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1 Introduction

G. Kirchhoff in [1] proposed the hyperbolic integro-differential equation in order to describe small, transversal
vibrations of an elastic string of length / (at rest) when the longitudinal motion can be considered negligible with
respect to the transversal one.
In their papers M. Gobbino [2] and M. Nakao [3] considered some generalized degenerate Kirchhoff equations.
M. Gobbino studied the equation:
ur —(1+ ||V””22(Q))Au =0,

but his method does not use fixed point theorems and can not be applied to the problem considered in this article. In
another papers M. Ghisi and M. Gobbino [4, 5] showed certain connections between the above equation and equation
of hyperbolic type containing term u;,. However M. Nakao proved the existence of solutions of the equation of
hyperbolic type. We will investigate a quasilinear parabolic generalization of the Kirchhoff equation.

The proof of the existence of solution of problem considered in this paper, which is indeed quasilinear (i.e. the
derivative of solution is a part of coefficient of the main part), can not be carried out using most classical methods.
This paper is devoted to this proof.

Consider the Dirichlet problem for quasilinear generalized degenerate Kirchhoff equation

ur—(1+ ”Vu”i2(gz))Au + g, x)=0 (D

with initial condition
u(0,x) = up(x),x € Q, )

and boundary condition of the Dirichlet type
ulage = 0. 3

We will assume that ug € H2(2) and @ € R is a domain of the class C2.
The following conditions will be imposed on the nonlinear function g: R x & — R throughout the paper:

(A1) There exists a function d: 2 — R, such that fQ d(x) dx = d < oo and a constant ¢ > 0, that

—g(u, x)u < cu? + d(x).
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(A2) There exists a constant ¢ > 0, such that

lgQu. x)] = e(1+ [ul?),

with certain exponent g < %
ere exist constants ¢y, ¢z > 0 and exponents 51 € (0, v—=), s2 € (0, such that:
A3) Th t t 0 and exponent 0. v 0, &t3) such that

N—2
g
ou

In dimension N = 2 we assume only that 51,52 > 0.

(A4) The function g is locally Lipschitz continuous with respect to the first variable, i.e. there exist constants L > 0,

q1.92 € (0, %) (orif N <4, then q1,q> € R), such that

d
<cr(1+ ul*) and ’g
ax,-

< ca(1 + |ul*?).

lg(u1,x) — g(uz,x)| < Lluy —uz|(1 + [ur]|?" + |uz|?).

(AS) g(0,x) =0forall x € Q.

Remark 1.1. Instead of assuming (A2), (A4) and the first part of (A3) (i.e. there exist constant c; > 0 and s1 €
(0, ﬁ) such that g—i <c1(1 + |ul*1)) we can assume that:

There exist constant L1 > 0 and exponents r1,1r2 € (0, %) such that
lgu1,x) — g(ua, x)| < Lufur —ual(1+ |ur|™ + [uz]™). @
Putting us = 0 to (4) and using (AS5) we obtain:
lgur,x)| = [gui,x) —g(0,x)] < Lylur|(1 + |ur|™).

When we note that index r1 + 1 is no greater than q we observe that assumption (A3) holds. Similarly, as a
consequence of (4)
g1, x) — gu2, x)|
w1 —uz|

< Lo(+ [ur]™ + [uz]").

Taking the limit with uy — u| we obtain that )g—i‘ < Lo(1 4+ |uy|™ + |u1|"?) and when we put s1 := max(ry,r2),
then (A4) holds.

