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Abstract

In this paper, we present three approaches for construction of decision rules for decision tables with many-valued decisions. We

construct decision rules directly for rows of decision table, based on paths in decision tree, and based on attributes contained in

a test (super-reduct). Experimental results for the data sets taken from UCI Machine Learning Repository, contain comparison

of the maximum and the average length of rules for the mentioned approaches.
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1. Introduction

In this paper, we study decision tables with many-valued decisions. In such tables each row is labeled with a

set of decisions, and for a given row, we should find a decision from the set of decisions attached to this row.

We can meet such tables when we work with experimental or statistical data. In such data sets, we often have

groups of rows with equal values of conditional attributes but, probably, different values of the decision attribute.

In this case, instead of a group of rows, we can consider one row given by values of conditional attributes, and we

attach to this row a set of decisions: either all decisions for rows from the group, or k the most frequent decisions

for rows from the group [1].

In the rough sets theory [2, 3] a generalized decision is used often to work with decision tables which have

equal rows labeled with different decisions (inconsistent decision tables). In this case, we also work with the

decision table with many-valued decisions. The set of decisions attached to equal rows is called the generalized

decision for each of these equal rows [4, 5]. The usual way is to find for a given row its generalized decision.

However, the problem of finding an arbitrary decision or one of the most frequent decisions from the group is
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interesting also. Proposed approach for construction of decision rules was considered in [6], for construction of

decision trees in [7, 8], and for construction of tests (super-reducts) in [9, 10].

Decision rules, decision trees and tests (super–reducts) can be considered as a way of knowledge representa-

tion, can be used for feature selection and for construction of classifiers. Based on decision trees and based on

tests we can construct decision rules.

The aim of this paper is to make comparative study of the maximum and the average length of decision rules.

We consider three approaches for construction of decision rules for decision tables with many-valued decisions:

• for each row of a decision table T , a greedy algorithm constructs directly a decision rule;

• for a given decision table T , a greedy algorithm constructs a decision tree, then for each row of T we find

the path in a decision tree from a root to a terminal node which accepts this row, and construct a decision

rule;

• for a given decision table T , a greedy algorithm constructs a test, then for each row of T , based on attributes

contained in a test we construct a decision rule.

To construct decision rules, decision trees and tests we use greedy algorithms. Theoretical results were pre-

sented in [9, 6, 1, 8]. It was shown that under the assumption NP � DT IME(nO(log log n)) greedy algorithms are

close to the best (from the point of view of precision) approximate polynomial algorithms for minimization of rule

length, depth of decision tree and test cardinality.

In this paper, we study binary decision tables with many-valued decisions. However, the obtained results

can be extended to the decision tables filled by numbers from the set {0, . . . , k − 1}, where k ≥ 3. We present

experimental results for data sets from UCI Machine Learning Repository [11] that have been converted to the

format of decision tables with many-valued decisions after removal of some conditional attributes.

This paper consists of seven sections. Section 3, contains main notions corresponding to decision tables with

many-valued decisions. Sections 4, 5 and 6 describe greedy algorithms for construction of decision rules, decision

trees and tests, respectively. Section 7 contains experimental results, and Sect. 8 – conclusions.

2. Related Work

In literature, often, problems that are connected with multi-label data are considered from the point of view of

classification: multi-label learning [12], multi-instance learning [13]. There are also semi-supervised learning [14]

where some examples are labeled but some are not labeled. Our problem does not match with the above learning

problems, but to some extent, it matches with partial learning [15], ambiguous learning [16], and multiple label

learning [17]. Additionally, these papers only focus on classification results rather than optimization of data model.

We consider our approach as a unique one from the point of view of knowledge representation which is based on

decision tree model.

3. Main Notions

In this section, we present definitions of notions corresponding to decision tables with many-valued decisions.

Notions connected with decision rules, decision trees and tests are contained, respectively, in Sec. 4, Sect. 5, and

Sect. 6.

