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Abstract
Epigenetic processes including DNA methylation play a pivotal role in regulating the genes that control plant development. 
In contrast to in planta development, the contribution of DNA methylation to the morphogenic processes that are induced 
in vitro are much less recognised. Hence, in the present study, we analysed the impact of DNA methylation on somatic 
embryogenesis (SE) that was induced in Arabidopsis. The results demonstrated a decrease in the global DNA methylation 
level during SE that contrasted with the up-regulation of MET1 and CMT3 DNA methylases and the down-regulation of 
DNA demethylases (ROS1, DME and DML2). Hence, the global DNA methylation level appears not to correlate with the 
transcriptional activity of the genes encoding DNA methylases/demethylases, thereby implying the complexity of the regula-
tory mechanism that controls the DNA methylation status of the SE-epigenome. Moreover, distinct changes in the expression 
level of the SE-regulatory genes were indicated in the 5-AzaC-treated and DNA methylase mutant cultures. Accordingly, a 
significant repression of the LEC2, LEC1 and BBM genes was found in the 5-AzaC-treated culture that was incapable of SE 
induction. In contrast, the distinct up-regulation of these genes was observed in the drm1drm2 and drm1drm2cmt3 mutant 
cultures with an improved embryogenic response. The modulated expression of DNA methylase genes and the significantly 
modified embryogenic response of the met1 and drm mutants imply that both the maintenance and the de novo pathway of 
DNA methylation are engaged in the regulation of SE in Arabidopsis.

Keywords  5-AzaC · DNA methylation · Somatic embryogenesis · Transcription factors

Introduction

Somatic embryogenesis (SE) is a plant-specific developmen-
tal process that involves the induction of the embryogenic 
programme in somatic cells, which results in the formation 
of somatic embryos that are capable of regenerating com-
plete plants. The transition of already differentiated cells into 

embryogenic ones requires extensive changes in the somatic 
cell transcriptome. Accordingly, rapid changes in the gene 
expression patterns that accompany SE induction have 
been reported in various plants (Elhiti et al. 2013) includ-
ing Arabidopsis (Gliwicka et al. 2013; Wickramasuriya and 
Dunwell 2015). The reprogramming of the cell transcrip-
tome that results in the release of a new developmental pro-
gramme is associated with extensive changes in the chro-
matin structure, which involves chemical modifications of 
DNA and histones (He et al. 2011a; De-la-Peña et al. 2015; 
Mozgová et al. 2017). Among the epigenetic modifications 
that control gene expression, the methylation of DNA is con-
sidered to play a pivotal role in plant development (Zhang 
et al. 2010; Turck and Coupland 2014; Victoria et al. 2018).

The methylation of plant DNA involves the addition of a 
methyl group to the carbon-5 of cytosine at the CpG, CpNpG 
and CpNpN (where N could be any nucleotide except G) 
sequences in DNA, which results in an increase of the con-
tent of 5-methyl cytosine (5 mC) in the genomic DNA (Law 
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and Jacobsen 2010). Three types of DNA methylases have 
been found in plants including METHYLTRANSFERASE 
1 (MET1), CHROMOMETHYLASE 3 (CMT3) and 
DOMAINS REARRANGED METHYLTRANSFERASE 
(DRM1 and DRM2) (Lindroth et al. 2001; Cao and Jacob-
sen 2002a; Zhang et al. 2006). In Arabidopsis thaliana, 
DRMs are required for de novo methylation while MET1 
and CMT3 maintain the methylation pattern during DNA 
replication (Zhang et al. 2010).

DNA methylases cooperate with other proteins and the 
recruitment of MET1 to DNA requires the activity of the 
variant in methylation (VIM/ORTHRUS) proteins that rec-
ognise the hemimethylated CpG sites that are generated dur-
ing DNA replication (Shook and Richards 2014). The acces-
sion of DNA methyltransferases to DNA is supported by 
DECREASED IN DNA METHYLATION (DDM1), which 
is a SWI/SNF chromatin-remodeling factor (Jeddeloh et al. 
1999).

In controlling genome-wide DNA methylation patterns, 
DNA methylation is accompanied by active DNA demeth-
ylation that is carried out by the DNA glycosylase family of 
DNA demethylases in plants (Penterman et al. 2007; Stroud 
et al. 2013). The Arabidopsis genome encodes four DNA 
demethylases, including DEMETER (DME), REPRESSOR 
OF SILENCING 1 (ROS1)/DEMETER-LIKE 1 (DML1), 
DML2 and DML3. ROS1 is a major DNA demethylase that 
is involved in the dynamic transcriptional regulation of the 
genome (Gong et al. 2002) that plays a role in the devel-
opmental processes and biotic and abiotic stress responses 
(Yamamuro et al. 2014; Schumann et al. 2017). DME is 
required for the expression of specific imprinted maternal 
alleles during seed development, while the biological func-
tion of DML2 and DML3 as yet remains mostly unknown 
(Bauer and Fischer 2011).

