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Abstract Gaseous emissions from seven self-heat-
ing coal waste dumps in two large coal mining basins,
Upper and Lower Silesia (Poland), were investigated
by gas chromatography (GC-FID/TCD), and the
results were correlated with on-site thermal activity,
stage of self-heating as assessed by thermal mapping,
efflorescences, and surface and subsurface tempera-
tures. Though typical gases at sites without thermal
activity are dominated by atmospheric nitrogen and
oxygen, methane and carbon dioxide are present in
concentrations that many times exceed atmospheric

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10653-018-0153-5) con-

tains supplementary material, which is available to authorized
users.

M. Fabianska (D<) - J. Ciesielczuk - M. Misz-Kennan
Faculty of Earth Sciences, University of Silesia, 60
Bedzinska Street, 41-200 Sosnowiec, Poland

e-mail: monika.fabianska@us.edu.pl

A. Nédudvari
Institute for Ecology of Industrial Areas, 6 Kossuth Street,
40-844 Katowice, Poland

A. Kowalski

Faculty of Geology, Geophysics and Environmental
Protection, AGH University of Science and Technology,
30 Mickiewicza Avenue, 30-059 Cracow, Poland

L. Kruszewski

Institute of Geological Sciences, Polish Academy of
Sciences (ING PAN), 51/55 Twarda Street,

00-818 Warsaw, Poland

Published online: 24 July 2018

values. On average, their concentrations are
42.7-7160 ppm, respectively. These are levels con-
sidered harmful to health and show that coal waste fire
can be dangerous for some years after extinction. At
thermally active sites, concentrations of CH, and CO,
are much higher and reach 5640-51,976 ppm (aver.),
respectively. A good substrate—product correlation
between CO, and CH,4 concentrations indicates rapid
in-dump CH, oxidation with only insignificant
amounts of CO formed. Other gas components include
hydrogen, and C;-Cg saturated and unsaturated
hydrocarbons. Decreasing oxygen content in the gases
is temperature-dependent, and O, removal rapidly
increased at > 70 °C. Emission differences between
both basins are minor and most probably reflect the
higher maturity of coal waste organic matter in the
Lower Silesia dumps causing its higher resistance to
temperature, or/and a higher degree of overburning
there.

Keywords Coal wastes - Self-heating - Gas

emission - Volatile organic compounds - Greenhouse
gases

Introduction
Coal waste dumps, a common landscape feature in

coal mining regions, are a potential source of
hazardous substances emitted to the atmosphere and
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leached to surface and ground waters (e.g., Grossman
et al. 1994; Stracher and Taylor 2004; Finkelman
2004; Pone et al. 2007; Querol et al. 2008; Carras et al.
2009; Hower et al. 2009; O’Keefe et al. 2010; Skret
et al. 2010). Negative influences on the environment
are increased in the case of dumps where self-heating,
or even open fire, occurs; these processes release a
wide variety of gases and water-soluble inorganic and
organic compounds.

Recent research has focused on the reasons for self-
heating, its prevention and fire extinction (e.g.,
Krishnaswamy et al. 1996a, b; Kaymakci and Didari
2002; Singh et al. 2007; Querol et al. 2011). However,
a developing awareness of the environmental impact
has increased attention on self-heating products and
their polluting potential. The gaseous products are of
particular interest due to their toxicity, carcinogenic-
ity, and greenhouse significance, even though it is very
difficult to reliably assess total quantities expelled in
any given instance (e.g., Yan et al. 2003; Stracher and
Taylor 2004; Finkelman 2004; Younger 2004; Kim
2007). As gases and volatile organic compounds
(VOCs) are the first substances released during the
initial low-temperature stage, they can be used to
monitor the thermal state of coal waste dumps (Tabor
2002; Xie et al. 2011). As these dumps are commonly
located in highly populated industrial regions, they
should be deemed major environmental and health
hazards. Though persistent odors and dust are an
obvious problem for nearby residents, the most
harmful emissions (e.g., CO, CO,, and monoaromatic
hydrocarbons) are odorless. The gases also contain
NOy, NHj3, SOy, and H,S from the thermal decompo-
sition of sulfide minerals, HCI, light aliphatic com-
pounds up to C,(, aromatic compounds such as
benzene and its alkyl derivatives, styrene, alcohols,
PAHs, and heavy metals, e.g., Hg, As, Pb, and Se
(Stracher and Taylor 2004; Pone et al. 2007; O’Keefe
et al. 2010; Querol et al. 2011). Halogenated organic
compounds, e.g., CH;Cl, may form during the thermal
decay of clay minerals and subsequent hydrohalogen
reactions with organic matter (Davidi et al. 1995;
Fabianiska et al. 2013). Sulfur, oxygen, and nitrogen
heterocyclic compounds such as furane, thiophene,
and pyridine derivatives have also been noted (Ribeiro
et al. 2010).

The major compound emitted during self-heating is
CO,, accompanied by CO and light organic com-
pounds. These derive partially from gaseous
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compounds trapped in organic matter pores and partly
from pyrolysis, depending on the temperature range,
coal rank, and oxygen availability (Davidi et al. 1995;
Younger 2004; Querol et al. 2008). It is extremely
difficult to assess the scale of emission of the two main
greenhouse gases, CO, and CHy, in the field due to
spatial and temporal emission variability, mixing of
gas with air, the large volume of coal wastes, and the
influence of weather (Litschke 2005). Research on
emission fluxes from Australian coal waste dumps has
shown CO, emission from 12 to 8200 kg CO,/m” per
year (Carras et al. 2009). Liu et al. (1998) estimated
that the combustion of one tonne of coal waste can
generate 99.7 kg CO, 0.61 kg H,S, 0.03 kg NO,,
0.84 kg SO,, and 0.45 kg smoke.

The aims of our study were (a) to examine the
variability in occurrence and distribution of the main
gas components emitted from self-heating dumps in
Upper and Lower Silesia, (b) to establish whether
differences in gas distributions are related to thermal
stage, (c) to compare the activity and dynamics of self-
heating in the two basins, and (d) to assess levels of
hazardous gas emissions in both. Preliminary research
on gas compositions performed in Upper Silesia
(Fabianska et al. 2013) aided selection of appropriate
components.