A (binary) decision table with many-valued decisions is a rectangular table T filled by numbers from the set

{0, 1}. Columns of this table are labeled with attributes f1, . . . , fn. Rows of the table are pairwise different, and each

row is labeled with a nonempty finite set of natural numbers (set of decisions). By N(T ) we denote the number of

rows in the table T . Note, that each (binary) decision table with one-valued decisions can be interpreted also as

a decision table with many-valued decisions. In such table, each row is labeled with a set of decisions which has

one element.

We will say that T is a degenerate table if either T has no rows, or the intersection of sets of decisions attached

to rows of T is nonempty.

A decision which belongs to the maximum number of sets of decisions attached to rows in T is called the most
common decision for T . If we have more than one such decisions we choose the minimum one. If T is empty then

1 is the most common decision for T .
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A table obtained from T by removal of some rows is called a subtable of T . Let fi1 , . . . , fim ∈ { f1, . . . , fn} and

δ1, . . . , δm ∈ {0, 1}. We denote by

T ( fi1 , δ1) . . . ( fim , δm)

the subtable of the table T which consists of all rows that at the intersection with columns fi1 , . . . , fim have numbers

δ1, . . . , δm respectively.

A subtable T ′ of T is called a boundary subtable if T ′ is not degenerate but each proper subtable of T ′ is

degenerate. We denote by B(T ) the number of boundary subtables of the table T . It is clear that T is a degenerate

table if and only if B(T ) = 0.

All boundary subtables of a decision table T0 with many-valued decisions can be found in Fig. 1.

T0 =

f1 f2 f3 d
r1 0 0 0 {1}
r2 0 1 1 {1, 2}
r3 1 0 1 {1, 3}
r4 1 1 0 {2, 3}
r5 0 0 1 {2}

T1 =

f1 f2 f3 d
r2 0 1 1 {1, 2}
r3 1 0 1 {1, 3}
r4 1 1 0 {2, 3}

T2 =

f1 f2 f3 d
r1 0 0 0 {1}
r4 1 1 0 {2, 3}

T3 =

f1 f2 f3 d
r3 1 0 1 {1, 3}
r5 0 0 1 {2}

T4 =

f1 f2 f3 d
r1 0 0 0 {1}
r5 0 0 1 {2}

Fig. 1. All boundary subtables T1, T2, T3, T4 of the decision table T0

We will say that an attribute fi divides a boundary subtable if this attribute is not constant on the rows of this

subtable (for example, for a binary decision table, at the intersection with the column fi we can find some rows

which contain 1 and some rows which contain 0).

We denote by Tab(t), where t is a natural number, the set of decision tables with many-valued decisions such

that each row in the table has at most t decisions.

Theorem 1. [8] Each boundary subtable of a table T ∈ Tab(t) has at most t + 1 rows.

Therefore, for tables from Tab(t), there exists a polynomial algorithm for the computation of the parameter

B(T ). For example, for any decision table T with one-valued decision the equality B(T ) = P(T ) holds, where

P(T ) is the number of unordered pairs of rows from T with different decisions.

4. Decision Rules

A decision rule over T is an expression of the kind

fi1 = b1 ∧ . . . ∧ fim = bm → d (1)

where fi1 , . . . , fim ∈ { f1, . . . , fn}, d ∈ N. It is possible that m = 0.

Let r = (b1, . . . , bn) be a row of T labeled with the set of decisions D(r) and d ∈ D(r). By U(T, r, d) we denote

the set of rows r′ from T for which d � D(r′). We will say that an attribute fi separates a row r′ ∈ U(T, r, d) from

the row r if the rows r and r′ have different values at the intersection with the column fi.
A decision rule (1) is called a decision rule for the pair (T, r) and decision d ∈ D(r) if attributes fi1 , . . . , fim

separate from r all rows r′ from U(T, r, d). If m = 0 then we require U(T, r, d) = 0. By l(rule) we denote the

length of the rule (1). It is the number m of descriptors (pairs attribute = value) on the left-hand side of the rule.

