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In this paper we present two characterizations of skeletal maps between realcompact topological spaces. All maps
considered in this paper are continuous and all spaces are Tychonoff. For a subset A of a topological space X, cl A shall
denote the closure of A in X.

Amap f: X — Y is called skeletal if for each nowhere dense subset A C Y the preimage f~'(A) is nowhere dense in X.

This is equivalent to saying that for each non-empty open set U C X the closure f(U) has non-empty interior in Y,
see [5]. The latter definition can be localized as follows. A map f: X — Y between two topological spaces is called

e skeletal at a point x € X if for each neighborhood U C X of x the closure clyf(U) of f(U) has non-empty interior
inY;

o skeletal at a subset A C X if f is skeletal at each point x € A.

It is clear that a map f: X — Y is skeletal if and only if f is skeletal at each point x € X.

* E-mail: t.o.banakh@gmail.com
T E-mail: akuchar@math.us.edu.pl
* E-mail: martamartynenko@ukr.net
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A spectral characterization of skeletal maps

as=

1. Characterizing skeletal maps between metrizable Baire spaces

It is clear that each open map is skeletal. For closed maps between metrizable Baire spaces this implication can be
partly reversed. Let us recall that a topological space X is Baire if for any sequence (U,),c, of open dense subsets

U, C X the intersection (), ., U, is dense in X.

new

We shall say that a map f: X — Y between topological spaces is

e open at a point x € X if for each neighborhood U C X of x the image f(U) is a neighborhood of f(x);
e open at a subset A C X if f is open at each point x € A;

e densely open if f is open at some dense subset A C X.

It is easy to see that each densely open map is skeletal. The converse is true for skeletal maps between metrizable
compacta, and more generally, for closed skeletal maps defined on metrizable Baire spaces.

Theorem 1.1.
For a closed map f: X — Y defined on a metrizable Baire space X the following conditions are equivalent:

(i) f is skeletal;
(i) f is skeletal at a dense subset of X;
(i) f is densely open;

(iv) f is open at a dense Gs-subset of X.

Proof. The implications (iv) = (iii) = (ii) = (i) are trivial and hold without any conditions on f. To prove the implication
(i) = (iv), fix a metric d generating the topology of a metrizable space X. For every n € N consider the family U, of all
non-empty open subsets U C X such that diam U < 1/n and f(U) is open in Y. The skeletal property of f implies that
the union [ JU, is dense in X. Since the space X is Baire, the intersection A=, [JU, is a dense Gs-set in X. It is
clear that f is open at the set A. O

The following simple example shows that the metrizability of X is essential in Theorem 1.1 and cannot be weakened to
the first countability.

Example 1.2.
The projection pr: A — [0, 1] from the Aleksandrov “two arrows” space A = ([0, 1) x {0}) U ((0, 1] x {1}) onto the interval
is skeletal. Yet it is open at no point x € A.

2. Skeletal and densely open squares

In this section the notions of skeletal and densely open maps are generalized to square diagrams. These generalized
properties will be used in the spectral characterization of skeletal maps given in a next section.

Definition 2.1.
Let D be a commutative diagram

7
—

X Y
X Y

f
consisting of continuous maps between topological spaces. The commutative square D is called
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e open at a point x € X if for each neighborhood U C X of x the point f(x) has a neighborhood V C Y such that
V. C f(U) and py'(V) C f(px'(V));

e open at a subset A C X if D is open at each point x € A;

densely open if it is open at some dense subset A C X;

skeletal at a point x € X if for each neighborhood U C X of x there is a non-empty open set V' C Y such that
V C clf(U) and py' (V) C clf(px'(U));

skeletal at a subset A C X if D is skeletal at each point x € A;

skeletal if D is skeletal at X.

Remark 2.2.
If the square D is skeletal (at a point x € X), then the map f is skeletal (at the point x).

Remark 2.3.
A map f: X — Y is skeletal (resp. open) at a subset A C X if and only if the square

x _f
X

£

-
=
<

£

f

is skeletal (resp. open) at the subset A.

It is easy to see that each densely open square is skeletal. Under some conditions the converse is also true. The
following proposition is a “square” counterpart of the characterization from Theorem 1.1.

