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Abstract

In this work, we consider so-called nonredundant inhibitory rules, containing an expression “attribute� value” on the right-

hand side, for which the number of misclassifications is at most a threshold γ. We study a dynamic programming approach for

description of the considered set of rules. This approach allows also the optimization of nonredundant inhibitory rules relative

to the length and coverage [1, 2]. The aim of this paper is to investigate an additional possibility of optimization relative to the

number of misclassifications. The results of experiments with decision tables from the UCI Machine Learning Repository [3]

show this additional optimization achieves a fewer misclassifications. Thus, the proposed optimization procedure is promising.
c© 2013 The Authors. Published by Elsevier B.V.
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1. Introduction

Decision rules are popular way for knowledge representation and pattern discovery in data mining. Many

approaches have been proposed in the literature to obtain rules either directly from datasets, for example, boolean

reasoning [4, 5], separate-and-conquer [6, 7], or from models such as decision trees [8, 9, 10].

In this paper, we present an approach for optimization of inhibitory rules based on a dynamic programming

algorithm. Inhibitory rules have in the consequent part a relation “attribute � value” whereas decision (deter-

ministic) rules have “attribute = value”. In [11, 12] it was shown that decision rules cannot describe the whole

information contained in some information systems. However, inhibitory rules describe the whole information

for every information system [13]. Moreover, classifiers based on inhibitory rules have often better accuracy than

classifiers based on decision rules [14, 15, 16].

Due to overfitting problem, approximate rules are more appropriate since real datasets often contain noise.

Moreover, exact decision rules are often not feasible in terms of computational resources.
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In [13] greedy algorithms for inhibitory rules construction were studied. In [1, 2] we presented a dynamic

programming approach for construction and optimization of exact inhibitory rules relative to the length and cover-

age. We also considered sequential optimization of inhibitory rules relative to the length and coverage. Moreover,

some comparisons of the length and coverage of inhibitory rules constructed by the greedy algorithm and dynamic

programming were presented.

In this paper, we consider so-called nonredundant γ-inhibitory rules for which the number of misclassifications

is at most a predefined threshold γ. We study a dynamic programming technique to describe the set of nonredun-

dant γ-inhibitory rules. As mentioned above, this technique allows optimization of inhibitory rules relative to the

length and coverage. The main objective of this paper is to investigate an additional possibility of optimization

relative to the number of misclassifications. We also present results of experiments with some decision tables from

UCI Machine Learning Repository [3] based on our software system Dagger [17]. The results show that the min-

imum number of misclassifications of nonredundant γ-inhibitory rules is, usually, essentially less than a threshold

γ, i.e., the additional optimization relative to the number of misclassifications is useful. A similar study for the

optimization of usual decision rules relative to the number of misclassification was conducted in [18]. However,

the procedure proposed in this paper achieves a fewer misclassifications even for the case of binary attribute on

the right-hand side.

This paper consists of seven sections. Section 2 contains definitions of main notions. In Sect. 3, we study a

directed acyclic graph which allows a description of the whole set of nonredundant γ-inhibitory rules. The work of

an optimization procedure of nonredundant γ-inhibitory rules relative to the number of misclassifications is well

explained in Sect. 4. Section 5 contains results of experiments with decision tables from UCI Machine Learning

Repository and finally, Sect. 6 contains the conclusion.

2. Main Notions

A decision table T is a rectangular table with n columns labeled with conditional attributes f1, . . . , fn. Rows

of this table are filled with nonnegative integers which are interpreted as values of conditional attributes. Rows

of T are pairwise different and each row is labeled with a nonnegative integer (decision) which is interpreted as a

value of the decision attribute d. We denote by D(T ) the set of distinct decisions for the table T . We denote by

N(T ) the number of rows in the table T .

The least common decision for T is a decision from the set D(T ) attached to the minimum number of rows

in T . If we have a number of such decisions then we choose the minimum one. By Nlcd(T ) we denote the number

of rows in the table T labeled with the least common decision for T .