Materials and methods
Coal waste dumps
Wetnowiec dump (Upper Silesia)

The Welnowiec dump in Katowice operated as a
municipal waste dump from 1991 to 1996 (Figs. 1 and
Sla). The dump area is 16 ha and its capacity is
1.6 min t. About 22.5% of the deposited waste is
gangue rock from coal mining (sandstones, carbon-
ates, siltstones, and clays), 21.5% is municipal waste,
and 40% is rubble. A reclamation project was designed
to involve a multilayered barrier system comprising
layers of soil, coal waste with < 5% organic matter,
gravel, sand, and clay liners. In fact, a much thicker
layer of coal waste with much higher carbon contents
was deposited in a random fashion with no evidence of
any barriers. As a result, self-heating started. Tem-
peratures reached ca 700 °C (Ciesielczuk et al.
2013, 2015). In recent times, heating essentially
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Fig. 1 Location of coal waste dumps from which gas was collected; LS (Lower Silesia) and US (Upper Silesia)

ceased after the application of various fire-extinguish-
ing methods, culminating with the deposition of waste
from a sewage cleaning plant.

Rymer cones (Upper Silesia)

The Rymer Cones dump (Fig. 1) was linked to coal
exploitation in the Rymer Coal Mine from 1858 to
2011 (Fruzynski 2012). Today, the dump covers the
area of 0.13 kmz, its height is > 300 m a.s.l., and its
capacity is 2.4 x 10° m® (Barosz 2003). Coal waste
was loosely deposited in three cones loosely without
compaction and without ground sealing. Over time,
self-heating has altered most of the waste. To halt the
heating, the dump was redeveloped in 1994-1999 and
encased with waste from current mining (Tabor 2002;
Barosz 2003). In the process, two cones were
dismantled and combined, and a plateau formed on
top on which fly ash pulp was deposited. The
remaining cone was covered with concrete panels
and fly ash to block air access and, thereby, to stop the

self-heating. These efforts failed, and self-heating
restarted and intensified. Currently, activity appears to
be slowly diminishing with heating confined mostly to
the eastern slope.

Anna dump (Upper Silesia)

The dump stores waste from the Ruch Anna Coal Mine
opened in 1954 in Pszow (Fig. 1). A single cone
covers an area of 0.43 kmz, the oldest part
(~ 0.20 km?) of which and is ~ 50 m high. Planned
capacity was > 3 x 10° m® (Barosz 2003). Exploita-
tion for road building enabled oxygen access, and
intensified self-heating hindered further exploitation.
Toxic fumes and odors are now a problem in Pszow
(Misz-Kennan et al. 2013). In 2015, the cone was
flattened. Any current heating is reflected in puddles of
tar, cracks, gas vents, and salamoniac crusts.

@ Springer
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Czerwionka-Leszczyny dump (Upper Silesia)

The mostly forested dump located in Czerwionka-
Leszczyny (Fig. 1) consists of three cones, the highest
of which is ~ 100 m high. On its top, intense surface
pseudo-fumarolic activity is associated with surface
gas vents surrounded by sulfate crusts (Parafiniuk and
Kruszewski 2010). Some tar puddles reflect heating
under pyrolytic conditions that caused thermal crack-
ing of the coal waste organic matter macromolecule.
The tar migrated to accumulate on relatively cold coal
waste surfaces (Nadudvari and Fabianska 2016). The
thermal activity, extant for more than 30—40 years, is
waning, and burnt-out material is evident in parts of
the dump (Nadudvari 2014).

Nowa Ruda, Stupiec and Przygorze dumps (Lower
Silesia)

Hard coal exploitation began in Lower Silesia in the
1400s, especially around Watbrzych and Nowa Ruda
(Fig. 1). Several mines operated there in the 1900s.
Mining ceased in 2000 when the mines became
unprofitable (Fruzynski 2012). A few hundred years
of mining left coal waste dumps in which self-heating
lasted for many tens of years. Despite several attempts
to halt them, fires still occur today. The dumps contain
waste that is commonly completely altered.

The coal waste dump in Nowa Ruda was heaped up
after 1945. Covering an area of ca 0.4 x 0.5 km, it
is < 110 m high (523 m a.s.l.) and contains 10.2 mln
tonnes of waste (Borzecki and Marek 2013). At
present, thermal activity is observed at its top and on
the slope nearby. Elsewhere, snow cover remains in
winter, unlike as in the past. More thermally active
sites occur in the Stupiec dump (Fig. S1b). The dump
in Przygdrze is now cool though tonnes of overburnt
coal waste attest to intense past activity.

Thermal activity of coal waste dumps

How coal waste dumps are affected by fire that
depends on a variety of factors, e.g., fire duration,
oxygen access, volume of burning waste, the nature of
organic material, its content, and petrographic com-
position. Gas sampling sites were chosen where signs
of thermal activity were evident, namely open fire,
smoke, odors, charred vents, efflorescences, a lack of
vegetation, or the presence of moss or mullein
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(Verbascum L.; Figs. S2 and S3). The thermal activity
stage was established mainly on field observations and
temperature measurements.

Thermal sites classed as ‘ongoing’ show increased
surface and subsurface temperatures, visible smoke,
mineral efflorescences, and tar seepage. Thirty-nine
gas samples were collected from such at five dumps.
‘Initial’ thermal activity was recognized only at the
Wetnowiec dump (4 samples) in places where fire was
beginning to encroach on cool coal waste. Here,
temperatures are high, smoke, and odors noticeable,
and blooming organic efflorescences prominent. Nine
samples are from sites of ‘waning’ thermal activity
marked by lower temperatures and a lack of efflores-
cences. In addition, five samples are from sites with no
current thermal activity; these were never touched by
fire or past activity had ceased.

Thermal mapping

Thermal maps help to reveal the self-heating history of
coal waste dumps. They can aid the location of current
hot spots, their migration paths, and variations in
intensity with time. Regretfully, such archival data are
rarely available for dumps. For this study, a series of
Landsat 5, 7, and 8 images with snow covering was
used. The thermal mapping procedure used is detailed
in Nadudvari (2014). Hot spots on the dumps may
appear as high-temperature surface anomalies.
Extended observation enables recognition of persis-
tent heat sources due to self-heating, and their
migration, intensification, and disappearance if they
are hot enough to detect with satellite sensors (Tetzlaff
2004; Zhang and Kuenzer 2007; Prakash et al. 2011;
Nadudvari 2014).

