

You have downloaded a document from **RE-BUŚ** repository of the University of Silesia in Katowice

Title: A spectral characterization of skeletal maps

Author: T. Banakh, Andrzej Kucharski, M. Martynenko

Citation style: Banakh T., Kucharski Andrzej, Martynenko M. (2013). A spectral characterization of skeletal maps. "Central [European](https://www.scopus.com/sourceid/4900152611?origin=recordpage) Journal of [Mathematics"](https://www.scopus.com/sourceid/4900152611?origin=recordpage) (Vol. 11, iss. 1, (2013), s. 161-169), doi 10.2478/s11533-012- 0058-y

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego

Central European Journal of **Mathematics**

A spectral characterization of skeletal maps

Research Article

Taras Banakh1,2*[∗]* , Andrzej Kucharski³*†* , Marta Martynenko¹*‡*

1 Faculty of Mechanics and Mathematics, Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine

- *2 Instytut Matematyki, Jan Kochanowski University, Świętokrzyska 15, Kielce, Poland*
- *3 Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland*

Received 24 September 2011; accepted 24 February 2012

Abstract: We prove that a map between two realcompact spaces is skeletal if and only if it is homeomorphic to the limit map of a skeletal morphism between *ω*-spectra with surjective limit projections. MSC: 54B35, 54C10

Keywords: Skeletal map • Inverse spectrum © *Versita Sp. z o.o.*

the proper are present the entrancemental of shortest maps sention reaccompact repercycles spaces. The maps sention of the state of the maps sention of A is λ of a top of the state of the state of A in λ denote the closure of *^A* in *^X*.

A map *f* : *X* → *Y* is called *skeletal* if for each nowhere dense subset *A* ⊂ *Y* the preimage *f*^{−1}(*A*) is nowhere dense in *X*.
This is equivalent to equing that for each non-ampty energy of L ⊆ *Y* the elegys This [is](#page-9-0) equivalent to saying that for each non-empty open set $U \subset X$ the closure $\overline{f(U)}$ has non-empty interior in *Y*, see [5]. The latter definition can be localized as follows. A map $f: X \to Y$ between two topological spaces is called

- *skeletal at a point ^x [∈] ^X* if for each neighborhood *^U [⊂] ^X* of *^x* the closure cl*^Y ^f*(*U*) of *^f*(*U*) has non-empty interior in Y [.]
- *skeletal at a subset ^A [⊂] ^X* if *^f* is skeletal at each point *^x [∈] ^A*.

It is clear that a map $f: X \to Y$ is skeletal if and only if *f* is skeletal at each point $x \in X$.

[∗] E-mail: t.o.banakh@gmail.com

[†] E-mail: akuchar@math.us.edu.pl

[‡] E-mail: martamartynenko@ukr.net

1. Characterizing skeletal maps between metrizable Baire spaces

partly reversed. Let us recall that a topological space X is *Baire* if for any sequence $(U_n)_{n \in \omega}$ of open dense subsets $U_n \subset X$ the interception Ω . It is dense in X *U*^{*n*} ⊂ *X* the intersection $\bigcap_{n \in \omega} U_n$ is dense in *X*.

We shall say that a map $f: X \to Y$ between topological spaces is

- *open at a point* $x \in X$ if for each neighborhood $U \subset X$ of x the image $f(U)$ is a neighborhood of $f(x)$;
- *open at a subset ^A [⊂] ^X* if *^f* is open at each point *^x [∈] ^A*;
- *densely open* if *^f* is open at some dense subset *^A [⊂] ^X*.

 ϵ is easy to see that each densely open map is skeletal. The converse is true for skeletal maps between ϵ is the converse is true for skeletal. The converse is true for skeletal. The converse ϵ compacta, and more generally, for closed skeletal maps defined on metrizable Baire spaces.

Theorem 1.1.

For a closed map ^f : *^X [→] ^Y defined on a metrizable Baire space ^X the following conditions are equivalent:*

- (i) *^f is skeletal;*
- (ii) *^f is skeletal at a dense subset of X;*
- (iii) *^f is densely open;*
- (iv) *f* is open at a dense G_{δ} -subset of X.

Proof. The implications [\(iv\)](#page-2-0) \Rightarrow [\(iii\)](#page-2-1) \Rightarrow [\(ii\)](#page-2-2) \Rightarrow [\(i\)](#page-2-3) are trivial and hold without any conditions on *f*. To prove the implication [\(i\)](#page-2-3) *[⇒]* [\(iv\)](#page-2-0), fix a metric *^d* generating the topology of a metrizable space *^X*. For every *ⁿ [∈]* ^N consider the family ^U*ⁿ* of all non-empty open subsets *^U [⊂] ^X* such that diam *U <* ¹*/n* and *^f*(*U*) is open in *^Y* . The skeletal property of *^f* implies that the union $\bigcup \mathcal{U}_n$ is dense in *X*. Since the space *X* is Baire, the intersection $A = \bigcap_{n=1}^{\infty} \bigcup \mathcal{U}_n$ is a dense G_{δ} -set in *X*. It is clear that *^f* is open at the set *^A*.

The following simple example shows that the metrizability of *^X* is essential in Theorem [1.1](#page-2-4) and cannot be weakened to the first countability.

Example 1.2.

The projection pr: $A \rightarrow [0, 1]$ from the Aleksandrov "two arrows" space $A = ([0, 1] \times \{0\}) \cup ((0, 1] \times \{1\})$ onto the interval is skeletal. Yet it is open at no point $x \in A$.

2. Skeletal and densely open squares

 $\frac{1}{1000}$ is section that sections of skeletal and densely open maps are generalized to square diagrams. These generalized properties will be used in the spectral characterization of skeletal maps given in a next section.

Definition 2.1.