Let T be nonempty, fi1 , . . . , fim ∈ { f1, . . . , fn} and v1, . . . , vm be nonnegative integers. By T ( fi1 , v1) . . . ( fim , vm)

we denote a subtable of the table T which contains only rows that have values v1, . . . , vm at the intersection with

columns fi1 , . . . , fim . Such nonempty subtables (including the table T ) are called separable subtables of T .

A subtable T ′ of the table T is called reduced if and only if |D(T ′)| < |D(T )| and unreduced otherwise. Since at

least one decision is missing from the set D(T ) for a reduced subtable T ′, then Nlcd(T ′) = 0 for a reduced subtable.

We denote by E(T ) the set of attributes from { f1, . . . , fn} which are not constant on T . For any fi ∈ E(T ), we

denote by E(T, fi) the set of values of the attribute fi in T .

The expression

fi1 = v1 ∧ . . . ∧ fim = vm → d � c (1)

is called an inhibitory rule over T if fi1 , . . . , fim ∈ { f1, . . . , fn}, v1, . . . vm are nonnegative integers, and c ∈ D(T ). It

is possible that m = 0. In this case (1) is equal to the rule

→ d � c (2)

Let Θ be a subtable of T and r = (b1, . . . , bn) be a row of Θ. We will say that the rule (1) is realizable for r, if

v1 = bi1 , . . . , vm = bim . The rule (2) is realizable for any row from Θ.

Let γ be a nonnegative real number. We will say that the rule (1) is γ-true for Θ if c is the least common

decision for Θ′ = Θ( fi1 , v1) . . . ( fim , vm) and Nlcd(Θ′) ≤ γ. If m = 0 then the rule (2) is γ-true for Θ if c is the least

common decision for Θ and Nlcd(Θ) ≤ γ.
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If the rule (1) is an inhibitory rule over T which is γ-true for Θ and realizable for r, we will say that (1) is a

γ-inhibitory rule for Θ and r over T . If γ = 0 then we have the notion of exact inhibitory rule. Otherwise, we

have the notion of approximate inhibitory rule.

We will say that the rule (1) with m > 0 is a nonredundant γ-inhibitory rule for Θ and r over T if (1) is a

γ-inhibitory rule for Θ and r over T and the following conditions hold:

(i) fi1 ∈E(Θ), and if m>1 then fi j ∈E(Θ( fi1 , v1) . . . ( fij−1 , v j−1)) for j=2,. . . ,m;

(ii) Nlcd(Θ)>γ, and if m>1 then Nlcd(Θ( fi1 , v1) . . . ( fi j , v j))>γ for j = 1, . . . ,m − 1.

If m = 0 then the rule (2) is a nonredundant γ-inhibitory rule for Θ and r over T if (2) is a γ-inhibitory rule for

Θ and r over T , i.e., if c is the least common decision for Θ and Nlcd(Θ) ≤ γ.
Let Θ be a subtable of T , τ be a rule over T and τ be equal to (1).The number of misclassifications of τ relative

to Θ is the number of rows in Θ for which τ is realizable and which are labeled with the decision c. We denote

it by μ(τ,Θ). The number of misclassifications of the rule (2) relative to Θ is equal to the number of rows in Θ

which are labeled with the decision c.

Lemma 1. Let Θ be an unreduced subtable of T with fi1 ∈ E(Θ), v1 ∈ E(Θ, fi1 ), and r be a row of the table
Θ′ = Θ( fi1 , v1). Then the rule (1) with m ≥ 1 is a nonredundant γ-inhibitory rule for Θ and r over T if and only if
the rule

fi2 = v2 ∧ . . . ∧ fim = vm → d � c (3)

is a nonredundant γ-inhibitory rule for Θ′ and r over T (if m = 1 then the rule (3) is equal to→ d � c)

Proof. It is clear that (1) is a γ-inhibitory rule for Θ and r over T if and only if (3) is a γ-inhibitory rule for Θ′
and r over T . It is not difficult to show that the statement of lemma holds if m = 1. Let now m > 1. Let (1)

be a nonredundant γ-inhibitory rule for Θ and r over T . Then from (i) it follows that fi2 ∈ E(Θ′) and if m > 2

then, for j = 3, . . . ,m, fi j ∈ E(Θ′( fi2 , v2) . . . ( fi j−1
, v j−1)). From (ii) it follows that Nlcd(Θ′) > γ if m = 2, and

Nlcd(Θ′( fi2 , v2) . . . ( fim−1
, vm−1)) > γ when m > 2. Therefore (3) is a nonredundant γ-inhibitory rule for Θ′ and r

over T .