In general, most coal waste hot spots where
intensive fire is present can be detected when T values
are 6—14 °C higher than background surface temper-
atures (Table S1). Cold and frosty weather can induce
a marked decrease in hot-spot surface temperatures
(Fig. 2). Where intense fires take place, the lack of
snow covering is indicated by NDSI (Normalized
Difference Snow Index) values < 0; abundant snow is
indicated by values > 0.5 (Nadudvari 2014). The
resolution of the thermal bands of the applied Landsat
series varies from 60 to 120 m (Landsat TM-120 m,
Landsat ETM + — 60 m, Landsat 8100 m) where
pixel size is reduced to 30 m (https://landsat.usgs.gov/
what-are-band-designations-landsat-satellites). Thus,
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Kilometers

Fig. 2 Development of thermal zones as revealed by thermal mapping. a Nowa Ruda dump (Lower Silesia), b Anna dump (Upper

Silesia)

fires falling below these resolutions, or have low sur-
face temperatures, evade detection.

Lower Silesian coal waste dumps

Eight Landsat images from 1987 to 2015 (NDSI index
values and melted snow) clearly show continuous
thermal activity during that period in the coal waste
dumps in Nowa Ruda (Fig. 2a) and Stupiec. On these
dumps, self-heating resulted in elevated temperatures
in 1987, 2000, 2001, and 2003 despite mostly sub-zero
background temperatures. Since 1987, hot-spot migra-
tion is evident in Nowa Ruda, as is the appearance of a
new burning site within the constantly active heating

zone there. Generally, in all dumps, the intensity of
self-heating is waning. The Przygérze dump showed
no intense activity during 1987-2015.

Upper Silesian coal waste dumps

Eight Landsat images from 1993 to 2017 reveal that
thermal activity of varying intensity has been constant
over that period on the Rymer dump. The self-heating
center moved toward the eastern side of the dump and
divided into two main hot spots. However, the fires are
not characterized by high-temperature anomalies. The
relatively low thermal activity here may be due to the
covering of concrete panels and a deeper siting of the

@ Springer
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Fig. 2 continued

hot spots. On Welnowiec dump, intense thermal
processes are difficult to distinguish; the hot spots fall
below the satellite sensitivity limits. In the Czer-
wionka-Leszczyny dump, the fire at the top of the
highest cone has been waning since the early 1990s
(Nadudvari 2014). The Anna dump (Fig. 2b) showed
intensive thermal activity in 2001, 2004, and 2010,
despite frosty ambient temperatures; the increased
activity was a response to exploitation. Today, the
heating is less. Though thermal maps for 2017 do not
show strong thermal anomalies, possibly reflecting the
low resolution of the thermal band of Landsat 8, a lack
of snow covering on the southeast side of the dump
indicates that burning continues. The lack of snow

@ Springer

covering on southwest side is related to deposition of
new waste material.

Gas sampling

Fifty-seven gas samples collected from the seven
dumps (Table S2) include 12 from Wetowiec, 10
from Rymer Cones, 5 from the Anna dump and 5 from
Czerwionka-Leszczyny in the Upper Silesian Coal
Basin, and 21 from Stupiec, 3 from Nowa Ruda, and 1
from Przygérze in the Lower Silesian Coal Basin
(Figs. S2 and S3). Numbers of samples reflected
numbers of active sites and their intensity. Only at the
Wetnowiec dump was it possible to clearly distinguish
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all three stages of thermal activity. Two sites (W2 and
W3) relate to the initial stage, one (W4) to ongoing
activity, and two (W5 and W6) to waning fire
(Figs. Sla and S2). Sites W1, W7, and W8 that had
seen fire in the past were inactive on the day of
sampling (13.01.2014). Rymer Cones was sampled on
14.04.2011 (R1a, R2, R4a, R5a, and R6a) and, four
years later, on 16.03.2015 (R1b, R3, R4b, R5b, and
R6b) at sites of ongoing thermal activity. Samples
from the Anna dump and Czerwionka-Leszczyny were
collected on 12.11.2016 from sites of thermal activity
that had been waning since September 2016 at least.
Sampling took place at Stupiec on 13.12.2013 and at
Nowa Ruda and Przygdrze on 28.5.2014 (Figs. S1b
and S3). At Stupiec, ten thermally active sites from the
top and slopes of the dump were sampled at varying
depths (S1-S10) and a reference sample (S11) was
collected at 1 m depth at a site where thermal activity
had never been noted. Though the Nowa Ruda and
Przygorze dumps had been very active in the past, at
Nowa Ruda, only two sites are still active (N2 and N3)
and any in the Przygorze dump has ceased (P1).
Samples (100 cm?) were collected a few centime-
ters subsurface and deeper (< 1.5 m) using syringe
samplers. A 1.5-m steel pipe protected by a clinch was
hammered as deeply as possible into vents or heated
spots. The clinch was removed, and the gas was
collected using a plastic pipe with an attached syringe
fixed to the steel pipe. The clinches were abandoned.

Temperature measurements in situ

Temperature was measured using a pyrometer coupled
with a K-probe which enabled measurement up to
0.3 m subsurface (Table S2). Surface temperatures at
thermally inactive sites reflected the weather and
ambient air temperatures.

Identification of efflorescence compositions

Efflorescences blooming at fissures were identified
using SEM-EDS and XRD. The morphologies of
samples on carbon tape were examined using a Philips
XL 30 ESEM/TMP scanning electron microscope
coupled to an energy-dispersive spectrometer (EDS;
EDAX type Sapphire) at the Faculty of Earth Sciences,
University of Silesia. Analytical conditions were:
accelerating voltage 15 kV, working distance ca
10 mm, and counting time 40 s. In addition, powdered

samples were examined using a Bruker AXS D8
ADVANCE diffractometer in the X-Ray Diffraction
Laboratory, Institute of Geological Sciences, Polish
Academy of Sciences and an X-ray Philips PW 3710
diffractometer at the Faculty of Earth Sciences,
University of Silesia. Efflorescence phase composi-
tions are given in Table S2.