Constructing a solution of (1) the Leray — Schauder Principle will be used (see e.g. [6], p. 189). We recall it here for
completeness of the presentation:

Proposition 1.2 (Leray — Schauder Principle). Consider a transformation y = T(x,k) where x, y belong to a

Banach space X and k is a real parameter which varies in a bounded interval, say a < k < b. Assume that

(@) T(x,k) isdefinedforallx € X anda <k < b,

(b) for any fixed k, T (x, k) is continuous as a function of x, i.e. for any xo € X and for any ¢ > 0 there exists a
8 > O such that |T' (x,k) — T (x0,k)|| < eif|lx —xol <36,

(¢c) for x varying in bounded setin X, T (x, k) is uniformly continuous in k, i.e. for any bounded set Xo C X and for
any g > 0 there exists a § > 0 such that if x € Xo, |k1—ka| <68, a <ky,kx <b, then |T(x,k1)—T(x,k2)| <
&,

(d) for any fixed k, T (x, k) is a compact transformation, i.e. it maps bounded subsets of X into compact subsets of
X,

(e) there exists a (finite) constant M such that every possible solution X of x — T(x,k) =0(x € X,a <k <b)
satisfies: || x| < M,

(f) the equation x — T (x,a) = y has the unique solution for any y € X.

Then there exists a solution of the equation x — T (x,b) = 0.
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Assumption (f) means that Leray-Schauder degree
degrs(I —T(.a);B(0,M);0) #0

with the constant M which comes from assumption (e). The more standard version of Leray-Schauder Principle,
called also Leray-Schauder continuation theorem, can be found e.g. in [7], p. 351 (Theorem 13.3.7).

2 Main theorem

Let us fix arbitrary T > 0.
We introduce an operator F: £ ([0, T, H(} (2)) x [0, 1] = £°°([0, T, H(} (£2)) in such a way, that for every
function v € £°°([0, T], H(} (R))and o € [0,1], u = F(v, ) is a solution of the equation

ur — (1 +a|Vol|72q) Au + g, x) =0, )
with initial — boundary conditions:

u(0,x) = uo(x). x € 2,

ulpe = 0.

We will search a fixed point of the operator F(-, 1) in £ ([0, T1], H& (2)).

The existence of the solution of the problem (1) is equivalent to the existence of the fixed point of operator
F(-,1)in £2°([0, T], H}(R)).

We have:

Theorem 2.1. Under the assumptions (Al), (A2), (A3), (A4) and (AS5) there exists a solution of the problem (1) with
initial-boundary conditions (2), (3) in the space L°°([0, T, HO1 ().

It can be seen that, using standard theory (see e.g. [8], chapter 3 for details), for @ = 0 the equation u — F(4,0) = y
has a unique solution for any y € £°°([0, T'], H(; (R2)); equivalently, the semilinear heat equation

ur—Au+gu,x)=0

with Dirichlet boundary condition has a unique solution.
The proof of the theorem will be given in a few steps. We start with obtaining certain a priori estimates.

3 Some lemmas

First it can be mentioned that when ug € H?2(2) then, using the method of Tanabe and Sobolevski (see [9], page
438), the solution of the problem (5) varies in the space HZ ().

Lemma 3.1. There exists A € R that for all t € (0, T) this estimate holds:

d d
2 2At 2

dx < d ol
/u x<e /”0 x+A 1
«Q

Proof. Multiplying the equation (5) by u and integrating over 2 we obtain:

/u-u,dx—(l+a||Vv||i2(Q))/Au-udx—}-/g(u,x)u dx =0.
Q Q Q
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Then from (A1):

>dr / lul? dx < (1 +a||Vv||L2(Q))/Au u+ /(cu +d(x)) dx.
Integrating first right hand side component by parts we obtain:

2dz / lu|?> dx < —(1 + «|| V| 2(9))f |Vu|? dx +c/u2 dx +d.
Q Q
Using the Poincaré inequality o, [u|*> dx < p [q |[Vu|? dx, we have next:

/|u|2 dx < _7(1 +a||Vv||L2(Q))/|u|2 dx+c/u dx +d,
«Q

2dz

so that
2dt[|u|2 dx < [c——(l+a||Vu||L2(Q))]/|u|2 dx +d.