Now, we present a greedy algorithm for decision rule construction (see Algorithm 1). Let T be a decision table

with many-valued decisions containing n columns labeled with attributes f1, . . . , fn, and r be a row of T with a set

of decisions D(r). Greedy algorithm works for each decision d ∈ D(r). At each iteration it chooses an attribute

with the minimum index which separates from r the maximum number of unseparated rows from U(T, r, d). It
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Algorithm 1 Greedy algorithm for decision rule construction

Require: Binary decision table T with conditional attributes f1, . . . , fn, row r = (b1, . . . , bn) of T labeled by the

set of decisions D(r), decision d ∈ D(r).

Ensure: decision rule for (T, r) and d.

Q← ∅;
while attributes from Q separate from r less than |U(T, r, d)| rows from the set U(T, r, d) do

select fi ∈ { f1, . . . , fn} with the minimum index i such that fi separates from r the maximum number of rows

from U(T, r, d) not separated by attributes from Q;

Q← Q ∪ { fi};
end while
∧

fi∈Q( fi = bi)→ d.

stops when attributes contained in the decision rule separate from r all rows from the set U(T, r, d). After that,

among all decision rules constructed for a given row r and each decision d ∈ D(r), we choose a rule with the

minimum length.

We apply this algorithm sequentially to the table T and each row r of T . As a result, for each row of the

decision table T , we obtain one decision rule. Such rules form a vector of rules vecrule = (rule1, . . . , ruleN(T )). By

lmax(vecrule) we denote the maximum length of a rule from vecrule:

lmax(vecrule) = max{l(rulei) : i = 1, . . . ,N(T )}.
By lavg(vecrule) we denote the average length of rules from vecrule:

lavg(vecrule) =

∑N(T )
i=1

l(rulei)

N(T )
.

For decision table T0, depicted in Fig. 1, the vector of constructed decision rules is the following: vecrule =

( f1 = 0 ∧ f3 = 0 → 1, f2 = 1 → 2, f1 = 1 → 3, f2 = 1 → 2, f1 = 0 ∧ f3 = 1 → 2), lmax(vecrule) = 2,

lavg(vecrule) = 1.4.

5. Decision Trees

A decision tree over T is a finite tree with a root in which each terminal node is labeled with a decision (a

natural number), and each nonterminal node is labeled with an attribute from the set { f1, . . . , fn}. Two edges start

in each nonterminal node. These edges are labeled with 0 and 1 respectively.

Let Γ be a decision tree over T and v be a node of Γ. We correspond to the node v a subtable T (v) of the table

T . If v is the root of Γ then T (v) = T . Otherwise, let nodes and edges in the path from the root to v be labeled

with attributes fi1 , . . . , fim and numbers δ1, . . . , δm respectively. Then T (v) is the subtable T ( fi1 , δ1) . . . ( fim , δm) of

the table T .

It is clear that for any row r of T there exists exactly one terminal node v in Γ such that r belongs to T (v). The

decision attached to v will be considered as the result of Γ work on the row r. We will say that Γ is a decision tree
for T if for any row r of T , the decision as the result of the work of Γ on the row r, belongs to the set of decisions

attached to the row r.

The depth of the decision tree Γ is the maximum length of a path from the root to a terminal node.

Now, we present a greedy algorithm for construction of a decision tree for a given decision table (see Algo-

rithm 2). Let T be a binary decision table with many-valued decisions containing n columns labeled with attributes

f1, . . . , fn. During the construction of a tree Γ the greedy algorithm at each iteration chooses, for a subtable T ′,
an attribute fi with the minimum index i, for which the value Q( fi) = max{B(T ′( fi, 0)), B(T ′( fi, 1))} is the mini-

mum. It stops when all subtables corresponding to terminal nodes are degenerate. Fig. 2 presents a decision tree

constructed by the greedy algorithm for the decision table T0 depicted in Fig. 1.
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Algorithm 2 Greedy algorithm for decision tree construction

Require: Binary decision table T with conditional attributes f1, . . . , fn.

