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Ranking Functions Induced by Weighted Average

of Fuzzy Numbers

GISELLA FACCHINETTI1 facchinetti@unimo.it

Faculty of Economics, University of Modena and Reggio Emilia, Berengario Avenue 51, 41100 Modena, Italy

Abstract. In this paper we present two definitions of possibilistic weighted average of fuzzy numbers, and by

them we introduce two different rankings on the set of real fuzzy numbers. The two methods are dependent on

several parameters. In the first case, the parameter is constant and the results generalize what Carlsson and Fuller

have obtained in (2001)2. In the second case, the parameter is a function, not fixed a priori by the decision maker,

but it depends on the position of the interval on the real axe. In all the two cases we call the parameter degree of

risk, which takes into account of a risk-tendency or aversion of the decision maker.

Keywords: fuzzy numbers, average value, possibilistic weighted average, ranking methods.

1. Introduction

In most real situation, one is forced to take decision on the basis of ill-defined

variables and imprecise data. The theory of fuzzy sets is a natural tool to model this

situation as fuzzy numbers well represent imprecise quantities. In decision-making

problems we have the necessity to optimise some procedure and so it is necessary to

have ranking of the quantities involved. Many authors have studied different definitions of

ranking on the set of fuzzy numbers F, (Bortolan and Degani (1985)). Most of these are

based on the definition of an evaluation function (F-evaluation function), which maps

fuzzy numbers in the real line. The order on F is induced by the real number total order. As

fuzzy numbers are intervals in which boundaries are blurred, the difficulty in ranking them

arise from the problem created in ranking real intervals. When the supports of fuzzy

numbers are disjointed, there are no problems and all the methods lead to the same

solution. But the decision is not evident when the intersection between supports is not

empty. In these cases, it seems that the solution depends on subjective elements depending

of the nature of the problem and the decision-maker.

Following the idea of Campos and Gonzalez (1989) we start with the introduction of

two different evaluation functions on the set of real intervals, we will call I-evaluation

functions. They contain a parameter we call degree of risk, which takes into account of a

risk-tendency or aversion of the decision maker, that is constant in the first case, a function

in the second, and then, using the definition of a fuzzy numbers by its �-cuts, we introduce

two average values (AV) as F-evaluation functions. Using these two, we obtain several

results. One is to generalise the results of Carlsson and Fuller. They, in a paper of 2001,

starting from a particular AV, have introduced the notations of lower and upper

possibilistic mean value and consequently defined the interval-valued possibilistic mean,

crisp possibilistic mean value and crisp variance of a continuous possibility distribution.

Fuzzy Optimization and Decision Making, 1, 313–327, 2002
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The two new AV are consistent with the extension principle and with the well-known

definitions of expectation and variance in probability theory. Another result is the

introduction of a definition of ranking functions on the set of fuzzy numbers F.

2. Two Different Types of Average Value

Following the idea introduced by Campos and Gonzalez (1989), (see also Gonzalez

(1990), Campos and Gonzalez (1994)) we begin with the introduction of an I-evaluation

function on real intervals, to define an F-evaluation function on fuzzy numbers.

We define one I-evaluation function a real function u: I ! R, where I ¼ {A ¼ [a1, a2] :

a1, a2 2 R, a2 � a1}.

The imagine of u is denoted by u(A) ¼ u([a1, a2]) ¼ u(a1, a2).

In general, it is not possible to request, a priori, any property on u(.), but it seems

reasonable to consider functions which are increasing in both variables and have some

regularity properties (i.e., u 2 C (1)).

We consider two families of such functions, which are based on a parameter, called

degree of risk, (the risk-tendency or aversion) of the decision maker. They have the very

interesting property to be sensitive to the uncertainty associated to the use of real intervals

instead of the reals.

Definition 1 Campos and Gonzalez (1989) The family {uk}k2 [0,1] of linear functions

ukðAÞ ¼ ukða1; a2Þ ¼ ka2 þ ð1� kÞa1; k 2 ½0;1 
 ð1Þ

The function uk(a1, a2) is a convex combination of the interval extremes and the

coefficient k, we call degree of risk of the decision maker, is constant.

Definition 2 Facchinetti and Ghiselli Ricci (2001) The family {u�}�2G of not linear

functions

u�ða1; a2Þ ¼ a1 þ �ða1; a2Þða2 � a1Þ ð2Þ

and G is the set of class C (1) functions, �(a1, a2): D ! [0, 1], D ¼ {(a1, a2) : a1, a2 2 R,

a2 > a1 � 0}, such that:

a) �(a1, a2) is strictly decreasing in the first variable,

b) �(a1, a2) is strictly increasing in the second variable,

c) �(a1, a2) ! 0 as a1 ! a2,

d) u�(a1, a2) is increasing in a1,

It is clear that u�(a1, a2) is a convex combination of the interval extremes and the

FACCHINETTI314



coefficient �(a1, a2), we could interpret degree of risk of the decision maker, is not

constant, but depends on the interval position in the real axe.

We emphasize that in this new model � depends on a1 and a2 and this leads to a

more realistic choice by the decision maker. For example, let the intervals I1 ¼ [2, 3]

and I2 ¼ [200, 201], represents the possible outputs of two different investments: the

spread is the same, but if we compare it with 2 and 200, it appear unquestionable

that the uncertainty associated to the evaluation of I2 is much lower than the one

related to I1. The fact that � depends on a1 and a2 let us to express different degrees

of risk associated to I1 and I2, while the assumption of � constant completely ignores

this fact.

Some comments on the hypothesis a)-d). We explicitly point out the conditions a)

and b) as we are not interested, in this case, to let � to be constant, moreover they

assure that �, fixing a1, increase as a2 increases, and symmetrically that, fixing a2,

decrease as the value of a1 tends to a2. The condition c) is a boundary condition:

when the interval width is very close to zero the degree of risk goes to zero, as the

uncertainty goes to zero. The condition d) translate the monotonicity of the evaluation

when a1 tends to a2.

As consequences we have that a) and b) force �(a1, a2) to be valued in the open

interval ]0,1[. Furthermore the condition a) and the regularity of � imply u�(a1, a2) is

strictly increasing in a2.

Starting from uk(a1, a2) and u�(a1, a2) we induce two evaluation functions on the

set of fuzzy numbers F.

Definition 3 The fuzzy set Ã is a fuzzy number iff :

1) 8 � 2 [0,1], A� ¼ {x 2 R : lA (x) � �} ¼
�

a1
�, a2

�
�

is a convex set.

2) �A (.) is an upper-semicontinuous function.

3) Supp(A) ¼ {x 2 R : �A (x) > 0} is a bounded set in R.

Now we define an I-evaluation functions u on the family of set A�, called �-cuts of A~~,

and, by it, we define an F-evaluation function, we call the Average Value of Ã .

Definition 4 (Campos and Gonzalez (1989), Gonzalez (1990)) We call Average Value

(AV ) of the fuzzy number A~~, made by an adolitive measure S on [0, 1] the value

MuðS;A~~Þ ¼

Z 1

0

uðA�ÞdS ð3Þ

If u is respectively uk(.) and uq(.), on the set of fuzzy number F we obtain the following

two different Average Value:

MkðS;A~~Þ ¼

Z 1

0

ukðA
�ÞdS and MqðS;A~~Þ ¼

Z 1

0

uqðA
�ÞdS
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or more explicitly

MkðS;A~~Þ ¼

Z 1

0

ka�2 þ ð1� kÞa�1
� �

dS and MqðS;A~~Þ ¼

Z 1

0

a�1 þ qða�1; a
�
2 Þða

�
2�a�1Þ

� �

dS

ð4Þ

The difference between the two AV in (4) is that the first is linear in A�, and the second

not. The lost of linearity, as always happens, will create a lot of difficulties. We will treat

these problems and propose some solutions in section 3. The interest of the second case is

due to the fact that the decision maker has not a fixed degree of risk. It changes with the

fuzzy number Ã .

It is possible to write the first AV in (4) in a more useful way for the next section:

MkðS;A~~Þ ¼ kM*ðS;A~~Þ þ ð1� kÞM*ðS;A
~~Þ ð5Þ

with

M*ðS;A
~~Þ ¼

Z 1

0

a�1dS and M*ðS;A~~Þ ¼

Z 1

0

a�2dS ð6Þ

In the case in which S is the normalized Stieltjes measure generated by the function s(�) ¼
�r, 8 r > 0 : S(]a, b]) ¼ br � ar, 8 a, b 2 [0, 1] we obtain

M*ðr;A
~~Þ ¼ r

Z 1

0

�r�1a�1d� and M*ðr;A~~Þ ¼ r

Z 1

0

�r�1a�2 d� ð7Þ

and so the two AV introduced in (4) become

Mkðr;A~~Þ ¼ r

Z 1

0

�r�1ukðA
�Þd� and Mqðr;A~~Þ ¼ r

Z 1

0

�r�1uqðA
�Þd� ð8Þ

The choice of r is connected with these types of preferences:

� r > 1, S gives more weight to the high values of � 2 [0, 1]
� r < 1, S gives more weight to the low values of � 2 [0, 1]
� r ¼ 1 we obtain a linear preference and S gives equal weight to all values of � 2 [0, 1].