DNA methylation has been recognised as a mechanism 
that suppresses gene expression because the accumulation 
of 5 mC has been observed in the heterochromatin regions, 
imprinted genes, repetitive sequences and transposons (Tariq 
and Paszkowski 2004; Teixeira and Colot 2010). However, 
in a large number of expressed genes, the promoters and the 
transcribed regions of the genes (‘gene body’) are methyl-
ated (He et al. 2011b; Jones 2012). The frequent methyla-
tion of the gene body of constitutively expressed housekeep-
ing genes suggests a homeostatic function of this type of 
methylation (Zilberman 2017). In addition, methylation of 
the gene body might also be related to the regulation of the 
responses of genes to internal or external cues (Aceituno 
et al. 2008). Thus, the function of CG methylation within 
the transcribed regions of genes is currently unclear (Bewick 
and Schmitz 2017).

During the life cycle of Arabidopsis, the global level of 
DNA methylation undergoes dynamic changes and the con-
tent of 5 mC decreases in gametogenesis and increases after 

fertilisation and during embryo development (Jullien et al. 
2012; Bouyer et al. 2017). In adult plants, variations in the 
level and pattern of methylation have been observed between 
the plant organs but the overall trend is that the 5 mC content 
increases during the aging and maturation of a plant (Ruiz-
García et al. 2005; Widman et al. 2014).

A nucleotide analogue, 5-Azacitidine (5-AzaC), of the 
DNA demethylation activity is commonly applied to study 
the role of DNA methylation in the developmental processes. 
5-AzaC is randomly incorporated into a newly synthesised 
DNA strand instead of cytosine and, as a result, a dose- and 
time-dependent decrease in the DNA methyltransferase 
activity can be observed that is followed by genome hypo-
methylation at random sequences (Christman 2002; Issa and 
Kantarjian 2009). Treatment with 5-AzaC has been shown to 
induce various plant phenotypes including dwarfism, early 
flowering and an inhibition of vegetative growth (Kondo 
et al. 2006). Although 5-AzaC treatment has also been indi-
cated to impact the morphogenic processes that are induced 
in vitro including the capacity of a tissue for SE (Santos and 
Fevereiro 2002; Yamamoto et al. 2005; Tokuji et al. 2011; 
Fraga et al. 2012; Teyssier et al. 2014; Solís et al. 2015), our 
knowledge about the role of this modification in the epige-
netic regulation of the genes that control the developmental 
plasticity of somatic plant cells is still limited.

Hence, we were motivated to study the function of DNA 
methylation in regulating SE in Arabidopsis, which is a 
model plant that offers a rapid and efficient culture system to 
identify the molecular determinants that are involved in the 
embryogenic transition induced in somatic cells (Gaj 2001; 
Wójcikowska and Gaj 2016). Different analytical approaches 
that aimed at revealing (1) the impact of both 5-AzaC-treat-
ment and the mutations that affect the DNA methylase genes 
(drm1drm2 and drm1drm2cmt3) on the embryogenic capac-
ity of a tissue and the expression profiles of the LEC1, LEC2 
and BBM genes that play a key role in SE induction (2) 
changes in the global DNA methylation level during SE and 
(3) the contribution of the genes encoding different DNA 
methylases to SE induction. The results indicated that the 
DNA methylation status of the explants impacts both the 
capacity of a culture for SE and the expression level of the 
SE-involved genes. The results of the DNA methylase gene 
profiling together with an analysis of the mutants that were 
defective in DNA methylases suggest that both the main-
tenance and the de novo pathway of DNA methylation are 
engaged in the regulation of SE in Arabidopsis.
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Materials and methods

Plant material

Arabidopsis thaliana (L.) Heynh. plants of the Columbia 
(Col-0) WT ecotype and the insertional mutant lines in the 
Col-0 background were used in the study (Table S1). The 
seeds were purchased from NASC (The Nottingham Arabi-
dopsis Stock Centre, UK; http://arabi​dopsi​s.info/). Selec-
tion of homozygous mutants was conducted following the 
NASC standard protocol (http://signa​l.salk.edu/tdnap​rimer​
s.2.html).

In vitro culture of the explants

In order to induce SE, immature zygotic embryos (IZEs) at 
the stage of green, fully developed cotyledons were cultured 
in vitro following a standard protocol (Gaj 2001). The stand-
ard medium used for SE induction (E5) contained a basal B5 
medium (Gamborg et al. 1968) that was supplemented with 
20 g L−1 sucrose, agar (8 g L−1) and 5 μM of 2,4-dichloro-
phenoxyacetic acid (2,4-D; Sigma-Aldrich). In the control 
culture, the explants were induced on an E5 medium without 
2,4-D (E0), which resulted in seedling development. In some 
experiments, the E5 medium was supplemented with 10 μM 
of 5-AzaC (5-Azacitidine; Sigma-Aldrich).

Ten explants were cultured in one Petri dish and 30 
explants in three replicates from each culture combination 
were analysed. The capacity for SE was evaluated in three-
week-old cultures. Two parameters of embryogenic potential 
were evaluated: SE efficiency—the frequency of the explants 
that produced somatic embryos and SE productivity—the 
average number of somatic embryos that developed per 
embryogenic explant.