Ensure: Decision tree Γ for T .

Construct a tree G consisting of a single node labeled with the table T ;

while (true) do
if no one node of the tree G is labeled with a table then

Denote the tree G by Γ;

else
Choose a node v in the tree G which is labeled with a subtable T ′ of the table T ;

if subtable T ′ is degenerate then
Instead of T ′ mark the node v with the most common decision for T ′;

else
for i = 1, . . . , n, compute the value

Q( fi) = max{B(T ′( fi, 0)), B(T ′( fi, 1))};
Instead of T ′ mark the node v with the attribute fi0 , where i0 is the minimum i for which Q( fi) has the

minimum value;

For each δ ∈ {0, 1}, add to the tree G the node v(δ) and mark this node with the subtable T ′( fi0 , δ);
Draw the edge from v to v(δ) and mark this edge with δ;

end if
end if

end while
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Fig. 2. Decision tree constructed by the greedy algorithm for T0

Let T be a decision table with rows r1, . . . , rN(T ) and Γ be a decision tree for T constructed by the considered

greedy algorithm. For i = 1, . . . ,N(T ), we correspond to the row ri a rule rulei extracted from Γ. Let v be a

terminal node of Γ such that ri belongs to T (v) and v be labeled with a decision d. If v is the root of Γ then rulei is

equal to→ d. Let v be not the root, nodes in the path from the root to v be labeled with attributes fi1 , . . . , fim , and

edges in this path be labeled with numbers δ1, . . . , δm. Then rulei is equal to fi1 = δ1 ∧ . . . ∧ fim = δm → d. One

can show that rulei is a decision rule for (T, ri) and d (it is clear that d ∈ D(ri)).

We denote vectree = (rule1, . . . , ruleN(T )). By lmax(vectree) we denote the maximum length of a rule from vectree:

lmax(vectree) = max{l(rulei) : i = 1, . . . ,N(T )}.
This value coincides with the depth of Γ. By lavg(vectree) we denote the average length of rules from vectree:

lavg(vectree) =

∑N(T )
i=1

l(rulei)

N(T )
.

For the decision table T0, depicted in Fig. 1, and decision tree depicted in Fig. 2, the vector of decision rules is

the following: vectree = ( f1 = 0∧ f3 = 0→ 1, f1 = 0∧ f3 = 1→ 2, f1 = 1→ 3, f1 = 1→ 3, f1 = 0∧ f3 = 1→ 2),

lmax(vectree) = 2, lavg(vectree) = 1.6.
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6. Tests

A test for the table T is a subset of attributes { fi1 , . . . , fim } such that these attributes divide all boundary subtables

of a decision table T .

Now, we present a greedy algorithm for test construction (see Algorithm 3). Let T be a table with many-valued

decisions containing n columns labeled with attributes f1, . . . , fn, and B(T ) be the number of boundary subtables

of the table T . Greedy algorithm at each iteration chooses an attribute which divides the maximum number of not

divided boundary subtables. This algorithm stops if attributes from the test divide B(T ) boundary subtables.

Algorithm 3 Greedy algorithm for test construction

Require: Binary decision table T with conditional attributes f1, . . . , fn.

Ensure: test for T .

Q← ∅;
while attributes from Q divide less than B(T ) boundary subtables do

select fi ∈ { f1, . . . , fn} with the minimum index such that fi divides the maximum number of boundary

subtables not divided by attributes from Q;

Q← Q ∪ { fi};
end while

Let us consider the decision table T0 and its boundary subtables T1,T2,T3,T4 presented in Fig. 1. One can

see that the attribute f1 divides T1,T2,T3, f2 – T1,T2, and f3 – T1,T4. The greedy algorithm in the first iteration

chooses the attribute f1 because it divides the maximum number of boundary subtables, in the second iteration the

greedy algorithm chooses the attribute f3. So, { f1, f3} is a test for T0 constructed by the greedy algorithm.