Choosing A = ¢ — % the estimates holds

2dt/|u|2dx<A/|u|2dx+d

Finally using Gronwall inequality (see [10], p. 35):

d d
2 2At 2

dx < d — |-
/u x=<e (Zuo x+A 1
Q

fort € (0, 7). O

Lemma 3.2. There exist constants B, D € R such that:

D D

V2d<B’/V 2dx — = =,
[rvuP ax e { [ 1vuop ax- 3 | + 5
Q

Proof. Multiplying equation (5) by Au and integrating over Q:

fAu'ut dx — (1 +a||Vv||iz(Q))fAu'Au dx—l—/g(u,x)-Au dx.
Q Q Q

Integrating by parts:
/Au Uy dx = EE/WMZ dx.
Q

Then using Cauchy inequality with ¢ = % and (A2):

2dl/quIZ dx = —(1 +oz||Vv||L2(Q))/Au Au dx—l—/g(u x)-Audx <
Q

< —(1+a|Vv|72q) / Au-Audx + 3 [(g(u,x))2 dx + 3 f(Au)z dx <
Q

1
< —(§+a||Vv||iz(Q))/Au Au dx+ /(1+|u|q) dx.
Q
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and

| =

1 1
2 _ 2 . - =2 qN\2
t/|Vu| dxf—( +a||Vv||L2(Q))/Au Au dx+2c /(1+|u| ) dx <
Q Q

N =
L
\]

Q

=- (5 +a||Vv||L2(Q))/|Au| dx+¢ /(1 + [u??) dx =

1
( +cx||Vv||L2(Q))/|Au| dx +&2|Q| + & /|u|24 dx.

Since g < NT*FZ when 6 = % (1 - é) the following estimate holds:

2 2g(1—6 2qg6
16179, ) < c2llel74, " - Bl 3arg, and 2q6 < 1.

Consequently, our resulting estimate has the form:

1 - —6 4
= / [Vul? dx < — (2 +a||Vv||Lz(Q)) /(AW dx + 3|2 + Eealul73ie,” - ulzg,

Because the norms || - || 72 and [o, 2dx + Jo (A-)? dx are equivalent on the domain of (—A) (for more details
see e.g. [11]):

1
(5 + a||Vv||iz(m) / (Ap)* dx = hill$1 772y — h2 / ¢” dx,
Q Q

for some constants i1, h» > 0. Thus
1d 2 2 2 ) 2 2q(1—6) 240
7% |VM| dx =- hl”””]-]z(gz) _h2 u“dx |c |Q| +c c2||u||L2(Q) : ” ”Hz(gz)
Q

2 =2 2q(1—6 2q6 =2 2
—_hIHMHHZ(Q) +c CZHMHLZEQ) )”u”;Z(Q) +c |Q| +h2/u dx.

Q

Due to lemma 3.1, sup fQ u2dx <e = e(c,d, T), so that the estimate holds
t€[0,7]

2 2g(1—6 2q6 =2
M/W dx < =i ul7p2iq) + Eealull ;967 - lullzi g, + €211 + hae.

Using the Young inequality with €

=2
4 cZ'lu”LZ(Q) HZ(Q) <eih ”u”HZ(Q) + a”u”LZ(Q),

with a positive constanta = a(c, ¢z, €1), and the exponent P = ﬁ is chosen in such a way that Young inequality

holds. Then:
2dt / |vu|2 dx < —(e1+1)hy ”u” H2(Q) +a”u”£2(g2) +C_2|Q| + hae.

Since there exists a constant ¢ > 0 such that ||u||H2(Q) > o |Vu|? dx and ||u||L2(Q) < b < oo then:

1d

2dl/wwz x < —(e1 +1)h1c/|Vu|2 dx +ab® + 2|Q| + hae.

Q Q2

Therefore 4
E/|Vu|2 dx +2(e1 + 1)h15/ |Vu|? dx < 2ab® + 28%|Q| + 2hae
Q
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and the right side is a constant. Using Gronwall inequality (see [10], p. 35), denoting B = 2(€; + 1) k¢ and
D = 2ab? + 25%|Q| + 2hse, we obtain:

D D
V2d<Bt/V2d—— =,
[rvuP ax e | [1vuo ax - | + 5

Q
0

Remark 3.3. The two previous lemmas provide us an a priori estimate of the solution u of (5) in the space
L£2([0, 7], H' ().
Let us take a constant M > 0 such that:

lull zoor0, 77, E1 (2)) = lu@ll g1y <M

sup
t€[0.7]
The lemmas show also that, if u is a fixed point of the operator F, its norm ||ul| poo([o.77. 11 (2)) Will be bounded
by M, since the constants in both lemmas are independent of u and .

