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The vibrational contributions to second-order transition properties are
considered in the framework of the Born—Oppenheimer approximation. It is
shown that the usual formula for vibrational second-order transition matrix
elements is incomplete and needs to be supplemented by a term of purely
vibrational origin. This pure vibrational contribution is calculated for vi-
brational transition polarizabilities in LiH and BeF and found to be quite
significant. Its inclusion in theoretically calculated data for the Raman in-
tensities appears to be necessary.

PACS numbers: 33.20.Fó

1. Introduction

Over the past years a great deal of interest [1-3] has been given to vibra-
tional corrections to different molecular properties [4]. Bishop, in his review of the
subject [5], stressed that accounting for the influence of molecular vibrations (and
rotations) on the calculated molecular properties is much more than just a simple
averaging with respect to the given rovibrational (v, J) state. For properties of
the second- and higher-orders the usual rovibrational correction δPv,J [6], which
follows from averaging the so-called electronic contribution, Pel, to the total prop-
erty value P in the given electronic-vibrational-rotational state of the molecule,
needs to be supplemented by additional terms, δPrv, of rovibrational origin. These
terms arise from the fact that in the presence of some external perturbation both
the electronic and nuclear motions are affected. Moreover, in several cases [1-3, 7]
these, usually neglected δPΓv terms, have been found to make either large or even
dominant contribution to the totαl, i.e., the ones which follow from physical mea-
surements, values of properties.

(363)
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It appears that so far most of attention has been focused on vibrational cor-
rections to expectation values of different, mostly electric, properties of molecules.
However, a similar mechanism should also add some vibrational and rotational
contributions to transition properties. In the present paper we develop a theory
of the corresponding corrections to second-order vibrational transition properties.
Such a property can be exemplified by the transition dipole polarizability between
two vibrational states. This is a quantity which determines the intensity in the vi-
brational Raman scattering [8]. The magnitude of this effect is first estimated on
the basis of spectroscopic parameters. Its magnitude depends on the value of the
vibrational transition dipole moment between the two states under consideration
and on the difference between vibrational contributions to the dipole moment of
these two states. Additional numerical illustration is given by direct calculations
of the transition polarizabilities in LiH and BeF.

2. Theory

In this paper we shall focus our attention on a single electronic state derived
under the assumption of the validity of the Born—Oppenheimer approximation.
Moreover, we shall assume that the overall rotation of the molecule has been
separated out and the system is in its rotationless (J = 0) state. Transitions
between different states of the system will occur between vibrational levels of
the same electronic state. For an external perturbation represented in the total
electronic-nuclear Hamiltonian H = H(λ) by the perturbation term )AV, whose
"strength" is governed by the parameter λ, the Born—Oppenheimer approximation
leads to the notion of the electronic energy E = E(Q; λ) which is an eigenvalue of
the electronic Schrodinger equation

where r denotes the electronic coordinates and Q stands for the set of nuclear
geometry parameters. The h-dependent Hamiltonian H(7.; Q, λ) is

The eigenvalue of (1) depends on both the nuclear coordinates and on the strength
of the perturbation V and defines the λ-dependent potential in what is called the
nuclear Hamiltonian ħ= ħ(Q; λ) of the electronic state under consideration

where TQ is the nuclear kinetic energy operator and E(Q; )A) includes the nuclear
repulsion terms. The nuclear eigenvalue problem

gives the .\-dependent solutions which determine the total electronic-vibrational
function Ψv (r, Q; λ) of the electronic state 0(r; Q, λ):

If the perturbation V enters the molecular Hamiltonian with some time depen-
dent factor, its presence causes transitions between different electronic-vibrational
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states. The single-quantum vibrational transitions are known to be governed by
the (first-order) transition matrix element

Owing to the assumption of the Born—Oppenheimer approximation one can define
the pure electronic contribution to the h-dependent first-order transition prop-
erty (6). In the present case this electronic contribution is simply the expectation
value of the operator V in the state 0(r; Q, λ):

Thus, upon taking the λ → 0 limit of (6) one obtains the usual vibrational transi-
tion element

whose determination requires solely the λ-independent solutions of the electronic
and nuclear Schrodinger equations. Because of the Hellmann—Feynman theorem
the only vibrational contributions to P(1);el v,vare due to .\-independent vibrational
wave functions of the two states involved in the transition. For V being the dipole
moment operator this theory gives the usual formula for the vibrational transition
dipole matrix element which determines the intensity of the IR bands [9].

