the particles against the fibre and the radiation pressure, directed parallel

to the fibre, propels the particles in the propagation direction (see Chapter 7).

The spin curl force is of high significance for strongly localised fields such

as in the focal volume of high numerical aperture objective lens [91] and it is

expected to be the case for guided modes in high numerical aperture fibres.

Figure 5.7 shows the non-zero components of the spin density for the circularly-

polarised HE11 mode guided in a fibre of radius ρ = 500 nm immersed in water.

The Poynting vector S̄ = (1/2)Re[Ē×H̄∗] in a linear polarisation configura-

tion has a non-zero longitudinal component and a zero azimuthal component.

For the circularly polarised case both these components are non-zero which

implies that particles in the vicinity of the tapered region will be driven in

a helical trajectory along and around the fibre as it was calculated previ-

ously for ultra-cold atoms [92]. The radial component of the Poynting vector

Sr = (1/2)Re[EϕH
∗
z−EzH

∗
ϕ] is zero for guided modes in any fibre structure [93].

Figure 5.8 shows the non-zero components of the Poynting vector for both lin-

ear and circular polarisations.

The presence of non-zero azimuthal components of the Poynting vector and

the curl of the spin density give rise to an additional component to the force

transverse to the axis of the fibre.

When calculating the optical forces we neglect the effects of multiple scat-

tering between the particle and the tapered fibre. We assume that the particle

is not too close to the fibre and that the contrast in the dielectric constant

between the substrate and the surrounding medium is relatively low [94].
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(a) (b)

(c)

φ

(d)

Figure 5.7: Components of the spin density in circularly polarised
HE11 mode guided in a tapered fibre of radius ρ = 500 nm and
λ = 1064 nm. (a) x-component; (b) y-component; (c) z-component;
(d) ϕ-component.
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(a)

(b) (c)

Figure 5.8: Non-zero components of the Poynting vector for
the quasi-linearly (x-) and circularly polarised fundamental HE11

modes in a silica fibre with radius 250 nm, wavelength λ = 1.064 µm
and total mode power P = 3.9 × 10−11 W. (a) Longitudinal com-
ponent for the quasi-linearly (x-) polarisation; (b) azimuthal com-
ponent and (c) longitudinal component for circular polarisation.

Additionally, we must keep in mind that particles in water solution expe-

rience a Brownian motion due to thermal fluctuations. The thermal energy

of a particle is given by kBT , where kB is the Boltzmann constant and T is

the temperature in Kelvin. This suggests that if the thermal energy is greater

than the trapping potential (integral of gradient force):

U =
2πnmedr

3

c

[
(nsph/nmed)

2 − 1

(nsph/nmed)2 + 2

]
, (5.43)

the particle is likely to escape the trap.
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5.4.1 Interaction with Metallic Nano-particles

First, we briefly discuss the Lorentz-Drude model which uses a number of

damped harmonic oscillators to model the resonances in the frequency response

of the metal.

The Drude model assumes that the valence electrons of the metallic atoms

are free to move in the metallic structure while the metallic ions act as the

immobile positive charges [95].

When a time-dependent electric field, E(t) = E0e
−iωt, is applied on a metal

electrons exhibit an oscillatory motion, x(t) = x0e
−iωt. The equation of motion

for the electrons is given by:

me
∂2x

∂t2
+meΓ0

∂x

∂t
= −qE, (5.44)

where me is the electron mass, Γ0 is the collision dumping frequency and q = e

the electron charge. Solving the above equation leads to:

ε(f)(ω) = 1−
Ω2
p

ω(ω − iΓ0)
, (5.45)

where ε(f)(ω) is the intraband part of the dielectric function for the free-

electron effects where Ωp is the plasmon frequency of the free electron gas:

Ωp =

√
nde2

meε0
, (5.46)

where nd is the electron number density. Since the refractive index of a material

is n =
√
ε(ω), the relation between ωp (ωp = Ωp/

√
1/Γ0) and ω determines

whether the material is transparent or opaque. If ωp > ω the dielectric constant

function is negative and therefore the refractive index is imaginary implying

that the electron motion is sufficient to shield the electric field from entering

the material. However if ωp < ω then the refractive index is positive meaning

that electrons are unable to shield the light from entering the material which

becomes transparent.

The interband part of the dielectric function for the bound electron effects

is resembled by the Lorentz model result for insulators [96]:

ε(b)(ω) =
K∑
k=1

fkω
2
p

(ω2
k − ω2) + iωΓk

, (5.47)
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where k is the number of oscillators with frequency ωk, strength fk and lifetime

1/Γk.

The dielectric function ε(ω) can be expressed as the sum of ε(f)(ω) and

ε(b)(ω) and is contained in the polarisability of small particles which is found

from an expansion of the first TM mode of Mie theory to the second order in

the size parameter, x = πr/λ0 [87]:

α(ω) =
1− 1

10
(ε(ω) + εm)x

2(
1
3
+ εm

ε(ω)−εm

)
− 1

30
(ε(ω) + 10εm)− i4π

2ε
3/2
m

3
V
λ30

V (5.48)

where V is the volume of the particle. For larger particles the Rayleigh approx-

imation fails and retardation effects need to be accounted [97]. The above ex-

pression for the polarizibility reproduces the shift to longer wavelengths of the

plasmon resonance with increasing particle size. The polarisability of metallic

particles is larger than that of dielectric ones [98]. Hence the imaginary part

of polarisability is of high significance for metallic particles. We can then ex-

press the absorption, σabs, and scattering, σscat, cross-sections in terms of the

frequency depended polarisability α(ω):

σabs =
k0
ε0
Im{α(ω)}; σscat =

k4

6πε20
|α(ω)|2 (5.49)

Therefore, the total extinction cross-section, σext = σabs + σscat, should be

considered for metallic particles.

We use this model to calculate the plasmonic properties of metallic particles

using parameters tabulated in [99] which produce a good fit to the experimental

data of [96] in the range of λ = 200− 1000 nm. Figure 5.9 shows an example

of calculated optical properties of a silver nano-particle immersed in water

with radius 20 nm for a wavelength range λ = 200 − 500 nm. It is apparent

that there is a change of sign in the Re{α} around the plasmon resonance

region, and hence repulsive or attractive optical gradient forces for blue- or

red-detuned laser frequencies respectively [100]. The peaks at λ = 408 nm for

the scattering and absorbing cross-sections are due to the resonance feature of

the imaginary part of the polarisability.