Let D be a commutative diagram

consisting of continuous maps between topological spaces. The commutative square D is called

- *open at a point ^x [∈] ^X* if for each neighborhood *^U [⊂] ^X* of *^x* the point *^f*(*x*) has a neighborhood *^V [⊂] ^Y* such that *V* ⊂ *f*(*U*) and $p_Y^{-1}(V)$ ⊂ *f*($p_X^{-1}(U)$);
- *open at a subset ^A [⊂] ^X* if ^D is open at each point *^x [∈] ^A*;
- *densely open* if it is open at some dense subset *^A [⊂] ^X*;
- *skeletal at a point ^x [∈] ^X* if for each neighborhood *^U [⊂] ^X* of *^x* there is a non-empty open set *^V [⊂] ^Y* such that *V* ⊂ cl *f*(*U*) and $p_Y^{-1}(V)$ ⊂ cl *f*($p_X^{-1}(U)$);
- *skeletal* at a subset *^A [⊂] ^X* if ^D is skeletal at each point *^x [∈] ^A*;
- *skeletal* if ^D is skeletal at *^X*.

Remark 2.2.

If the square D is skeletal (at a point $x \in X$), then the map *f* is skeletal (at the point *x*).

Remark 2.3.

A map *^f* : *^X [→] ^Y* is skeletal (resp. open) at a subset *^A [⊂] ^X* if and only if the square

is skeletal (resp. open) at the subset *^A*.

It is easy to see that each densely operator is seen some conditions of ϵ is also true. The contributio[ns t](#page-2-4)he conditions the conditions the contributions the conditions the conditions of ϵ is a "converse" converse i following proposition is a "square" counterpart of the characterization from Theorem 1.1.

Proposition 2.4.

Let D *be a commutative diagram*

consisting of continuous maps between topological spaces such that the map \tilde{f} : $\tilde{X} \to \tilde{Y}$ *is closed, the projection* p_Y *is surjective, and the space X is metrizable and Baire. Then the following conditions are equivalent:*

- (i) *the square* ^D *is skeletal;*
- (ii) ^D *is skeletal at a dense subset of X;*
- (iii) ^D *is densely open;*
- (iv) D *is open at a dense* G_{δ} -subset of X *.*

Proof. The implications [\(iv\)](#page-3-0) \Rightarrow [\(iii\)](#page-3-1) \Rightarrow [\(ii\)](#page-3-2) \Rightarrow [\(i\)](#page-3-3) are trivial and hold without any conditions on D. To prove the impli-cation [\(i\)](#page-3-3) \Rightarrow [\(iv\)](#page-3-0), assume that the square D is skeletal. First let us prove two auxiliary claims.

Claim 1. For each non-empty open subset $U \subset X$ there is a non-empty open set $V \subset Y$ such that $V \subset f(U)$ and $p_Y^{-1}(V) \subset f(p_X^{-1}(U))$.

Proof. Using the regularity of the space *^X*, take a non-empty open subset *^W [⊂] ^X* whose closure *^W* lies in the open set U. Since the square D is skeletal, for the set W there is a non-empty open set $V \subset Y$ such that $p_Y^{-1}(V) \subset \text{cl} f(p_X^{-1}(W))$.
Taking into account that the map \widetilde{f} is closed, we see that the set $\widetilde{f}(p^{-1}(W))$ is cl Taking into account that the map f is closed, we see that the set $f(p_{X}^{-1}(\overline{W}))$ is closed in Y and hence

$$
\rho_Y^{-1}(V) \subset \mathrm{cl}\, \widetilde{f}(\rho_X^{-1}(W)) \subset \widetilde{f}(\rho_X^{-1}(\overline{W})) \subset \widetilde{f}(\rho_X^{-1}(U)).
$$

Applying to these inclusions the surjective map p_Y , we get

$$
V = \rho_Y(\rho_Y^{-1}(V)) \subset \rho_Y \circ \widetilde{f}(\rho_X^{-1}(U)) = f \circ \rho_X(\rho_X^{-1}(U)) \subset f(U).
$$

Claim 2. Each non-empty open set ^U [⊂] ^X contains a non-empty open set ^W [⊂] ^U such that ^f(*W*) *is open in ^Y and* $f(p_X^{-1}(W)) = p_Y^{-1}(f(W)).$

Proof. By Claim [1,](#page-3-4) there is a non-empty open set $V \subset Y$ such that $V \subset f(U)$ and $p_Y^{-1}(V) \subset f(p_X^{-1}(U))$. Then
the apen set $W = U \cap f^{-1}(V)$ has the required preparties, ladeed its image $f(W) = V$ is apen in V . Also the the open set *W* = *U* ∩ *f*^{−1}(*V*) has the required properties. Indeed, its image *f*(*W*) = *V* is open in *Y*. Also the inclusion n=1(*V*) ∈ *f*(n=1((/)) implies inclusion $p_Y^{-1}(V)$ ⊆ $f(p_X^{-1}(U))$ implies

$$
\widetilde{f}(p_X^{-1}(W)) = \widetilde{f}(p_X^{-1}(U \cap f^{-1}(V))) = \widetilde{f}(p_X^{-1}(U) \cap p_X^{-1}(f^{-1}(V))) \n= \widetilde{f}(p_X^{-1}(U) \cap \widetilde{f}^{-1}(p_Y^{-1}(V))) = \widetilde{f}(p_X^{-1}(U)) \cap p_Y^{-1}(V) = p_Y^{-1}(V) = p_Y^{-1}(f(W)).
$$

Let W be the family of all non-empty open sets $W \subset X$ such that $f(W)$ is open in Y and $p_Y^{-1}(f(W)) = f(p_X^{-1}(W))$.
Fix any matric d generating the tenglacy of the matrizable cases Y and for eveny n G & consider the subfamily Fix any metric *d* generating the topology [of](#page-4-0) the metrizable space *X* and for every $n \in \omega$ consider the subfamily $W_n = \{W \in \mathcal{W} : \text{diam } W < 2^{-n}\}$. By Claim 2, the union $\bigcup W_n$ is an open dense subset of *X*. Since *X* is a Baire space, the intersection $A_n \cap \bigcup W_n$ is a dense G_n est in *Y*. To finish the pread shown that the diagr the intersection $A = \bigcap_{n \in \omega} \bigcup \mathcal{W}_n$ is a dense G_δ -set in X . To finish the proof, observe that the diagram $\mathcal D$ is open at the
dance G act A dense *^G^δ* -set *^A*.