The last case produces a particular case of a Stieltjes measure, which is a Lebesgue

measure L: L(]a, b]) ¼ b � a, 8 a, b 2 [0, 1].

It easy to see that, for particular choice of k and S, the (5) coincides with other

comparison indexes (Adamo (1980), Tsumura et al (1981), Yager (1981)), (cfr. Campos-

Gonzalez 1989). In particular if r ¼ 1, A~~ is a triangular fuzzy number defined by

(a1, a3, a2), for which l(a3) ¼ 1, S is the Lebesgue measure, the (5) is equivalent to the

method of convex combination between the pessimistic and optimistic choice, introduced

by Facchinetti, Ghiselli Ricci and Muzzioli in 1998.
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3. Weighted Average Value and Variance of Fuzzy Numbers with Constant Weights

Dubois and Prade in a paper of 1987 have defined the mean value of a fuzzy number E(A~~)

as an interval whose bounds are upper E
*
(A~~) and lower E*(A~~) expectation, that is,

EðA~~Þ ¼ E*ðA
~~Þ;E*ðA~~Þ

h i

with E*ðA
~~Þ ¼

Z þl

�l

xdF*ðxÞ and E*ðA~~Þ ¼

Z þl

�l

xdF*ðxÞ

with F* (x) ¼ sup {lA (t) : t  x} and F
*
(x) ¼ inf {1 � lA (t) : t > x}.

The last two integrals can be written as Choquet integrals with respect the possibility C

and necessity measure N associated to the fuzzy number Ã :

E*ðA
~~Þ ¼

Z

x dC and E*ðA~~Þ ¼

Z

x dN:

If we calculate E
*
(A~~) and E* (A~~), when A~~ is a fuzzy number with continuous and strictly

increasing membership function before the modal values [m1, m2], and strictly decreasing

after the modal values, using definition 4, it is easy to note that:

E*ðA
~~Þ ¼ M*ð1;A

~~Þ ¼

Z 1

0

a�1d� ¼

Z 1

0

a�1dL and

E*ðA~~Þ ¼ M*ð1;A~~Þ ¼

Z 1

0

a�2d� ¼

Z 1

0

a�2dL:

By analogy we define respectively S-upper ad S-lower expectations, the quantity in (6) and

define the S-mean value of a fuzzy number A~~ the interval

M ðS;A~~Þ ¼ M*ðS;A
~~Þ; M*ðS;A~~Þ

h i

:

If S is a normalized Stieltjes measure, Gonzalez (1990) shows that M*(S, A
~~) ¼ E*(A

~~s ) and

M*(S, A ) ¼ E*(A~~s ), where A~~s is a fuzzy number with membership function lAs ¼ s BlA,

and so

M ðS;A~~Þ ¼ M
*
ðS;AÞ; M*ðS;AÞ

h i

¼ E
*
ðAsÞ; E*ðAsÞ

h i

¼ M*ð1;A
~~sÞ; M*ð1;A~~sÞ

h i

If S is generated by the function sð�Þ ¼ �r, we may indicate A~~s ¼ A~~r. Its membership

function is �Ar ¼ xr B �A ¼ �r
A. The last function was defined operation of concentration

if r > 1 and dilution if r < 1 by Zadeh (1973).

RANKING FUNCTIONS INDUCED 317



These last results give us the possibility to reformulate the S-mean value in terms of

possibility and necessity measures. In fact it is easy to show that

M*ðS;A
~~Þ ¼

Z þl

�l

xdFS
*ðxÞ and M*ðS;A~~Þ ¼

Z þl

�l

xdFS

*ðxÞ

where

FS
*ðxÞ ¼

s B lAðxÞ if x < m1

1 if x � m1

FS

*ðxÞ ¼
1� s B lAðxÞ if x � m2

0 if x < m2

8

<

:

8

<

:

therefore

MkðS;A~~Þ ¼

Z 1

0

ukðA
�ÞdS ¼ k

Z

x dC
s þ ð1� kÞ

Z

x dN
s

where C
s and Ns are respectively the possibility and necessity measures associated with

the fuzzy number A~~s with membership function lAs ¼ s BlA.

Using the previous notations, the next results generalise what Carlsson and Fuller (2001)

have introduced. Their definitions are particular cases in which s(x) ¼ xr with r ¼ 2 and

k ¼ 1
2
.

Definition 6 We call respectively lower and upper possibilistic mean values of order r

of a fuzzy number A~~ the quantities defined in (7):

M*ðr;A
~~Þ ¼ r

Z 1

0

�r�1a�1d�; M*ðr;A~~Þ ¼ r

Z 1

0

�r�1a�2d�;

Following Carlsson and Fuller (2001), we define a crisp possibilistic weighted mean of A~~

of order r with constant weights their convex combination:

Mkðr;A~~Þ ¼ kM*ðr;A~~Þ þ ð1� kÞM*ðr;A
~~Þ ¼ k

Z

x dC
s þ ð1� kÞ

Z

x dN
s: ð9Þ

The last definition is the Average Value introduced by Campos Gonzalez (1989).

In the same paper, it is possible to find the proof of the following

THEOREM 1 Mk(r, Ã ) is a linear functional on the space of the fuzzy number F, that is:

if P denotes the sum on F, then 8 A~~, B~~2 F, 8 d 2 R

M kðr;A~~P B~~Þ ¼ M kðr;A~~Þ þM kðr;B~~Þ

M kðr; dA~~Þ ¼ dM kðr;A~~Þ
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Example 1. If Ã ¼ (a1, a3, a2) is a triangular fuzzy number it easy to see that

M*ðr;A
~~Þ¼ r

Z 1

0

�r�1a�1 d� ¼ a3�
a3 � a1

r þ 1
M*ðr;A~~Þ¼ r

Z 1

0

�r�1a�2d� ¼ a3 þ
a2 � a3

r þ 1

M kðr;A~~Þ ¼ kM*ðr;A~~Þ þ ð1� kÞM*ðr;A
~~Þ ¼ a3 þ

kða2 � a3Þ � ð1� kÞða3 � a1Þ

ðr þ 1Þ

If the triangular fuzzy number A~~ is symmetric, that is a2 � a3 ¼ a3 � a1

M kðr;A~~Þ ¼ kM*ðr;A~~Þ þ ð1� kÞM*ðr;A
~~Þ ¼ a3 þ

ða2 � a3Þð2k� 1Þ

ðr þ 1Þ

and if k ¼ 1
2
; M kðr;A~~Þ ¼ a3. That is, the crisp possibilistic weighted mean of Ã of order r

with constant weights of a symmetric triangular fuzzy number is the central value, with

membership function equal to one, if and only if the weight is k ¼ 1
2
.

Example 2. If Ã ¼ (m1, m2, �, 	) is a trapezoidal fuzzy number with [m1, m2] flat graphic

and left-width � > 0 and right-width 	 > 0,

M*ðr;A
~~Þ ¼ r

Z 1

0

�r�1a�1d� ¼ m1 �
�

r þ 1
; M*ðr;A~~Þ ¼ r

Z 1

0

�r�1a�2 d�

¼ m2 þ
	

r þ 1

and consequently

M kðr;A~~Þ ¼ kM*ðr;A~~Þ þ ð1� kÞM*ðr;A
~~Þ ¼ km2 þ ð1� kÞm1 þ

ðk	 � ð1� kÞ�Þ

ðr þ 1Þ

If 	 ¼ � and k ¼ 1
2
, M ðr;A~~Þ ¼ m1þm2

2
. That is, the crisp possibilistic weighted mean of A~~of

order r with constant weights of a simmetric trapezoidal fuzzy number is the central value

of the flat part, if and only if the weight is k ¼ 1
2
.

In Gonzalez (1989), there is a simple, but interesting, calculus for a trapezoidal fuzzy

number A~~, useful in the next remark.

As ukðA
�Þ ¼ km2 þ ð1� kÞm1 þ ð1� �Þðk	 � ð1� kÞ�Þ;

MkðS;A~~Þ ¼

Z 1

0

ukðA
�ÞdS ¼ km2 þ ð1� kÞm1þ kðsÞðk	 � ð1� kÞ�Þ ¼ ukðA

1�kðsÞÞ

where kðsÞ ¼
R 1

0
sð�Þd�.