We can now write the optical forces around the nano-fibre in terms of the

polarisabilty α and the extinction cross-section σext. The gradient force

F̄grad = −1

4
Re{α}∇|E|2 (5.50)
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Figure 5.9: Optical properties of silver nano-particle with radius
20 nm calculated with the Lorentz-Drude model. (a) real part of the
polarisability, Re[α]; (b) imaginary part of the polarisability, Im[α];
(c) absorption cross-section, σabs; (d) scattering cross-section, σscat.

that acts in the direction of the gradient of the intensity in the beam, the

scattering force

F̄scat =
σext
c

⟨S̄⟩ (5.51)

that acts in the direction of the time-averaged Poynting vector, and the spin

curl force

F̄spin = c σext(∇× ⟨L̄s⟩), (5.52)

which acts in the plane transverse to the direction of propagation. Figure 5.10

shows the components of the latter for the case of the circularly polarised HE11

mode guided in a fibre with radius ρ = 500 nm immersed in water. The force

is acting on a silver nano-particle with radius a = 20 nm. The radial force is

zero because it is a guided wave. The other forces are expected to propel a

particle along (z) and around (ϕ) the fibre.
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(a) (b)

(c) (d)

(e)

Figure 5.10: Components of the spin curl force acting on a 20
nm radius silver particle in circularly polarised HE11 mode guided
in a tapered fibre of radius ρ = 500 nm and λ = 1064 nm. (a)
x-component; (b) y-component; (c) z-component; (d) radial com-
ponent; (e) ϕ-component.
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5.5 Optical Manipulation of Metallic Nano-

particles on Tapered Optical Fibres

This section deals with optical manipulation of metallic (silver and gold) nano-

particles around the tapered region of a fibre. Metallic particles have unique

optical properties due to the plasmon resonance in their scattering spectrum

[101]. The optical forces can be enhanced by the proximity of the laser wave-

length to such resonance in the particle. It has been demonstrated that such

enhancement was utilised to achieve stable trapping in single-beam optical

tweezers [102, 103] which might otherwise be difficult due to the volume scal-

ing of the optical gradient forces for such small particles [104]. Recently good

agreement between experimental results and theoretical calculations of trap-

ping forces has been demonstrated for single metallic particles [105, 106] and

nano-particle aggregates [107].

Optical manipulation of metallic nano-particles using the evanescent field

of a channel waveguide fabricated by ion-exchange technique [108] has been

demonstrated. In addition the enhancement of the optical forces using

the surface plasmon of a thin gold thin film was used to manipulate both

polystyrene [109] and gold particles [110].

The relatively narrow plasmon resonance line-shape of silver leads to a

region on the blue-detuned side of the resonance where the real part of the

polarisability of the nano-particle can be negative. As mentioned this causes

the optical gradient force to be repulsive, and can be exploited to induce

particle repulsion from a surface [111]. This is analogous to that used in the

gravito-optical surface trap for ultra-cold atoms [112].

When using two counter-propagating laser beams, one which is red-detuned

from the plasmon resonance and one that is blue-detuned, then the competition

of the attractive and repulsive forces can be utilised as an extra degree of

control over the optical trapping. A bi-chromatic trap for ultra-cold atoms in

the evanescent field of a tapered fibre has been demonstrated [85].

5.5.1 Silver Nano-particles

Here we present calculations for the interaction energies of red- and blue-

detuned wavelengths from the plasmon resonance of a silver particle with 20

nm radius in water at λp = 408.3 nm for different polarisation configurations.

Figure 5.11 shows the extinction curve for silver particles of this size under
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these conditions.
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Figure 5.11: Total cross-section σext = σscat + σabs for silver as a
function of wavelength.

5.5.1.1 Lin ∥ Lin Configuration

The first case we consider is that of two counter-propagating HE11 modes, red-

and blue- detuned with respect to the plasmon resonance with parallel linear

polarizations. The wavelengths chosen are those of commercially available

diode laser systems, λR = 457 nm and λB = 405 nm. Due to the width of

the plasmon resonance the typical difference in frequency between the two

laser modes is sufficiently large so that any effects due to mode beating can

be neglected and the forces arising from the two modes simply added [113].

The fibre radius is 150 nm, and the silver nano-particle has a radius of 20 nm

(small enough to be treated as a Rayleigh particle).

Figure 5.12 shows the dipole interaction energies for red- and blue- detuned

laser wavelengths. The interaction energies are plotted in terms of kBT (kB is

the Boltzmann’s constant and T a temperature of 293 K) and are normalised

per unit power contained in the mode both inside and outside the fibre.

The intensity of the blue-detuned beam is scaled such that the energy is

zero at the edge of the fibre. The shorter decay length of the blue-detuned

evanescent field creates a potential barrier around the fibre.

Two potential energy minima exist where nano-particles may localise. For

these parameters λB is close to the peak of the cross section, so it is expected

that the force arising from the imbalance of the radiation pressure (10s of pN
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(a) (b)

(c)

Figure 5.12: Normalised dipole interaction energies for red- and
blue- detuned laser beams with parallel linear polarisations.(a)
λR = 457 nm > λp; (b) λB = 405 nm < λp; (c) Total bi-chromatic
interaction energy.

/ W) will drive the nano-particles along the fibre. Forces and energies scale

linearly with power, so the values stated here are normalized for 1 W of total

power in the mode. Stable trapping could be achieved by balancing radiation

pressure with pairs of counter-propagating beams [21] which will also modulate

the intensity (and hence the optical dipole potential) along the length of the

fibre providing an additional degree of localisation [114].

For plasmonic nano-particles, the magnitude of the propelling force is max-

imum when the laser is tuned to the plasmon resonance, where the cross-

sections are σabs = 1.72 × 10−14 m2 and σscat = 6.58 × 10−15m2, and the

maximum propelling force adjacent to the fibre is Fz = 507 pN W−1, decreas-

ing to Fz = 84 pN W−1 at a distance from the fibre equal to the fibre radius

(these forces are also normalised per unit power in the mode). At this dis-

tance, approximately 90% of the force arises from the radiation pressure, and

the remaining 10% from the curl of the spin density. The resulting propaga-
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tion speed of the particle along the fibre is estimated from the Stokes drag

on a sphere corrected for the presence of a cylindrical boundary [115] to be

vz = 224 mm s−1 W−1.

The net scattering force for the parameters used here is found to be

119 pN W−1 at the minimum of the dipole potential. Nano-particles would

be driven by this force at an estimated speed of vz = 307 mm s−1 W−1 in the

direction of propagation of the blue-detuned beam.