In the case of two-quantum transitions caused by the time dependent factor
at the perturbation V their intensity is approximately governed [8] by the second-
-order transition matrix element

By taking the λ → 0 limit of the derivative in (9) one finds that

where

and

Moreover,

is the electronic contribution to the second-order property arising from the per-
turbation V.

In Eq. (10) the first term, P(2),elv,vgives the usual definition (11) of the
second-order transition property for transitions between two vibrational states
defined by the quantum numbers v and v'. However, if one takes into account that
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the potential used in the nuclear equation also depends on the external pertur-
bation, there is additional contribution P( 2 ) , v 1ó of purely vibrational origin. This
additional term contributing to the total second-order transition property (10)
involves the first derivatives of vibrational functions determined at λ = 0. These
derivatives are simply the first-order perturbed solutions, X(1)(Q; 0) arising from
the perturbation expansion of the λ-dependent nuclear eigenvalue problem (4).
Through the first-order in λ one finds

and

where the superscript "0" indicates the operators and solutions in the absence of
the external perturbation, e.g., X,v(0)(Q) = Xv(Q; 0), E^0) = ev(0). Similarly,

In terms of the complete set of solutions {X, 0 >} of the .\-unperturbed nuclear
problem the first-order vibrational functions can be written as

and upon substitution into Eq. (13) give explicit sum-over-states formula for the
purely vibrational correction to second-order vibrational transition properties

Obviously, the usefulness of the sum-over-states expansion of P(2)vib v,v,'in its com-
plete form (18) is rather limited. However, in the case of the mechanical and
electric harmonic approximations one finds that for each selected mode v' = v ± 1
and each of the two sums in Eq. (18) is reduced to a single term. Within these
approximations the estimate of (18) will be

where ωe denotes the harmonic frequency associated with the given mode. This
approximate expression for P^ (2)vibbv,v+1may be helpful in estimating the magnitude
of the P(2),vib contribution to vibrational second-order transition properties. The
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evaluation of (19) requires only some lower-order data, i.e., the first-order vibra-
tional transition property and vibrational averages of P( 1 ) , et. All these data can
be expressed in terms of spectroscopic constants and the first-order derivative of
p(1),el with respect to the normal coordinate under consideration [5, 6]. In the
case of polyatomic molecules the use of normal coordinates would require the as-
sumption of the small amplitude vibrations. For most of the stable molecules in
low rovibrational states this assumption is quite well satisfied.

3. Applications: transition dipole polarizability

3.1. Vibrational transition dipole polarizabilty

The formalism presented so far is essentially valid for any second-order vi-
brational transition property. Its particular application discussed in this section
refers to intensities in vibrational Raman spectra [8]. Then, the perturbation op-
erator V can be identified with the negative of some component, say al p , the dipole
moment operator

and the strength parameter λ acquires the meaning of the Fp (= F) component of
the external electric field. Then,P ( 1 ) el(Q; 0) = µe ^ (Q; 0) becomes the electronic
part of the dipole moment surface. Similarly, P(2)el(Q; 0) = αel(Q; 0) is the elec-
tronic part of the diagonal pp-component of the dipole polarizability surface. To
simplify the notation we shall avoid explicit use of the tensor indices. Analogous
identification of symbols holds also for vibrational averages and vibrational tran-
sition properties, i.e.,

and

It is also useful to note that the pure vibrational contribution αvibv,v, to the transition
polarizability αv,v can he, according to (13), expressed as the following derivative:

while αelv,v, is simply a matrix element of αel(Q; 0) between the two vibrational
states involved in the Raman transition.

The origin of the additional vibrational contribution to the transition dipole
polarizability can be also elucidated in the framework of Placzek's theory of the
Raman intensities [8, 10]. In this case one considers the induced electronic dipole
moment δ, el(Q; F) which arises from the presence of the oscillatory electric field
F. In the linear approximation one has
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with the total dipole moment derivative approximated by the electronic dipole
polarizability. i.e..

If one takes into account that the presence of the electromagnetic field influences
also the Born—Oppenheimer potential, then the correct expression for the total
dipole moment derivative in (25) reads

The additional term which accounts for the dependence of normal coordinates on
the external field gives rise to the correction α vib v,v' derived in this paper for the
static limit of the Raman intensity formulae [8, 10].

