
 

 

 

 

 

 

 

 

 
 

 

 

 

Title: The quasilinear parabolic Kirchhoff equation 
 

Author: Łukasz Dawidowski 

 

Citation style: Dawidowski Łukasz. (2017). The quasilinear parabolic Kirchhoff 
equation. "Open Mathematics" (Vol. 15, iss. 1, (2017), s. 382-392), doi 
10.1515/math-2017-0036 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/197758028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


© 2017 Dawidowski, published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Open Math. 2017; 15: 382–392

Open Mathematics Open Access

Research Article

Łukasz Dawidowski*

The quasilinear parabolic Kirchhoff equation
DOI 10.1515/math-2017-0036

Received May 11, 2015; accepted November 3, 2015.
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1 Introduction

G. Kirchhoff in [1] proposed the hyperbolic integro-differential equation in order to describe small, transversal
vibrations of an elastic string of length l (at rest) when the longitudinal motion can be considered negligible with
respect to the transversal one.

In their papers M. Gobbino [2] and M. Nakao [3] considered some generalized degenerate Kirchhoff equations.
M. Gobbino studied the equation:

ut � .1C kruk
2
L2.�/

/�u D 0;

but his method does not use fixed point theorems and can not be applied to the problem considered in this article. In
another papers M. Ghisi and M. Gobbino [4, 5] showed certain connections between the above equation and equation
of hyperbolic type containing term utt . However M. Nakao proved the existence of solutions of the equation of
hyperbolic type. We will investigate a quasilinear parabolic generalization of the Kirchhoff equation.

The proof of the existence of solution of problem considered in this paper, which is indeed quasilinear (i.e. the
derivative of solution is a part of coefficient of the main part), can not be carried out using most classical methods.
This paper is devoted to this proof.

Consider the Dirichlet problem for quasilinear generalized degenerate Kirchhoff equation

ut � .1C kruk
2
L2.�/

/�uC g.u; x/ D 0 (1)

with initial condition
u.0; x/ D u0.x/; x 2 �; (2)

and boundary condition of the Dirichlet type
uj@� D 0: (3)

We will assume that u0 2 H2.�/ and � � RN is a domain of the class C 2.
The following conditions will be imposed on the nonlinear function gWR ��! R throughout the paper:

(A1) There exists a function d W�! R, such that
R
�
d.x/ dx D d <1 and a constant c > 0, that

�g.u; x/u � cu2 C d.x/:
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The quasilinear parabolic Kirchhoff equation 383

(A2) There exists a constant Nc > 0, such that

jg.u; x/j � Nc.1C jujq/;

with certain exponent q � NC2
N

.
(A3) There exist constants c1; c2 > 0 and exponents s1 2 .0; 4

N�2
/, s2 2 .0; NC4N�2

/ such that:ˇ̌̌̌
@g

@u

ˇ̌̌̌
� c1.1C juj

s1/ and
ˇ̌̌̌
@g

@xi

ˇ̌̌̌
� c2.1C juj

s2/:

In dimension N D 2 we assume only that s1; s2 > 0.
(A4) The function g is locally Lipschitz continuous with respect to the first variable, i.e. there exist constants L > 0,

q1; q2 2 .0;
N
N�4

/ (or if N � 4, then q1; q2 2 R), such that

jg.u1; x/ � g.u2; x/j � Lju1 � u2j.1C ju1j
q1 C ju2j

q2/:

(A5) g.0; x/ D 0 for all x 2 �.

Remark 1.1. Instead of assuming (A2), (A4) and the first part of (A3) (i.e. there exist constant c1 > 0 and s1 2
.0; 4

N�2
/ such that @g

@u
� c1.1C juj

s1/) we can assume that:
There exist constant L1 > 0 and exponents r1; r2 2 .0; 2N / such that

jg.u1; x/ � g.u2; x/j � L1ju1 � u2j.1C ju1j
r1 C ju2j

r2/: (4)

Putting u2 D 0 to .4/ and using (A5) we obtain:

jg.u1; x/j D jg.u1; x/ � g.0; x/j � L1ju1j.1C ju1j
r1/:

When we note that index r1 C 1 is no greater than q we observe that assumption (A3) holds. Similarly, as a
consequence of .4/

jg.u1; x/ � g.u2; x/j

ju1 � u2j
� L2.1C ju1j

r1 C ju2j
r2/:

Taking the limit with u2 ! u1 we obtain that
ˇ̌̌
@g
@u

ˇ̌̌
� L2.1C ju1j

r1 C ju1j
r2/ and when we put s1 WD max.r1; r2/,

then (A4) holds.