Gas chromatography

To assess the variability of gas compositions, several
dominating compounds were selected based on previ-
ous research (Fabianska et al. 2013). Molecular
compositions of self-heating gases (CH,, C,Hg,
C3Hg, iC4H10, l’lC4H10, C5H12, C6H14, C7H16, unsat-
urated hydrocarbons, CO,, O,, H,, N,) were deter-
mined on an Agilent 7890A gas chromatograph
equipped with a set of columns, and flame ionization
(FID) and thermal conductivity (TCD) detectors. This
GC is configured to do an extended natural gas
analysis up to Cy4. The analyzer is a three-valve
system using three 1/8-inch packed columns (3 ft
Hayesep Q 80/100 mesh, 6 ft Hayesep Q 80/100 mesh,
and 10 ft molecular sieve 13 x 45/60 mesh) and a GS-
Alumina capillary column (50 m x 0.53 mm). The
system consists of two independent channels. The
channel using the FID for the detailed hydrocarbon
analysis is a simple gas sampling valve injecting the
sample into the GS-Alumina column. The second
channel using packed columns is for determination of
methane, ethane, and non-hydrocarbon gases. The GC
oven was programmed as follows: initial T of 60 °C
held for 1 min., then to 90 °C at 10 °C/min., then to
190 °C at 20 °C/min., and finally held for 5 min. The
front detector (TCD) was operated at 150 °C, and the
back detector (FID) at 250 °C. Helium was used as a
carrier gas flowing through the TCD channel at
em® min~' and through the FID channel at

cm® min~.

Results and discussion

General composition of gases

Almost all samples contained gaseous products result-
ing from the thermal destruction of coal waste organic

matter mixed with atmospheric oxygen and nitrogen.
Total concentrations of gases show high variability
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related to the sampling site and self-heating stage.
Obviously, the highest absolute emissions occur in
very active sites such as at the Anna, Wetnowiec, and
Rymer Cones, whereas emissions from dumps show-
ing low thermal activity, or none as the Przygorze, are
hundreds of times lower (Table S3). In terms of the
temperatures measured at sampling sites (Table S2),
and of the self-heating stage, the gas samples may be
grouped into samples from (1) from sites with no
thermal activity, i.e., with no known fire history or
where thermal activity has ceased, (2) sites with self-
heating ongoing; these subdivide into gases (a) from
the initial stage of self-heating, (b) emitted during
intense heating, and (c) from sites of waning activity.

Apart from O, and N,, two further main compo-
nents are CH4 and CO,, both toxic and regarded as the
main greenhouse gases (Kim 2007; EPA 2005).
Absolute gas concentration values (Table S3) give
information about emission scale, whereas relative
percentage compositions show correlations between
components. Compared to CHy, all other hydrocar-
bons appear in much lower amounts (Table S3).
Unsaturated hydrocarbons were typically present in
lower amounts than were their saturated analogues. To
compare the highly variable gas distributions, the
following relative percentage concentrations were
calculated: (1) The relative percentage compositions
of gases present together with atmospheric N, and O,
(Table 1a, b), (2) relative percentage compositions of
organic compounds, including CH, (Table 2), (3)
relative percentage compositions of heavier hydrocar-
bons, excluding CH,4. As there are significant differ-
ences in emitted gas compositions between the Upper
(US) and Lower Silesia (LS) basins, both are treated
separately below.

The typical gas at a site with no thermal activity is
dominated by atmospheric O, and N, (Tables 1 and
S3). Average percentage contents for the US and LS
basins are: N, = 78.6 and 80.1% vol., respectively,
and O, = 18.8 and 20.8% vol., respectively. Carbon
dioxide contents are elevated compared to average
atmosphere (0.035% vol.), namely 1.085 (US) and
0.151 (LS) % vol. However, at some inactive sites
CO, was absent. The atmospheric gases are accom-
panied by small amounts of organic compounds,
among which, CH, (0.0061 and 0.0040% vol.) and
ethylene (0.0030 and 0.0011% vol.) predominate.
Heavier aliphatic hydrocarbons from cis-2-butene to

@ Springer

n-hexane occur in much lower amounts
(0.0001-0.0005% vol.).

Gases from ongoing self-heating sites show a
significant decrease in O, content, being < 5.5 times
lower than in the atmosphere. Apart from the major
atmospheric gases, CO, is the predominating compo-
nent, averaging 3.7350 (US) and 5.2447 (LS) % vol.
The organic gases also include CH, (1.3233 (US) and
0.1432 (LS) % vol.), saturated aliphatic hydrocarbons
including ethane, propane, n-butane, n-pentane, n-
hexane, n-heptane, iso-butane, and iso-pentane,
together with unsaturated aliphatic hydrocarbons
including ethylene, acetylene, propylene, and trans-
and cis-2-butene. Typically, concentrations decrease
with increasing molecular weight but, in some LS
gases (Sla, S1d, S2b, S3, and S4a), elevated contents
of propane and n-butane were noted. In sample A1, the
relative content of propane exceeds that of CHy
(Table S3). Thermal activity also results in elevated
H, contents, i.e., 0.2125 (US) and 0.0186 (LS) % vol.
(Table 1b). These values greatly exceed average
atmospheric H, concentrations (0.0000055% vol.).
The unsaturated hydrocarbons and H, are pyrolytical
products of self-heating; they are common in refinery
and coal pyrolysis gases (Saavedra et al. 2013; Speight
2014).

Gas compositions, emission levels, and their
potential significance

In the dump emissions, the classes of gases distin-
guished include (1) main air components, (2) oxy-
genated compounds (CO,), (3) reducing gases (CHy
and H,), (4) saturated aliphatic hydrocarbons in the
range C,—C7, and (5) unsaturated aliphatic hydrocar-
bons in the range C,—Cy.

Carbon dioxide

Apart from oxygen and nitrogen, the predominating
component of all gases from sites with ongoing
thermal activity is CO, present in amounts < several
relative percent (vol.). Apart from its significance as a
greenhouse gas, CO, is also toxic. The normal CO,
concentration outdoors is ca 300-350 ppm or
0.54-0.63 g/m’ (Killops and Killops 2005). The level
still  comfortable indoors is  600-800 ppm
(1.08-1.44 g/m3 ). The highest CO, concentration
registered at thermally active sites was 291.5211 g/
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Fig. 3 Correlation between
CO, and CH, (rel.%)
contents in coal waste
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m® or 161,666 ppm. This is > 500 times the normal
atmospheric level, and > 1.5 times the level (100
000 ppm) that leads to loss of consciousness and,
ultimately, death (Brake and Bates 1999). This will
happen even when O, is at the normal atmospheric
level, not the case in coal waste dump gas character-
ized by a significant decrease in O, (Tables 1 and S3).

Carbon dioxide emissions from sites presently
inactive but active in the past are 21.3167 (US) and
4.4556 (LS) g/m® (aver. 12.8862 g/m’; Table S3).
Thus, CO, emissions from inactive dumps at ca
7000 ppm are close to levels at which adverse health
effects might be expected (10 000 ppm; ACGIH 1999;
Pauluhn 2016). Moreover, CO, is considered to
aggravate the toxicity of CO when both are present
in the same gas (Pauluhn 2016). This suggests that the
use of apparently inactive coal waste dumps as
recreation sites may involve harmful exposure levels.