3.2. Vibrational contributions to the transition dipole polarizabilty
in LiH and BeF

The two molecules, LiH and BeF, have been selected to exemplify the theory
of vibrational contributions to transition dipole polarizabilities. We have calculated
potential energy, dipole moment (z-component along the bond), and dipole polar-
izability (zz-component) curves by using the complete active space self-consistent
field (CASSCF) method and the polarized basis sets Poili, PolLi, PolBe, and
PolF [11]. The CASSCF calculations [12] have been carried out with active spaces
comprising all valence orbitals and the is core orbital of the metal atom with 4 and
11 electrons for LiH and BeF respectively. These calculations are essentially simi-
lar to those carried out earlier by Fowler and one of the present authors [13]. All
electric properties needed for the evaluation of the transition dipole polarizability
have been obtained by using the finite field perturbation method [14]. The field
strength values along the z-axis used to obtain finite difference approximations to
energy derivatives were F = 0.0, ±0.0025, and ±0.0050 a.u.

The present calculations are not aimed at obtaining highly accurate data
for any of the studied properties. The main purpose of this numerical illustration
is to show the importance of purely vibrational contribution to transition dipole
polarizabilities. Since the evaluation of the transition matrix elements requires
the energy and property curves to be determined over a rather wide range of
interatomic distances, the use of the CASSCF method appears to be quite natural.
With the present choice of the active orbital subspaces this method gives a proper
dissociation limit for each of the studied molecules.

All parameters needed to estimate the pure vibrational contribution to the
transition dipole polarizability according to the approximate formula (19) are sum-
marized in Table I. They are obtained from calculations of the electronic energy
and dipole moment curves followed by the solution of the rovibrational problem
with the aid of the Numerov—Cooley method [12, 15] and calculation of the vi-
brational dipole moment expectation values and transition dipoles. The electronic
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dipole polarizability curves, αel(Q; 0) were used in a similar way to obtain the α el v,v'
values presented in Table II.

Table II shows pure vibrational corrections estimated from the data of Table I
by using Eq. (19). The results referred to as directly calculated follow from the
numerical evaluation of the derivative given by Eq. (24). The matrix elements
entering this equation can be easily evaluated from the known dipole moment curve
obtained in the absence of the external field and vibrational functions determined
in the presence of the external field.

The examples presented in Table II show that the pure vibrational con-
tribution to transition dipole polarizability is by no means negligible. For LiH
it contributes about ten per cent of the total value of αv, v + 1 for v equal to
0 and 1. In the case of the BeF molecule about 40 per cent of the total tran-
sition dipole polarizability arises from the purely vibrational term. One has to
stress that this term has been so far systematically neglected in evaluations of
the Raman intensities. Since the calculation of αv ib v,v'for polyatomic molecules may
represent quite a task, its simple estimates become quite valuable. The estimation
method proposed in this paper is found to give quite reasonable values of αvibv,v'
It is of importance that this estimate involves the vibrational transition moment
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and zero-point vibrational corrections [6, 16] to the electronic dipole moment in
vibrational states linked by the Raman transition, i.e., the quantities which are
accessible either experimentally or by computations. The first of these quantities
can be either calculated theoretically or determined from infrared band intensi-
ties. The calculation of zero-point vibrational corrections to molecular properties
is becoming routine [2, 16, 17]. The last parameter, ω e , which enters Eq. (19) is
usually known.

4. Conclusions

It has been shown that the usual expression for vibrational second-order
transition properties needs to be supplemented by additional term of purely vi-
brational origin. This term arises from the dependence of vibrational functions on
the external perturbation and is absent in the case of the vibrational first-order
properties. As an example of the theory of vibrational effects on second-order tran-
sition properties we have considered vibrational transition dipole polarizabilities.
Estimates of the pure vibrational contributions and their directly calculated values
show that the so far neglected vibrational effect is by no means negligible and may
considerably affect the calculated theoretical data for the Raman intensities.

The present treatment assumes that the transitions under consideration do
not involve changes in the rotational state of the molecule. Moreover, it is assumed
that zeroth-order perturbation problem is well represented by the harmonic po-
tential. This may to some extent limit the conclusions of the paper making them
valid only for relatively low rotational states and restricted to molecules for which
anharmonic terms are sufficiently small. The latter restrictions can be easily lifted
by using the higher-order perturbation expansions with respect to anharmonic
terms of the Born—Oppenheimer potential.
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