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Abstract. We consider a π-mode solution of the Fermi–Pasta–Ulam β system.
By perturbing it, we study the system as a function of the energy density from a
regime where the solution is stable to a regime where it is unstable, first weakly
and then strongly chaotic. We introduce, as an indicator of stochasticity, the
ratio ρ (when it is defined) between the second and the first moment of a given
probability distribution. We will show numerically that the transition between
weak and strong chaos can be interpreted as the symmetry breaking of a set
of suitable dynamical variables. Moreover, we show that in the region of weak
chaos there is numerical evidence that the thermostatistic is governed by the
Tsallis distribution.
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1. Introduction

Since its discovery, the celebrated Fermi–Pasta–Ulam (FPU) system [1] has represented a
paradigmatic model for the analysis of energy equipartition, stochastic resonances [2] and
thermalization in nonlinear systems (for a recent account, see [3]). In order to explain its
rich phenomenology, several approaches have been proposed. Zabusky and Kruskal [4],
by analysing the string dynamics in the continuum limit, discovered solitary waves and
started the modern theory of nonlinear integrable systems. Another approach, due to
Izrailev and Chirikov [5] and many others, was addressed to the numerical determination
of ‘stochasticity thresholds’, that marked the transition from recurrences to thermalization
and equilibrium.

In the last two decades it has been shown that many complex systems possess
weakly chaotic regimes, such as those exhibiting long-range particle interactions, strong
correlations, scale invariance, properties of multifractality, etc. New physical phenomena
are expected at the edge of chaos.

The approach first proposed in [6] aims to a generalization of the standard statistical
mechanics. As is well known, the Boltzmann–Gibbs thermostatistics offers the natural
theoretical framework to describe nonintegrable and fully chaotic dynamics. This leads
eventually to ergodicity and mixing in phase space. A natural question is how to describe
situations when the system exhibits a weakly chaotic behaviour, the ergodic hypothesis
typically is not verified and the statistical mechanics of Boltzmann and Gibbs (BG) fails
to provide a correct theoretical framework. The classical picture is usually restored
in the strongly chaotic regime. An approach, nowadays called nonextensive statistical
mechanics [7], has been proposed in order to handle these more general situations, and
in particular deals with the case of power-law divergencies of the sensitivity to the initial
conditions. At the heart of the theory there is a generalization of the Boltzmann–Gibbs
entropy, the Sq entropy, that depends on a real parameter, the entropic index q.

The literature on this topic has been increasing dramatically in recent years (for a
regularly updated bibliography, see [8]).

Motivated by this current research, in this paper we analyse the statistical behaviour
of the FPU β system [1] when a π-mode solution is initially excited. We describe both
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numerically and analytically, as a function of the energy density, the transition of the
system from a stable to a strongly chaotic regime by following the time evolution of a
suitable observable associated to the exact π-mode solution. This observable physically
corresponds to a geometric symmetry of the system that is lost when the system is
perturbed. The analysis of this observable offers a very accurate tool for the study of
the evolution of the system.

An interesting result of our investigation is that in the weakly chaotic regime the model
appears to be described by the Tsallis (q-Gaussian) statistics. Recent generalizations of
the central limit theorem [9, 10] provide a theoretical framework for the wide appearance
of such statistics in physics. These theorems claim that, under suitable hypotheses, q-
Gaussian distributions should govern the weakly chaotic regimes, instead of Gaussian ones
(see also [11]).

However, the fact that a Tsallis statistics seems to play an important rôle in the FPU
β model, at first sight is quite surprising, since we are dealing with a Hamiltonian system
possessing a short-range interaction, whereas, within the class of Hamiltonian systems,
usually nonextensive regimes are observed in long-range interacting many-body systems.

The appearance of the Tsallis distribution for the FPU chain in the region of weak
chaos could be a consequence of the choice of the initial condition to which an exact
one-mode solution is associated. When a sufficiently small perturbation is applied, the
occurrence of q-Gaussians can be expected (see, for instance, [12]–[14]). When the exact
solution is further perturbed and the energy density is increased, the weakly chaotic
behaviour is replaced by a strongly chaotic one leading to ergodicity and to the classical
Boltzmann–Gibbs statistics.

In order to detect accurately this transition, we introduce an indicator of
stochasticity ρ, that estimates the deviation of a generic assigned distribution from the
Gaussian behaviour for any value of the excitation energy density. It is a function of
the dynamical variables of the configuration space only. The usefulness of the function ρ
relies on the fact that it is model-independent, since it can be used to characterize the
behaviour of any complex system.