We also consider evanescent field penetration depth dependency on laser

wavelength. Figure 5.13 shows the normalised interaction potential in the

predominant polarisation direction for different wavelengths. It can be seen

that further detuning to the red side of the plasmon resonance the evanescent

field penetrates further into the surrounding medium and the potential well

becomes broader and shallower. However as we move further to the blue side

of the plasmon resonance the effect is the opposite.
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Figure 5.13: Dipole interaction energy for different wavelengths
around silver resonance.

5.5.1.2 Lin ⊥ Lin Configuration

Next we consider two counter-propagating HE11 modes, red- and blue- detuned

with respect to the plasmon resonance (same wavelengths as previous case)

with orthogonal linear polarizations.
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In Figure 5.14 we observe two shallow potential minima that are found

along the direction of polarization of the red-detuned beam (x-direction). The

amplitude of blue-detuned evanescent field is smaller in this direction as here

its polarization is parallel to the fibre-water interface. Instead the intense

blue-detuned evanescent field in the y-direction provides a strong barrier to

azimuthal motion.

(a) (b)

(c)

Figure 5.14: Normalised dipole interaction energies for red- and
blue- detuned laser beams with orthogonal linear polarisations.(a)
λR = 457 nm > λp; (b) λB = 405 nm < λp; (c) Total bi-chromatic
interaction energy.

5.5.1.3 σ − σ Configuration

If both beams have a circular polarization the net potential has azimuthal

symmetry and particles are not localized at one point. Indeed, due to the

presence of a non-zero azimuthal component of the Poynting vector we expect

particles to be driven in a helical trajectory around and along the fibre. Fig-

ure 5.15 shows the dipole interaction energies for red- and blue- detuned laser

wavelengths.
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(a) (b)

(c)

Figure 5.15: Normalised dipole interaction energies for red- and
blue- detuned laser beams with circular polarisations. (a) λR =
457 nm > λp; (b) λB = 405 nm < λp; (c) Total bi-chromatic
interaction energy.

For this case, the net axial component of the force (normalised) is Fz =

57 pN W−1 and the azimuthal component Fϕ = 10 pN W−1 at the minimum

of the dipole potential. From this we estimate the components of velocity

of vz = 151 mm s−1W−1 and vϕ = 26 mm s−1W−1. The magnitude of the

transverse force depends on the relative senses of circular polarization of the

two beams and determines the pitch of the helical path. For parameters similar

to the above calculations we find a pitch of around 10 µm.

5.5.2 Gold Nano-particles

Next, we consider the optical trapping of gold nano-particles in the vicinity of

a tapered fibre. The calculations here are made for the same fibre parameters

and particle diameter as above. Figure 5.16 shows the optical properties of a

gold particle with radius of 20 nm immersed in water. The real part of the

polarisability here differs from that of silver in the sense that there is no change
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in sign for the whole wavelength range. This implies that the gradient force

is always attractive and therefore red- and blue- detuned counter-propagating

beams from the plasmon resonance do not provide the same results as in the

case of silver particles. However monochromatic trapping can be achieved

where nano-particles are propelled along the fibre.
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Figure 5.16: Optical properties of gold nano-particle with radius
20 nm calculated with the Lorentz-Drude model. (a) real part of
the polarisability, Re{α}; (b) imaginary part of the polarisability,
Im{α}; (c) Total cross-section σext.

We observe two resonances in the extinction cross-section plot. The peaks

at the short wavelength are the inter-band transition. Here we consider wave-

lengths around the intra-band transition, λp = 520 nm, since the first resonance

is too far into the UV to be useful (laser sources not available and glass does

not transmit in UV).
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5.5.2.1 Linear Polarisation

We consider two different laser wavelengths (one blue-detuned and one red-

detuned from the gold plasmon resonance) for particle propulsion along a ta-

pered fibre. Figure 5.17 shows the dipole interaction energies for the two cases.

(a) (b)

Figure 5.17: Normalised dipole interaction energies for red- and
blue- detuned laser beams with linear polarisations. (a) λB =
515 nm < λp; (b) λR = 532 nm > λp.

For this configuration the net axial force is F
(R)
z = 3.33 pN W−1 and

F
(B)
z = 3.67 pN W−1 at d = ρ for λR = 532 nm and λB = 515 nm re-

spectively. The resulting propulsion velocities v
(R)
z = 8 mm s−1 W−1 and

v
(B)
z = 10 mm s−1 W−1.

Figure 5.18 presents the dipole interaction energies across the x-direction

and the penetration depth Λ of the evanescent field for different wavelengths.

It is apparent that the penetration depth increases with wavelength.
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Figure 5.18: (a) Dipole interaction energy for different wave-
lengths around gold resonance; (b) Evanescent field penetration
depth Λ vs wavelength.

5.5.2.2 Circular Polarisation

The same wavelength parameters are now considered in a circular polarised

configuration. Figure 5.19 shows the interaction energies for the two cases.

Similarly we calculate the axial and azimuthal components of the forces.

For the blue-detuned wavelength the axial force component at d = ρ is calcu-

lated to be F
(B)
z = 2.00 pN W−1 and for the red-detuned F

(B)
z = 1.92 pN W−1.

The resulting axial velocity components of v
(B)
z = 5.32 mm s−1 W−1 and

v
(R)
z = 5.11 mm s−1 W−1. The azimuthal force components are F

(B)
ϕ =

0.44 pN W−1and F
(R)
ϕ = 0.62 pN W−1. From this the estimated velocity

components are v
(B)
ϕ = 1.17 mm s−1 W−1 and v

(R)
ϕ = 1.65 mm s−1 W−1.
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(a) (b)

Figure 5.19: Normalised dipole interaction energies for red- and
blue- detuned laser beams with circular polarisations. (a) λB =
515 nm < λp; (b) λR = 532 nm > λp.

5.5.3 Particle Sorting

It is implied that the sensitivity of metallic nano-particles to the wavelength of

guided light in a nano-fibre can lead to particle sorting applications. Here we

present calculations based on previous discussions in this chapter suggesting

methods for sorting gold and silver nano-particles. We study the case where

a gold and a silver nano-particle of the same radius (a = 20 nm) are in the

vicinity of the evanescent field generated near the surface of tapered fibre

with radius ρ = 250 nm, immersed in water. The wavelength chosen here is

λ = 405 nm which is blue-detuned from silver’s resonance. The calculations

were made for the the quasi-linearly (x-) polarised fundamental mode HE11.

