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We study antiferromagnetic properties of the two-band extended s— f
model with fluctuating valence in the context of two mutually bound new
effects of chemical potential critical behaviour, as well as of critical electron
redistribution. In order to exemplify both phenomena we build phase dia-
grams of the system displaying the dependence of the critical Neel tempera-
tures (TN) of the system versus 4f (5f) level positions. The phase diagram
consists of two different areas corresponding to antiferromagnetic and para-
magnetic phases. We plot the magnetizations and the correlation functions
of the system as functions of temperature. Next, we investigate the temper-
ature dependence of the relative average occupation numbers Δn f ( d) and
the chemical potential ΔA for a given 4f (5f)" level position Ef. Plotting
this quantities along the Ef cross-section lines we observe small (of the or-
der of 10 -4 -10 -3 ) but well localized kinks exactly at the Neel temperature
TN. Last but not least, we plot the first derivative of the chemical potential

dµ/dTwhich, as it shows clearly visible jumps atTN, may turn out to be
very accurate and sensitive (auxiliary) tool to find critical temperatures of
the considered system. Moreover, we plot the difference µAF — µPARA where
we subtract a chemical potential value of a reference paramagnetic sample
from the actual value of the antiferromagnetic system. Also in this case we
report the observation of discontinuous change in slope at TN. Our observa-
tions can be extended to point out to a new practical possibility of how to
find experimentally the critical temperatures of the antiferromagnetic sys-
tems exclusively from the chemical potential measurements. We expect that
the same type of measurement, according to our recent and present results,
would also apply to all types of critical phenomena in real solids.
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1. Introduction

The magnetic properties of the 4f (lanthanide) systems like Ce, Pr, Sm, Eu,
Tm, and Yb-based materials and of the 5f systems (actinide based materials) are
extensively reviewed in Refs. [1-6]. One can find, among them, many intermediate
valence magnetic materials with interesting and unusual physical properties. The
physical properties of the mentioned materials can successfully be explained with
the use of the extended s— f model (see e.g. Refs. [7-10]). However, in view of the
results of the recent papers, Refs. [11-14], concerning the straightforward relations
between chemical potential temperature dependence and phase transitions in the
electronic system, it seems to be interesting to see whether for magnetic systems
exhibiting fluctuating valence the critical behaviour of the chemical potential can
also be able to report on phase transitions in such systems. In the present paper we
show that for antiferromagnets exhibiting fluctuating valence, described by the ex-
tended s— f model, Refs. [7-10], the phase transition antiferromagnet—paramagnet
at Neel's temperature TN can clearly be detected (similarly to other types of phase
transitions, Refs. [11-14]) exclusively from the plot of the chemical potential versus
temperature, because of visible kinks at T = TN.

2. Model and results

In order to investigate the antiferromagnetism in 4f (5f) systems we con-
sider two-sublattice version of the generalized s—f model (cf. e.g. Ref. [10]). The
Hamiltonian for this case can be written in the following way (grand canonical
ensemble) :

where
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and

The two types of lattice sites i , , jc, (α = A, B) are taken into account. The 4f (5f)
subsystem is described by the Hamiltonian, Eqs. (2) and (3), where Ej denotes the
position of the 4f (5f) band gravity centre, Uf stands for the intrasite Coulomb
repulsion, tfiAjB and t 8.1A are hopping integrals of the narrow 4f (5f) band. The
first two terms of the Hamiltonian, Eq. (4), describe the local exchange interaction
of the localized 4f (5f) magnetic moments with conduction electrons (the coupling
constant g) and the third term — the hybridization between 4f (5f) electrons and
conduction electrons. The subsystem of conduction electrons is described by the
Hamiltonian, Eq. (5); t 0 denotes the centre of gravity position of the conduction
band, t AFB and tdiBjA are hopping integrals for these electrons; denotes the
chemical potential.

To simplify further calculations we perform the mean field approximation in
Eq. (4), similarly to Ref. [10]. We can write

and

where

and α = A, B. For the antiferromagnetic case, we are interested in, we assume that
the magnetizations fulfil the relations

By using Eqs. (7)—(9), and (10) we get simplified form of Hamiltonian (1) in the
form

where
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(the terms in braces in Eq. (12) appear when we utilize additionally Ising-like direct
exchange term in the Hamiltonian, introducing in this way direct 4 f (5 f) —4 f (5 f )
exchange interaction).