In section 2, we review briefly some theoretical aspects of nonextensive
thermostatistics. In section 3, we propose our analysis of the FPU chain, from the initial
conditions selected towards the strongly chaotic region of the phase space. In section 4,
the numerical results obtained are reported. In section 5, some open problems related to
our work are discussed.

2. The nonextensive scenario

Let us consider a system in classical statistical mechanics, whose associated probabilities
are pi(i = 1, . . . , W ), satisfying the condition

∑W
i=1 pi = 1. Here W is the total number

of possible (microscopic) configurations of the system. In [6], the following entropy was
introduced:

Sq = k
1 − ∑W

i=1 pq
i

q − 1
, (1)
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where q ∈ R and k is a positive constant. It can be immediately ascertained that it
reduces, in the limit q → 1, to the Boltzmann–Gibbs entropy:

S1 = lim
q→1

Sq ≡ SBG = k

W∑

i=1

pi ln
1

pi
. (2)

If we introduce the q-exponential, defined by

ex
q := [1 + (1 − q)x]1/(1−q), (3)

and the q-logarithm

lnq x :=
x1−q − 1

1 − q
, (4)

the entropy Sq can be seen as a q-deformation of SBG:

Sq = k
W∑

i=1

pi lnq
1

pi
. (5)

The entropy Sq possesses many physical properties. Two of them are particularly relevant.

(a) Nonadditivity. Given two probabilistically independent subsystems A and B of a given
system, we have that

Sq(A + B)

k
=

Sq(A)

k
+

Sq(B)

k
+ (1 − q)

Sq(A)

k

Sq(B)

k
. (6)

Therefore, the entropy (1) is nonadditive, according to the definition proposed by
Penrose [15]. In the literature, the cases q < 1 and q > 1 are usually referred to as
super-additive and sub-additive, respectively.

(b) Extensivity. For systems with strictly or asymptotically scale-invariant correla-
tions [16, 17] or global long-range interactions [18], for special values of q, Sq satisfies
the relation

Sq ∼ N (7)

i.e. is proportional to the number of particles of the system. This is crucial, in order
for a statistical mechanics to be a meaningful and widely applicable one, as Clausius has
already pointed out.

Unfortunately, the notions of additivity and extensivity have often been confused in
the literature, and Sq, being nonadditive, has been referred to as nonextensive as well. This
use is indeed erroneous, although widespread in the literature. Von Neumann entropy, for
instance, is additive but in general nonextensive. Both SBG and Sq may or may not be
extensive, depending on the specific physical system considered [16].

Tsallis entropy can be considered as the simplest nontrivial generalization of
Boltzmann–Gibbs entropy: in addition to extensivity, it possesses all the nice properties
of the classical entropy (such as concavity, Lesche-stability [19], finiteness of entropy
production for unit time, etc), except additivity, which is replaced by the condition (6).
A crucial result has been obtained in several recent papers, such as [9, 10], where q-
extensions of the central limit theorem have been proposed. In these works it has
been shown that, when we deal with large sets of random variables with correlation
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(it may happen for instance in physical systems with a weakly chaotic regime), q-Gaussian
probability distributions emerge as attractors, instead of Gaussian ones. In the last twenty
years, the nonextensive scenario has been widely investigated: many interesting physical
systems at the edge of chaos, both in classical and quantum mechanics, have been shown
to be conveniently described by the Tsallis statistics. Other relevant applications have
been found in economics, linguistics, biosciences, social sciences, self-organized criticality,
etc [8]. In the following, we will show how the FPU chain, under suitable conditions,
admits in a specific region of the phase space a description in terms of the nonextensive
statistics.

3. The π-mode solution: a statistical analysis

Let us now describe the main features of the FPU β system with N oscillators and periodic
conditions. Let xi denote the displacement of the ith particle of the nonlinear chain from
its equilibrium position. The Hamiltonian of the model reads

H =
1

2

N∑

i=1

pi
2 +

1

2

N∑

i=1

(xi+1 − xi)
2 +

β

4

N∑

i=1

(xi+1 − xi)
4 (8)

with

xN+1 = x1 and β > 0. (9)

All quantities are dimensionless. If we introduce the normal coordinates Qi and Pi of the
normal mode through the relations

Qi =

N∑

j=1

Sijxj Pi =

N∑

j=1

Sijpj, (10)

with

Sij =
1√
N

(

sin
2πij

N
+ cos

2πij

N

)

, (11)

the harmonic energy of the mode i is

Ei = 1
2

(
P 2

i + ω2
i Q

2
i

)
, (12)

where for periodic boundary conditions

ω2
i = 4 sin2 πi

N
. (13)

For β = 0, all normal modes oscillate independently and their energies Ei are constants
of the motion. In the anharmonic case (β �= 0), the normal modes are instead coupled,
and the variables Q have no longer simple sinusoidal oscillations.