Let (3) be a nonredundant γ-inhibitory rule for Θ′ and r over T . Then, for j = 2, . . . ,m, fi j ∈ E(Θ( fi1
, v1) . . .( fi j−1

, v j−1)). Also we know that fi1 ∈ E(Θ). Therefore the condition (i) holds. Since (3) is a nonredundant

γ-inhibitory rule for Θ′ and r over T , we have Nlcd(Θ( fi1 , v1))>γ if m = 2 and Nlcd(Θ( fi1 , v1) . . . ( fim−1
, vm−1))>γ if

m > 2. Therefore the condition (ii) holds, and (1) is a nonredundant γ-inhibitory rule for Θ′ and r over T .

3. Directed Acyclic Graph Λγ(T)

We consider an algorithm that constructs a directed acyclic graph Λγ(T ) which will be used to describe the

set of nonredundant γ-inhibitory rules for T and for each row r of T over T . Nodes of the graph are separable

subtables of the table T . During each step, the algorithm processes one node and marks it with the symbol *. At

the first step, the algorithm constructs a graph containing a single node T which is not marked with the symbol *.

Let us assume that the algorithm has already performed p steps. We describe now the step (p+ 1). If all nodes

are marked with the symbol * as processed, the algorithm finishes its work and presents the resulting graph as

Λγ(T ). Otherwise, choose a node (table) Θ, which has not been processed yet.

Let c be the least common decision for Θ. If Nlcd(Θ) ≤ γ label the considered node with the decision c,

mark it with the symbol * and proceed to the step (p + 2). If Nlcd(Θ) > γ, for each fi ∈ E(Θ), draw a bun-

dle of edges from the node Θ. Let E(Θ, fi) = {b1, . . . , bt}. Then draw t edges from Θ and label these edges

with pairs ( fi, b1), . . . , ( fi, bt) respectively. These edges enter to nodes Θ( fi, b1), . . . ,Θ( fi, bt). If some of nodes

Θ( fi, b1), . . . ,Θ( fi, bt) are absent in the graph then add these nodes to the graph. We label each row r of Θ with

the set of attributes EΛγ(T )(Θ, r) = E(Θ). Mark the node Θ with the symbol * and proceed to the step (p + 2).

The graph Λγ(T ) is a directed acyclic graph. A node of this graph will be called terminal if there are no edges

leaving this node. Note that a node Θ of Λγ(T ) is terminal if and only if Nlcd(Θ) ≤ γ.
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f1 f2 f3 d

r1 0 0 0 1
r2 0 1 1 1
r3 1 1 1 2
r4 1 0 0 2
r5 1 1 0 3
r6 0 1 0 3

f1 f2 f3 d

r1 0 0 0 1
r2 0 1 1 1
r6 0 1 0 3

(f1, 0)
(f1, 1)

f1 f2 f3 d

r3 1 1 1 2
r4 1 0 0 2
r5 1 1 0 3

f1 f2 f3 d

r1 0 0 0 1
r4 1 0 0 2

(f2, 0)

f1 f2 f3 d

r2 0 1 1 1
r3 1 1 1 2
r5 1 1 0 3
r6 0 1 0 3

(f2, 1)

f1 f2 f3 d

r1 0 0 0 1
r4 1 0 0 2
r5 1 1 0 3
r6 0 1 0 3

(f3, 0)

f1 f2 f3 d

r2 0 1 1 1
r3 1 1 1 2

(f3, 1)