To find the thermodynamic properties of the system described by the Hamil-
tonian from Eq. (1) we can use the simplified form, Eq. (11). The calculation
method used here is similar to Ref. [10]. The only modifications concern two sub-
lattices instead of one. We write first the exact Dyson equations for the case of
Uf = 0 and, next, the presence of the Coulomb repulsion can be taken into account
by the renormalization of the free propagator

in the corresponding Dyson equations (see Ref. [10]). Using this method we can
calculate all Green functions we need. To determine the chemical potential µ with
the helo of the following constraint:

where n is the average number of electrons per atom (the same for both A and B
sublattices) we need the following Green functions: ((fασ I f« ))k,E'  ((dασ d+ασ))k,E'
((fασ  I d+ασ))kEand((dασIf+ασ))k E' α = A, B.Hereafter we assume that both VσA
and V σB(v =r,J.) are real. Besides, from the analytical expressions for the above
mentioned Green functions we can conclude that V σA= V. (Xó =XB-σ).Thus,
we assume further that V σA= Vσ(XσA= Xσ), VσB= V-σ(Xσ B  = X-σ). Next, we
follow exactly the same calculation scheme to find the final set of equations as in
Ref. [10]. Similarly, we have used the band energies for conduction electrons by

εk(hopping integral t cdij) and for 4f (5f) electrons by δe', (hopping integralt),
where 5 is the ratio of the band widths for 4f (5f) electrons and conduction band
electrons. For the B-sublattice the corresponding Green functions can be obtained
by changing σ H —σ. We assume also (similar to Ref. [10]) the model density of
states for conduction electrons in the form
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where W is the band width of the conduction band. Thus obtained implicit
equations together with the constraint given by Eq. (14) form a complete set of
equations to determine the chemical potential p, the average occupation numbers
(nfAσ), (ndAσ) and the correlation functions (d+AσfAσ)•

The numerical solution of the system of complicated seven implicit nonlinear
equations not only allows to discuss the magnetic properties of the model (the
possibility of appearance of the antiferromagnetic or paramagnetic phases) but also
to show the temperature dependence of the average electron occupation numbers
and of the chemical potential  in the vicinity of transition (Neel) temperature.
Here, since both effects (on (nσf(d) ) and on µ) were first introduced and described in
papers [11-14], we will concentrate ourselves only on the temperature dependence
of the chemical potential µ (the effect of critical electron redistribution is much
more difficult to measure in experiment for it needs the knowledge of the density
of states and of the chemical potential µ at every temperature in the considered
range). However, we will not put the special emphasis on the chemical potential
alone but, to enhance the effect of chemical potential critical behaviour at critical
temperatures, we introduce the chemical potential derivative (instead of recently
used (Ref. [12]) relative difference of the chemical potential (µ(T) — µ(T0 )) with
respect to the reference value of µ at T0 ) for it works perfectly well to distinguish
critical temperatures of the considered system.

Solving numerically the system of implicit equations together with the con-
straint which determines the chemical potential p, Eq. (14), we can calculate the
order parameters (magnetizations) and the correlation functions as functions of
temperature for a given parameter set. From these calculations we can read off
the critical temperatures of the system and plot them as functions of Ef level
position to obtain the corresponding phase diagram. From many possibilities, in
order to demonstrate the effect of critical behaviour of the chemical potential µ we
have selected only two phase diagrams which we present in Fig. 1. Both phase dia-
grams consist of two separated areas corresponding to two different phases (namely
antiferromagnetic and paramagnetic). The effect of chemical potential critical be-
haviour (or critical electron redistribution — see Fig. 2b and the inset in Fig. 3b)
can easily be demonstrated when considering the differences

where the reference temperature T0 is chosen to be greater than critical temper-
atures of the system in the considered temperature interval or by the chemical
potential derivative

In the present paper we put a special emphasis on the last mentioned deriva-
tive method (as it may appear to be the most promising in the experimental prac-
tice). From Fig. 2b we see that the quantities in Eq. (16) exhibit distinct kinks
exactly at the same temperature as can be read off from the temperature depen-
dence of the order parameters, Fig. 2a (the cross-section goes along Ef = —2 eV
line). However, the kink in the plot of the chemical potential  is weak and prob-
ably cannot be separated from other effects (or energetic background) in experi-
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Fig. 1. The phase diagram of the system (TN vs. Ej) for n = 0.95 (J0 = 10 -4 eV,
δ =10 -5 — upper curve) and n = 1 (J0 = 0, δ = 0 — lower curve). The remaining
model parameters are: W = 2 eV, g = 0.1 eV, Uf = 10 eV, V = 0.1 eV.