Finally a third a priori estimation in H2(2) will be shown:

Lemma 3.4. There exists a constant M| > 0 such that

||Au||L2(Q) < M] < 00,
Proof. By applying the Laplace operator A to (5), multiplying the result by Au and integrating over £2 we obtain:
y applying p p plying y g g

/ Au-Ausdx —(1+ a||Vv||22(Q)) / Au - A%u dx + / g, x)A%u dx = 0.
Q Q Q
Integrating by parts and using (A5):
1d
2dt

|Au|? dx + (1 +a||Vu||§2(Q))/ |VAu|? dx = /Vg(u,x) (VAu) dx.
«Q Q

Q

Then thanks to the Cauchy inequality
1d 5 1 5 5 1 5
> |Aul” dx + 3 +a[Volly2q) |VAul|* dx < 3 [Vg(u,x)|” dx. (6)
Q Q Q

Now, using assumption (A3), we will estimate last integral:

l/|V (ux)|2dx</i AWK 2dx+/i LA
2 S - ) u Ox; _ ox; -
Q Q =1 Q =1
N 4 4 N 2
g u g
SZ /(5) a /(3xi) dx+Z/(3xi) =
i=1 Q O i=1g

(7
<N.. c1- /(1 + |u|4sl) dx - ”u”%VlA(Q) +N-c> / (1 + |u|2s2) dx <
Q Q
2 2
< (VarN VIRT+ VarN 23, o)) - Il iagy + c2NI21 + N IEE, o
Next the norms || - [, 451 () | - w142y and || - || 252 () are estimated using Gagliardo-Nierenberg inequality.

Since 51 € (0, ﬁ), s2 € (0, %fg) it is possible to find constants c3, c4, c5 > 0, and powers 601, 6>, 603 € (0, 1),

such that:

0 1—-6
”u”L“Sl(Q) = C3||”||}L}3(Q)”u”Hl(IQ)?
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O, 1-6
||u||W14(Q) = C4||M||[;3(Q)”M”H](§2),

25101 + 26> <2,

I2) 1-6
el 2252y = esllullgs o) 14l 1)

285203 < 2.

Due to Remark 3.3, |[ul| ;71 () < M, inequality (7) will take the form:

1 2
5 [ 19800 dx < (Van VIal+ VEN Iz, o) 1y sy +
Q

2
+ N IRl + N U2, o) <

< (VEIN VIR + aTNes M1 000 [y | 2246 .

2(1—-6 26
-caM ( 2)||u|IH§(Q)+

+ aN|Q + eaNes M52 =09 [y | 2925

®

Choosing 6 = max(2s16; + 26>, 2s263) we find that 6 < 2. Then, defining
const = caN|Q2|

and
k= max(a/c1N\/|SZ|C4M2('_92), SNz M1 0=00 0, pp20=62) ) Nes pp252(1=63)

we obtain |
2
3 [ |Vg(u,x)|” dx < const + k||u||§_13(9).
Q

Estimate (6) will be extended to:

1d 1
>ar / |Au|? dx + (5 +ot||Vv||iz(Q)) / I[VAu|? dx < const + k||u||§13(m.
Y Q

Now, since the norms || - || 73 () and || - [l z2¢q) + 1V -l L2¢) + 1A - lIL2(q) + IVA - || L2(q) are equivalent, and
due to remark 3.3, we have:
3e>o lull g3y = ¢ (M + VAUl L2q)) -

Since 6 < 2, we can find a constant ¢ < % such that:

k||u||i[3(9) < cA||VAu||iz(Q) + const = éf |VAu|? dx + const
Q

Then we have: i
N f |Au|? dx + a||Vv||iz(Q) / VAu dx < const,
Q Q
Now, using the Calderon—Zygmund type inequality (see [12], pp. 186-187):