Explants that were cultured for 0 d; 3 d; 5 d; 10 d; 15 d 
(d = day of culture) on the E5 or E0 medium were collected 
to isolate RNA and DNA. A small fraction (< 10%) of the 
explants that were cultured on E5 failed to induce SE and 
developed a non-embryogenic callus that was also taken for 
analysis (15 days). All of the molecular analyses of the SE 
culture including RT-qPCR and ELISA were conducted in 
three biological and two technical replicates.

Plant growth and in vitro culture conditions

The plants that were used as the source of the IZE explants 
were grown in Jiffy-7 peat pots (Jiffy) in a ‘walk-in’ type 
phytotron under controlled conditions at 22 °C under a 16 h 
photoperiod of 100 µM m−2 s−1 white, fluorescent light. The 
plant materials that were grown in sterile conditions were 
kept at 23 °C under a 16 h photoperiod of 40 µM m−2 s−1 
white, fluorescent light.

Total RNA isolation and RT‑qPCR

An RNAqueous Kit (Ambion) was used to isolate total RNA. 
The concentration and purity of RNA was evaluated using 
an ND-1000 spectrophotometer (NanoDrop). In order to pre-
vent DNA contamination, the RNA was treated with RQ1 
RNase-free DNase I (Promega) following the manufacturer’s 
instructions. First strand cDNA was produced in a 20 µL 
reaction volume using a RevertAid First Strand cDNA Syn-
thesis Kit (Fermentas).

The product of the reverse transcription was used to eval-
uate the expression level of the selected genes (Table S2). 
RT-qPCR was carried using a LightCycler® 480 SYBR 
Green I Master (Roche), the appropriate mix of the master 
mix, cDNA and water were used for the RT-qPCR reactions 
(Table S3). A LightCycler 480 (Roche) real-time detec-
tion system was used under the following reaction condi-
tions: denaturation one repeat of 10 min at 95 °C followed 
by 45 repeats of 10 s at 95 °C, 8 s at 55 °C, 12 s at 72 °C 
and 5 s at 80 °C. Denaturation for the melt curve analysis 
was conducted at 95 °C followed by 15 s at 65 °C and then 
heating to 95 °C (0.1 °C/s, with continuous fluorescence 
measurement).

Primary data analysis was performed using LightCycler 
Software 4.0 (Roche). The relative RNA levels were calcu-
lated and normalised to an internal control—the At4g27090 
gene encoded 60S ribosomal protein (Thellin et al. 1999). In 
all of the analysed tissue samples, the control gene displayed 
a constant expression pattern with Cp = 18 ± 1 (Figs. 2, 3 and 
4b, c) and Cp = 23 ± 1 (Figs. 4a and S1).

DNA isolation and DNA methylation analysis 
with ELISA

The modified micro C-TAB method was used to extract 
genomic DNA from the explants that had been cultured on 
the E5 medium for 0, 3, 5, 10 and 15 days (Doyle and Doyle 
1987). The global DNA methylation level was evaluated 
using spectrophotometric methods—a 5-mC DNA ELISA 
kit (ZymoResearch) following the manufacturer’s protocol. 
The light absorbance was analysed on a Victor X5 multilabel 
reader system (PerkinElmer).

Statistical analyses

The Student’s t test was used to calculate any significant dif-
ferences (at P = 0.05) between the combinations that were 
being compared.

http://arabidopsis.info/
http://signal.salk.edu/tdnaprimers.2.html
http://signal.salk.edu/tdnaprimers.2.html
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Results

Reduced embryogenic response of the explants 
treated with 5‑AzaC

The embryogenic capacity of the Col-0 explants that were 
treated with 5-AzaC was studied. In the control culture that 
was induced on the E5 medium, the explants formed somatic 
embryos rapidly and efficiently while on the medium that 
had been supplemented with 10 µM of 5-AzaC, the SE 
response was drastically inhibited and the explants mas-
sively produced white, non-embryogenic callus tissue 
(Fig. 1). Treating the explants with 5-AzaC reduced both 
the efficiency and productivity of SE and as a result only 
5% of the explants were able to undergo SE induction and 
the average number of somatic embryos produced by an 
embryogenic explant was decreased by more than half com-
pared to the control culture. Since no signs of tissue lethality 
were observed in the treated cultures, we hypothesised that 
the inhibition of SE was not a result of the toxic effect of 

5-AzaC on cell metabolism but that it resulted from DNA 
hypomethylation-associated effects including changes in the 
gene transcription.

The expression profiles of the SE‑involved TF genes 
in response to 5‑AzaC treatment

RT-qPCR analysis was used to analyse the expression of 
the genes encoding the transcription factors (TFs) of the 
documented regulatory function in SE induction in Arabi-
dopsis including LEC1 (LEAFY COTYLEDON1), LEC2 
(LEAFY COTYLEDON2) and BBM (BBM BABY BOOM). 
The gene expression profiles in response to 5-AzaC treat-
ment of the WT (Col-0) culture were evaluated.