Proposition 2.4.
Let D be a commutative diagram

>
i\l
<

Px

-
-
>

>
—

—_—
f
consisting of continuous maps between topological spaces such that the map f: X > Y is closed, the projection py is
surjective, and the space X is metrizable and Baire. Then the following conditions are equivalent:

(1) the square D is skeletal;

(it) D is skeletal at a dense subset of X;
(ii)) D is densely open;

(iv) D is open at a dense Gs-subset of X.

Proof. The implications (iv) = (iii) = (ii) = (i) are trivial and hold without any conditions on D. To prove the impli-
cation (i) = (iv), assume that the square D is skeletal. First let us prove two auxiliary claims.

Claim 1. For each non-empty open subset U C X there is a non-empty open set V' C Y such that V' C f(U) and
py' (V) C f(px' (V)

163
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Proof. Using the reqularity of the space X, take a non-empty open subset W C X whose closure W lies in the open
set U. Since the square D is skeletal, for the set W there is a non-empty open set V C Y such that py' (V) C clf(py'(W)).
Taking into account that the map f is closed, we see that the set f(py'(W)) is closed in Y and hence

py (V) € clF(px' (W) € f(px' (W) C F(px'(U).

Applying to these inclusions the surjective map py, we get
V = py(py' (V) C pyof(px (U)) = fopx(px'(U)) € F(U). n

Claim 2. Each non-empty open set U C X contains a non-empty open set W C U such that f(W) is open in Y and

Flpx (W) = py (F(W)).

Proof. By Claim 1, there is a non-empty open set V C Y such that V C f(U) and py'(V) C ?(p;ﬂ(U)). Then
the open set W = Un f~'(V) has the required properties. Indeed, its image f(W) = V is open in Y. Also the
inclusion py' (V) C f(px' (U)) implies

Tpx' W) =T(px'(Un 17 (V) = F(px (V) npi (' (V)
= f(px'( umﬂ(p V) = F(px (V) N py (V) = py (V) = py (F(W). u

Let W be the family of all non-empty open sets W C X such that f(W) is open in Y and py'(f(W)) = ?(p;ﬂ(W)).
Fix any metric d generating the topology of the metrizable space X and for every n € w consider the subfamily
W, = {W € W:diam W < 27"}. By Claim 2, the union [JW, is an open dense subset of X. Since X is a Baire space,
the intersection A =), ., [UW, is a dense Gs-set in X. To finish the proof, observe that the diagram D is open at the
dense Gs-set A. O

3. Skeletal squares and inverse spectra

In this section we detect morphisms between inverse spectra, inducing skeletal maps between their limit spaces. At first
we need to recall some standard information about inverse spectra, see [2, Chapter 1], [3, § 2.5], [4, § 3.1] for more details.

For an inverse spectrum 8 = {X,, p?, A} consisting of topological spaces and continuous bonding maps, by

lim8 = {(XEX)UEA € |—|Xu : PE(XB) =X, @ < B}

acA

we denote the limit of § and by p,: lim8 — X,, po: x — x,, the limit projections.

Let 8x = {Xa, p?, A} and 8y = {Y,, 78, A} be two inverse spectra indexed by the same directed partially ordered set A.
A morphism {f,}aca: 8x — Sy between these spectra is a family of maps {fo: Xo — Ya}aea such that f,opf = 7fofy
for any elements a < B in A. Each morphism {f,}sea: 8x — Sy of inverse spectra induces a limit map

limfy: lim8y — lim8y, limfo: (Xa)aca — (fa(Xa))aca,

between the limits of these inverse spectra. For indices a < B in A the commutative squares

s
Y,

a

lim SX Lfa lim Sy

pal \Lna and of

Xy ——> Y,

fs
_—

&
=

B
-

>

a f >
are called respectively the limit |,-square and the bonding lﬁ—square of the morphism {f,}.
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We shall say that the morphism {f,}seca: Sx — Sy

e is skeletal if each map f,: X, — Y, a € A, is skeletal;
e has skeletal limit squares if for every index a € A the limit |,-square is skeletal;

e has skeletal bonding squares if for every indices a < B in A the bonding |#-square is skeletal.

Our aim is to find conditions on a morphism {f,}: Sx — 8y of spectra implying the skeletality of the limit map
f=limf,: lim8x — lim8y.

Proposition 3.1.
For a morphism {f,}aeca: 8x — 8y between inverse spectra 8x = { X, p2, A} and 8y = {Xg, nf, A} with surjective limit
projections, the limit map limf,: lim8x — lim 8y is skeletal if the morphism {f,} has skeletal limit squares.