Carbon dioxide predominance in coal waste self-
heating gases is common (Yan et al. 2003; Kim 2007,
Carras et al. 2009; Hower et al. 2009; O’Keefe et al.
2010), with contents increasing significantly with
increasing thermal activity. CO, also shows inverse

40 60 80
CO, (%, vol.)

correlations with CH, (below) when the emitted gas
results from self-heating sites are recalculated to
relative percentages, omitting N, and O, (Table 1;
Fig. 3).

Methane

Methane predominates among organic compounds,
occurring in amounts > 80%, in some -cases, <
99.91% rel. in sites of current thermal activity
(Table 1a). It may be CH,4 that was in coal pores as
most US and LS coal mines are methane-rich (Kotarba
2001; Kedzior 2009), but is more likely related to
organic matter cracking (Grossman et al. 1994; Davidi
et al. 1995; Fabianska et al. 2013). Methane is the only
hydrocarbon occurring naturally in the atmosphere
(1.6-1.8 ppm; Schneising et al. 2014; Dlugokencky
2016). This methane comes from the biosphere, e.g.,
wetlands, methanogenic microorganisms, and natural
fires, and the geosphere, e.g., natural gas, volcanic
eruptions, permafrost, or clathrates. Agriculture and
the fossil fuel industry are responsible for the global
increase from the pre-industrial value of 722 to

@ Springer



Environ Geochem Health

1800 ppb in 2016 (Schneising et al. 2014). Methane
from shale gas production, measured over three shale
regions in the USA, has increased the atmospheric
level by ca 2.0 ppm, i.e., 0.0013 g/m® (Peischl et al.
2015). The highest CH4 emissions from the Silesian
dumps, recorded in Wetnowiec dump (W4b, W5, and
W6), were a few tens g/m’. There are two possible
explanations for these high CH,4 levels, namely (i) the
compound was released from still-decaying urban
wastes originally dumped there, or (ii) that, during
their combustion, the top cover of coal waste limited
CH, oxygenation. Conspicuously, lower CH, emis-
sions (from 0.1 to several g/m3) from other Silesian
dumps are still 1000 times higher than atmospheric
levels (Table S3).

Even at sites where fire was extinguished years ago,
and ambient temperatures prevail, CH, was recorded
with emissions averaging 0.004363 (US) and 0.05163
(LS) g/m® (6.7 and 78.9 ppm, respectively). These
levels are 4-40 times atmospheric levels. However,
they pale in comparison with thermally active sites
where CH, emissions average 6.350585 (US) and
1.031258 (LS) g/m® (9704.5 and 1575.9 ppm, respec-
tively). Carras et al. (2009), investigating emissions
from Australian coal wastes without visible signs of
combustion, found no methane but elevated CO,
concentrations. It is possible that, in Silesia, when self-
heating has ended, CH,4 continues to be emitted from
pores, particularly if combustion conditions were
reducing and oxygenation incomplete. Even more
surprising is the CH, presence at the reference site
where heating never occurred (S11). Here, CH, may
be a biogenic product of microorganisms living on
coal waste. It is usually considered that methanogens
live in wet anaerobic conditions not seen in coal waste
dumps (Tung et al. 2005). They are, however, found in
extremely dry and oxic soils (Peters and Conrad 1995).

These data indicate that coal waste dumps, ther-
mally active or not, should be considered a significant
source of methane in industrial regions such as Silesia
where ca 40 million tonnes of coal waste are produced
annually (Korban 2011). The global significance of
methane and CO, fluxes from coal waste dumps may
be underestimated.

Carbon dioxide and methane relationship

Omitting N, and O,_ as in Table 1, a clear relationship
between the relative contents of CH, and CO, reveals
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an overall substrate—product relationship for thermally
active sites (r = — 0.99; Fig. 3). This indicates that
just after its release, CH, oxidizes to CO, within the
dumps. The small difference in the correlation in the
individual basins may relate to differences in the
characteristics of the coal waste organic matter, e.g.,
rank, depositional environment or storage environ-
ment. Rank seems to be the more influential factor as
two Upper Silesian dumps, Wetnowiec and Rymer
Cones, correlate well despite their different shape,
history, and size. The same substrate—product rela-
tionship exists between O, and CO, for both the US
and LS basins (r = — 0.89 and — 0.98, respectively)
and between values of oxygen decrease (OD) and CO,
relative contents (r = 0.87 and 0.93, respectively;
Fig. 3).

Relative percentage contents of CO, and CH, seem
to correlate with self-heating stage. Initial-stage sites,
marked by organic efflorescences (W2 and W3), and
sites with ongoing heating show no significant differ-
ences and CO, production prevails (Table S2). How-
ever, where fire is beginning to wane (W5 and W6)
CO, relative contents decrease, whereas those of CH,
increase. No CO, is expelled in thermally inactive
sites.

Saturated aliphatic hydrocarbons and unsaturated
aliphatic hydrocarbons

Saturated aliphatic hydrocarbons occur in the range
from ethane to heptane though, in most gases, C¢ and
C; hydrocarbons are absent. Both normal and
branched compounds occur. Apart from W1, W8,
R1-4, Sla—c, S6, and S11, ethane predominates in the
saturated gas fraction.

Unsaturated hydrocarbons comprise alkenes in the
range C,—C,4 and acetylene. Due to its relatively high
reactivity, acetylene was found in only a few samples
(W1, W5, A3, A4, CzL1, Sla, and S10b). Other
compounds with triple bonds are absent. Among
unsaturated hydrocarbons, ethylene dominates though
typically comprising < 1.0% of total organic com-
pounds. However, ethylene contents increase signif-
icantly in sites showing particularly elevated
temperatures, e.g., to > 25% of all organic com-
pounds in W3b (¢ = 690 °C at 50 cm). Contents of all
other unsaturated hydrocarbons decrease with increas-
ing carbon atom numbers in a molecule. Surprisingly,
ethylene is also a significant component (< several %)
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of total organic components in gases at sites of waning
thermal activity, e.g., W1, W7, W8, S1b, S11, and N1
with measured temperatures close to ambient. Possi-
bly, as with methane, ethylene is degassed from pores
even after self-heating ends or it is produced by
bacteria growing on coal waste surfaces; many soil
bacteria species, e.g., many chemolithotrophs, can
produce ethylene (Nagahama et al. 1992).