Θ1 = Θ2 =

Θ3 =

Θ4 = Θ5 =

Θ6 =
T0 =

EG(T0, r1) = {f1, f2, f3}

EG(T0, r2) = {f1, f2, f3}

EG(T0, r3) = {f1, f2, f3}

EG(T0, r4) = {f1, f2, f3}

EG(T0, r5) = {f1, f2, f3}
EG(T0, r6) = {f1, f2, f3}

Fig. 1. Graph G = Λ1(T0)

Later, we describe the procedure of optimization of the graph Λγ(T ) relative to the number of misclassifi-

cations. As a result we obtain a graph Λγ(T )μ with the same sets of nodes and edges as in Λγ(T ). The only

difference is that any row r of each nonterminal node Θ of Λγ(T )μ is labeled with a nonempty set of attributes

EΛγ(T )μ(Θ, r) ⊆ E(Θ).

Let G be the graph Λγ(T ) or the graph Λγ(T )μ. For each node Θ of G and for each row r of Θ, we describe a

set of γ-inhibitory rules RulG(Θ, r) over T . We move from terminal nodes of G to the node T .

Let Θ be a terminal node of G and c be the least common decision for Θ. Then

RulG(Θ, r) = {→ d � c}.
Let now Θ be a nonterminal node of G such that for each child Θ′ of Θ and for each row r′ of Θ′, a set of rules

RulG(Θ′, r′) is already defined. Let r = (b1, . . . , bn) be a row of Θ. For any fi ∈ EG(Θ, r), we define the set of rules

RulG(Θ, r, fi) as follows:

RulG(Θ, r, fi) = { fi = bi ∧ σ→ d � s : σ→ d � s ∈ RulG(Θ( fi, bi), r)}.
Then

RulG(Θ, r) =
⋃

fi∈EG(Θ,r)

RulG(Θ, r, fi).

The computational complexity of the optimization procedure is polynomial in the number of nodes in the directed

acyclic graph Λγ(T ), which is at most the number of separable subtables of the table T .

Theorem 2. For any node Θ of Λγ(T ) and for any row r of Θ, the set RulΛγ(T )(Θ, r) is equal to the set of all
nonredundant γ-inhibitory rules for Θ and r over T .

Proof. We prove this theorem by induction on nodes in Λγ(T ). Let Θ be a terminal node of Λγ(T ). One can show

that the rules→ d � c where c ∈ D(T ) \ D(Θ) are the only rules which are nonredundant γ-inhibitory rules for Θ

and r over T . Therefore, the set RulΛγ(T )(Θ, r) is equal to the set of all nonredundant γ-inhibitory rules for Θ and

r over T .

Let Θ be a nonterminal node of Λγ(T ) (with Nlcd(Θ)>γ) and for each child of Θ the statement of the theorem

holds. Let r = (b1, . . . , bn) be a row ofΘ. Using Lemma 1 we obtain that RulΛγ(T )(Θ, r) contains only nonredundant

γ-inhibitory rules for Θ and r over T .

Let τ be a nonredundant γ-inhibitory rule for Θ and r over T . Since Nlcd(Θ) > γ, the left-hand side of τ is

nonempty. Therefore τ can be represented in the form fi = bi ∧ α→ d � c, where fi ∈ E(Θ). Using Lemma 1 we

obtain α → d � c is a nonredundant γ-inhibitory rule for Θ ( fi, bi) and r over T . Based on inductive hypothesis

we obtain that the rule α→ d � c belongs to the set RulΛγ(T ) (Θ ( fi, bi) , r). Therefore τ ∈ RulΛγ(T )(Θ, r).