3. Skeletal squares and inverse spectra

In this section we detect morphisms [bet](#page-9-2)ween inverse spectra, inducting states $\frac{1}{2}$ COSI II $\frac{1}{2}$ COSI II $\frac{1}{2}$ COSI II for more detection we need to recall some standard information about inverse spectra, see [2, 2.1. μ [4, §3.1] μ (4, §3.1] for more details. For an inverse spectrum $S = \{X_\alpha, p_\alpha^\beta, A\}$ consisting of topological spaces and continuous bonding maps, by

$$
\lim \mathcal{S} = \left\{ (x_{\alpha})_{\alpha \in A} \in \prod_{\alpha \in A} X_{\alpha} : \rho_{\alpha}^{\beta}(x_{\beta}) = x_{\alpha}, \ \alpha \leq \beta \right\}
$$

we denote the limit of S and by p_α : lim $S \to X_\alpha$, p_α : $x \mapsto x_\alpha$, the limit projections.

Let $S_X = \{X_\alpha, p_\alpha^\beta, A\}$ and $S_Y = \{Y_\alpha, \pi_\alpha^\beta, A\}$ be two inverse spectra indexed by the same directed partially ordered set A. A morphism $\{f_{\alpha}\}_{{\alpha}\in A}$: $S_X \to S_Y$ between these spectra is a family of maps $\{f_{\alpha}: X_{\alpha} \to Y_{\alpha}\}_{{\alpha}\in A}$ such that $f_{\alpha} \circ p_{\alpha}^{\beta} = \pi_{\alpha}^{\beta} \circ f_{\beta}$ for any elements *^α [≤] ^β* in *^A*. Each morphism *{f^α }α∈A* : ^S*^X [→]* ^S*^Y* of inverse spectra induces a limit map

$$
\lim f_{\alpha}: \lim S_X \to \lim S_Y, \qquad \lim f_{\alpha}: (x_{\alpha})_{\alpha \in A} \mapsto (f_{\alpha}(x_{\alpha}))_{\alpha \in A},
$$

between the limits of these inverse spectra. For indices $\alpha \leq \beta$ in A the commutative squares

are called respectively the *limit* \downarrow _α-square and the *bonding* \downarrow ^β_α-square of the morphism { f_α }.

We shall say that the morphism $\{f_{\alpha}\}_{\alpha \in A}$: $S_X \to S_Y$

- is *skeletal* if each map $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$, $\alpha \in A$, is skeletal;
- has *skeletal limit squares* if for every index *^α [∈] ^A* the limit *[↓]^α* -square is skeletal;
- has *skeletal bonding squares* if for every indices $\alpha \leq \beta$ in A the bonding $\downarrow^{\beta}_{\alpha}$ -square is skeletal.

Our aim is to find conditions on a morphism *{f^α }*: ^S*^X [→]* ^S*^Y* of spectra implying the skeletality of the limit map $f = \lim f_\alpha: \lim \mathcal{S}_X \to \lim \mathcal{S}_Y$.

Proposition 3.1.

For a morphism $\{f_{\alpha}\}_{{\alpha}\in A}$: $S_X \to S_Y$ between inverse spectra $S_X = \{X_{\alpha}, p_{\alpha}^{\beta}, A\}$ and $S_Y = \{X_{\beta}, \pi_{\alpha}^{\beta}, A\}$ with surjective limit $S_X \to S_Y$ between inverse spectra $S_X = \{X_{\alpha}, p_{\alpha}^{\beta}, A\}$ and $S_Y = \{X_{\beta}, \pi_{\$ *projections, the limit map* lim *^f^α* : lim ^S*^X [→]* lim ^S*^Y is skeletal if the morphism {f^α } has skeletal limit squares.*

Proof. We need to show that the limit map $f = \lim f_a: X \to Y$ is skeletal, where $X = \lim S_X$, $Y = \lim S_Y$. Given any non-empty open set $U \subset X$, we need to find a non-empty open set $V \subset Y$ such that $V \subset cl$ $f(U)$. By the definition of the topology of the limit space $X = \lim S_X$, there is an index $\alpha \in A$ and a non-empty open set $U_\alpha \subset X_\alpha$ such that U ⊃ $p_{\alpha}^{-1}(U_{\alpha})$. Since the limit \downarrow _α-square

is skeletal, for the open set $U_{\alpha} \subset X_{\alpha}$ there exists a non-empty open set $V_{\alpha} \subset Y_{\alpha}$ such that the open set $V = \pi_{\alpha}^{-1}(V_{\alpha})$ lies in the closure of the set $f(p_{\alpha}^{-1}(U_{\alpha}))$, which lies in the closure of $f(U)$.

It turns out that in some cases the skeletality of squares is preserved by limits.

A partially ordered set *^A* is called *κ-directed* for a cardinal number *^κ* if each subset *^K [⊂] ^A* of cardinality *|C| ≤ ^κ* has an upper bound in A. For a topological space X by $\pi w(X)$ we denote the π -weight of X, that is, the smallest cardinality *[|]*B*[|]* of a *^π*-base ^B for *^X*. We recall that a family ^B of non-empty open subsets of *^X* is called a *π-base* for *^X* if each non-empty open subset of *X* contains a set $U \in \mathcal{B}$.

Proposition 3.2.