Let T be a decision table with n columns labeled with attributes f1, . . . , fn, and with N(T ) rows r1, . . . , rN(T ).

Let { fi1 , . . . , fim } be a test for T . Now, for each j ∈ {1, . . . ,N(T )}, we describe a rule rule j. Let r j = (b1, . . . , bn).

It is clear that the table T ′ = T ( fi1 , bi1 ) . . . ( fim , bim ) is degenerate. Let d be the most common decision for T ′. It

is clear also that d ∈ D(r j). Then rule j is equal to fi1 = bi1 ∧ . . . ∧ fim = bim → d. One can show that rule j is a

decision rule for (T, r j) and d.

We denote vectest = (rule1, . . . , ruleN(T )) and by lmax(vectest) we denote the maximum length of a rule from

vectest. It is clear that

lmax(vectest) = m.

By lavg(vectest) we denote the average length of rules from vectest. It is clear that

lavg(vectest) =

∑N(T )
i=1

l(rulei)

N(T )
= m.

For decision table T0 depicted in Fig. 1 and test { f1, f3}, the vector of decision rules is the following: vectest =

( f1 = 0 ∧ f3 = 0 → 1, f1 = 0 ∧ f3 = 1 → 2, f1 = 1 ∧ f3 = 1 → 1, f1 = 1 ∧ f3 = 0 → 2, f1 = 0 ∧ f3 = 1 → 2),

lmax(vectest) = 2, lavg(vectest) = 2.

7. Experimental Results

In this section, we present experimental results. First, we show how we constructed decision tables with

many–valued decisions based on data sets from UCI Machine Learning Repository [11]. We consider a number

of decision tables from UCI Machine Learning Repository. In some tables there were missing values. Each such

value was replaced with the most common value of the corresponding attribute. Some decision tables contain

conditional attributes that take unique value for each row. Such attributes were removed. We removed from these

tables some conditional attributes. As a result we obtained inconsistent decision tables contained equal rows with

different decisions. Each group of identical rows was replaced with a single row from the group which is labeled

with the set of decisions attached to rows from the group.
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Table 1. Characteristics of decision tables with many-valued decisions

Decision Rows Attr Spectrum Removed

Table #1 #2 #3 #4 #5 #6 Attributes

balance-scale-1 125 3 45 50 30 left-weight

breast-cancer-1 193 8 169 24 0 tumor-size

breast-cancer-5 98 4 58 40 inv-nodes,node-caps,deg-malig,

breast-quad,irradiat

cars-1 432 5 258 161 13 buying

flags-5 171 21 159 12 zone,language,religion,circles,sunstars

hayes-roth-data-1 39 3 22 13 4 marital status

kr-vs-kp-5 1987 31 1564 423 katri,mulch,rimmx,skrxp,wknck

kr-vs-kp-4 2061 32 1652 409 katri,mulch,rimmx,wknck

lymphography-5 122 13 113 9 lymphatics,changes in node,changes in stru,

special forms,no of nodes in

mushroom-5 4078 17 4048 30 odor,gill-size,stalk-root,

stalk-surface-below-ring,habitat

nursery-4 240 4 97 96 47 parents,housing,finance,social

nursery-1 4320 7 2858 1460 2 parents

spect-test-1 164 21 161 3 F3

teeth-1 22 7 12 10 top incisors

teeth-5 14 3 6 3 0 5 0 2 bottom incisors,top canines,bottom canines,

top premolars,bottom molars

tic-tac-toe-4 231 5 102 129 top-right-square,middle-middle-square,

bottom-left-square,bottom-right-square

tic-tac-toe-3 449 6 300 149 middle-middle-square,bottom-left-square,

bottom-right-square

zoo-data-5 42 11 36 6 feathers,backbone,breathes,legs,tail

The information about obtained decision tables with many-valued decisions can be found in Table 1. This

table contains the name of initial table from [11] with an index equal to the number of removed conditional

attributes, number of rows (column “Rows”), number of attributes (column “Attr”), spectrum of this table (column