The results showed that 5-AzaC treatment caused sig-
nificant changes in the transcription profiles of the genes 
that were analysed (Fig. 2). Under 5-AzaC treatment, the 
strongest inhibition of the transcript level was observed 
for BBM and LEC2 whose expression was highly repressed 
up to 32 (LEC2) and 11 (BBM)—fold in comparison to 
transcript level observed in control E5 culture after the 

Fig. 1   Impaired SE efficiency 
and productivity of the Col-0 
explants cultured on the E5 
medium supplemented with 
5-AzaC (10 µM). Values signifi-
cantly different from the control 
culture (E5) are indicated with 
an asterisk (Student’s t test, 
P < 0.05). Error bars indicate 
the standard deviation (SD)

Fig. 2   Expression profiles of 
SE-involved TF genes in the 
Col-0 (WT) embryogenic cul-
ture induced on E5 (control) and 
E5 + 10 µM 5-AzaC medium. 
Relative transcript level was 
normalised to the internal con-
trol (At4g27090) and calibrated 
to the 0 day of culture. Values 
significantly different to 0 day 
are indicated with an asterisk; 
Values significantly different 
to control (E5) at correspond-
ing day of culture are indicated 
with a hashtag (Student’s t test, 
P < 0.05). Error bars indicate 
the standard deviation (SD)
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transient up-regulation in the early culture (5 days). In 
contrast, the LEC1 expression profile in the culture that 
was induced on the E5 + 5-AzaC medium was similar to 
the one that was observed in the control culture (E5) and 
an increased transcript accumulation was indicated at the 
early (5 days) and advanced (15 days) SE stages.

The expression profiles of the SE‑involved TF genes 
in the DNA methylation‑related mutants

To further assess the impact of DNA methylation on SE 
induction, we profiled the expression of the LEC1, LEC2 and 
BBM genes in the SE-induced explants of the drm1drm2 and 
drm1drm2cmt3 mutants (henceforth referred to as dd and 
ddc). The results demonstrated that the expression profiles of 
LEC1, LEC2 and BBM genes were similar in the dd and ddc 
mutant cultures and that the analysed genes showed a signifi-
cantly increased expression in the mutant explants that were 
induced on the E5 medium (Fig. 3). The genes that were 
analysed differed in the relative level of gene transcripts and 
LEC1 displayed the highest (up to 77-fold) and BBM the 
lowest (up to threefold) stimulation of gene expression in the 
mutant cultures. In addition, we observed that an increase 
in the gene transcript level was higher in the mutant (Fig. 3) 
than in WT (Fig. 2) culture that was induced on E5 for all of 
the SE-regulatory genes that were analysed.

Expression of the genes that are involved in DNA 
methylation and DNA demethylation during SE

To further explore the DNA methylation-related processes 
that are involved in the molecular mechanism that gov-
erns the embryogenic response in plant somatic cells, we 

evaluated the expression profiles of the genes encoding DNA 
methylases (MET1, CMT3, DRM1 and DRM2) in the WT 
(Col-0) explants that had been cultured on the E5 (auxin) vs 
the E0 (auxin-free) medium. In contrast to the SE-promot-
ing E5 medium, the explants that had been cultured on E0 
were not able induce SE and they developed into seedlings 
instead.

Although we found that the DNA methylase genes were 
expressed in both of the culture conditions that were ana-
lysed, distinct differences in the gene expression profiles and 
transcript accumulation between the genes and the culture 
conditions were observed (Fig. 4). Accordingly, a high accu-
mulation of MET1 and CMT3 in the SE culture (3–10 days) 
was observed that was specific to the E5 medium (Fig. 4a). 
Compared to MET1 and CMT3, the genes that control de 
novo DNA methylation, DRM1 and DRM2, displayed a sig-
nificantly lower expression level during SE and their tran-
scription profiles on E5 and E0 were similar. A distinct dif-
ference between the expression profiles of DRM1 and DRM2 
genes in the advanced stage of SE culture was observed 
and at 10–15 days of the culture, a down-regulated DRM1 
transcription contrasted with an up-regulated expression of 
DRM2. Moreover, we found that the accumulation of the 
DRM2 transcripts in the SE culture significantly exceeded 
(up 4000-fold) the transcript level of the DRM1 gene (Fig. 
S1).

We also investigated the expression of the DDM1 and 
VIM1 genes encoding the proteins that are related to DNA 
methylation. We found that the transcription of DDM1 and 
VIM1 was significantly modulated during SE and that their 
expression patterns were similar (Fig. 4b). Accordingly, a 
substantial up-regulation of the DDM1 and VIM1 transcripts 
was observed during SE induction. In contrast to the genes 
encoding the DNA methylases, the DNA methylation-related 

Fig. 3   Expression profiles of 
LEC1, LEC2 and BBM genes 
that have a regulatory role in 
SE induction in the drm1drm2 
(dd) and drm1drm2cmt3 (ddc) 
mutant cultures induced on E5 
medium. The relative transcript 
level was normalised to the 
internal control (At4g27090) 
and calibrated to the 0 day 
culture. The values that were 
significantly different to 0 day 
are indicated with an asterisk 
(Student’s t test, P < 0.05). Error 
bars indicate the standard devia-
tion (SD)



248	 Plant Growth Regulation (2018) 85:243–256

1 3

genes, DDM1 and VIM1 displayed a down-regulation during 
SE (E5) and an up-regulation in the explants that developed 
seedlings on the E0 medium.