To illustrate the algorithm presented above, we consider an example based on decision table T0 (see Fig.1). In

the example we set γ = 1, so during the construction of the graph Λ1(T0) we stop the partitioning of a subtable Θ

of T0 when Nlcd(Θ) ≤ 1 (see Fig.1). We denote G = Λ1(T0).
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For each node Θ of the graph G and for each row r of Θ we describe a set RulG(Θ, r). We move from terminal

nodes of G to the node T0. Terminal nodes of the graph G are Θ1, Θ2, Θ3, Θ4, Θ5, Θ6. For these nodes we have:

RulG(Θ1, r1) = RulG(Θ1, r2) = RulG(Θ1, r6) = {→ d � 2},
RulG(Θ2, r3) = RulG(Θ2, r4) = RulG(Θ2, r5) = {→ d � 1},
RulG(Θ3, r1) = RulG(Θ3, r4) = {→ d � 3},
RulG(Θ4, r2) = RulG(Θ4, r3) = RulG(Θ4, r5) = RulG(Θ4, r6) = {→ d � 1},
RulG(Θ5, r1) = RulG(Θ5, r4) = RulG(Θ5, r5) = RulG(Θ5, r6) = {→ d � 1},
RulG(Θ6, r2) = RulG(Θ6, r3) = {→ d � 3}.
Now we can describe the sets of rules corresponding to rows of T0. This is a nonterminal node of G for which all

children Θ1, Θ2, Θ3, Θ4, Θ5 and Θ6 are already treated. We have:

RulG(T0, r1) = { f1 = 0→ d � 2, f2 = 0→ d � 3, f3 = 0→ d � 1},
RulG(T0, r2) = { f1 = 0→ d � 2, f2 = 1→ d � 1, f3 = 1→ d � 3},
RulG(T0, r3) = { f1 = 1→ d � 1, f2 = 1→ d � 1, f3 = 1→ d � 3},
RulG(T0, r4) = { f1 = 1→ d � 1, f2 = 0→ d � 3, f3 = 0→ d � 1},
RulG(T0, r5) = { f1 = 1→ d � 1, f2 = 1→ d � 1, f3 = 0→ d � 1},
RulG(T0, r6) = { f1 = 0→ d � 2, f2 = 1→ d � 1, f3 = 0→ d � 1}.

4. Procedure of Optimization Relative to Number of Misclassifications

Let G = Λγ(T ). We consider the procedure of optimization of the graph G relative to the number of misclas-

sifications μ. For each node Θ in the graph G, this procedure corresponds to each row r of Θ the set RulμG(Θ, r) of

γ-inhibitory rules with the minimum number of misclassifications from RulG(Θ, r) and the number OptμG(Θ, r) –

the minimum number of misclassifications of a γ-inhibitory rule from RulG(Θ, r).

For each terminal node Θ of G and for each row r of Θ, the following equalities hold:

RulμG(Θ, r) = RulG(Θ, r) = {→ d � c}.
where c is the least common decision for Θ, and OptμG(Θ, r) is equal to the number of rows in Θ labeled with the

decisions c.

Let Θ be a nonterminal node of G, and r = (b1, . . . , bn) be a row of Θ. We know that

RulG(Θ, r) =
⋃

fi∈EG(Θ,r)

RulG(Θ, r, fi)

and, for fi ∈ EG(Θ, r),

RulG(Θ, r, fi) = { fi = bi ∧ σ→ d � s : σ→ d � s :∈ RulG(Θ( fi, bi), r)}.
For fi ∈ EG(Θ, r), we denote by RulμG(Θ, r, fi) the set of all γ-inhibitory rules with the minimum number of

misclassifications from RulG(Θ, r, fi) and by OptμG(Θ, r, fi) we denote the minimum number of misclassifications

of a γ-inhibitory rule from RulG(Θ, r, fi).
One can show that

RulμG(Θ, r, fi) = { fi = bi ∧ σ→ d � s : σ→ d � s ∈ RulμG(Θ( fi, bi), r)},
OptμG(Θ, r, fi) = OptμG(Θ( fi, bi), r),

and OptμG(Θ, r) = min{OptμG(Θ, r, fi) : fi ∈ EG(Θ, r)} = min{OptμG(Θ( fi, bi), r) : fi ∈ EG(Θ, r)}. It’s easy to see

also that

RulμG(Θ, r) =
⋃

fi∈EG(Θ,r),OptμG(Θ( fi,bi),r)=OptμG(Θ,r)

RulμG(Θ, r, fi).