Let $\{f_a\}_{a\in A}$: $S_X \to S_Y$ be a morphism between inverse spectra $S_X = \{X_a, p_a^{\beta}, A\}$ and $S_Y = \{X_{\beta}, \pi_a^{\beta}, A\}$ with surjective limit projections. If for some $\alpha \in A$ and the cardinal $\kappa = \pi w(Y_\alpha)$ the index set A is κ -directed, then the limit \downarrow_α -square *is skeletal provided that for any β ≥ α in A the bonding ↓ β α -square is skeletal.*

Proof. Assuming that the limit \downarrow *α*-square is not skeletal, we can find a non-empty open set $U_\alpha \subset X_\alpha$ such that for any non-empty open set $V_{\alpha} \subset Y_{\alpha}$ we get $\pi_{\alpha}^{-1}(V_{\alpha}) \notin \text{cl } f(U)$ where $U = \rho_{\alpha}^{-1}(U_{\alpha})$ and $f = \lim f_{\alpha}$ is the limit map. Fix a
 π has 2 for the apace V having earlinglity $|\mathcal{P}| = \pi_{\alpha}(V) \leq \mu$. For every se π -base $\mathcal B$ for the space Y_α having cardinality $|\mathcal B| = \pi w(Y_\alpha) \leq \kappa$. For every set $V \in \mathcal B$ the open set $\pi_\alpha^{-1}(V) \setminus \text{cl } f(U)$ is not empty and hence contains a set of the form $\pi_{\alpha}^{-1}(W_V)$ for some index $\alpha_V \ge \alpha$ in *A* and some non-empty open set $W \subset V$. $W_V \subset Y_{\alpha_V}$. Since the index set *A* is *κ*-directed, the set $\{\alpha_V : V \in \mathcal{B}\}$ has an upper bound $\beta \in A$.

By our hypothesis, the bonding $\downarrow^{\beta}_{\alpha}$ -square is skeletal. Then for the open subset $U_{\beta} = (p^{\beta}_{\alpha})^{-1}(U_{\alpha})$ of X_{β} we can find a non-
construction and V_{α} and that $(L^{\beta})^{-1}(U_{\alpha}) \subset L^{\beta}(U_{\alpha})$. We less as as $\lim_{\alpha \to 0} \log \frac{1}{\alpha} \log \frac{1}{\alpha} \log \frac{1}{\alpha} \log \frac{1}{\alpha}$
empty open set $V \subset Y_{\alpha}$ such that $(\pi_{\alpha}^{\beta})^{-1}(V) \subset \text{cf}(\beta)$. We lose no generality assuming that $V \in \mathcal{B}$. In this case the
share of the set $W \subset Y_{\alpha}$ such that choice of the set W_V graduates that $\pi_{\alpha_V}^{-1}(W_V) \subset \pi_{\alpha_1}^{-1}(V) \setminus f(U)$. Then the open subset $W_\beta = (\pi_{\alpha_V}^\beta)^{-1}(W_V) = \pi_\beta(\pi_{\alpha_V}^{-1}(W_V))$
st ($\pi_\beta^{\beta_1-1}(V)$) then the set of t of $(\pi_{\alpha}^B)^{-1}(V)$ does not intersect the set $\pi_{\alpha}(\sqrt{V}) = \frac{1}{2} \pi \sigma_P(fU) = f_\beta(U_\beta)$ and hence cannot lie in cl $f_\beta(U_\beta)$. This contradiction shows that the limit \downarrow ^{*α*} -square is skeletal.

Corollary 3.3.

Let $\{f_a\}_{a\in A}$: $S_X \to S_Y$ be a morphism between inverse spectra $S_X = \{X_a, p_a^{\beta}, A\}$ and $S_Y = \{X_{\beta}, \pi_a^{\beta}, A\}$ with surjective limit projections. If for the cardinal $\kappa = \sup \{ \pi w(Y_\alpha) : \alpha \in A \}$ the index set A is κ -directed, then the morphism $\{f_\alpha\}_{\alpha \in A}$ *has skeletal limit squares provided it has skeletal bonding squares.*

For *πτ*-spectra, Proposition [3.1](#page-5-0) can be partly reversed. First let us introduce the necessary definitions. Let *^τ* be an infinite cardinal number. We shall say that an inverse spectrum $\mathcal{S} = \{X_\alpha, \rho_\alpha^\beta, A\}$ is a $\pi\tau$ -spectrum (resp. a τ -spectrum) if

- each space X_α , $\alpha \in A$, has π -weight $\pi w(X_\alpha) \leq \tau$ (resp. weight $w(X_\alpha) \leq \tau$);
- the index set *^A* is *τ-directed* in the sense that each subset *^B [⊂] ^A* of cardinality *|B| ≤ ^τ* has an upper bound in *^A*;
- the index set *^A* is *ω-complete* in the sense that each countable chain *^C [⊂] ^A* has the least upper bound sup *^C* in *^A*;
- the spectrum *S* is *τ*-continuous in the sense that for any directed subset $C \subset A$ with $\gamma = \sup C$ the limit map $\lim_{\alpha \to \infty} p^{\gamma}_{\alpha} : X_{\gamma} \to \lim \{ X_{\alpha}, p^{\beta}_{\alpha}, C \}$ is a homeomorphism.

A subset *^C* of a directed poset *^A* is called

- *cofinal* if for any $\alpha \in A$ there is an index $\beta \in C$ with $\alpha \leq \beta$;
- *τ-closed* if for each directed subset *^D [⊂] ^C* that has the least upper bound sup *^D* in *^A* we get sup *^D [∈] ^C*;
- *τ-stationary* if *^C* has non-empty intersection with any cofinal *^τ*-closed subset of *^A*.

Theorem 3.4.