RANKING FUNCTIONS INDUCED 319



The last result shows that the crisp possibilistic weighted mean of order r with constant

weights of A~~ is an I-evaluation not of the support of A~~, but of a particular �-cut of A~~with

� ¼ �s ¼ 1�
R 1

0
sð�Þd�:

Remark. The vision of the Average Value introduced by Gonzalez, or the crisp possi-

bilistic weighted mean of order r with constant weights of A~~, as an I-evaluation function,

let to understand the meaning of these quantity. In the general case, fixed k and S, the

Average Value is a value of the interval M ðS;A~~Þ. In this particular case, not only we may

assure thatM ðS;A~~Þ is a subset of the support of A~~, but we may define it as the projection of

the �-cut of A~~, with � ¼ �s, on the support of A~~. This idea let us to reduce the uncertainty

in our decision.

Definition 7 We call Variance of order r of a fuzzy number Ã , respect the weighted

average uk(A~~), the quantity:

Varkðr;A~~Þ ¼ r

Z 1

0

�r�1 ka�2 þ ð1� kÞa�1 � a�1
� �2

d�

þ r

Z 1

0

�r�1 ka�2 þ ð1� kÞa�1 � a�2
� �

2d�

¼ ðk2 þ ð1� kÞ2Þr

Z 1

0

�r�1 a�2 � a�1
� �2

d�

The variance of order r of a fuzzy number A~~, respect the weighted average uk(A~~), is

defined as the expected value of the squared deviations between the weighted average and

the endpoints of its �-cuts respect the Stieltjes measure generated by s(x) ¼ xr. The

deviation standard of A~~ of order r of a fuzzy number A~~, respect the weighted average

ukðA~~Þ; is rkðr;A~~Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varkðr;A~~Þ
q

:

Example 3. If A~~¼ (a1, a3, a2) is a triangular fuzzy number it easy to see that

Varkðr;A~~Þ ¼ ðk2 þ ð1� kÞ2Þ
2

r þ 1ð Þ r þ 2ð Þ
a2 � a1ð Þ2

If k ¼ 1
2
and r ¼ 2, Varkðr; A~~Þ ¼

1
12
ða2 � a1Þ

2
. If Ã is a crisp number Vark(r, A~~) ¼ 0.

Following the same proof proposed by Carlsson and Fuller (2001) it is easy to show that

Vark(r, A~~) is invariant for shifting by a real value of the fuzzy number. That is if Ã is

shifted by a value 
 2 R, and so we obtain a new fuzzy number B~~ which membership

function is �B(x) ¼ �A(x � 
), we have Vark(r, B~~) ¼ Vark(r, Ã ).
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Definition 8 We call the Covariance of two Fuzzy numbers of order r respect the

weighted average uk(Ã )

Covkðr;A~~;B~~Þ ¼ ðk2 þ ð1� kÞ2Þr

Z 1

0

�r�1½a�2 � a�1 
 b
�
2 � b�1

� �

d�

if A~~¼ (a1, a3, a2) and B~~¼ (b1, b3, b2) are triangular fuzzy numbers

Covkðr;A~~;B~~Þ ¼ ðk2 þ ð1� kÞ2Þ
2

r þ 1ð Þ r þ 2ð Þ
a2 � a1ð Þ b2 � b1ð Þ

Even in this case, following the proof of Carlsson and Fuller (2001), it is possible to proof

the next two theorems. The first shows that the variance of a linear combination of fuzzy

numbers follows the same rule than in probability theory. That is:

THEOREM 2 Let �, � 2 R and let Ã and B̃ be fuzzy numbers. Then

Varkðr; �A~~P �B~~Þ ¼ �2Varkðr;A~~Þ þ �2Varkðr;B~~Þ þ 2 ��j jCovkðA~~;B~~Þ;

where P denotes the sum on F.

The second puts a relation between the inclusion of two fuzzy numbers and an inequality

between the relative variance.

THEOREM 3 Let Ã and B~~be fuzzy numbers and A~~o B~~ (that is �A (x) < �B (x), 8x). Then

Varkðr;A~~Þ  Varkðr;B~~Þ:

4. Weighted Average Value and Variance of Fuzzy Numbers with Not

Constant Weights

In the last section we have generalized the results obtained by Carlsson and Fuller (2001),

using the first I-evaluation function on A�. Here we try to go over again the same road

using, on F the second one defined in (4), in the case in which the Stieltjes measure S is

generated by s(x) ¼ xr. The AV now is:

M�ðr;A~~Þ ¼ r

Z 1

0

�r�1u�ðA
�Þd� ¼ r

Z 1

0

�r�1 a�1 þ �ða�1 ; a
�
2 Þða

�
2 � a�1 Þ

� �

d�:

This is a linear combination of the extremes of A� with not constant coefficient. It

depends on the extremes of A�.

This last formulation shows that in this general framework, it is not possible to have an

analogous formulation of convex combination of lower and upper mean value of a Fuzzy
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number as in (9), as we are not able to evaluate the two integrals without having an explicit

formulation of the degree of risk �(a1, a2).

To overcome this difficulty, we remember the meaning we have given in section 1 to the

term �(a1, a2). It is the uncertainty filled with the position of the fuzzy number on the real

axis. Now we may suppose that this function is independent by the several levels of

�-cuts, that is, it is constant respect the variable �, and assumes the value with � ¼ 0. This

is equivalent to put

qða�1 ; a
�
2 Þ ¼ qða01; a

0
2Þ ¼ qða1; a2Þ: ð9Þ

Using this condition, we obtain:

Definition 9 We call crisp possibilistic weighted mean of A~~ of order r with not constant

weights the quantity

M�ðr;A~~Þ ¼ �ða1; a2ÞM*ðr;A~~Þ þ ð1� �ða1; a2ÞÞM*ðr;A
~~Þ

¼ �ða1; a2Þ

Z

x d
s þ ð1� �ða1; a2ÞÞ

Z

x dN
r ð10Þ

where �(a1, a2) is defined in (2).

Following the same idea of section 2 we may say that even in this case it is an

‘‘I-evaluation function’’, on the interval [M
*
(r, Ã ),M*(r, Ã )], with not constant coefficient

�(a1, a2), which is related to Ã . It is the convex combination, with not constant coefficient

�(a1, a2), not of the support extremes of Ã , but of its �-cut with � ¼ �r ¼
r

rþ1
. Even in this

case, the idea to consider an F-evaluation function of Ã as an I-evaluation function offers

the possibility to understand what evaluation the decision maker is doing. The difference,

compared to the linear case, is that of when the decision maker has to evaluate the fuzzy

number A~~, decides which is the degree of risk that he assigns to A~~, and then he fixes r, in

this way he decides the width of the interval in which he finds the final evaluation.

Because of the hypothesis we have put on �(a1, a2), we cannot have the linearity of

M�(r, A~~), but we have the following

THEOREM 4 M�(r, Ã ) is not, in general, a linear functional on the space of the fuzzy

number F. What we can say is: if P denotes the sum on F, then 8 A~~, B~~2 F, 8 d 2 R

Mqðr;A~~P B~~Þ ¼ qAPB½Mqðr;A~~Þ þMqðr;B~~Þ


Mkðr; dA~~Þ ¼ qdA d Mkðr;A~~Þ

where �APB is related with the fuzzy number A P B, and �dA is related to dA.
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Example 4. If Ã ¼ (a1, a3, a2) is a triangular fuzzy number we have:

M�ðr;A~~Þ ¼ a3 þ
�ða1; a2Þða2 � a3Þ � ð1� �ða1; a2ÞÞða3 � a1Þ

ðr þ 1Þ

It easy to see that there are no possibility in which M�(r, Ã ) ¼ a3. If it happens
�ða1;a2Þða2�a3Þ�ð1��ða1;a2ÞÞða3�a1Þ

ðrþ1Þ ¼ 0 and this produce that �ða1; a2Þ ¼
a3�a1
a2�a3

. This function do

not verify the hypothesis a), b), c) defined in section 1. In the symmetric case the only

possibility to be equal to a3 is that �(a1, a2) ¼ 1/2, 8a1, a2, but it is impossible why we

have supposed �(a1, a2) is not constant.