Given a linear mode, if its excitation energy and the coupling nonlinear parameter
are small, the energy exchange with the other modes also remains small and periodic.
However, when the nonlinear effects become larger, a conspicuous exchange of energy
among all normal modes is observed. In [20]–[24], the concept of a strong stochasticity
threshold (SST) has been introduced. It is defined as the energy density threshold that
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characterizes the transition of the system dynamics from weak to strong chaos during the
relaxation of the system towards ergodicity and equipartition.

Furthermore, it is well known that, for a periodic FPU β chain, there are nonlinear
one-mode exact solutions (OMSs) (π-mode, π/2-mode, etc.) [25] corresponding to the
values of the integer mode number

n =
N

4
,
N

3
,
N

2
,
2

3
N,

3

4
N. (14)

If we excite one of these nonlinear modes and integrate the corresponding equations of the
motion, the finite precision of the numerical algorithm naturally generates a perturbation
of the mode. Beyond a certain threshold value εt of the energy density ε, the nonlinear
mode becomes unstable. In [26]–[28], this mechanism has been extensively used to analyse
the stability properties of the π-mode and π/2-mode (n = N/4), both for positive and
negative values of the nonlinearity parameter β.

What is the route towards equipartition, ergodicity or chaos when ε > εt?
Qualitatively, the behaviour of the system is the following. For ε > εt, the energy of the
OMS is no longer constant. For small values of ε above the threshold, the π-mode loses and
recovers almost completely its initial energy. In this recurrence region, if one increases ε,
only the fraction of the energy ceded to other modes and the period of recurrence change.
For larger values of ε, a more and more irregular behaviour is observed: the energy ceded
increases and the periodicity of the recurrence is lost, while the system tends towards the
equipartition of the whole initial energy.

A crucial point is the choice of indicators able to reveal the existence of thresholds. To
this aim, several indicators have been introduced in the literature, related, for instance, to
the rate of energy exchange among normal modes, to geometrical properties of trajectories
in phase space and to single-particle correlation functions. Collective spectral parameters
have also been proposed [29]. In particular, the normalized spectral entropy has been
used to reveal the existence of a SST [20].

In this work, by using a new global indicator ρ, we present, as a function of energy
density, a statistical analysis of the FPU β system, when the π-mode is initially excited.
This indicator is related to the distribution of the values of a physical observable, which
remains constant during the evolution of the system if it is stable. As is well known, when
one excites the π-mode, the variable xi is related to the modal variable QN/2 by

xi(t) =
1√
N

(−1)iQN/2(t). (15)

Therefore, it is natural to introduce the observables

ηi = xi + xi−1. (16)

Indeed, the quantities ηi are always equal to zero during the time evolution of the system,
if it is stable, independently of the choice of the initial condition QN/2(0). Instead, when
the energy density is greater than the instability threshold value εt, the ηi are no longer
equal to zero. The distribution of the values of ηi then depends on the exchange of
energy among the π-mode and the other modes, rather than the statistic of the numerical
integration errors. We will show numerically that the transition from weak to strong chaos
can be interpreted as the breaking of the symmetry described by equations (15) and (16).
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Taking into account these considerations, we introduce, as an indicator of stochasticity,
the ratio between the second and the first moment of a given probability distribution

ρ =
σ

θ
, (17)

when they are defined and the first moment is not zero. In the case of symmetric
distribution functions, θ is the mean value of the modulus of the differences between
the values of the observable and its mean value. In our analysis, we distinguish two
possibilities.

(a) The distribution is normal, i.e. described by the Gauss function

f(ξ) =
a√
π

exp (−a2ξ2), (18)

where a is a parameter. One has the theoretical value ρ = σ/θ =
√

π/2. This result
is characteristic of normal distributions and is utilized to estimate if a distribution of
measurements satisfies the Gauss distribution.