Let $\{f_a\}_{a\in A}$: $S_X \to S_Y$ be a morphism between two $\pi\tau$ -spectra $S_X = \{X_\alpha, p_\alpha^\beta, A\}$ and $S_Y = \{Y_\alpha, \pi_\alpha^\beta, A\}$ with surjective
limit projections, If the limit map $\lim f : \lim S_{n\to \infty} \text{sin } S_n$ is skeletal, then for some c *limit projections. If the limit map* lim f_α : lim $S_\chi \to \lim S_\gamma$ *is skeletal, then for some cofinal* τ -closed subset $B \subset A$ *the morphism {f^α }α∈B is skeletal and has skeletal bonding and limit squares.*

Proof. To simplify notation, let $X = \lim_{X} S_X$, $Y = \lim_{X} S_Y$, and $f = \lim_{X} f_a$: $X \to Y$. First we show that the set

 $B = \{ \alpha \in A : \text{ the limit } \downarrow_{\alpha} \text{-square is skeletal} \}$

is cofinal and *^τ*-closed in *^A*. For this we shall prove an auxiliary statement:

Claim 3. For every $\alpha \in A$ there is $\beta \in A$, $\beta \ge \alpha$, such that for any non-empty open set $U \subset X_{\alpha}$ there is a non-empty $open$ *set* $V \subset Y_\beta$ *such that* $\pi_\beta^{-1}(V) \subseteq$ cl $f(p_\alpha^{-1}(U))$ *.*

Proof. In the space X_{α} fix a π -base \mathcal{B} of cardinality $|\mathcal{B}| = \pi w(X_{\alpha}) \le \tau$. For every set $U \in \mathcal{B}$ the preimage $p_{\alpha}^{-1}(U)$ is a non-empty open set in $X = \lim X_\alpha$. Then the skeletality of the limit map $f: X \to Y$ yields an open set $V_U \subset Y$ such that $V_U \subset \text{cl } f(p_\alpha^{-1}(U))$. By the definition of the topology of the limit space Y, for some index $\alpha_U \in A$, $\alpha_U \ge \alpha$, there is a non-empty open set $W_U \subset Y_{\alpha_U}$ such that $\pi_{\alpha_U}^{-1}(W_U) \subset V_U$. Since the index set A is τ -directe[d,](#page-6-0) the set $\{\alpha_U : U \in \mathcal{B}\}$ has an upper bound *^β* in *^A*. It is easy to see that the index *^β* has the property stated in Claim 3.

Claim 4. The set B is cofinal in A.

Proof. Fix any index $\alpha_0 \in A$. Using Claim [3,](#page-6-0) by induction we can construct a non-decreasing sequence $(\alpha_n)_{n\in\omega}$ in A such that for any non-empty open set $U \subset X_{\alpha_n}$, $n \in \omega$, there is a non-empty open set $V \subset Y_{\alpha_{n+1}}$ with $\pi_{\alpha_{n+1}}^{-1}(V) \subseteq$ cl $f(p_{\alpha_n}^{-1}(U))$. Since the set *A* is *ω*-complete, the set $\{\alpha_n\}_{n\in\omega}$ has the least upper bound $\beta = \sup\{\alpha_n\}_{n\in\omega} \in A$. The proof of Claim [4](#page-6-1) will be complete as soon as we check that *^β [∈] ^B*, which means that the limit *[↓]^β*-square is skeletal.

Given any non-empty open set $U_\beta \subset X_\beta$ we need to find a non-empty open set $V_\beta \subset Y_\beta$ such that $\pi_\beta^{-1}(V_\beta) \subset cl\ (p_\beta^{-1}(U_\beta))$. Since the spectrum S_X is τ -continuous, the space X_β can be identified with the limit of the inverse spectrum $\{X_{\alpha_n}, p_{\alpha_n}^{\alpha_m}, \omega\}$ and hence for the open set $U_{\beta} \subset X_{\beta}$ there are an index $n \in \mathbb{N}$ and a non-empty open set $U \subset X_{\alpha}$ such that $(\rho_{\alpha_0}^B)^{-1}(U) \subset U_{\beta}$. By the construction of the sequence $(\alpha_k)_{k \in \omega}$, for the set $U \subset X_{\alpha_0}$ there is a non-empty open set $(\alpha_k)_{k \in \omega}$. $V \subset Y_{\alpha_{n+1}}$ such that $\pi_{\alpha_{n+1}}^{-1}(V) \subset \text{cl } f(p_{\alpha_n}^{-1}(U))$.

Consider the open set $V_\beta = (\pi_{\alpha_{n+1}}^\beta)^{-1}(V) \subset Y_\beta$. Taking into account that the limit projections ρ_β and π_β are surjective,
we conclude that

$$
V_{\beta} = \pi_{\beta}(\pi_{\alpha_{n+1}}^{-1}(V)) \subset \pi_{\beta}(\text{cl } f(p_{\alpha_{n}}^{-1}(U)) \subset \text{cl } \pi_{\beta} \circ f(p_{\alpha_{n}}^{-1}(U)) = \text{cl } f_{\beta} \circ p_{\beta}(p_{\alpha_{n}}^{-1}(U)) \subset \text{cl } f_{\beta}((p_{\alpha_{n}}^{\beta})^{-1}(U)) \subset \text{cl } f_{\beta}(U_{\beta}),
$$

which implies that $\beta \in B$.

Claim 5. The set B is τ-closed in A.

Proof. Let *^C [⊂] ^B* be a directed subset of cardinality *|C| ≤ ^τ* having the least upper bound *^γ* = sup *^C* in *^A*. We need to show that *^γ [∈] ^B*, which means that the limit *^γ*-square is skeletal. Fix a non-empty open subset *^U^γ [⊂] ^X^γ* . Since the spectrum S_X is τ -continuous, the space X_γ can be identified with the limit space of the inverse spectrum $\{X_\alpha, p_\alpha^\beta, C\}$.
Then the apen set $U \subset Y$ septeing the preimage $(x')^{-1}(U_x)$ of some pap appty apen set $U \subset$ Then the open set $U_y \subset X_y$ contains the preimage $(p_0^{\nu})^{-1}(U_{\alpha})$ of some non-empty open set $U_{\alpha} \subset X_{\alpha}$, $\alpha \in C$. Since $\alpha \in C \subset B$, the limit \downarrow *α*-square is skeletal. Consequently, for the set U_α there is a non-empty open set $V_\alpha \subset Y_\alpha$ such that $\pi_{\alpha}^{-1}(V_{\alpha}) \subset \text{cl } f(p_{\alpha}^{-1}(U_{\alpha}))$. Then for the open subset $V_{\gamma} = (\pi_{\alpha}^{\gamma})^{-1}(V_{\alpha})$ in X_{γ} we get

$$
\pi_{\gamma}^{-1}(V_{\gamma}) = \pi_{\alpha}^{-1}(V_{\alpha}) \subset \mathrm{cl} \, f(p_{\alpha}^{-1}(U_{\alpha})) = \mathrm{cl} \, f(p_{\gamma}^{-1}((p_{\alpha}^{\gamma})^{-1}(U_{\alpha}))) \subset \mathrm{cl} \, f(p_{\gamma}^{-1}(U_{\gamma})),
$$

which implies that the limit \downarrow _{*γ*}-square is skeletal.