Proof. We need to show that the limit map f = limf,: X — Y is skeletal, where X = lim8x, ¥ = lim8y. Given any
non-empty open set U C X, we need to find a non-empty open set V C Y such that V C clf(U). By the definition
of the topology of the limit space X = lim S8y, there is an index a € A and a non-empty open set U, C X, such that
U 2 p;'(U,). Since the limit |,-square

f

X ——Y
Pal lﬂ'a
Xy —= Y,

fa

is skeletal, for the open set U, C X, there exists a non-empty open set V,, C Y, such that the open set V = ;" (V,)
lies in the closure of the set f(p;"(U,)), which lies in the closure of f(U). O

It turns out that in some cases the skeletality of squares is preserved by limits.

A partially ordered set A is called k-directed for a cardinal number «k if each subset K C A of cardinality |C| < « has
an upper bound in A. For a topological space X by mw(X) we denote the -weight of X, that is, the smallest cardinality
|B| of a w-base B for X. We recall that a family B of non-empty open subsets of X is called a z-base for X if each
non-empty open subset of X contains a set U € B.

Proposition 3.2.

Let {fo}aca: 8x — 8y be a morphism between inverse spectra 8y = {X,, pf,A} and 8y = {Xg, 7€, A} with surjective
limit projections. If for some a € A and the cardinal k = nw(Y,) the index set A is k-directed, then the limit |,-square
is skeletal provided that for any B > a in A the bonding |B-square is skeletal.

Proof. Assuming that the limit |,-square is not skeletal, we can find a non-empty open set U, C X, such that for
any non-empty open set V, C Y, we get ;' (V,) ¢ clf(U) where U = p;"(U,) and f = limf, is the limit map. Fix a
m-base B for the space Y, having cardinality |B| = mw(Y,) < k. For every set V &€ B the open set m; (V) \ clf(U)
is not empty and hence contains a set of the form JT;‘J(W\/) for some index ay > a in A and some non-empty open set
Wy C Y, . Since the index set A is k-directed, the set {ay : V € B} has an upper bound B € A.

By our hypothesis, the bonding |£-square is skeletal. Then for the open subset Ug = (p?)~"(U,) of Xg we can find a non-
empty open set V C Y, such that (f)7"(V) C clfg(Ug). We lose no generality assuming that V € B. In this case the
choice of the set Wy, guarantees that JT(;J(W\/) C ;" (V)\ f(U). Then the open subset Wp = (J'rgv)’1(W\/) = JTB(JT;J(W\/))
of (78)71(V) does not intersect the set mgof(U) = fgopg(U) = fg(Up) and hence cannot lie in cl fg(Up). This contradiction
shows that the limit |,-square is skeletal. O

Corollary 3.3.

Let {fo}aca: 8x — 8y be a morphism between inverse spectra Sy = {X,, pf, A} and 8y = {Xg, 7€, A} with surjective
limit projections. If for the cardinal k = sup {mw(Y,) : a € A} the index set A is k-directed, then the morphism {f,}qeca
has skeletal limit squares provided it has skeletal bonding squares.

185
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sis;

For st-spectra, Proposition 3.1 can be partly reversed. First let us introduce the necessary definitions. Let T be an
infinite cardinal number. We shall say that an inverse spectrum 8§ = {X,, p?, A} is a wt-spectrum (resp. a T-spectrum) if

e each space X,, a € A, has m-weight 7w(X,) < T (resp. weight w(X,) < 1);
e the index set A is T-directed in the sense that each subset B C A of cardinality |B| < T has an upper bound in A;

e the index set A is w-complete in the sense that each countable chain C C A has the least upper bound sup C
in A;

e the spectrum 8 is T-continuous in the sense that for any directed subset C C A with y = sup C the limit map
limph: X, — lim{X,, p?, C} is a homeomorphism.

A subset C of a directed poset A is called
e cofinal if for any o € A there is an index B € C with a < B;
e 7-closed if for each directed subset D C C that has the least upper bound sup D in A we get supD € C;

e t-stationary if C has non-empty intersection with any cofinal t-closed subset of A.

Theorem 3.4.

Let {fa}aca: 8x — Sy be a morphism between two mt-spectra Sy = {X,, pf, A} and 8y = {Y,, nf, A} with surjective
limit projections. If the limit map limf,: lim8x — lim8y is skeletal, then for some cofinal t-closed subset B C A the
morphism {f,}qcp is skeletal and has skeletal bonding and limit squares.