In addition to the genes that are involved in DNA meth-
ylation, we also analysed the expression level of three 
demethylase genes, including (ROS1) REPRESSOR OF 
SILENCING 1, (DME) DEMETER and (DML2) DEM-
ETER LIKE 2 in the explants that had been cultured on 
E5 and E0 (Fig. 4c). We found that in the SE culture that 
had been induced on the E5 medium, all of the analysed 

DNA demethylase genes were distinctly down-regulated 
up to 23–70% of the level that was found in the freshly 
isolated (0 day) explants. Similarly, the DML2 expression 
was distinctly reduced in the seedlings that were develop-
ing on E0 while the transcription of the other two analysed 
genes, DME and ROS1, was not affected on E0, except for 
a transient up-regulation of the ROS1 at 5 days.

Fig. 4   Expression level of the 
genes encoding DNA methy-
lases, MET1, CMT3, DRM1, 
DRM2 (a); DNA-methylation 
related proteins, DDM1, VIM1 
(b) and the DNA demethylases, 
ROS1, DME, DML2 (c) in the 
Col-0 explants cultured on the 
E5 and the E0 medium. Relative 
transcript level was normal-
ised to the internal control 
(At4g27090) and calibrated to 
the 0 day of culture. Values 
significantly different from 
0 day are indicated with an 
asterisk; Values significantly 
different from E0 are indicated 
with a hashtag (Student’s t test, 
P < 0.05). Error bars indicate 
the standard deviation (SD)
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Embryogenic capacity of the DNA 
methylation‑related mutants

In addition to the analysis of the gene expression, we evalu-
ated the capacity for SE of the insertional mutants that were 
affected in the genes encoding the DNA methylases (met1, 
cmt3, dd and ddc) and proteins that are involved in DNA 
methylation (ddm1 and vim1) (Fig. 5). The results showed a 
distinctly decreased SE response of the met1 and two other 
mutants, ddm1 and vim1, with an insert in the DNA methyl-
ation-related genes. In contrast, cultures with mutations in 
the DRM1 and DRM2 methylase genes (dd and ddc) were 
found to display the opposite phenotype in the culture on 
the E5 medium and they showed an increased capacity for 
somatic embryo formation.

Global DNA methylation level in SE

Considering that the genes that are involved in DNA meth-
ylation displayed different expressions in the embryogenic 
culture, we expected that the level of DNA methylation 
would be modulated during SE. Therefore, we investigated 
the global level of 5 mC in the DNA in the explants at vari-
ous time points (0, 3, 5, 10, 15 days) of the SE culture. In 
addition to the embryogenic explants, the non-embryogenic 
callus tissue that had been developed by a small fraction 
(less than 10%) of the E5-cultured explants was analysed.

The results indicated a significant and progressive 
decrease in the global level of DNA methylation in the 
SE-induced explants. Accordingly, the level of 5 mC was 
up to 30% lower (15 days) in the SE culture than in the 
freshly isolated 0 day explants (Fig. 6). We found that both 
the embryogenic (SE) and non-embryogenic (callus) tissue 
showed a similar level of the global DNA methylation.

Fig. 5   Efficiency and productiv-
ity of the SE cultures derived 
from the mutants that were 
defective in the genes encoding 
DNA methylases (met1, cmt3, 
drm1drm2, drm1drm2cmt3) and 
the proteins involved in DNA 
methylation (ddm1 and vim1). 
Values significantly different 
from the control culture (Col-0) 
are indicated with an asterisk 
(Student’s t test, P < 0.05). Error 
bars indicate the standard devia-
tion (SD)

Fig. 6   Global changes in the 
DNA methylation level in the 
Col-0 explants induced towards 
SE on the E5 medium (0, 3, 5, 
10 and 15 days) and in the non-
embryogenic callus. Values sig-
nificantly different from 0 day 
are indicated with an asterisk 
(Student’s t test, P < 0.05). Error 
bars indicate the standard devia-
tion (SD).4
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Discussion

Recently, significant progress has been made in identify-
ing genes and revealing their biological functions in the 
genetic mechanisms that control the embryogenic transi-
tion in somatic cells using the SE culture of Arabidopsis 
(reviewed in Nowak and Gaj 2016). In contrast, our under-
standing of the epigenetic processes that contribute to the 
regulation of SE remains very limited. Hence, the present 
work was focused on an analysis of the role of DNA meth-
ylation in SE induction in Arabidopsis explants that were 
cultured in vitro.