Claim 6. For any indices $\alpha \leq \beta$ in B the bonding $\downarrow^{\beta}_{\alpha}$ -square is skeletal.

Proof. To show that the bonding \downarrow^B_a -square is skeletal, fix any open non-empty subset $U \subseteq X_a$. Since $\alpha \in B$, the limit \downarrow_{α} -square is skeletal and hence there exists an open non-empty subset $V \subseteq Y_{\alpha}$ such that $\pi_{\alpha}^{-1}(V) \subseteq$ cl $f(p_{\alpha}^{-1}(U))$. Since
the limit prejections as each π are evrigative we get the limit projections p_β and π_β are surjective, we get

$$
(\pi_\alpha^\beta)^{-1}(V) = \pi_\beta(\pi_\alpha^{-1}(V)) \subseteq \pi_\beta(\text{cl } f(p_\alpha^{-1}(U))) \subseteq \text{cl } \pi_\beta \circ f(p_\alpha^{-1}(U)) = \text{cl } f_\beta \circ \rho_\beta(p_\alpha^{-1}(U)) = \text{cl } f_\beta((p_\alpha^\beta)^{-1}(U)).
$$

The definition of the set *^B* and Remark [2.2](#page-3-5) imply our last claim, which completes the proof of Theorem [3.4.](#page-6-2)

Claim 7. For every $\alpha \in B$ the map f_{α} : $X_{\alpha} \to Y_{\alpha}$ is skeletal and hence the morphism $\{f_{\alpha}\}_{{\alpha} \in B}$ is skeletal. \Box

The following theorem partly reverses Theorem [3.4.](#page-6-2)

Theorem 3.5.

Let $\{f_a\}_{a\in A}$: $S_X \to S_Y$ be a morphism between two $\pi\tau$ -spectra $S_X = \{X_\alpha, p_\alpha^\beta, A\}$ and $S_Y = \{Y_\alpha, \pi_\alpha^\beta, A\}$ with surjective
limit projections, If the limit map $\lim_{\Delta x \to 0} S_X \to \lim_{\Delta x \to 0} S_Y$ is not skeletal, then *limit projections. If the limit map* lim f_α : lim $S_X \to \lim S_Y$ *is not skeletal, then the set*

$$
B = \{ \alpha \in A : f_{\alpha} \text{ is not skeletal} \}
$$

is ω-stationary in A.

Proof. Assume that the limit map $f = \lim f_a : X \to Y$ between the limit spaces $X = \lim S_X$ and $Y = \lim S_Y$ is not skeletal. Then the space X contains a non-empty open set $U \subset V$ whose image $f(U)$ is nowhere dense in Y. We lose no generality assuming that the set U is of the form $U = \rho_o^{-1}(U_o)$ for some index $o \in A$ and some non-empty open set U ^{*o*} ⊂ X ^{*o*}.

To prove our theorem, we need to check that the set *^B* meets each cofinal *^ω*-closed subset *^C* of *^A*.

Claim 8. For any index $\alpha \in C$, $\alpha \ge 0$, there is an index $\beta \in C$, $\beta \ge \alpha$, such that for any non-empty open set $V_\alpha \subset Y_\alpha$ there is a non-empty open set $W_\beta \subset Y_\beta$ such that $\pi_\beta^{-1}(W_\beta) \subset \pi_\alpha^{-1}(V_\alpha) \setminus f(U)$.

Proof. Fix a π -base \mathcal{B} for the space Y_α having cardinality $|\mathcal{B}| = \pi w(Y_\alpha) \leq \kappa$. Since the set $f(U)$ is nowhere dense, for every set $V \in \mathcal{B}$ the open subset $\pi_{\alpha}^{-1}(V) \setminus \text{cl } f(U)$ of Y is not empty and hence contains a set of the form $\pi_{\alpha}^{-1}(W_V)$
for some index $\alpha \geq \alpha$ in A and some non-ampty apps set $W \subset V$. Since the index se *for some index αν* ≥ α in A and some non-empty open set W_V ⊂ Y_{α_V} . Since the index set A is *κ*-directed and the set
C is setinal in A the set (α + V ⊂ ®) has an unner hound *e* ⊆ C, It is easy to see that the *C* is cofinal in *A*, the set $\{\alpha_V : V \in \mathcal{B}\}$ has an upper bound $\beta \in C$. It is easy to see that the index β has the required property. \blacksquare property.

Using Claim [8,](#page-7-0) by induction construct a non-decreasing sequence (*αⁿ*)*n∈ω* in *^C* such that *^α*⁰ *[≥] ^o* and for any non-empty open set $V \subset Y_{\alpha_n}$, $n \in \omega$, there is a non-empty open set $W \subset Y_{\alpha_{n+1}}$ such that $\pi_{\alpha_{n+1}}^{-1}(W) \subset \pi_{\alpha_1}^{-1}(V) \setminus f(U)$. Since the set
C is undeged in the uncarrelate set A the shain $\{x_n\}$ of C has a least upper b *C* is ω -closed in the ω -complete set *A*, the chain $\{\alpha_n\}_{n\in\omega} \subset C$ has a least upper bound $\beta \in A$, which belongs to the *^ω*-closed set *^C*.

Claim 9. β ∈ B ∩ C.