Ethylene predominates over ethane in some once
thermally active sites (W1, N1, N2, N3, and P1) where
temperatures have waned to near ambient. Ethylene
together with CO, can markedly influence vegetation
on coal waste dumps. Plants use CO, to build tissues,
and ethylene is a growth hormone accelerating flow-
ering and fruit maturation (Johnson and Ecker 1998).
The gigantism of the lush vegetation on self-heating
dumps (Ciesielczuk et al. 2015) may thus be
explained. Other unsaturated hydrocarbons present
in much lower amounts include propylene and cis- and
trans-2-butene. Though with toxicities less than those
of CO, and CHy,, these are neurotoxins that, inhaled,
cause dizziness, tachycardia, impaired coordination,
and disorientation (Broussard 1999).

Hydrogen and unsaturated hydrocarbons

Hydrogen was found only at thermally active sites,
despite being a product of low-temperature oxidation
of bituminous coals (Grossman et al. 1993; Cze-
chowski et al. 2007). The inverse correlation of
unsaturated hydrocarbons and free hydrogen indicates
that double bonds are saturated in self-heating zones.

Assessment of thermal activity level using gas
ratios

To assess thermal activity in the coal waste dumps,
and to compare its development in different dumps,
the following ratios were calculated (Table 3).

(1) Oxygen decrease (OD) calculated as N,/O,
ratio to the ratio of these same gases in the
atmosphere (3.35; vol.: vol.). N, is assumed to
be inert; it neither reacts with coal waste nor is
released. The OD value reflects O, consumption
during heating.

(2) The ratio of saturated to unsaturated hydrocar-
bons (S/UnS). It is assumed that unsaturated
hydrocarbons are the products of organic matter

macromolecule cracking. This parameter
reflects the thermal destruction of organic
matter.

(3) Carbon dioxide/methane, the ratio of two major
components of gas emissions from coal waste
dumps

Oxygen decrease (OD) ratio

Oxygen decrease is caused by oxidation of organic
matter due to self-heating. Thus, the OD value reflects
the process intensity; the higher the value, the more
intense the self-heating. OD values are arbitrarily
designated as follows: 1.0-1.7 (low self-heating or
none), 1.8-3.0 (moderate heating), > 3.0 (intense
heating).

Samples with very low OD values are W1, W2a,
W4a, W7, W8, all Rymer Cones gases taken in the
later series (R2-R4b, R5b, R6b), and A2-5, CzL1-5,
Sla—c, S 6,S10b, S11, P1, and N1-3. Moderate values
characterize only six samples, i.e., W3b, Rla and b,
R5a, A1, and S10a. The highest values pertain to W2b,
W3a, W4b, W5, W6a-b, R4a, R6a, S1d-g, S2-5, and
S7-9 (Table 3). OD correlates with > 2.0% (vol.)
contents of CO, in the total gas composition; the
substrate—product relationship is confirmed by inverse
correlations (r = — 0.89 for US and — 0.98 for LS) of
relative contents (vol.) of CO, versus O, and positive
correlations (r = 0.87 for US and — 0.93 for LS)
between OD values and CO, relative contents (Fig. 4).
The particularly high correlations (r = 1.00) between
OD and CO, for the Welnowiec gas samples probably
reflect firefighting activity; during sampling, the dump
was opened to cool burning waste, increasing O,
access, and intensifying combustion and elevating
temperatures (< 700 °C). The strong correlation indi-
cates that most O, was consumed by CO, production
with other oxides playing only a very minor role.

Higher OD values generally characterize sites with
temperatures > 70 °C, the self-heating threshold tem-
perature (Guminska and Rézanski 2005). Below, only
mild organic matter oxidation occurs. If the threshold
is breached, a rapid further temperature increase leads
to self-heating and, potentially, opens fire. Alterna-
tively, slow cooling occurs and, in time, organic
matter weathering. The initial stage of self-heating
lasting several days is difficult to recognize; there are
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Table 3 Component ratios characterizing variability of waste dump emissions

Sample code N,/O, (vol.) OoD? CO,/CH,4 (vol.) Sat/Unsat. HC® CH,/all HC®

Upper Silesia—the Wetnowiec coal waste dump

Wi 5.81 1.73 5074.30 0.14 0.26
W2a 5.57 1.66 40.87 2.65 7.45
W2b 16.07 4.80 98.24 2.74 6.91
W3a 11.91 3.56 5.46 5.68 45.10
W3b 9.48 2.83 22.46 12.69 5.05
Wi4a 4.46 1.33 30.53 0.99 15.65
Wi4b 14.24 4.25 18.47 2.82 164.27
W5 12.01 3.59 0.69 6.86 136.85
Wo6a 11.40 3.40 0.85 1.89 1122.26
W6b 11.79 3.52 0.71 2.15 945.73
W7 3.75 1.12 0.00 2.18 0.83
W8 3.73 1.11 0.00 7.53 0.34
Aver. active W2-Wé6 10.77 3.22 24.25 4.27 272.14
Aver. inactive W1, 443 1.32 1691.43 3.28 0.48
W7, W8
Upper Silesia—the Rymer Cones coal waste dump
Rla 6.18 1.84 11.40 156.35 23.38
R1b 8.58 2.56 15.82 491 16.00
R2 3.81 1.14 39.34 10.28 1.13
R3 4.22 1.26 15.11 4.79 14.89
R4a 27.10 8.09 8.79 81.63 6.25
R4b 4.09 1.22 11.09 7.47 10.83
R5a 7.94 2.37 7.80 142.38 7.01
R5b 3.99 1.19 33.02 5.19 7.72
Ré6a 29.65 8.85 10.05 170.05 9.02
R6b 3.96 1.18 89.51 2.00 5.33
Aver. all active 9.95 2.97 24.19 58.51 10.16
Upper Silesia—the Anna coal waste dump
Al 9.70 2.89 41.21 5.23 46.87
A2 4.03 1.20 11.87 9.38 31.85
A3 5.23 1.56 358.00 1.16 2.54
A4 5.76 1.72 11.13 4.94 33.65
AS 5.66 1.69 2299.29 - 0.95
Aver. all active 6.08 1.81 544.30 4.14 23.17
Upper Silesia—the Czerwionka-Leszczyny coal waste dump
CzL1 3.74 1.12 0.16 1.25 61.58
CzL2 4.28 1.28 4491 72.29 4.59
CzL3 3.78 1.13 12.49 245.86 8.10
CzL4 3.90 1.16 23.57 55.22 10.80
CzL5 3.87 1.15 29.48 - 15.73
Aver. all active 3.91 1.17 22.12 74.92 20.16
Lower Silesia—the Stupiec coal waste dump
Sla 5.11 1.53 19.25 0.48 12.94
S1b 5.63 1.68 376.54 1.32 6.61
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Table 3 continued