Example 5. If Ã ¼ (m1, m2, �, 	) is a trapezoidal fuzzy number with [m1, m2] flat graphic

and left-width � > 0 and right-width 	 > 0,

M*ðr;A
~~Þ ¼ r

Z 1

0

�r�1a�1d� ¼ m1 �
�

r þ 1
and M*ðr;A~~Þ ¼ r

Z 1

0

�r�1a�2d�

¼ m2 þ
	

r þ 1

and consequently

M�ðr;A~~Þ ¼ �ða1; a2Þm2 þ ð1� �ða1; a2ÞÞm1 þ
ð	�ða1; a2Þ � ð1� �ða1; a2ÞÞ�Þ

ðr þ 1Þ

For the same reason of Example 4, it is easy to see that the crisp possibilistic weighted

mean of Ã of order r with not constant weights of a trapezoidal fuzzy number is not m1þm2

2
.

Definition 7 We call Variance of order r of a Fuzzy number Ã respect the weighted

average u�(Ã ) with not constant weights

Var�ðr;A~~Þ ¼ r

Z 1

0

�r�1 �ða1; a2Þa
�
2 þ ð1� �ða1; a2ÞÞa

�
1 � a�1

� �2
d�

þ r

Z 1

0

�r�1 �ða1; a2Þa
�
2 þ ð1� �ða1; a2ÞÞa

�
1 � a�2

� �2
d�

¼ ð�2ða1; a2Þ þ ð1� �ða1; a2ÞÞ
2Þr

Z 1

0

�r�1½a�2 � a�1 

2
d�

The deviation standard of A~~respect the weighted average u�(A~~) with not constant weights

is r�ðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var�ðr;A~~Þ
q

.
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Example 6. If A~~¼ (a1, a3, a2) is a triangular fuzzy number, it is easy to see that

Var�ðr;A~~Þ ¼ ð�2ða1; a2Þ þ ð1� �ða1; a2ÞÞ
2Þ

2

r þ 1ð Þ r þ 2ð Þ
a2 � a1ð Þ2

If Ã is a crisp number Var�(r, Ã ) ¼ 0.

If Ã is shifted by a value 
 2 R, and so we obtain a new fuzzy number B̃ which

membership function is �B(x) ¼ �A(x � 
), because of the hypothesis on �(a1, a2), we

cannot have information about the relation between Var�(r, Ã ) and Var�(r, B̃ ).

Definition 8 We call the Covariance of two Fuzzy numbers, Ã and B̃ , of order r respect

the weighted average u�(Ã ) with not constant weights:

Cov�ðA~~;B~~Þ ¼ ð�ða1; a2Þ�ðb1; b2Þ þ ð1� �ða1; a2ÞÞð1� �ðb1; b2ÞÞÞ

� r

Z 1

0

�r�1½a�2 � a�1 
 b
�
2 � b�1

� �

d�

if Ã ¼ (a1, a3, a2) and B̃ ¼ (b1, b3, b2) are triangular fuzzy numbers,

Cov�ðA~~;B~~Þ ¼ ð�ða1; a2Þ�ðb1; b2Þ

þ ð1� �ða1; a2ÞÞð1� �ðb1; b2ÞÞÞ
2

r þ 1ð Þ r þ 2ð Þ
a2 � a1ð Þ b2 � b1ð Þ

Because of the hypothesis on �(a1, a2), we cannot have the proof of the analogous theorem

in Carlsson and Fuller (2001) we obtain the variance of a linear combination of fuzzy

numbers.

THEOREM 5 Let �, � 2 R and let Ã and B̃ be fuzzy numbers. Then

Var�ðr; �A~~P �B~~Þ ¼ �2
�2�AP�B þ ð1� ��AP�BÞ

2

�2A þ ð1� �AÞ
2

Var�ðr;A~~Þ

þ �2
�2�AP�B þ ð1� ��AP�BÞ

2

�2B þ ð1� �BÞ
2

Var�ðr;B~~Þ

þ 2 ��j j
�2�AP�B þ ð1� ��AP�BÞ

2

�A�B þ ð1� �AÞð1� �BÞ
Cov�ðA~~;B~~Þ ð11Þ

where ��AP�B is the degree of risk associated with the fuzzy number �Ã P � B̃ , �A and �B
are respectively the degrees of risk associated with the fuzzy number Ã and B̃ , the addition

P and the multiplication by a scalar are the usual definitions of sum and multiplication by

scalar in fuzzy number set.

Let Ã and B̃ be fuzzy numbers and Ã o B̃ (that is �A (x) < �B (x) 8x). Then �A < �B, but

we cannot say anything about the relation between Var�(r, Ã ) and Var�(r, B̃ ).
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5. Ranking Functions of Fuzzy Numbers

The definition of crisp possibilistic weighted mean of Ã of order r with constant weights is

an F-evaluation function and induces a natural ranking on fuzzy numbers. Let Ã , B̃ be in F

and the F-evaluation function Mk(r, Ã ) defined in (5), we have

Definition 9 (Campos and Gonzalez (1989), Gonzalez (1990)) We say that B~~is Mk(r) –

preferred to Ã , in symbols

A~~�Mk
B~~ iff Mkðr;A~~Þ < Mkðr;B~~Þ

This is a crisp preorder on R and an order relation on the quotient set generated by the

equivalence relation ÃcMk
B̃ if and only if Mk(r, Ã ) ¼ Mk(r, B̃ ).

If Ã , B̃ are triangular fuzzy numbers, Ã ¼ (a1, a3, a2) and B̃ ¼ (b1, b3, b2)

M kðr;A~~Þ �M kðr;B~~Þ ¼
rða3 � b3Þ þ kða2 � b2Þ þ ð1� kÞða1 � b1Þ

r þ 1

It is easy to see that if Ã ¼ B̃ then Mk(r, Ã ) ¼ Mk(r, B̃ ), but the converse is not true. We

consider now, how the definition of crisp possibilistic weighted mean of Ã of order r with

not constant weights given in (10), induces a natural ranking on fuzzy numbers.

Let Ã , B̃ be in F and the F-evaluation function M�(r,.). We have

M�ðr;A~~Þ ¼ �ða1; a2ÞM*ðr;A~~Þ þ ð1� �ða1; a2ÞÞM*ðr;A
~~Þ

¼ M*ðr;A
~~Þ þ �ða1; a2ÞðM*ðr;A~~Þ �M*ðr;A

~~ÞÞ ð12Þ

Looking to the last formula, we may notice a similarity between it and (2). It is the second

type of ‘‘I-evaluation Function’’, on the interval [M
*
(r, Ã ), M*(r, Ã )], with not constant

coefficient �(a1, a2), which is related to Ã .

It is possible to use M�(r, Ã ) to obtain a ranking function on F.

Definition 10 We state that B~~ is M �(r) – preferred to Ã , in symbols

A~~�M �
B~~ iff M �ðr;A~~Þ < M �ðr;B~~Þ

This is a crisp preorder on R and an order relation on the quotient set generated by the

equivalence relation ÃcM� B̃ if and only if M�(r, Ã ) ¼ M�(r, B̃ ).

If Ã is a triangular fuzzy number, Ã ¼ (a1, a3, a2),

M �ðr;A~~Þ ¼ M �ðr; a1; a2; a3Þ ¼
r

r þ 1
a3 þ

1

r þ 1
a1 þ �ða1; a2Þða2 � a1Þ½ 


¼
r

r þ 1
a3 þ

1

r þ 1
u�ða1; a2Þ:
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As u�(a1, a2) is increasing in the two variables, for r fixed,M�(r, a1, a2, a3) is increasing in

all the variables if it is increasing in a3. Classically no property is requested for ranking

functions; nevertheless that is the increasing monotonicity in all its variables. The reason

of this request is very natural. A fuzzy number is more preferable as it runs along the

positive direction of the real axis.

6. Conclusion

We have introduced two types of evaluation functions on intervals and by them we have

proposed ranking functions, mean values, variance and covariance of fuzzy numbers in a

general framework. It is interesting to note that, in this field of research, many interesting

results are present for linear evaluation functions, but few authors have tried to extend

them in the not linear case. This paper is one of the first attempts in this direction. The

introduction of the indexes, r, k and �, let the possibility with the first to privilege the part

of the fuzzy number one decide to choose, with the two others, to put in evidence the

decision-maker risk tendency or aversion, that may be constant or not. In the first case it is

fixed ‘‘ex ante’’ and cannot be changed, in the second it depends on the circumstances,

which may be affected by the moment in which the decision has to be kept, but even by

the importance that the decision maker gives to the results produced by the choice. We

think that, in real applications, the second approach is more realistic.

Another interesting field of application of these results is in the defuzzification step. We

may think to use the several average values, here introduced, at the final step of Fuzzy

Expert Systems (FES). But the problem we meet in this type of application is that the

output of a FES is not always a fuzzy number, but only a fuzzy set not convex. In these

cases the approach of �-cuts is, at the moment, impossible. We are working in this

direction to overcome this difficulty.