Proof. To simplify notation, let X = lim8x, Y = lim8y, and f = limf,: X — Y. First we show that the set
B= {a € A : the limit |,-square is skeletal}

is cofinal and 7-closed in A. For this we shall prove an auxiliary statement:

Claim 3. For every a € A there is B € A, B > «a, such that for any non-empty open set U C X, there is a non-empty
open set V C Yg such that 71,;1(\/) C clf(p;'(U)).

Proof. In the space X, fix a m-base B of cardinality |B| = mw(X,) < 1. For every set U € B the preimage p;'(U) is
a non-empty open set in X = lim X,,. Then the skeletality of the limit map f: X — Y yields an open set V|, C Y such
that Vy C clf(p;"(U)). By the definition of the topology of the limit space Y, for some index ay € A, ay > a, there is
a non-empty open set W, C Y, such that JT;J(WU) C Vy. Since the index set A is t-directed, the set {ay : U € B}
has an upper bound B in A. It is easy to see that the index B has the property stated in Claim 3. |

Claim 4. The set B is cofinal in A.

Proof. Fix any index op € A. Using Claim 3, by induction we can construct a non-decreasing sequence (a,),ew in A such

that for any non-empty open set U C X, with JT;:+1 (V)yCel f(p;J(U)).

n !

n € w, there is a non-empty open set V' C Yo,

Since the set A is w-complete, the set {a,},c, has the least upper bound B = sup {a, },cw € A. The proof of Claim 4
will be complete as soon as we check that B € B, which means that the limit |g-square is skeletal.

Given any non-empty open set Ug C X we need to find a non-empty open set Vz C Yp such that 71/571(\/3) Ccl f(p;(U,g)).
Since the spectrum 8 is T-continuous, the space X can be identified with the limit of the inverse spectrum {X,, p&", w}
and hence for the open set Ug C Xp there are an index n € N and a non-empty open set U C X,, such that
(P8 )7'(U) € Ug. By the construction of the sequence (a)iew, for the set U C X,, there is a non-empty open set
V CY,,., such that JT;’:H(V) Ccl f(p;J(U)).

Ap+1
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Consider the open set Vg = (7rffn+1 )~1(V) C Yg. Taking into account that the limit projections pg and mg are surjective,

we conclude that

Vg = 7l (V) € mg(cl f(pg,

A1

(V) € clmgof(pg, (U) = clfgopg(pg, (U)) C clfg((ph,) " (U)) C clfg(Up),

which implies that B € B. [ ]
Claim 5. The set B is t-closed in A.

Proof. Let C C B be a directed subset of cardinality |C| < T having the least upper bound y = sup C in A. We need
to show that y € B, which means that the limit y-square is skeletal. Fix a non-empty open subset U, C X,. Since the
spectrum 8y is T-continuous, the space X, can be identified with the limit space of the inverse spectrum {X,, p?, C}.
Then the open set U, C X, contains the preimage (p%)~'(U,) of some non-empty open set U, C X,, @ € C. Since
a € C C B, the limit |,-square is skeletal. Consequently, for the set U, there is a non-empty open set V, C Y, such
that ;" (V,) C clf(p;'(Uy)). Then for the open subset Vi, = (nh)~"(V,) in X, we get

7, (V) = 7 (Vo) € el f(pg ! (Ua)) = clf (py " (p2) 7' (Ua))) € clf(py " (Uy),

which implies that the limit |,-square is skeletal. |
Claim 6. For any indices a < B in B the bonding |£-square is skeletal.
Proof. To show that the bonding |#-square is skeletal, fix any open non-empty subset U C X,. Since a € B, the limit

la-square is skeletal and hence there exists an open non-empty subset V C Y, such that ;" (V) C clf(p;'(U)). Since
the limit projections pg and sg are surjective, we get

() (V) = mp(r, (V) € mglel F(pg (U)) € clmgof(pg! (U)) = clfgopg(p ' (U)) = clip((ph) ' (U))- u

The definition of the set B and Remark 2.2 imply our last claim, which completes the proof of Theorem 3.4.

Claim7. For every a € B the map f,: X, — Y, is skeletal and hence the morphism {f,}.cp is skeletal. O

The following theorem partly reverses Theorem 3.4.