(b) The distribution is a Tsallis distribution:

f(ξ) = a
(
1 − (1 − q)b2ξ2

)1/(1−q)
. (19)

with a and q dependent on ε,

b = a
√

π
Γ ((3 − q)/(2(q − 1)))√

q − 1Γ (1/(q − 1))
(20)

where Γ is the Euler gamma function and 1 < q < 3 in order that the distribution is
normalized to one. In this case we have proved that, for 1 < q < 5/3, the function ρ has
the following exact expressions:

ρ(q) =
√

π

√
(q − 1)/(5 − 3q)Γ ((3 − q)/(2(q − 1)))

Γ ((2 − q)/(q − 1))
. (21)

We remark that, in the limit q → 1, the Tsallis distribution becomes the Gauss
distribution. In the specific example of the FPU β system, θ is the mean value of the
moduli of differences

ξi = ηi − 〈ηi〉 (22)

numerically obtained and σ the standard deviation:

θ =

∑ |ξi|
M

, σ =

√∑
ξ2
i

M
(23)

where M is the number of values of ξi. What one expects is that for ε < εt, when the
system is stable, ρ(ε) should remain approximately constant. Instead it should change
abruptly for ε > εt, when the π-mode starts to exchange energy with the other modes.
For larger and larger values of ε, when an equipartition state has been reasonably reached,
the parameter ρ should again assume a constant value, characteristic of the distribution
of the ξi. For intermediate values of ε, a transition between weak and strong chaos should
be observed.
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4. Numerical results

We describe now our numerical analysis of the FPU β model. In order to study numerically
the stability of the π-mode, we utilize the method used in [26]. The equations of motion
in the variables xi, pi are integrated by means of a bilateral symplectic algorithm [30]. We
recall that the dynamical properties of the FPU β system depend only on the product εβ,
so in all numerical experiments we put β = 1 and change the value of the energy density
without loss of generality. We excite the nonlinear π-mode at t = 0 by putting

Q(0) = Q0 �= 0, Q̇(0) = P0 = 0. (24)

From these values, the initial values of xi and pi are calculated and the Hamilton equations
are integrated in the variables xi and pi, with an integration step Δt = 0.02. Every 100
integration steps the quantities

ηi = xi(t) + xi−1(t), i = 1, . . . , N (25)

are calculated. For each value of ε, we follow the evolution of the system for a time
approximately equal to 106/π periods of the corresponding linear normal mode (TN/2 = π).
Longer integration times give qualitatively the same behaviour.

The numerical results show that the dependence of ρ on ε is qualitatively the same
for each choice of ηi with 32 ≤ N ≤ 1024. We shall discuss these results in detail, through
an analysis of the case N = 128 and i = 64. We recall that the value of the energy density
for the direct excitation of the j-mode (j < N/2) by the instability of the mode N/2 is
given by [25]:

εex =
1

3

(
1

sin2 πj/N
− 1

)

≥ εt. (26)

The first mode that becomes unstable is the mode N/2 − 1, when ε = εt.
In figure 1, the behaviours of ρ, σ, θ and 〈η64〉 are shown as a function of ε. For the

sake of clarity, the four quantities are rescaled by different numerical factors. The global
indicator ρ increases abruptly, if ε exceeds the threshold value

εt = 2.0 × 10−4 ≈ π2/(3N2). (27)

Then a rapid decrease of ρ, just above εt, is observed, with a regular recurrent energy
exchange of the π-mode with the mode N/2−1. This lasts approximately until the mode
N/2 − 2 is directly excited. The excitation energy density of this mode corresponds in
the graph of ρ approximately to the presence of a ‘bush’. This energy density can be
considered as the beginning of the regime of weak chaos in the system. Moreover, we
observe a small peak for 0.01 ≤ ε ≤ 0.1. For larger values, ρ is almost independent of ε
and reaches the value

√
π/2 characteristic of the Gaussian distribution. In this region,

the transition to the chaotic behaviour is rapid and the exchange of energy with the other
linear modes is complete.

Concerning the behaviour of 〈η64〉, a significative change is observed, approximately
corresponding to the small peak present in the curve ρ(ε). This change reveals a strong
breaking of the symmetry η64 = x64 + x63 = 0 of the π-mode and marks the transition
of the system from weak to strong chaos. The small peak in the plot of ρ could be the
consequence of a mechanism of resonance overlap. As is well known, the solution of the
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Figure 1. The indicator ρ, the first and the second moment θ and σ and 〈η64〉 vs
the energy density ε for N = 128. For the sake of clarity, the four quantities are
rescaled by different numerical factors: ρ × 10 (red), σ × 2 (blue), θ × 2 (purple)
and 〈η64〉 × 500 (green).

differential equation for the modal variable Q, is given by

Q(t) = Q0cn(Ωt; k2), (28)

where cn is the periodic Jacobi elliptic function with period T = aK(k)/Ω, K(k) is the
complete elliptic integral of the first kind and, for β = 1:

k2 =
1

2

√
1 + 4ε − 1√

1 + 4ε
, Ω2 =

4

1 − 2k2
. (29)

One has resonance if the harmonic frequencies �ω = (ω1, ω2, . . . , ωN/2), concerning the
harmonic term of the Hamiltonian, satisfy the relation