Notes

1. Tel. 0039-59-2056779.

2. We desire to thank Professor Fuller who looked the section 2 of this paper in 2001 and encouraged to present

our results for printing.
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Ranking Functions Induced by Weighted Average

of Fuzzy Numbers

GISELLA FACCHINETTI1 facchinetti@unimo.it

Faculty of Economics, University of Modena and Reggio Emilia, Berengario Avenue 51, 41100 Modena, Italy

Abstract. In this paper we present two definitions of possibilistic weighted average of fuzzy numbers, and by

them we introduce two different rankings on the set of real fuzzy numbers. The two methods are dependent on

several parameters. In the first case, the parameter is constant and the results generalize what Carlsson and Fuller

have obtained in (2001)2. In the second case, the parameter is a function, not fixed a priori by the decision maker,

but it depends on the position of the interval on the real axe. In all the two cases we call the parameter degree of

risk, which takes into account of a risk-tendency or aversion of the decision maker.

Keywords: fuzzy numbers, average value, possibilistic weighted average, ranking methods.

1. Introduction

In most real situation, one is forced to take decision on the basis of ill-defined

variables and imprecise data. The theory of fuzzy sets is a natural tool to model this

situation as fuzzy numbers well represent imprecise quantities. In decision-making

problems we have the necessity to optimise some procedure and so it is necessary to

have ranking of the quantities involved. Many authors have studied different definitions of

ranking on the set of fuzzy numbers F, (Bortolan and Degani (1985)). Most of these are

based on the definition of an evaluation function (F-evaluation function), which maps

fuzzy numbers in the real line. The order on F is induced by the real number total order. As

fuzzy numbers are intervals in which boundaries are blurred, the difficulty in ranking them

arise from the problem created in ranking real intervals. When the supports of fuzzy

numbers are disjointed, there are no problems and all the methods lead to the same

solution. But the decision is not evident when the intersection between supports is not

empty. In these cases, it seems that the solution depends on subjective elements depending

of the nature of the problem and the decision-maker.

Following the idea of Campos and Gonzalez (1989) we start with the introduction of

two different evaluation functions on the set of real intervals, we will call I-evaluation

functions. They contain a parameter we call degree of risk, which takes into account of a

risk-tendency or aversion of the decision maker, that is constant in the first case, a function

in the second, and then, using the definition of a fuzzy numbers by its �-cuts, we introduce

two average values (AV) as F-evaluation functions. Using these two, we obtain several

results. One is to generalise the results of Carlsson and Fuller. They, in a paper of 2001,

starting from a particular AV, have introduced the notations of lower and upper

possibilistic mean value and consequently defined the interval-valued possibilistic mean,

crisp possibilistic mean value and crisp variance of a continuous possibility distribution.

Fuzzy Optimization and Decision Making, 1, 313–327, 2002
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The two new AV are consistent with the extension principle and with the well-known

definitions of expectation and variance in probability theory. Another result is the

introduction of a definition of ranking functions on the set of fuzzy numbers F.

2. Two Different Types of Average Value

Following the idea introduced by Campos and Gonzalez (1989), (see also Gonzalez

(1990), Campos and Gonzalez (1994)) we begin with the introduction of an I-evaluation

function on real intervals, to define an F-evaluation function on fuzzy numbers.

We define one I-evaluation function a real function u: I ! R, where I ¼ {A ¼ [a1, a2] :

a1, a2 2 R, a2 � a1}.

The imagine of u is denoted by u(A) ¼ u([a1, a2]) ¼ u(a1, a2).

In general, it is not possible to request, a priori, any property on u(.), but it seems

reasonable to consider functions which are increasing in both variables and have some

regularity properties (i.e., u 2 C (1)).

We consider two families of such functions, which are based on a parameter, called

degree of risk, (the risk-tendency or aversion) of the decision maker. They have the very

interesting property to be sensitive to the uncertainty associated to the use of real intervals

instead of the reals.

Definition 1 Campos and Gonzalez (1989) The family {uk}k2 [0,1] of linear functions

ukðAÞ ¼ ukða1; a2Þ ¼ ka2 þ ð1� kÞa1; k 2 ½0;1 
 ð1Þ

The function uk(a1, a2) is a convex combination of the interval extremes and the

coefficient k, we call degree of risk of the decision maker, is constant.

Definition 2 Facchinetti and Ghiselli Ricci (2001) The family {u�}�2G of not linear

functions

u�ða1; a2Þ ¼ a1 þ �ða1; a2Þða2 � a1Þ ð2Þ

and G is the set of class C (1) functions, �(a1, a2): D ! [0, 1], D ¼ {(a1, a2) : a1, a2 2 R,

a2 > a1 � 0}, such that:

a) �(a1, a2) is strictly decreasing in the first variable,

b) �(a1, a2) is strictly increasing in the second variable,

c) �(a1, a2) ! 0 as a1 ! a2,

d) u�(a1, a2) is increasing in a1,

It is clear that u�(a1, a2) is a convex combination of the interval extremes and the
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coefficient �(a1, a2), we could interpret degree of risk of the decision maker, is not

constant, but depends on the interval position in the real axe.

We emphasize that in this new model � depends on a1 and a2 and this leads to a

more realistic choice by the decision maker. For example, let the intervals I1 ¼ [2, 3]

and I2 ¼ [200, 201], represents the possible outputs of two different investments: the

spread is the same, but if we compare it with 2 and 200, it appear unquestionable

that the uncertainty associated to the evaluation of I2 is much lower than the one

related to I1. The fact that � depends on a1 and a2 let us to express different degrees

of risk associated to I1 and I2, while the assumption of � constant completely ignores

this fact.

Some comments on the hypothesis a)-d). We explicitly point out the conditions a)

and b) as we are not interested, in this case, to let � to be constant, moreover they

assure that �, fixing a1, increase as a2 increases, and symmetrically that, fixing a2,

decrease as the value of a1 tends to a2. The condition c) is a boundary condition:

when the interval width is very close to zero the degree of risk goes to zero, as the

uncertainty goes to zero. The condition d) translate the monotonicity of the evaluation

when a1 tends to a2.

As consequences we have that a) and b) force �(a1, a2) to be valued in the open

interval ]0,1[. Furthermore the condition a) and the regularity of � imply u�(a1, a2) is

strictly increasing in a2.

Starting from uk(a1, a2) and u�(a1, a2) we induce two evaluation functions on the

set of fuzzy numbers F.

Definition 3 The fuzzy set Ã is a fuzzy number iff :

1) 8 � 2 [0,1], A� ¼ {x 2 R : lA (x) � �} ¼
�

a1
�, a2

�
�

is a convex set.

2) �A (.) is an upper-semicontinuous function.

3) Supp(A) ¼ {x 2 R : �A (x) > 0} is a bounded set in R.

Now we define an I-evaluation functions u on the family of set A�, called �-cuts of A~~,

and, by it, we define an F-evaluation function, we call the Average Value of Ã .

Definition 4 (Campos and Gonzalez (1989), Gonzalez (1990)) We call Average Value

(AV ) of the fuzzy number A~~, made by an adolitive measure S on [0, 1] the value

MuðS;A~~Þ ¼

Z 1

0

uðA�ÞdS ð3Þ

If u is respectively uk(.) and uq(.), on the set of fuzzy number F we obtain the following

two different Average Value:

MkðS;A~~Þ ¼

Z 1

0

ukðA
�ÞdS and MqðS;A~~Þ ¼

Z 1

0

uqðA
�ÞdS
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or more explicitly

MkðS;A~~Þ ¼

Z 1

0

ka�2 þ ð1� kÞa�1
� �

dS and MqðS;A~~Þ ¼

Z 1

0

a�1 þ qða�1; a
�
2 Þða

�
2�a�1Þ

� �

dS

ð4Þ

The difference between the two AV in (4) is that the first is linear in A�, and the second

not. The lost of linearity, as always happens, will create a lot of difficulties. We will treat

these problems and propose some solutions in section 3. The interest of the second case is

due to the fact that the decision maker has not a fixed degree of risk. It changes with the

fuzzy number Ã .

It is possible to write the first AV in (4) in a more useful way for the next section:

MkðS;A~~Þ ¼ kM*ðS;A~~Þ þ ð1� kÞM*ðS;A
~~Þ ð5Þ

with

M*ðS;A
~~Þ ¼

Z 1

0

a�1dS and M*ðS;A~~Þ ¼

Z 1

0

a�2dS ð6Þ

In the case in which S is the normalized Stieltjes measure generated by the function s(�) ¼
�r, 8 r > 0 : S(]a, b]) ¼ br � ar, 8 a, b 2 [0, 1] we obtain

M*ðr;A
~~Þ ¼ r

Z 1

0

�r�1a�1d� and M*ðr;A~~Þ ¼ r

Z 1

0

�r�1a�2 d� ð7Þ

and so the two AV introduced in (4) become

Mkðr;A~~Þ ¼ r

Z 1

0

�r�1ukðA
�Þd� and Mqðr;A~~Þ ¼ r

Z 1

0

�r�1uqðA
�Þd� ð8Þ

The choice of r is connected with these types of preferences:

� r > 1, S gives more weight to the high values of � 2 [0, 1]
� r < 1, S gives more weight to the low values of � 2 [0, 1]
� r ¼ 1 we obtain a linear preference and S gives equal weight to all values of � 2 [0, 1].

