

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: Structural properties of REM2Sn2 (RE=La, Ce and M=Ni, Cu)

Author: Andrzej Ślebarski, Krystyna Kaczmarska, J. Pierre

Citation style: Ślebarski Andrzej, Kaczmarska Krystyna, Pierre J. (1994). Structural properties of REM2Sn2 (RE=La, Ce and M=Ni, Cu). "Acta Physica Polonica. A" (Vol. 85, nr 2 (1994), s. 267-270).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego Proceedings of the European Conference "Physics of Magnetism 93", Poznań 1993

STRUCTURAL PROPERTIES OF REM_2Sn_2 (RE = La, Ce and M = Ni, Cu)

A. Ślebarski, K. Kaczmarska

Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice, Poland

AND J. PIERRE

Laboratoire Louis Néel, C.N.R.S. 166X, 38042 Grenoble, France

The lattice parameters a and c of CeM₂Sn₂ show an anomalous temperature dependence compared to the analogous variations for LaM₂Sn₂. The anomaly Δa of thermal expansion for CeCu₂Sn₂ has a maximum around 90 K, whereas Δc has a maximum near 140 K, near to the maximum of the magnetic resistivity $\Delta \rho$.

PACS numbers: 65.70.+y, 75.30.Mb

1. Introduction

Numerous rare earth (RE)-transition metal (M) intermetallics with the composition REM_2X_2 crystallize with the CaBe_2Ge_2 tetragonal structure (space group P4/nmm). A large number of compounds with Si and Ge has been studied. More recently, stannides with the same structure have been prepared. One main goal of investigations in these series is to study the influence of the transition metal on the magnetic interactions between rare earth or on the hybridization state of Ce compounds. In the following, we present structural properties of La and Ce stannides with Cu and Ni.

Two crystallographic phases have been identified for CeNi₂Sn₂, the parent tetragonal structure and a monoclinic variant [1]. CeNi₂Sn₂ is found to be a heavy fermion system with a γ value of 0.6 J/mole K². It orders antiferromagnetically at 2.2 K, exhibits a maximum of resistivity at 9 K and a minimum at 30 K.

 $CeCu_2Sn_2$ belongs to the tetragonal structure; Ce has a smaller hybridization than in the former compound. It orders at 2.1 K and does not exhibit any resistivity minimum; however, its magnetic resistivity passes through a maximum at about 100 K.

2. Crystallographic properties

All measurements at different T were performed with the X-ray powder diffractometer using Fe K_{α} radiation. To obtain the profile of a line at room temperature and below, every reflection was measured by a scan method in which the counter moved in steps of 0.01° and the counting time for every point was 10 s. Next, the measured intensity lines were approximated by the Pearson function of the type [2]:

$$I_{i}(\text{calc}) = \sum_{k} I_{0k} \left[1 + (2^{1/m_{k}} - 1) \left(\frac{2\Theta_{0k} - 2\Theta_{i}}{\Delta_{k}/2} \right)^{2} \right]^{-m_{k}}$$

where I_{0k} is the maximum intensity at $2\Theta_{0k}$ for each of the k lines in the region of overlap, $2\Theta_{0k}$ is the calculated position of the Bragg peak corrected for the zero-point shift of the counter, Δ_k is the half width at half height, m_k is the shape factor.

The best results were obtained within the interval 1 < m < 2. For the $K_{\alpha 1}$ profile the intensity was a half of the value for the $K_{\alpha 1}$, whereas all other parameters were the same as used in $K_{\alpha 1}$ profile.

Pearson-type distributions were fitted to the experimental profiles by a least squares method. The best fit to the shape of every (hkl) line with deviation less than 10% was obtained. The lattice parameters a and c of CeCu₂Sn₂ show an anomalous temperature dependence comparing with the analogous temperature

Fig. 1. Volume anomaly of CeCu₂Sn₂ as a function of temperature.

dependence of LaCu₂Sn₂. These anomalies are clearly seen in the plots of $|\Delta a| = |a(\text{CeCu}_2\text{Sn}_2) - a(\text{LaCu}_2\text{Sn}_2)|$ and $|\Delta c| = |c(\text{CeCu}_2\text{Sn}_2) - c(\text{LaCu}_2\text{Sn}_2)|$ vs. T.

We observe an anisotropy of lattice thermal expansion of CeCu_2Sn_2 . $|\Delta a|$ shows a maximum around T = 90 K but $|\Delta c|$ shows a maximum at T = 140 K. We note also that volume increment $|\Delta V| = |V(\text{CeCu}_2\text{Sn}_2) - V(\text{LaCu}_2\text{Sn}_2)|$ plotted vs. T (Fig. 1) is proportional to resistive increment $\Delta \rho = \rho(\text{CeCu}_2\text{Sn}_2) - \rho(\text{LaCu}_2\text{Sn}_2)|$ [1].

Fig. 2. Intensity of the Bragg line (1,1,2) for Ce and La compounds as function of temperature.

In Fig. 2 we show the temperature dependence of the Bragg (1,1,2) line intensities I of CeCu₂Sn₂ and LaCu₂Sn₂. Here a weak temperature change of the intensity of X-ray diffraction line for a small diffraction angle is expected. The intensity of (1,1,2) Bragg's line of LaCu₂Sn₂ (Fig. 2) nearly does not depend on temperature, however, comparing this I-T plot with the I(T) dependence of CeCu₂Sn₂ of the same (h, k, l) Bragg reflection one clearly sees an anomalous decrease in the intensity of the line for Ce-compound below ≈ 130 K. This result correlates with the abnormal lattice parameters temperature dependencies and with the abnormal $\Delta \rho(T)$ of CeCu₂Sn₂.

3. Discussion

Anomalous behaviour of thermal expansion has been observed in several heavy fermion systems. For instance, a negative thermal expansion may occur at very low temperatures (i.e. in $CeCu_6$ [3]), which is explained within the Fermi liquid model. The present anomalies occur at higher temperatures, but are believed to be related to cerium hybridization.

First, the Kondo behaviour or mixed-valent character of Ce may result in a difference in cohesion energy and Debye temperature between La and Ce compounds. We also remark that the maxima of Δa and Δc occur in a temperature range close to the maximum of magnetic resistivity, which is a temperature representative of crystal field splitting and where also lattice correlations between Ce sites begin to set up.

The temperature dependence of some Bragg intensities was found anomalous for $CeCu_2Sn_2$, which implies a strong change in the structure factor. Such change may arise from variations in the Ce scattering factor, in the Debye–Waller factors, or may be due to the shifts of atomic positions in the cell as well as to an incipient distortion of the cell, as observed in $CeNi_2Sn_2$ and $CePt_2Sn_2$ [4]. These phenomena are linked to Ce atomic volume which is a function of valency, and possibly to some redistribution of the electronic density due to the anisotropy of the ground state wave function. All these modifications in the 4f configuration are strongly correlated to the lattice cohesion, and may explain the different behaviours of LaCu₂Sn₂ and CeCu₂Sn₂.

References

- [1] K. Kaczmarska, J. Pierre, A. Ślebarski, R.V. Skolozdra, J. Alloys Comp., in press.
- [2] A. Ratuszna, K. Majewska, Powder Diffr. 5, 41 (1990).
- [3] A. de Wisser, A. Lacerda, P. Haen, J. Flouquet, F.E. Kayzel, J.J.M. Franse, *Phys. Rev. B* 39, 11301 (1989).
- [4] M. Latroche, M. Selsane, C. Godart, G. Schiffmacher, J.D. Thompson, W.P. Beyermann, J. Alloys Comp. 178, 223 (1992).