�m · �ω =

N/2∑

i

miωi ≈ 0 (30)

where �m is an array of integers and the ωi are given by the formula (13).
Since we excite the π-mode, we have resonance, in particular, when Ω = mωi, with

integer m > 1 and for some ωi. From the previous relations one obtains for the resonance
energy density εr:

εr =
1

4

(

m4 sin4 πi

N
− 1

)

. (31)

The resonance is possible for values of i such that εr > 0.
For example, for m = 2 one has

i =

{
N/6 if N/6 is integer

[N/6] + 1 if N/6 is not integer.
(32)
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Figure 2. For a direct comparison with the results shown in figure 1 and to
highlight the presence of resonances for energies in correspondence of the small
peak in the graph of ρ, we report (see equation (31)) the mode number i as a
function of the corresponding resonance energy density εr for N = 128 and m = 2
(red), 3 (green) and 4 (blue).

Here, [x] denotes the smallest integer less than or equal to x. Consequently the first
linear mode that goes in resonance with the π-mode corresponds to i = 22, for ε = 0.0282.
This value marks the rising of the small peak in figure 1. In figure 2, the values of i as a
function of the resonance energy densities are reported for m = 2, 3, 4.

Finally, we have analysed the distribution for values of ε between the ‘bush’ and the
small peak in the plot of ρ from figure 1. We have fitted the numerical distribution with
a Gaussian and a Tsallis distribution (see equations (18) and (19)). It emerges that, in
the region of weak chaos, the numerical distribution is fitted accurately with a Tsallis
distribution. A typical fit is shown in figure 3 for ε = 0.006. The best fit with the Tsallis
distribution, with the two parameters q and a, gives q = 1.463 and a = 42.380, with
a reduced χ2 = 0.064. With this value of q we have, from equation (21), a value of
ρ = 1.497, to be compared with the numerical value ρ = 1.461. A fit with the Gaussian
distribution with the parameter a gives a = 40.874 with a reduced χ2 = 0.905. In figure 4
Tsallis, Gaussian and numerical distributions are compared, using a linear-log scale, for
ε = 0.006. In figure 5, the same distributions are compared for ε = 1 and 5. On increasing
the energy, the three distributions collapse into the Gaussian one, as we expected. We
also get a common value q = 1.01, which is a signal that we have already reached a region
of strong stochasticity.

5. Open problems

We have described the evolution of the π-mode solution of the FPU β system, by means
of a new indicator of stochasticity. From the numerical and analytical results we deduce
that, for ε > εt, there are three different regimes in the transition from a regular to chaotic
behaviour. A first KAM-like regime, characterized by a regular and recurrent behaviour,
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Figure 3. Numerical distribution f(ξ) (green points) of the values of ξ =
η64−〈η64〉 fitted with a Tsallis distribution (red curve) for N = 128 and ε = 0.006.

Figure 4. Plot on a linear-log scale of the numerical distribution f(ξ) (blue
points) fitted with a Tsallis distribution (red) and a Gauss distribution (green)
for N = 128 and ε = 0.006.

extends approximately from εt to the energy at which the mode N/2−2 is directly excited
by the π-mode. This value of ε corresponds roughly to the appearance of the ‘bush’ in the
graph of ρ; then a second regime is observed until the small peak (playing the rôle of the
strong stochasticity threshold) is reached. This is the zone where weak chaos dominates.
Finally, the system enters a regime of strong chaos characterized by the full symmetry
breaking of the π-mode solution. From our analysis it results with good evidence that the
regime of weak chaos is described by the Tsallis distribution. Preliminary results, which
will be published elsewhere, concerning the application of the Central Limit Theorem to
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Figure 5. Plot on a linear-log scale of the numerical distribution f(ξ) (blue
points) fitted with a Tsallis distribution (red) and a Gauss distribution (green)
for N = 128, ε = 1 and 5. In both cases the Tsallis and Gaussian distributions
essentially overlap.

the evolution of the π-mode, confirm the presence of Tsallis distribution in the region of
weak chaos.

It would be interesting to extend this analysis to other exact solutions. It is a
completely open question to ascertain whether, after a sufficiently long time, the weakly
chaotic regime here described would collapse into a fully chaotic one. This aspect can
be connected with the recent investigation on the metastability scenario for the FPU
problem [31]–[33].

Finally, it would be important also to analyse, from the perspective of nonextensive
thermostatistics, the case of the Fermi–Pasta–Ulam system with fixed boundary conditions
(for a recent study, see [34]).
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distributions for q > 1, 2010 J. Math. Phys. 51 033502
[11] Tsallis C, Levy S, Souza A and Maynard R, Statistical–mechanical foundation of the ubiquity of Lévy
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