The last case produces a particular case of a Stieltjes measure, which is a Lebesgue

measure L: L(]a, b]) ¼ b � a, 8 a, b 2 [0, 1].

It easy to see that, for particular choice of k and S, the (5) coincides with other

comparison indexes (Adamo (1980), Tsumura et al (1981), Yager (1981)), (cfr. Campos-

Gonzalez 1989). In particular if r ¼ 1, A~~ is a triangular fuzzy number defined by

(a1, a3, a2), for which l(a3) ¼ 1, S is the Lebesgue measure, the (5) is equivalent to the

method of convex combination between the pessimistic and optimistic choice, introduced

by Facchinetti, Ghiselli Ricci and Muzzioli in 1998.
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3. Weighted Average Value and Variance of Fuzzy Numbers with Constant Weights

Dubois and Prade in a paper of 1987 have defined the mean value of a fuzzy number E(A~~)

as an interval whose bounds are upper E
*
(A~~) and lower E*(A~~) expectation, that is,

EðA~~Þ ¼ E*ðA
~~Þ;E*ðA~~Þ

h i

with E*ðA
~~Þ ¼

Z þl

�l

xdF*ðxÞ and E*ðA~~Þ ¼

Z þl

�l

xdF*ðxÞ

with F* (x) ¼ sup {lA (t) : t  x} and F
*
(x) ¼ inf {1 � lA (t) : t > x}.

The last two integrals can be written as Choquet integrals with respect the possibility C

and necessity measure N associated to the fuzzy number Ã :

E*ðA
~~Þ ¼

Z

x dC and E*ðA~~Þ ¼

Z

x dN:

If we calculate E
*
(A~~) and E* (A~~), when A~~ is a fuzzy number with continuous and strictly

increasing membership function before the modal values [m1, m2], and strictly decreasing

after the modal values, using definition 4, it is easy to note that:

E*ðA
~~Þ ¼ M*ð1;A

~~Þ ¼

Z 1

0

a�1d� ¼

Z 1

0

a�1dL and

E*ðA~~Þ ¼ M*ð1;A~~Þ ¼

Z 1

0

a�2d� ¼

Z 1

0

a�2dL:

By analogy we define respectively S-upper ad S-lower expectations, the quantity in (6) and

define the S-mean value of a fuzzy number A~~ the interval

M ðS;A~~Þ ¼ M*ðS;A
~~Þ; M*ðS;A~~Þ

h i

:

If S is a normalized Stieltjes measure, Gonzalez (1990) shows that M*(S, A
~~) ¼ E*(A

~~s ) and

M*(S, A ) ¼ E*(A~~s ), where A~~s is a fuzzy number with membership function lAs ¼ s BlA,

and so

M ðS;A~~Þ ¼ M
*
ðS;AÞ; M*ðS;AÞ

h i

¼ E
*
ðAsÞ; E*ðAsÞ

h i

¼ M*ð1;A
~~sÞ; M*ð1;A~~sÞ

h i

If S is generated by the function sð�Þ ¼ �r, we may indicate A~~s ¼ A~~r. Its membership

function is �Ar ¼ xr B �A ¼ �r
A. The last function was defined operation of concentration

if r > 1 and dilution if r < 1 by Zadeh (1973).
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These last results give us the possibility to reformulate the S-mean value in terms of

possibility and necessity measures. In fact it is easy to show that

M*ðS;A
~~Þ ¼

Z þl

�l

xdFS
*ðxÞ and M*ðS;A~~Þ ¼

Z þl

�l

xdFS

*ðxÞ

where

FS
*ðxÞ ¼

s B lAðxÞ if x < m1

1 if x � m1

FS

*ðxÞ ¼
1� s B lAðxÞ if x � m2

0 if x < m2

8

<

:

8

<

:

therefore

MkðS;A~~Þ ¼

Z 1

0

ukðA
�ÞdS ¼ k

Z

x dC
s þ ð1� kÞ

Z

x dN
s

where C
s and Ns are respectively the possibility and necessity measures associated with

the fuzzy number A~~s with membership function lAs ¼ s BlA.

Using the previous notations, the next results generalise what Carlsson and Fuller (2001)

have introduced. Their definitions are particular cases in which s(x) ¼ xr with r ¼ 2 and

k ¼ 1
2
.

Definition 6 We call respectively lower and upper possibilistic mean values of order r

of a fuzzy number A~~ the quantities defined in (7):

M*ðr;A
~~Þ ¼ r

Z 1

0

�r�1a�1d�; M*ðr;A~~Þ ¼ r

Z 1

0

�r�1a�2d�;

Following Carlsson and Fuller (2001), we define a crisp possibilistic weighted mean of A~~

of order r with constant weights their convex combination:

Mkðr;A~~Þ ¼ kM*ðr;A~~Þ þ ð1� kÞM*ðr;A
~~Þ ¼ k

Z

x dC
s þ ð1� kÞ

Z

x dN
s: ð9Þ

The last definition is the Average Value introduced by Campos Gonzalez (1989).

In the same paper, it is possible to find the proof of the following

THEOREM 1 Mk(r, Ã ) is a linear functional on the space of the fuzzy number F, that is:

if P denotes the sum on F, then 8 A~~, B~~2 F, 8 d 2 R

M kðr;A~~P B~~Þ ¼ M kðr;A~~Þ þM kðr;B~~Þ

M kðr; dA~~Þ ¼ dM kðr;A~~Þ
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Example 1. If Ã ¼ (a1, a3, a2) is a triangular fuzzy number it easy to see that

M*ðr;A
~~Þ¼ r

Z 1

0

�r�1a�1 d� ¼ a3�
a3 � a1

r þ 1
M*ðr;A~~Þ¼ r

Z 1

0

�r�1a�2d� ¼ a3 þ
a2 � a3

r þ 1

M kðr;A~~Þ ¼ kM*ðr;A~~Þ þ ð1� kÞM*ðr;A
~~Þ ¼ a3 þ

kða2 � a3Þ � ð1� kÞða3 � a1Þ

ðr þ 1Þ

If the triangular fuzzy number A~~ is symmetric, that is a2 � a3 ¼ a3 � a1

M kðr;A~~Þ ¼ kM*ðr;A~~Þ þ ð1� kÞM*ðr;A
~~Þ ¼ a3 þ

ða2 � a3Þð2k� 1Þ

ðr þ 1Þ

and if k ¼ 1
2
; M kðr;A~~Þ ¼ a3. That is, the crisp possibilistic weighted mean of Ã of order r

with constant weights of a symmetric triangular fuzzy number is the central value, with

membership function equal to one, if and only if the weight is k ¼ 1
2
.

Example 2. If Ã ¼ (m1, m2, �, 	) is a trapezoidal fuzzy number with [m1, m2] flat graphic

and left-width � > 0 and right-width 	 > 0,

M*ðr;A
~~Þ ¼ r

Z 1

0

�r�1a�1d� ¼ m1 �
�

r þ 1
; M*ðr;A~~Þ ¼ r

Z 1

0

�r�1a�2 d�

¼ m2 þ
	

r þ 1

and consequently

M kðr;A~~Þ ¼ kM*ðr;A~~Þ þ ð1� kÞM*ðr;A
~~Þ ¼ km2 þ ð1� kÞm1 þ

ðk	 � ð1� kÞ�Þ

ðr þ 1Þ

If 	 ¼ � and k ¼ 1
2
, M ðr;A~~Þ ¼ m1þm2

2
. That is, the crisp possibilistic weighted mean of A~~of

order r with constant weights of a simmetric trapezoidal fuzzy number is the central value

of the flat part, if and only if the weight is k ¼ 1
2
.

In Gonzalez (1989), there is a simple, but interesting, calculus for a trapezoidal fuzzy

number A~~, useful in the next remark.