Figure 5.20 shows the normalised interaction energies for both materials. We

can clearly see that the gold particle is attracted to the surface of the fibre

whereas the silver is repulsed.

If the guided wavelength is chosen to be on the red-detuned side of silver’s

plasmon resonance then both particles will be attracted to the fibre. Sorting in

this case can be achieved by comparing the propelling velocities of the particles

along the fibre axis. Figure 5.21 shows the distance along the fibre as a function

of time (particles are a distance d = ρ away from the fibre surface) for both

materials. The parameters here are kept the same except the wavelength which

it was chosen to be λ = 457 nm. It is evident that the silver particle will be

propelled much faster than the gold one as the guided wavelength is closer

to the resonance of silver, hence the axial scattering force is greater for this

material.
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Figure 5.20: Calculations on particle sorting: Normalised inter-
action energies for both gold and silver nano-particles with radius
a = 20 nm at a distance d = ρ away from the fibre surface. This
case is for the quasi-linearly (x-) polarised fundamental mode HE11

(λ = 405 nm) guided in fibre with radius ρ = 250 nm and immersed
in water.
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Figure 5.21: Calculations on particle sorting: Propelling distance
along the fibre as a function of time for both gold and silver nano-
particles with radius a = 20 nm at a distance d = ρ away from
the fibre surface. This case is for the quasi-linearly (x-) polarised
fundamental mode HE11 (λ = 457 nm) guided in fibre with radius
ρ = 250 nm and immersed in water.
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Both these results suggest that particle sorting is possible when the wave-

length of the guided mode is chosen carefully.

5.6 Outlook

We have shown how the electric field distribution around a tapered fibre can

be calculated by using the exact solution of Maxwell’s equations in a cylin-

drical symmetric geometry. In addition, numerical calculations of the field

distributions inside and outside a tapered fibre have been made. It has been

shown that the local polarisation has a strong dependence on the fibre param-

eters: diameter and the refractive index. The cases of quasi-linear and circular

polarised fundamental mode HE11 have been studied.

Furthermore, we have considered the optical forces originating from the

evanescent field of a tapered fibre. Namely expressions for the gradient, scat-

tering and spin curl forces have been presented. Additionally, we have used

the Lorentz-Drude model to account for the interaction with metallic nano-

particles and derived an expression for the complex polarisability, α. The

optical forces were then written in terms of the polarisibility.

Finally, the optical manipulation of metallic (silver and gold) nano-particles

around a tapered fibre was discussed. It is suggested that the sensitivity of the

nano-particle dynamics to the polarisation and wavelength of the laser fields

through the plasmon resonance could make such tapered fibres an effective

tool for sorting nano-particles according to property-dependent criteria.



Chapter 6

Tapered Optical Fibre Trap:

Method

6.1 Introduction

In this chapter, a detailed description of a low-cost heat-and-pull apparatus

(similar to the one described in [116]) used to fabricate tapered optical fibres

suitable for optical trapping is provided. The fibre-pulling rig uses a butane

torch which heats a small region of a single-mode fibre while it is being pulled.

Alternative heating methods suitable for the fabrication of nano-fibres have

been suggested and presented by various groups [117, 116, 118].

Additionally, the experimental set-up used for the conduction of experi-

ments using tapered optical fibres as a trapping geometry is described. Simi-

larly to the evanescent wave surface trap, the particle motion along the tapered

region of the fibre is analysed using video microscopy. The experimental anal-

ysis and results will be discussed in the next chapter.

We also present the fabrication of fused tapered fibre couplers where two fi-

bres are twisted together before being pulled. The coupling of the two different

ends as a function of the polarising angle of the input beam is shown.
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6.2 Fibre-pulling rig

Tapered optical fibres are fabricated using a heat-and-pull method on a

custom-made fibre-pulling rig (Figure 6.1). The fibre-pulling rig consists of

two motorised translation stages (8MT167-100 by Standa Ltd) which are con-

trolled by a micro-step driver (8SMC1-USBhF-B2-4 by Standa Ltd). This

driver allows the control of the stages within a 1 µm accuracy. V-groove fi-

bre camps were mounted on each of the stages which were used to hold the

fibres. An oxy-butane torch was mounted horizontally onto a labjack with its

nozzle pointing vertically. The labjack allowed the adjustment of the flame

height. In turn, the labjack was positioned on a rail which provided movement

of the flame towards or away the fibre. A manually operated translation stage

of 1 µm accuracy was mounted vertically. A stage with a circular hole was

attached to it. This stage was used to bring glass slides to the fibre once the

pulling process was complete. The circular hole in the middle of the stage was

to allow the torch nozzle to remain in position thus avoiding breakage during

the fibre mounting.

A length of standard single-mode optical fibre (SM-980-5.8-125 from Thor-

labs Inc. NJ) has a short section (20 mm) of the protective polymer buffer

stripped away to reveal the cladding glass of the wave-guide. This region is

then cleaned with isopropyl alcohol to remove any dust. The fibre is held in the

V-groove fibre clamps which are mounted on the motorised translation stages.

The exposed glass region is heated by the butane gas torch. The oxygen flow

of the butane torch can be adjusted to produce a blue flame minimizing the

amount of carbon deposited on the tapered region which can affect the pene-

tration depth of the evanescent field. The size of the flame (approx. 2 cm) and

the position of the fibre in it, are optimized so that the heat is sufficient to

melt the fibre and in parallel avoid breakage during pulling. The fibre is placed

directly above the tip of the flame. The stages are driven apart a distance of

20 - 30 mm at speeds of between 0.5 and 1.0 mm s-1 using a LabVIEW based

code which controls the micro-step driver. When the stages reach their desired

destination the flame is removed and the fibre is further stretched by driving

the stages in small steps. This ensures that any bending caused by the flame

pressure is tightened.
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Figure 6.1: Custom made fibre-pulling rig suitable for heat-and-
pull fabrication of tapered optical fibres. The apparatus uses a
butane torch which heats a small region of a standard optical fibre
while it is being pulled by two motorised stages.