Sample code N,/O, (vol.) OoD*? CO,/CH,4 (vol.) Sat/Unsat. HC® CH,/all HC®
Slc 5.63 1.68 376.54 1.32 6.61
S1d 14.26 4.26 29.82 5.52 9.24
Sle 31.94 9.53 32.57 9.74 22.27
Sif 28.81 8.60 45.89 11.26 22.05
Slg 26.24 7.83 79.98 6.22 7.27
S2a 24.90 7.43 21.70 4.36 24.99
S2b 29.85 8.91 15.11 5.23 33.35
S3 33.69 10.06 24.07 6.20 19.48
S4a 19.48 5.81 81.10 41.71 8.95
S4b 23.13 6.91 51.45 13.73 16.44
S5a 14.84 4.43 22.92 34.15 64.19
S6 4.48 1.34 9.21 - 9966.66
S7 21.52 6.42 23.16 0.91 682.29
S8a 19.86 5.93 91.87 13.80 7.83
S8b 28.87 8.62 60.51 10.23 13.42
S9 20.61 6.15 65.15 543 10.90
S10a 8.54 2.55 752.45 - 34.12
S10b 3.70 1.11 121.81 0.63 0.41
S11 3.72 1.11 0.00 3.66 0.36
Aver. active S1-S10 18.55 5.54 115.06 8.61 548.50
Inactive S11 3.72 1.11 0.00 3.66 0.36
Lower Silesia—the Nowa Ruda and Przygorze coal waste dumps

N1 3.81 1.14 0.00 0.67 0.29
N2 4.36 1.30 102.26 0.33 5.12
N3 442 1.32 78.09 0.34 7.98
P1 3.85 1.15 42.87 0.29 2.16
Aver. active N2 and N3 4.39 1.31 90.18 0.34 6.55
Aver. inactive N1, P1 3.83 1.14 21.44 0.48 1.22
US aver. active 7.68 2.29 153.72 35.46 81.41
US aver. inactive 443 1.32 1691.43 3.28 0.477
LS aver. active 11.47 342 102.62 447 277.53
LS aver. inactive 3.78 1.13 10.72 2.07 0.79

Averages are shown in bold

0D oxygen decrease. a ratio shows oxygen content decrease compared to the O, content (vol.) in the atmospheric air;
OD = 3.35 x N,/O, content in a gas sample, where 3.35 is the value of atmospheric ratio of N,/O, (vol.)

®Sat/UnsatHC = a ratio of a sum of all saturated C,—C5 hydrocarbons to a sum of all unsaturated hydrocarbons
“CHy/all HC = a ratio of methane content to a sum of all hydrocarbons

“~” Compounds were not found

few external signs. However, it is revealed by elevated Saturated to unsaturated hydrocarbons ratio (S/
CO, in dump gases and decreased O, (Tabor 2002). UnS)

Values of this parameter reflect the predominance of
saturated hydrocarbons in all samples apart from W3b,
Wi4a (~ 1.0), NR1-4, NRS1la, NRS7, and NRS10b
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Fig. 4 Correlation between oxygen decrease (OD) composition
compared to atmospheric O, content and content (rel.%) of CO,
in waste dump gas

(Table 3). At sites without thermal activity, unsatu-
rated hydrocarbons were often absent. In others, the
pattern is more complex as self-heating releases
hydrocarbons of both types together. High S/UnS
values as in W3c tend to be associated with the highest
temperatures, as are higher OD values. The Rymer
Cones gases sampled in 2011 and 2015 differ in their
S/UnS values; the latter have lower values due to
comparatively lesser expulsion of saturated
hydrocarbons.

Differences in self-heating activity and its
dynamics between Upper and Lower Silesia coal
waste dumps

There are three factors which should be considered as
influencing gas composition: (1) temperature, (2) the
stage of self-heating (initial, ongoing, or waning), and
(3) characteristics of coal wastes organic matter and
minerals. Differences in the chemistry of gas emitted
from dumps in LS and US are related to all three
factors, but their relative importance varies.

At the time of sampling, at the LS sites, only mild
thermal activity prevailed with temperatures < 70 °C,
i.e., below the threshold temperature above which
intense self-heating begins (Sokol 2005). Thus, only
mild oxidation of coal waste organic matter occurred
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there (Table S2). Pronounced self-heating in the US
sites involved much higher temperatures and, as a
result, gas production was much intense (Table S3).
There are also distinctive differences between both
basins in average temperatures measured at dump
surfaces and subsurface in active and inactive sites. At
the active US sites, the average temperature measured
at the surface was 62 °C and subsurface 137 °C,
whereas those measured in the active LS sites were 38
and 66 °C, respectively. At thermally inactive US
sites, these temperatures were 2 and 7 °C and, for the
LS, 21 and 29 °C, respectively.

It follows that gas composition in the thermally
active LS sites is characteristic of waning self-heating,
with OD values approaching 1.0 due to the low
consumption of oxygen in the process. Methane is
absent, or contents are very low. This is reflected by
values of CH4/CO, which, at the LS sites, are similar
to those of the US inactive sites. S/UnS follows a
similar pattern. Thus, gas composition seems to
mainly reflect self-heating stage and temperature
level, particularly whether the threshold temperature
(60-80 °C) is exceeded or not (Sokol 2005; Pone et al.
2007).

However, correlations between CO, and CH,
contents (Fig. 3) in the individual basins show a small
difference, most probably caused by differences in the
initial characteristics of the coal waste organic matter.
The LS coals are of higher rank than the US coals
(Zdanowski and Zakowa 1995). The organic matter of
the adjacent waste rocks is likewise. This makes the
LS coal waste organic matter more inert as labile
aliphatic groups were expelled earlier during its
natural maturation within the deposit and, thus, less
prone to produce aliphatic compounds when heated. It
also explains the slight shift in the proportions of CO,
and CH, that reflects lower CH4 production and, thus,
its rapid oxygenation to CO, in the LS dumps.
Moreover, this difference in organic maturity may
explain why average concentrations of several dom-
inant hydrocarbons (Table S3) are much higher in the
active US sites, e.g., CHy (x 6), C,—C, saturates
(x 2-7), propylene and acetylene (x 5) and H, (x 8).
The lower resistance and rank of the US organic matter
are also reflected in more pronounced temperature
effects on gas compositions in active and inactive
sites, e.g., much higher contents of CH, and C,Hg
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Fig. 5 Representative averaged gas compositions in thermally inactive sites and the initial, ongoing, and waning self-heating stages in

the Wetnowiec dump

hydrocarbons (ca x 1400 and x 330, respectively) in
US than in LS sites (ca x 20 and x 220, respectively).