“Spectrum”), and names of removed attributes (column “Removed Attributes”). Spectrum of a decision table with

many-valued decisions is a sequence #1, #2,. . . , where #i, i = 1, 2, . . ., is the number of rows labeled with sets of

decision with the cardinality equal to i.
Table Tmax depicted in Fig. 3 presents, for a given decision table, the maximum length of decision rules

constructed by Algorithm 1 (column “Rules”), the maximum length of decision rules extracted from the decision

tree constructed by Algorithm 2 (column “Trees”), and the maximum length of decision rules extracted from the

test constructed by Algorithm 3 (column “Tests”).

Table Tavg depicted in Fig. 3 presents, for a given decision table, the average length of decision rules con-

structed by Algorithm 1 (column “Rules”), the average length of decision rules extracted from the decision tree

constructed by Algorithm 2 (column “Trees”), and the average length of decision rules extracted from the test

constructed by Algorithm 3 (column “Tests”).

Presented results show that the maximum length of rules constructed directly for rows of T is often smaller

than the maximum length of rules extracted from the decision tree and extracted from the test. Only for data

set “zoo-data-5”, the maximum length of decision rules constructed directly for rows of T is greater than the

maximum length of rules extracted from the decision tree. For six data sets (“balance-scale-1”, “hayes-roth-

data-1”, “nursery-4”, “teeth-5”, “tic-tac-toe-3”) the values of the maximum length of rules are the same for each

approach. For the average length of rules, presented in Tavg, the differences are more noticeable. For data sets

“kr-vs-kp-5”, “kr-vs-kp-4”, and “spect-test-1”, the average length of rules extracted from the test is more than six

times greater than the average length of rules constructed directly for rows of T .
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Tmax =

Decision Table Rules Trees Tests

balance-scale-1 2 2 2
breast-cancer-3 5 6 8
breast-cancer-5 3 3 4
cars-1 4 5 5
flags-5 5 6 13
hayes-roth-data-1 2 2 2
kr-vs-kp-5 11 13 26
kr-vs-kp-4 11 12 27
lymphography-5 5 6 11
mushroom-5 5 7 8
nursery-4 2 2 2
nursery-1 5 7 7
spect-test-1 5 7 10
teeth-1 3 4 5
teeth-5 3 3 3
tic-tac-toe-4 4 5 5
tic-tac-toe-3 6 6 6
zoo-data-5 5 4 9

Tavg =

Decision Table Rules Trees Tests

balance-scale-1 2.0 2.0 2.0
breast-cancer-3 2.9 3.7 8.0
breast-cancer-5 1.7 1.8 4.0
cars-1 1.4 2.9 5.0
flags-5 2.4 3.8 13.0
hayes-roth-data-1 1.6 1.7 2.0
kr-vs-kp-5 4.1 8.2 26.0
kr-vs-kp-4 4.1 8.1 27.0
lymphography-5 2.7 3.8 11.0
mushroom-5 1.5 2.8 8.0
nursery-4 1.3 1.3 2.0
nursery-1 2.1 2.8 7.0
spect-test-1 1.3 3.3 10.0
teeth-1 2.3 2.8 5.0
teeth-5 1.9 2.2 3.0
tic-tac-toe-4 2.2 3.0 5.0
tic-tac-toe-3 3.3 4.3 6.0
zoo-data-5 2.2 3.2 9.0

Fig. 3. Table Tmax presents the maximum length of decision rules. Table Tavg presents the average length of decision rules

8. Conclusions

In the paper, we presented three approaches for construction of decision rules for decision tables with many-

valued decisions. They are based on greedy algorithms for construction of decision rules, decision trees and

tests. The values of the maximum length of rules constructed based on the decision tree and based on attributes

contained in the test are often greater than the values of the maximum length of rules constructed directly for rows

of the decision table. In the case of the average length of rules, the differences are more noticeable.
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