As ukðA
�Þ ¼ km2 þ ð1� kÞm1 þ ð1� �Þðk	 � ð1� kÞ�Þ;

MkðS;A~~Þ ¼

Z 1

0

ukðA
�ÞdS ¼ km2 þ ð1� kÞm1þ kðsÞðk	 � ð1� kÞ�Þ ¼ ukðA

1�kðsÞÞ

where kðsÞ ¼
R 1

0
sð�Þd�.
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The last result shows that the crisp possibilistic weighted mean of order r with constant

weights of A~~ is an I-evaluation not of the support of A~~, but of a particular �-cut of A~~with

� ¼ �s ¼ 1�
R 1

0
sð�Þd�:

Remark. The vision of the Average Value introduced by Gonzalez, or the crisp possi-

bilistic weighted mean of order r with constant weights of A~~, as an I-evaluation function,

let to understand the meaning of these quantity. In the general case, fixed k and S, the

Average Value is a value of the interval M ðS;A~~Þ. In this particular case, not only we may

assure thatM ðS;A~~Þ is a subset of the support of A~~, but we may define it as the projection of

the �-cut of A~~, with � ¼ �s, on the support of A~~. This idea let us to reduce the uncertainty

in our decision.

Definition 7 We call Variance of order r of a fuzzy number Ã , respect the weighted

average uk(A~~), the quantity:

Varkðr;A~~Þ ¼ r

Z 1

0

�r�1 ka�2 þ ð1� kÞa�1 � a�1
� �2

d�

þ r

Z 1

0

�r�1 ka�2 þ ð1� kÞa�1 � a�2
� �

2d�

¼ ðk2 þ ð1� kÞ2Þr

Z 1

0

�r�1 a�2 � a�1
� �2

d�

The variance of order r of a fuzzy number A~~, respect the weighted average uk(A~~), is

defined as the expected value of the squared deviations between the weighted average and

the endpoints of its �-cuts respect the Stieltjes measure generated by s(x) ¼ xr. The

deviation standard of A~~ of order r of a fuzzy number A~~, respect the weighted average

ukðA~~Þ; is rkðr;A~~Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varkðr;A~~Þ
q

:

Example 3. If A~~¼ (a1, a3, a2) is a triangular fuzzy number it easy to see that

Varkðr;A~~Þ ¼ ðk2 þ ð1� kÞ2Þ
2

r þ 1ð Þ r þ 2ð Þ
a2 � a1ð Þ2

If k ¼ 1
2
and r ¼ 2, Varkðr; A~~Þ ¼

1
12
ða2 � a1Þ

2
. If Ã is a crisp number Vark(r, A~~) ¼ 0.

Following the same proof proposed by Carlsson and Fuller (2001) it is easy to show that

Vark(r, A~~) is invariant for shifting by a real value of the fuzzy number. That is if Ã is

shifted by a value 
 2 R, and so we obtain a new fuzzy number B~~ which membership

function is �B(x) ¼ �A(x � 
), we have Vark(r, B~~) ¼ Vark(r, Ã ).
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Definition 8 We call the Covariance of two Fuzzy numbers of order r respect the

weighted average uk(Ã )

Covkðr;A~~;B~~Þ ¼ ðk2 þ ð1� kÞ2Þr

Z 1

0

�r�1½a�2 � a�1 
 b
�
2 � b�1

� �

d�

if A~~¼ (a1, a3, a2) and B~~¼ (b1, b3, b2) are triangular fuzzy numbers

Covkðr;A~~;B~~Þ ¼ ðk2 þ ð1� kÞ2Þ
2

r þ 1ð Þ r þ 2ð Þ
a2 � a1ð Þ b2 � b1ð Þ

Even in this case, following the proof of Carlsson and Fuller (2001), it is possible to proof

the next two theorems. The first shows that the variance of a linear combination of fuzzy

numbers follows the same rule than in probability theory. That is:

THEOREM 2 Let �, � 2 R and let Ã and B̃ be fuzzy numbers. Then

Varkðr; �A~~P �B~~Þ ¼ �2Varkðr;A~~Þ þ �2Varkðr;B~~Þ þ 2 ��j jCovkðA~~;B~~Þ;

where P denotes the sum on F.

The second puts a relation between the inclusion of two fuzzy numbers and an inequality

between the relative variance.

THEOREM 3 Let Ã and B~~be fuzzy numbers and A~~o B~~ (that is �A (x) < �B (x), 8x). Then

Varkðr;A~~Þ  Varkðr;B~~Þ:

4. Weighted Average Value and Variance of Fuzzy Numbers with Not

Constant Weights

In the last section we have generalized the results obtained by Carlsson and Fuller (2001),

using the first I-evaluation function on A�. Here we try to go over again the same road

using, on F the second one defined in (4), in the case in which the Stieltjes measure S is

generated by s(x) ¼ xr. The AV now is:

M�ðr;A~~Þ ¼ r

Z 1

0

�r�1u�ðA
�Þd� ¼ r

Z 1

0

�r�1 a�1 þ �ða�1 ; a
�
2 Þða

�
2 � a�1 Þ

� �

d�:

This is a linear combination of the extremes of A� with not constant coefficient. It

depends on the extremes of A�.

This last formulation shows that in this general framework, it is not possible to have an

analogous formulation of convex combination of lower and upper mean value of a Fuzzy
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number as in (9), as we are not able to evaluate the two integrals without having an explicit

formulation of the degree of risk �(a1, a2).

To overcome this difficulty, we remember the meaning we have given in section 1 to the

term �(a1, a2). It is the uncertainty filled with the position of the fuzzy number on the real

axis. Now we may suppose that this function is independent by the several levels of

�-cuts, that is, it is constant respect the variable �, and assumes the value with � ¼ 0. This

is equivalent to put

qða�1 ; a
�
2 Þ ¼ qða01; a

0
2Þ ¼ qða1; a2Þ: ð9Þ

Using this condition, we obtain:

Definition 9 We call crisp possibilistic weighted mean of A~~ of order r with not constant

weights the quantity

M�ðr;A~~Þ ¼ �ða1; a2ÞM*ðr;A~~Þ þ ð1� �ða1; a2ÞÞM*ðr;A
~~Þ

¼ �ða1; a2Þ

Z

x d
s þ ð1� �ða1; a2ÞÞ

Z

x dN
r ð10Þ

where �(a1, a2) is defined in (2).

Following the same idea of section 2 we may say that even in this case it is an

‘‘I-evaluation function’’, on the interval [M
*
(r, Ã ),M*(r, Ã )], with not constant coefficient

�(a1, a2), which is related to Ã . It is the convex combination, with not constant coefficient

�(a1, a2), not of the support extremes of Ã , but of its �-cut with � ¼ �r ¼
r

rþ1
. Even in this

case, the idea to consider an F-evaluation function of Ã as an I-evaluation function offers

the possibility to understand what evaluation the decision maker is doing. The difference,

compared to the linear case, is that of when the decision maker has to evaluate the fuzzy

number A~~, decides which is the degree of risk that he assigns to A~~, and then he fixes r, in

this way he decides the width of the interval in which he finds the final evaluation.

Because of the hypothesis we have put on �(a1, a2), we cannot have the linearity of

M�(r, A~~), but we have the following

THEOREM 4 M�(r, Ã ) is not, in general, a linear functional on the space of the fuzzy

number F. What we can say is: if P denotes the sum on F, then 8 A~~, B~~2 F, 8 d 2 R

Mqðr;A~~P B~~Þ ¼ qAPB½Mqðr;A~~Þ þMqðr;B~~Þ


Mkðr; dA~~Þ ¼ qdA d Mkðr;A~~Þ

where �APB is related with the fuzzy number A P B, and �dA is related to dA.
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Example 4. If Ã ¼ (a1, a3, a2) is a triangular fuzzy number we have:

M�ðr;A~~Þ ¼ a3 þ
�ða1; a2Þða2 � a3Þ � ð1� �ða1; a2ÞÞða3 � a1Þ

ðr þ 1Þ

It easy to see that there are no possibility in which M�(r, Ã ) ¼ a3. If it happens
�ða1;a2Þða2�a3Þ�ð1��ða1;a2ÞÞða3�a1Þ

ðrþ1Þ ¼ 0 and this produce that �ða1; a2Þ ¼
a3�a1
a2�a3

. This function do

not verify the hypothesis a), b), c) defined in section 1. In the symmetric case the only

possibility to be equal to a3 is that �(a1, a2) ¼ 1/2, 8a1, a2, but it is impossible why we

have supposed �(a1, a2) is not constant.

Example 5. If Ã ¼ (m1, m2, �, 	) is a trapezoidal fuzzy number with [m1, m2] flat graphic

and left-width � > 0 and right-width 	 > 0,

M*ðr;A
~~Þ ¼ r

Z 1

0

�r�1a�1d� ¼ m1 �
�

r þ 1
and M*ðr;A~~Þ ¼ r

Z 1

0

�r�1a�2d�

¼ m2 þ
	

r þ 1

and consequently

M�ðr;A~~Þ ¼ �ða1; a2Þm2 þ ð1� �ða1; a2ÞÞm1 þ
ð	�ða1; a2Þ � ð1� �ða1; a2ÞÞ�Þ

ðr þ 1Þ

For the same reason of Example 4, it is easy to see that the crisp possibilistic weighted

mean of Ã of order r with not constant weights of a trapezoidal fuzzy number is not m1þm2

2
.