Proof. We need to show that the map $f_\beta: X_\beta \to Y_\beta$ is not skeletal. Assuming the opposite, for the non-empty open subset $U_{\beta} = (p_0^{\beta})^{-1}(U_o) = p_{\beta}(U)$ of X_{β} , we can find a non-empty open set $V_{\beta} \subset Y_{\beta}$ that lies in the closure cl $f_{\beta}(U_{\beta})$. Since the spectrum S*y* is *ω*-continuous, the space *Y_β* can be identified with the limit space of the inverse spectrum S*y* is *ω*-continuous, the space *Y_β* can be identified with the limit space of the inverse spe $\{Y_{\alpha_n}, \pi_{\alpha_n}^{\alpha_m}, \omega\}$. Therefore, we lose no generality assuming that the set V_β is of the form $V_\beta = (\pi_{\alpha_n}^\beta)^{-1}(V)$ for some open
set $V_\beta \times \dots \times \mathbb{C}$ (). Bu the sheise of α there is a non-empty apon set $W \$ the π_{α_n} , π_{α_n} , $n \in \omega$. By the choice of α_n , there is a non-empty open set $W \subset Y_{\alpha_{n+1}}$ such that $\pi_{\alpha_{n+1}}^{-1}(W) \subset \pi_{\alpha_n}^{-1}(V) \setminus f(U)$.
Applying to this inclusion the surjective map π , we obtain that t Applying to this inclusion the surjective map π_β , we obtain that the non-empty open subset

$$
(\pi_{\alpha_{n+1}}^{\beta})^{-1}(W) = \pi_{\beta}(\pi_{\alpha_{n+1}}^{-1}(W)) \subset \pi_{\beta}(\pi_{\alpha_{n}}^{-1}(V) \setminus f(U))
$$

= $\pi_{\beta}(\pi_{\alpha_{n}}^{-1}(V)) \setminus \pi_{\beta} \circ f(U) = (\pi_{\alpha_{n}}^{\beta})^{-1}(V) \setminus f_{\beta} \circ \rho_{\beta}(U) = V_{\beta} \setminus f_{\beta}(U_{\beta})$

of *V* does not intersect the set $f_\beta(U_\beta)$ and hence cannot lie in its closure. This contradiction shows that the map f_β is not skeletal and hence $\beta \in B \cap C$.

The proof of Theorem [3.5](#page-7-1) is finished.

4. A spectral characterization of skeletal maps between realcompact spaces

In this section we prove Theorem [4.1](#page-8-0) which characterizes skeletal maps b[etw](#page-9-4)een realcompact spaces and is the main result of this paper. This characterization has been applied in the paper $[1]$ to detect functors that pre maps between compact Hausdorff spaces. maps between compact Hausdorff spaces.

Let us recall that a Tychonoff space *^X* is called *realcompact* if each *^C*-embedding *^f* : *^X [→] ^Y* into a Tychonoff space *^Y* is a closed embedding. An embedding $f: X \to Y$ is called a *C-embedding* if each continuous function $\varphi: f(X) \to \mathbb{R}$ has a continuous extension *^φ*: *^Y [→]* ^R. By [\[3,](#page-9-2) Theorem 3.11.3], a topologica[l s](#page-9-2)pace is realc[om](#page-9-2)pact if and only if it is homeomorphic to a closed subspace of some power \mathbb{R}^k of the real line, see [3, § 3.11]. By [3, Theorem 3.11.12], each
Lindelifestoog is realesmaset Lindelöf space is realcompact.

We say that two maps $f: X \to Y$ and $f': X' \to Y'$ are homeomorphic if there are homeomorphisms $h_X: X \to X'$
 $h \to Y'$ such that $f' \circ h = h \circ f$. It is also that a map $f: X \to Y'$ is also latel if and subject is beneverged $h_Y: Y \to Y$ such that $f' \circ h_X = h_Y \circ f$. It is clear that a map $f: X \to Y$ is skeletal if and only if it is homeomorphic to a shall that $f' \circ h_X = h_Y \circ f$. It is clear that a map $f: X \to Y$ is skeletal if and only if it is homeomorph a skeletal map $f' : X' \to Y'$.

Theorem 4.1.

For a map $f: X \rightarrow Y$ *between Tychonoff spaces the following conditions are equivalent:*

- (i) *^f is skeletal and the spaces X, Y are realcompact.*
- (ii) *f* is homeomorphic to the limit map $\lim f_\alpha$: $\lim S_X \to \lim S_Y$ of a skeletal morphism $\{f_\alpha\}$: $S_X \to S_Y$ between two ω -spectra $S_X = \{X_\alpha, p_\alpha^\beta, A\}$ and $S_Y = \{Y_\alpha, \pi_\alpha^\beta, A\}$ with surjective limit projections.

 \Box

- (iii) f is homeomorphic to the limit map $\lim f_a$: $\lim S_X \to \lim S_Y$ of a morphism $\{f_a\}$: $S_X \to S_Y$ with skeletal limit squares between two ω -spectra $S_X = \{X_\alpha, p_\alpha^\beta, A\}$ and $S_Y = \{Y_\alpha, \pi_\alpha^\beta, A\}$ with surjective limit projections.
- (iv) *f* is homeomorphic to the limit map $\lim f_\alpha$: $\lim S_X \to \lim S_Y$ of a morphism $\{f_\alpha\}$: $S_X \to S_Y$ with skeletal bonding squares between two ω -spectra $S_X = \{X_\alpha, p_\alpha^\beta, A\}$ and $S_Y = \{Y_\alpha, \pi_\alpha^\beta, A\}$ with surjective limit projections.

Proof. We shall prove the implications $(i) \Rightarrow (iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i)$ $(i) \Rightarrow (iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i)$ $(i) \Rightarrow (iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i)$ $(i) \Rightarrow (iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i)$ $(i) \Rightarrow (iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i)$ $(i) \Rightarrow (iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i)$ $(i) \Rightarrow (iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i)$ $(i) \Rightarrow (iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i)$.