Constructing a solution of (1) the Leray – Schauder Principle will be used (see e.g. [6], p. 189). We recall it here for
completeness of the presentation:

Proposition 1.2 (Leray – Schauder Principle). Consider a transformation y D T .x; k/ where x, y belong to a
Banach space X and k is a real parameter which varies in a bounded interval, say a � k � b. Assume that
(a) T .x; k/ is defined for all x 2 X and a � k � b,
(b) for any fixed k, T .x; k/ is continuous as a function of x, i.e. for any x0 2 X and for any " > 0 there exists a

ı > 0 such that kT .x; k/ � T .x0; k/k < " if kx � x0k < ı,
(c) for x varying in bounded set inX , T .x; k/ is uniformly continuous in k, i.e. for any bounded setX0 � X and for

any " > 0 there exists a ı > 0 such that if x 2 X0, jk1�k2j < ı, a � k1; k2 � b, then kT .x; k1/�T .x; k2/k <
",

(d) for any fixed k, T .x; k/ is a compact transformation, i.e. it maps bounded subsets of X into compact subsets of
X ,

(e) there exists a (finite) constant M such that every possible solution X of x � T .x; k/ D 0 (x 2 X , a � k � b)
satisfies: kxk < M ,

(f) the equation x � T .x; a/ D y has the unique solution for any y 2 X .
Then there exists a solution of the equation x � T .x; b/ D 0.
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384 Łukasz Dawidowski

Assumption (f) means that Leray-Schauder degree

degLS .I � T .�; a/IB.0;M/I 0/ ¤ 0

with the constant M which comes from assumption .e/. The more standard version of Leray-Schauder Principle,
called also Leray-Schauder continuation theorem, can be found e.g. in [7], p. 351 (Theorem 13.3.7).

2 Main theorem

Let us fix arbitrary T > 0.
We introduce an operator F WL1.Œ0; T �;H1

0
.�// � Œ0; 1�! L1.Œ0; T �;H1

0
.�// in such a way, that for every

function v 2 L1.Œ0; T �;H1
0
.�// and ˛ 2 Œ0; 1�, u D F.v; ˛/ is a solution of the equation

ut � .1C ˛krvk
2
L2.�/

/�uC g.u; x/ D 0; (5)

with initial – boundary conditions:

u.0; x/ D u0.x/; x 2 �;

uj@� D 0:

We will search a fixed point of the operator F.�; 1/ in L1.Œ0; T �;H1
0
.�//.

The existence of the solution of the problem (1) is equivalent to the existence of the fixed point of operator
F.�; 1/ in L1.Œ0; T �;H1

0
.�//.

We have:

Theorem 2.1. Under the assumptions (A1), (A2), (A3), (A4) and (A5) there exists a solution of the problem (1) with
initial-boundary conditions (2), (3) in the space L1.Œ0; T �;H1

0
.�//.

It can be seen that, using standard theory (see e.g. [8], chapter 3 for details), for ˛ D 0 the equation u�F.u; 0/ D y
has a unique solution for any y 2 L1.Œ0; T �;H1

0
.�//; equivalently, the semilinear heat equation

ut ��uC g.u; x/ D 0

with Dirichlet boundary condition has a unique solution.
The proof of the theorem will be given in a few steps. We start with obtaining certain a priori estimates.

3 Some lemmas

First it can be mentioned that when u0 2 H2.�/ then, using the method of Tanabe and Sobolevski (see [9], page
438), the solution of the problem (5) varies in the space H2.�/.