The tapering process is monitored by coupling light from a diode laser

(wavelength λ0 = 630 nm) into the fibre. The transmitted power is measured,

as the pulling process occurs, by a photo-diode on one end of the fibre. The

photo-diode is connected to a computer running a PicoScope oscilloscope soft-

ware. A plot of the transmission during a typical tapering process is shown

in Figure 6.2. Some features of the pulling process are evident here: at the

point labelled ‘A’ a sudden decrease in the transmitted intensity is observed,

corresponding to the core glass material being tapered away leaving a wave-

guide made of the remaining cladding glass. Due to its large diameter this

wave-guide is multi-mode. As the pulling process continues and the wave-

guide diameter is tapered further, beating between the higher modes (due to

the different propagation constants) of the wave-guide is observed until they

are cut-off, and only the fundamental mode of the wave-guiding structure re-

mains [119]. Eventually on reaching the single mode condition (approximately

at the point labelled ‘B’) no further decrease in transmitted intensity is ob-

served. Transmission of the tapered fibres we produce in this way is less than

100% which is probably due to non adiabaticity of the taper leading to losses

in the tapered region [120].
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A

B

Figure 6.2: Transmission of the optical fibre during the pulling
process. At ‘A’ the core glass has tapered away leaving a (multi-
mode) wave-guide made only of the cladding glass. At ‘B’ the
cladding glass waveguide has reached the single mode condition.

The tapered fibre is then mounted on a custom-made microscope slide

containing a 300 µm deep groove (Figure 6.3). The fibre was then secured on

the glass slide by nail polish. Each end of the tapered fibre was cleaved and

inserted into a fibre-to-fibre splice unit to couple in laser light.

This process usually achieves a bi-conical taper that is typically 1 µm in

diameter. The diameter of the tapered region is estimated by comparing it to

the known sized polystyrene particles.
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Figure 6.3: Mounted tapered fibre on custom-made slide. This
was actually not a very good taper for the experiment as the red
laser light was leaking out, however for the purposes of illustration
the tapered region of the fibre is well shown.

6.3 Tapered Optical Fibre Trap

The laser source for the optical binding experiment with the tapered fibre

is a single-mode Nd:YAG laser (ventus IR 1064 by Laser Quantum) with a

maximum output power of 3 W. The output beam is coupled into a length

of the same type of optical fibre that is used for making the fibre tapers us-

ing a NA = 0.15 fibre port. These fibres are then connected to the tapered

fibre by means of a fibre-to-fibre splice. A HeNe laser is initially used for the

fibre-to-fibre splice alignment since the scattered light from the splice is easily

visible. When alignment is complete the connectorised fibre is connected to

the fibre port which couples in the Nd:YAG laser light. This fibre is mounted

on a manual fibre polarisation controller (FPC030 from Thorlabs Inc. NJ)

which modifies the polarisation of the guided light by utilizing stress-induced

birefringence [121].

A few tens of micro-litres of solution containing 2 µm diameter polystyrene

micro-spheres suspended in deionized water (with 10% by volume Triton-X-100

to prevent particles sticking to the fibre) is finally added and sealed beneath

a cover slip. The slide-mounted tapered fibre is then viewed in an inverted

microscope (Zeiss Axiovert 200). A diagram of the optical set-up is shown in

Figure 6.4.
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Figure 6.4: Apparatus for observing an evanescent wave particle
trap using tapered optical fibres. First, a HeNe laser is used for
alignment. Next, light from the Nd:YAG laser is coupled into a ta-
pered optical fibre for trapping experiments. The taper is mounted
in an inverted microscope and observed though a objective lens.

In this experiment, particle dynamics is again analysed by video recording

and particle tracking as described in Section 3.3.

6.4 Fused Tapered Fibre Couplers

Lastly we present a fused tapered fibre coupler fabricated using the fibre pulling

rig similar to [122] and modelled in [123]. Two fibres have a short section of

their protective polymer buffer cleaved. The cleaved sections are then twisted

together. The two fibres are fused together due to the heating and we obtain

a structure as shown in Figure 6.5

We monitor the output at both ends of the two fibres when coupling light

to Fibre ‘A’ via a fibre port. The polarisation angle of the input beam is

rotated by a λ/2 wave-plate. Figure 6.6 shows the intensity output of Fibre

‘A’, IA, normalised to the total intensity output, IA + IB, as a function of the

polarisation angle in degrees. It is apparent that light leaks out and into Fibre

‘B’ as the polarising angle varies. The sinusoidal fit does not oscillate from 1

to 0 meaning that there is always some light in both fibres. This is probably
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Figure 6.5: Fused twisted tapered fibres. Fibres ‘A’ and ‘B’ are
twisted together before the pulling process. The two fibres are then
fused due to heating.

due to the birefringence introduced to the fibres during the pulling process

which can lead to mode-mixing.
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Figure 6.6: Intensity varies with the polarising angle of the input
beam. Light is coupled in Fibre ‘A’ and the output at the ends of
Fibre ‘A’ and Fibre ‘B’ is monitored. The red curve is a sinusoidal
fit on the experimental data.

We anticipate that with further refinements to the tapering process to

improve the ratio of power splitting between the outputs, this tapered fused

fibre could be used to drive micro-particles to two different locations depending

on the polarising angle of the input beam. Even though some preliminary

results have been presented here, optimisation of the fabrication method has

to be made to achieve adiabatic fibre tapers.



CHAPTER 6. TAPERED OPTICAL FIBRE TRAP: METHOD 129

6.5 Outlook

The design and construction of a fibre-pulling rig suitable for fabricating ta-

pered fibres has been described in this chapter. The apparatus uses a butane

torch to heat a region of a standard optical fibre while it is being pulled. Mean-

while the apparatus produces tapers that are acceptable for the experiments

presented in the following chapter, several changes can be made to optimize

its performance. The butane can be replaced by hydrogen to create a more

uniform flame reducing the defects on the fibre. Furthermore, the flame could

be scanned along the region of the fibre while is being pulled in order to achieve

adiabatic fibre tapers. This will eliminate mode mixing which allows selective

excitation of fibre modes when used with fibre polarisation controllers.

Moreover, the experimental set-up that is used to produce the results pre-

sented next was described in detail. Similarly, optimisation changes can be

made specifically to achieve higher coupling efficiency into the taper. More

efficient methods (i.e. fusion splicing) than the fibre-to-fibre splice can be used

to achieve this.



Chapter 7

Tapered Optical Fibre Trap:

Results

7.1 Introduction

This chapter presents the experimental results obtained by using the tapered

fibres fabricated with the heat-and-pull method (Section 6.2) to manipulate

micro-particles. The tapered fibres obtained usually had a diameter of approx-

imately 1 µm. The laser beams coupled into the fibres have a wavelength of

1064 nm. As shown in Figure 5.2 the only allowed mode for these parameters

is the fundamental mode HE11. For these parameters we calculate that the

penetration depth is Λ = 0.39 µm, and approximately 26% of the mode power

is carried outside the fibre in the evanescent field.