5‑AzaC treatment and DNA methylase‑related 
mutations affect both the expression 
of the SE‑involved TF genes and the embryogenic 
response

5-AzaC treatment was indicated as distinctly changing the 
gene expression in the plants (Chang and Pikaard 2005; 
Song et al. 2017) and in vitro cultured plant cells/tissue and 
both the stimulation and repression of the gene transcription 
has been reported (Berdasco et al. 2008; Tokuji et al. 2011; 
Nic-Can et al. 2013). Consistent with the diverse effects of 
5-AzaC on gene expression level, the hypo- and hypermeth-
ylation of DNA in response to this chemical were reported 
in an embryogenic culture of Acca sellowiana, which were 
dependent on the plant genotype and the supplementation of 
the culture medium with 2,4-D (Fraga et al. 2012).

In the present study, we demonstrated that in Arabidopsis, 
similar to the embryogenic cultures of other plants (Santos 
and Fevereiro 2002; Yamamoto et al. 2005; Teyssier et al. 
2014), treating the tissue with 5-AzaC severely and nega-
tively affected the embryogenic response of the explants. 
We observed that the decreased embryogenic response of 
the 5-AzaC-treated explants is accompanied by a deregu-
lated expression of LEC1, LEC2 and BBM that have a key 
regulatory role in SE induction. Similarly, 5-AzaC distinctly 
reduced the expression level of the shoot regeneration-
related TF genes in the callus of Arabidopsis (Tokuji et al. 
2011). LEC1 and LEC2, which are the master regulators 
of zygotic embryogenesis in Arabidopsis (Braybrook and 
Harada 2008), were found to be essential for SE induction 
(Gaj et al. 2005). LEC1 and LEC2 contribute to SE induction 
via the regulation of the auxin response genes (Braybrook 
et al. 2006) and LEC2 was indicated as activating auxin bio-
synthesis during SE (Wójcikowska et al. 2013). Recently, the 
LEC1, LEC2 and BBM genes were indicated as functioning 
in the same molecular pathway in which BBM transcrip-
tionally regulates LEC1 and LEC2 to induce SE (Horstman 
et al. 2017). Relevant to the BBM-mediated SE induction 
mechanism, we found the BBM expression to be distinctly 

repressed in the 5-AzaC-treated culture that was incapable of 
SE induction. 5-AzaC was also found to strongly inhibit the 
embryogenic response in coffee by decreasing the expres-
sion of LEC1 and BBM1 (Nic-Can et al. 2013). Given that 
5-AzaC-treatment has been reported to distinctly reduce the 
global methylation level in the in vitro cultured tissue of 
different plants that have been cultured in vitro, including 
Arabidopsis (Tokuji et al. 2011), rape and barley (Solís et al. 
2015) and coffee (Nic-Can et al. 2013), we assumed that the 
repression of the SE-regulatory genes that are associated 
with a decrease in the SE response is related to the demeth-
ylation of DNA.

In contrast to the 5-AzaC treated cultures, in the dd and 
ddc mutant cultures of the increased embryogenic response 
expression of BBM, LEC1 and LEC2 was significantly up-
regulated (Fig. 3). Similarly, the significant up-regulation of 
the genes that are located in the euchromatin was reported in 
an ddc mutant (Zhang et al. 2006) and the induction of the 
dd seedling explants on the auxin medium resulted in a con-
tinuous increase of the BBM expression that was followed by 
accelerated callus production (Jiang et al. 2015). Relevant 
to the up-regulated expression of LEC1, LEC2 and BBM in 
the dd/ddc mutant cultures with an increased SE response, 
the overexpression of these TFs was demonstrated to be suf-
ficient to induce SE in Arabidopsis (Lotan et al. 1998; Stone 
et al. 2001; Boutilier et al. 2002) and other plants (Heidmann 
et al. 2011; Guo et al. 2013). Collectively, the contrasting 
expression level of the LEC1, LEC2 and BBM genes, in par-
ticular BBM, a positive regulator of LEC1 and LEC2 during 
SE induction (Horstman et al. 2017), which was found in the 
dd/ddc versus 5-AzaC-treated cultures might account for the 
opposite embryogenic capacity of these cultures.

The oppose expression profiles of the SE-regulatory 
genes that we found in the 5-AzaC-treated and dd/ddc 
mutant cultures might be related to the different impact of 
the 5-AzaC and dd/ddm mutations on the cell methylome. By 
trapping the DNA methyltransferase in the replication fork, 
5-AzaC causes passive DNA demethylation that results in a 
global and stochastic reduction of the 5metC content in the 
genome (Chang and Pikaard 2005; Szyf 2009). In contrast 
to 5-AzaC, the mutations in CMT3 and DRM methylases 
only cause a mild decrease in the overall DNA methylation 
level (Zhang et al. 2006; Table S4) and the demethylation is 
specific to the DNA sequences (Cokus et al. 2008; Stroud 
et al. 2013, 2014).