Lemma 3.1. There exists A 2 R that for all t 2 .0; T / this estimate holds:Z
�

u2 dx � e2At

0@Z
�

u20 dx C
d

A

1A � d
A
:

Proof. Multiplying the equation .5/ by u and integrating over � we obtain:Z
�

u � ut dx � .1C ˛krvk
2
L2.�/

/

Z
�

�u � u dx C

Z
�

g.u; x/u dx D 0:
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The quasilinear parabolic Kirchhoff equation 385

Then from .A1/:

1

2

d

dt

Z
�

juj2 dx � .1C ˛krvk2
L2.�/

/

Z
�

�u � uC

Z
�

.cu2 C d.x// dx:

Integrating first right hand side component by parts we obtain:

1

2

d

dt

Z
�

juj2 dx � �.1C ˛krvk2
L2.�/

/

Z
�

jruj2 dx C c

Z
�

u2 dx C d:

Using the PoincarKe inequality
R
�
juj2 dx � p

R
�
jruj2 dx, we have next:

1

2

d

dt

Z
�

juj2 dx � �
1

p
.1C ˛krvk2

L2.�/
/

Z
�

juj2 dx C c

Z
�

u2 dx C d;

so that
1

2

d

dt

Z
�

juj2 dx �

�
c �

1

p
.1C ˛krvk2

L2.�/
/

� Z
�

juj2 dx C d:

Choosing A D c � 1
p

the estimates holds

1

2

d

dt

Z
�

juj2 dx � A

Z
�

juj2 dx C d:

Finally using Gronwall inequality (see [10], p. 35):Z
�

u2 dx � e2At

0@Z
�

u20 dx C
d

A

1A � d
A
;

for t 2 .0; T /.

Lemma 3.2. There exist constants B;D 2 R such that:Z
�

jruj2 dx � eBt

0@Z
�

jru0j
2 dx �

D

B

1AC D

B
:

Proof. Multiplying equation .5/ by �u and integrating over �:Z
�

�u � ut dx � .1C ˛krvk
2
L2.�/

/

Z
�

�u ��u dx C

Z
�

g.u; x/ ��u dx:

Integrating by parts: Z
�

�u � ut dx D
1

2

d

dt

Z
�

jruj2 dx:

Then using Cauchy inequality with " D 1
2

and .A2/:

1

2

d

dt

Z
�

jruj2 dx D �.1C ˛krvk2
L2.�/

/

Z
�

�u ��u dx C

Z
�

g.u; x/ ��u dx �

� �.1C ˛krvk2
L2.�/

/

Z
�

�u ��u dx C
1

2

Z
�

.g.u; x//2 dx C
1

2

Z
�

.�u/2 dx �

� �

�
1

2
C ˛krvk2

L2.�/

�Z
�

�u ��u dx C
1

2
Nc2
Z
�

.1C jujq/2 dx:
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386 Łukasz Dawidowski

and

1

2

d

dt

Z
�

jruj2 dx � �

�
1

2
C ˛krvk2

L2.�/

�Z
�

�u ��u dx C
1

2
Nc2
Z
�

.1C jujq/2 dx �

� �

�
1

2
C ˛krvk2

L2.�/

�Z
�

j�uj2 dx C Nc2
Z
�

.1C juj2q/ dx D

D �

�
1

2
C ˛krvk2

L2.�/

�Z
�

j�uj2 dx C Nc2j�j C Nc2
Z
�

juj2q dx:

Since q < NC2
N

when � D N
4

�
1 � 1

q

�
, the following estimate holds:

k�k
2q

L2q.�/
� c2k�k

2q.1��/

L2.�/
� k�k

2q�

H2.�/
and 2q� < 1:

Consequently, our resulting estimate has the form:

1

2

d

dt

Z
�

jruj2 dx � �

�
1

2
C ˛krvk2

L2.�/

�Z
�

.�u/2 dx C Nc2j�j C Nc2c2kuk
2q.1��/

L2.�/
� kuk

2q�

H2.�/

Because the norms k � kH2.�/ and
R
�
�2 dx C

R
�
.��/2 dx are equivalent on the domain of .��/ (for more details

see e.g. [11]): �
1

2
C ˛krvk2

L2.�/

�Z
�

.��/2 dx � h1k�k
2
H2.�/

� h2

Z
�

�2 dx;

for some constants h1; h2 > 0. Thus

1

2

d

dt

Z
�

jruj2 dx � �

24h1kuk2H2.�/
� h2

Z
�

u2 dx

35 Nc2j�j C Nc2c2kuk2q.1��/L2.�/
� kuk

2q�

H2.�/
D

D �h1kuk
2
H2.�/

C Nc2c2kuk
2q.1��/

L2.�/
� kuk

2q�

H2.�/
C Nc2j�j C h2

Z
�

u2 dx:

Due to lemma 3.1, sup
t2Œ0;T �

R
�
u2 dx � e D e.c; d; T /, so that the estimate holds

1

2

d

dt

Z
�

jruj2 dx � �h1kuk
2
H2.�/

C Nc2c2kuk
2q.1��/

L2.�/
� kuk

2q�

H2.�/
C Nc2j�j C h2e:

Using the Young inequality with �1

Nc2c2kuk
2q.1��/

L2.�/
� kuk

2q�

H2.�/
� �1h1kuk

2
H2.�/

C akukP
L2.�/

;

with a positive constant a D a. Nc; c2; �1/, and the exponent P D 1
1�q�

is chosen in such a way that Young inequality
holds. Then:

1

2

d

dt

Z
�

jruj2 dx � � .�1 C 1/ h1kuk
2
H2.�/

C akukP
L2.�/

C Nc2j�j C h2e:

Since there exists a constant Lc > 0 such that kuk2
H2.�/

� Lc
R
�
jruj2 dx and kuk2

L2.�/
� b <1 then:

1

2

d

dt

Z
�

jruj2 dx � � .�1 C 1/ h1 Lc

Z
�

jruj2 dx C abP C Nc2j�j C h2e:

Therefore
d

dt

Z
�

jruj2 dx C 2 .�1 C 1/ h1 Lc

Z
�

jruj2 dx � 2abP C 2 Nc2j�j C 2h2e
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The quasilinear parabolic Kirchhoff equation 387

and the right side is a constant. Using Gronwall inequality (see [10], p. 35), denoting B D 2 .�1 C 1/ h1 Lc and
D D 2abP C 2 Nc2j�j C 2h2e, we obtain:Z

�

jruj2 dx � eBt

0@Z
�

jru0j
2 dx �

D

B

1AC D

B
:

Remark 3.3. The two previous lemmas provide us an a priori estimate of the solution u of (5) in the space
L1.Œ0; T �;H1.�//.

Let us take a constant M > 0 such that:

kukL1.Œ0;T �;H1.�// D sup
t2Œ0;T �

ku.t/kH1.�/ < M

The lemmas show also that, if u is a fixed point of the operator F , its norm kukL1.Œ0;T �;H1.�// will be bounded
by M , since the constants in both lemmas are independent of u and ˛.

Finally a third a priori estimation in H2.�/ will be shown:

Lemma 3.4. There exists a constant M1 > 0 such that

k�ukL2.�/ �M1 <1;

Proof. By applying the Laplace operator � to .5/, multiplying the result by �u and integrating over � we obtain:Z
�

�u ��ut dx � .1C ˛krvk
2
L2.�/

/

Z
�

�u ��2u dx C

Z
�

g.u; x/�2u dx D 0:

Integrating by parts and using (A5):

1

2

d

dt

Z
�

j�uj2 dx C .1C ˛krvk2
L2.�/

/

Z
�

jr�uj2 dx D

Z
�

rg.u; x/ .r�u/ dx:

Then thanks to the Cauchy inequality

1

2

d

dt

Z
�

j�uj2 dx C

�
1

2
C ˛krvk2

L2.�/

�Z
�

jr�uj2 dx �
1

2

Z
�

jrg.u; x/j2 dx: (6)

Now, using assumption (A3), we will estimate last integral:

1

2

Z
�

jrg.u; x/j2 dx �

Z
�

NX
iD1

�
@g

@u

�2 �
@u

@xi

�2
dx C

Z
�

NX
iD1

�
@g

@xi

�2
dx �

�

NX
iD1

vuutZ
�

�
@g

@u

�4
dx �

vuutZ
�

�
@u

@xi

�4
dx C

NX
iD1

Z
�

�
@g

@xi

�2
dx �

� N �
p
c1 �

vuutZ
�

�
1C juj4s1

�
dx � kuk2

W 1;4.�/
CN � c2 �

Z
�

�
1C juj2s2

�
dx �

�

�
p
c1N

p
j�j C

p
c1N kuk

2s1

L4s1 .�/

�
� kuk2

W 1;4.�/
C c2N j�j C c2N kuk

2s2

L2s2 .�/

(7)

Next the norms k � kL4s1 .�/, k � kW 1;4.�/ and k � kL2s2 .�/ are estimated using Gagliardo–Nierenberg inequality.
Since s1 2 .0; 4

N�2
/, s2 2 .0; NC4N�2

/ it is possible to find constants c3; c4; c5 > 0, and powers �1; �2; �3 2 .0; 1/,
such that:

kukL4s1 .�/ � c3kuk
�1
H3.�/

kuk
1��1
H1.�/

;
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388 Łukasz Dawidowski

kukW 1;4.�/ � c4kuk
�2
H3.�/

kuk
1��2
H1.�/

;

2s1�1 C 2�2 < 2;

kukL2s2 .�/ � c5kuk
�3
H3.�/

kuk
1��3
H1.�/

;

2s2�3 < 2:

Due to Remark 3.3, kukH1.�/ < M , inequality .7/ will take the form:

1

2

Z
�

jrg.u; x/j2 dx �
�
p
c1N

p
j�j C

p
c1N kuk

2s1

L4s1 .�/

�
� kuk2

W 1;4.�/
C

C c2N j�j C c2N kuk
2s2

L2s2 .�/
�

�

�
p
c1N

p
j�j C

p
c1Nc3M

2s1.1��1/kuk
2s1�1
H3.�/

�
�

� c4M
2.1��2/kuk

2�2
H3.�/

C

C c2N j�j C c2Nc5M
2s2.1��3/kuk

2s2�3
H3.�/

:

(8)

Choosing � D max.2s1�1 C 2�2; 2s2�3/ we find that � < 2. Then, defining

const D c2N j�j

and
k D max.

p
c1N

p
j�jc4M

2.1��2/;
p
c1Nc3M

2s1.1��1/c4M
2.1��2/; c2Nc5M

2s2.1��3//;

we obtain
1

2

Z
�

jrg.u; x/j2 dx � const C kkuk�
H3.�/

:

Estimate .6/ will be extended to:

1

2

d

dt

Z
�

j�uj2 dx C

�
1

2
C ˛krvk2

L2.�/

�Z
�

jr�uj2 dx � const C kkuk�
H3.�/

:

Now, since the norms k � kH3.�/ and k � kL2.�/ C kr � kL2.�/ C k� � kL2.�/ C kr� � kL2.�/ are equivalent, and
due to remark 3.3, we have:

9 Nc>0 kukH3.�/ � Nc
�
M C kr�ukL2.�/

�
:

Since � < 2, we can find a constant Oc < 1
2

such that:

kkuk�
H3.�/

� Ockr�uk2
L2.�/

C const D Oc

Z
�

jr�uj2 dx C const

Then we have:
d

dt

Z
�

j�uj2 dx C ˛krvk2
L2.�/

Z
�

r�u dx � const;

Now, using the Calderon–Zygmund type inequality (see [12], pp. 186-187):

9 Qc>0 8�2D.��3=2/

Z
�

j��j2 dx � Qc

Z
�

jr��j2 dx:

we can find positive constants h1, h0 such that:

d

dt

Z
�

j�uj2 dx C h1

Z
�

j�uj2 dx � h2;
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The quasilinear parabolic Kirchhoff equation 389

Using the Gronwall inequality (see [10], p. 35) we finally obtain:Z
�

j�uj2 dx � eh1t

0@Z
�

.�u0/
2 dx �

h2

h1

1AC h2

h1

for t 2 .0; T /. Then defining M1 D supt2.0;T /

"
eh1t

 R
�

.�u0/
2 dx � h2

h1

!
C
h2
h1

#
the proof will be completed.

Remark 3.5. Above lemmas show that every eventual solution in the sense of Theorem 2.1 has to be an element of
the space L1.Œ0; T �;H2.�/ \H1

0
.�//.