S0 Vgeniavy [ 80P dx <¢ [ 1VA4P dx.
Q Q
we can find positive constants /1, hg such that:

dt
Q «Q

d
—/|Au|2 dx+h1/|Au|2 dx < ho,
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Using the Gronwall inequality (see [10], p. 35) we finally obtain:

h h
/|Au|2 dx < et /(Auo)2 dx — 22 + -2
hy hy

Q

for ¢ € (0, T). Then defining M1 = sup,¢(o.7) [ehlt (f(Au0)2 dx — Z?) + Zf:| the proof will be completed.
Q
O

Remark 3.5. Above lemmas show that every eventual solution in the sense of Theorem 2.1 has to be an element of
the space L ([0, T], H*(Q) N HJ (Q)).

4 Proof of the main theorem

This section is devoted to the proof of the Theorem 2.1. Three conditions from the Leray — Schauder Principle:
continuities (b), (c) and compactness (d) will be verified.

It has to be proved that the operator F (-, ) is compact, i.e. it maps bounded subsets of £°° ([0, 7], Hd (2)) into
compact subsets of £°°([0, T, Hé (2)). Let us fix @ € [0, 1]. If the bounded subset A of £°°([0, T], HO1 () is
taken, then F (A, ) is bounded in the space £>°([0, T], H*(Q) N H(} (£2)). Using the equation (5), we can write:

wr = (14| V0|20 Au — g, x)

and because an element v € A, Au € L%() and thanks to (A2) the function g € L%(£2), we can deduce that
u; € L?(R). Additionally, the embedding HZ(Q) < H () is compact and H'(Q) < L?(Q) is continuous.
Using Aubin lemma (see e.g. [13] and [14]) the set of values of operator F (A, ) is compact in £°°([0, T7], H(% ().

Now we prove that for any fixed « € [0, 1], the operator F(v,®) is continuous as a function of v, i.e. for
any v; € £2°([0,T7], H& (2)) and for any & > O there exists a § > 0 such that ||F(vi,a) — F(v2,a)|| < ¢ if
||v1 — U2|| <.

Let us take & € [0, 1] and vy, vy € L°°([0, T], H(} (R)). Letuy,uz € £2°(]0, T], H(} (2)) be the values of the
operator F corresponding to v and v», i.e.

@) — (1 + | Vo172 g Aur + g1, x) =0,
w2)r — (1 + a[[Vva|7 2 () Auz + g(ua, x) = 0.

Subtracting the above equations, defining u: = u1 — u», using (A4), it can be seen that:
Uy — (1 + ot||Vv1 ||i2(9))Au <a«- (Auz) . ||U1 — UZHCOO([O,T],HI(Q)) +L-u- (1 + |u1 |q1 + |u2|q2). (9)

Then we have that u(0, x) = tig = 0 for all x € Q. Analogously as in the lemmas above, we see that for all ¢ > 0
there exists some § > 0 such that

lv1 — v2||£oo([0!T],H(;(Q)) <d = |ur- ”2||L°°([O.T],H1(Q)) <eé&.

As an example we prove the estimation for |[u|;2(g). Similarly, we can prove the estimations for |Vu|;2(q).
[Aullz2(q)-

Lemma 4.1. If function u € £L°°([0, T'], H(} (2)) is a solution of inequality (9) with initial condition u(0,x) = 0
for x € Q, then for all € > 0 there exists some § > 0 such that if ||v] — v2||£°°([0,T],H0‘(Q)) < § then

lull zooro. 71, L2¢2)) = U1 —u2ll zooo.77. L2(2)) < &-
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Proof. The proof is similar to the proof of Lemma 3.1. By multiplying the inequality (9) by |u| and integrating over
2 we obtain:

/|u|-ut dx —(1 +a||Vv||§2(Q))/Au.|u|dx <
Q Q

<a-|lvi —vallgeo(qo.71. H1(2)) / [u] - (Auz) dx
&

+L ~[u2 (4 Jur |9+ ua] ) dx.
Q

Then using Cauchy inequality and statement of Lemma 3.4 we obtain:

1 1
5/”2 dX+EM2

Q

1 1
/|u|-(Au2)dx§ E/uzdx—f-E/(Auz)zdxf
«Q «Q

Q

Analogously, using (44) and the fact that H2(2) € L?91(Q) N L292(Q):

1
/uz.(l + Jur |9 + |u2|??) dx < Z/uz dx+26/(1 + |u1 29 + [us|?9?) dx <
Q Q Q

1 1
f—/uzdx+2€(|9|+2M2)§—/uzdx+eC1.
2e 2e

Q Q

for some € > 0. Integrating by parts component [, Au - [u| dx we obtain:

2dt

1 d
7/ 2dx+(1+a||vv||§2(m)f|w2 dx <
Q Q

1 1
E[uzdx—l-EMz

Q

<a-llvi —vallzeoqo. 71, B (2))

1
+—-L/u2dx+L-e-C1.
2¢

Q

Using the Poincaré inequality [o, [u|*> dx < p [ |Vu|* dx, we have next:

2dt

1d 1
/u2 de+ -1 +a||Vv||§2(Q))/ |2 dx <
Q Q

L[, 1
<o fvi —v2llgeoqo. 1. 21 () *fu dx + SM>

2
Q
1 2
+—-LJudx+L-€¢-Cy,
2¢
Q
so that P
E/|u|2dx§é/|u|2dx+él.
Q Q
where
R L 2 )
C=lolvi—valeeoqory i@y + -~ ;(1 + a|Voll72(q))
and

C] =~ ||U1 — 1)2”[00([0’7"]’]_]](9)) . M2 +L-€- C].
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Finally, using the Gronwall inequality (see [10], p. 35):

~ ¢ ¢
/uzdeeC’ /ﬁ%dx-i-gl - =1

Q

for ¢ € (0, T'). Noting that 79 = 0, we obtain:

/udeE C—Aleé’—c—),
C C
Q

Let us fix £ > 0 and take § > 0 and € > 0 such that

lv1 = v2ll goo(ro,77. 1 (2)) <8

Cr=a |lvi = v2llzooqo. i@ M2+ Loe-Cr <6

— sup el <e.
C 1€(0.7) C
Then:
2 $ et 8
u“dx <—- sup e-'——x<e. O
C te.7) C

Q

Continuity of the operator F (v, ) with respect to the parameter o will be verified in the similar way. Let X C
L£ee(o, 11, H(} (f2)) be a bounded subset and v € X. Then there exists a constant N > 0 such that

||v||Loo([0’T].H(§(Q)) <N, forvelX
Let us take a1, ap € [0, 1] and assume that u, u» will be solutions of the problem (5), i.e.
@) — (1 + a1 | Vo] 2 () Aur + g1, x) =0,
u2)r = (1 + @2[ Vo] 2(g)) Auz + g(ua, x) = 0.
Then, after subtracting equations and defining ¥ = u| — u2, we receive
u, — (1 + a2||Vv||iz(Q))Au <N-(Aup)-lay —az|+ L-u-(1+ |ur]?" + |uz|??).

Because a1 —a2| < §, the continuity of the operator F with respect to o will be obtained in a similar way as above.

Remark 4.2. As a result of Theorem 2.1 and Remark 3.5 there exists a solution u € L£>([0,T], H>(RQ)) of the
problem (1) with initial — boundary conditions (2), (3).

In this paper the existence of a solution of some quasilinear parabolic generalization of the Kirchhoff equation of the
form (1) with initial — boundary condition was proved. Using the Leray—Schauder Principle we obtain the solution
in the space £2°([0, T], H2(Q) N H(} (R2)) for each arbitrary T > 0. Its higher regularity will be studied next.

Acknowledgement: The author is grateful to the referee for valuable remarks improving the original version of the
paper.
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