To describe the procedure of optimization of the graph G relative to the number of misclassifications μ, we

move from the terminal nodes of the graph G to the node T . We will correspond to each row r of each table Θ the
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number OptμG(Θ, r) which is the minimum number of misclassifications of a γ-inhibitory rule from RulG(Θ, r) and

we will change the set EG(Θ, r) attached to the row r in Θ if Θ is a nonterminal node of G. We denote the obtained

graph by Gμ.
Let Θ be a terminal node of G and c be the least common decision for Θ. Then we correspond to each row r

of Θ the number OptμG(Θ, r) which is equal to the number of rows in Θ which are labeled with the decision c.

Let Θ be a nonterminal node of G and all children of Θ have already been treated. Let r = (b1, . . . , bn) be a

row of Θ. We correspond the number OptμG(Θ, r) = min{OptμG(Θ( fi, bi), r) : fi ∈ EG(Θ, r)} to the row r in the table

Θ, and we set EGμ(Θ, r) = { fi : fi ∈ EG(Θ, r),OptμG(Θ( fi, bi), r) = OptμG(Θ, r)}. From the reasoning before the

description of the procedure of optimization relative to the number of misclassifications (the beginning of Section

4) the next statement follows.

Theorem 3. For each node Θ of the graph Gμ and for each row r of Θ, the set RulGμ(Θ, r) is equal to the set
RulμG(Θ, r) of all γ-inhibitory rules with the minimum number of misclassifications from the set RulG(Θ, r).

f1 f2 f3 d

r1 0 0 0 1
r2 0 1 1 1
r3 1 1 1 2
r4 1 0 0 2
r5 1 1 0 3
r6 0 1 0 3

f1 f2 f3 d

r1 0 0 0 1
r2 0 1 1 1
r6 0 1 0 3

(f1, 0)
(f1, 1)

f1 f2 f3 d

r3 1 1 1 2
r4 1 0 0 2
r5 1 1 0 3

f1 f2 f3 d

r1 0 0 0 1
r4 1 0 0 2

(f2, 0)

f1 f2 f3 d

r2 0 1 1 1
r3 1 1 1 2
r5 1 1 0 3
r6 0 1 0 3

(f2, 1)

f1 f2 f3 d

r1 0 0 0 1
r4 1 0 0 2
r5 1 1 0 3
r6 0 1 0 3

(f3, 0)

f1 f2 f3 d

r2 0 1 1 1
r3 1 1 1 2

(f3, 1)

Θ1 = Θ2 =

Θ3 =

Θ4 = Θ5 =

Θ6 =
T0 =

EG(T0, r1) = {f1, f2}

EG(T0, r2) = {f1, f3}

EG(T0, r3) = {f1, f3}

EG(T0, r4) = {f1, f2}

EG(T0, r5) = {f1}
EG(T0, r6) = {f1}

Fig. 2. Graph Gμ = Λ1(T0)μ

Figure 2 presents the directed acyclic graph Gμ obtained from the graph G (see Fig. 1) by the procedure of

optimization relative to the number of misclassifications. Using the graph Gμ we can describe for each row ri,

i = 1, . . . , 6, of the table T0 the set RulμG(T0, ri) of all nonredundant 1-inhibitory rules for T0 and ri over T0 with

the minimum number of misclassifications. We give also the value OptμG(T0, ri) which is equal to the minimum

number of misclassifications of a nonredundant 1-inhibitory rule for T0 and ri over T0. This value was obtained

during the procedure of optimization of the graph G relative to the number of misclassifications. We have:

RulG(T0, r1) = { f1 = 0→� 2, f2 = 0→� 3}, OptμG(T0, r1) = 0,

RulG(T0, r2) = { f1 = 0→� 2, f3 = 1→� 3}, OptμG(T0, r2) = 0,

RulG(T0, r3) = { f1 = 1→� 1, f3 = 1→� 3}, OptμG(T0, r3) = 0,

RulG(T0, r4) = { f1 = 1→� 1, f2 = 0→� 3}, OptμG(T0, r4) = 0,

RulG(T0, r5) = { f1 = 1→� 1}, OptμG(T0, r5) = 0,

RulG(T0, r6) = { f1 = 0→� 2}, OptμG(T0, r6) = 0.