[\(i\)](#page-8-1) *[⇒]* [\(iv\)](#page-9-5) Assume that the spaces *X, Y* are realcompact. Then [\[2,](#page-9-1) Propositions 1.3.4, 1.3.5] imply that the map *^f* is homeomorphic to the limit map $\lim f_{\alpha}$: $\lim S_X \to \lim S_Y$ of a morphism $\{f_{\alpha}\}_{{\alpha}\in A}$ between two ω -spec[tra](#page-6-2) $S_X = \{X_{\alpha}, p_{\alpha}^{\beta}, A\}$ and $S_Y = \{Y_\alpha, \pi_\alpha^\beta, A\}$ with surjective limit projections. If the map *f* is skeletal, then Theorem 3.4 yields a cofinal
A hounded subset $B \subseteq A$ such that the marphism $[f, \cdot]$ has skeletal bonding squares. Since the set *ω*-bounded subset *B* ⊂ *A* such that the morphism ${f_a}$ _{*α∈B*} has skeletal bonding squares. Since the set *B* is cofinal in *A*, *f* is homeomorphic to the limit map lim f_α induced by the morphism $\{f_\alpha\}_{\alpha\in B}$ with skeletal bonding squares between the i inverse ω -spectra $\{X_{\alpha}, p_{\alpha}^{\beta}, B\}$ and $\{Y_{\alpha}, \pi_{\alpha}^{\beta}, B\}$.

The implications [\(iv\)](#page-9-5) *[⇒]* [\(iii\)](#page-9-6) and [\(iii\)](#page-9-6) *[⇒]* [\(ii\)](#page-8-2) follow from Corollary [3.3](#page-5-1) and Remark [2.2,](#page-3-5) respectively.

The final implication [\(ii\)](#page-8-2) *[⇒]* [\(i\)](#page-8-1) follows from Theorem [3.5](#page-7-1) and [\[2,](#page-9-1) Proposition 1.3.5] which says that a Tychonoff space is homeomorphic to the limit space of an *^ω*-spectrum (with surjective limit projections) if and only if it is realcompact.

Let us observe that Theorem [4.1](#page-8-0) does not hold for arbitrary spectra. Just take any non-skeletal map *^f* : *^X [→] ^Y* between zero-dimensional (metrizable) compacta and apply the following lemma.

Lemma 4.2.

Each continuous map $f: X \to Y$ *from a topological space X to a realcompact space Y of covering topological dimen*sion dim Y = 0 is homeomorphic to the limit map $\lim f_{\alpha}$: $\lim s_X \to \lim s_Y$ of a skeletal morphism $\{f_{\alpha}\}_{{\alpha}\in A}$: $s_X \to s_Y$ *between inverse spectra* $S_X = \{X_\alpha, p_\alpha^\beta, A\}$ *and* $S_Y = \{Y_\alpha, \pi_\alpha^\beta, A\}.$

Proof. By [\[2,](#page-9-1) Lemma 6.5.4], the zero-dimensional realcompact space *Y* is homeomorphic to a closed subspace of the *power* N^r for some cardinal *τ*. Let $A = [r]^{< \omega}$ be the family of finite subsets of *τ*, partially ordered by the inclusion relation. For every $x \in A$ let Y be the prejection of the gross $Y \subseteq N^r$ ante the fore N *relation.* For every $\alpha \in A$, let Y_{α} be the projection of the space $Y \subset \mathbb{N}^{\tau}$ onto the face \mathbb{N}^{α} and let $\pi_{\alpha}: Y \to Y_{\alpha}$ be the proposaling projection was Γ as any finite sets $\alpha \in A$ be $\mathbb{N} \to Y$ corresponding projection map. For any finite sets *α* ⊂ *β* let π^{β}_{α} : *Y_β* → *Y_α* be the corresponding bonding projection.
Then the cores *Y* can be identified with the limit lim 8, of the inverse construm 8, Then the space *^Y* can be identified with the limit lim ^S*^Y* of the inverse spectrum ^S*^Y* ⁼ *{Y^α , π^β α , A}* consisting of discrete spaces *^Y^α* , *^α [∈] ^A*.

The space *X* can be identified with the limit of the trivial spectrum $S_X = \{X_\alpha, p_\alpha^\beta, A\}$ consisting of spaces $X_\alpha = X$ and A_X is the space A_X of the space of the s identity bonding maps $\pi_{\alpha}^{\beta}: X_{\beta} \to X_{\alpha}$. Then the map *f* is homeomorphic to the limit map $\lim f_{\alpha}: \lim S_{X} \to \lim S_{Y}$ of the collected mapphism $\lim f_{\alpha}: X \to S_{Y} \to S_{Y}$ consisting of the maps $f_{\alpha}: X \to S_{Y} \to S_{Y} \to S_{Y} \to$ skeletal morphism $\{f_{\alpha}\}_{{\alpha}\in A}$: $S_X \to S_Y$ consisting of the maps $f_{\alpha} = \pi_{\alpha}$ of: $X_{\alpha} = X \to Y_{\alpha}$, $\alpha \in A$. Here we remark that each map $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ is skeletal (even open) because the space Y_{α} is disc each map $f_\alpha: X_\alpha \to Y_\alpha$ is skeletal (even open) because the space Y_α is discrete.

References

^[1] Banakh T., Kucharski A., Martynenko M., On functors preserving skeletal maps and skeletally generated compacta,

^[2] Chiqoqidze A., Inverse Spectra, North-Holland Math. Library, 53, North-Holland Publishing, Amsterdam, 1996

^[3] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989

^[3] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989 [4] Fedorchuk V., Chigogidze A.Ch., Absolute Retracts and Infinite-Dimensional Manifolds, Nauka, Moscow, 1992

⁽in Russian) [5] Mioduszewski J., Rudolf L., *^H*-Closed and Extremally Disconnected Hausdorff Spaces, Dissertationes Math. (Rozprawy Mat.), 66, Polish Academy of Sciences, Warsaw, 1969