We have studied the cases for both linear and circular polarisations of the

beam for which the propulsion speeds were measured using video microscopy

(Section 3.3). Additionally, laser beams are coupled into both ends of the

tapered fibre to observe the formation of 1-D chains similar to (Section 4.3).
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7.2 Optical Manipulation of Micro-Particles

First, we present results for the quasi-linearly (x-) polarised fundamental HE11

mode guided in a tapered fibre of radius of 500 nm. The intensity of the field

components around the tapered fibre for this case is shown in Figure 7.1 as

calculated by the method described in Section 5.3.

Figure 7.1: Directed fields for the quasi-linearly (x-) polarised
fundamental HE11 mode in silica fibre with radius 500 nm, wave-
length λ = 1.064 µm. Top left: field in the dominant polarisation
direction, x; Top right: field in the orthogonal polarisation direc-
tion, y; Bottom left: field in the propagation direction, z; Bottom
right: Total field.

When a single mode propagates unidirectionally in the tapered optical fibre,

micro-particles are observed to be drawn to the fibre (by the optical gradient

force) and propelled along it (by the scattering force) as shown in the sequence

of video frames taken at 2 s intervals in Figure 7.2. In this experiment particle

dynamics are analysed by video recording and particle tracking (Section 3.3).

In this case we track the particles centre of mass as they are pushed along the

tapered fibre. Figure 7.3 shows the recorded trajectory of two micro-particles

along the tapered fibre. Both particles move along the fibre at a uniform speed

of (6.95± 0.05) µm s-1.
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Figure 7.2: Sequence of video frames taken at 2 s intervals of
2 µm polystyrene spheres being propelled along a tapered fibre.
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Figure 7.3: The trajectory of two micro-particles along the ta-
pered fibre are shown (filled and open circles). Both particles move
along the fibre at a uniform speed of (6.95± 0.05) µm s-1.

Figure 7.4 demonstrates what happens to a 2 µm diameter polystyrene

particle that reaches the end of a fibre ‘half taper’, that is, a fibre that has

been tapered to breaking point. During time T1 the particle moves along the

fibre at a constant speed of (8.76 ± 0.03) µm s-1 before being rapidly ejected

from the tip before being brought to rest in a time T2 by viscous drag. This

demonstrates how tapered fibres or half tapers can be used for optical delivery

of micro-particles to a targeted region. The particle is confined against the

fibre all the way to the tip before being ejected.

7.2.1 Circular Polarisation

Next, we consider the case of the circularly polarised HE11 fundamental mode

guided in the fibre. The intensity of the field components with the same

parameters used in the previous section are shown in Figure 7.5.
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Figure 7.4: Particle shooting: the trajectory of a micro-particle
pushed towards the end of a fibre ‘half taper’. During he time T1
the particle moves along the fibre at a constant speed of (8.76 ±
0.03) µm s-1 before reaching the end of the fibre and being ejected.
During the time T2 the particle is moving freely through the fluid
and eventually brought to rest.

As discussed in Section 5.4 the circularly polarised HE11 mode is expected

to drive the particles in a helical trajectory along and around the fibre due

to the non-zero azimuthal component of the Poynting vector. Figure 7.6 is a

sequence of video frames showing the two 2 µm polystyrene spheres following

a helical trajectory.

The trajectory of these particles is reconstructed and plotted in Figure

7.7. The measurements uncertainties due to resolution were estimated to be

±0.25 µm. The polystyrene spheres were used to calibrate the video and

to estimate the fibre waist. The trajectories were fitted with a sinusoidal

function. The periods of the sinusoidal fits were found to be (26.0 ± 0.7) µm

and (26.8 ± 0.2) µm for particle ‘A’ and particle ‘B’ respectively. The two

periods agree within the stated errors. The z and ϕ velocity components of

the two particles were also measured. For particle ‘A’ vz = (5.48± 0.01) µm/s

and vϕ = (0.48 ± 0.02) µm/s and particle ‘B’ vz = (5.49 ± 0.02) µm/s and

vϕ = (0.46± 0.02) µm/s. These values also agree within the stated errors.

This result demonstrates the conversion of spin to angular momentum in

optical fibre tapers. It has been shown that this can be observed in high nu-

merical aperture focusing, by scattering of small particles and in paraxial light

fields incident on anisotropic media or non-paraxial fields in locally isotropic
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Figure 7.5: Directed fields and Poynting vector magnitudes for
the circularly polarised fundamental HE11 mode in silica nano-fibre
with radius 500 nm, wavelength λ = 1.064 µm. Top left: transverse
component field; Top right: longitudinal component field; Bottom
left: azimuthal component of the Poynting vector Sϕ; Bottom right:
longitudinal component of the Poynting vector vector, Sz.

media [124]. Optical fibre are considered to be an intermediated case of the

last two.

7.2.2 Two Beam Tapered-Fibre Trap

When laser beams are coupled into both ends of the tapered fibre, chains

of micro-particles are observed to form. Qualitatively, two distinct forms of

chain-like structure are observed. At places where the radiation pressure from

the counter-propagating beams is unequal, strings of particles separated by

approximately 2 - 3 particle diameters are pushed along the fibre. The separa-

tion between the particles is due to the combination of the attractive optical

binding force pulling the particles together and the fluid drag which moves

them apart. Oscillations in the trajectory are due to the transverse compo-

nents of optical momentum from the circularly polarized beam. Frequently

the particles in these strings are observed to follow a trajectory that oscillates
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Particle ‘B’

Particle ‘A’

Particle ‘A’

Particle ‘B’

Particle ‘B’

Particle ‘A’

Figure 7.6: Helical trajectory of micro-particles along and around
a tapered fibre. The dashed arrows indicate that the particle is
behind the fibre away from the camera.

z

Figure 7.7: Reconstructed helical trajectory of micro-particles
along and around a tapered fibre. The dashed lines are sinusoidal
fits and the grey lines are the fibre boundaries with their assorted
uncertainties.
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from one side of the tapered fibre to the other. Where the radiation pressure

from the beams is equal or nearly-equal we observe the particles bound into

chains similar to those formed in the surface trap described above.

Both behaviours are illustrated in the video frames shown in Figure 7.8.

In the first frame 2 µm diameter polystyrene spheres form short, stable op-

tically bound chains on the tapered fibre where the radiation pressure from

the counter-propagating beams is (nearly) balanced. In the next frame, more

particles are pushed into the trapping region from the right hand side by un-

balanced radiation pressure. The particles move at steady speed separated by

2-3 particle diameters and follow a trajectory that coils from one side of the

fibre to the other. In the third frame some of the additional particles have

been lost and stable chains form again.