In summary, these results infer a role of DNA methyla-
tion in the epigenetic control of the embryogenic response 
in Arabidopsis and suggest that DNA methylation might 
contribute to SE induction by impacting the expression of 
the key regulators of SE.
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SE induction is associated with the decreased level 
of global DNA methylation

It is believed that the demethylation of DNA is character-
istic of the open-chromatin state that is required to redirect 
the somatic cells into embryogenic development (Grafi et al. 
2011; Miguel and Marum 2011). In line with this postulate, 
we observed a significantly decreased level of 5 mC in the 
embryogenic culture of Arabidopsis and the reduction in 
the DNA methylation level has also been associated with 
SE induction in other plants (Santos and Fevereiro 2002; 
Xu et al. 2004; Noceda et al. 2009; Rodríguez-Sanz et al. 
2014; Teyssier et al. 2014). However, in some plants, an 
increased (Fraga et al. 2012; Rival et al. 2013), differen-
tially modulated (Leljak-Levanić et al. 2004; Nic-Can et al. 
2013) and steady (Parra et al. 2001) level of DNA meth-
ylation during SE has been reported. The diversity in the 
SE-associated DNA methylation levels suggests that various 
exo- and endogenous culture factors rather than the induc-
tion of embryonic development per se appear to contrib-
ute to the global DNA methylation level in cultured tissue 
(Huang et al. 2012; Rival et al. 2013; Li et al. 2014; Rathore 
et al. 2014). In support of this assumption, we found that the 
level of 5 mC in the embryogenic culture was similar to the 
one that was observed in the non-embryogenic callus that 
was formed by the explants that failed in the embryogenic 
transition.

In conclusion, the global content of 5 mC in the cultured 
tissue does not appear to be specific to the type of morpho-
genic development that is induced but rather reflects unspe-
cific epigenetic status of the explant cells and their dedif-
ferentiation in response to the in vitro culture conditions. 
Thus, in order to reveal the impact of DNA methylation on 
SE regulation, the gene-specific pattern of DNA methylation 
needs to be revealed.

Both the maintenance and de novo pathways 
of DNA methylation are involved in SE induction

The role of DNA methylation in the embryogenic response 
of the Arabidopsis explants was further inferred by the 
significantly modulated expression of the genes encoding 
DNA methylases during SE. We found that the genes of 
the methylases that are involved in the maintenance (MET1, 
CMT3) and de novo (DRM1 and DRM2) DNA methylation 
are expressed differently during SE. We found the significant 
up-regulation of the MET1 and CMT3 genes during SE in 
Arabidopsis and, consistent with this result, a higher activ-
ity of these genes has been reported in zygotic embryos, 
in particular during the early stages of embryo formation, 
compared to other organs of Arabidopsis (Xiang et al. 2011; 
Jullien et al. 2012; Ashapkin et al. 2016). Thus, it appears 
that the enhanced activity of the MET1 and CMT3 genes is 

generally associated with embryonic development and might 
reflect a requirement for the propagation of the DNA meth-
ylation pattern in the intensively dividing pro-embryonic and 
embryonic cells. In support of this assumption, the period 
with the highest expression of the MET1 and CMT3 genes 
coincides with the time of the intensive cell divisions that 
are associated with the acquisition of embryonic fate by the 
explant cells (Kurczyńska et al. 2007).

Expression profiling of the DNA methylase genes on the 
E5 versus the E0 medium infers that auxin treatment acti-
vates MET1 and CMT3 transcription. A positive impact of 
auxin on the CMT3 expression has also been reported by 
others (Parizot et al. 2010; Shemer et al. 2015). In support 
of the auxin-controlled expression of CMT3 is the presence 
of the auxin-responsive motif, AuxRE, in the promoter of 
this gene (http://arabi​dopsi​s.med.ohio-state​.edu/Atcis​DB/), 
which implies that ARFs, the core elements of auxin sig-
nalling that are believed to play roles in SE induction in 
Arabidopsis (Weijers and Wagner 2016; Wójcikowska and 
Gaj 2017), might regulate CMT3 in response to auxin treat-
ment. In contrast to CMT3, the impact of auxin on MET1 
up-regulation in SE appears to be indirect due to the lack of 
auxin-responsive motifs in the gene promoter.

The impaired embryogenic capacity of the ddm1 and 
vim1 mutants (present results) suggests that similar to in 
planta development, the DNA methylation-related proteins 
VIM1 and DDM1 support the function of MET1 methylases 
during SE (Zemach et al. 2013; Shook and Richards 2014). 
The VIM1 protein contributes to the recruitment of MET1 
to a newly replicated DNA strand (Shook and Richards 
2014). Consistent with this, we found that the up-regulation 
of VIM1 was associated with an increased MET1 transcrip-
tion in SE.

We observed that the explants of the cmt3 mutant were 
unaffected in SE response and in contrast, the met1 mutant 
was significantly defective in SE induction. The contrasting 
embryogenic capacity of the cmt3 and met1 mutants sug-
gests that the contribution of the CMT3 and MET1 methyl-
ases to SE appears to be different. The role of CMT3 in the 
callus-mediated shoot regeneration of Arabidopsis (Shemer 
et al. 2015) might suggest that in the SE system of Arabi-
dopsis in which marginal callus production accompanies 
the direct development of somatic embryos from explant 
cells (Gaj 2001; Kurczyńska et al. 2007), the function of 
CMT3 might be not critical for SE induction. In contrast, 
the importance of MET1 activity for SE induction might be 
related with the role of the enzyme in the hormone-related 
processes that play a central role in SE induction (Nic-Can 
and Loyola-Vargas 2016). Accordingly, MET1 has been indi-
cated as impacting the expression of ARF3 and WUS, which 
are involved in hormone signalling (Li et al. 2011), and the 
PIN1 gene that is engaged in auxin polar transport in ZE 
(Xiao et al. 2006).