4 Proof of the main theorem

This section is devoted to the proof of the Theorem 2.1. Three conditions from the Leray – Schauder Principle:
continuities (b), (c) and compactness (d) will be verified.

It has to be proved that the operator F.�; ˛/ is compact, i.e. it maps bounded subsets of L1.Œ0; T �;H1
0
.�// into

compact subsets of L1.Œ0; T �;H1
0
.�//. Let us fix ˛ 2 Œ0; 1�. If the bounded subset A of L1.Œ0; T �;H1

0
.�// is

taken, then F.A; ˛/ is bounded in the space L1.Œ0; T �;H2.�/ \H1
0
.�//. Using the equation .5/, we can write:

ut D .1C ˛krvk
2
L2.�/

/�u � g.u; x/

and because an element v 2 A, �u 2 L2.�/ and thanks to (A2) the function g 2 L2.�/, we can deduce that
ut 2 L

2.�/. Additionally, the embedding H2.�/ � H1.�/ is compact and H1.�/ � L2.�/ is continuous.
Using Aubin lemma (see e.g. [13] and [14]) the set of values of operator F.A; ˛/ is compact in L1.Œ0; T �;H1

0
.�//.

Now we prove that for any fixed ˛ 2 Œ0; 1�, the operator F.v; ˛/ is continuous as a function of v, i.e. for
any v1 2 L1.Œ0; T �;H1

0
.�// and for any " > 0 there exists a ı > 0 such that kF.v1; ˛/ � F.v2; ˛/k < " if

kv1 � v2k < ı.
Let us take ˛ 2 Œ0; 1� and v1; v2 2 L1.Œ0; T �;H1

0
.�//. Let u1; u2 2 L1.Œ0; T �;H1

0
.�// be the values of the

operator F corresponding to v1 and v2, i.e.

.u1/t � .1C ˛krv1k
2
L2.�/

/�u1 C g.u1; x/ D 0;

.u2/t � .1C ˛krv2k
2
L2.�/

/�u2 C g.u2; x/ D 0:

Subtracting the above equations, defining uW D u1 � u2, using (A4), it can be seen that:

ut � .1C ˛krv1k
2
L2.�/

/�u � ˛ � .�u2/ � kv1 � v2kL1.Œ0;T �;H1.�// C L � u � .1C ju1j
q1 C ju2j

q2/: (9)

Then we have that u.0; x/ D Ou0 D 0 for all x 2 �. Analogously as in the lemmas above, we see that for all " > 0

there exists some ı > 0 such that

kv1 � v2kL1.Œ0;T �;H1
0 .�//

< ı H) ku1 � u2kL1.Œ0;T �;H1.�// < ":

As an example we prove the estimation for kukL2.�/. Similarly, we can prove the estimations for krukL2.�/,
k�ukL2.�/.

Lemma 4.1. If function u 2 L1.Œ0; T �;H1
0
.�// is a solution of inequality .9/ with initial condition u.0; x/ D 0

for x 2 �, then for all " > 0 there exists some ı > 0 such that if kv1 � v2kL1.Œ0;T �;H1
0 .�//

< ı then

kukL1.Œ0;T �;L2.�// D ku1 � u2kL1.Œ0;T �;L2.�// < ":
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Proof. The proof is similar to the proof of Lemma 3.1. By multiplying the inequality .9/ by juj and integrating over
� we obtain: Z

�

juj � ut dx � .1C ˛krvk
2
L2.�/

/

Z
�

�u � juj dx �

� ˛ � kv1 � v2kL1.Œ0;T �;H1.�//

Z
�

juj � .�u2/ dx

C L �

Z
�

u2 � .1C ju1j
q1 C ju2j

q2/ dx:

Then using Cauchy inequality and statement of Lemma 3.4 we obtain:Z
�

juj � .�u2/ dx �
1

2

Z
�

u2 dx C
1

2

Z
�

.�u2/
2 dx �

1

2

Z
�

u2 dx C
1

2
M2:

Analogously, using .A4/ and the fact that H2.�/ � L2q1.�/ \ L2q2.�/:Z
�

u2 � .1C ju1j
q1 C ju2j

q2/ dx �
1

2�

Z
�

u2 dx C 2�

Z
�

.1C ju1j
2q1 C ju2j

2q2/ dx �

�
1

2�

Z
�

u2 dx C 2� .j�j C 2M2/ �
1

2�

Z
�

u2 dx C �C1:

for some � > 0. Integrating by parts component
R
�
�u � juj dx we obtain:

1

2

d

dt

Z
�

u2 dx C .1C ˛krvk2
L2.�/

/

Z
�

jruj2 dx �

� ˛ � kv1 � v2kL1.Œ0;T �;H1.�//

0@1
2

Z
�

u2 dx C
1

2
M2

1A
C

1

2�
� L

Z
�

u2 dx C L � � � C1:

Using the PoincarKe inequality
R
�
juj2 dx � p

R
�
jruj2 dx, we have next:

1

2

d

dt

Z
�

u2 dx C
1

p
.1C ˛krvk2

L2.�/
/

Z
�

juj2 dx �

� ˛ � kv1 � v2kL1.Œ0;T �;H1.�//

0@1
2

Z
�

u2 dx C
1

2
M2

1A
C

1

2�
� L

Z
�

u2 dx C L � � � C1;

so that
d

dt

Z
�

juj2 dx � OC

Z
�

juj2 dx C OC1:

where
OC D

�
˛ � kv1 � v2kL1.Œ0;T �;H1.�// C

L

�
�
2

p
.1C ˛krvk2

L2.�/
/

�
and

OC1 D ˛ � kv1 � v2kL1.Œ0;T �;H1.�// �M2 C L � � � C1:
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Finally, using the Gronwall inequality (see [10], p. 35):Z
�

u2 dx � e
OCt

0@Z
�

Ou20 dx C
OC1

OC

1A � OC1
OC
;

for t 2 .0; T /. Noting that Ou0 D 0, we obtain:Z
�

u2 dx �
OC1

OC
e
OCt
�
OC1

OC
;

Let us fix " > 0 and take ı > 0 and � > 0 such that

kv1 � v2kL1.Œ0;T �;H1.�// < ı

OC1 D ˛ � kv1 � v2kL1.Œ0;T �;H1.�// �M2 C L � � � C1 < ı

ı

OC
sup

t2.0;T /

e
OCt
�
ı

OC
< ":

Then: Z
�

u2 dx �
ı

OC
� sup
t2.0;T /

e
OCt
�
ı

OC
< ":

Continuity of the operator F.v; ˛/ with respect to the parameter ˛ will be verified in the similar way. Let X �
L1.Œ0; T �;H1

0
.�// be a bounded subset and v 2 X . Then there exists a constant N > 0 such that

kvkL1.Œ0;T �;H1
0 .�//

� N; for v 2 X

Let us take ˛1; ˛2 2 Œ0; 1� and assume that u1; u2 will be solutions of the problem .5/, i.e.

.u1/t � .1C ˛1krvk
2
L2.�/

/�u1 C g.u1; x/ D 0;

.u2/t � .1C ˛2krvk
2
L2.�/

/�u2 C g.u2; x/ D 0:

Then, after subtracting equations and defining u D u1 � u2, we receive

ut � .1C ˛2krvk
2
L2.�/

/�u � N � .�u2/ � j˛1 � ˛2j C L � u � .1C ju1j
q1 C ju2j

q2/:

Because j˛1�˛2j < ı, the continuity of the operator F with respect to ˛ will be obtained in a similar way as above.

Remark 4.2. As a result of Theorem 2.1 and Remark 3.5 there exists a solution u 2 L1.Œ0; T �;H2.�// of the
problem .1/ with initial – boundary conditions (2), (3).

In this paper the existence of a solution of some quasilinear parabolic generalization of the Kirchhoff equation of the
form .1/ with initial – boundary condition was proved. Using the Leray–Schauder Principle we obtain the solution
in the space L1.Œ0; T �;H2.�/ \H1

0
.�// for each arbitrary T > 0. Its higher regularity will be studied next.

Acknowledgement: The author is grateful to the referee for valuable remarks improving the original version of the
paper.
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