Theorem 3.5.
Let {fo}aca: 8x — Sy be a morphism between two mt-spectra Sx = {X,, p?, A} and 8y = {Y,, nf, A} with surjective
limit projections. If the limit map lim f,: lim8x — lim 8y is not skeletal, then the set

B = {a € A: f, is not skeletal}

is w-stationary in A.

Proof. Assume that the limit map f = limf,: X — Y between the limit spaces X = lim8x and Y = lim8y is not
skeletal. Then the space X contains a non-empty open set U C V whose image f(U) is nowhere dense in Y. We lose

no generality assuming that the set U is of the form U = p;"(U,) for some index 0 € A and some non-empty open set
U, C X,.

To prove our theorem, we need to check that the set B meets each cofinal w-closed subset C of A.

Claim 8. For any index a € C, a > o, there is an index B € C, B > a, such that for any non-empty open set V,, C Y,
there is a non-empty open set Wg C Yg such that JT§1(WB) C (V) \ F(U).

187
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Proof. Fix a m-base B for the space Y, having cardinality |B| = aw(Y,) < k. Since the set f(U) is nowhere dense,
for every set V € B the open subset ;" (V) \ cLf(U) of Y is not empty and hence contains a set of the form JT;\J(WV)
for some index ay > a in A and some non-empty open set Wy, C Y. Since the index set A is k-directed and the set
C is cofinal in A, the set {ay : V € B} has an upper bound B € C. It is easy to see that the index B has the required
property. |

Using Claim 8, by induction construct a non-decreasing sequence (a,),e, in C such that ap > o0 and for any non-empty
open set V C Y, n € w, there is a non-empty open set W C Y, ,, such that JT;:M(W) C 71;11(V) \ f(U). Since the set
C is w-closed in the w-complete set A, the chain {a,},cw C C has a least upper bound B € A, which belongs to the
w-closed set C.

n’

Claim9. Be BnC.

Proof. We need to show that the map fg: Xz — Yz is not skeletal. Assuming the opposite, for the non-empty open
subset Up = (pg)_1(U,,) = pp(U) of Xp, we can find a non-empty open set Vg C Yz that lies in the closure clfg(Up).
Since the spectrum 8y is w-continuous, the space Yz can be identified with the limit space of the inverse spectrum
{Ya,, g, w}. Therefore, we lose no generality assuming that the set Vj is of the form Vi = (€ )='(V) for some open
set V C Y,,, n € w. By the choice of a,, there is a non-empty open set W C Y, ,, such that Jrgn1+1 (W) c 2 (V)\ f(U).
Applying to this inclusion the surjective map stg, we obtain that the non-empty open subset

(5 )N W) = mp(, ] (W) C mp(om, (V) \ F(U)

Ap+1 Ap+1

= (7, (V) \ gof(U) = ()" (V) \ fgopp(U) = Vg \ f5(Up)

of V does not intersect the set fg(Ug) and hence cannot lie in its closure. This contradiction shows that the map fz is
not skeletal and hence B € Bn C. |

The proof of Theorem 3.5 is finished. O

4. A spectral characterization of skeletal maps between realcompact spaces

In this section we prove Theorem 4.1 which characterizes skeletal maps between realcompact spaces and is the main
result of this paper. This characterization has been applied in the paper [1] to detect functors that preserve skeletal
maps between compact Hausdorff spaces.

Let us recall that a Tychonoff space X is called realcompact if each C-embedding f: X — Y into a Tychonoff space Y
is a closed embedding. An embedding f: X — Y is called a C-embedding if each continuous function ¢: f(X) — R
has a continuous extension @: Y — R. By [3, Theorem 3.11.3], a topological space is realcompact if and only if it is
homeomorphic to a closed subspace of some power R* of the real line, see [3, §3.11]. By [3, Theorem 3.11.12], each
Lindelof space is realcompact.

We say that two maps f: X — Y and f': X’ — Y’ are homeomorphic if there are homeomorphisms hy: X — X’ and
hy:Y — Y" such that f' o hy = hy of. It is clear that a map f: X — Y is skeletal if and only if it is homeomorphic to
a skeletal map f": X" — Y.

Theorem 4.1.
For a map f: X — Y between Tychonoff spaces the following conditions are equivalent:
(1) f is skeletal and the spaces X,Y are realcompact.

(it) f is homeomorphic to the limit map limf,: limS8x — lim8y of a skeletal morphism {f,}: 8x — 8y between two
w-spectra 8x = {Xq, pf, A} and 8y = {Y,, nf, A} with surjective limit projections.
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(iit) f is homeomorphic to the limit map lim f,: lim8x — lim 8y of a morphism {f,}: 8x — 8y with skeletal limit squares
between two w-spectra 8x = {X,, p2, A} and 8y = {Y,, n8, A} with surjective limit projections.