Fig. 2. (a) Magnetizations mf(d) and correlation functions (dam fa ) (a =T,1) vs. tem-
perature; (b) the corresponding differences Dµ [eV] and Δn f (d) vs. temperature; the
inset in (a) — chemical potential derivative dµ/dT and the inset in (b) — the rela-
tive chemical potential µAF - 

µ

PARA scaled by the factor (-1) vs. reduced temperature
T/TN. The cross-sections correspond to Ef = —2 eV line in Fig. 1 (upper curve).

ment. This drawback can be removed when we differentiate the chemical potential
y with respect to temperature T. The result is shown in the inset of Fig. 2a: a
nicely seen jump of the chemical potential derivative points precisely to the critical
temperature acquired from the condition of vanishing of the order parameters.
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Fig. 3. (a) Magnetizations m f(d) and correlation functions (da fα ) (a =1,1) vs. tem-
perature; (b) the corresponding Δµ [eV] plot; the inset in (a) — the chemical potential
derivative dµ/dT; the inset in (b) — the relative occupation numbers Δnf (d) vs. tem-
perature. The cross-sections go along Ef = —2 eV line in Fig. 1 (lower curve).

Exactly the same phenomenon takes place in the case of the phase diagram
depicted in Fig. 1 (lower curve). Also in this case distinct, well localized kinks
(Fig. 3b and the inset in Fig. 3b) appear precisely at the same critical temperature
where the order parameters vanish (Fig. 3a). The most striking is, however, the
behaviour of the chemical potential derivative which alone sharply locates, as in
the first example, the critical (Neel) temperature of the considered system.

Moreover, as a supplementary method we present the calculated result which
was obtained via subtraction of the chemical potential for paramagnetic reference
material from the considered antiferromagnetic sample µAF –µPARA (see inset in
Fig. 2b). Obviously, also this "reference" method provides us with the beautiful
result where the discontinuity in the slope of PAF – µPARA points to the existing
critical temperature (here in the reduced temperature scale: T/TN).

3. Conclusions

According to the results from the present paper, based on the model cal-
culations in the framework of the extended s– f model, and to our recent out-
comes (Refs. [11-14]), we claim that the same drastic effect in chemical potential
derivative would apply to the Fermi systems with temperature, concentration or
(internal or external) pressure driven phase transitions. The apparently smooth
and featureless curve of the temperature dependence of the chemical potential
shows small but distinct kinks at phase transitions. These kinks, however, may be
sometime difficult to measure (in e.g. photoemission experiments, Ref. [15]) since
some other (surface) effects can take place. The experimental resolution can also
impose some limitations to the application of our methods. We believe, however,
that these difficulties may be omitted and the effect of critical behaviour of the
chemical potential P at points of phase transitions can be much more pronounced
when we differentiate the chemical potential with respect to the actual driving
force (temperature, concentration, pressure, density, etc.).
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In other words, in accordance with our present knowledge, the chemical po-
tential derivative can serve as a new and extremely sensitive tool to detect and
predict all possible phase transitions (regardless the type of transition and irre-
spective of the underlying mechanism), including transitions between stable and
metastable phases and "exotic" states in condensed matter experimental physics.
One may proceed even further and find possible applications in all quantum sys-
tems of indistinguishable Fermi or Bose particles where the notion of the chemical
potential (derivative) matters.

It is worthwhile to mention that the temperature dependence of the chemical
potential for high-Tc superconductor has been calculated in Ref. [16] and experi-
mentally measured for superconducting YBa 2 Cu3 O 7-δ material (see Figs. 1 and 2,
Ref. [17]). Almost negligibly small (0.1 meV) kinks in the chemical potential plot
at the superconducting transition temperature were of the same order of magni-
tude as calculated in the present paper in the case of mixed valent antiferromagnet
(see inset in Fig. 2b). This observation entirely supports our suggestion that small
deviations in the chemical potential are, in fact, measurable with sufficient accu-
racy and, accordingly, especially with the use of "first derivative" or "reference
sample" methods can successfully be adopted in the hunt for phase transitions in
real solids.
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