5. Experimental Results

For experiments we use decision tables from the UCI Machine Learning Repository [3]. We preprocess the

decision tables by eliminating attributes which, each row, take unique value such as ID number, merging identical

rows into a single row with the most common decision for the group of identical rows, and estimating missing

values with the most common value of the corresponding attribute.

Let T be one of these decision tables. We consider for this table the value of Nlcd(T ) and values of γ from

the set Γ(T ) = {�Nlcd(T ) × 0.2�, �Nlcd(T ) × 0.3�, �Nlcd(T ) × 0.5�, �Nlcd(T ) × 0.6�}. These parameters can be found

in Table 1, where (i) column “Rows” contains the number of rows, (ii) column “Attributes” contains number of

conditional attributes, (iii) column “Nlcd(T )” contains the number of rows with the least common decision for T ,

(iv) column “γ ∈ Γ(T )” contains values from Γ(T ).

Table 2 presents the results of the procedure of optimization relative to the number of misclassifications of

nonredundant γ-inhibitory rules. For each row r of T , we find the minimum number of misclassifications of
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Table 1. Parameters of decision tables and values of γ
Decision table Rows Attributes Nlcd (T ) γ ∈ Γ (T )

�Nlcd (T ) × 0.2� �Nlcd (T ) × 0.3� �Nlcd (T ) × 0.5� �Nlcd (T ) × 0.6�
Balance-scale 625 4 49 9 14 24 29

Breast-cancer 266 9 76 15 22 38 45

Cars 1728 6 65 13 19 32 39

Hayes-roth-data 69 4 18 3 5 9 10

Shuttle-landing-control 15 6 6 1 1 3 3

Soybean-small 47 35 10 2 3 5 6

Zoo 59 16 4 0 1 2 2

Tic-tac-toe 959 9 332 66 99 166 199

Table 2. Minimum number of misclassifications of γ-inhibitory rules for γ ∈ Γ(T )
Decision Table γ ∈ Γ (T )

�Nlcd (T ) × 0.2� �Nlcd (T ) × 0.3� �Nlcd (T ) × 0.5� �Nlcd (T ) × 0.6�
min avg max min avg max min avg max min avg max

Balance-scale 0 0.92 9 9 9.13 11 9 9.13 11 9 9.13 11

Breast-cancer 0 0.71 4 0 1.31 5 0 3.20 11 0 4.55 17

Cars 0 0 0 0 0 0 0 0.37 18 0 0.56 18

Hayes-roth-data 0 0.10 1 0 0.54 1 0 2.26 4 0 2.26 4

Shuttle-landing-control 0 0.07 1 0 0.07 1 0 0.20 2 0 0.20 2

Soybean-small 0 0 0 0 0 0 0 0 0 0 0 0

Zoo 0 0 0 0 0 0 0 0 0 0 0 0

Tic-tac-toe 5 10.52 18 13 16.59 34 48 66.28 101 48 66.28 101

a nonredundant γ-inhibitory rule for T and r over T . After that, we find for rows of T the minimum number of

misclassifications of an inhibitory rule with minimum number of misclassifications (column “min”), the maximum

number of misclassifications of such a rule (column “max”), and the average number of misclassifications of rules

with minimum number of misclassifications – one for each row (column “avg”).

The obtained results show that the number of misclassificaions for the constructed rules is often essentially

less than a threshold γ. For example, the average number of misclassifications for constructed rules in case of

γ = �Nlcd (T ) × 0.6� is three times less than γ for each of the considered tables. Experiments were done using

software system Dagger [17] which is implemented in C++ and uses Pthreads and MPI libraries for managing

threads and processes respectively.

6. Conclusions

We considered a dynamic programming approach for the representation of the set of nonredundant γ-inhibitory

rules and optimization of these rules relative to the number of misclassifications. The experiments indicated the

usefulness of the proposed approach. Further investigations will be devoted to the sequential optimization of

γ-inhibitory rules relative to the length, coverage, and the number of misclassifications.
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