Figure 7.8: Sequence of frames from a film of optical binding and
micro-particle chain formation in the evanescent field of a tapered
optical fibre. First frame: the radiation pressure from the counter-
propagating beams is (nearly) balanced; Second frame: unbalanced
radiation pressure and particles follow a trajectory that coils from
one side of the fibre to the other; Third frame: stable chains form
again.

Optical binding of such structures using this method may lead to the in-

vestigation of the different configurations in which the particles can be bound

by different mode structures, with potential applications in biophotonics for

single molecule detection and trafficking. For example the excitation of whis-

pering gallery modes in the bound micro-particles could be used for the hyper-

sensitive detection of single molecules. Micro-sphere lasers can be used as

highly sensitive sensors, achieving a wide range of emission wavelengths [125].

Ordered arrays of such lasers should provide an enhancement of the evanescent

field due to constructive interference effects, leading to an increased sensitivity
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for particle detection. Additionally, the delivery and transport of particles such

as drug capsules or bacteria may be achievable by using similar configurations.

7.3 Outlook

We have presented the analysis of the results obtained on optical manipulation

of micro-particles in the vicinity of the tapered region of a single mode fibre.

It has been demonstrated that polystyrene micro-particles can be attracted

to, and propelled along a fibre. It has been shown that the polarisation of the

mode guided in the fibre can control the motion of particles.

In the future the set-up could additionally be extended to incorporate an

optical tweezers set-up to characterise the optical potential created by the

evanescent wave as described in outlook section of Chapter 3. Even though

the polarisation of the beam coupled into the fibre is known, birefringence in

the fibre induced during the pulling process may convert the polarisation and

allow mode mixing. To draw more precise conclusions on the forces around the

fibre, the mode propagating in the tapered region needs to be measured. A

method allowing these measurements needs to be developed. Another addition

to the experiments is the use of higher order modes in the fibre [126]. To allow

the propagation of such modes in the fibres the adiabatic fabrication must be

ensured during the pulling process. The use of higher modes will provide an

extra degree of control on optical manipulation.



Chapter 8

Conclusion

8.1 Discussion

This thesis has presented the optical manipulation of micro-particles using

evanescent fields and the quantitative measurements of trapped particle dy-

namics using video microscopy. The cases of two trapping geometries have

been considered: the first is a surface trap where the evanescent field above a

glass prism is formed by the interference of a number of laser beams incident

on the prism-water interface; the second uses the evanescent field surround-

ing a bi-conical tapered optical fibre that has been stretched to produce a

waist of sub-micron diameter. The experimental studies of particle structures

were complemented by light scattering calculations based on Mie theory to

infer how the geometries of the observed particle structures are controlled by

the underlying incident and scattered optical fields. Some general conclusions

drawn throughout this thesis are listed:

• The Generalized Lorentz-Mie Theory of light scattering was used to sim-

ulate the fields inside and outside a sphere for different configurations

and beam shapes. Additionally, we have presented calculations of the

force acting on the scattering sphere. While the GLMT gives a quali-

tative understanding of the optical binding process several other factors

must be accounted for in a full description of the experimental geometry

used, including the amplitude variation across the particle of the inci-

dent evanescent field, multiple scattering between the particle and the

substrate, and multiple scattering between the particles in the optically

bound structure. Experimental results presented in this thesis, such as

the two-dimensional binding, highlight the need for rigorous multiple
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scattering effects in order to obtain results that match experiments.

• Silica micro-spheres form one-dimensional chain structures in the evanes-

cent field of two counter-propagating beams. The inter-particle separa-

tion in such structures depends on particle size. Even though, in the

presence of interference there exists a force exerted on a particle due to

the fringes, it has been shown that the forces that arise from the multi-

ple scattering of the incident field are dominant for some particle sizes.

This said, additional (to optical) effects must be included to completely

describe the structures formed i.e. the effects of hydrodynamic coupling

and electrostatic interactions between the spheres and the substrate.

• The spring constant can be derived from the Brownian motion of the

bound particles. We have quantified the optical potential for individual

particles held in optically bound arrays. The bound structures are more

stable with increasing laser power since the particles are held in deeper

potential wells.

• The use of two orthogonal beam pairs (incident and counter-propagating

beams) leads to the formation of two-dimensional arrays. We have found

that for two orthogonal beam pairs with parallel polarisations 1.0 µm sil-

ica particles are bound in square-lattice bound structures. Alternatively,

when the beam pairs are cross-polarised the same particles are trapped in

a hexagonal-lattice geometry. For the case of 0.8 µm silica particles, we

observed only the formation of hexagonal lattice arrays for both polarisa-

tion configurations. This suggests that the formation of two-dimensional

structures depends on particle size. This dependence with size, however,

is not as simple as the oscillating influence of the background with size as

shown in Chapter 4. As the particle size becomes larger the particles are

influenced by more trapping sites leading to different bound geometries.

Additionally, multiple smaller particles can occupy a single trapping site

resulting to close-packed bound structures.

• It has been shown for the first time that carbon nano-tube bundles can

be trapped in a counter-propagating beam evanescent surface trap con-

figuration and form chain like structures. The orientation of the cylinder

axis does not change with polarisation. A multiple light scattering model

for a number of interacting finite cylinders is needed. Such model is even

more complicated than one considering spherical objects.
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• The small diameter of tapered fibres and the relatively large difference

between the refractive indices of the fibre and the surrounding medium

can be utilised to produce strong evanescent field that can be used to

optically trap and bind micro- and nano-particles. In Chapter 5 we

have shown calculations for the evanescent field penetration depth as a

function of fibre diameter.

• It is suggested that the sensitivity of the nano-particle dynamics to the

polarisation and wavelength of the laser fields through the plasmon reso-

nance could make such tapered fibres an effective tool for sorting and sep-

arating nano-particles according to property-dependent criteria. We have

presented results demonstrating the motion of metallic nano-particles

along the tapered region of a tapered fibre for different polarisation con-

figurations. Furthermore, calculations were made supporting that sepa-

ration of metallic particles can be achieved when the wavelength of the

guided mode is chosen carefully.