Gas composition and thermal activity stage

Whereas CH, predominates at all thermally active
sites, the compositions of heavier hydrocarbons, i.e.,
C,—C;, correlate better with self-heating stages
(Figs. 5 and 6). At inactive sites, apart from atmo-
spheric gases and elevated CO,, C4,—C¢ hydrocarbons
and ethylene, possibly of biological origin, are dom-
inant. Initial- and waning-stage gases have composi-
tions similar to each other, with ethane being the
predominant hydrocarbon. The ongoing, well-devel-
oped stage of self-heating with site tempera-
tures > 70 °C is characterized by slightly higher
emissions of C3—Cg hydrocarbons compared to the
initial and waning stages, commonly heavier unsatu-
rated hydrocarbons and H,. However, the likely
impossibility of reliably differentiating heating stages
on gas compositions alone underscores the value of
thermal mapping.

Health and environmental impact

Exceptionally high CO, levels together with other
gases emitted have adverse effects on health, partic-
ularly with whole-life exposure. It is difficult to assess
how large the US and LS population is exposed to coal
waste dump gases since the range of contaminant
transport is unknown and most possibly affected by
several factors, e.g., fire intensity, prevailing winds,
and the dump architecture. Research on these prob-
lems is in its infancy. The total population of Upper
Silesia is ca 4.599 million and that of Lower Silesia ca
2.910 million, with average densities of 373 and 146
person/km?, respectively (stat.gov.pl 2014). Densities
are particularly high in the areas where ca 200 US and
130 LS coal waste dumps are located, i.e., 2000—3000
person/kmz; communities clustered around the mines
and associated smelters. For example, the Welnowiec
dump lies within 2.5 km of three Katowice districts,
Koszutka, Bogucice, and Dab, with 10000, 14000, and
7000 inhabitants, respectively. The Osiedle Tysiacle-
cia area slightly further away houses ca 21 000
inhabitants. The worst impacts probably affect settle-
ments such as Skata, Bunczowiec, and Bulowiec (the
Ryduttowy districts with ca 8000 inhabitants) located

@ Springer



Environ Geochem Health

Fig. 6 Comparison of gas
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300 m from the Szarlota dump, 500 m from the Anna-
Pszéw dump, and ca 2 km m from the Marcel and
Rymer Cones dumps, or the Niedobczyce residential
area (ca 12000 inhabitants) located 100200 m from
the Rymer Cones. Both regions are characterized by
high degrees of citizens mobility to and from homes
and working places every day which makes the real
impact difficult to assess. However, the fact that
incidences of lung cancer and other lung and cardio-
vascular illnesses generally are much higher in Silesia
than elsewhere in Poland may be an additional
indicator of exposure to self-heating pollutants
(Nowotwory. 2013).

Greenhouse gas is probably the greatest concern
as dump self-heating is not typically recognized as a
significant source. Regrettably, awareness of the
problem is low even in the scientific community,
despite the worldwide occurrence of the
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Lower Silesia

M Upper Silesia Lower Silesia
phenomenon, e.g., Portugal, Australia, USA, China,
and South Africa (e.g., Litchke 2005; Pone et al.
2007; Carras et al. 2009; Ribeiro et al. 2010;
O’Keefe et al. 2010).

Conclusions

Gas emissions from coal waste dumps in two coal
mining basins in Poland are characterized by highly
variable compositions with CO, and CH,, major
greenhouse gases predominating in all thermally
active sites. Both CO, and CH, can greatly exceed
values considered safe for health. The thermally active
dumps should be regarded as their significant source.
A strong substrate—product correlation between CO,
and relative percentage contents of CH, points to CHy
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oxidation to CO, immediately after CH, release
during self-heating.

Gas emissions at inactive sites comprise CH, and
smaller amounts of C3;—Cg hydrocarbons, mostly n-
alkanes. Concentrations of CH, at thermally inactive
sites where fire had been extinguished or which were
never burnt, exceed by several times atmospheric
values. At these sites, CH, is of a possible bacterial
origin (as is ethylene) or reflects long-term leakage
from rock pores. Even thermally inactive coal waste
dumps should be deemed a long-term environmental
hazard.

The main light hydrocarbons produced during self-
heating are saturates. Their dominance over unsatu-
rated hydrocarbons increases with temperature. Acet-
ylene is rare and other alkynes were not found,
possibly due to their higher chemical reactivity.

Oxygen decrease in the gases is mostly tempera-
ture-dependent with a threshold temperature of ca
70 °C. Whenever this level is reached, a significant
decrease in oxygen content is registered. A strong
substrate—product correlation between CO, and O,
indicates that organic matter oxidation, not the
formation of other oxides (including inorganic oxi-
des), consumes most of the oxygen budget.

The distribution of heavier hydrocarbons in the
dumps is influenced by the stage of self-heating
attained. Initial and waning stages show similar gas
compositions, whereas sites with ongoing self-heating
show greater emission of heavier hydrocarbons,
possibly related to higher temperatures. On a regional
scale, the minor differences between emissions in the
two Silesian coal basins are also mostly related to the
self-heating stage pertaining or to differences in the
thermal maturity of coal waste organic matter in both
basins. The higher rank of LS organic matter makes it
less prone to expelling hydrocarbons when heated.
Critically, in Lower Silesia, self-heating is on the wane
and most dumps already overburnt.

Since self-heating of coal waste dumps exposes
large population in Upper and Lower Silesia, precau-
tionary measures against any health dangers should be
undertaken, e.g., monitoring of internal temperatures
and initial-stage gases. The low threshold temperature
(ca70 °C) means that quick and relatively inexpensive
cooling of the damp is possible before the beginning of
intense self-heating. Otherwise, temperatures will
increase rapidly up to ignition temperature over a
few weeks. Unfortunately, it is not easily possible to

dismantle coal waste dumps. Due to poor mechanical
quality of Silesian coal wastes, their reuse is limited to
overburnt material. To limit population exposure to
harmful emissions, limiting access to dumps may be
advisable, particularly those with ongoing heating.
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