(iv) f is homeomorphic to the limit map limf,: lim8x — lim8y of a morphism {f,}: 8x — 8y with skeletal bonding
squares between two w-spectra 8y = {X,, p8,A} and 8y = {Y,, 78, A} with surjective limit projections.

Proof. We shall prove the implications (i) = (iv) = (iii) = (ii) = (i).

()= (iv) Assume that the spaces X, Y are realcompact. Then [2, Propositions 1.3.4, 1.3.5] imply that the map f is
homeomorphic to the limit map lim f,: lim8y — lim 8y of a morphism {f,},ca between two w-spectra Sy = {Xq, p&, A}
and 8y = {Y,, 8, A} with surjective limit projections. If the map f is skeletal, then Theorem 3.4 yields a cofinal
w-bounded subset B C A such that the morphism {f,}.,ep has skeletal bonding squares. Since the set B is cofinal in A,
f is homeomorphic to the limit map lim f, induced by the morphism {f,},cp with skeletal bonding squares between the
inverse w-spectra {X,, p?, B} and {Y,, 7f, B}.

The implications (iv) = (iit) and (iit) = (ii) follow from Corollary 3.3 and Remark 2.2, respectively.

The final implication (i) = (i) follows from Theorem 3.5 and [2, Proposition 1.3.5] which says that a Tychonoff space is
homeomorphic to the limit space of an w-spectrum (with surjective limit projections) if and only if it is realcompact. O

Let us observe that Theorem 4.1 does not hold for arbitrary spectra. Just take any non-skeletal map f: X — Y between
zero-dimensional (metrizable) compacta and apply the following lemma.

Lemma 4.2.

Each continuous map f: X — Y from a topological space X to a realcompact space Y of covering topological dimen-
sion dimY = 0 is homeomorphic to the limit map limfy: limSx — lim8y of a skeletal morphism {fy}sea: Sx — Sy
between inverse spectra 8x = { X4, p%, A} and 8y = {Y,, nf, A}.

Proof. By [2, Lemma 6.5.4], the zero-dimensional realcompact space Y is homeomorphic to a closed subspace of the
power N7 for some cardinal 7. Let A = [7]<“ be the family of finite subsets of 7, partially ordered by the inclusion
relation. For every a € A, let Y, be the projection of the space Y C N7 onto the face N and let 71,: Y — Y, be the
corresponding projection map. For any finite sets o C B let nf: Y3 — Y, be the corresponding bonding projection.
Then the space Y can be identified with the limit lim 8y of the inverse spectrum 8y = {VY,, nf, A} consisting of discrete
spaces Y, a € A.

The space X can be identified with the limit of the trivial spectrum 8x = {X,, p?, A} consisting of spaces X, = X and
identity bonding maps JTgZ Xg — X,. Then the map f is homeomorphic to the limit map limf,: lim8x — lim 8y of the
skeletal morphism {fy}sea: Sx — 8y consisting of the maps f, = mof: X, = X — Y, a € A. Here we remark that
each map f,: X, — Y, is skeletal (even open) because the space Y, is discrete. O

References

[1] Banakh T., Kucharski A., Martynenko M., On functors preserving skeletal maps and skeletally generated compacta,
preprint available at http://arxiv.org/abs/1108.4197

[2] Chigogidze A., Inverse Spectra, North-Holland Math. Library, 53, North-Holland Publishing, Amsterdam, 1996

[3] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989

[4] Fedorchuk V., Chigogidze A.Ch., Absolute Retracts and Infinite-Dimensional Manifolds, Nauka, Moscow, 1992
(in Russian)

[5] Mioduszewski J., Rudolf L., H-Closed and Extremally Disconnected Hausdorff Spaces, Dissertationes Math.
(Rozprawy Mat.), 66, Polish Academy of Sciences, Warsaw, 1969

169

Brought to you by | Uniwersytet Slaski - University of Silesia - Silesian University
Authenticated
Download Date | 3/26/19 10:51 AM



	Characterizing skeletal maps between metrizable Baire spaces
	Skeletal and densely open squares
	Skeletal squares and inverse spectra
	A spectral characterization of skeletal maps between realcompact spaces
	References