http://arabidopsis.med.ohio-state.edu/AtcisDB/


252	 Plant Growth Regulation (2018) 85:243–256

1 3

In the present study we found that an increased expression 
level of the CMT3 and MET1 DNA methylases contrasts 
with a decreased global level of DNA methylation in the 
embryogenic culture. Since, DNA methylation is accompa-
nied by active DNA demethylation and the balance between 
these antagonistic processes is believed to control the pat-
tern of DNA methylation in plant development including 
the early stages of embryogenesis (Penterman et al. 2007; 
Lei et al. 2015; Bouyer et al. 2017), we also analysed the 
expression of the genes encoding DNA demethylases during 
SE induction and a distinct down-regulation of ROS1, DME 
and DML2 genes in the SE-induced explants was observed. 
Thus, the reduction of the global DNA methylation level 
that was found in the embryogenic culture (present results) 
appears not to directly result from the transcriptional activity 
of the genes encoding DNA methylases and demethylases. 
In support of this assumption, an analysis of the rice genome 
showed that the level of cytosine methylation is not directly 
correlated with the activity of the DNA methylases (Teer-
awanichpan et al. 2009). In addition, an analysis of the triple 
mutant that was affected in ROS1, DML2 and DML3 genes 
indicated an unchanged DNA methylation level although 
discrete loci were hypermethylated (Penterman et al. 2007). 
It was postulated that the lack of a direct correlation between 
the DNA methylase activity and the 5mC level might be 
a consequence of the complexity of the interactions that 
control the balance between DNA replication, the de novo 
maintenance DNA methylation and demethylation (Hsieh 
et al. 2009). The complex interplay between DNA methyla-
tion and demethylation exemplifies the fine tuning of the 
expression of ROS1 to variations in the DNA methylation 
level in which the methylation and demethylation of the gene 
promoter region promote and suppress gene transcription, 
respectively (Lei et al. 2015). Relevant to this model, an 
extremely low level of ROS1 transcripts was indicated in 
mutants that were impaired in DNA methylation, including 
met1, which had a significantly reduced overall level of DNA 
methylation (Cokus et al. 2008; Williams et al. 2015).

Our analyses indicate that in the SE of Arabidopsis de 
novo DNA methylation appears to mainly be controlled by 
DRM2 methylase due to the high expression of DRM2 at 
all of the monitored time points of the culture (Fig. S1). A 
distinctly higher level of DRM2 than DRM1 transcripts was 
also shown to be characteristic of in planta development 
including zygotic embryo formation in Arabidopsis (Xiang 
et al. 2011; Jullien et al. 2012; Ashapkin et al. 2016). Moreo-
ver, we found that the auxin medium positively impacted the 
expression of the DRM genes as was reported in a callus cul-
ture induced from Arabidopsis seedlings (Jiang et al. 2015). 
The role of de novo DNA methylation in the control of SE 
induction also infers the finding that the distinct up-regu-
lation of the SE-regulators (LEC1, LEC2 and BBM) in the 
dd and ddc mutant cultures is associated with improved SE 

response (present results). The reduced content of non-CG 
methylated sites in DNA causing chromatin de-condensation 
and de-repression of genes might account for the increased 
LEC1, LEC2 and BBM expression that was indicated in the 
culture of DRM-defected mutants (Cao and Jacobsen 2002b; 
Henderson and Jacobsen 2008).

Conclusions

Modification of the DNA methylation state of the cultured 
explants via 5-AzaC treatment and mutations in the genes 
encoding DNA methylases (dd/ddc) distinctly alters both 
the embryogenic response and the expression profiles of 
LEC2, LEC1, BBM genes, which are the master regula-
tors of SE. Thus, DNA methylation, seems to control SE 
induction and expression of the TF genes that are essential 
for the embryogenic transition. Identifying the SE-specific 
pattern of DNA methylation within these genes will con-
tribute to deciphering the SE-associated DNA methylome.

However, it recently became evident that DNA meth-
ylation appears to control the expression of only a small 
number of genes (Seymour and Becker 2017) and that 
the impact of DNA methylation on gene expression is 
distinctly influenced by other epigenetic modifications 
including histone modification and gene silencing by small 
noncoding RNA (Stroud et al. 2014; Du et al. 2015; Nie-
derhuth and Schmidt 2017). Thus, to fully understand the 
function of DNA methylation in the embryogenic transi-
tion the functional outcome of DNA methylation in the 
context of other epigenetic changes remains to be uncov-
ered. Moreover, it is of importance to reveal the relation of 
DNA methylation with the recently identified miRNA that 
plays a regulatory role in the SE of Arabidopsis (Wójcik 
and Gaj 2016; Szyrajew et al. 2017; Wójcik et al. 2017).
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