• Polystyrene micro-particles can be attracted to, and propelled along the

tapered region of a fibre. The polarisation of the mode guided in the fibre

can control the motion of particles. An example of this statement is the

demonstration of the helical trajectory that particles follow when the

circularly polarised fundamental mode is guided in the taper as shown

in Chapter 5. This also demonstrates a conversion from spin to orbital

angular momentum of the light, previously observed in high NA optical

trapping.

In conclusion, it is anticipated that the sensitivity of the optical binding

phenomena to light polarisation, particle size and material can be potentially

a useful tool for selectively trapping, sorting and trafficking of micro-and nano-

particles.

8.2 Future Directions

Even though this thesis provides some results on the optical binding of micro-

particles in evanescent fields there are a number of questions still unanswered.

The work presented in this thesis is only the starting point to more precise

and complicated experiments:
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• Incorporate the evanescent field surface and fibre traps with optical

tweezers to make quantitative measurements of the binding force. This

technique uses a quadrant photo-diode (QPD) to collect the reflected

laser light of the surface of a trapped particle. The QPD is connected

to a computer and the force constant can be obtained. A weak opti-

cal tweezers traps the particle on top of the prism-water interface. The

particle feels the presence of the evanescent field and moves by a mea-

surable distance ∆x from equilibrium. Since the spring constant of the

tweezers is known, one can obtain the force due to the evanescent field

as F = −k∆x.

• Use of a fast camera for data collection will allow the measurement of

particle fluctuation correlations in the optically bound lattices. This can

potentially provide more information about the dynamics of the particles

in such bound states. It is also an additional way to calculate the optical

binding spring constant.

• Use ellipsoidal or rod-shaped particles to mimic Escherichia coli bacteria

biofilm formation: The aim of this is to get an understanding of the

alignment of such bacteria in the biofilm. This will help to identify if

E. coli bacteria align themselves in a biofilm due to their shape and

hydrodynamics or due to the protein-ligand interactions.

• Optimise the fibre pulling method to achieve adiabatic tapers. This will

enable the use of higher order modes that could lead to an extra degree

of control over particle manipulation. This may be beneficial to particle

sorting and transport.

• Use evanescent field surface traps and optical nanofibers enhanced by

plasmonic structures for interfacing, manipulating, and controlling col-

loidal micro- and nano-scale particles, as well as biological samples of

such sizes. This will result in new optical coupling schemes and further

understanding of light-matter interactions.
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forces from the curl of the spin angular momentum of a light field,”

Physical review letters, vol. 102, no. 11, p. 113602, 2009.

[90] J. Arias-Gonzalez and M. Nieto-Vesperinas, “Optical forces on small

particles: attractive and repulsive nature and plasmon-resonance condi-

tions,” JOSA A, vol. 20, no. 7, pp. 1201–1209, 2003.
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lations for metal nanoparticles. Comparison with experimental data for

Au and Ag spheres.” Optics express, vol. 17, no. 12, pp. 10 231–10 241,

2009.

[106] F. Hajizadeh and S. N. S Reihani, “Optimized optical trapping of gold

nanoparticles,” Optics express, vol. 18, no. 2, pp. 551–559, 2010.

[107] E. Messina, E. Cavallaro, A. Cacciola, M. A. Iat̀ı, P. G. Gucciardi,

F. Borghese, P. Denti, R. Saija, G. Compagnini, and M. Meneghetti,

“Plasmon-enhanced optical trapping of gold nanoaggregates with se-

lected optical properties,” ACS nano, vol. 5, no. 2, pp. 905–913, 2011.

[108] L. Ng, M. Zervas, J. Wilkinson, and B. Luff, “Manipulation of colloidal

gold nanoparticles in the evanescent field of a channel waveguide,” Ap-

plied Physics Letters, vol. 76, no. 15, pp. 1993–1995, 2000.

[109] G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon

radiation forces,” Physical review letters, vol. 96, no. 23, p. 238101, 2006.

[110] K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanopar-

ticles with surface plasmon polaritons: evidence of enhanced optical force

from near-field coupling between gold particle and gold film,” Nano let-

ters, vol. 9, no. 7, pp. 2623–2629, 2009.



BIBLIOGRAPHY 152

[111] P. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metal-

lic particle in the presence of a dielectric surface,” Physical Review B,

vol. 62, no. 16, p. 11185, 2000.

[112] Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs

atoms based on evanescent-wave cooling,” Physical review letters, vol. 79,

no. 12, pp. 2225–2228, 1997.

[113] M. Ploschner, T. Cizmar, M. Mazilu, A. Di Falco, and K. Dho-

lakia, “Bidirectional optical sorting of gold nanoparticles,” Nano letters,

vol. 12, no. 4, pp. 1923–1927, 2012.

[114] L. Zhao, Y. Li, J. Qi, J. Xu, and Q. Sun, “Quasi 3-dimensional opti-

cal trapping by two counter-propagating beams in nano-fiber,” Optics

express, vol. 18, no. 6, pp. 5724–5729, 2010.

[115] R. Cox, “The motion of suspended particles almost in contact,” Inter-

national Journal of Multiphase Flow, vol. 1, no. 2, pp. 343–371, 1974.

[116] G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical

fiber nanotapers,” Optics Express, vol. 12, no. 10, pp. 2258–2263, 2004.

[117] T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “Car-

bon dioxide laser fabrication of fused-fiber couplers and tapers,” Applied

Optics, vol. 38, no. 33, pp. 6845–6848, 1999.

[118] L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrica-

tion of submicron-diameter silica fibers using electric strip heater,” Opt.

Express, vol. 14, no. 12, pp. 5055–5060, 2006.

[119] A. Petchu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode

fibers: Mode evolution during fabrication and adiabaticity,” Journal of

Nonlinear Optical Physics and Materials, vol. 20, no. 03, pp. 293–307,

2011.

[120] T. A. Birks and Y. W. Li, “The shape of fiber tapers,” Lightwave Tech-

nology, Journal of, vol. 10, no. 4, pp. 432–438, 1992.

[121] H. Lefevre, “Single-mode fibre fractional wave devices and polarisation

controllers,” Electronics Letters, vol. 16, no. 20, pp. 778–780, 1980.

[122] K. Jedrzejewski, “Biconical fused taper-a universal fibre devices technol-

ogy,” OPTOELECTRONICS REVIEW, no. 2, pp. 153–160, 2000.



BIBLIOGRAPHY 153

[123] F. Payne, C. Hussey, and M. Yataki, “Modelling fused single-mode-fibre

couplers,” Electronics Letters, vol. 21, no. 11, pp. 461–462, 1985.

[124] K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodŕıguez-Herrera,
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