Definition 7 We call Variance of order r of a Fuzzy number Ã respect the weighted

average u�(Ã ) with not constant weights

Var�ðr;A~~Þ ¼ r

Z 1

0

�r�1 �ða1; a2Þa
�
2 þ ð1� �ða1; a2ÞÞa

�
1 � a�1

� �2
d�

þ r

Z 1

0

�r�1 �ða1; a2Þa
�
2 þ ð1� �ða1; a2ÞÞa

�
1 � a�2

� �2
d�

¼ ð�2ða1; a2Þ þ ð1� �ða1; a2ÞÞ
2Þr

Z 1

0

�r�1½a�2 � a�1 

2
d�

The deviation standard of A~~respect the weighted average u�(A~~) with not constant weights

is r�ðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var�ðr;A~~Þ
q

.
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Example 6. If A~~¼ (a1, a3, a2) is a triangular fuzzy number, it is easy to see that

Var�ðr;A~~Þ ¼ ð�2ða1; a2Þ þ ð1� �ða1; a2ÞÞ
2Þ

2

r þ 1ð Þ r þ 2ð Þ
a2 � a1ð Þ2

If Ã is a crisp number Var�(r, Ã ) ¼ 0.

If Ã is shifted by a value 
 2 R, and so we obtain a new fuzzy number B̃ which

membership function is �B(x) ¼ �A(x � 
), because of the hypothesis on �(a1, a2), we

cannot have information about the relation between Var�(r, Ã ) and Var�(r, B̃ ).

Definition 8 We call the Covariance of two Fuzzy numbers, Ã and B̃ , of order r respect

the weighted average u�(Ã ) with not constant weights:

Cov�ðA~~;B~~Þ ¼ ð�ða1; a2Þ�ðb1; b2Þ þ ð1� �ða1; a2ÞÞð1� �ðb1; b2ÞÞÞ

� r

Z 1

0

�r�1½a�2 � a�1 
 b
�
2 � b�1

� �

d�

if Ã ¼ (a1, a3, a2) and B̃ ¼ (b1, b3, b2) are triangular fuzzy numbers,

Cov�ðA~~;B~~Þ ¼ ð�ða1; a2Þ�ðb1; b2Þ

þ ð1� �ða1; a2ÞÞð1� �ðb1; b2ÞÞÞ
2

r þ 1ð Þ r þ 2ð Þ
a2 � a1ð Þ b2 � b1ð Þ

Because of the hypothesis on �(a1, a2), we cannot have the proof of the analogous theorem

in Carlsson and Fuller (2001) we obtain the variance of a linear combination of fuzzy

numbers.

THEOREM 5 Let �, � 2 R and let Ã and B̃ be fuzzy numbers. Then

Var�ðr; �A~~P �B~~Þ ¼ �2
�2�AP�B þ ð1� ��AP�BÞ

2

�2A þ ð1� �AÞ
2

Var�ðr;A~~Þ

þ �2
�2�AP�B þ ð1� ��AP�BÞ

2

�2B þ ð1� �BÞ
2

Var�ðr;B~~Þ

þ 2 ��j j
�2�AP�B þ ð1� ��AP�BÞ

2

�A�B þ ð1� �AÞð1� �BÞ
Cov�ðA~~;B~~Þ ð11Þ

where ��AP�B is the degree of risk associated with the fuzzy number �Ã P � B̃ , �A and �B
are respectively the degrees of risk associated with the fuzzy number Ã and B̃ , the addition

P and the multiplication by a scalar are the usual definitions of sum and multiplication by

scalar in fuzzy number set.

Let Ã and B̃ be fuzzy numbers and Ã o B̃ (that is �A (x) < �B (x) 8x). Then �A < �B, but

we cannot say anything about the relation between Var�(r, Ã ) and Var�(r, B̃ ).
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5. Ranking Functions of Fuzzy Numbers

The definition of crisp possibilistic weighted mean of Ã of order r with constant weights is

an F-evaluation function and induces a natural ranking on fuzzy numbers. Let Ã , B̃ be in F

and the F-evaluation function Mk(r, Ã ) defined in (5), we have

Definition 9 (Campos and Gonzalez (1989), Gonzalez (1990)) We say that B~~is Mk(r) –

preferred to Ã , in symbols

A~~�Mk
B~~ iff Mkðr;A~~Þ < Mkðr;B~~Þ

This is a crisp preorder on R and an order relation on the quotient set generated by the

equivalence relation ÃcMk
B̃ if and only if Mk(r, Ã ) ¼ Mk(r, B̃ ).

If Ã , B̃ are triangular fuzzy numbers, Ã ¼ (a1, a3, a2) and B̃ ¼ (b1, b3, b2)

M kðr;A~~Þ �M kðr;B~~Þ ¼
rða3 � b3Þ þ kða2 � b2Þ þ ð1� kÞða1 � b1Þ

r þ 1

It is easy to see that if Ã ¼ B̃ then Mk(r, Ã ) ¼ Mk(r, B̃ ), but the converse is not true. We

consider now, how the definition of crisp possibilistic weighted mean of Ã of order r with

not constant weights given in (10), induces a natural ranking on fuzzy numbers.

Let Ã , B̃ be in F and the F-evaluation function M�(r,.). We have

M�ðr;A~~Þ ¼ �ða1; a2ÞM*ðr;A~~Þ þ ð1� �ða1; a2ÞÞM*ðr;A
~~Þ

¼ M*ðr;A
~~Þ þ �ða1; a2ÞðM*ðr;A~~Þ �M*ðr;A

~~ÞÞ ð12Þ

Looking to the last formula, we may notice a similarity between it and (2). It is the second

type of ‘‘I-evaluation Function’’, on the interval [M
*
(r, Ã ), M*(r, Ã )], with not constant

coefficient �(a1, a2), which is related to Ã .

It is possible to use M�(r, Ã ) to obtain a ranking function on F.

Definition 10 We state that B~~ is M �(r) – preferred to Ã , in symbols

A~~�M �
B~~ iff M �ðr;A~~Þ < M �ðr;B~~Þ

This is a crisp preorder on R and an order relation on the quotient set generated by the

equivalence relation ÃcM� B̃ if and only if M�(r, Ã ) ¼ M�(r, B̃ ).

If Ã is a triangular fuzzy number, Ã ¼ (a1, a3, a2),

M �ðr;A~~Þ ¼ M �ðr; a1; a2; a3Þ ¼
r

r þ 1
a3 þ

1

r þ 1
a1 þ �ða1; a2Þða2 � a1Þ½ 


¼
r

r þ 1
a3 þ

1

r þ 1
u�ða1; a2Þ:
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As u�(a1, a2) is increasing in the two variables, for r fixed,M�(r, a1, a2, a3) is increasing in

all the variables if it is increasing in a3. Classically no property is requested for ranking

functions; nevertheless that is the increasing monotonicity in all its variables. The reason

of this request is very natural. A fuzzy number is more preferable as it runs along the

positive direction of the real axis.

6. Conclusion

We have introduced two types of evaluation functions on intervals and by them we have

proposed ranking functions, mean values, variance and covariance of fuzzy numbers in a

general framework. It is interesting to note that, in this field of research, many interesting

results are present for linear evaluation functions, but few authors have tried to extend

them in the not linear case. This paper is one of the first attempts in this direction. The

introduction of the indexes, r, k and �, let the possibility with the first to privilege the part

of the fuzzy number one decide to choose, with the two others, to put in evidence the

decision-maker risk tendency or aversion, that may be constant or not. In the first case it is

fixed ‘‘ex ante’’ and cannot be changed, in the second it depends on the circumstances,

which may be affected by the moment in which the decision has to be kept, but even by

the importance that the decision maker gives to the results produced by the choice. We

think that, in real applications, the second approach is more realistic.

Another interesting field of application of these results is in the defuzzification step. We

may think to use the several average values, here introduced, at the final step of Fuzzy

Expert Systems (FES). But the problem we meet in this type of application is that the

output of a FES is not always a fuzzy number, but only a fuzzy set not convex. In these

cases the approach of �-cuts is, at the moment, impossible. We are working in this

direction to overcome this difficulty.

Notes

1. Tel. 0039-59-2056779.

2. We desire to thank Professor Fuller who looked the section 2 of this paper in 2001 and encouraged to present

our results for printing.
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